

ISSN 0103-9741

Monografias em Ciência da Computação

n° 31/05

 An MDA-Based Approach for Developing
Multi-Agent Systems

Beatriz Alvez de Maria
Viviane Torres da Silva

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 31/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Semptember, 2005

An MDA-Based Approach for Developing
Multi-Agent Systems*

Beatriz Alvez de Maria Viviane Torres da Silva
Carlos José Pereira de Lucena

{beatriz, viviane, lucena}@inf.puc-rio.br

Abstract: In this paper, we propose an MDA-based approach for developing multi-
agent systems (MAS). MDA specifies a structured software development process
divided in modeling stages. In the PIM stage, where platform independent models are
specified, we propose to use MAS-ML, a MAS modeling language that does not restrict
or specify implementation platforms. In the PSM stage, where platform specific models
are defined, we propose to transform MAS-ML models into UML models based on an
object-oriented framework for implementing MAS. In the last stage, the application
code is generated from UML models. The MDA stages and related transformations are
detailed in the paper.

Keywords: MDA, Multi-Agent Systems, MAS-ML, UML, ASF.

Resumo: Neste artigo, nós propomos uma abordagem baseada em MDA para o desen-
volvimento de sistemas multi-agentes (SMA). MDA especifica um processo de desen-
volvimento de software estruturado dividido em etapas de modelagem. Na etapa PIM,
onde modelos independentes de plataforma são especificados, nós propomos o uso de
MAS-ML, um linguagem de modelagem para SMA que não restringe ou especifica as
plataformas de implementação. Na etapa PSM, onde modelos específicos de platafor-
ma são definidos, nós propomos transformar os modelos MAS-ML em modelos UML
baseando-se em um framework orientado a objetos para implementação de SMA. Na
última etapa, o código da aplicação é gerado a partir de modelos UML. As etapas de
MDA e as transformações associadas são detalhadas no artigo.

Palavras-chave: MDA, Sistemas Multi-Agentes, MAS-ML, UML, ASF.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repúbli-

ca Federativa do Brasil

 II

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 1

1 Introduction
The development of multi-agent systems (MAS) has rapidly increased in the last few
years. Different applications’ domains, like digital libraries, virtual markets and
information systems in general, such as [Braubach et al., 2004; He et al., 2003; Kia et al.,
2002; Wooldridge and Jennings, 1998], are being developed through the MAS approach.
Modeling languages, programming languages, methodologies and some others MAS
modeling and implementing techniques have been proposed with the purpose of helping the
developers in building such systems.

In this paper, we propose a top-down MDA (Model Driven Architecture) [OMG, 2002]
based approach for developing MAS. MDA is an architecture that provides a means for using
platform independent viewpoints (high-level models) and platform specific viewpoints (low-
level models) in systems development. MDA is composed of four main stages and a set of
transformations that accomplish the tracking between the artifacts produced during each stage.

The MDA development process specifies three basic models: computational
independent models (CIMs), platform independent models (PIMs) and platform specific
models (PSMs). CIMs are application conceptual models that are independent of the
computational characteristics of the solution. PIMs generated in the second stage of the
development process are high-level models that are independent of implementation
platforms. PSMs, which correspond to the third stage, are models created based on
PIMs by including specific platform details. In the fourth (and final) stage of the MDA
development process, PSMs are transformed into application code. Besides the
specification of the models, MDA also defines a set of consecutive transformations that
should be applied to the models in order to allow the transformation of high-level
abstraction models into code.

Our proposal focuses on applying the top-down MDA architecture to build
MAS by defining the MDA stages and the transitions between the stages according to
the MAS characteristics. In this paper, we focus on the definition of MAS PIMs, on the
transformations from these models into PSMs, on the specification of the PSMs and on
the transformations from PSMs into code. The representation of CIMs as well as the
generation of CIMs into PIMs is beyond the scope of this paper.

While defining the PIMs, we propose to use the MAS-ML modeling language
[Silva et al, 2003; Silva et al., 2004c] to model MAS. MAS-ML is a modeling language
that extends UML, including agent-related abstractions. Since MAS-ML does not
restrict or specify implementation platforms, MAS-ML models are platform
independent ones. Using MAS-ML, it is possible to model the MAS structural aspects
(the abstractions, their properties and relationships) and the MAS dynamic aspects
(interactions between the abstractions and their internal executions).

In order to define PSMs, we propose to transform the MAS-ML models into
UML [OMG, 2005] models by using an object-oriented framework called ASF (Agent
Society Framework] [Silva et al., 2004b]. The ASF framework defines a set of object-
oriented modules that specifies abstract classes that should be extended in order to
implement multi-agent applications. The MAS-ML models that describe a multi-agent
application are transformed into UML models by instantiating the ASF framework. In
this paper, we concentrate on the transformation of MAS-ML static models – created
by using the three MAS-ML structural diagrams (organization diagram, role diagram
and extended UML class diagram) – into UML structural models – created by using the
UML class diagrams. The UML models generated according to ASF include several
characteristics that depend on the framework used in the transformation. Therefore,
the UML models are platform specific models.

 2

According to the MDA top-down approach, the next stage corresponds to the
transformation of PSMs into application code. In this context, the UML models that
represent the MAS are automatically transformed into object-oriented code.
The use of MDA in the MAS development process offers several advantages. The MAS-
ML models that describe an application are platform independent models that are
portable to diverse systems and can be used to generate different computational
models by applying various implementation platforms. Our approach proposes to use
the ASF framework in order to generate platform specific models. However, platforms
such as Jadex [Pokahr et al., 2003] could also be used.

Another advantage of the use of MDA is the generation of different MAS
viewpoints through the specification of models that have different abstraction levels.
The MAS-ML models are high-level models that focus on problem definition by
describing the system in an agent-oriented level. The UML models are low-level
models that focus on the solution of the problem by including implementation details
and describing the system in an object-oriented level.

The paper is organized as follows. In Section 2 there is a brief overview of the
main characteristics of the MAS-ML modeling language and the ASF Framework.
Section 3 describes our main contribution by showing the MAS development process
using MDA. In Section 4 , we present the VisualAgent tool [DeMaria et al. 2005] that
supports the development process proposed in this paper. The tool implements all
stages presented in the process by allowing the modeling and implementation of MAS.
Section 5 describes some related work and Section 6 presents some discussion about
the advantages and disadvantages of using our proposed approach. Finally, Section 7
draws some conclusions and discusses future work.

2 Background

2.1 MAS-ML
MAS-ML is a modeling language focused on developing MAS. This language is an
extension of UML by including agent-related concepts presented in the TAO (Taming
Agents and Objects) conceptual framework [Silva et al., 2003]. TAO defines the core
abstractions found in MAS, its properties, relationships and the way these entities
execute and interact. Thus, by using MAS-ML it is possible to model not only objects,
but also agents, environments, organizations and roles that are entities defined in TAO
and usually found in MAS. Figure 1 illustrates part of the MAS-ML meta-model by
depicting the meta-classes and stereotypes created to represent MAS entities
(environment, agent, organization, object, agent role and object role) and their
properties (goal, belief, axiom, plan, action, protocol, duty and right). More details
about the MAS-ML meta-model can be found in [Silva and Lucena, 2004a].

The MAS-ML relationships (specialization, aggregation, association,
dependency, inhabit, play and ownership), i.e., the relationships that can be used to
link MAS entities, are represented in Figure 2. This figure is also part of the MAS-ML
meta-model since it illustrates the meta-classes created to represent the relationships
defined in MAS-ML that are not defined in UML.

 3

DutyRight

Features Classifier

Structural Feature Behavioral Feature

Belief Goal

Axiom

Operation

Property

Class AgentClass ObjectRoleClass

OrganizationClass

AgentPlan

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Legend

AgentRoleClass

AgentAction 1..* *

1..**

sender receiver
1 *

Element

AgentProtocol

AgentMessage 1..*

*

Constraint
postconditionpostcondition

preconditionprecondition

0..1 0..10..10..1

*

**

*

EnvironmentClass

Active
EnvironmentClass

Passive
EnvironmentClass

Figure 1. MAS-ML meta-model representing the MAS-ML entities and properties

Relationship

Directed Relationship

Classifier

Element

Association

Dependency Ownership Inhabit Control Play Generalization

1..*

Metaclasses of the UML metamodel

New Metaclasses

Legend

Metaclasses of the UML metamodel

New Metaclasses

Legend

Figure 2. MAS-ML meta-model representing the MAS-ML relationships

The term organization is used to represent partitions and groups of entities
such as departments, communities and societies. Similar to agents, organizations are
autonomous, interactive and adaptive entities that have goals, beliefs, plans and
actions. Organizations also define rules (norms or laws) that are expressed in terms of
general organization constraints (or axioms). Agents, organizations and objects are
immersed in environments where they execute and interact with each other. The
inhabit relationship is used to represent the relationship between entities and the
environments that they inhabit.

Organizations can define sub-organizations as soon as the complexity of the
system increases. Both agents and sub-organizations play (agent) roles defined in
organizations. The agent roles have associated goals, duties, rights and protocols that
influence the execution of the entity that is playing the role.

An object is an interactive entity but it is not an autonomous one. The
autonomy property is one of the most important differences between an agent and an
object. Objects are reactive and passive entities since they need the assistance of
another entity to do their job and since they respond to any request for assistance.

 4

Similar to agents, objects can also play roles in organizations. An object role may
restrict access to the attributes and methods of an object, but may also add other
attributes and even methods to the object that plays the role. The ownership
relationship is used to link organizations and the (agent or object) roles that they
define. The play relationship is used to link the entities (agents, sub-organization and
objects) with the roles (agent or object role) that they play. Other relationships such as
dependency, association, aggregation and control are used to define the interaction
between the entities.

In order to model the structural and dynamic aspects of the entities, MAS-ML
defines three structural diagrams and two dynamic diagrams. The structural diagrams
allow the modeling of all entity classes, their properties and their relationships. The
structural diagrams proposed by MAS-ML are the extended UML class diagram, the
organization diagram and the role diagram. Both organization and role diagrams are
not defined in the UML metamodel [OMG 2005] but were specifically defined in MAS-
ML. The extended UML class diagram represents agents, organizations, environments
and the relationship between these entities and classes. This diagram was extended to
represent such MAS entities and their relationships that could not be modeled in the
original UML class diagram. The MAS-ML organization diagrams model the system
organizations, their properties, the roles that they define and the agents that play these
roles. The MAS-ML role diagrams focus on modeling the relationship between the
roles identified in the organization diagrams and between the roles and the resources
(or objects) available in the organizations.

The dynamic diagrams defined by MAS-ML are the extended UML sequence
and activity diagrams. Both diagrams were extended to model the MAS entities'
behavior, focusing on their internal executions and interactions. Both interaction and
internal executions of MAS entities could not be modeled by using the original UML
dynamic diagrams.

In order to exemplify our approach, we will use the MAS-ML organization
diagram. The objective of the organization diagrams is to model all the organizations
of a system. Each organization diagram is responsible for modeling one organization,
i.e., for modeling the properties of the organization (goals, beliefs, plans, actions and
axioms), the roles defined by the organization, the entities (agents,classes and sub-
organizations) that play these roles, and the environment that the organization inhabit.
In organization diagrams it is also important to describe the properties of the roles
(goals, beliefs, duties, rights and protocols) defined in the organization and the entities
that play each role. More details about other MAS-ML diagrams can be found in [Silva,
2004a].

2.2 ASF Framework
The ASF Framework allows the implementation of MAS by using the object-oriented
(OO) technology. By using this framework, it is possible to implement the agents, roles,
organizations and environments modeled in MAS-ML. All entities defined in the MAS-
ML meta-model together with their properties (Figure 1) were mapped into OO classes
defined in the ASF frameworks. Moreover, all MAS-ML relationships (Figure 2) that link
MAS-ML entities were mapped into UML relationships to link the OO classes defined in ASF.
Table 1 represents the map between the MAS-ML abstractions and the ASF classes and
relationships.

 5

Table 1 - Map between the abstractions of the MAS-ML meta-model and the ASF classes
and relationships

MAS-ML ASF
Entities’ properties
Belief Class called Belief
Goal Class called Goal
Action Abstract class called Action
Plan Abstract class called Plan
Axiom Class called Axiom
Duty Class called Duty
Right Class called Right
Protocol Abstract class called Protocol
2.2.1 Entities
Object Class
Agent Abstract class called Agent linked to Belief, Goal, Action

and Plan classes
Organization Abstract class called Organization linked to Belief, Goal, Action,

Plan and Axiom classes
Environment Abstract class called Environment
Agent role Abstract class called AgentRole class linked to Belief, Goal,

Duty, Right and Protocol classes
Object role Abstract class called ObjectRole
Relationships
Association Association between the classes that represent the MAS-

ML entities
Aggregation Aggregation between the classes that represent the

MAS-ML entities
Specialization Specialization between the classes that represent the

MAS-ML entities
Dependency Dependency between the classes that represent the

MAS-ML entities
Inhabit Association between the Agent class and the Environment

class, between the Organization class and the
Environment class and between the classes created to
represent objects and the Environment class

Play Association between the Agent class and the AgentRole
class, between Organization class and AgentRole class and
between Object class and ObjectRole class

Ownership Association between Organization class and AgentRole class and
between Organization class and ObjectRole class

Control Association between two AgentRole classes

As the entities modeled in MAS-ML are not OO abstractions, the framework maps
these entities together with their properties into a set of OO modules. Each module that
is part of the framework represents a MAS entity. A set of classes and relationships
defined in each module make possible the implementation of the structural aspects of
an entity (its properties and relationships with others entities) and their dynamic
aspect (their behavior). Figure 3 shows all classes of the framework mentioned in Table
1. The modules that represents the agents (delimited by a continuous rectangle),
organizations (defined by the dotted enlace) and agent roles (marked by the hatched
rectangle) are complex modules since they group several classes to represent all the properties
of the entities. The modules that represent the environments (hatched circle) and object roles

 6

(continuous circle) are simple represented by one class because the properties of these entities
can be directly represented as attributes and methods.

Figure 3. The ASF classes and relationships

3 Multi-Agent Systems and MDA
The development process of complex and large-scale systems, such as MAS, involves
the construction of different models based on a variety of requirements. The
transformation of a system specification into models and of these models into code is
usually accomplished in a non-organized way that is not easily adaptable to
technology changes.

Since MAS are gaining widespread acceptance, it is necessary to create a MAS
development process that clearly specifies the different process stages and the
transitions between these stages. The proposed process aims to specify the
implementation of agent-oriented systems by applying the top-down MDA approach.
It is important to clarify that MDA is not limited to the top-down approach used in this
paper.

The MAS development process proposed in this paper is illustrated in Figure 4.
In the CIM stage, the system can be described by using domain-specific ontologies or
any other computational independent technology. For instance, ontologies define the
concepts and relationships related to the problem domain that can be used to specify a
system. The definition of such concepts and relationships do not depend on the
computational abstractions used to solve the system problem. It is not within the scope
of this paper either to exemplify the CIM models of MAS or to demonstrate the
transformation from CIMs into PIMs.

Next, the CIM models should be transformed into PIMs by using any platform
independent modeling language, such as AUML [Odell et al, 2000] and MAS-ML. In
our approach, we propose to use the MAS-ML modeling language. The main
difference between MAS-ML and other MAS modeling languages is that MAS-ML

 7

defines organizations, roles, agents and environment as first-class entities. By defining
these abstractions as first-class entities it is possible to define their properties,
relationships, internal executions and interactions.

After the creation of PIMs, PSMs should be generated by choosing an
implementation platform. In order to implement MAS, several architectures,
frameworks and platforms, such as ASF, Jadex [Pokahr et al, 2003] and RETISINA
[Sycara et al., 2003], can be used. In our approach, the MAS-ML models are
transformed into UML models by using the ASF framework. The ASF framework was
chosen since it is possible to implement organizations, roles and environments by
using the framework. Other implementation platforms do not deal with the
implementation of such abstractions. For instance, to apply Jadex to implement
systems modeled by using MAS-ML is not a simple task since Jadex and MAS-ML do
not deal with the same set of abstractions. New transformation rules needed to be
created to convert MAS-ML abstractions into Jadex abstractions.

Finally, PSMs are transformed into code. The programming language will
depend on the platform used to implement the system. In the proposed approach,
MAS will be implemented in Java since this is the language used by ASF.

Figure 4. MAS development process based on MDA

In order to exemplify the MAS development process, an e-commerce application
called Virtual Marketplace will be used. This application is a MAS benchmark
application [He et al., 2003; Lomuscio et al., 2003; Wooldridge and Jennings, 1998]. The
Virtual marketplace application defines markets located in the Web where users buy
items sold in the market. The users locate items they desire to buy and negotiate with
the sellers that offer the items. The sellers represent the markets during the negotiati-
ons.

3.1 PIM
MAS-ML was chosen to model MAS PIMs due to three main factors. First, this
language is not a platform dependent modeling language. Although MAS-ML uses
agent and object-oriented abstractions, MAS-ML does not restrict the implementation
of its models to a specific implementation platform. Second, MAS-ML is a modeling
language that is MOF [OMG, 2003a] compliant [Silva, 2004a]. This characteristic
facilitates the MAS development process since XMI [OMG, 2003b] can be used. XMI
provides a mapping from MOF to XML and, therefore, can be used to describe MOF
compliant models. XMI is used in our approach to represent the MAS-ML models, to
assist in the transformation from MAS-ML models into UML models, to represent the
UML models and to help the transformation from UML models into code. Finally, as
stated before, MAS-ML models abstractions such as organizations, environments and
roles that are not adequately modeled in other MAS modeling languages [DeLoach,
2001; Odell et al, 2000; Wagner, 2000]. Without modeling these abstractions it is not
possible to model, for instance, agents playing different roles in different organizations.

 8

As stated before, in this paper we focus on modeling and implementing the
structural characteristics of MAS. Therefore, instead of demonstrating the modeling
and transformation of all MAS-ML diagrams into code we concentrate on presenting
the MAS-ML organization diagram, that is one of the MAS-ML structural diagrams.
This diagram is used to illustrate a MAS platform independent model, to show the
transformation of such PIM models into PSM (Section 3.2 and 3.3), and then into object-
oriented code (Section 3.4).

The organization diagram illustrated in Figure 5 models the Virtual Marketplace
previously described. Together with the market (or organization), the diagram also
models the roles defined by the market, the agents and objects that can play the roles
and the environment the market inhabits. The market General Store defines the agent
roles Buyer and Seller that are played by the agents User Agent (that represents the users
in the system) and Store Agent (that represents the sellers of the market), respectively.
Furthermore, the market also defines the item negotiated by the agents and the object
roles (Desire and Offer) played by the item. The model illustrated in Figure 5 is uses a
simplified representation that suppresses the middle and the bottom compartments of
the diagram elements where the structural and dynamic aspects of the entities are
detailed.

Figure 5. The organization diagram of the e-commerce application

In order to exemplify how the properties of an entity are defined, some
properties of the organization class General Store are detailed in Figure 6. As stated in
MAS-ML, the properties of an organization are goals, beliefs, axioms, plans and
actions. The goal represented in Figure 6 is the management of sellers goal. To manage
the sellers, this organization needs to know the sellers that are negotiating. The list of
sellers is one of the organization beliefs. To guarantee that all sellers will inform the
organization about the sales, the organization defines the axiom send information about
sale. To achieve the goal management of sellers, the store defines a plan to create the
sellers to negotiate with buyers (creating sellers). The plan creating sellers, the actions
that compose the plan and the goal related to the plan are modeled in Figure 6. Both
Figure 5 and Figure 6 are used in this Section to represent one of the PIM models that
specify the structural characteristics of the e-commerce application.

Figure 6. The organization General Store

 9

3.2 Transforming PIMs into PSMs
After using MAS-ML to model PIMs, the models should be transformed into PSMs.
The transformation of MAS-ML models into UML models occurs in two phases. The
first phase consists of describing the MAS-ML models in a textual description by using
the XMI format. In order to do so, it was necessary to create a MAS-ML DTD that
specifies the MAS-ML models in XMI. The MAS-ML DTD extends the UML DTD
according to the extensions proposed by MAS-ML to the UML meta-model. The XMI
file created by using the MAS-ML DTD represents the MAS-ML models. Such XMI is
called MAS-ML XMI.

The second stage of the transformation consists of refining the MAS-ML XMI
into UML XMI, according to the ASF framework. The MAS-ML XMI generated in the
previous phase is converted into a UML XMI through the instantiation of the ASF
Framework. The transformation uses a UML XMI file that contains the framework
specifications. This file describes all classes and relationships among classes that are
defined in the framework (Figure 4).

During the transformation, the UML XMI file that represents the framework is
extended with the application details that are described in MAS-ML XMI. The UML
XMI extended file represents the application modeled in MAS-ML and implemented
through the instantiation of the ASF framework. The rules used to extend the UML XMI
and to instantiate the ASF framework are represented in Table 2. Such rules describe how the
entities represented in the MAS-ML XMI are implemented using ASF. For instance, the
transformation of the General Store organization class modeled in Figure 5 and Figure 6 by
using MAS-ML consists of three steps: (1) the creation of an object-oriented class to represent
the General Store organization, (2) the creation of classes to implement the actions and plans of
the organization by extending the abstract classes Action and Plan, respectively, and (3) the
implementation of the constructor method of the General Store organization class created in (1).
Table 2. Rules used to map MAS-ML XMI into UML XMI.

Entity Transformation Rules
Agent 1. Create a concrete class that will represent the agent and

will extend the abstract class Agent.
2. Create concrete classes that extend Plan and Action classes

to implement the behavior defined by plans and actions.
3. Implement the constructor method of the concrete class

created in 1 to instantiate goals, beliefs, plans and actions
according to the agent properties. The creation of beliefs
and goals is realized by the instantiation of Belief and Goal
classes, respectively.

Organization 1. Create a concrete class that will represent the organization.
This class will extend the abstract class Organization or
MainOrganization, according to its definition.

2. Create concrete classes that extend Plan and Action classes
to implement the behavior defined by plans and actions.

3. Implement the constructor method of the concrete class
created in 1 to instantiate goals, beliefs, axioms, plans and
actions according to the agent properties. The creation of
beliefs, goals and axioms is realized by the instantiation of
Belief, Goal and Axiom classes, respectively.

Agent Role 1. Create a concrete class that will represent the agent role.
This class will extend the abstract class AgentRole.

2. Create concrete classes to represent protocols and that
extend the abstract class Protocol.

 10

3. Implement the constructor method of the concrete class
created in 1 to instantiate rights and duties according to
the agent role properties. The creation of rights and duties
is realized by the instantiation of Right and Duty classes,
respectively.

Object Role 1. Create a concrete class that will represent the object role.
This class will extend the abstract class ObjectRole.

Environment 1. Create a concrete class that will represent the object role. This class
will extend the abstract class Environment.

3.3 PSM
The UML XMI generated in the previous stage represents a PSM of the application. By
using graphical tools, such as Rational Rose1 and Poseidon2, which import XMI files, it
is possible to generate UML models of the application.

The UML model created in this stage is a UML class diagram that contains the
ASF framework classes and the classes related to the application that instantiate the
framework. Since this paper does not concern the MAS-ML dynamic diagrams during
the transformation, UML dynamic diagrams are not part of the PSM models. All
application entities, properties and relationships modeled on the three MAS-ML
structural diagrams during the PIM phase are represented in a UML class diagram of
the PSM phase.

In order to illustrate the mapping between MAS-ML models and UML models,
i.e., in order to demonstrate the PSM model that represent the MAS-ML models shown
in Figure 5 and Figure 6, we will describe how the organization General Store was
implemented using ASF. As stated before in Table 2 (Section 3.2), such implementation
consists of three steps. In the first step the General Store class was created extending the
Main Organization class represented in the framework since there is not any other
organization in the system. In the second step, concrete classes that extend the abstract
classes Plan and Action defined in the framework are created in order to represent the
plans and actions of the organization. Each concrete class implement the method
execute() that represent the execution of the plan or action. In the third step, the
constructor method of the General Store class is implemented according to the
organization properties defined in Figure 6. As mentioned before, beliefs, goals and
axioms are created by instantiating the Belief, Goal and Axiom classes, respectively.
Plans and actions are created by instantiated the concrete classes that were created in
the second step. Figure 7 illustrates the classes of the framework associated with the
organization module (shown in Figure 3 by a dotted enlace) and the classes created
while instantiating the organization General Store. The classes created during the
instantiation are highlighted by circles.

1 Rational Rose, http://www-306.ibm.com/software/rational/
2 Poseidon, http://www.gentleware.com

 11

Figure 7. Transformation of MAS-ML into UML by using ASF

3.4 Transforming PSMs into code
In the final stage of the MAS development process, the UML models are transformed
into code. This transformation corresponds to the last stage of the MDA approach that
transforms PSMs into code. Almost all graphic tools that import UML XMI, such as
Rational Rose and Poseidon, are capable of automatically generating code from a UML
XMI. Therefore, we omit in this paper the rules that transform UML XMI into Java
code. In order to exemplify the code generation process, Figure 8 illustrates the source
code of the General Store class. Such code illustrates part of the constructor method of
the class that instantiate the organization’s beliefs, goals, actions, plans and axioms.

public class General_Store extends MainOrganization{
 public General_Store (Environment theEnvironment){ ...
 Belief objectBelief = new LeafBelief ("Vector", "sellers", null);
 this.beliefs.add (objectBelief);
 Goal objectGoal = new LeafGoal("boolean","management_of_sellers","true");
 this.goals.add (objectGoal);
 Action objectAction = new Create_seller ();
 this.actions.add (objectAction);
 Condition objCondition = new Condition("boolean","sellerCreated","");

objectAction.setPostCondition (objectCondition);
 Plan objectPlan = new Creating_sellers ();
 objectPlan.setGoal (objectGoal);
 objectPlan.setAction (objectAction);
 objectGoal.setPlan (objectPlan);
 objectAction = new Inform_buyer_of_seller ();
 this.actions.add (objectAction);
 objectPlan.setAction (objectAction);
 Axiom objectAxiom = new Axiom("boolean","Send_information_about_sale","true");
 this.axioms.add(objectAxiom);...
}...}

Figure 8. Java code of the General Store class

4 Tool to Support the Proposed Development Process
In order to support the development process proposed in Section 3 , the VisualAgent
tool was created. The tool provides support for the implementation of all the three
stages presented in the proposed process. This tool, similar to other UML CASE tools,
permits the user to graphically model the system by using the MAS-ML modeling
language and to generate Java code based on the ASF framework.

The user can model their MAS application by creating new MAS-ML models.
The current version of the tool only supports the modeling of the three structural MAS-
ML diagrams. Once the MAS has been modeled, i.e., once PIM models have been
created, the designer can use the tool to automatically transform such models into
PSMs. The tool generates a MAS-ML XMI file in order to save the MAS-ML models
and creates the UML XMI file that represents the application.

 12

To create the UML XMI the user has to choose (i) the UML XMI version (1.4 or
1.5), (ii) the XMI version (1.1 or 1.2) and (iii) to include or not the implementation of the
methods. These options make it possible to export artifacts that could be used by
different CASE tools. CASE tools use different versions of UML and XMI, for instance,
Together3 and Poseidon use different versions of XMI. In addition, some of them, such as
Together, do not recognize the method implementation described by the UML XMI.
The VisualAgent tool also offers Java code generation. This generation is based on the
UML XMI generated by the tool. This functionality was developed by using the
AndroMDA tool4. The artifacts that can be generated by the tool are: the MAS-ML
XMI, the UML XMI or the Java code. The tool also imports MAS-ML XMI files.

5 Related Work
Although, some MAS methodologies such as Prometheus [Padgham and Winikoff
2002], Tropos [Bresciani et al., 2004] and MaSE [DeLoach 1999] have not used an MDA
approach, they have already proposed the mapping between the design models into
implementation code and have also provided some tools for supporting both the
design and the implementation of MAS. However, they do not clearly demonstrate the
mapping from design models into code by presenting the rules used in the
transformation. Therefore, it is extremely difficult to use the design models created by
using the methodologies to generate code to another platform or framework that has
not been addressed by them.

In addition, they do not separate the models into platform independent models
and platform specific models. By using some of these methodologies, it is possible to
describe platform specific details during the design of the application. In such cases,
the high-level design models are platform dependent and, consequently, are not easily
portable to any other platform.

Other authors have already used the MDA approach in other to define a MAS
development process. Vallecillo et al [2004] demonstrate the use of MDA to derive
MAS low-level models from MAS high-level models. The authors propose to use the
Tropos methodology and the Malaca models in the MDA approach. The high-level
models created while using the Tropos methodology are transformed into low-level
Malaca models. However, the transformation from the Tropos models into Malaca
models is not completely automated. It requires manual intervention. Moreover, such
an approach does not deal with the transformation from Malaca models into code.

Novikay [2004] analyzes how GR [Corradini et al., 1997] based on the Tropos
visual model can be related to MDA. The author interprets the MDA approach as a
visual modeling activity where more abstract models are refined in more detailed
models, using transformation techniques. This work covers only the requirement stage
existent in Tropos. The difference between our approach and this approach is that ours
contemplates the PIM, PSM and code stages.

In Kazakov et al. [2002], the authors recommended a methodology based on a
model-driven approach for the development of distributed mobile agent systems. They
define a mobile agent conceptual model for distributed environments and describe a
set of components, represented by a collection of intelligent mobile agents. While such
an approach focuses on a specific application domain, our approach is a domain-
independent development process.

3 Together, http://www.borland.com/together
4 AndroMDA, http://www.andromda.org

 13

6 Discussions
Besides the simple example of an e-commerce application presented in Section 3 , we
have developed other two complex and real applications by using the VisualAgent tool
and, consequently, the proposed development process. A supply chain management
system [Huget, 2002b; Fox et al., 2000] as well as a web-based paper submission and
reviewing system [DeLoach, 2002; Zambonelli et al., 2001] were developed.

In order to compare the use of our approach with a haddock approach, two
different groups have developed the same web-based paper submission and reviewing
system using the different approaches. By using the haddock approach, the developers
do not have any pre-defined process or guideline that helps them transforming the
high-level agent-oriented models into object-oriented code. The developers could use
any modeling language or methodology to provide the design models and any
platform or framework for implementing the systems.

In this context, the developers that used the haddock approach have an
important advantage to the others. They could use the techniques they were familiar
with and do not need to learn the modeling language (MAS-ML) and the framework
(ASF) provided by the tool and by our proposed approach. On the other hand, they
needed to define the mapping between the high-lever models produced by the
modeling language or methodology being used into code in order to implement the
system. They needed to map their PIM models into PSM, and the PSM models into
code without using any provided technique. Since different agent-oriented modeling
languages, methodologies and platforms (or frameworks) use different agent
abstractions, it is not easy to define those maps. Consequently, although the group that
used our approach needed to learn MAS-ML and ASF, the system could be quickly and
easily developed since the mapping between PIM models into code was already
defined b y our MDA approach.

7 Conclusion and Future Work
The MAS development process presented in this paper intends to provide an approach
for modeling and implementing MAS by using MDA. The proposed process is
composed of three stages. In the first stage, our approach proposes the use of MAS-ML
to model MAS by creating platform independent models. MAS-ML was chosen since it
models several MAS models that are not (appropriately) modeled in other MAS
modeling languages. In the second stage, the MAS-ML models are transformed into
UML models by using the ASF framework. The ASF framework was chosen since it
defines a set of object-oriented models that implement the MAS entities modeled in
MAS-ML. Finally, the UML models are automatically transformed into code in the
third stage proposed by the MAS development process.

The proposed MAS development process takes advantage of the MDA
approach used to define the process. Three main characteristics can be enumerated: (i)
portability and reusability: Since nowadays there is still no commonly used platform
for implementing MAS, it is fundamental to separate implementation details from
design models. In our approach be use MAS-ML to define the design models since
MAS-ML models are portable to different implementing platforms because such
models describe MAS without including implementation details. Thus, MAS-ML
models can be reused by several developers to implement the system by using
different platforms; (ii) interoperability: The use of XMI to describe models created
during the process provides interoperable PIM and PSM models. MAS-ML models as
well as UML models are interoperable due to the use of MAS-ML XMI and UML XMI;

 14

(iii) low coupling: Due to the intrinsic characteristics of MDA, PIMs (or conceptual
models) and PSMs (computation models) are low coupling. In our approach, MAS-ML
models are PIMs that do not include details related to a specific platform. Such details
are present just in UML models, PSMs.

The model-to-model transformation approach presented in Section 3.3 is
classified as a graph-transformation-based approach [Czarnecki and Helsen, 2003]. The
graph-transformation-based approach uses graph transformation rules (or graph
transformation patterns) rendered in the concrete syntax of the respective source or
target languages. The transformation presented in Section 3.5 can be classified as
template-based approach [Czarnecki and Helsen, 2003]. Tools that generate source code
from UML XMI documents use a template-based transformation approach.
To make the construction of MAS feasible by using our approach, a modeling tool was
developed to support the design and implementation of MAS. The tool allows the
designer to graphically model MAS systems by using MAS-ML and to implement them
while generating Java code by using the ASF framework.
With the aim of enhancing the tool that gives support to the development of MAS by
using MDA, several important improvements should be made. First, the transformer
that generates code from MAS-ML models should also consider the MAS-ML dynamic
diagrams. Second, the tool should make the visualization and also the modification of
the UML models that represent the system implementation feasible. In addition, the
tool should provide a model checker to analyze and verify the consistency of the
different models (MAS-ML models and UML models).

Acknowledgements
This work is partially supported by CNPq/Brazil under the project “ESSMA”, number
5520681/2002-0.

References

BAUER, B. MÜLLER, J.P. and ODELL, J. Agent UML: A Formalism for Specifying
Multiagent Software Systems In: Ciancarini and Wooldridge (Eds) Agent-Oriented
Software Engineering, Springer-Verlag, LNCS vol 1957, 2001.

BRAUBACH, L., POKAHAR, A. and LAMERDORF, W. Jadex: A Short Overview. In:
Main Conference Net.ObjectDays, AgentExpo, pp. 195-207, 2004.

BRESCIANI, P. Tropos: An Agent-Oriented Software Development Methodology. Int.
Journal of Autonomous Agents and Multi-Agents Systems, 8(3):203-236, 2004

CORRADINI, A., MONTANARI, U., ROSSI, F., EHRIG, H., HECKEL, R. and LOWE,
M. Algebraic Approaches to Graph Transformation 1: Basic Concepts and Double
Pushout Approach. Handbook of Graph Grammars and Computing by Graph
Transformation, 1997.

CZARNECKI, K. and HELSEN, S. Classification of Model Transformation Approaches.
In Proceedings of 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, 2003

DEMARIA, B. ; SILVA, V.; CHOREN, R.; LUCENA, C. VisualAgent: A Software
Development Environment for Multi-Agent Systems, In Proceeding of the Tool Section

 15

of the Brazilian Symposium on Software Engineering (SBES 2005), Uberlância, Brazil,
2005.

DELOACH, S. A. Multiagent Systems Engineering: a Methodology and Language for
Designing Agent Systems. In: Wagner, G.; Yu, E. (Eds), Proceedings of Agent Oriented
Information Systems, Agent-oriented Information System (AOIS99), Washington. 1999.

DELOACH, S. A. Analysis and Design using MaSE and agentTool. In Proceeding 12th
Midwest Artificial Intelligence and Cognitive Science Conference, 2001.

HE, M.; JENNINGS, N.R.; LEUNG, H. On Agent-Mediated Electronic Commerce. IEEE
Transaction on Knowledge and Data Engineering, 15(4):985-1003, 2003.

KAZAKOV,M.; ABDULRAB, H.; DEBARBOUILLE, G. A Model Driven Approach for
Design of Mobile Agent Systems for Concurrent Engineering: MAD4CE Project.
Rapport Interne 01-002, Université et INSA de Rouen, 2002.

KIA, A.; AIMEUR, E.; KROPF, P. aKIA Automobile: a Multi-Agent System in E-
Commerce. In International Conference on Electronic Commerce (ICERC-5), vol. CD-
ROM, 2002.

LOMUSCIO, A.R.; WOOLDRIDGE, M.; JENNINGS, N. A classification scheme for
negotiation in electronic commerce. In International Journal of Group Decision and
Negotiation, 12(1):31-56, 2003.

NOVIKAU, A. Model Driven Architecture approach in Tropos. Technical Report T04-
06-03, Istituto Trentino di Cultura, 2004.

ODELL,J.; PARUNAK, H., BAUER,B. Extending UML for Agents. In Proceedings of
Agent-Oriented Information System Workshop at AAAI, pp. 3-17, 2000.

OLIVEIRA, T.; MATHIAS, I.; Lucena, C.; COWAN, D.; ALENCAR, P. Software Process
Representation and Analysis for Framework Instantiation. IEEE Transaction on
Software Engineering, 2004.

OMG, OMG MDA Guide. Version 1.0.1. Available at:
http://www.omg.org/docs/omg/03-06-01.pdf. Accessed on: 11/2004

OMG, Meta Object Facility (MOF) 2.0 Core Specification. Version 2.0. Available at:
http://www.omg.org/docs/ptc/03-10-04.pdf. Accessed in: 11/2004.

OMG, OMG XML Metadata Interchange. Version 1.2. Available at:
http://www.omg.org/docs/formal/02-01-01.pdf. Accessed on: 11/2004.

OMG, OMG 2.0 Superstructure Specification. Version 2.0. Available
at:http://www.omg.org/docs/ptc/04-10-02.pdf. Accessed on: 07/2005.

PADGHAM, L; WINIKOFF, M. Prometheus: A Methodology for Developing
Intelligent Agents, In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Italy. 2002.

POKAHR, A., BRAUBACH, L.; LAMERDORF W. Jadex: Implementing a BDI-
Infrastructure for Jade Agents. Research of Innovation, 3(3):76-85, 2004.

SILVA,V.; GARCIA,A.; BRANDAO,A., CHAVEZ,C., LUCENA,C., ALENCAR, P.
Taming Agents and Objects in Software Engineering. Software Engineering for Large-
Scale Multi-Agent Systems, LNCS 2603, 2003

 16

SILVA,V., LUCENA,C. From a Conceptual Framework for Agents and Objects to a
Multi-Agent System Modeling Language. Journal of Autonomous Agents and Multi-
Agent Systems, Kluwer Academic Publishers, ISSN 1387-2532, 9(1-2):145-189.

SILVA,V., CORTES,M., LUCENA,C. An Object-Oriented Framework for Implementing
Agent Societies. Technical Report MCC32/04, PUC-Rio. Rio de Janeiro, Brazil, 2004.

SILVA, V., CHOREN, R., LUCENA, C. Using the MAS-ML to Model a Multi-Agent
System. Lucena, C., Garcia, A.; Romanovky, A., Castro, J., Alencar, P. (Eds.) Software
Engineering for Large-Scale Multi-Agent Systems II, LNCS 2940, Springer, 2004.

SYCARA,K., PAOLUCCI,M., VAN VELSEN, M., CRIAMPAPA,J. The RETSINA MAS
Infrastructure. Special joint issue of Autonomous Agents and MAS, 7(1-2):29-48, 2003.

VALLECILLO,A., AMOR,M., FUENTES,L. Bridging the Gap Between Agent-Oriented
Design and Implementation Using MDA. Autonomous Agents and Multi-Agent
Systems Workshop, pp.93-108, 2004.

WAGNER, G. The Agent-Object-Relationship Metamodel. In: Second International
Symposium: From Agent Theory to Agent Implementation, 2000.

WOOLDRIDGE, M.; JENNIGS, N. Applications of Intelligent Agents. Agent
Technology: Foundations, Applications, and Markets, pp. 3-28, 1998.

