

ISSN 0103-9741

Monografias em Ciência da Computação

n° 15/08

A Hybrid Diagnostic-Recommendation System
for Agent Execution in Multi-Agent Systems

Andrew Diniz da Costa

Carlos José Pereira de Lucena
Viviane Torres da Silva

Paulo S. C. Alencar

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 15/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2008

A Hybrid Diagnostic-Recommendation System for
Agent Execution in Multi-Agent Systems
Andrew Diniz da Costa, Carlos José Pereira de Lucena,

Viviane Torres da Silva1, Paulo S. C. Alencar2
1Departamento de Sistemas Informáticos y Computación Universidad Complutense de

Madrid, Madrid, Spain
2University of Waterloo, Waterloo, Canada

{acosta, lucena}@inf.puc-rio.br, viviane@fdi.ucm.es, palencar@cs.uwaterloo.ca

Abstract. Open multi-agent systems are societies with autonomous and heterogeneous
agents that can work together to achieve similar or different goals. Agents executing in
such systems may not be able to achieve their goals due to failures during system exe-
cution. This paper’s main goals are to understand why such failures occurred and what
can be done to remediate the problem. The distributed, dynamic and open nature of
multi-agent systems calls for a new form of failure handling approach to address its
unique requirements, which involves both diagnosing specific failures and recom-
mending alternative plans for successful agent execution and goal attainment. In this
paper, we discuss solutions to the main challenges of creating a system that can per-
form diagnoses and provide recommendations about agent executions to support goal
attainment, and propose a hybrid diagnostic-recommendation framework that pro-
vides support for methods to address such challenges.

Keywords: Multi-Agent Systems, Trust, Reputation, Diagnosis, Recommendation.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1
2 Difficulties of Diagnosing and Providing Recommendations 2
3 The DRP-MAS Framework 3

3.1 The General Idea 3
3.2 Architecture 5
3.3 Performing Diagnoses 6
3.4 Providing Recommendations 9

3.4.1 Selecting Plan 9
3.4.2 Verifying Selected Plans 10
3.4.3 Choosing agents 10

4 DRP-MAS Using The Governance Framework 11
5 Intelligent Home 11

5.1 Dishwasher 11
5.2 To Make Coffee 13

6 Related Work 14
6.1 Application of Multi-Agent in Control and Fault Diagnosis Systems 15
6.2 Diagnosis as an Integral Part of Multi-Agent Adaptability 15
6.3 An Analysis of Multi-Agent Diagnosis 15

7 Conclusions 15
References 17

 1

1 Introduction

Open multi-agent systems (Jennings and Wooldridge, 1999) (Wooldridge and Cian-
carini, 2000) are societies with autonomous and heterogeneous agents that can work
together to achieve similar or different goals (Boella and Torre, 2004). In many cases,
the agents are unable to attain their goals due to failures during system execution.
When an agent tries to attain its desired goal, but faces execution failures that prevent
achievement, it becomes relevant to understand why such failures occurred and what
can be done to remediate the problem.

This paper focuses on the diagnosis of failures and on the recommendation of alter-
native plans for successful agent execution and goal attainment. Some proposals that
have recently appeared in the literature suggest different ways for agents to diagnose
system execution failures. Li et al. (Li et al., 2004) present a decentralized system to
monitor and diagnose the agents’ behavior. In this system each component (e.g., an
agent) has a monitoring agent to gather relevant information and to monitor the sys-
tem execution. The information is provided to a group of agents that work together to
perform the diagnoses. Although this is an interesting idea, in open multi-agent sys-
tems it is not applicable because when the execution of an agent is monitored its pri-
vacy is violated.

Another interesting work, which was proposed by Horling et al. in (Horling et al.,
2000), examines how an independent domain for diagnoses can behave in multi-agent
systems. This work defines a set of very useful ideas to perform diagnoses, which in-
clude the provision of techniques to indicate the correct hoped behavior for an agent,
and to compare the hoped result of an execution with the result obtained. However,
the approach does not offer a large data set to define the expected behaviors, and there
is no control of the reputation of the agents when an agent is detected as guilty of some
failure. The agents’ reputation can be very useful to determine which agents will be
used for the subsequent transactions.

In this paper we describe a new hybrid diagnostic-recommendation system of
agents’ executions that does not violate the agents’ privacy and that defines a set of
facts that can be used to provide information about the reasons for failing to achieve a
goal. Diagnosis is assumed as the process of determining the reason why agents do not
achieve their goals. Recommendations are provided on how to achieve the desired
goals that agents have failed to achieve.

Some facts that can contribute to the failure of achieving a goal are: the resource to
be used was not available or was damaged; an agent that was supposed to collaborate
on the execution of a task has not collaborated; the information provided by an agent
was inadequate, and so forth. A diagnostic system must be able to analyze different
sets of information related to the agents’ executions and point out the (main) problem
that has occurred.

Recommendations are provided based on the diagnosis and indicate alternatives to
the agent’s execution to try to achieve the same goal. A recommendation system can
recommend the use of another resource, the execution of another plan, the interaction
with other agents, among others. In order to recommend other partners to interact with
the agent, the recommendation system bases its choice on the agents’ reputations. The
reputation of an agent is evaluated according to its past behavior.

 2

Several reputation systems have been proposed to collect, distribute, and aggregate
feedback about agents’ past behavior. In this paper we use the Governance Framework
(Silva et al., 2007) to provide agent reputations. The governance framework relies on a
governance mechanism based on testimonies provided by witnesses about facts or
events that are related to norm violations. This framework provides mechanisms to
perform judgments, to determine whether an agent violates a norm (Duran et al., 2008),
and to calculate the reputation of the agents (Guedes et al., 2008).

The hybrid diagnostic-recommendation framework called DRP-MAS (Diagnosing
and Recommending Plans in open Multi-Agent Systems) and proposed in this paper
can be instantiated to perform different kinds of diagnoses and to provide recommen-
dations (advices) to help agents achieve their desired goals. This framework uses the
Governance Framework to receive the agents’ reputations that are used to offer advice
about partners with which to interact.

This paper is structured as follows. In Section 2 we discuss some of the main diffi-
culties of diagnosing and providing alternative execution strategies for agents to
achieve their goals. In Section 3 we provide an overview of the DRP-MAS framework.
Since our framework uses the Governance Framework to represent the reputation con-
cept, in Section 4 we briefly explain how it was used. Section 5 illustrates the applica-
bility of the framework through a case study and Section 6 presents some related
work. Finally, in Section 7 , conclusions and future work are discussed.

2 Difficulties of Diagnosing and Providing Recommendations

In this section, we describe some of the challenges and requirements related to the
process of performing diagnoses and providing recommendations to help agents to
achieve their goals. These challenges and associated requirements include:

1. Deciding how to analyze the behavior of the agents

The first challenge was to determine an appropriate way to analyze the behavior of
the agents. Two solutions could be adopted. In the first, the execution of each agent is
monitored. Since we are working with open multi-agent system environments and
with heterogeneous agents, one of our requirements is to not violate the agents’ pri-
vacy. In the second possibility, each agent analyzes its own execution. By using such an
approach, the agent’s privacy is not violated and the information stored in past analy-
ses can be used by the agent in future ones. Due to these two reasons, our approach
adopted the second solution.

2. Selecting data for diagnosing

One major challenge was to define which data is necessary to perform diagnoses re-
lated to the execution of agents. To perform the diagnoses, the following information
can be used: the record of successes and failures in communications with other agents,
a problem which occurred due to limited memory space, the list of resources used and
the ones that the agent tried to use, etc. In this paper we are considering a predefined
list of information to be used in the framework composed of the plan executed, desired
goal, norm violated, roles of the agents and the agents that provided some information
during the execution of the plan, among others. Since different domains can require
different information, such a list can be extended.

 3

3. Determining strategies for diagnoses

Different domains can require different strategies to provide diagnoses. The challenge
was to define services or strategies that could be used by different domains and to
make available an infrastructure that could be extended to accept new strategies.

4. Determining trustworthy agents

The reason for the failure regarding the execution of plan can be related to the behavior
of the partner with whom the agent has interact. For instance, the partner may have
provided a bad service or inadequate information. Therefore, when a diagnosis is for-
mulated and it is verified that a specific agent was responsible for the unsuccessful
execution, the recommendation system will try to avoid selecting such agent in the
next advice. To solve the problem of distinguishing whether an agent is guilty or inno-
cent, or good or bad with respect to some criteria we are making use in this paper of
agents’ reputations.

5. Providing recommendations

We meant to create a framework that could provide alternative ways of execution to
achieve the some goal. Therefore, the big challenge was to define a strategy, which
could be used in different domains and an infrastructure that could be extended to ac-
cept new strategies.

6. Representing profiles of agents

The same diagnostic can be associated with two different recommendations, depend-
ing on the characteristics of the agents that will receive such advices. The challenge is
to define how to represent profiles of agents and how they could influence the recom-
mendations provided by the proposed framework. The framework makes available a
basic agent profile that specifies the minimum global reputation of partners to be con-
sidered in advices.

3 The DRP-MAS Framework

In this section, we describe the DRP-MAS framework that performs diagnoses about
the failure to achieve the goals; moreover, it provides recommendations for agents
about how to achieve their goals. Initially, the general idea of the framework is pre-
sented, followed by its architecture, and in the sequel we discuss the central concepts
on which it is based.

3.1 The General Idea

The DRP-MAS framework is used when an agent does not achieve one of its goals after
the execution of one of its plans. The agent of the application, the Requester agent, re-
quests to the Mediator agent a Diagnostic agent. When the Mediator receives the message,
it creates a Diagnostic agent (responsible for providing diagnoses) and a Master agent
(responsible for providing recommendations) and sends a message to the Requester in-
forming which Diagnostic agent will work for it (Figure 1).

 4

Subsequently, the Requester requests recommendations (advices) to the Diagnostic
agent in order to achieve a desired goal (Figure 2). For this purpose, it sends a message
to the Diagnostic agent with the values of a set of attributes that can help it in the analy-
ses, such as: plan executed, goal not achieved, the agents used in the negotiations with
their played roles, its profile, and a number that represents the quality of the execution
performed (details in Section 3.3). This idea of quality was based on the works (Hor-
ling et al., 2000) (Wagner et al., 2003) and (Horling et al., 2007).

When the Diagnostic agent receives the message, it tries to find the reason why the
Requester agent was unable to achieve the desired goal. At the end of the analysis, it
provides the diagnosis to the Master agent. Even if a diagnosis could not be provided,
the Diagnostic agent sends a message to the Master agent informing that it was not pos-
sible to detect the reason for the Requester agent not to have achieved the desired goal.
In this case, when the Master agent receives the message informing that it was not pos-
sible to meet a diagnosis, it simply selects another plan that achieves the desired goal.

In the case that some diagnosis is met, the Master searches alternative plans to
achieve the goal (details in Section 3.4) by considering the data in the diagnosis. When
the diagnosis indicates a problem with agent interaction, an analysis is made to decide
which other agents could be used to perform the interactions (analysis performed
based on the roles played).

From the set of agents that can perform the same roles in those interactions, the
Master agent uses the agents’ reputations to select the “best” agents, i.e., the agents with
the top reputations. The profile of the Requester agent can be an important piece of in-
formation to define which agents should be selected. When the execution of the Master
agent ends, a message to the Requester agent is provided with the selected recommenda-
tions.

Figure 1. Conceptual Model for requesting the name of
the diagnosis agent

 5

To help in representing agents’ reputations, we are making use of the Governance
Framework (Silva et al., 2007), which is based on testimonies provided by witnesses
about facts or events that they know are related to norms that have been violated. Since
agents know the application’s norms (laws), they can judge whether an agent violated
a norm. Besides, it is possible to attribute a reputation to each agent of the system (de-
tails in Section 3.2).

Before a Requester requests some recommendation from the DRP-MAS agents, the
possible plans that the Master agent can recommend to an agent must be defined by the
application. Not only the plans themselves but also their related data (such as re-
sources to be used in the execution and the roles of the agents with whom the agent
executing the plan will need to interact) must be provided. Such plans are stored in a
plan base that the Master agents can access in order to perform the advices.

3.2 Architecture

In this section we describe the architecture of our approach. As illustrated in Figure 3,
the DRP-MAS layer communicates to both Application layer and Reputation layer. The
DRP-MAS is composed of four models: Mediation, Diagnosis, Recommendation and
Artificial Intelligence Toolset.

The mediation module is responsible for providing the Mediator agent, which creates
a Diagnostic agent and a Master agent for a Requester agent defined in the Application, as
described in Sub-Section 3.1 . The Diagnosis module performs the process of diagnosis,
while the Recommendation module aims to provide recommendations to achieve some
desired goal. The Artificial Intelligence Toolset module defines an API (Application
Public Interface) interface called BIGUS (Bigus, 2001), which allows using different
kinds of reasoning algorithms to perform the processes mentioned: forward chaining,
backward chaining and fuzzy logic.

Figure 2. Conceptual Model for requesting advices

 6

The Reputation layer supplies reputations to the DRP-MAS and can also supply
them to the Application layer, when requested. In the current implementation, we are
using the Governance Framework to implement the Reputation layer. The framework
defines three modules: judgment, reputation and punishment. The judgment module
(Duran et al., 2008) is responsible for receiving the testimonies and for providing a ver-
dict to the punishment module, i.e., for verifying whether an agent violated a norm.
The module can make use of different strategies to judge the violation of the different
norms. Such strategies may use the reputation module to help in providing the deci-
sion about the violations.

The reputation module (Guedes et al., 2008) is responsible for calculating the reputa-
tion of the agents and provides them to the judgment module and to other application
agents. The reputations are updated based on the testimonies provided by the judg-
ment module about violated norms. This module already offers calculations to provide
the reputations. In addition, the instances of the framework can define new calcula-
tions. The final module, punishment, is responsible for determining the penalties ap-
plied to agents that have violated the norms of the environment.

For better comprehension of the DRP-MAS framework, two key concepts are elabo-
rated as follows: how to perform diagnoses and how to provide recommendations.

3.3 Performing Diagnoses

As was already explained in Sub-Section 3.1 , the diagnosis is performed by the Diag-
nostic agent offered by the proposed framework. Such analyses are performed based on
a set of information provided by the Requester agent. The set is used in different diag-
nosing processes and in different forms of recommending alternative ways to achieve
some goal. The information provided in the set encompasses:

Figure 3 - Architecture

 7

1. Resources and associated problems - In (Horling et al., 2000) it is defined that re-
sources are important data to support diagnoses. In some situations the reason why
an execution cannot be successfully performed could be the absence of some re-
source, or perhaps an insufficient amount of resources used to perform something.
Therefore, the diagnostic agent should receive information about the used re-
sources (their identification) and the amount used.

2. Norm violated - The violation of a norm could be a reason for not achieving a goal.
Thus, the diagnosis may depend on the norm violated. Note that a norm can be
considered a law that must be followed by one or more agents. Some data are pro-
vided about the norm violated: (i) the agent responsible for the failure and (ii) a
value that represents the importance of said violation from the agent’s point of
view, called degree of violation.

3. Quality of service – The quality of service should be defined based on the TAEMS
model (Horling et al., 2000) (Wagner et al., 2003) (Horling et al., 2007). The model
represents a goal/task language that provides an explicit representation for goals
and the available sub-goal pathways that are able to achieve them from methods
(plans). Each branch in the tree can have an expected quality based on the execu-
tion of the plans. Therefore, to verify whether a goal was achieved, the quality of
the execution of the plan must be at least equal to the minimum acceptable degree.
In order to represent this idea, each plan contains the following data: (i) maximum
degree of quality related to the execution of the plan; (ii) minimum acceptable de-
gree of quality to achieve the goal; and (iii) the degree attributed after the execution
of the plan.

4. Goal - The execution of an agent plan is always associated with a goal that the
agent wants to achieve (Silva et al., 2003). To know the goal that the agent is trying
to achieve it is fundamental not only to provide a diagnosis but also to make ad-
vices. The advices about other plans to be executed will be provided considering
the goal the agent was trying to achieve

5. Plan executed - To know the plan executed by the Requester agent it is important to
understand the reason of the failure and to provide alternative execution to achieve
the goal that was not achieved.

6. Agents with whom the agent interacted - The diagnosis can indicate that an agent
is guilty of having provoked the failure on the execution of a plan. For this reason,
it is important to know the agents with whom the Requester has interacted during
the execution of such plan.

7. Roles - The roles played by the agents that have interacted with the Requester can be
important to update reputations, and to serve as recommendations for other agents
that play the same roles.

8. Profile - Agents can have profiles that represent some of their characteristics. A
profile can, for instance, stipulate the minimum acceptable degree of reputation of
the agents that provide information to the Requester agent. This information can be
useful in the process of providing recommendations, especially when there is a
need to advise another partner to interact with the Requester.

9. Problems met by the Requester - The information that can be provided by the Re-
quester is not limited to the set mentioned previously. The Requester can also send

 8

domain-dependent information that will be used by the domain-dependent strate-
gies to perform diagnoses and providing recommendations.

The DRP-MAS framework defines the performance of diagnoses as a hot spot (or
flexible point) (Fayad et al., 1999) that can be implemented by applications to provide
domain-dependent strategies. Therefore, different applications can define different
strategies to deal with the domain-independent and domain-dependent sets of infor-
mation provided by the Requester agent. Nevertheless, the framework makes available a
default strategy to provide diagnosis based on the domain-independent information
set. The framework checks: (i) the amount of the resource used; (ii) the grade of viola-
tion, (iii) the agents that were the responsible for the violations and (iv) the quality of
service of the plan executed. First, the framework compares the information previously
provided by the application about the necessary amount of each resource and the in-
formation provided by the agent about the amount used. Second, the framework ana-
lyzes the grade of the violated norm and which agents were the responsible for the vio-
lation. Note that the violation of the norm may not be the reason a plan does not
achieve a desired goal. Therefore, to distinguish when some violated norm affects the
execution, we considered that the norm begins to damage the related plan when the
grade of violation is higher than 3, considering the grade between [0-10] (this value can
be modified by the application). If the norm damaged the execution of the plan, the
reputation of the agent responsible for such violation is updated. The DRP-MAS offers
the integration with the Governance Framework, which allows controlling reputations
of agents. Since it is a flexible point, different reputation models can be used.

The next verification made by the DRP-MAS is related to the quality of service that
can vary in the range [0-10]. The strategy compares the quality of the execution per-
formed by the plan with the minimum acceptable grade to achieve the desired goal. If
the difference between them is higher than 25% of the maximum possible grade (2.5 in
our case), then the execution is considered extremely bad and the conclusion is that
more than one failure has occurred. Otherwise, it is considered a weak execution, and
the conclusion is that only one failure has occurred. The above-mentioned values, 25%
and [0-10] of the quality, are flexible points of the framework.

Using the aforementioned data, the framework can meet several diagnoses, such as:
(i) wrong amount of resources used, (ii) agents violated an important norm, (iii) an im-
portant norm was violated by the Requester agent, (iv) a lot of problems happened dur-
ing the execution and (v) a crucial problem in the plan happened, but was not identi-
fied.

In order to illustrate the failure of a goal and a possible strategy, let’s focus on the
domain of making coffee. An agent has a goal to make coffee for its friends and, there-
fore, executes a plan that can achieve this goal. Suppose that the agent noticed that the
coffee is not good but does not know why. There are several reasons leading to making
bad coffee: the quality of the coffee powder is poor, the water used was cold, the quan-
tities of coffee and water were not adequate, etc. To find out what has happened, the
Requester agent should send to the Diagnosis agent information about its goal (to make
coffee for three persons), the plan it has executed to make the coffee, the coffee itself,
the quantity of water, the temperature of the water and the quality and the description
of the coffee powder used. The Diagnosis agent must know how much water and coffee
powders are required to make a cup of coffee, the ideal temperature of the water and
which coffee powders are good. One possible simple strategy combines the informa-
tion the agent has received with the beliefs of the Diagnosis agent related to make coffee.
The more information the strategy receives, the more precise the diagnosis will be.

 9

To help the definition of domain-dependent strategies three different algorithms
(backward chaining, forward chaining and fuzzy logic) are available in the Artificial
toolset module defined in the framework. The strategies can use the BIGUS API to ac-
cess such algorithms. In Section 6 an example of a strategy that used the forward chain-
ing algorithm is presented.

3.4 Providing Recommendations

The Master agent incorporates the process of advising alternative ways to achieve a
goal. The process is composed of three steps: to select plans, to verify if the plan re-
quires that agents request information, and to choose good agents.

The first step is executed when the Master agent receives the diagnosis from the Di-
agnostic agent. It first verifies which plans can be used to achieve the desired goal. Sec-
ond, the Master agent uses the diagnosis and the information sent by the Requester agent
to select a plan. If no plan is encountered, then a message is sent to the Requester. Oth-
erwise, the second step is executed.

The second step verifies if the selected plan needs the assistance of agents in order
to request information. If it is not necessary, then the process is concluded and a mes-
sage with the recommended plan is sent. Otherwise, the reputations of the agents are
requested using the reputation module offered by the Governance Framework. The
third step is executed after receiving all reputations (control performed by the DRP-
MAS). In the third step, the Master agent selects the agents to be used by the chosen
plans according to their reputations. At the end, the selected plans and agents are pro-
vided to the Requester agent.

3.4.1 Selecting Plan

The step Selecting Plan is responsible for choosing alternative plans to achieve the de-
sired goal. This task is a domain-dependent one since the selection of a plan may de-
pend on the domain-dependent information provided by the Requester agent. Therefore,
each application that uses the DRP-MAS can define its own strategy to select plans.
The task for selecting plans is defined in the DRP-MAS as a flexible point that should
be extended by the application.

The application should provide the possible plans that the agents can execute and
the expected configuration that each one has. These expected configurations are avail-
able in a plan base that can be accessed by the application’s Master agents. Each plan
can have the following data associated with it: resources used during the execution,
desired goal, profiles of agents that accept executing the plan, quality of service that
determines how the previous execution of the plan was performed, related diagnoses,
roles played by agents in the execution of the plan, and a collection of possible prob-
lems that the plan can resolve. Note that the set of data used to configure a plan is the
same set that comprises the information described in Sub-Section 3.3 , i.e., the informa-
tion provided by the Requester agent.

Although the selection of a plan may be domain-dependent, the framework pro-
vides a default strategy for selecting a plan based on the domain-independent set of
information that the Requester agent can provide. As a default strategy, the framework
provides plans that achieve the same desired goal, excluding the plan used by the Re-
quester agent.

 10

3.4.2 Verifying Selected Plans

After the selection of the alternative plans, it is verified whether some plan needs in-
formation provided by other agents, i.e., if the agent executing the plan will need to
interact with other agents. To perform this analysis, each plan must have been associ-
ated with a list of the roles to be played by agents with whom the agent executing the
plan may interact. If the list of a plan is empty, it means that no communication is
needed between agents while executing the plan. In the case the lists of all plans are
empty, a message can be sent to the Requester agent with the recommended plans. Oth-
erwise, the Master agent must decide which agents should be used in the interactions.
This decision is based on the reputations of agents that will be selected as partners to
play the roles. The Master agent requests the reputations of all agents that can play the
roles identified in the plans from the Governance Framework. Although we propose
the use of the Governance Framework to provide the agents’ reputation, any other ap-
proach that is able to provide the reputation of agents while playing a role can be used.
After receiving all reputations, the third step is executed.

3.4.3 Choosing agents

As in the two previous steps, the strategy in this step is also a flexible point of the
framework and different kinds of strategies can be used. However, the framework of-
fers a default strategy that selects the agents based on the minimum acceptable reputa-
tion defined in the Requester agent profile.

Note that a profile can specify other information that can also be useful when choos-
ing agents. Multi-agent systems can have heterogeneous agents with different behav-
iors and characteristics that can define several different profiles. We stimulate the use
of profiles to help on deciding about which plans should be executed, and which
agents the Requesters accept to interact with.

Consider the application of buying and selling goods to understand how the pro-
files of agents can influence the selection of agents. If a buyer desires to buy a given
product, it can determine that it will negotiate only with sellers that have good reputa-
tions. Therefore, the buyer can determine a minimum reputation in order to select the
acceptable sellers to future transactions.

After the selection of the advised agents, a message is sent to the Requester agent
with the recommendations. For each plan, the possible agents and the resources to be
used are defined. Therefore, four different kinds of recommendations can be provided.

1. Recommendation with an alternative plan, which does not need agents and re-
sources during its execution.

2. Recommendation with a plan and with a list of possible agents to request infor-
mation.

3. Recommendation with a plan, a list of agents and a list of resources, which can be
used.

4. Recommendation with a plan and a list of resources.

 11

4 DRP-MAS Using The Governance Framework

In Figure 4, we can see which modules offered by the Governance Framework are used
by the DRP-MAS. The judgment module is used to update reputations, while the repu-
tation module is used to request agents’ reputations These situations are better ex-
plained as follows.

1 Updating reputations - To change the reputation of selected agents, the Diagnostic
agent of the DRP-MAS can send testimonies to the judgment module. The testimo-
nies point out, according to the information in the diagnoses, the agents that have
violated norms. Since the testimonies provided by such agents are always truth
testimonies, the judgment module does not judge them. For this reason, when the
judgment module receives the testimonies, the reputations of the accused agents
are automatically modified by the reputation module.

2 Using reputations - When the Master agent needs to meet agents to provide informa-
tion about a plan, it requests the reputation of the selected candidates from the
Reputation Module. When the Master agent receives all reputations requested, it
performs the analyses and decides which agents are good or bad from the negotia-
tion point of view.

5 Intelligent Home

The example used to instantiate the DRP-MAS framework is the intelligent home that
also is used in (Horling et al., 2000). From a set of possible cases about the intelligent
home, two were chosen for illustration. The first case is about a dishwasher, which tries
to achieve its goal of washing the dishes. The second case is about a coffee maker,
which has the goal of making 20 cups of strong coffee.

5.1 Dishwasher

In one of the analyzed scenarios of the intelligent home, an agent representing a dish-
washer receives hot water from another agent representing a water heater. The water

Figure 4. The Conceptual Model of the Extended Governance Framework

 12

heater is also able to provide hot water to the shower of a person. Suppose that while
the dishwasher is on, a person starts to take a shower. Since the dishwasher needs hot
water to work properly, the dishwasher should adapt its behavior by choosing one of
the following options: (i) to wait for the water heater to be free and provide hot water
again, (ii) to search for another available water heater, if any, or (iii) to wash the dishes
with cold water. However, in this latter situation the agent does not achieve the de-
sired goal since the dishes are not properly washed.

Let us suppose that the dishwasher has chosen the latter option because there no
water heaters are available and that it is programmed to save energy. When the dish-
washer finishes its work, it notices that the dishes are not properly washed. When this
happens, the dishwasher agent decides to request a Diagnostic agent from the Mediator
agent. In sequel, the Requester agent (dishwasher) provides six different pieces of data to
the Diagnosis agent about the execution performed: (i) the quality of service on the plan,
(ii) its profile, (iii) the norm violated, (iv) the agent used during the execution, (v) the
role played by such agent and (vi) the temperature of the water used. The first five
pieces of information are pre-defined by the framework (Section 5.1), and the sixth is
defined by the application. On the profile of the agent it is informed that only agents
with reputations higher than 0.8 can provide information to the Requester.

When the Diagnostic agent receives the message supplied by the Requester, it begins
to perform the diagnosis. To perform it, we chose to use the well-known Forward
Chaining algorithm offered by the Artificial Intelligence Toolset module of the frame-
work. This algorithm uses inference rules from a set of available data in order to extract
more data while seeking an optimal goal. Therefore, we had to create a rule base with
all the possible rules that allow meeting the diagnoses from the data provided by the
Requester agent. These rules are shown in Figure 5.

The rule base uses six attributes: quality_service, violated_norm, role_agent_used,
temperature_water, conclusion and problem. The values of the first four attributes are
provided by the Requester agent, while the values of the two last ones are automatically
attributed by the forward chaining algorithm, which tries to infer new data (conclusion
and problem) from available ones (quality_service, violated_norm, role_agent_used
and temperature_water). The quality_service attribute represents the quality of the
execution performed by the plan. The violated_norm informs the norms violated dur-
ing the execution of the plan. The role_agent_used informs the role played by the part-
ner agent (water heater) that interacted with the Requester agent, and the tempera-
ture_water attribute informs the temperature of the water used to wash the dishes. The
conclusion attribute will inform if the dishwasher used hot water during the washer,
and the problem attribute will point out the final diagnosis. The rules presented in the
rule base lead to only two possible diagnoses: the dishwasher did not succeed in wash-
ing the dishes because the communication with the water heater has failed, or some
unknown problem occurred.

Let’s suppose that the data provided by the Requester agent were: quality_service=5,
norm= to_wash_dishes_with_hot_water, role_agent_ used=water_heater and tempera-
ture_water=30. After applying the rules, the attributes conclusion and problem receive
the data without_hot_water and problem_communication_waterheater, respectively,
indicating that the water heater did not provide hot water correctly.

After meeting the desired diagnosis, a message with the diagnosis is sent to the
Master agent, in order to search for alternative executions to the Requester agent. The
Master agent analyzes the diagnosis and concludes that it is necessary to select another
agent to provide hot water. The conclusion is that the selected plans need to request

 13

hot water from a water heater agent. For this reason, the Master agent requests the
reputation of the water heaters, and therefore decides which of them have reputations
higher than 0.8 (defined in the profile supplied by the Requester). After the analysis
process, the selected agents and plans are sent to the Requester agent.

5.2 To Make Coffee

Another scenario chosen was the coffee maker, whose goal is to make 20 cups of strong
coffee. While an agent represents the coffee maker, another one represents a tester,
which is responsible for testing whether the coffee was made correctly. Initially, the
coffee maker executes a plan to make the coffee. When the coffee is ready, a message is
sent to a Tester agent. It analyzes the coffee and sends a response message informing
that the coffee is not good. For this reason, the coffee maker decides to request recom-
mendations from the Analysis Module.

The first step performed by the coffee maker is to request a Diagnostic agent, and
then to request the recommendations, informing some data about its execution: quality
of the execution of the plan (provided by the framework), amount of the water and
amount of coffee powder used (provided by the instance), which are the resources
used by the plan.

As in the case of the dishwasher presented previously, we have also used the For-
ward Chaining algorithm to make the diagnoses. Part of the rule base defined in this
example is shown in Figure 6. Six data were defined: amount_water, amount_powder,
quality_service, conclusion_ coffee, conclusion_cups and problem. The first data represents
the amount of water used by the plan to make the 20 cups of coffee. The second data is
the quantity of coffee powder used, while the quality_service represents an assigned de-
gree to the execution of the plan. If the value attributed is lower than 10, then some
problem occurred during the execution. Another data used was the conclusion_coffee

Problem_Communication_WaterHeater:
IF conclusion=without_hot_water AND
violated_norm=to_wash_dishes_with_hot_water
AND role_agent_used=water_heater AND
quality_service <10 THEN
problem= problem_communication_waterheater

Problem_Unknown_in_the_Plan:
IF conclusion=com_agua_quente AND
quality_service <10 THEN
problem= problem_unknown_in_the_plan

With_Hot_Water:
IF temperature_water>39 THEN
conclusion=with_hot_water

Without_Hot_Water:
IF temperature_water<40 THEN
conclusion=without_hot_water

Figure 5. Rule base of the domain Dishwasher.

 14

that informs whether the coffee that was made used too little or too much coffee pow-
der, while the conclusion_cups verifies whether the correct amount of water was used to
make 20 cups. The problem attribute will represent the diagnosis.

Let’s suppose that the Requester agent (coffee maker) provided the following data:
quality_service=0, amount_water=600 (mL), and amount_powder=20 (grams). As the
goal of the coffee maker is to make 20 cups of strong coffee, we can see that applying
these values in the rule base, the problem met is problem_amount_powder_and_cups. In
other words, the amount of powder and the amount of water were incorrect to make 20
cups of strong coffee. For this reason, the quality of service came with a value lower
than 10.

After reaching the diagnosis, a message is sent to the Master agent. The strategy
adopted in this case was to verify the amount of necessary resources to make 20 cups
of strong coffee, and to search other plans with the same goal. With the selected plans,
the correct quantity of powder and water to make the coffee is informed to the plans.
Later, it is verified that the plans need a Tester agent to test the coffee. As there is only
one available tester (defined by the application), this one is chosen. Finally, the recom-
mendations are provided to the coffee maker (the Requester agent).

6 Related Work

In this section, we describe some related work and make a comparison with the pro-
posed DRP-MAS. In particular, we consider works reported in (Li et al., 2004), (Horling
et al. 2000) and (Roos et al., 2002).

Problem_Strong_Coffee _20_Cups:
IF conclusion_coffee= weak_coffee AND
 conclusion_water = Coffee_Incorrect_Water
AND quality_service <10 THEN
problem= problem_amount_powder_and_cups

Weak_Coffee:
IF amount_powder <30 THEN
conclusion_coffee= weak_coffee

Strong_Coffee:
IF amount_powder >29 THEN
conclusion_coffee= strong_coffee

Coffee_Correct_Water:
IF amount_water=1000 THEN
Conclusion_water= Coffee_Correct_Water

Coffee_Incorrect_Water:
IF amount_water!=1000 THEN
Conclusion_water= Coffee_Incorrect_Water

Figure 6. Rule base for the domain of coffee making.

 15

6.1 Application of Multi-Agent in Control and Fault Diagnosis Systems

In (Li et al., 2004), a decentralized system is proposed in order to perform diagnosis
and monitoring. Each component has a monitor (Monitoring Agent), which is respon-
sible for collecting information about it. When obtained, the data are provided to
agents offered by the proposed system, which are responsible for working together in
order to find the diagnoses.

One of the drawbacks of this approach is that it violates the privacy of the agents.
For this reason, the DRP-MAS does not create monitors, but waits for the agents of the
application to request for diagnoses.

6.2 Diagnosis as an Integral Part of Multi-Agent Adaptability

The authors in (Horling et al., 2000) examine the use of domain-independent diagnoses
in multi-agent systems. They argue that the initial step is to make available information
describing the correct, or at least expected, behavior of agents. They state that useful
method execution and goal achievement information can be succinctly encoded in a
domain-independent way with a goal/task decomposition language called TAEMS.

In the DRF-MAS the methods defined by the TAEMS in order to achieve the desired
goals are represented by plans that are used to attain goals. Each plan defines a set of
possible related information, such as resources used and their expected amount, de-
sired goal, expected quality, etc., as described in Section 3.3 . If a plan has a problem, it
is possible to verify the causes of the failure.

Comparing with (Horling et al., 2000), our approach offers a bigger information set,
making it possible to perform more and different diagnoses. Another distinguishing
characteristic of the DRP-MAS is the use of agents’ reputations, which helps during the
selection of future partners.

6.3 An Analysis of Multi-Agent Diagnosis

In (Roos et al., 2002), the authors define an information set to be used by a global sys-
tem to provide diagnoses. This set is:

S = (C, M, Id, Sd, Ctx, Obs)

where C is a set of components, M is a specification of possible fault per component, Id
is a set of identifiers of points that connect components, Sd is the description of the sys-
tem, the Ctx is a specification of input values of the system that are determined outside
the system by the environment, and Obs is a set of observed values of the system. DRP-
MAS follows a similar idea by extracting the necessary information to perform diagno-
ses from the set of information used by the process of diagnosis presented in Sub-
Section 3.3 .

7 Conclusions

In the present paper we have outlined the main challenges and associated require-
ments as well as the design strategy to create a hybrid diagnostic-recommendation sys-
tem for agent execution in open multi-agent systems. This system helps to perform di-
agnoses and to recommend alternative ways for executions to achieve goals. The intel-

 16

ligent home domain was presented as a case study to illustrate the applicability of our
approach.

Two important lessons were learned in the process of analyzing and developing the
proposed system. The first lesson relates to the diagnosis process. We have realized
that to define a universally efficient solution to perform diagnoses in different domains
is very difficult, because some domains have particular characteristics that influence
the result of the diagnoses.

The second lesson relates to the use of the reputation concept. Depending on the
situation, to adequately select the agents that will be used to request some information
can be important, because some provided information can determine the success or
failure of some execution. The use of the reputation module of the Governance Frame-
work was very useful, because it allows the Master agent to use reputation to choose the
agents to advise. The example presented in Section 5 uses the global reputation de-
fined by the system. However, other types of reputation could be used, such as reputa-
tion for role (see Sub-Section 3.4.2).

Our plan for future work is to focus on case studies involving mobile services.
Nowadays, several companies sell products and services to different kinds of custom-
ers. These customers can decide to buy such products and services using different de-
vices (laptop, PDA, mobile phone, etc.) in different places around the world. For this
reason, it would be interesting to create different teams to provide information on the
best ways of providing the services and products requested by the customers. These
teams can be composed of software agents, which could provide the requested services
and products and resolve possible negotiation problems without human participation.
In situations where a team needs data to complete its execution, it can access one or
more expert located in different places of the world.

Our focus is to understand how the diagnosis and reputation concepts can be ap-
plied together in the described domain and develop automated expert solutions for
this kind of application.
Our initial approach will be to provide diagnoses when some agent does not complete
some execution or does not provide some service requested by a customer. Another
interesting situation is when some service or product is provided to some customer
correctly, but the device used does not perform the execution successfully. Some possi-
ble reasons for this situation can be the amount of memory used by the device, prob-
lems with connection, etc.

As we also want to provide alternative ways of execution when some problem oc-
curs, we believe that the reputation concept can be useful in this new context. Some-
times, the reason for some agent not to provide some service or product can be some
faulty information or a delay in receiving the desired data provided by another agent
or some human expert. For this reason, reputation can be useful to determine to which
agents or experts requests will be issued. Besides, each customer can determine a repu-
tation for the offered services or products. Therefore, reputations can be defined by the
agents that supplied them. Using these reputations, when a customer requests some
service, the system can choose the best agents to provide it. One of the main goals of
our research is to improve the originally proposed framework by providing strategies
to perform diagnoses and provide advices using the reputation concept in mobile envi-
ronments.

 17

References

 Boella, G., Torre, L., 2004. Regulative and Constitutive Norms in Normative Multi-
Agent Systems. In Proceedings of 9th International Conference on the Principles of Knowledge
Representation and Reasoning. California.

Costa, A., Lucena, C., Silva, V., 2006. Remodelando e Estendendo o Agent Society
Framework. Technical Report MCC17/06, Computer Science Department, PUC-Rio.
Rio de Janeiro, Brazil,.

Duran, F., Silva, V., Lucena, C. 2008. Using Testimonies to Enforce the Behavior of
Agents. In: Sichman, J., Noriega, P.; Padget, J. and Ossowski, S., (Edts.) Coordination,
Organizations, Institutions, and Norms in Agent Systems III. (COIN 2007 post-
proceedings), LNCS (LNAI) 4870, Springer-Verlag, pp. 218-231.

Fayad, M., Johnson, R., Schmidt, D., 1999. Building Application Frameworks: Object-
Oriented Foundations of Framework Design (Hardcover), Wiley publisher. 1st edition.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Publisher, 1st
edition.

Guedes, J., Silva, V., Lucena, C., 2008. A Reputation Model Based on testimonies. In:
Kolp, M.; Garcia, A.; Ghoze, C.; Bresciani, P.; Henderson-Sellers, B.; Mouratidis (Eds.),
Agent Oriented Information Systems IV: Proc. of the 8th International Bi-Conference
Workshop (AOIS 2006 post-proceedings), LNCS (LNAI) 4898, Springer-Verlag, pp. 37-52.

Horling, B., Lesser, V., Vincent, R., Bazzan, A. Xuan, P., 2000. Diagnosis as an Integral
Part of Multi-Agent Adaptability, DARPA Information Survivability Conference and
Exposition, DISCEX’00, Proceedings, Volume 2, pp. 211-219.

Jennings, N., Wooldridge, M., 1999. Agent- Oriented Software Engineering; Proceedings
of the 9th European Workshop on Modeling Autonomous Agents in a Multi-Agent World:
Multi-Agent System Engineering (MAAMAW-99), Vol. 1647, Springer-Verlag:
Heidelberg, Germany, pp. 1-7.

Bigus, J., Bigus, J., 2001. Constructing Intelligent Agents Using Java, 2nd edition, .

Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K., Garvey,
A. 1999. The TAEMS White Paper. http://dis.cs.umass.edu/research/taems/white/.
Last access in November, 2007.

Li, T., Peng, Y., Zhao, H., Li, K., 2004. Application of Multi-Agent in Control and Fault
Diagnosis Systems. In Proceedings of the Third International Conference on Machine
Learning and Cybernetics, Shanghai, pp. 26-29.

López, F., 2003. Social Powers and Norms: Impact on Agent Behaviour. PhD thesis.
University of Southampton. UK.

Roos, N., Teije, A., Bos, A., Witteveen, C., 2002. An Analysis of Multi-Agent Diagnosis,
AAMAS’02.

Silva, V., Cortês, M., Lucena, C., 2004. An Object-Oriented Framework for
Implementing Agent Societies, MCC32/04. Technical Report, Computer Science
Department, PUC-Rio. Rio de Janeiro, Brazil.

Silva, V.; Duran, F.; Guedes, J., Lucena, C., 2007. Governing Multi-Agent Systems, In
Journal of Brazilian Computer Society, special issue on Software Engineering for Multi-Agent
Systems, n. 2 vol. 13, pp. 19-34.

 18

Silva, V.; Garcia, A.; Brandao, A.; Chavez, C.; Lucena, C.; Alencar, P., 2003. Taming
Agents and Objects in Software Engineering" In: Garcia, A.; Lucena, C.; Zamboneli, F.;
Omicini, A; Castro, J. (Eds.), Software Engineering for Large-Scale Multi-Agent
Systems, Springer-Verlag, LNCS 2603, pp. 1-26.

Singh, M., 1999. An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law v. 7 (1) pp. 97-113.

Patel, J., Teacy, W., Jennings, N., Luck, M., Chalmers, S., Oren, N., Norman, T., Preece,
A., Gray, P., Shercliff, G., Stockreisser, P., Shao, J., Gray, W., Fiddian, N., Thompson, S.,
2005. Monitoring, Policing and Trust for Grid-Based Virtual Organisations. In Proc. of
the UK e-Science All Hands Meeting UK.

Vicent, R., Horling, B., 2000; Experiences in Simulating Multi-Agent Systems Using
TAEMS, Proceedings Fourth International Conference on MultiAgent Systems, Volume,
Issue, pp. 455-456.

The Foundations of Intelligent Physical Agents; Official web site;
http://www.fipa.org/; February, 2008.

Wagner, T., Guralnik, V., Phelps, J., 2003, TAEMS Agents: Enabling Dynamic
Distributed Supply Chain Management, Electronic Commerce Research and Applications,
Volume 2, Number 2, pp. 114-132.

Wooldridge, M., Ciancarini, P., 2000, Agent-Oriented Software Engineering: The State
of the Art, in First Int. Workshop on Agent-Oriented Software Engineering, Vol. 1957,
Springer-Verlag, Berlin, pp. 1-28.

