

Christian Fernando Mejía Guamán

Estudo dos efeitos produzidos no metano sólido por feixes de íons pesados rápidos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Física do Departamento de Física da PUC-Rio.

Orientador: Prof. Enio Frota da Silveira

Rio de Janeiro Maio de 2013

Christian Fernando Mejía Guamán

Estudo dos efeitos produzidos no metano sólido por feixes de íons pesados rápidos

Tese apresentada ao Programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio como requisito parcial para obtenção do título de Doutor em Física. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Enio Frota da Silveira** Orientador Departamento de Física – PUC-Rio

Prof. Jorge Marcio Ferreira Carvano Observatório Nacional

Prof. Hugo Milward Riani de Luna UFRJ

> Prof. Leonardo Baptista UERJ

Profa. Maria Luiza Rocco Duarte Pereira UFRJ

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de maio de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Christian Fernando Mejía Guamán

Possui graduação em Física pela Escuela Politécnica Nacional (2003), mestrado em Física pela Pontifícia Universidade Católica do Rio de Janeiro(2009) e doutorado em Física pela Pontifícia Universidade Católica do Rio de Janeiro(2013). Tem experiência na área de Física, com ênfase em Física Atômica e Molecular. Atuando principalmente nos seguintes temas: Espectrometria de Massa por Tempo-de-Vôo, metano, FTIR, radiólise, sínteses e gelos.

Ficha Catalográfica

Mejía Guamán, Christian Fernando
Estudo dos efeitos produzidos no metano sólido por feixes de íons pesados rápidos / Christian Fernando Mejía Guamán; orientador: Enio Frota da Silveira – 2013.
179 f. : il. (color.) ; 30 cm
Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física, 2013.
Inclui bibliografia
1. Física – Teses. 2. IBMM. 3. Radiólise do CH ₄ . 4. FTIR. 5. PDMS. 6. Metano solido. 7. Feixe de íons pesados. 8. Raios cósmicos. I. F. da Silveira. Enio.

II. Pontifícia Universidade Católica do Rio de Janeiro.

Departamento de Física. III. Título.

PUC-Rio - Certificação Digital Nº 0912575/CA

A meus pais Jose G. Mejía R. e Fanny Y. Guamán B.

Agradecimentos

Gostaria de agradecer ao meu orientador Enio Frota da Silveira pelo apoio, pela motivação, paciência e disposição para dialogar, como também para entender e resolver os problemas na realização desta tese. Muito obrigado!

A realização deste trabalho, ao longo de quase quatro anos, não teria sido possível sem a ajuda de muitas pessoas que dele participaram direta ou indiretamente. Elas me conduziram a elaborar esta tese, às quais eu expresso agora os meus mais profundos agradecimentos.

Quero expressar minha gratidão a Cássia Ribeiro Ponciano, pelas sugestões na escrita deste manuscrito e também pelo aporte nas discussões da química envolvida.

Agradeço aos meus amigos e colegas de curso, pelo apoio e pelas conversas que tivemos nas longas horas de estudo e pesquisa: Alexander, Jeferson, Paulina e Thiago.

Agradeço aos membros do Grupo, Eduardo, Sergio, Diana e Lucio que ajudaram nas discussões sobre gelos astrofísicos. Um especial agradecimento devo à Ana Lucia: foi ela quem me pressionou para fazer rápido os trabalhos e tirar proveito de cada mudança observada nos espectros de FTIR.

À Vinicius pela orientação para entender o gelo metano. Graças a ele tive acesso aos dados FTIR obtidos no GANIL. Que receba a minha mais sincera gratidão.

À equipe francesa, particularmente aos Drs. Philippe Boduch e Hermann Rothard, pelos esforços na tomada de dados com o acelerador GANIL.

Não poderia me esquecer do pessoal técnico do acelerador do Van de Graaff, Nilton, Edson, Sergio e Carlos Augusto, sempre dispostos a ajudar com entusiasmo e cortesia. Agradeço pelo ótimo trabalho e companheirismo demonstrado no laboratório.

A minha família que sempre acreditaram em mim.

Finalmente, agradeço CNPq, pela pelo suporte financeiro.

Mejía Guamán, Christian Fernando; Frota da Silveira, Enio (orientador). **Estudo dos efeitos produzidos no metano sólido por feixes de íons pesados rápidos.** Rio de Janeiro, 2013, 179 p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo principal do presente trabalho foi analisar as modificações produzidas em metano sólido quando irradiado por feixes de íons pesados de alta energia. Este estudo tem importância na área de Físico-química, ao fornecer informações detalhadas sobre os fenômenos produzidos na interação íon rápido – sólido, e também na Astrofísica, ao fornecer dados relevantes para a previsão das modificações físico-químicas causadas por ventos solares e raios cósmicos em gelos. Os efeitos produzidos pelo impacto e pela passagem de um projétil com energia da ordem de MeV/u em uma película de CH₄ condensado a 15 K foram estudados através de dois tipos de experimentos. Um, realizado no Laboratório francês GANIL com feixes de íons O, Fe, Zn na faixa de energia de 0,4 a 14 MeV/u e analisado por espectroscopia de absorção no infravermelho (FTIR); outro, realizado no Laboratório Van de Graaff da PUC-Rio e analisado por espectrometria de massa PDMS utilizando fragmentos de fissão do ²⁵²Cf que têm energia típica de 0,5 MeV/u.

Durante a irradiação, três processos induzidos pelos feixes puderam ser observados por FTIR:

- 1) mudanças da estrutura do gelo: amorfização, cristalização e compactação;
- radiólise do CH₄ e síntese de 13 novos compostos: determinação das seções de choque de destruição do CH₄ e de formação de novas moléculas C_nH_m, onde n varia de 2 a 4 e m de 2(n-1) a 2(n+1); formação de H₂ e dos radicais CH₃, C₂H₃ e C₂H₅;

 sputtering do gelo: determinação dos rendimentos de dessorção do material dessorvido.

dessorção iônica por PDMS-TOF foram detectadas Na análise de aproximadamente duas centenas de espécies positivas e negativas, na forma de agregados ou moléculas com massas inferiores a 120 u. Os respectivos rendimentos de dessorção foram medidos. Aplicando uma nova metodologia proposta nesta tese, os rendimentos de dessorção (Y) e as seções de choque de destruição (σ_d) e de amorfização (σ_a) obtidos foram relacionados com as taxas de energia depositada (stopping power) no sistema eletrônico (Se) e nuclear (Sn) pelos projéteis no gelo CH₄. Encontrou-se, aproximadamente que na faixa de energia estudada: Y \propto S_e² \propto q_e $S_n \text{; } \sigma_d \propto S_e^{-3/2} \propto q_e \; S_n \text{; } e \; \sigma_a \propto S_e \text{, onde } q_e \text{ é a carga de equilíbrio do projétil. As seções }$ de choque de formação apresentam relações semelhantes com o poder de freamento. Para uma dada energia do feixe, a razão encontrada entre as seções de choque de formação dos produtos C_nH_m e as seções de choque de destruição do CH₄ é constante, sugerindo uma independência com o tipo de radiação utilizada para irradiar o gelo CH₄.

Aplicação em Astrofísica: os resultados deste trabalho fornecem os dados para o cálculo da meia-vida da molécula CH_4 : ela é de 600×10^6 anos no meio interestelar e de 600 anos no sistema solar a 1 AU de distância do Sol. Estes valores informam os tempos típicos necessários para os raios cósmicos produzirem moléculas orgânicas complexas no espaço.

Palavras-chave

IBMM; Radiólise do CH₄; FTIR; PDMS; Metano solido; Feixe de íons pesados; Raios cósmicos.

Résumé

Mejía Guamán, Christian Fernando; Frota da Silveira, Enio (conseiller). **Effets produits par faisceaux d'ions rapides et lourds en méthane solide.** Rio de Janeiro, 2013, 179 p. Thèse de Doctorat - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Le principal but de ce travail est l'étude des effets de l'irradiation d'une glace de méthane solide à 15 K par des ions lourds. Cette recherche a pour principal champ d'application la Physico-Chimie car elle donne des informations importantes sur l'interaction ion rapide – glace. Elle est aussi extrêmement pertinente pour l'astrophysique car les résultats obtenus permettent de prévoir les modifications induites par le vent solaire et les rayons cosmiques dans les glaces interstellaires. Les faisceaux d'ions de O, Fe et Zn avec énergie comprise entre 0,4 et 14 MeV/u ont été délivrés par le Grand Accélérateur National d'Ions Lourds (GANIL, Caen, France). Les glaces ainsi bombardées ont été analysées par spectroscopie infrarouge (FTIR). Parallèlement, les fragments de fission du ²⁵²Cf ont aussi été utilisés pour induire la désorption ionique du CH₄ solide. Ces mesures ont été faites au Laboratoire Van de Graaff de la PUC à Rio.

Trois processus ont été induits par les faisceaux d'ions:

1) modifications de la structure de la glace: amorphisation, cristallisation et compaction.

2) radiolyse du CH_4 et synthèse de 13 nouveaux composés (CH_3 , C_2H_3 , C_2H_5) et de la formation du H_2 ;

3) pulvérisation de la glace.

L'analyse PDMS-TOF a révélé la désorption de plus de deux cents espèces moléculaires ioniques différentes (positives et négatives).

On a pu montrer que les valeurs des rendements de désorption (Y) et des sections efficaces (σ), obtenues dans ce travail (donc pour le domaine de vitesse étudié), peuvent être exprimées en fonction des pouvoirs d'arrêt électronique (S_e) et nucléaire

(S_n): $Y \propto S_e^2 \propto q_e S_n$; $\sigma_d \propto S_e^{3/2} \propto q_e S_n$ et $\sigma_a \propto S_e$, ou q_e est la charge d' équilíbre du projectile. Un autre résultat important est que, pour une énergie donnée du projectile, le rapport entre la section efficace de formation et celle de destruction du CH₄ est constant, quel que soit le type de faisceau (ions, électrons ou photons).

Application en Astrophysique: l'extrapolation des valeurs des sections efficaces de destruction obtenues permettent d'estimer la demi-vie moyenne de la molécule CH_4 . Le modèle prévoit 600×10^6 années pour le milieu interstellaire et 600 années pour le système solaire à 1 AU du Soleil. De plus, à partir de ces valeurs, les temps typiques nécessaires pour que les rayons cosmiques puissent produire des molécules organiques complexes dans l'espace ont été déterminés.

Mots-clés

IBMM; CH4 radiolyse; FTIR; PDMS; méthane solide; faisceau d'ions lourds, les rayons cosmiques.

Abstract

Mejía Guamán, Christian Fernando; Frota da Silveira, Enio (Advisor). **Effects produced by fast and heavy ion beams in solid methane**. Rio de Janeiro, 2013. 179 p. Doctoral Thesis – Departamento de Física, Pontifícia Universidade Católica of Rio de Janeiro.

The main goal of the current work was to study the effects of fast heavy ion bombardment on 15 K solid methane. This work has relevance in Physical-Chemistry because it provides new detailed information on the ion – ice interaction in the 0.4-14 MeV/u range. Such experimental data are important for Astrophysics once they are useful for predicting the physical-chemistry modifications induced by the solar wind and the galactic cosmic rays on spatial ices. O, Fe and Zn ion beams were delivered by the *Grand Accélérateur National d'Ions Lourds* (GANIL), Caen, France, and the ice modifications were analyzed by infrared spectroscopy (FTIR). The ²⁵²Cf fission fragments were used in the Van de Graaff Laboratory of PUC-Rio to induce secondary ions from the CH₄ ice and analyze them by Plasma Desorption Mass Spectrometry (PDMS).

Three processes induced by the ion beams were investigated by FTIR:

1) modifications in the ice structure: amorphyzation, crystallisation et compaction;

2) CH₄radiolysis and synthesis of 13 produced compounds, as well as formation of the CH₃, C_2H_3 , C_2H_5 and H_2 ;

3) ice sputtering.

The PDMS analysis revealed that positive and negative ion desorption of about two hundred molecular species. One of the results of the current work is that, for the CH₄ ice and for the analyzed projectile velocity range, desorption yields (Y), destruction (σ_d) and amorphization (σ_a) cross sections may be expressed as power functions of the electronic (S_e) and nuclear (S_n) stopping powers: Y \propto S_e² \propto q_e S_n; $\sigma_d \propto$

 $S_e^{3/2} \propto q_e S_n$; e $\sigma_a \propto S_e$, where q_e is the equilibrium charge of the projectile. Another finding is that, for a given energy of the ion, electron or photon ionizing radiation, the ratio between the formation and the destruction cross sections de destruction do CH₄ is constant. This strongly suggests that once electronic excitation occurs, the chemical evolution proceeds independently of the projectile nature.

Application on Astrophysics: the extrapolation of the obtained destruction cross sections allows estimating CH_4 the half-life in space. The model predict around 600×10^6 years at the interstellar medium but only 600 years at 1 AU distant from Sun. Moreover, such values give typical times for complex organic molecules to be produced in space by cosmic rays.

Keywords

IBMM; CH₄ radiolysis; FTIR; PDMS; Solid methane; Heavy ion beam; Cosmic rays.

Sumário

1. Objetivos e Motivação	23
1.1. Objetivos	23
1.2. Motivação	23
1.3. O metano	25
1.4. O ambiente cósmico	27
1.5. Raios cósmicos	29
1.6. Espécies moleculares no ISM	30
1.7. Estrutura da apresentação	31
2. Fundamentos Teóricos	33
2.1. Os processos fundamentais envolvidos na interação íon-sólido	33
2.2. Cronologia dos eventos de interação do projétil com o sólido	34
2.2.1. Eventos causados pela interação de cada projétil	34
2.2.2. Eventos causados pela interação de muitos projéteis	36
2.3. Mudanças no projétil	36
2.3.1. Variação da carga do projétil	36
2.3.2. Atenuação da energia do projétil	37
2.4. Mudanças na amostra. Dessorção	39
2.4.1. Modelo do Stopping Power	40
2.5. Mudanças na amostra. Reações químicas	41
2.5.1. Processos com variação de massa	41
2.5.2. Processos sem variação de massa. Reações químicas	44
2.5.3. Processos com variação de massa e com reações químicas	45
3. Métodos experimentais	47
3.1. Acelerador de íons pesados GANIL	47

3.2. Câmera de análise experimental49

3.3. Criostato e porta amostra	50
3.4. Vibrações no infravermelho	
3.4.1. Espectroscopia no Infravermelho por Transformada de Fourier	53
(FTIR)	
3.4.2. Lei de Lambert – Beer	54
3.5. Espectrômetro de massa por tempo de vôo	55
4. Resultados experimentais	59
4.1. Medidas FTIR	59
4.1.1. Estrutura do Gelo Metano	61
4.1.2. As mudanças espectroscópicas do gelo CH ₄ com a	61
Temperatura	
4.2. Mudanças espectroscópicas do gelo CH ₄ com a Irradiação	67
4.2.1. Variações do "A-value" com a irradiação	68
4.2.2. Efeito "subidinha"	71
4.2.3. Blue e Red shift das bandas	72
4.2.4. Desaparecimento da estrutura fina (desdobramento ou splitting)	75
das bandas	
4.3. Análise das moléculas precursoras durante a irradiação	76
4.3.1. Transformação química do CH_4 : seção de choque de destruição	76
4.3.2. Condensação de contaminantes	79
4.4. Dissociação e síntese de espécies químicas pela irradiação	81
4.4.1. Hidrocarbonetos C ₂ H _{2n}	84
4.4.2. Radicais de Hidrocarbonetos: CH_3 , C_2H_3 e C_2H_5	88
4.4.3. Hidrocarbonetos C ₃ H _{2n}	89
4.4.4. Hidrocarbonetos complexos C_4H_{2n}	91
4.4.5. Compostos formados a partir de contaminantes	93
4.4.6. Hidrogênio	94
4.5. Sputtering do gelo medida com FTIR	95
4.6. Análise PDMS	97
4.6.1. Dessorção lônica	100

4.6.1.1. Íons Positivos	101
4.6.1.2. Íons negativos	106
5. Análise dos Resultados	110
5.1. Amorfização do gelo	110
5.1.1. Efeitos subidinha e deslocamentos das bandas	111
5.2. Seções de choque	112
5.2.1. Seção de choque de destruição do metano	112
5.2.2. Seção de choque de formação dos hidrocarbonetos.	115
5.2.3. Seção de choque de destruição dos hidrocarbonetos formados	118
a partir de CH ₄	
5.2.4. Razão entre seções de choque de formação filhos e de	119
destruição do CH4	
5.2.5. Hidrogênio	121
5.3. Dessorção do gelo	123
5.4. Comentários sobre as constantes	124
6. Implicações astrofísicas	127
6.1. Presença do CH₄ no Universo	127
6.2. Tempo de vida do gelo CH_4 no Sistema Solar e no ISM	130
6.3. Penetração dos CR em gelos puros de CH ₄	135
6.4. Espécies moleculares dessorvidas do gelo CH ₄ no espaço	137
6.4.1. Espécies moleculares iônicas dessorvidas do gelo CH ₄ no	137
espaço	
6.4.2. Espécies moleculares neutras dessorvidas do gelo CH ₄ no	139
espaço	
6.5. O metano na astrobiologia	143
7. Conclusões	145
Referências bibliográficas	150

Apêndices	159
A1 Análise de dados por FTIR: Sputtering e Reações Químicas	159
A1.1 Processos com variação de massa, mas sem reações químicas	159
A.1.2 Processos envolvendo reações químicas, mas sem variação de	159
massa.	
A1.2.1 Dissociação única irreversível AB \rightarrow A + B	159
A1.2.2 Dissociação única reversível AB ↔ A + B	160
A1.2.3 Dissociações múltiplas reversíveis: AB→A+B, AB→Ak+Bk	163
A1.2.4 Análise dos dados ajustando-os com uma única exponencial	165
A1.2.5 Dissociações sucessivas ABC \rightarrow AB + C \leftrightarrow A + B +C	166
A1.3 Processos de reações químicas com transferência de massa na	168
superfície	
All Modelo para a descrição da amorfização por irradiação	175
AIII	177
AIII.1 Seção de choque de destruição do CH4 vs. seção de choque de	177
formação dos hidrocarbonetos formados.	
AIII.2 Estimativa da quantidade de hidrogênio retido no gelo após a	177
irradiação	
AIV Rendimento iônico de dessorção dos íons secundários do CH4	178
produzidos por fragmentos de fissão do ²⁵² Cf, obtidos por PDMS.	

Lista de figuras

Figura 1.1 Temperatura de sublimação do metano e de outros gases	26
astrofísicos em função da pressão	
Figura 1.2. Estrutura do CH ₄	26
Figura 1.3 Fluxo dos constituintes dos raios cósmicos no ISM em	30
função da energia por nucleon	
Figura 2.1 Esquema representando a interação de um constituinte dos	34
raios cósmicos com um grão de gelo, ou recoberto com gelo, no ISM.	
Figura 2.2. Dependência do stopping power (S) com a energia do	39
projétil.	
Figura 2.3. Condensação de água sem irradiação na pressão de ~10 ⁻⁸	43
mbar e à T =15 K	
Figura 2.4 Comparação entre previsões com ($Y_o = 10^4$ molec/íon) e	46
sem ($Y_o = 0$) sputtering	
Figura 3.1 Faixa de valores de energia por nucleon (MeV/u)	48
disponíveis no GANIL	
Figura 3.2 Esquema do acelerador de íons pesados GANIL	49
Figura 3.3 Foto externa da câmara de análise da amostra irradiada	50
Figura 3.4. Esquema interno da câmara	51
Figura 3.5.a) Componentes do criostato e porta amostra, b) Porta	51
amostra	
Figura 3.6 Desenho esquemático do criostato, câmera de análise e	52
espectrômetro FTIR	
Figura 3.7 Espectro típico do CH_4 na faixa MIR. Número de onda v =	53
$1/\lambda = f/c = E/hc$	
Figura 3.8 Esquema do sistema de análise por TOF	55

Figura 3.9 Espectro de massa ²⁵² Cf-PDMS de íons positivos	57
dessorvidos do gelo de CH4	
Figura 4.1 Espectro FTIR de gelo de metano virgem, obtido no	60
modo transmissão.	
Figura 4.2 Espectros da banda 1300 cm ⁻¹	61
Figura 4.3 Banda v ₃	63
Figura 4.4 Banda v ₄	63
Figura 4.5 Absorbância máxima: A ₀ (T)	63
Figura 4.6 Largura à meia altura: γ(T)	63
Figura 4.7 Relação entre $A_0 e \gamma$ para v_3	63
Figura 4.8 Relação entre $A_0 e \gamma$ para v_4 .	63
Figura 4.9.a) Modificação da forma do pico v_4 com o aumento de	64
temperatura do gelo; b) Decomposição em três lorentzianas da banda	
v ₄ em 15 K.	
Figura 4.10 Recozimento do CH ₄ condensado (amostra #1)	65
Figura 4.11 Recozimento do CH ₄ condensado (amostra #2)	66
Figura 4.12 Diferença entre as formas espectrais da banda v_4 para	67
um gelo poroso e outro compactado	
Figura 4.14 Decréscimo da densidade colunar para as bandas que	69
apresentam o mesmo comportamento em função da fluência do feixe	
¹⁶ O ²⁺ 6 MeV.	
Figura 4.15 Ampliação de parte da 4.14	70
Figura 4.16 Funções A _{v,k} (F) das dez bandas mais intensas do	71
CH ₄	
Figura 4.17 Mudanças da banda v ₃	73
Figura 4.18 Mudanças no perfil da banda v ₄	74
Figura 4.19 Deslocamentos das bandas $v_3 e (v_1 + v_4) em função da$	74
fluência	
Figura 4.20 Desaparecimento dos desdobramentos (splitting) das	76
bandas v_3 e v_4 durante a irradiação com o íon ${}^{16}O^{7+}$ 220 MeV.	
Figura 4.21 Espectros IV das bandas 4200 cm ⁻¹ ($v_1 + v_4$) e 4300 cm ⁻¹	77

(v₃ + v₄)

Figura 4.22 Destruição da molécula CH ₄ irradiada com íons	78
Figura 4.23.a Evolução da condensação de H ₂ O sobre a amostra	80
Figura 4.23.b Taxa de deposição da H ₂ O sobre a amostra	81
Figura 4.24 Espectro de infravermelho do gelo metano a 15 K, antes	82
da irradiação.	
Figura 4.25 Espectro FTIR do gelo metano a 15 K, após	82
irradiação	
Figura 4.26 Evolução espectroscópica das bandas v_3 e v_5 do $C_2 H_2$	85
Figura 4.27 A-values das principais bandas de: a) C_2H_4 e b) C_2H_6	86
Figura 4.28 Ajustes de todos os hidrocarbonetos usando as	88
equações 4.6 e 4.7.	
Figura 4.29 Densidade colunar do radical C_2H_3	89
Figura 4.30 Densidade colunar do radical C_2H_5	89
Figura 4.31 Decomposição dos picos: a) entre os números de onda	90
1350 e 1400 cm ⁻¹ , b) o pico 1640 cm ⁻¹	
Figura 4.32 Decomposição dos picos entre os números de onda	01
890 e 1010 cm ⁻¹	31
Figura 4.33 Decomposição no espectro FTIR dos picos entre os	92
números de onda 2845 e 2950 cm ⁻¹	
Figura 4.34. a) Densidade de coluna do H_2 , b) dependência de H/C	94
Figura 4.34.1 Evolução do número total de moléculas no gelo	97
Figura 4.35 Espectro de massa ²⁵² Cf-PDMS de íons positivos	98
Figura 4.36 Espectro de massa ²⁵² Cf-PDMS de íons negativos	98
Figura 4.37 Rendimento relativo das contagens do grupo H_m^+ ,	101
normalizado em m=1.	
Figura 4.38 Contagens dos íons positivos em função do número de	102
carbonos	
Figura 4.39 Rendimentos de dessorção iônica das séries $C_n H_m^+$	103
Figura 4.40 Rendimentos iônicos relativos do grupo CH_{m}^{+}	105
Figura 4.41 Contagens dos íons positivos C ₂ H _m	106

Figura 4.42 Rendimentos relativos dos grupos dos íons negativos 107 com número de hidrogênio fixos em função do número de carbonos n Figura 4.43 Rendimento de dessorção iônica do grupo C_nH_m em 108 função da energia de ligação Figura 4.44 Distribuição de abundâncias dos íons negativos, com 109 n par fixo de átomos de carbono Figura 4.45 Distribuição de abundâncias dos íons negativos, com 109 n impar fixo de átomos de carbono Figura 5.1 Seção de choque de amorfização, relativa ao 112 deslocamento da banda 4202 cm⁻¹. Figura 5.2 Seção de choque de destruição do metano em função 114 do poder de freamento Figura 5.3 Seção de choque de destruição do metano em função do 116 poder de freamento nuclear multiplicado pelo número atômico do projétil, Z_p. Figura 5.4 Seção de choque de formação do C₂H₂, C₂H₄ e C₂H₆ 117 em função de S_e Figura 5.5 Seção de choque de formação do C_2H_6 em função de: a) 118 S_n , b) $q_{eq}S_n$, c) $S_e e d$) $q_{eq}S_e$ Figura 5.6 Seção de choque de destruição 119 Figura 5.7 Seção de choque de formação do C₂H₄ expressa em 120 função da seção de choque de destruição do pai CH₄ Figura 5.8 Seção de choque de formação do C₂H₆ em função da 121 seção de choque de destruição do CH₄. Figura 5.9 Densidade colunar do H₂ em função do CH₄ 122 Figura 5.10 Seção de choque de formação do H₂ em função de a) S_e, 123 b) S_n Figura 5.11 Seção de choque de formação do H₂ em função do σ_d do 123 CH₄ Figura 5.12 Relações do rendimento de dessorção do CH₄ com o 124 poder de freamento

Figura 6.1 Fluxo da radiação infravermelha emitida pelo objeto 129 W33 A

Figura 6.2 Banda v₄ (1/7.7 μ m =1300 cm⁻¹) observada em Sgr A^{*} 129

Figura 6.3 Dependência das funções abaixo com a energia cinética 133 de raios cósmicos.

Figura 6.4 Previsão da meia-vida da molécula CH₄ em gelo puro 134 bombardeado por raios cósmicos.

Figura 6.5	Profundidade máxima de penetração dos íons	135
Figura 6.6	No SW, fluxo dos elementos H, He, C, O e Fe implantados	137
em gelo CH	4	
Figura 6.7	Esquema de rotas possíveis de reações químicas em	139
nuvens mole	eculares densas	
Figura 6.8. I	Previsão do rendimento de dessorção para os raios	140
cósmicos.		
Figura 6.9 I	Rendimento de dessorção vezes o fluxo do vento solar.	141
Figura 6.10	Rendimento de dessorção vezes o fluxo dos raios	142
cósmicos ga	alácticos no ISM	

Lista de tabelas

Tabela 1.1 Espécies químicas que contem H e/o C detectadas no	31
ISM	
Tabela 2.1 Cronologia dos principais efeitos gerados em um alvo	35
sólido pela interação de um projétil iônica rápido	
Tabela 2.2 Dinâmica dos feixes usados	37
Tabela 2.3 Stopping Power (poder de freamento) dos feixes.	38
Tabela 4.1 Números de onda e A-values das bandas de	60
absorção do CH ₄	
Tabela 4.2 Dados relativos aos feixes iônicos e amostras de	68
CH ₄ usados no presente trabalho	
Tabela 4.3 Seção de choque de amorfização σ_c para cada projétil	75
iônico que interage com gelo de metano, seção de choque de	
deslocamento da banda $\sigma_v,$ e o incremento do <code>blueshift</code> da banda v_1 +	
V4.	
Tabela 4.4 Seções de choque aparente de destruição do CH ₄ para	78
Tabela 4.4 Seções de choque aparente de destruição do CH ₄ para cada feixe íon	78
Tabela 4.4 Seções de choque aparente de destruição do CH ₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo	78 81
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> 	78 81
Tabela 4.4 Seções de choque aparente de destruição do CH ₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH ₃ e C ₂ H _m	78 81 83
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH₃ e C₂H_m Tabela 4.7 Grupos do tipo tipo C₃H_m e C₄H_m 	78 81 83 84
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH₃ e C₂H_m Tabela 4.7 Grupos do tipo tipo C₃H_m e C₄H_m Tabela 4.8.b Seções de choque de formação 	78 81 83 84 87
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH₃ e C₂H_m Tabela 4.7 Grupos do tipo tipo C₃H_m e C₄H_m Tabela 4.8.b Seções de choque de formação Tabela 4.9 Rendimentos de dessorção medidos com FTIR. 	78 81 83 84 87 96
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH₃ e C₂H_m Tabela 4.7 Grupos do tipo tipo C₃H_m e C₄H_m Tabela 4.8.b Seções de choque de formação Tabela 4.9 Rendimentos de dessorção medidos com FTIR. Tabela 4.9 Íon positivos e íons negativos identificados após 40 	78 81 83 84 87 96 99
 Tabela 4.4 Seções de choque aparente de destruição do CH₄ para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo CH₃ e C₂H_m Tabela 4.7 Grupos do tipo tipo C₃H_m e C₄H_m Tabela 4.8.b Seções de choque de formação Tabela 4.9 Rendimentos de dessorção medidos com FTIR. Tabela 4.9 Íon positivos e íons negativos identificados após 40 minutos de irradiação do gelo metano por FF-²⁵²Cf . 	78 81 83 84 87 96 99
Tabela 4.4 Seções de choque aparente de destruição do CH_4 para cada feixe íon Tabela 4.5 Taxa de deposição da água modificada pelo <i>sputtering</i> Tabela 4.6 Grupos do tipo $CH_3 e C_2 H_m$ Tabela 4.7 Grupos do tipo tipo $C_3 H_m e C_4 H_m$ Tabela 4.8.b Seções de choque de formação Tabela 4.9 Rendimentos de dessorção medidos com FTIR. Tabela 4.9 Íon positivos e íons negativos identificados após 40 minutos de irradiação do gelo metano por FF- ²⁵² Cf. Tabela 5.1 Valores das constantes a _a e a _v para cada relação de $\sigma =$	78 81 83 84 87 96 99 112

Tabela 5.2 Valores das constantes a e a _q	114
Tabela 5.3 Valores das constantes "b" da relação $\sigma_f = b \times S_e^{3/2}$,	116
obtida para cada molécula	
Tabela 5.4 Valores das constantes b e b_q para C_2H_6	117
Tabela 5.5 Valores das constantes $b_{dn} e b_{de}$ obtidas da relação $\sigma_d =$	118
b _k ×S _k	
Tabela 6.1 Metano no Sistema Solar	127
Tabela 6.2 Abundância relativa de CH_4 , C_2H_2 e C_2H_6 em alguns	128
cometas	
Tabela 6.3 Metano galáctico calculado com $A_v (v_4) = 7.3 \times 10^{-18}$	128
cm/molec	
Tabela 6.4 Constantes das funções empíricas do SW e do GCR	132
Tabela 6.6 Moléculas neutras e iônicas encontradas na atmosfera de	138
Titã entre 1000 e 1100 Km de altitude	
Tabela 6.7 Valores de J_k para cada íon com incidência	141
perpendicular à superfície	
Tabela 7.1 Irradiação com fótons, elétrons e íons no gelo CH_4 a 15 K.	146