
1

Introduction

“Welcome to PUC-Rio! We have a long journey ahead.
Are you ready to start?”

Alessandro Garcia, March 2009

In the first meeting as Francisco’s supervisor

The demand for incremental software design has been increasing over the

last decades (KELLY, 2006). As a result, there is a continuous search for

programming mechanisms that improve the composability of modules de-

fined at the design and evolution stages. The term composability refers to

the ability to bind software artifacts, such as implementation level modules,

in different combinations, facilitating the realization of evolving software

changes (CLARKE, 2009). In this context, a growing number of advanced

programming techniques has emerged to support more expressive means to

define module compositions (KICZALES et al., 1997, PREHOFER, 1997,

BERGMANS and AKSIT, 1992). Well-known examples of such tech-

niques are Aspect-Oriented Programming (AOP) (KICZALES et al., 1997),

Feature-Oriented Programming (FOP) (PREHOFER, 1997), Composition

Filters (BERGMANS and AKSIT, 1992), Delta-Oriented Programming

(SCHAEFER et al., 2010) and Traits (DUCASSE et al., 2006). Some pro-

gramming languages even support a hybrid programming model based on the

blend of previous programming models (e.g., AOP and FOP), such as CaesarJ

(CAESARJ, 2012).

It is well recognized nowadays that the richer composition mechanisms

of advanced programming techniques help to improve software modu-

larity (FIGUEIREDO et al., 2008a, MEZINI and OSTERMANN, 2004,

APEL et al., 2008). As a consequence, they have been used to develop a

variety of industrial and academic software applications (APEL et al., 2008,

FIGUEIREDO et al., 2008a, MEZINI and OSTERMANN, 2003). In par-

ticular, both AOP and FOP have been recognized as promising tech-

niques to develop software product lines (FIGUEIREDO et al., 2008a,

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 18

ARACIC et al., 2006, MEZINI and OSTERMANN, 2003). These sys-

tems require higher composability support than standalone software

systems (CLEMENTS and NORTHROP, 2001). In addition, a num-

ber of popular development frameworks, for instance, have emerged

to support AOP in distributed software systems, such as Spring

(SPRING, 2013) and JBoss AOP (JBOSS, 2013). AOP has also

been used to develop a wide range of industry-strength applications,

such as Web-based systems (NARAYANAN et al., 2006), embedded

software (NARAYANAN et al., 2006), data management frameworks

(HOHEENSTEIN, 2006) and code generators (KULESHOV, 2007). On the

other hand, FOP is still at embryonic stage and it is not widely known in

industry.

Software development based on advanced programming techniques relies

on a wide range of advanced composition mechanisms1, such as wrap-

pers, mixin composition (MEZINI and OSTERMANN, 2004), pointcut-advice

and intertype declaration (KICZALES et al., 1997), to facilitate the defini-

tion of module composition. In spite of their differences, these advanced

programming techniques share a similar goal: fostering the decomposition

of systems into more stable composable modules. A software system or

a particular module is considered stable if ripple effects (KELLY, 2006,

YAU and COLLOFELLO, 1985) do not manifest when its implementation is

modified. The computation of ripple effect is based on the effect that a change

to a single program element will have on the rest of the program. Thus, we

can state that the less a composition depends upon program elements, the

more the former is likely to be stable; the reason is that changes in any other

program element are likely to be propagated to the former and cause changes

in it.

However, in order to decompose systems into composable modules, the nota-

tion and semantics of composition mechanisms provide a shift in the complex-

ity of a program. As a consequence, due to changes to a single composition

specification the structure or behavior of modules tend to be changed as well,

which in turn affect the program stability. Dealing with composition changes

is particularly difficult because some reasoning about composition properties

that are not explicit at both implementation and design levels is required.

These properties refer to composition particularities, which must be explic-

itly specified to developers when they are coding so that they can prioritize

1From herein, advanced composition mechanisms is referred just as composition mecha-
nisms.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 19

stability. For instance, developers need to be prepared to deal with the great

number and diversity of modules (i.e., different types of modules) to generate

composition-enriched programs.

Unfortunately there is no understanding in the state of the art about the

composition properties that affect program stability. Thus, once composition

properties manifest in programs where composition mechanisms are used, it is

particularly important, to foster investigations actions to make clear how these

properties affect the program stability. The problem is that these investigations

cannot be carried out before understanding how composition properties impact

on stability. To start off, it is also hard for developers to identify and distinguish

each composition property from the others. This understanding is hard to be

reached because the composition-enriched programs tend to be diversified in

terms of types and number of modules. Therefore, in order to deal with the

effect of composition properties on program stability, developers need to be

supported with means to quantify them, which in turn relies on an accurate

characterization of composition properties.

The remainder of this chapter is organized as follows. Section 1.1 defines

the problem tackled in this thesis. Section 1.2 points out some limitations

of related work. Section 1.3 describes the aims and research questions. Section

1.4 presents the thesis contributions. Finally, Sections 1.5 and 1.6 point out

how this thesis is organized.

1.1

Problem Statement

The decomposition of programs in composable modules comes at a cost: the

notation and semantics of composition mechanisms provide a shift in the

complexity of a program. While part of the complexity is presumably factored

out of software modules, their composition code - that code that defines the

binding of two or more modules in a program - is often far from trivial to be

understood and maintained. For instance, the use of composition mechanisms

usually enables: (i) multiple modules are involved in the composition code, and

(ii) the structure or behavior of one or more modules are potentially extended,

merged or replaced by the elements of the other modules. There are also cases

of additional mechanisms to determine the ordering of multiple compositions

being applied to the same modules (KICZALES et al., 2001). As a result,

programmers have now to devote a large extent of their time to implement

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 20

the composition code. More importantly, when changing a program, it is also

not trivial to understand the change effects on the composition specification.

Even worse, when the target of a change is the module, all the related

compositions might need to be revisited and modified in certain circumstances

(GREENWOOD et al., 2007). These non-local changes are likely to affect the

stability of the whole program. Many negative stability effects might occur: (i)

ripple effects (YAU and COLLOFELLO, 1985) might affect the composition

code and module interfaces, and (ii) implicit composition properties can

be unconsciously misunderstood and lead programmers to perform changes

incorrectly.

Figure 1.1 illustrates an example of the composition complexity introduced by

the use of composition mechanisms. Two of them, namely intertype declaration

and pointcut-advice (AspectJ notation), are used in the composition specifi-

cation (KICZALES and MEZINI, 2006). The aspect A2 affects the structural

behavior of class C1 by introducing new methods m1() and m2(). The latter

changes the semantics of the base module by intercepting calls to the method

m4(). In addition, A1 and A2 shares the same joinpoint: the m4() call in C1.

Thus, a precedence mechanism (KICZALES and MEZINI, 2006) is used in the

aspect A3 to declare the order of the compositions defined within A1 and A2,

when they are applied to the same target modules (i.e., the class C1 and its

subclasses in this case).

public aspect

declare precedence

A3 {

: A2, A1;

}

public aspect

PCE

A1 {

call (* *.*m4(..));

C1.m1() { m2(); }

}

public aspect A2 {

C1.m1() { ... }

}

PCE call (* C1.m4(..));

C1.m2() { ... }

...

PCE = Pointcut Expression

Composition Design

Figure 1.1: Composition Example using AspectJ notation

It is important to highlight that the composition code often requires reasoning

about composition properties that are explicitly declared in the composition

code. For instance, the pointcut PCE is intercepting all the calls to methods

whose name ends in m4 (*.*m4()). These calls are scattered through many

modules of the system and determine the scope of this composition. Thus,

programmers need to analyze the name of all the methods in order to confirm

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 21

that the composition was correctly implemented and no wrong method has

been picked out. In addition, composition mechanisms, such as intertype

declaration, virtual classes and superimposition affect the structure of a

program, for example, by adding a method to a class or by changing the

inheritance structure. This situation happens when a method is wrongly

overridden by another method or a cyclic inheritance is introduced by the

composition.

Taking into consideration that motivating example, it becomes clear that

certain composition properties are not explicitly specified at design time,

implementation time or both. Composition design is concerned about how

program elements are represented and combined in order to define a coherent

program functionality (see Figure 1.1). Moreover, they cannot be easily inferred

from the source code either. In this context, our problem statement is divided

into three sub-problems. First, we need to produce ways for developers to

deal with composition properties in the absence of a proper composition

properties characterization. Second, it is also needed to quantify their impact

on program stability. Otherwise, their effect on program stability cannot be

determined. Finally, we need also to identify means to alleviate the developers’

maintainability effort when they need to deal with composition properties.

Sections 1.1.1 and 1.1.2 discuss, respectively, the characterization of compo-

sition properties and importance of quantifying them in order to prioritize

program stability. Finally, Section 1.1.3 discusses the importance of studying

how developers can alleviate their effort in changing programs; for instance, if

the availability of design information about composition properties can better

support them in their implementation maintenance tasks.

1.1.1

The Problem of Characterizing Composition Properties

As aforementioned, the composition code management demands extra reason-

ing about each composition in order to control the propagation of changes.

The analysis of the motivating example (Figure 1.1) demonstrates the need

for extensive reasoning about the composition code. A number of properties

of the composition code, independently of the mechanisms applied, need to

be considered. For instance, the identification of which elements of the pro-

gram modules are explicitly affected by the composition is required. In other

words, it is required to identify the composition scope. The scope of the com-

position over the base code is not given only by these explicit references, but

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 22

also in terms of elements indirectly affected or considered by the composi-

tion semantics. There are also cases where the composition design requires the

preparation (e.g., refactoring) of one or more target modules. Figure 1.1 il-

lustrates how these composition properties can make program comprehension

quite challenging. The composition code in A1, A2 and A3 establishes direct

and indirect dependencies with modules C1, C2, C3, C4 and many others in the

system.

Given the aforementioned issues we consider that the existing strategies are

unable to differentiate those program elements that belong to the composition

code from the other program elements. Therefore, it becomes clear that, in

order to deal with composition properties effects on program stability, firstly

we need to understand how to distinguish properties one from another. In other

words, composition properties must be conceptually characterized. By means

of this characterization developers will be able to determine which program

elements belong to the composition code and which do not. This distinction

will also allow them to specify the composition properties properly, opening

the possibility to quantify their impact on program stability.

Therefore, the first problem can be described as follows:







There is no understanding about how to deal with composition

properties, in terms of program stability, mainly because they

need to be characterized.







1.1.2

The Problem of Assessing the Impact of Composition Properties on

Program Stability

Ideally, the (re)use of program modules through composition mechanisms

should not require invasive modifications in the target modules. For in-

stance, modifications should not be made to either interfaces or internal mem-

bers of program modules as the program evolves. Similarly, other compo-

sition specifications (e.g., other pointcuts and intertype declaration) should

not be modified either. Otherwise, the program instabilities, provoked by

these harmful modifications can also lead to the harmful program changes

(KELLY, 2006, GREENWOOD et al., 2007). In this fashion, positive and neg-

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 23

ative effects of adopting advanced programming techniques and their compo-

sition mechanisms need to be systematically investigated.

In this context, there is a lack of empirical studies on the impact of composition

properties on program stability. This gap in the literature is mainly because

there is no means to properly quantify the composition properties. In this

context, the characterization of composition properties (Section 1.1.1) will

work as a basis to identify which program attributes belong to the composition

and which not. This characterization is the starting point for quantifying the

impact of composition properties on program stability and how to deal with

the program changes.

Thus, our second problem can be stated as:







Even after the composition properties are characterized, their

impact on program stability is still unclear if there is no suitable

means to measure the properties.







1.1.3

The Problem of Alleviating the Maintainability Effort

Once the identification and quantification of composition properties are carried

out, means to avoid or to alleviate unintended program changes are required.

In this context, considering that the biggest difficulty to manage composition

properties is the fact that they are not available to developers when they are

coding, the most intuitive way to alleviate the developers’ effort is to make the

information about composition properties available to them in design artifacts

since the early stages of development. In other words, developers need to be

informed about the composition properties during their maintenance tasks in

order to better prioritize program stability.

However, composition design based on mainstream modeling languages, such

as the Unified Modeling Language (UML), does not provide means to explicitly

specify the composition properties. This means that even if the developers have

access to some composition information, they are not able to identify the details

associated with the composition properties. As a consequence, developers need

to extensively reason about the properties of module composition in order

to accomplish program changes. In this context, our third problem relies on

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 24

analyzing the influence of having available composition properties specification

on program stability. Our third problem can be described as follows:













Even considering that composition properties can be measured

and their impact on program stability determined, there is a

lack of guidance on managing them in order to alleviate the

maintainability effort.













1.2

Limitations of Related Work

This section discusses related work in the context of program stability and

advanced programming techniques. Previous contributions in three key areas

of research are relevant in this context: stability of composition-enriched

programs, and quantification and specification of composition properties.

Therefore, we discuss to what extent existing work could be used to circumvent

the problems addressed in this research: (i) lack of characterization and

quantification of code composition properties, and (ii) poor specification of

composition properties. We concluded that existing work cannot be used

to address those problems and, therefore, their limitations are made clear

throughout this section. Section 1.2.1 presents the state of the art regarding

empirical studies on stability yielded by advanced programming techniques, as

well as the characterization and quantification of composition properties. In

Section 1.2.2 we discuss the literature in terms of specification of composition

properties at design level.

1.2.1

Program Stability vs. Composition Properties

There is only limited assessment of advanced programming techniques and

their composition mechanisms on program stability. The problem is that all

the empirical studies developed so far tend to carry out a narrow analysis by

focusing solely on either modularity or stability (FIGUEIREDO et al., 2008a,

APEL et al., 2008). In addition, they do not investigate the interplay of code

composition properties and program stability. Apel et al. (APEL et al., 2008),

for instance, have contributed with an evaluation towards the use of ad-

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 25

vanced programming techniques. However, they did not embrace multi-

ple composition mechanisms and did not perform any analysis of sta-

bility in terms of the composition properties. These limitations of these

works are due to the lack of means to explicitly quantify the impact of

these properties on program stability. There is no measure to character-

ize and quantify composition properties. In the state of the art, develop-

ers and researchers are forced to assume that classical modularity met-

rics can be used to determine the quality of the modular decomposi-

tion of a system (FIGUEIREDO et al., 2008a), (BARTOLOMEI et al., 2006),

(BARTSCH and HARRISON, 2006). The properties quantified by these met-

rics vary from cohesion and coupling to method complexity. However, they are

all focused on measuring properties of the module structure rather than the

properties of composition code itself (KRUEGER, 1992).

The aforementioned limitations of the existing studies and metrics open

gaps in the literature that cannot be fulfilled without: (i) characterizing

the composition properties that are harmful for program stability; and (ii)

quantifying their impact of program stability through suitable measurement

means. Without a proper characterization and quantification of composition

properties, it is not possible to objectively analyse their impact on program

stability. These topics are discussed in Chapters 3 and 4.

1.2.2

Composition Design

Some research works have explored the impact of mainstream UML models on-

software maintenance (AGARWAL and SINHA, 2003, BRIAND et al., 2005,

ANDA et al., 2006, ARISHOLM et al., 2006, DZIDEK et al., 2008). However,

there is no evidence regarding to what extent the use of UML models with ex-

plicit composition design improves the stability of programs. Genero et al.

(GENERO et al.,2008) presented a family of experiments on the investigation

whether the use of stereotypes improves the comprehension of UML sequence

diagrams. They concluded that using stereotypes improves the comprehension

of UML sequence diagrams. However, their study did not focus on the analysis

of composition design using different advanced programming techniques. In

particular, these studies can be complemented in order to derive information

impact of using composition design during maintenance programming tasks in

terms of stability.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 26

The aforementioned limitations of the existing studies cannot be overcome

without empirical findings on how and whether an enriched composition design

with suitable composition properties declarations reduces the developer’s

maintenance effort during their programming tasks. This topic is discussed

in Chapter 5.

1.3

Goals and Research Questions

This thesis aims at supporting developers in generating software with high

stability when they use composition mechanisms. The general goal is achieved

through the satisfaction of the following sub-goals.

– To perform experimental studies to evaluate the impact of using different

composition mechanisms on program stability;

– To propose a measurement framework, rooted at empirical studies, to

support the conceptual characterization and quantification of composi-

tion properties, which have influence on program stability;

– To investigate to what extent composition properties explicitly specified

at design level better support developers on constructing stable programs

and performing their changes;

– To develop a tool to support the programmers in the quantification of

composition properties;

Therefore, in order to achieve the aforementioned macro goal, the following

overall Research Question (RQ) needs to be answered:

How does the composition code affect the program stability?

This question has been decomposed in the following four research questions

(RQ1, RQ2, RQ3 and RQ4):

RQ1 How to objectively analyze the impact of using composition mechanisms

on program stability?

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 27

The goal of RQ1 is to analyze the impact of using different composition

mechanisms on program stability. In this thesis, we decided to study the

impact of the composition mechanisms supported by two techniques: AOP

and FOP, which are represented by AspectJ and CaesarJ programming lan-

guages. Despite the popularity of both programming languages, they were

mainly chosen because they support significantly-different composition mech-

anisms while having similar goals of improving programming stability. Cae-

sarJ, in its turn, supports a combination of AOP and FOP mechanisms. In

addition, their compiler implementations are open and proved to be robust

enough during our pilot assessments. Equally important, there are also public

reports of their successful adoption in industrial software development projects

(CAESARJ, 2012, KICZALES and MEZINI, 2006). In particular, AOP con-

tinues exerting an influence on mainstream technologies, such as dependency

injection with the Spring framework (SPRING, 2013). In this context, we aim

at knowing which of these particular mechanisms tend to promote positive and

negative effects over stability of programs and what the composition properties

associated with these effects are. In order to answer RQ1 a set of exploratory

studies was required. The findings and discussion derived from these studies

are presented in Chapters 3 and 4.

RQ2 Are modularity conventional metrics good indicators of composition-

enriched program stability?

The second research question (RQ2) aims at (i) evaluating whether the con-

ventional modularity indicators, represented by coupling metrics, are effective

enough to determine the stability of evolving programs, (ii) identifying what

code composition properties influence program stability, and (iii) getting in-

sights on how the impact of code composition properties can be quantified.

In other words, we aim at identifying whether the use of composition mecha-

nisms make conventional coupling measures unsuitable for indicating stability.

We discuss the relation of conventional metrics and composition-enriched pro-

gram stability in Chapter 3.

RQ3 What is the impact of composition properties on program stability?

In RQ3 we aim at investigating and quantifying what is the impact of the

composition properties on program stability. For this end, we need first

to characterize these composition properties. As a second step, a suitable

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 28

measurement framework, which is able to capture the composition properties

nuances, is proposed and used for quantifying the impact of composition

properties on program stability. The idea is to verify if composition properties

are good indicators of stability or not. This way, we can also complement our

investigation through ranking the composition properties according to their

influence on software stability. These discussions are presented in Chapter 4.

RQ4 Does the availability of richer composition modeling lead to better code

stability than mainstream modeling?

Finally, based on our conclusion in RQ3, we investigate whether the availability

of design models enriched with explicit composition information can contribute

to improve software maintenance in RQ4. For this end, we analyzed to

what extent composition properties are correlated with stability of evolving

programs. In order to carry out the analysis,we perform an investigation on

how changes are correlated with composition properties. The research aims are

twofold. First, we aim at evaluating whether the composition properties are

related to stability of evolving programs. Second, our goal is to discuss some

implementation factors that were detrimental to the program stability. RQ4 is

answered in Chapter 5.

1.4

Contributions

This section briefly describes the contributions of this thesis, including: (i)

empirical findings revealing the role of modularity in composition-enriched

program stability, (ii) a measurement framework based on a meta-model and

terminology used to characterize and quantify the impact of key properties of

composition code on program stability; and (iii) empirical findings on how to

reduce the developer’s maintenance effort during their programming tasks. An

overview of each contribution follows.

– Empirical Findings on the Role of Modularity in Indicating

Software Stability (RQ1 and RQ2). At first, by means of em-

pirical studies, we aimed at evaluating the influence of modularity on

composition-enriched program stability. The studies undertaken in this

phase (Chapter 3) were carried out using three different systems (see

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 29

Appendix A). To be more specific, these studies compare the effective-

ness of different composition mechanisms on program stability and the

role of the program modularity in its stability as well. This step is par-

ticularly important because (i) it provides concrete evidence associated

with the impact of using different composition mechanisms on program

stability, and (ii) it makes evident how to objectively indicate stability

on composition-enriched programs. These studies revealed that coupling

metrics – typically proposed and used as stability indicators – are not

good indicators of stability for advanced programming techniques as they

do not take into consideration the composition properties. These stud-

ies are related to two research questions, namely RQ1 and RQ2. Based

on these findings, developers can understand how the choice of different

composition mechanisms exerts different influences on program stability.

The findings derived from this study is presented in details in Chapter

3.

– Composition Measurement Framework (RQ1 and RQ3). The

proposed measurement framework is based on a meta-model, which is in-

dependent of particular program languages and programming techniques.

The framework plays a role by supporting the characterization and quan-

tification of composition properties by means of a language-independent-

formalism and a suite of composition metrics. These metrics are the ba-

sic means for analyzing composition properties. They can be applied to

programs developed with any advanced programming techniques. The

measurement framework is presented in details in Chapter 4. The gen-

erality of the measurement framework is evaluated by using it in the in-

stantiation and comparison of several and distinct composition-enriched

programs (Appendix A). This framework is particularly important to

developers as it serves as a means to quantify stability of programs re-

gardless of programming techniques. Finally, we design and implement a

tool, named CoMMes, which supports the use of the proposed framework.

CoMMes is a tool that supports the measurement of composition proper-

ties at the implementation level. CoMMes supports: (i) the importation of

the composition-enriched programs, and (ii) the application of the com-

position metrics. In Section 4.4 it is described each of these elements and

the architecture of the CoMMes tool.

– Empirical Findings about Maintenance Improvements with Ex-

plicit Composition Modeling (RQ4). By means of an Internet-based

experiment we investigated if the availability of design models, enriched

with composition properties, provided benefits in terms of program sta-

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 30

bility when developers are performing code changes. Our investigation

took into consideration recurring scenarios of evolving applications (see

Appendix A). The experiment consists of two different groups of develop-

ers: one group using mainstream design models and the other group using

design models enriched with composition details. This study is extremely

important as it provides evidence on how to alleviate the developers’ ef-

fort of maintaining composition-enriched programs. The discussion of the

experiment results is presented in Chapter 5.

These contributions resulted in scientific publications presented in Table 1.1.

There are also some indirect publications that emerged during the definition

and conception of this thesis, which are described in Table 1.2.

1.5

Links between Research Questions, Papers and Chapters

The chapters and papers (Tables 1.1 and 1.2) that make up the main body

of this thesis give answers to the research questions presented in Section 1.3.

Figure 1.2 illustrates the relationship between both research questions and

chapters and research questions and their main publications. Each chapter and

paper included in the thesis covers some aspects of the research questions and

goals. RQ1 and RQ2 are covered in papers 4 and 5, which discuss if coupling

metrics are good indicators of program stability and how program stability

can be better quantified (Chapter 3). RQ2 is also partially covered in paper

3. RQ3 addresses the impact of composition properties on program stability.

This subject is discussed in papers 1,3,5 and 8 and Chapter 4 of the thesis.

RQ4 is concerned with the impact of using models with explicit composition

properties in software maintenance tasks. This topic is covered in paper 2 and

Chapter 5.

1.6

Thesis Outline

The structure of the thesis is divided into six different chapters. Figure 1.3

illustrates the flows of ideas throughout the three core chapters (see the

numbered black circles): (1) initially, we identified that modularity metrics

are not good indicators of stability and for this reason composition metrics

are needed; (2) to overcome this need a measurement framework rooted on

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 31

RQ1

RQ2

RQ3

RQ4

Chapter 3:
The Role of Modularity in Program Stability

SBES 2010

PublicationsThesis

ESEM 2012

AOSD 2013

COMPSAC 2012
SBES 2012
JSS

Chapter 4:
Composition Measurement Framework

Chapter 5:
Design Model with Composition Properties

Figure 1.2: The relationships among RQs, Chapters and Main Publications

a set of composition metrics was defined and evaluated on the top of three

evolving applications (Appendix A), where we verified that the composition

metrics are good indicators of stability; and, finally (3) we gathered evidence

about the benefits of explicit composition modeling and their usefulness to

help participants in code maintenance tasks mainly with respect to stability.

Chapter 5: Online Experiment
on Explicit Composition
Modeling and Software
Maintenance

Chapter 3: of
modularity and stability when
using composition mechanisms.

Interplay

Chapter 4: Definition and
Evaluation of a Composition
Measurement Framework
regarding the indication of program
stability

Figure 1.3: Thesis Overview

Chapter 1 has presented the introduction, discussed the problem that moti-

vated this research, the purpose of the research, research questions and limita-

tions of related work. In Chapter 2, we set the present research in the context

of a literature review. In Chapter 3, we study the role of modularity in program

stability. A measurement framework is presented and evaluated in Chapter 4.

In Chapter 5, the evaluations are carried out in terms of the influence of ex-

plicit composition models on software maintenance tasks. Chapter 6 contains

discussions of the results with references to research questions and objectives.

In addition to the research contributions, directions for future research and

conclusions are also included in this chapter.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 32

Table 1.1: Direct Publications

Publication RQ#

1 Francisco Dantas, Alessandro Gurgel, Alessandro Garcia,
Camila Nunes e Cláudio Sant’Anna. On the Impact of Feature In-
tegration Properties on Software Product Lines: A Study of Reuse
versus Stability. Journal of Systems and Software, 2012 (submit-
ted)

3

2 Francisco Dantas, Alessandro Garcia, Jon Whittle, João
Araújo. Enhancing Design Models with Composition Proper-
ties: A Software Maintenance Study. Proceedings of the Inter-
national Conference on Aspect-Oriented Software Development
(AOSD’13), Fukuoka, Japan, March 2013.

4

3 Francisco Dantas, Alessandro Garcia and Jon Whittle. On the
Role of Composition Properties on Evolving Programs. Proceed-
ings of the 6th International Symposium on Empirical Software
Engineering and Measurement, ESEM.12, Lund, Sweden, Septem-
ber 2012.

2 and
3

4 Francisco Dantas, Alessandro Garcia. Software Reuse versus
Stability: Evaluating Advanced Programming Techniques. Pro-
ceedings of the ACM SIGSoft XXIII Brazilian Symposium on Soft-
ware Engineering (SBES’10), Salvador, Brazil, September 2010.

1

5 Francisco Dantas and Alessandro Garcia. Stability of Product
Lines with Composition Filters: An Exploratory Study. Proceed-
ings of the 1st International Workshop on Empirical Evaluation
of Composition Techniques (ESCOT 2010), 2010.

2 and
3

6 Francisco Dantas, Eduardo Figueiredo, Alessandro Garcia,
Cláudio Sant’Anna, Uirá Kulesza, Nélio Cacho, Sérgio Soares
and Tháıs Batista. Benchmarking Stability of Aspect-Oriented
Product-Line Decompositions. In: 4th Workshop on Assessment
of Contemporary Modularization Techniques (ACoM.10), 2010,
Jeju Island. Proceedings of the 4th Workshop on Assessment of
Contemporary Modularization Techniques (ACoM.10), 2010. p.
7-12.

1

7 Francisco Dantas (student), Alessandro Garcia (supervisor).
Reuse vs. Maintainability: Revealing the Impact of Composition
Properties. Proceedings of the International Conference on Soft-
ware Engineering (ICSE’11) - Doctoral Symposium, Hawaii, USA,
May 2011.

1,2
and 3

8 Francisco Dantas, Alessandro Gurgel and Alessandro Garcia.
Towards a Suite of Metrics for Advanced Composition Mecha-
nisms. Proceedings of the International Workshop on Empirical
Evaluation of Software Composition Techniques (ESCOT 2011),
2011, Lancaster (UK).

2 and
3

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 1. Introduction 33

Table 1.2: Indirect Publications

Publication

9 Bruno Cafeo, Francisco Dantas, Alessandro Gurgel, Everton
Guimarães, Elder Cirilo, Alessandro Garcia, Carlos Lucena. Towards In-
dicators of Instabilities in Software Product Lines: An Empirical Evalua-
tion of Metrics. Proceedings of 4th International Workshop on Emerging
Trends in Software Metrics (WeTSOM 2013) at ICSE 2013, San Fran-
cisco, USA, May 2013. (accepted to appear)

10 Bruno Cafeo, Francisco Dantas, Alessandro Gurgel, Everton
Guimarães, Elder Cirilo, Alessandro Garcia, Carlos Lucena. Analysing
the Impact of Feature Dependency Implementation on Product Line Sta-
bility: An Exploratory Study. ACM SIGSoft XXVI Brazilian Symposium
on Software Engineering (SBES’12), Natal, Brazil, September 2012.

11 Renato Novais, Camila Nunes, Caio Lima, Elder Cirilo, Francisco Dan-

tas, Alessandro Garcia, Manoel Mendonça. On the Proactive and Inter-
active Visualization for Feature Evolution Comprehension: An Industrial
Investigation. Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE’12), Software Engineering in Practice, Zurich,
Switzerland, June 2012.

12 Leandra Mara, Gustavo Honorato, Francisco Dantas, Alessandro Gar-
cia, Carlos Lucena. Hist-Inspect: A Tool for History-Sensitive Detection
of Code Smells. Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), Tools Session, Porto de Gal-
inhas, March 2011. (extended abstract)

13 Leandra Mara, Gustavo Honorato, Francisco Dantas, Alessandro Gar-
cia, Carlos Lucena. Hist-Inspect: Tool Support for History-Sensitive
Analysis of Source Code. Proceedings of the ACM SIGSoft XXIII Brazil-
ian Symposium on Software Engineering (SBES’10), Salvador, Brazil,
September 2010.

14 Leandra Mara da Silva, Francisco Dantas, Gustavo Honorato, Alessan-
dro Garcia, Carlos Lucena.Detecting Smells in Evolving Source Code:
What the History Can Tell? Proceedings of the 4th Brazilian Sympo-
sium on Software Components, , Salvador, Brazil, September 2010.

15 Francisco Dantas, Camila Nunes, Alessandro Garcia, Uirá Kulesza and
Carlos Lucena. Stability of Software Product Lines with Class-Aspect
Interfaces: A Comparative Study. Proceedings of the 4th Workshop on
Assessment of Contemporary Modularization Techniques (ACoM.10),
2010, Jeju Island.

16 Alessandro Gurgel, Francisco Dantas and Alessandro Garcia. Um
Estudo de Composições de Padrões de Projeto em CaesarJ. In: V Latin
American Workshop on Aspect-Oriented Software Development (LA-
WASP 2010), 2010, Salvador. Proceedings of the IV Latin American
Workshop on Aspect-Oriented Software Development (LA-WASP 2010),
Salvador, Brazil, September 2010.

17 Nélio Cacho, Francisco Dantas, Alessandro Garcia and Fernando Cas-
tor. Exception Flows made Explicit: An Exploratory Study.Proceedings
of the ACM SIGSoft XXIII Brazilian Symposium on Software Engineer-
ing (SBES’09), Fortaleza, Brazil, October 2009. (accept. rate 18%)

18 Alessandro Gurgel, Francisco Dantas, Alessandro Garcia and Claudio
Sant’Anna. Integrating Software Product Lines: A Study of Reuse versus
Stability. Proc. of the 36th IEEE Computer Software and Applications
Conference (COMPSAC 2012), Izmir, Turkey, July 2012.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

