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Abstract. We present a novel data-parallel algorithm for quickly rebuilding Uniform Grids
on state of the art GPUs. The technique combines very fast scan and sorting procedures
to classify scene primitives according to the spatial subdivision. Results demonstrate this
routine is not only scalable with scene size, but achieves faster rebuild times than other
state of the art implementations. In addition, we have developed a ray-tracing procedure
that achieves interactive visualization rates, even when enabling shadows and re�ection
rays. Since the grid structure can be e�ciently rebuilt each rendering frame, we can main-
tain performance with fully animated scenes containing unstructured movements. Overall
performance achieved greatly improves upon Uniform Grids on the CPU, while remaining
competitive to more adaptive structures such as the BVH and kd-tree.

Keywords: Uniform Grid, Programmable Graphics Hardware, Ray Tracing, Dynamic
Scenes

Resumo. Apresentamos um novo algoritmo em paralelo para rapidamente reconstruir
Grades Uniformes usando GPUs do estado da arte. A técnica combina procedimentos
de "scan" e ordenação em paralelo para classi�car primitivas de acordo com a subdivisão
espacial. Resultados demonstram que essa rotina não somente é escalável com o tamanho
da cena, mas atinge tempos de reconstrução mais rápidos do que outras implementações
do estado da arte. Além disso, desenvolvemos um procedimento de traçado de raios que
atinge taxas interativas de visualização, mesmo ao habilitar sombras e raios de re�exão.
Como a estrutura da grade pode ser e�cientemente reconstruída a cada quadro de render-
ização, podemos manter elevado desempenho para cenas totalmente animadas contendo
movimentos não-estruturados. O desempenho �nal supera outras propostas de grades uni-
formes na CPU, enquanto permanece competitiva com outras estruturas mais adaptativas
como BVH e kd-tree.

Palavras-chave: Grade Uniforme, Programação em GPU, Traçado de Raios, Cenas
Dinâmicas
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1 Introduction

State of the art research have shown that ray tracing on the GPU can achieve similar, if
not better, performance than the best known algorithms on the CPU. However, most of
the established techniques are restricted to static scenes. Only a few recent proposals have
been able to support moving and deformable objects. In this case, several acceleration
structures and algorithms remain unexplored.

The goal of this research is to develop a ray tracing solution that is capable of har-
nessing the parallel processing power of the graphics hardware to render dynamic scenes.
Similar to other proposals, we have focused on the strategy of rebuilding the acceleration
structure from scratch in order to support scenes with any kind of unstructured movement.
Our strategy consists in using an acceleration structure that is simpler to be rebuilt, while
capable of maintaining fast rendering performance. The Uniform Grid simple construc-
tion and ray-traversal algorithms are very good candidates for implementation inside the
graphics hardware.

The main contribution of this paper is a novel grid construction algorithm, best suited
for parallel shared-memory architectures. Our proposed implementation minimizes inter-
thread communication and required memory bandwidth, while at the same time avoiding
concurrent writes to the same memory locations. The main idea is to build lists of prim-
itives contained by each cell, storing each primitive in all cells it overlaps. This enables
random access to any primitive list during ray traversal. We also present a ray-tracing pro-
cedure, also implemented inside the GPU, that fully exploits the grid acceleration structure.
In addition, it is capable of e�ciently tracing shadow rays as well as re�ection ones. To-
gether with our proposed grid rebuild, we can achieve fast rendering performance for static
and dynamic scenes of varying sizes.

This document is organized as follows. The next section reviews related research in
CPU and GPU ray tracing of dynamic scenes. Section 3 describes our proposed method
for fully rebuilding the grid structure inside the GPU. In Section 4, we describe the ray
traversal algorithm used to trace rays through the Uniform Grid on the graphics hardware.
Results and performance numbers are evaluated in Section 5, where several test scenes
identify the bene�ts and limitations of our approach. Finally, Section 6 concludes this
research and introduces several future work that can further improve ray tracing dynamic
scenes on the GPU.

Figure 1: Dynamic and CAD models entirely ray-traced on the GPU with our novel grid
construction algorithm. From left to right: running character Ben (78K triangles, 13.3fps
with shadows), animated wind-up toys (11k triangles, 28.9fps with shadows and 7.8fps with
re�ections), fairy dancing in a Forest scene (174k triangles, 2.8fps with shadows), static
Boat model (50K triangles, 11.7fps with shadows and 4.1fps with re�ections) and static
MonoBR oil platform (112K triangles, 5.6fps with shadows and 1.4fps with re�ections)
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2 Related Work

Over the last few years, di�erent spatial structures have been proposed to accelerate ray
tracing. In order to support dynamic scenes, one can use a structure that is not so e�cient
for ray traversal, but that can be quickly modi�ed or rebuilt during the rendering process.
Moreover, information about object movement in the scene can aid in rebuilding a structure
best suited for each situation.

For instance, if all animation key-frames are known prior to rendering, it is possible to
build a Bounding Volume Hierarchy (BVH) that can be adapted (deformed) while objects
move in the scene (Wald et al. 2007). The main idea is to keep the hierarchy topology
while only deforming the node bounding volumes. However, if extensive or unpredicted
movements occur, the hierarchy topology can become invalid and must be entirely recon-
structed, slowing down rendering performance.

In order to support the general case of fully dynamic scenes, there have been extensive
research in quickly rebuilding the acceleration structure each frame. One technique uses a
Uniform Grid (Wald et al. 2006) since its simplicity equates to a fast rebuild scheme. A
second proposal implements a kd-tree construction procedure in parallel, tapping into the
processing power of modern multi-core CPUs (Shevtsov et al. 2007). A third research, also
implemented on a many-core CPU, quickly rebuilds a BVH structure each frame (Wald
2007). These three approaches are able to achieve interactive rendering rates even for
unstructured animations.

With the increasing programmability of modern GPUs, recent research have focused on
exploiting its parallel processing power to accelerate ray tracing of dynamic scenes. One
of the �rst techniques was based on an e�cient kd-tree reconstruction algorithm, fully im-
plemented inside the graphics hardware (Zhou et al. 2008). The entire tree structure was
rebuilt each frame, if necessary. The tree traversal procedure used a small per-ray stack,
implemented inside the GPU using the CUDA programming model (Nvidia 2008). When
ray tracing dynamic scenes, performance obtained surpassed the best CPU implementa-
tions. Another related research builds upon the work in (Wald 2007) and presents three
di�erent BVH construction algorithms inside the GPU (Lauterbach et al. 2008). Their
best results achieve fast rebuild times and matches ray-tracing performance of similar
CPU implementations.

In our work, we propose a technique with a similar goal. Our procedure fully rebuilds
the entire acceleration structure inside the GPU, while performing ray-traversal and shad-
ing computations. However, we have taken a fundamentally di�erent approach. These
latest state of the art results use hierarchies, which are highly e�cient for ray-traversal
but also require more complex construction procedures. Our strategy consists in using
an acceleration structure that is simpler to be rebuilt inside the graphics hardware. The
work presented here will investigate whether it is more e�ective to trade-o� ray-traversal
performance for a faster structure rebuild.

3 Uniform Grid Construction

The Uniform Grid is a regular spatial subdivision structure. The axis aligned bounding
box of the entire scene is subdivided into equally sized cells along each of the three main
axis X, Y and Z. To obtain best ray-tracing performance, the deciding factor is to choose
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a good grid resolution. The typical heuristic to determine the number of cells in each
dimension attempts to consider both the complexity of the scene and the size it occupies
in space (Wald et al. 2006). In other words, a fairly complex scene would demand a more
re�ned grid. Similarly, a scene that occupies a very large space could be represented by a
more sparse grid. This leads to Equation 1, as follows:

Nx = dx
3

√
kP

V
Ny = dy

3

√
kP

V
Nz = dz

3

√
kP

V
(1)

Nx, Ny and Nz are the number of grid cells in each dimension

P is the total number of primitives in the scene

V is the total volume of the grid

dx, dy and dz form the diagonal of the grid

k is a user-de�ned constant to determine a more dense or sparse grid

A typical grid representation stores a list of primitives contained by each cell. Con-
secutive lists are arranged contiguously in memory. In practical use, the grid structure
must support random access during ray traversal. This means that it is necessary to de-
termine all primitives that overlap a given cell using only its ID. Thus, in addition to the
actual grid data we need to build an index to translate the cell ID into the beginning of
its corresponding primitive list, as shown in Figure 2.

Figure 2: The ray traversal procedure uses the current cell ID to obtain its corresponding
list of primitives, to be tested for intersection next. Di�erent colors identify separate lists.

When using the GPU, the main challenge in this construction procedure is to develop an
algorithm that is capable of writing into several primitive lists, all arranged contiguously in
memory, using hundreds of concurrent threads. Solving this data-parallel problem means
to avoid concurrent writes to the same memory position. For instance, if more than one
thread is about to write to the same bu�er, it is necessary to serialize write operations,
slowing down overall performance.
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Another question is how to avoid consecutive bu�ers to overlap one another. One
option is to build each bu�er in sequence, so that the end of the previous list is known
before starting to write the current one. However, bu�er sizes tend to be in the order of
tens of primitives. This would restrict the amount of parallelism that could be achieved.
Another more e�cient approach is to compute all bu�er sizes beforehand, thereby reserving
su�cient memory space for each one.

3.1 Conceptual Algorithm

We therefore propose a multi-pass algorithm to overcome the above challenges. The main
idea is to maintain separate bu�ers, avoiding write serialization, while at the same time
assigning computations from di�erent primitives to separate threads. As mentioned in the
previous section, the output of the grid construction procedure is the actual grid data,
made of a set of primitive lists, accompanied by an index to translate a given cell ID into
a bu�er start position.

In order to build the actual grid data, suppose each thread computes all cells a single
primitive overlaps, and writes these values as contiguous lists of (cell ID, primitive ID)
pairs. This avoids concurrent write operations but means that cell-primitive pairs are
sorted according to their primitive IDs. The desired layout requires all pairs that have the
same cell ID to be arranged contiguously. Our proposed solution is to perform a key-value
sorting operation to change the order of these primitive lists, as can be seen in Figure 3. As
it turns out, this procedure can be e�ciently performed in parallel, inside the GPU (Satish
et al. 2008).

Figure 3: Cell-primitive pairs on the left are sorted by primitive ID. The desired result, on
the right, with pairs sorted by cell ID. Colors highlight elements which belong to the same
list.

Since in our procedure all threads would perform simultaneous writes to di�erent po-
sitions, it is necessary to avoid overlapping primitive lists. We will adopt the strategy of
computing bu�er sizes beforehand, reserving su�cient memory space for each one. Observe
that the start address of bu�er N is the sum of all bu�er sizes from 0 to N-1. Given this
reasoning, we use the following parallel implementation: each thread (primitive) simply
counts the number of cells it overlaps. Afterwards, a parallel-pre�x-sum procedure (scan)
is used to accumulate all values and generate the bu�er start indices.

Finally, all that remains is to build the index to translate a given cell ID into a bu�er
start position. It is possible to use a similar solution as the previous one: compute the
number of primitives contained by each cell, in parallel, and then accumulate these values.
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If each thread performs the work of a single primitive, concurrent threads are required to
serialize increments to the same cell counter. The other option would be to use each thread
to perform the work of a single cell, reading all primitive data and incrementing separate
counters.

There is another approach that avoids concurrencies and has lower memory bandwidth
requirements. Observe that, after the grid sort operation, cell-primitive pairs are arranged
in increasing cell ID order. It is therefore possible to use a binary search for a given cell ID,
�nding the list of primitives it contains (Fernando 2004). All that remains is to perform a
linear search for the bu�er start index (to the left) and the bu�er end index (to the right).
To avoid performing this operation during ray traversal, we will pre-compute bu�er start
indices as well as their sizes beforehand.

Gathering all the previous ideas, we can summarize the multi-pass algorithm described.
Figure 4 further details the data generated by each consecutive step.

1. For each primitive, count the number of cells it overlaps.

2. Accumulate the values in Step 1 to compute bu�er start indices. These are used in
Step 3 to write several bu�ers in parallel.

3. Write all cells each primitive overlaps using pairs (cell ID, primitive ID).

4. Sort the pairs in Step 3 according to their cell IDs.

5. For each cell ID, perform a binary search in the sorted grid data to �nd bu�er start
indices and their sizes.

3.2 Implementation Details

The algorithm for rebuilding the Uniform Grid is implemented entirely on the GPU. Its
main input is a list of vertices that makeup the triangles in the scene. These vertices are
stored in a texture, which is accessed during grid construction and ray tracing. The total
number of triangles in the scene determines the grid resolution, according to Equation 1.
After the grid resolution is chosen, we use a multi-pass construction algorithm based on
the discussion in the previous section.

We have combined both GLSL and CUDA implementations where each has performed
best. Speci�cally, the parallel-pre�x-sum in Step 2 and the key-value sort operation in
Step 4 are performed by CUDA procedures, while the other steps can be done e�ciently
by a single fragment shader each. Figure 5 illustrates an example of our reconstruction
procedure. The following subsections present additional details of each step during grid
rebuild.

3.2.1 Counting the Number of Cells Each Primitive Overlaps

In the �rst step, the 2D fragment coordinates of a full-screen quadrilateral are converted to
a primitive ID that is used to access the corresponding triangle information. Afterwards,
the shader computes the triangle's axis-aligned bounding box (AABB) and counts how
many grid cells this box overlaps. This value is then written in the framebu�er. An
alternative method would use a more precise, but computationally expensive, triangle-box
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Figure 4: Data �ow of the proposed grid rebuild algorithm. Red and green arrows indicate
write and read operations, respectively. Grey boxes highlight the main output of the
procedure.

overlap algorithm (Möller 2001). This option, however, has performed poorly during our
tests. Also, the use of AABB is by far more adequate for the third (and most challenging)
step of the algorithm.

3.2.2 Computing Primitive Bu�er Indices

The output values of the previous step are then processed by a scan procedure implemented
in the CUDA Data Parallel Primitives Library or CUDPP (Sengupta et al. 2007). The
resulting accumulated values are read back to an OpenGL texture. This texture now
contains, given a primitive ID, the index where its bu�er starts in the �nal grid texture.
We store an additional accumulated value at the end, which represents where the last
primitive list terminates. This number also represents the required size of the �nal grid
texture.
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(a) Output from Step 1: the number of cells each of the 4 primitives overlaps.

(b) Step 2 accumulates the values from Step 1, indicating where each primitive
list begins. Notice an additional accumulated value at the end, indicating the
required grid size.

(c) The (cell ID, primitive ID) pairs from Step 3, initially sorted by primitive
ID.

(d) Step 4 output: pairs are sorted by cell ID.

(e) Results from step 5: the cell start index and the number of primitives it
contains.

Figure 5: Example of our grid construction algorithm using 4 primitives and 9 cells. Colors
indicate elements that belong to the same list.

3.2.3 Writing Cell-Primitive Pairs

The third step is to write the (cell ID, primitive ID) pairs using the indices computed
in Step 2. At �rst sight, this would require each thread (primitive) to perform several
write operations in a single pass. It is possible to implement this algorithm either using
CUDA or GLSL. In order to achieve best performance using the CUDA programming
model, it is necessary to arrange sequential threads to perform sequential write operations,
thus enabling the hardware to amortize memory latency by coalescing several small write
requests into one large memory operation. This optimization cannot be achieved when
writing several pairs in di�erent bu�ers.

An alternative is to use GLSL shaders instead. To write several values per primitive,
there are two options: using a vertex shader or a geometry shader. Our experiments
have shown that both options achieve poor performance. Outputting more than a dozen
primitives per geometry shader results in severe performance degradation, while current
GPUs limit vertex output to about 340 vertices. Additionally, using a vertex shader would
require multiple draw calls totalling the largest primitive bu�er size. That is, the maximum
number of cells a single triangle overlaps. This means that if the scene contains even one
large triangle, it would severely slow down the entire grid construction.

All previous approaches have the same paradigm of trying to use each thread to perform
several write operations. Let us think backwards then. Given a cell-primitive pair slot
in the resulting grid, we need to obtain which cell ID and which primitive ID need to
be written. As it turns out, we can use the accumulated values computed in Step 2
to determine both these IDs. Recall that these values represent the start index of each
primitive list, while an additional accumulated value at the end represents the size of the

7



resulting grid. It is safe to say, then, that all memory positions in the resulting grid are
contained by a lower and an upper bound in this accumulated texture.

Note that the lower bound value represents the start of the primitive list where any
given cell-primitive pair belongs. In other words, all memory positions in the resulting
grid with the same lower bound in the accumulated texture belong to the same primitive
list. Therefore, they have the same primitive ID. This ID is simply the memory index of
the lower bound value in the accumulated texture. Since the accumulated values are, by
de�nition, sorted in increasing order, we can perform a modi�ed binary search, inside a
simple fragment shader, to �nd the required lower bound for any memory position in the
resulting grid.

The cell ID value, on the other hand, can be computed by using a local o�set: the
di�erence between the memory position in the resulting grid and the start position of the
primitive list (the lower bound value). This local o�set indicates the nth overlapped cell
ID must be written in the nth position in the primitive list. We establish a convention
of ordering grid cells in ascending linear IDs in X, Y and then Z order. This allows for
converting linear cell IDs to 3D cell IDs.

3.2.4 Sorting the Grid Data

After that, a sort operation is performed to arrange the pairs from Step 3 according to
their cell IDs. We use a very fast key-value radix-sort, recently available in the latest
CUDA SDK (Satish et al. 2008). The resulting texture now contains the �nal constructed
Uniform Grid. All that remains is to determine how to access this data structure.

3.2.5 Computing Indices to Access Grid Data

In Step 5, each thread performs a binary search using the cell ID to �nd its corresponding
primitive list. Afterwards, a linear search is used to compute the bu�er start index (to the
left) and the bu�er end index (to the right). All these operations can be performed by a
single fragment shader. The shader writes both the bu�er start index and its size in the
same pixel, allowing a single texture fetch operation, to recover both these values during
ray traversal.

4 Ray Tracing Implementation

The regular subdivision of a Uniform Grid greatly simpli�es the task of determining which
cell must be visited along a given ray. We use a classic grid traversal algorithm based on
a 3D digital di�erential analyzer, or 3D-DDA, to step the ray along successive cells (Ama-
natides and Woo 1987). The main advantage of this technique is that it only requires a
few pre-computed values per ray, and its main loop can be done e�ciently on the graphics
hardware. In contrast to other acceleration structures, such as a kd-tree, there is no need to
maintain a per-ray traversal stack. These characteristics make the 3D-DDA grid traversal
a favorable candidate for implementation inside the GPU.

We have implemented our entire ray-tracing procedure using GLSL shaders. There
are fundamentally two approaches to implementing the ray tracing kernel. The �rst is to
use a single fragment shader to encode the entire ray setup, traversal, intersection and
shading routines. The other is to break the procedure into several rendering passes. We
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have veri�ed experimentally that separating the traversal and intersection from the shading
routine can perform up to two times faster than a monolithic shader approach.

Therefore, our proposed ray tracing implementation on the GPU can be summarized
in three main steps, each performed by a di�erent fragment shader:

1. Primary ray traversal and intersection

2. Shadow ray traversal and intersection

3. Shading computations

After initializing the primary rays, the shader in Step 1 �rst checks for intersection
against the grid bounding box. If none is found, the shader outputs invalid values. In the
other case, the shader uses the 3D-DDA traversal to �nd the nearest triangle intersection,
which is then stored in an o�-screen bu�er. This output contains, for each texel, the
following hit information: triangle ID, barycentric coordinates (u, v) and the hit distance.
If no hit was found, the shader writes invalid values.

The shader in Step 2 uses this hit information to compute the origin and direction of
the shadow rays, tracing them using an optimized procedure that only computes minimal
information to determine if a point is in shadow. Shadow rays are cast from the primary
hit position towards a global point light. The output is the same hit information from Step
1, with shadowed hits identi�ed by negative triangle IDs.

Finally, Step 3 reads the hit information from Step 2. The triangle ID is used to access
the necessary triangle information (normals, texture coordinates and materials) to perform
all shading computations. The barycentric coordinates (u, v) are used to interpolate per-
vertex attributes such as normals and texture coordinates. Finally, the hit distance is used
to evaluate the hit position in space and compute the �nal Phong illumination model.

4.0.6 Enabling Re�ections

We can re-use the aforementioned algorithm to shade re�ective materials. Our strategy
consists in another rendering pass, performing the same Steps 1, 2 and 3 but now for
re�ection rays. The �nal color values are modulated with the original ones, using the
OpenGL blend operation.

In this case, Step 1 does not initialize the rays using the view information, but reads the
primary hits previously computed in the same frame. The secondary hits are then processed
by Steps 2 and 3 as usual, generating the �nal color for the re�ection rays. Clearly, this
iterative process could be repeated, each time shading another level of re�ections. For
testing purposes, we have limited our implementation to a single level.

5 Results and Discussion

In this section we present a performance evaluation of our proposed grid-construction and
ray-tracing solutions. Section 5.1 presents a synthetic analysis of GPU grid reconstruction
performance, comparing to an equivalent CPU implementation. Following that, Section
5.2 evaluates our ray-tracing algorithm using static scenes, with no grid rebuild. In this
case, we are also interested in measuring ray-tracing scalability and �exibility.
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Afterwards, in Section 5.3, we perform a full evaluation of the integrated ray-tracing sys-
tem, using dynamic scenes to identify the possible bene�ts and limitations of our method.
Finally, Section 5.4 presents a detailed comparison of our results with other state of the
art research. In all our tests, we have used a Core 2 Duo 3.0GHz CPU with an Nvidia
8800 Ultra graphics card. All scenes were rendered at 1024 x 1024 screen resolution.

5.1 Grid Construction

The Uniform Grid reconstruction procedure has been evaluated against a similar CPU
implementation. The test scene consists of several triangles randomly distributed inside a
box with dimensions [-50, -50, -50] x [ 50, 50, 50]. Each triangle has a randomly determined
size, obtained by varying the radius of its enclosing bounding sphere from 0.2 to 1.0. Grid
resolution is determined using Equation 1. Therefore, increasing the number of triangles
not only increases the amount of data to be stored, but also the number of cells in the
resulting grid.

#Tri 5K 10K 50K 100K 200K 300K 400K 500K

CPU 0.8 1.5 10.2 33.8 94.1 167.4 253.0 353.6

Ours 1.7 2.2 6.9 14.5 32.9 55.2 63.8 87.4

Table 1: Time in milliseconds to rebuild the entire grid structure.

As can be seen in Table 1, the GPU solution su�ers from the overhead of the graphics
API for small scenes (10K triangles or less). However, this procedure scales better than
its CPU counterpart, obtaining faster grid rebuild times for scenes with more than 10k
triangles. We are capable of achieving near-linear scaling, even though increasing the
number of triangles in the scene also increases the total number of cells in the grid.

5.2 Static Scenes

In order to measure ray-tracing performance independently of grid rebuild, we have devised
a number of static scene tests. In these, the Uniform Grid is built only once during
initialization. The �rst test measures performance of primary rays only, by using a simple
grey-scale shader with no additional texture accesses. In the second test, we use additional
material information obtained from several textures to perform lighting computations, and
includes tracing shadow rays from a single point light. Finally, the third test case further
enables re�ection rays for the entire scene.

5.2.1 CAD Models

The �rst CAD model, called �Boat", is made of 50K triangles with no textures. The second
model is an oil platform called �MonoBR", made of 112K triangles, including a few textured
materials. The third model is a complex section of the �P-40" oil platform, with more than
470K triangles (see Figures 1 and 6). Table 2 summarizes ray-tracing performance for all
test cases.

An evident result is the scalability of the ray-tracing procedure according to scene size.
Even the �P-40" model with about half a million triangles can be rendered at almost the
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Figure 6: On the left, P-40 CAD model with over 470K triangles, ray-traced with shadows.
On the right, a close-up of an equipment inside the platform, including shadows and
re�ections.

Scene # Tris Simple +One Light +Re�ections

Boat 50K 21.3 11.7 4.1

MonoBR 112K 11.6 5.6 1.4

P40 470K 14.1 7.8 1.5

Table 2: Performance in frames per second (fps) for di�erent static scenes.

same performance as the smaller �Boat". In fact, using the point of view in Figure 6 (a),
it even outperforms the �MonoBR" scene with the point of view in Figure 1.

5.2.2 Benchmarks

The second batch of tests consist in a known benchmark for ray tracing dynamic scenes. All
models contain detailed material information, including several high-resolution textures,
as can be seen in Figures 1 and 7. In this case we seek to evaluate the pure ray-tracing
performance, disregarding the acceleration structure rebuild. We use one animation key-
frame from each model, building the grid structure only once. The results in Table 3 will
help identify the bottleneck during the �nal rendering of the entire animation.

(a) Wood-doll model
with shadows.

(b) Several marbles ren-
dered with shadows and
re�ections.

(c) Toys scene with
shadows.

(d) Fairy dancing in the
Forest scene.

Figure 7: Deformable meshes and scenes with unstructured movement used for static and
dynamic tests.

The �rst model is a simple �Wood-doll", made of 5K triangles. The second one is a
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�Hand", modeled with 16K triangles. A runner character of 78K triangles is the model
called �Ben". Another model consists of several �Marbles" that add up to almost 9K
triangles. The fourth scene is made of �ve wind-up �Toys", totalling 11K triangles. Finally,
the largest scene is a fairy model inside a �Forest", consisting in about 174K triangles.

Scene # Tris Simple +One Light +Re�ections

Wood-doll 5K 71.5 54.6 14.6

Hand 16K 42.4 26.5 6.8

Ben 78K 19.6 16.5 4.4

Marbles 9K 108.9 88.1 16.5

Toys 11K 53.7 33.4 8.2

Forest 174K 6.3 3.4 0.7

Table 3: Performance in frames per second (fps) for a single key-frame of the benchmark
scenes.

As shown in Table 3, the two simplest scenes, �Wood-doll" and �Marbles", can be
rendered with shading and shadows at speeds above 50 fps. With the other less simple
models, �Hand" and �Toys", our implementation can still achieve rendering rates of around
30 frames per second. The more complex �Ben" model can be rendered at about the same
speed as the �Boat" model, similar in size, evaluated in the previous section.

The �Forest" scene is a classic worst-case scenario for the Uniform Grid: a complex
object (the fairy) at the center of a larger but simple scene (the background). This is
commonly known as the teapot in a stadium problem. Nevertheless, our implementation
is capable of achieving interactive rendering rates, except when enabling re�ections in the
more complex models.

5.2.3 Discussion

The performance results from the CAD models and the benchmark scenes are consistent
with the following observations:

1. Activating shading computations as well as shadow rays decreases rendering perfor-
mance by at most a factor of two.

2. Tracing re�ection rays further reduces these values by a factor of four.

The �rst observation is not only due to the cost of tracing additional shadow rays, which
e�ectively doubles the number of rays being traced per frame, but also due to additional
memory operations required for shading computations.

Considering these two factors, performance is above what one would expect. We have
further veri�ed that using optimized traversal and intersection routines for shadow rays
have signi�cantly reduced their overall impact in rendering speed.

Furthermore, performance with one level of re�ection is interactive for scenes with less
than 100K triangles. A simple explanation is that each additional re�ection ray performs
the entire shading computations once more, while also spawning additional shadow rays.
In e�ect, this test has twice the number of rays being traced per frame and also twice the
number of shading procedures being performed.
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5.3 Dynamic Scenes

The main goal of this work is to ray-trace dynamic scenes, including illumination e�ects,
at interactive rendering rates. We have evaluated the same six benchmarks, from Section
5.2.2, but this time we render their entire animation sequences.

The �Wood-doll", �Hand" and �Ben" models consist of deformable meshes that do not
move along the scene. Meanwhile, the �Marbles", �Toys" and �Forest" scenes combine mesh
deformation with unstructured movements, comprising real-world test scenarios.

Scene # Tris Simple +One Light +Re�ections

Wood-doll 5K 68.6 52.6 13.1

Hand 16K 41.2 25.2 6.4

Ben 78K 17.5 13.3 3.1

Marbles 9K 103.2 84.3 15.3

Toys 11K 52.7 28.9 7.8

Forest 174K 3.1 2.8 0.4

Table 4: Performance in frames per second (fps) for the entire animation of each benchmark
scene.

When rendering the entire animation, it is necessary to fully rebuild the grid structure
each new key-frame. Comparing the values in Table 4 with Table 3, it is clear that this
reconstruction procedure has little to no impact in rendering performance. The frame-rate
with full animations is up to 10% smaller than when rendering a single key-frame. Only
the �Forest" scene has su�ered a greater slowdown, from 30% to 50% depending on the
test case.

5.4 Comparison with Related Work

In this section, we seek to evaluate our work in relation to state of the art research. We have
chosen the test case with fully animated scenes including shading, textures and shadows.
Table 5 includes performance �gures from our technique, as well as other four related work.

Scene Our Method CPU Grid CPU BVH CPU kd-tree GPU kd-tree

Wood-doll 52.6 35.1 60.0 n/a n/a

Hand 25.2 15.9 48.0 n/a n/a

Ben 13.3 8.9 n/a n/a n/a

Marbles 84.3 19.6 56.0 n/a n/a

Toys 28.9 9.4 36.0 23.5 32.0

Forest 2.8 1.3 11.5 5.8 6.4

Table 5: Frames-per-second comparison between our method and four state of the art
research, using complex shading and shadow rays.

The �rst work is a CPU implementation that uses a Uniform Grid to trace packets
of rays (Wald et al. 2006). The second quickly rebuilds a bounding volume hierarchy
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using an 8-core CPU (Wald 2007). Another proposal uses a 4-core CPU to build a kd-
tree structure in parallel (Shevtsov et al. 2007). Finally, the fourth related research is an
equivalent solution to ours, but one that uses a kd-tree as acceleration structure inside the
GPU (Zhou et al. 2008).

Values in Table 5 demonstrate the e�ciency of our grid rebuild and ray-tracing algo-
rithms. Related to the work in (Wald et al. 2006), we are capable of achieving up to four
times faster rendering speeds. When compared against more optimized structures, such as
the BVH used in (Wald 2007) and the kd-tree used in (Shevtsov et al. 2007; Zhou et al.
2008), our method still remains competitive, even achieving faster rendering speeds for the
�Marbles" scene.

In the more sparse �Toys" model, we are able to surpass the work in (Shevtsov et al.
2007), but still achieve inferior performance than results in (Zhou et al. 2008; Wald 2007).
In the �Forest" scene, this situation is aggravated: our implementation achieves at most
half the performance values of these three related research. This once more indicates a
limitation in the Uniform Grid traversal (as discussed in Section 5.2.2).

To try and identify this possible bottleneck in our implementation, we have split the
total frame time of our solution into: key-frame upload time, grid rebuild time and ray-
tracing time. Table 6 summarizes our �ndings with the complete shading algorithm and
shadow rays. For comparison purposes, we have included the structure rebuild times from
both (Wald et al. 2006) and (Zhou et al. 2008).

Scene Upload Rebuild Ray-Trace CPU Grid GPU kd-tree

Wood-doll 1.1 2.3 15.5 1.0 n/a

Hand 2.7 4.1 36.2 5.0 n/a

Ben 12.4 10.4 81.1 14.0 n/a

Marbles 1.6 1.8 8.6 2.0 n/a

Toys 1.8 3.0 34.9 4.0 12.0

Forest 27.1 38.4 317.4 68.0 77.0

Table 6: Analysis of times in milliseconds from our proposed implementation, compared
to rebuild times from related work.

From these results, we can conclude that uploading new key-frame data to the GPU
is not the current bottleneck. Even though in the �Forest" scene a time of 27 ms starts to
detriment overall performance, it is still not the most time consuming step: the ray-tracing
procedure is the major factor to slowing down rendering rates. Comparing our grid rebuild
times with the ones from (Wald et al. 2006), we �nd that our method is considerably faster
except for the very simple �Wood-doll" scene. This can be easily explained as the overhead
of the GPU implementation, which has already become evident in Section 3.

As expected, the kd-tree rebuild times from (Zhou et al. 2008) are higher than our
Uniform Grid implementation. Not included in Table 6, the parallel BVH construction
time from (Wald 2007) for the �Forest" scene is 83 ms, more than double our rebuild time.
Since our overall performance is worse in the �Toys" and �Forest" scenes, we can conclude
that our ray-tracing procedure is taking most of the rendering times. Indeed, Table 6 show
that for all the other test scenes our current bottleneck is the ray-tracing step, which can
take up to ten times longer than the grid structure rebuild.
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6 Conclusion and Future Work

In order to explore the processing power of current GPUs, we have successfully developed a
data-parallel Uniform Grid construction algorithm, capable of obtaining fast and scalable
rebuild times. Additionally, we have presented optimized ray-traversal, intersection and
shading routines inside the graphics hardware. Together, we have demonstrated a com-
plete ray-tracing solution capable of interactively rendering fully dynamic scenes including
illumination e�ects such as shadows and re�ections.

Our proposed GPU implementation of the Uniform Grid rebuild has performed signif-
icantly faster than a similar state of the art result on the CPU (Wald et al. 2006), while
clearly surpassing more complex structure rebuild times from other research (Wald 2007;
Shevtsov et al. 2007; Zhou et al. 2008). Performance �gures demonstrate that our current
bottleneck is the ray-tracing step.

Nevertheless, our proposed ray-tracing solution greatly improves upon related work
using Uniform Grids on the CPU (Wald et al. 2006). On the other hand, our tech-
nique has presented similar or inferior performance than both BVH (Wald 2007) and
kd-tree (Shevtsov et al. 2007; Zhou et al. 2008) state of the art implementations. However,
our ray-tracing algorithm only performed the worst in more sparse scenes (�Toys" and
�Forest"). These usually represent a worst-case scenario for the Uniform Grid, naturally
requiring a more adaptive structure to obtain optimal ray-traversal performance.

A major improvement to our work would be to use a more adaptive acceleration struc-
ture. For instance, our current grid construction algorithm can be modi�ed to build multi-
level Uniform Grids. There are several ways to organize grids hierarchically, including
loosely nested grids (Cazals et al. 1995; Klimaszewski and Sederberg 1997), recursive or
multiresolution grids (Jevans and Wyvill 1989), and macrocells or multigrids (Parker et al.
2005). With knowledge of the behavior of each scene object, it is also possible to assign
independent Uniform Grids to each moving and deformable object. This would guaran-
tee tightly packed structures, with a minimal number of empty cells. In this case, rigid
body movement could be simply treated by transforming the ray into local object space,
as in (Wald 2004). Another structure modi�cation that could improve traversal of empty
space would be to use a �ag to skip empty cells along the ray (Baboud and Décoret 2006).

In addition, it should be noted that our ray-traversal implementation could be further
optimized to trace ray bundles, as in (Wald et al. 2006). It is possible to trace packets
of rays through a hierarchical Uniform Grid using several optimizations not investigated
in our work. A modi�ed GPU ray-tracing implementation with these optimizations could
achieve an order of magnitude in performance gains.

Finally, our Uniform Grid construction procedure is not tied to triangle representations.
Our proposed algorithm is generic and �exible, becoming an excellent tool for accelerating
other applications, such as photon mapping or particle system simulations.
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