Capítulo 2.

Fundamentos Teóricos

2.1 Os processos fundamentais envolvidos na interação íon-sólido

O objetivo principal deste trabalho é investigar os efeitos causados no metano em fase sólida pelo bombardeio de íons energéticos. Excluindo a emissão de fótons e de elétrons induzida pelo impacto de cada íon, cinco fenômenos principais ocorrem:

- 1. Sputtering, incluindo as dessorção e sublimação induzidas.
- 2. Dissociações moleculares e reações químicas.
- 3. Mudanças topológicas e de estrutura cristalina: cristalização, amorfização, compactação.
- 4. Implantação do projétil.
- 5. Modificações no projétil: freamento, dissociações e excitações eletrônicas.

Concomitante com estes processos induzidos pelo feixe, o fato do alvo estar em baixa temperatura e em vácuo implica que dois outros processos ocorram sempre, isto é, mesmo na ausência de bombardeio por feixe ionizante:

- 6. Condensação do gás residual na superfície sólida fria.
- 7. Sublimação ou dessorção espontânea.

Estes efeitos são ilustrados na Fig. 2.1 para o caso de um projétil iônico rápido atravessando um grão de gelo sólido. Para cada um destes processos existem modelos que descrevem a evolução no tempo das espécies moleculares da amostra. Dezenas desses modelos são encontradas na literatura, a maioria deles presentes em trabalhos de revisão [6, 7, 8].

Neste capítulo são apresentados alguns modelos físicos sobre a fenomenologia da passagem de um projétil rápido por um sólido. Embora já existam diversas descrições formais para tratar a interação projétil-sólido, o assunto ainda é objeto de

investigações experimentais e teóricas. Conceitos básicos serão lembrados; a análise de amostras com estrutura simples (por ex., amostras homogêneas formadas por apenas uma espécie química precursora) será discutida. Um tratamento formal e detalhado da evolução das abundâncias moleculares é apresentado no Apêndice I. No Capítulo 4, os resultados experimentais obtidos serão confrontados com estas previsões teóricas.

Fig. 2.1. Esquema representando a interação de um constituinte dos raios cósmicos com um grão de gelo, ou recoberto com gelo, no ISM.

2.2 Cronologia dos eventos de interação do projétil com o sólido

2.2.1 Eventos causados pela interação de cada projétil

A passagem de cada projétil pelo alvo gera modificações físico-químicas no material que tem a forma de um cilindro (traço nuclear) se o projétil atravessa completamente o alvo, ou de um garrafão, se ele se implanta. Neste trabalho trataremos só do primeiro caso, ilustrado na Fig. 2.1.

As intensidades e os tipos de modificações variam radialmente em torno do traço, uma vez que a densidade de energia transferida ao material diminui com a distância à trajetória do projétil. Os eventos mais rápidos e mais energéticos ocorrem em uma pequena região junto à trajetória (denominada infratraço), enquanto que os menos energéticos e mais lentos ocorrem em uma região maior e periférica (o

ultratraço) [7]. A área da superfície, sobre um plano perpendicular à trajetória e dentro da qual certo fenômeno ocorre, é chamada seção de choque (σ) desse fenômeno.

A Tabela 2.1 apresenta os principais fenômenos causados pela passagem de cada projétil, mostrando os intervalos de tempo característicos em que ocorrem [6 e 7].

Intervalo de tempo (s)	Processo	Descrição
10 ⁻¹⁷ a 10 ⁻¹³	Excitações eletrônicas	o íon penetra na amostra (10 ⁻¹⁷ s por camada de moléculas) gerando ionizações e excitações primárias que se difundem no sólido.
10^{-13} e 10^{-11}	Relaxação eletrônica	a excitação induzida às moléculas relaxa e as cargas se neutralizam a 10 ⁻¹³ s. Nesse intervalo a energia transferida ao sólido gera pulsos térmicos, ondas de choque mecânicas ou pulsos de pressão
< 10 ⁻¹¹	Reações químicas rápidas	ocorrência de processos físico-químicos, recombinação eletrônica, dissociação molecular e reordenamentos atômicos e moleculares
10 ⁻¹⁰ e 10 ⁻⁹	Emissão secundária	emissão de íons de hidrogênio e de outros íons. A quantidade de íons ejetados depende do ângulo de incidência do projétil. Produção de defeitos no interior e de crateras na superfície do sólido
10 ⁻⁹ a 10 ⁻⁵	Equilíbrio térmico	a temperatura local se homogeneíza no sólido, com a energia extra que as moléculas adquiriram novamente podem ocorrer dessorção térmica.
> 10 ⁻⁹	Emissão de fótons (Luminescência)	emissão de fótons por parte das moléculas, átomos e radicais excitados
>~ 10 ⁻⁶	Reações químicas lentas	processos químicos por meio da difusão de radicais e produção de espécies químicas mais complexas.

Tabela 2.1 – Cronologia dos principais efeitos gerados em um alvo sólido pela interação de um projétil iônico rápido [7 e 10].

A razão entre as quantidades dessorvidas de íons e de espécies neutras é de 1 íon para 10^6 espécies neutras, as energias cinéticas típicas de emissão variam entre 0,2 e 20 eV [9]. A erosão na amostra depende da velocidade do projétil: i) se ela for menor do que a velocidade de Bohr (v_b), ao atingir a superfície o projétil gera uma cascata de colisões atômicas que induz a dessorção; ii) se a velocidade do projétil for maior do que v_b , a energia depositada no sólido causa ionizações e excitações eletrônicas [10].

2.2.2 Eventos causados pela interação de muitos projéteis

Um valor típico de seção de choque de dissociação do CH₄ sob impacto de um íon pesado com velocidade de Bohr é de $\sigma_d \sim 0.5 \times 10^{-13} \text{ cm}^2$ [11]. Se nenhum traço se superpusesse a outro, o número máximo de projéteis por cm² (fluência) seria $F_{sup} = 1/$ $\sigma_d \sim 2 \times 10^{13} \text{ ions/cm}^2$. Deve-se esperar que a partir de alguns % desse valor (F ~ 10^{12} ions/cm²) os efeitos produzidos pelo feixe no alvo deixem de ser lineares com a fluência. Isto é, os impactos passam a ocorrer em sítios que não são mais virgens, reduzindo a taxa de sputtering da molécula-pai e aumentando as das moléculas-filho.

2.3 Mudanças no projétil

Ao atravessar o alvo, o projétil sofre modificações na sua estrutura eletrônica e no seu movimento. As primeiras são caracterizadas pela variação de carga e pelas excitações eletrônicas. As segundas são caracterizadas pelo *stopping power* (força de atrito microscópica) e pelo *straggling* (aumento da largura das distribuições de energia cinética e angular) [12 e 13].

2.3.1 Variação da carga do projétil

A modificação na estrutura do projétil que mais interessa na análise dos efeitos induzidos no alvo é a variação de sua carga elétrica média, q, uma conseqüência da perda ou da captura sucessiva de elétrons. A mudança de estado de carga médio depende da velocidade do projétil e ocorre com a penetração no alvo: a variação rápida de q ocorre nas interações com as primeiras moléculas (ou primeiras camadas moleculares) tendendo à carga de equilíbrio q_{eq} , cujo valor independe da carga inicial.

Segundo o critério de Bohr, os elétrons do projétil que possuem velocidade orbital menor do que a velocidade de translação do projétil são retirados logo após o impacto com as moléculas do alvo. Nastasi [13] propõe a expressão (valida para energias de MeV/u):

$$q_{eq} = Z_p \left[1 - \exp\left(-\frac{127\nu}{137\nu_B Z_p^{2/3}} \right) \right]$$
 2.1

em que Z_p é o número atômico, *v* a velocidade do projétil e *v_B* a velocidade de Bohr (0,22 cm/ns , correspondente à energia de 25 keV/u).

Ao colidir com nuvens eletrônicas dos átomos, a carga média do projétil evolui do seu valor inicial q até a carga de equilíbrio q_{eq} . Bohr propôs que seu estado de carga médio $\overline{q}(s)$, após percorrer a distância s, seja dado por:

$$\overline{q}(s) = q_{eq} + (q - q_{eq}) \exp(-s/\lambda_q)$$
2.2

onde λ_q é o comprimento característico de relaxação no interior do sólido. Para o gelo de água o valor de 10 Å é admitido [7] e para o metano espera-se que seja da mesma ordem.

A conseqüência prática deste fenômeno é que o rendimento de dessorção depende da carga do feixe, uma vez que as partículas secundárias provêm de camadas superficiais. Já as seções de choque de destruição e de formação de compostos moleculares não dependem de q_0 , pois elas se referem majoritariamente a colisões com moléculas existentes em camadas profundas.

A tabela 2.2 resume as características dinâmicas dos quatro feixes utilizados neste trabalho.

Projétil	E MeV	E/m MeV/u	v 10 ³ km/s	v / v _B	Z _p	q _{eq}
¹⁶ O ²⁺	6,0	0,375	8,50	3,86	6	4,0
¹⁶ O ⁷⁺	220	13,7	51,5	23,4	6	6,0
${}^{56}\mathrm{Fe}^{22+}$	267	4,77	30,3	13,8	26	20
70 Zn $^{26+}$	606	8,66	40,8	18,5	30	25

Tabela 2.2. Dinâmica dos feixes usados

2.3.2 Atenuação da energia do projétil

A interação de um projétil iônico com um alvo sólido causa uma perda de energia cinética do projétil, cuja taxa por unidade de comprimento S (poder de freamento ou de frenamento) depende de características do projétil (Z, A, q, v) e do sólido (elementos constituintes, sua abundância, densidade). Para as energias de MeV dos projéteis nos experimentos analisados, o processo de transferência de energia do projétil para o filme fino de gelo ocorre por uma série de colisões (interações coulombianas) entre ele e os elétrons do alvo. Para qualquer energia, pode-se escrever:

$$\frac{dE}{ds} = \left(\frac{dE}{ds}\right)_e + \left(\frac{dE}{ds}\right)_n$$

$$S = S_e + S_n$$
2.3

onde *s* é a distância percorrida pelo íon, $S_e = (dE/ds)_e$ é o poder de freamento eletrônico (*eletronic stopping power*) e $S_n = (dE/ds)_n$ é o poder de freamento nuclear (*nuclear stopping power*), que é descrita como uma série de colisões elásticas entre o íon e os núcleos (ver Tabela 2.3).

Para os feixes de íons de C, N, O, e Fe de baixas energia por nucleon (< 1 MeV/u), a contribuição do poder de freamento nuclear não é desprezível, mas decresce notavelmente para altas energias (> 50 MeV). Isso significa que dependendo da energia do projétil, a interação dominante pode ser dele com os núcleos ou com os elétrons.

	Energia	E/m	$\mathbf{S}_{\mathbf{e}}$	\mathbf{S}_{n}	$\mathbf{S}_{\text{total}}$
Projétil	MeV	MeV/u	10 ⁻¹⁵ eV/ molec/ cm ²	10 ⁻¹⁵ eV/ molec/ cm ²	10 ⁻¹⁵ eV/ molec/ cm ²
¹⁶ O ²⁺	6,0	0,375	492	1,0	493
¹⁶ O ⁷⁺	220	13,7	76,1	0,04	76,1
⁵⁶ Fe ²²⁺	267	4,77	1136	1,0	1137
70 Zn $^{26+}$	606	8,66	1040	0,73	1041

Tabela 2.3. Stopping Power (poder de freamento) dos feixes.

Para projéteis rápidos, a perda de energia por interação eletrônica se dá por ionização e excitação ao longo do caminho percorrido (traço). A ionização ocorre pela liberação de um número grande de elétrons (chamados de elétrons secundários);

estes elétrons podem interagir com os elétrons dos átomos em moléculas do sólido para liberar ainda mais elétrons, produzindo novas excitações em um volume maior. Pode-se assim expressar o S_e como a soma das taxas de perda devidas a excitações (S_e^{exc}) e ionizações (S_e^{ioniz}) :

$$S_e = S_e^{exc} + S_e^{ioniz}$$
 2.4

Tipicamente tem-se que $S_e^{exc} \sim S_e^{ioniz}$. [14]

A tabela 2.3 fornece os valores do poder de freamento dos quatro feixes utilizados neste trabalho.

Figura 2.2. Dependência do *stopping power* (S) com a energia do projétil. Para o projétil Fe, a maior contribuição ao poder de freamento por colisão eletrônica para energias maiores que 0,1 MeV [12].

2.4 Mudanças na amostra. Dessorção

Dessorção é a emissão de material (exceto emissão de elétrons livres) da amostra. Esta emissão pode ocorrer naturalmente por [6 e 9]:

 i) colisões térmicas (energias de colisão da ordem de eV ou inferiores), quando o processo é chamado de dessorção espontânea (ou sublimação) e é reversível; ii) bombardeio por projéteis rápidos ou colisões energéticas (energias de colisão da ordem de keV ou superiores), quando o processo é chamado de dessorção induzida - ou *sputtering*- e é irreversível.

No *Sputtering*, podem ser ejetados átomos, moléculas, íons ou aglomerados moleculares (*clusters*). Este fenômeno de emissão é acompanhado de processos físico-químicos: aquecimento local, desbaste/erosão, transferência de momento e energia, mudança de estrutura cristalina e reações químicas.

2.4.1 Modelo do Stopping Power

Dentre os modelos desenvolvidos para descrever os mecanismos de ejeção, um deles foi proposto por [15] para o gelo de água irradiada com íons de baixa energia. Ele relaciona o rendimento de dessorção (Y) com a energia (E), carga e massa (m) do projétil, com o ângulo de incidência (θ) do feixe, com o poder de freamento nuclear (S_n) e eletrônico (S_e), assim como com as propriedades do material irradiado (energia de ligação das moléculas, condutividade térmica, entre outros) e com a sua temperatura T; este modelo é descrito pela fórmula:

$$Y(E,m,Z,\theta,T) = (c_n S_n + c_e S_e^2) (1 + A \exp(-E_a / kT)) / \cos^f(\theta)$$

As constantes c_n e c_e dependem do tipo de material irradiado, A é uma constante adimensional, E_a é a energia de ativação, k a constante de Boltzmann e f um parâmetro ligado à dependência angular do feixe incidente. Para feixes de íons pesados com energias da ordem de MeV, o valor de S_n é bem inferior a S_e (ver Tabela 2.2) e o produto c_nS_n << c_eS_e, já que c_n é da ordem de 10^{-2} e c_e = c / U_0^2 , onde c varia de 0.1 a 0.2 (para gelo de água) e U_0 é a energia de sublimação. [16].

O fator referente à temperatura A $\exp(-E_a/kT) \ll 1$ para baixas temperaturas (T=15 K); para incidências normais ao alvo ($\theta = 90^{\circ}$), $\cos^{f}(\theta) = 1$. Nestas condições, a dessorção induzida por íons pesados se simplifica para:

$$Y \approx c_e S_e^2 \qquad \qquad 2.6$$

Esta expressão será testada no capítulo 5 juntamente com a equação 2.5.

2.5

2.5 Mudanças na amostra. Reações químicas

Na Seção 2.1 foram listados os sete principais fenômenos físicos resultantes da interação projétil-gelo. Nos processos 4 e 6 há um aumento efetivo na massa da amostra – no sentido de que átomos externos são incorporados ao alvo. Nos processos 1 e 7 a amostra perde matéria, e nos processos 2, 3 e 5 não há troca de átomos com o exterior, eles são apenas reagrupados na formação de novas moléculas. Veremos a seguir como modelos matemáticos descrevem os diferentes processos.

2.5.1

Processos com variação de massa

Implantação e Condensação

Nos processos de implantação e condensação (deposição), a massa da amostra aumenta continuamente, isto é, ela ganha átomos ou moléculas por unidade de tempo, sejam eles provenientes do feixe ou da fase gasosa. Vindos do feixe, a grandeza que quantifica o processo de implantação é o fluxo do feixe, ϕ , dado pelo número de projéteis que incidem na amostra, por unidade de área transversa do feixe e por unidade de tempo. Se a chegada de moléculas ocorre por condensação (ou deposição), a grandeza relevante é a taxa de deposição L (*layering*) que mede o número de moléculas adsorvidas sobre a superfície da amostra por unidade de área e por unidade de tempo.

Dessorção induzida (Sputtering) e Dessorção espontânea

Nos processos 1 e 7 o material da superfície da amostra é transferido para a fase gasosa. Define-se Y (*yield*) como sendo o rendimento de dessorção induzida ou de *sputtering*: ele é o número médio de átomos, moléculas ou agregados emitidos por impacto. A remoção localizada desse material cria uma cratera cujas dimensões típica (raio ou profundidade) são dadas por um comprimento típico, δ Para um feixe incidindo perpendicularmente sobre uma camada de gelo de espessura x e de

densidade ρ , a densidade colunar é definida por $N = \rho x$. A fluência de uma irradiação de duração Δt é dada por $F = \phi \Delta t$ (em íons/cm², sendo ϕ o fluxo em íons/cm²s).

Havendo sublimação espontânea, a pressão p_g e a temperatura T_g do gás residual, assim como a temperatura da amostra T, são determinantes para caracterizar a taxa de dessorção espontânea $D(p_g, T_g, T)$. A variação do número total de átomos ou moléculas, por unidade infinitesimal de tempo, é:

$$\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_{implata_{\bar{q}\bar{a}o}} + \left(\frac{dN}{dt}\right)_{deposiçao} + \left(\frac{dN}{dt}\right)_{sub \lim a_{\bar{q}ao}} + \left(\frac{dN}{dt}\right)_{induzido} = \phi + L - D - \phi Y$$
2.7

Se os valores de *L*, *D*, ϕ e *Y* forem constantes, a espessura da amostra, x, variará linearmente em função do tempo:

$$\Delta x = \frac{N}{\rho} = \frac{1}{\rho} [L - D + \phi(1 - Y)] \Delta t \qquad 2.8$$

Considerando N_0 como a densidade colunar inicial, a expressão 2.8 pode ser reescrita em função da fluência $F = \phi t$:

$$N = N_0 + \left(\frac{L-D}{\phi} + 1 - Y\right)F$$
 2.9

A taxa de dessorção espontânea é alta nas proximidades da temperatura de sublimação e tende a zero com o abaixamento da temperatura do gelo. No presente trabalho, todas as medidas foram feitas com as amostras na faixa de 10 a 15 K, perto do limite inferior das temperaturas fornecidas pelo criostato. Além disto, o fluxo do feixe foi mantido baixo para haver um transporte de calor para o substrato tal que o volume irradiado tivesse um aquecimento médio desprezível (iniciada a irradiação, o termômetro na cabeça do criostato indicava um aumento de temperatura inferior a 1 K). Outra condição imposta à amostra foi que ela fosse suficientemente fina para que os projéteis a atravessassem completamente: a implantação ocorreu no substrato e não na amostra. Satisfeitas ambas as condições mencionadas, podemos considerar a dessorção espontânea desprezível ($D \sim 0$).

Para determinar $L_{água}$, foram feitas medidas na câmara de análise *Casimir* do GANIL, sem a presença de feixe de íons, a uma pressão $p_g = 10^{-8}$ mbar e à

temperatura T=15 K. A Fig. 2.3 mostra os resultados FTIR referentes à taxa de deposição provenientes da condensação de água existente no gás residual.

Fig. 2.3. Condensação de água sem irradiação na pressão de ~ 10^{-8} mbar e à temperatura T =15 K [8].

O coeficiente angular encontrado é 8×10^{14} [molec/(cm² h)]. Como o depósito ocorre igualmente em ambos os lados do substrato, a taxa de condensação L_{água}= 4×10^{14} [molec/(cm² h)] é obtida para cada lado. Isso corresponde à formação de uma nova monocamada de água a cada 2,5 horas. Como a duração da irradiação da amostra é em geral da ordem de 10 horas, este valor de L indica que deve ocorrer *sputtering* do CH₄ (sob a camada de água) no início da irradiação, mas o valor de Y_{CH4} deve se reduzir ao longo da experiência. Após estas considerações, a expressão 2.9 pode ser generalizada para várias espécies moleculares:

$$N_k = N_{k0} + \left(\frac{L_k}{\phi} - Y_k\right) F$$
 2.10

onde $L_k = 4x10^{14}$ [molec/(cm² h)] para a água, e zero para CH₄ e para os produtos resultantes da radiólise da água e do metano. Deve ser notado que, em geral, Y_k é uma função da fluência, seja porque as concentrações C_k das espécies químicas mudam durante a irradiação, seja porque a própria alteração da espécie química muda a barreira de potencial para emissão do sólido, seja porque a deposição de outra substância sobre a superfície da amostra inibe a emissão secundária. Neste trabalho, será discutido o efeito da condensação da água e considerado que o rendimento de dessorção é proporcional à concentração da espécie considerada:

$$Y_k(F) = \frac{C_k}{\sum_i C_i} Y_0$$
 2.11

2.5.2 Processos sem variação de massa. Reações químicas

Nos processos 2 e 3, não há variação do número de átomos. No processo 3 (mudança na estrutura cristalina da amostra sólida), os átomos ou moléculas aproximam-se ou se afastam, mas sem mudanças de espécies químicas; este caso será tratado juntamente com os resultados experimentais. No processo 2 (reações químicas), há quebras de ligações químicas e formação de outras, caracterizando mudanças do número de moléculas devido a reações químicas. Neste caso, a grandeza relevante é a chamada seção de choque do processo, σ . Ela é a área média de um círculo, em um plano perpendicular ao feixe e centrado na molécula alvo, que um único projétil deve atravessar para provocar o processo estudado. Em outras palavras, a área σ representa o número de eventos que ocorrem por molécula alvo e por unidade de fluência.

Dissociação múltipla reversível $AB \leftrightarrow A + B, AB \leftrightarrow A' + B',...$

$$\frac{dN_{AB}}{dF} = \sum_{k} \sigma_{f,AB,k} N_{k} - \left(\sum_{k} \sigma_{d,AB,k}\right) N_{AB}$$
 2.12

para a molécula-pai, com k =1,...,K

....

$$\frac{dN_k}{dF} = \sigma_{f,k,AB} N_{AB} - \sigma_{d,k,AB} N_k \qquad \text{para cada canal de dissociação} \qquad 2.13$$

Resolvendo 2.12 e 2.13 em 2ª ordem encontram-se as soluções:

$$\frac{N_{AB}}{N_0} = \exp(-\sigma_{d,AB}F) + \frac{1}{2} \left(\sum_k \sigma_{f,AB,k} \sigma_{d,AB,k}\right) F^2 \qquad 2.14$$

$$\frac{N_k}{N_0} = \sigma_{f,k,AB} \left[F - \frac{1}{2} (\sigma_{d,AB,k} + \sigma_{d,k,AB}) F^2 \right]$$
2.15

$$N_{k}(F) = N_{k}(\infty) \left[(\sigma_{d,k,AB} + \sigma_{d,AB,k})F - \frac{1}{2} (\sigma_{d,k,AB} + \sigma_{d,AB,k})^{2} F^{2} \right]$$
 2.16

Onde $N_k(\infty)$ é o valor assintótico que toma a solução geral de $N_k(F)$ para fluências muita grandes.

2.5.3

Processos com variação de massa e com reações químicas

No Apêndice 1 é mostrado que a ocorrência simultânea de sputtering (com rendimento Y₀) na superfície da amostra com reações químicas que alteram a concentração C_k(F) das espécies em toda a amostra leva a uma descrição do tipo $N_k(F) = (N_0 - Y_0 F) C_k(F)$.

A Fig. 2.4 ilustra as previsões de evolução N(F) para um sistema de pai e filho únicos. As equações utilizadas são A1.49 e A1.50.

Características a serem notadas são:

i) a amostra desaparece na fluência $F_{fim} = N_0/Y_0$;

ii) o pai AB passa a ter uma seção de choque de destruição aparente $\sigma_{d,AB}{}^{ap}$ maior

e igual a:
$$\sigma_{d,AB}^{ap} = \sigma_{d,AB} + \frac{Y_0}{N_0}$$

iii) a seção de choque de formação do filho A não se altera, mas o encurvamento de $N_k(F)$ aumenta duplamente, obedecendo a soma em:

$$\sigma_{d,AB}^{ap} + \sigma_{d,A}^{ap} = (\sigma_{d,AB} + \frac{Y_0}{N_0}) + (\sigma_{d,A} + \frac{Y_0}{N_0})$$
 2.17

Finalizando, o formalismo desenvolvido acima e no Apêndice 1 nos dá o balizamento para a análise do desenvolvimento das densidades colunares obtidas a partir dos espectros FTIR. Feitos os ajustes com as equações A 2.21, as seções de choque de formação e de destruição do CH₄ e de seus filhos são determinadas. Além disso, espera-se que os rendimentos de sputtering do CH₄ e da água sejam também

determinados.

Fig. 2.4 – Comparação entre previsões com ($Y_o = 10^4$ molec/íon) e sem ($Y_o = 0$) sputtering.