# Capítulo 5

# Análise dos Resultados

A análise dos resultados apresentados no Capítulo 4 será feita a seguir. Serão estudados: os deslocamentos de bandas, as variações das absorbâncias conhecidas como *efeito subidinha*, as seções de choque de destruição da molécula precursora CH<sub>4</sub>, de formação e de destruição dos novos compostos  $C_nH_m$ . Após, serão discutidas as medidas de dessorção neutra (por FTIR) e iônica (por PDMS) do gelo CH<sub>4</sub> produzidas pelos íons pesados utilizados. Todos estes efeitos serão relacionados com o poder de freamento eletrônico (S<sub>e</sub>) e nuclear (S<sub>n</sub>).

# 5.1

#### Amorfização do gelo

À temperatura de 15 K, o metano sólido ordena-se em estrutura cristalina de fase II. O projétil incidente transfere ao longo do traço nuclear uma grande quantidade de energia capaz de ionizar, excitar moléculas e alterar a ordenação da rede cristalina. As moléculas originalmente presentes são parcialmente destruídas e formam novos compostos, que por sua vez perturbam a rede cristalina do metano. A modificação do ordenamento cristalino é particularmente observada através das bandas  $v_3$  e  $v_4$  do metano que mudam de perfil de fase II para fase I.

A técnica FTIR pode não ser a mais indicada para o estudo de ordenamento molecular de sólidos, mas gera espectros que permitem analisar semiquantitativamente as variações da estrutura cristalina durante a irradiação. Existem vários estudos sobre a mudança de estrutura cristalina para estrutura amorfa de gelos de água irradiados com fótons [24], com íons leves [64] e com íons pesados [8]. Observou-se que os gelos de água, quando irradiados em forma cristalina ou amorfa, tendem para um estado intermediário entre ambas [8 e 24]; para o metano deve ser similar.

Há três efeitos que são causados por mudanças de estrutura cristalina:

- 1. variação da frequência média das bandas  $\Delta v_k$ ,
- 2. variação na forma do perfil dos picos (como o "splitting" da banda  $v_3$ )
- variações rápidas na absorbância integrada, usual no início da irradiação ("subidinha" da curva N(F)).

Cada uma dessas variações foi estudada para o gelo metano irradiado e foi relacionada com o poder de freamento.

# 5.1.1.

#### Efeitos subidinha e deslocamentos das bandas

Na Seção 4.2.2 mostrou-se que uma provável explicação para o aparente aumento do número de moléculas do alvo no inicio da irradiação (efeito *subidinha*) é a variação da absorbância quando o gelo é compactado pela passagem do projétil (ver Figs. 4.15 e 4.16). Tipicamente, para o metano irradiado pelo O de 6 MeV, a compactação termina em  $F = 5 a 10 \times 10^{12}$  íons/cm<sup>2</sup>.

Na Seção 4.2.3, é visto que o máximo da banda  $v_1 + v_4$  (observada no gelo virgem a 4202 cm<sup>-1</sup>) desloca-se com a fluência até estabilizar-se em ~10<sup>13</sup> íons/cm<sup>2</sup>. Como este deslocamento ocorre na mesma faixa de fluência que o efeito *subidinha*, é razoável atribuir a mesma causa para ambos os efeitos, ou seja, a alteração da estrutura cristalina. Fazendo um tratamento similar ao descrito no Apêndice A1.2.1, equação A1.5 em particular, pode-se definir uma seção de choque de amorfização  $\sigma_a$ . A taxa de variação foi medida e relacionada com o poder de freamento eletrônico e nuclear. As Figs. 5.1a e 5.1b mostram que os valores experimentais obtidos para  $\sigma_a$  da banda *v* são proporcionais tanto ao poder de freamento nuclear S<sub>n</sub> quanto ao total S<sub>t</sub> = S<sub>n</sub> + S<sub>e</sub>. Deste fato tira-se que:

$$\sigma_{a,v} = a_{a,v} S_t \tag{5.1}$$

cujos valores das constantes são apresentados na Tabela 5.1. Observa-se empiricamente que a relação entre as constantes  $a_a$  e  $a_v$  é em média 12.

| $\sigma = a \times S$     | a <sub>a</sub>                                                        | $a_{v}$                                                               | $a_a / a_v$ |
|---------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|
| $\mathbf{S}_{\mathbf{k}}$ | cm <sup>2</sup> /<br>[10 <sup>-15</sup> eV /(molec/cm <sup>2</sup> )] | cm <sup>2</sup> /<br>[10 <sup>-15</sup> eV /(molec/cm <sup>2</sup> )] |             |
| S <sub>n</sub>            | 4,2×10 <sup>-11</sup>                                                 | 3,4×10 <sup>-12</sup>                                                 | 12,4        |
| $S_e$                     | $4,9 \times 10^{-14}$                                                 | $4,2 \times 10^{-15}$                                                 | 11,7        |
| $\mathbf{S}_{t}$          | $4,9 \times 10^{-14}$                                                 | $4,2 \times 10^{-15}$                                                 | 11,7        |

Tabela 5.1. Valores das constantes  $a_a$  e  $a_v$  para cada relação de  $\sigma = a \times S$ 



Figura 5.1. Seção de choque de amorfização, relativa ao deslocamento da banda 4202 cm<sup>-1</sup>: a) versus  $S_n$ . b) versus  $S_t$ .

Na literatura não foram encontradas análises aprofundadas sobre os deslocamentos das bandas e efeito "subidinha", no presente estudo só foram considerados os gelos irradiados com íons pesados.

# 5.2. Seções de choque

# 5.2.1.

## Seção de choque de destruição do metano

No Apêndice I é desenvolvido um formalismo para analisar a variação da densidade colunar em função da fluência, considerando os dois processos

dominantes: reações químicas e *sputtering*. Mostra-se em particular que para fluências baixas, N(F) do pai decresce exponencialmente (Eq. A1.51), com uma seção de choque de destruição aparente dada por [40]:

$$\sigma_d^{ap} = \sigma_d + Y_0 / N_0 \tag{5.2}$$

Trabalhos anteriores [43 e 66] mostraram que  $\sigma_d$  relaciona-se com o poder de freamento eletrônico através de uma função potência:  $\sigma_d = a_e S_e^p$ , mas a dependência com o poder de freamento nuclear não foi analisada. Dados experimentais de N(F) para o metano irradiado pelos quatro feixes deste trabalho (ver Fig. 4.22) foram analisados empregando-se a equação A1.51.





Figura 5.2. Seção de choque de destruição do metano em função do poder de freamento: a) nuclear  $S_n$ , b) nuclear multiplicada pela a carga de equilíbrio  $q_{eq}S_n$ , c) eletrônico  $S_e$ , d) eletrônico multiplicada pela a carga de equilíbrio  $q_{eq}S_e$ , e) total  $S_t$ , e f) total multiplicada pela carga de equilíbrio  $q_{eq}S_t$ .

Os valores de  $\sigma_d^{ap}$  foram apresentados na Tabela 4.4. Os mesmos valores, juntamente com as seções de choque de destruição correspondentes a íons de H e He [30, 31 e 34] e a íons de O de 220 MeV [33], são agora mostrados em função do poder de  $S_e$ ,  $S_n$  e  $S_t$  nas Figuras 5.2a, c, e d. Nas mesmas figuras são também apresentados os ajustes feitos com a função  $\sigma_d = a_e S^p$ . onde S é o poder de freamento nuclear, eletrônico ou total. As constantes "a" para cada caso são mostradas na Tabela 5.2.

Tabela 5.2. Valores das constantes a e  $a_q$  para cada relação de  $\sigma_d = a \times S_k^{3/2}$  ou  $\sigma_d = a_q \times q_{eq} \times S_k$ .

| $CH_4$                    | $\sigma_d = a \times S_k^{3/2}$ | $\sigma_{d} \!= a_{q} \!\!\times \!\! q_{eq} \!\!\times \!\! S_{k}$ | $\sigma_d = a \times S_k^{3/2}$ | $\sigma_{d} = a_{q} \times q_{eq} \times S_{k}$ |
|---------------------------|---------------------------------|---------------------------------------------------------------------|---------------------------------|-------------------------------------------------|
| $\mathbf{S}_{\mathbf{k}}$ | а                               | $a_q$                                                               | $S_k = (\sigma_m/a)^{2/3}$      | $q_{eq}S_k = \sigma_m \! / \; a_q$              |
| $10^{-15} \text{ eV}$ /   | $cm^2 [10^{-15} eV/$            | $cm^2 [10^{-15} eV/$                                                | $10^{-15} \text{ eV}/$          | $10^{-15} \text{ eV}/$                          |
| $(molec/cm^2)$            | $(molec/cm^2)]^{-3/2}$          | $(molec/cm^2)]^{-3/2}$                                              | $(molec/cm^2)$                  | $(molec/cm^2)$                                  |
| $S_n$                     | 1,5×10 <sup>-13</sup>           | 9×10 <sup>-15</sup>                                                 | 0,05                            | 0,18                                            |
| Se                        | 3 ×10 <sup>-18</sup>            | 1 ×10 <sup>-17</sup>                                                | 65,8                            | 160                                             |
| $\mathbf{S}_{\mathrm{t}}$ | 3 × 10 <sup>-18</sup>           | 1 ×10 <sup>-17</sup>                                                | 65,8                            | 160                                             |

Destes ajustes conclui-se que a função potência fornece ajustes relativamente bons; as melhores potências obtidas são p = 1,3 (para  $S_n$ ), p = 1,5 (para  $S_e$ ) e p = 1,5 (para  $S_t$ ). Do lado\_direito da Fig. 5.2, os valores de  $\sigma_d$  são apresentados em função de cada tipo de poder de freamento multiplicado pela carga de equilíbrio do projétil no metano; isto é, da grandeza q<sub>eq</sub> S. Com esta representação empírica,  $\sigma_d$  torna-se praticamente proporcional aos S: p = 0,91 (para  $S_n$ ), p = 1,0 (para  $S_e$ ) e p = 1,0 (para  $S_t$ ). Os valores das últimas colunas serão comentados ao final deste capítulo.

Outra representação empírica é mostrada na Fig. 5.3, na qual o poder de freamento aparece multiplicado pelo numero atômico do projétil. Ao proceder desta forma, a potência de  $S_e$  se torna praticamente igual a 1. Embora seja difícil dar uma fundamentação teórica para este ajuste, ele pode ser eventualmente útil para inter e extrapolações.



Figura 5.3. Seção de choque de destruição do metano em função do poder de freamento nuclear multiplicado pelo número atômico do projétil,  $Z_p$ .

# 5.2.2.

#### Seção de choque de formação dos hidrocarbonetos

Consistentemente com o que se passa com a seção de choque de destruição do pai, a seção de choque de formação de novas espécies mostra-se dependente do poder de freamento com a função potência [43 e 66]. De fato, na Figura 5.4 observa-se que o ajuste de  $\sigma_f$  com o  $S_e^{3/2}$  é bom para o  $C_2H_6$ , e aceitável para o  $C_2H_4$  e o  $C_2H_2$  [30, 31, 32 e 33]. Para estes dois últimos compostos, não há valores disponíveis na

literatura para os feixes de H e He que permitam uma generalização. Na Tabela 5.3 estão os valores das constantes "b" para o ajuste com potência 3/2.

O C<sub>2</sub>H<sub>6</sub> é a mais abundante dos compostos formados e sua banda é de fácil análise. A Figura 5.5 mostra os ajustes feitos de  $\sigma_f$  do etano em função de S<sub>n</sub>, q<sub>eq</sub>S<sub>n</sub>, S<sub>e</sub> e q<sub>eq</sub>S<sub>e</sub>. Nota-se que os ajustes para S<sub>n</sub> e S<sub>e</sub> com as potências 1,2 e 1,3 são melhores do que o com a potência 3/2.

Tabela 5.3. Valores das constantes "b" da relação  $\sigma_f = b \times S_e^{3/2}$ , obtida para cada molécula. A última coluna mostra a relação entre o valor "b" com o valor "a" do CH<sub>4</sub>.

| $\sigma_{\rm f} = b_{\rm e} \times S_{\rm e}^{3/2}$ | b <sub>e</sub>                                                                  | $100\% \times b_e/a$                   |
|-----------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| molécula                                            | $10^{-18} \text{ cm}^2 \times [10^{-15} \text{ eV}/(\text{molec/cm}^2)]^{-3/2}$ | $100\% \ \times \sigma_f \ / \sigma_d$ |
| $C_2H_2$                                            | 0,2                                                                             | 6,66                                   |
| $C_2H_4$                                            | 0,1                                                                             | 3,33                                   |
| $C_2H_6$                                            | 0,8                                                                             | 26,6                                   |



Figura 5.4- Seção de choque de formação do  $C_2H_2$ ,  $C_2H_4$  e  $C_2H_6$  em função de  $S_e$ . A linha sólida corresponde ao ajuste com p = 3/2 e a tracejada com p = 1.



Figura 5.5. Seção de choque de formação do  $C_2H_6$  em função de: a)  $S_n,$  b)  $q_{eq}S_n,$  c)  $S_e$  e d)  $q_{eq}S_e.$ 

Para as dependências  $q_{eq}S_n$ , e  $q_{eq}S_e$  os ajustes com potência 1 não foram adequados; potências menores foram então utilizadas, em particular 0,83 e 0,85, respectivamente. Para as duas dependências, nota-se que os valores das potências foram reduzidos de 1,5 para 1,3 e de 1 para 0,8. Os valores das constantes "b" para a formação do C<sub>2</sub>H<sub>6</sub> estão resumidos na Tabela 5.4.

Tabela 5.4. Valores das constantes b e  $b_q$  para  $C_2H_6$  com cada ajuste de  $\sigma_f = b \times {S_k}^{3/2}$  ou  $\sigma_f = b_q \times q_{eq} \times S_k$ 

| $C_2H_6$                                         | $\sigma_f \!= b \!\!\times \!\! {S_k}^{3/2}$ | $\sigma_{\rm f}\!=\!b_q\!\!\times\!\!q_{eq}\!\!\times\!\!S_k$ | $\sigma_{\rm f}\!=\!b\!\times\!S_k^{-3/2}$ | $\sigma_{\rm f} \!=\! b_q \!\!\times\!\! q_{eq} \!\!\times\!\! S_k$ |
|--------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| $\mathbf{S}_{\mathbf{k}}$                        | b                                            | $\mathbf{b}_{\mathbf{q}}$                                     | $S_k = \left(\sigma_m / b\right)^{2/3}$    | $q_{eq}S_k = \sigma_m\!\!/ \ b_q$                                   |
| $10^{15} \mathrm{eV}$ / (molog/am <sup>2</sup> ) | $cm^{2} [10^{15} eV/(molog/am^{2})]^{-3/2}$  | $cm^{2} [10^{15} eV/(molog/cm^{2})]^{-3/2}$                   | $10^{15}  \mathrm{eV}/$                    | $10^{15}  \text{eV}/$                                               |
| (molec/cm)                                       | (molec/cm )]                                 | (molec/cm/)]                                                  | (molec/cm)                                 | (molec/cm)                                                          |
| $\mathbf{S}_{\mathbf{n}}$                        | $3 \times 10^{-14}$                          | $2 \times 10^{-15}$                                           | 0,14                                       | 0,8                                                                 |
| S <sub>e</sub>                                   | 0,8 ×10 <sup>-18</sup>                       | $1,5 \times 10^{-18}$                                         | 159                                        | 1067                                                                |
| $S_t = S_n + S_e$                                | $0,8 \times 10^{-18}$                        | $1,5 \times 10^{-18}$                                         | 159                                        | 1067                                                                |

#### 5.2.3.

# Seção de choque de destruição dos hidrocarbonetos formados a partir de $CH_4$

As seções de choque de destruição por íons pesados dos filhos CH<sub>3</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub> e C<sub>2</sub>H<sub>6</sub> foram ajustadas com a relação  $\sigma_d = b_k S_k$ , incluindo os  $\sigma_d C_2H_6$  da literatura [29, 30 e 31] A Figura 5.6 apresenta os ajustes dos quatro dados disponíveis. Observa-se que os valores  $\sigma_d$  das moléculas CH<sub>3</sub> e C<sub>2</sub>H<sub>2</sub> não são descritos pela relação linear  $\sigma_d = b_k \times S_k$ , mas os das moléculas C<sub>2</sub>H<sub>4</sub> e C<sub>2</sub>H<sub>6</sub> se ajustaram melhor. Na Tabela 5.5 estão os respectivos valores das constantes  $b_k$ .

Tabela 5.5. Valores das constantes  $b_{dn} e b_{de}$  obtidas da relação  $\sigma_d = b_k \times S_k$ .

| $\sigma_d = b_k \times S_k$ | $\sigma_{d} \!=\! b_{dn} \!\!\times \!\! S_{n}$                          | $\sigma_d \!=\! b_{de} \!\!\times \!\! S_e$                               | $\sigma_{d} = b_{dt} \!\!\times\!\! S_{t}$                               |
|-----------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                             | b <sub>dn</sub>                                                          | b <sub>de</sub>                                                           | b <sub>dt</sub>                                                          |
| molécula                    | $10^{-16} \text{ cm}^2 \times [10^{-15} \text{ eV}/(\text{molec/cm}^2)]$ | $10^{-13} \text{ cm}^2 \times [10^{-15} \text{ eV}/ (\text{molec/cm}^2)]$ | $10^{-18} \text{ cm}^2 \times [10^{-15} \text{ eV}/(\text{molec/cm}^2)]$ |
| CH <sub>3</sub>             | 4,3                                                                      | 6,3                                                                       | 6,3                                                                      |
| $C_2H_2$                    | 0,3                                                                      | 0,3                                                                       | 0,3                                                                      |
| $C_2H_4$                    | 1,2                                                                      | 1,2                                                                       | 1,2                                                                      |
| CaHe                        | 1.5                                                                      | 1.5                                                                       | 1.5                                                                      |





Figura 5.6. Seção de choque de destruição de:  $CH_3 e C_2H_2 em função de a) S_e e b) S_n; C_2H_4 e C_2H_6 em função de c) S_e e d) S_n.$ 

Mais dados experimentais sobre um domínio mais amplo de poder de freamento são necessários para uma melhor definição da função correta para o ajuste.

## 5.2.4.

# Razão entre seções de choque de formação de filhos e de destruição do $\mbox{CH}_4$

Durante a irradiação há um rearranjo das ligações entre os átomos de carbono e de hidrogênio existentes na amostra, com a conservação do número de átomos destes dois elementos de forma independente. Esta conservação impõe que a taxa de moléculas destruídas de CH<sub>4</sub> seja igual à soma das taxas de formação das novas espécies  $C_nH_m$ . Em particular, se  $N_{CH4}$  moléculas de metano são dissociadas, formando N<sub>k</sub> moléculas de cada espécie k, cada uma destas contendo n<sub>k</sub> átomos de carbono, a conservação do número de carbonos impõe:

$$\Delta N_{CH4} = \sum_{k} n_k N_k \tag{5.3}$$

Definindo  $dN_{CH4}/dF = \sigma_{d,CH4} N_0$ , assim como  $dN_k/dF = \sigma_{f,k} N_0 = \sigma_{f,k} * (N_0/n_k)$ , resulta que  $\sigma_{d,CH4}$  tem que ser igual à soma das seções de choque de formação  $\sigma_{f,k} * = n_k \sigma_{f,k}$ (ver Apêndice III.1):

$$\sigma_{d,CH4} = \sum_{k} \sigma_{f,k}^{*} = \sum_{k} n_{k} \sigma_{f,k} \qquad \text{AIII.3} - 5.4$$

Sabe-se, entretanto, que  $\sigma_d e \sigma_{f,k}$  são grandezas que variam com a energia do projétil e com o tipo de projétil. A pergunta então é: como a probabilidade de formação de cada espécie  $P_k = \sigma_{f,k}* / \sigma_{d,CH4}$  varia com a energia? Note que

esta definição de probabilidade é baseada na distribuição de átomos de carbono nos filhos e difere levemente da distribuição de moléculas em um dado momento da irradiação, que é dada por  $N_k(F)/\Sigma_k N_k(F)$ .

Pelos resultados apresentados nas Fig. 5.2 (para a destruição do metano) e Fig. 5.4 (para a formação dos principais filhos), vê-se todas as seções de choque variam com ~  $S_e^{3/2}$  e, consequentemente, as probabilidades  $P_k$  devem permanecer constantes.

Esta análise foi estendida para dados da literatura obtidos com íons leves [30 e 31], íons pesados [33], elétrons [32] e fótons [29 e 71], chegando-se à interessante conclusão que - para uma dada espécie k – o valor de  $P_k$  correspondente ainda é o mesmo para todos os projéteis. As Figs 5.7 e 5.8 apresentam os ajustes para as moléculas  $C_2H_4$  e  $C_2H_6$ , respectivamente.



Figura 5.7. Seção de choque de formação do  $C_2H_4$  expressa em função da seção de choque de destruição do pai CH<sub>4</sub>.



Figura 5.8. Seção de choque de formação do  $C_2H_6$  em função da seção de choque de destruição do  $CH_4$ .

Os valores de  $P_k$  para os dois filhos mais abundantes, calculados a partir dos dados das Figs. 5.7 e 5.8 são: 46 % ( $C_2H_6$ ) e 7 % ( $C_2H_4$ ). Estas porcentagens são comparadas com os resultados médios apresentados na Tabela 4.8 dos íons pesados: para o  $C_2H_6$  foi de 45 % e para o  $C_2H_4$  foi de 6 %, valores bem próximos aos obtidos dos ajustes das Figs. 5.7 e 5.8.

# 5.2.5

#### Hidrogênio

Analisando a estequiometria dos hidrocarbonetos  $C_nH_m$  produzidos durante a irradiação observa-se que, para eles, a razão entre os números de átomos de hidrogênio e de carbono é m/n < 4 como foi visto na Fig 34.b [46 e 53]. Este valor é menor do que a razão correspondente ao gelo CH<sub>4</sub> puro antes da irradiação que, obviamente, é m/n = 4. Este decréscimo significa que hidrogênio atômico e/ou molecular foi formado na matriz do gelo pela irradiação, podendo lá permanecer aprisionado a temperaturas próximas a 15 K [72]. Como a temperatura de solidificação do H<sub>2</sub> é de 4 K, o H e o H<sub>2</sub> poderão se difundir no sólido até dessorverem eventualmente. Uma maneira indireta de calcular o hidrogênio restante na matriz é apresentada no Apêndice III e discutida na seção 4.4.6. A Fig. 5.9 apresenta as evoluções da densidade de coluna do  $H_2$  em função da densidade de coluna do  $CH_4$  durante a irradiação para cada uma das quatro experiências. A Figura 5.9 mostra-se linear para certos intervalos, ou seja, a derivada da equação A3.8 (eq. 5.5) seria constante neste intervalo.



Fig. 5.9 Densidade colunar do H<sub>2</sub> em função do CH<sub>4</sub>

Na Figura 5.10 são apresentadas as seções de choque de formação do  $H_2$  versus:  $S_n$ ,  $S_e$ , e  $\sigma_d$  do CH<sub>4</sub> calculadas a partir de

$$\frac{dN(H_2)}{dF} \sim \sigma_{fH_2} N_0 \tag{5.5}$$

Destes dados resulta que  $\sigma_f(H_2) / \sigma_d(CH_4) = 0,5$ ; este valor significa que é necessário destruir duas moléculas de CH<sub>4</sub> para a formação de uma molécula de H<sub>2</sub>. Isto é coerente com o fato de que para cada CH<sub>4</sub> destruída é obtido um átomo de hidrogênio, como mostrado na Figura 5.11 para os íons estudados.



Figura 5.10. Seção de choque de formação do  $H_2$  em função de a)  $S_e$ , b)  $S_n$ ,



Figura 5.11. Seção de choque de formação do  $H_2$  em função do  $\sigma_d$  do  $CH_4$ 

# 5.3.

### Dessorção do gelo

Mostrou-se na seção 2.4.1 que o rendimento de dessorção é uma função do poder de freamento [15 e 16]:

$$Y_0 = c_n S_n + c_e S_e^2 \tag{5.6}$$

As constantes  $c_n$  e  $c_e$  dependem em particular do estado de carga do projétil, do seu número atômico e das forças moleculares de coesão do CH<sub>4</sub>.

A Figura 5.12 apresenta resultados experimentais que seguem o comportamento da equação 4.12 e os valores dos rendimentos de dessorção da Tabela 4.9. Para a componente eletrônica, a relação é efetivamente do tipo  $Y_{e0} = c_e S_e^2$ ;

entretanto, para a componente nuclear foi necessário multiplicar seu valor pela carga de equilíbrio  $q_e$  para obter uma relação linear  $Y_{n0} = c'_n q_e S_n$ . A dessorção total, entretanto, pode ser uma combinação linear das duas contribuições  $Y_0 = (1 - \varphi)Y_{n0} + \varphi Y_{e0}$ , com  $\varphi < 1$ , mas os poucos dados da Figura 5.12 não foi possível saber com exatidão o valor do fator  $\varphi$ . Especulando que  $\varphi = 1/2$  seja razoável, obtémse:



$$Y_0 = 2.5 \times 10^3 q_e S_n + 5 \times 10^{-2} S_e^2$$
 5.7

Figura 5.12. Relações do rendimento de dessorção do  $CH_4$  com o poder de freamento: a)  $S_e e b$ )  $q_eS_n$ . Os FF-<sup>252</sup>Cf foram extrapolados neste ajuste igual que o FF típico Ba 65 MeV [19].

# 5.4.

#### Comentários sobre as constantes

### Amorfização

O número de moléculas que sofreram amorfização  $\mathcal{N}_a$  pode-se definir como [13]:

$$\mathcal{N}_{a} = \int_{E_{i}}^{E_{f}} \frac{\sigma_{c}(E)}{S_{e}(E)} dE$$
5.8

Para íons rápidos e energéticos  $\sigma_c$  e  $S_e$  são aproximadamente constantes ao passar por uma monocamada de moléculas ( $\approx 10^{15} \text{ molec/cm}^2$ ), isto é

$$\mathcal{N}_a \approx \frac{\sigma_c}{S_e} \Delta E$$
 5.9

Substituindo a expressão empírica  $\sigma_c = a_c S_e$  obtém-se a relação da constante " $a_c$ " com a energia depositada por monocamada  $\Delta E$ ,  $a_c = \mathcal{N}_a / \Delta E = 4.9 \times 10^{-14}$  (10<sup>15</sup>molec/eV), o que corresponde a 0,02 eV por molécula. A constante " $a_v$ " corresponde a 0,24 eV por molécula.

#### Radiólise e Síntese

As seções de choque de radiólise e de síntese da equação estão ligadas pela relação 5.4  $P_k = n_k \frac{\sigma_{fk}}{\sigma_d}$ , e pela relação empírica  $\sigma_d = a_d S_e^{3/2}$  e  $\sigma_{fk} = b_{fk} S_e^{3/2}$ , isto resulta em

$$P_k = n_k \frac{b_{fk}}{a_d}$$
 5.10

Para o etano e eteno,  $P_k$  assume valores de 0,53 e 0,06 que estão bastante próximos dos valores obtidos para íons, elétrons e fótons apresentadas nas Figuras 5.7 e 5.8, respectivamente.

O número de moléculas destruídas por projétil é

$$\mathcal{N}_{d} = \int_{E_{i}}^{E_{f}} \frac{\sigma(E)}{S_{e}(E)} dE \approx \sigma_{d} N_{0} = \left(\frac{\delta dS_{e}}{\Delta E}\right)^{p}$$
5.11

$$a_d = \frac{1}{N_0} \left(\frac{\delta d}{\Delta E}\right)^{3/2}$$
 5.12

Para uma camada  $N_0 \approx 10^{15} \text{ molec/cm}^2$ ,  $\delta d \approx d^{-2}$  (d  $\approx 4 \times 10^{-8} \text{ cm}$ ) e  $a_{de} = 3 \times 10^{-18} \text{ cm}^2 / (10^{-15} \text{eV cm}^2 / \text{molec})^{3/2}$  e  $a_{dn} = 1.5 \times 10^{-13} \text{ cm}^2 / (10^{-15} \text{eV cm}^2 / \text{molec})^{3/2}$  que corresponde a 30 (eletrônico) e 0.02 (nuclear) eV por molécula.

#### Sputtering

Os resultados  $Y_{e0} = 0.1S_e^2$  e  $Y_{n0} = 5 \times 10^3 q_e S_n$  em baixas energias mostram que  $Y_0 = Y_{e0} \approx Y_{n0}$ ; logo, para dessorver uma molécula só seria ( $Y_0 = 1$ ) necessária energia de 3 eV (eletrônico) e  $1.25 \times 10^{-4}$  eV/ $q_e$  (nuclear) por molécula dessorvida. Johnson *et al* [16] mostraram que

$$Y_{e0} = c \left(\frac{\ell \delta S_e}{U}\right)^2$$
 5.13

Sendo U ~ 0,18 eV a energia de coesão para o metano,  $\ell$  espaço médio entre as moléculas  $\ell \sim \delta^{-1/3}$ , com  $\delta$  a densidade volumétrica e *c* uma constante empírica que

toma valores de 0,1 a 0,2. Para  $Y_{e0} = 1$ ,  $S_e \approx 1 (10^{-15} \text{eVcm}^2/\text{molec})$  que é aproximadamente 1 eV por molécula. Esta discrepância com o resultado empírico  $(Y_{e0} = 0, 1S_e^2)$  deve-se possivelmente a que não se considerou a carga do íon durante a colisão.

#### **PDMS**

Por último, o valores de rendimento de *sputtering* produzido pelos fragmentos de fissão do  $^{252}$ Cf foram extrapolados no ajuste para obter sua predição. Os FF-  $^{252}$ Cf mostram ser muito eficientes na indução do rendimento de dessorção e alcança o valor máximo de ~10<sup>6</sup> moléculas dessorvidas por íon.

Da Eq. 2.5, espera-se encontrar as constantes  $c_{n,e}^{+,-}$  para os íons secundários, assim:

$$Y_0^{+,-} = c_n^{+,-} q_e S_n + c_e^{+,-} S_e^2$$
 5.14

O rendimento iônico é calculado dividindo o número de sinais *stops* pelo número de sinais *starts*, durante os 40 minutos de aquisição dos dados para os íons secundários positivos e negativos foi de  $Y_0^+$ = 12290/250000 ~ 5×10<sup>-2</sup> e  $Y_0^-$  = 3757/200000 ~ 2×10<sup>-2</sup> [íons/projétil] respectivamente. Com tais valores é possível estimar as constantes  $c^{+,-}$ :

$$Y_0^+ = 1,3 \times 10^{-4} q_e S_n + 2,5 \times 10^{-9} S_e^2$$
$$Y_0^- = 5 \times 10^{-5} q_e S_n + 10^{-9} S_e^2$$
5.15

O *sputtering* iônico (positivo e negativo) representa  $7 \times 10^{-6}$  % do total da matéria dessorvida, o restante corresponde às espécies neutras.

O hidrogênio  $H_n^+$  representa  $2 \times 10^{-5}$  % dos íons positivos, enquanto o  $H^-$  é  $1.5 \times 10^{-5}$  % dos íons negativos, isto significa que  $1.3 \times 10^{-6}$  % da dessorção total  $Y_0$  são hidrogênios positivos ou negativos  $H_n^{+,-}$  que foram produzidos por *sputtering*. Em geral, para qualquer espécie carregada  $C_n H_m^{+,-}$ , o rendimento de dessorção por projétil pode-se calcular com:

$$Y_0^{+,-}(C_n H_m^{+,-}) \approx \frac{(stops \ C_n H_m^{+,-})}{(starts)} Y_0^{+,-} \qquad 5.16$$