

 Lincoln David Nery e Silva

A Scalable Middleware for Structured Data
Provision and Dissemination in Distributed

Mobile Systems

TESE DE DOUTORADO

DEPARTAMENTO DE INFORMÁTICA
Programa de Pós-Graduação em Informática

Rio de Janeiro

May 2014

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Lincoln David Nery e Silva

A Scalable Middleware for Structured Data Provision
and Dissemination in Distributed Mobile Systems

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em

Informática of the Departamento de Informática, PUC-Rio as partial

fulfillment of the requirements for the degree of Doutor em

Informática

Advisor: Prof. Markus Endler

Rio de Janeiro

May 2014

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Lincoln David Nery e Silva

A Scalable Middleware for Context Information Provision

and Dissemination in Distributed Mobile Systems

Thesis presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Científico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Prof. Markus Endler

Advisor
Departamento de Informática – PUC-Rio

Prof. Marco Dimas Gubitoso
USP

Prof. Renato Fontoura de Gusmão Cerqueira
IBM

Prof. José Viterbo Filho
UFF

Prof. Edward Hermann Hauesler
Departamento de Informática – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, May 21th, 2014

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

 Lincoln David Nery e Silva

He received the B.S degree in Computing Science from Federal
University of Paraíba (UFPB), in 2005, and M.S. degree in
Informatics from Federal University of Paraíba (UFPB), in 2008.

Bibliographic data

Silva, Lincoln David Nery e

 A scalable middleware for structured data provision and
dissemination in distributed mobile systems / Lincoln David Nery e
Silva ; Advisor: Markus Endler. – 2014.
 110 f. : il. ; 30 cm

 Tese (doutorado)–Pontifícia Universidade Católica do Rio de
Janeiro, Departamento de Informática, 2014.
 Inclui bibliografia

 1. Informática – Teses. 2. Computação móvel. 3. Ciência do
contexto. 4. Middleware para comunicação. 5. Difusão de informação
de contexto. I. Endler, Markus. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

 to my grandfathers, Leônidas and Nicholson (in memoriam)

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Acknowledgments

I would like to thank all my professors for all the hard work and dedication. From

my neighborhood elementary school principal and philosophy teacher,

Francisca Rolim, who taught me to have critical sense and always push myself

to higher limits. My secondary school teacher, Marcus Varandas, who

introduced me to my first programming language and made me love Informatics.

Guido Lemos, for his friendship, wisdom and for give me the first opportunity to

work in the academy, which is the reason I am a Ph.D today. To my advisor

Markus Endler, the most patient, comprehensive, dedicate friendly and wise

person I have met in the last years – really, thank you Markus, you are a saint!

To all my friends from LAC, PUC-Rio and Rio, for the friendship, support, help

and availability to help me during all this years of work: thank you, guys. To my

friends from UFPB, Lavid and João Pessoa that even by distance were always

worried, helping and being my friends – even for asking too much how the thesis

was.

I would like to explicitly mention my two dear friends, Kelly and Tati, for all the

prayers and constant incentive to make me never give up. Also to all my friends

who were always happy with every little new step in the conclusion of this thesis

and, of course, saying their prayers in their own way and religion. Thank you

guys, sure it helped! As for every thing conquered in my life, I am sure it was

only possible by the constant care, strength and love I always receive from God.

To my parents, brothers, grandparents and all family, that even without an exact

comprehension of the nature and the demands of my Ph.D, gave support and

care. In particular, I would like to thank all the prayers of my worried mother.

And, of course, to all financial support I received from my graduation in a federal

university to the scholarship provided by CNPq, essential to make the

conclusion of this thesis possible.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Abstract

Silva, Lincoln David Nery e; Endler, Markus. A Scalable
Middleware for Structured Data Provision and Dissemination
in Distributed Mobile Systems. Rio de Janeiro, 2014. 109p. DSc

Thesis - Departamento de Informática, Pontifícia Universidade

Católica do Rio de Janeiro.

Applications such as vehicle fleet monitoring and logistic systems,

emergency response coordination, environmental monitoring or mobile

workforce management, employ mobile networks as means of

communication, information sharing and coordination among a possibly

very large set of mobile nodes interconnected by a Wide Area Network

(WAN). The majority of those systems thus requires real-time tracking of

the mobile nodes context information, interaction with all participant

nodes, as well as means of adaptability in a very dynamic scenario,

where it is not possible to predict when, where and for how long the

nodes will remain connected. Despite being a subject of much research,

current solutions still lack essential features required for communication

with mobile nodes, such as reliable message delivery, handover support,

resilience to intermittent connectivity, IP address changes and firewall

transversal. This thesis proposes a data management model that enables

deployment of a network of Data Provider components with reliable and

on-time dissemination and transformation of information among

thousands of mobile nodes interconnected through wireless internet.

Performance tests indicate that our model scales to thousands of mobile

nodes and supports reliable, high throughput and on-time data

dissemination between several thousands of mobile Data Providers and

Data Consumers.

Keywords

mobile computing, context-awareness, communication

middleware, context information dissemination

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Resumo

Silva, Lincoln David Nery e; Endler, Markus. Um middleware
escalável para provisão e disseminação de dados
estruturados em sistemas distribuídos móveis. Rio de Janeiro,

2014. 109p. Tese de Doutorado - Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

 Aplicações para o monitoramento de frotas de veículos e sistemas

de logística, coordenação em situações de emergência, monitoramento

ambiental ou de gestão de força de trabalho móvel podem usar redes

móveis como meio de comunicação, troca de informações e de

coordenação entre um número possivelmente grande de nós móveis

interligados por uma rede WAN. A maioria desses sistemas requer o

monitoramento em tempo real das informações de contexto dos nós

móveis, interação com todos os nós participantes, bem como meios de

adaptação num cenário muito dinâmico, onde não é possível prever

quando, onde e por quanto tempo os nós permanecerão conectados. As

soluções atuais ainda não têm recursos essenciais necessários para a

comunicação com os nós móveis, tais como a entrega confiável de

mensagens, suporte a handover, resistência a conectividade

intermitente, mudanças de endereço IP e firewall transversal. Esta tese

propõe um modelo de gestão de dados que permite a implantação de

uma rede de componentes de provedores de dados com disseminação e

transformação rápida e confiável de informações entre milhares de nós

móveis interligados através de internet sem fio. Os testes de

desempenho indicam que o nosso modelo consegue escalar para

milhares de nós móveis e suporta disseminação confiável, rápida e com

alta taxa de transferência da informação entre milhares de provedores de

contexto e consumidores de contexto móveis.

Keywords
Computação Móvel; Ciência do Contexto; Middleware para

Comunicação; Difusão de Informação de Contexto;

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Summary

1 Introduction 13	
1.1. Motivation and Scenario 15	
1.2. Contributions 17	

2 State of Art on Large-Scale Mobile Communication 19	
2.1. Publish-Subscribe Systems 19	
2.2. DDS Systems 22	
2.3. Context Management 25	
2.3.1 Context Data Dissemination 27	

3 Related Work 28	
3.1. Desired Features 28	
3.2. Discussion on Related Work 30	
3.3. Comparison of Related Work 33	

4 Proposed Model 35	
4.1. Model Concepts and Overview 35	
4.2. Underlying Architectural Model and Features 37	
4.3. Mobile-related Requirements 43	
4.4. Discussion 46	
4.5. Assumptions 48	

5 Implementation 49	
5.1. Mobile Connection Protocol – MR-UDP 50	
5.2. Core Network 57	
5.3. Handling Mobile Handover 60	
5.4. Nodes IDs and Message Delivery 61	
5.5. Group Communication and Management 62	
5.6. Universal DDS Interface and General Application Topics 63	
5.7. ClientLib 64	
5.8. ClientLib’s ExtendedAPIs 66	
5.9. GroupAPI 68	

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

5.10. PubSubAPI 69	
5.11. Structured Data Dissemination Service – SDDS 71	

6 Evaluation and Tests 75	
6.1. Fleet Tracking and Management Application 75	
6.2. Data Dissemination Tests 86	
6.3. Features Evaluation 101	

7 Conclusion and Future Work 102	

8 References 105	

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

List of Figures

Figure 1 – Context-aware mobile application example. 14	
Figure 2 – Scenario illustration picture. 15	
Figure 3 – Publish-Subscribe communication paradigm. 19	
Figure 4 – Architecture of DDS. Source: [22] 23	
Figure 5 – Data Sharing Network model overview. 37	
Figure 6 – Message exchange between mobile nodes through brokers on a

fixed network. 39	
Figure 7 – Information hierarchical transformation example. 42	
Figure 8 – Information hierarchical transformation second example. 43	
Figure 9 – Model implementation overview. 49	
Figure 10 – Schematic view of MR-UDP in action with two clients. 55	
Figure 11 – Nodes and protocols used in SDDL. 57	
Figure 12 – ClientLib’s internal APIs layers. 66	
Figure 13 – Message class hierarchy example. 67	
Figure 14 – PubSubAPI example. 69	
Figure 15 – Information URI example. 73	
Figure 16 – SDDS interactions upon new context subscription. 73	
Figure 17 – Fleet Management Application architecture. 75	
Figure 18 – Fleet Management Application Controller. 77	
Figure 19 – Mobile Client App prototype running in Android. 77	
Figure 20 – Core and Unicast round trip delays. 80	
Figure 21 – Broadcast round trip delays. 80	
Figure 22 – Architecture of Test 1 – part 1. 88	
Figure 23 – Architecture of Test 1 – part 2. 90	
Figure 24 – Architecture of Test 1 – part 2, now with 3 Gateways. 91	
Figure 25 – Test 3 architectures (a) with 2 Gateways and (b) with 3 Gateways.

 93	
Figure 26 – Test 4 architecture. 96	
Figure 27 – Test 5 architecture (a). 97	
Figure 28 – Test 5 architecture (b). 98	

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

List of Tables

Table 1 – Features comparison of related works. 34	
Table 2 – Round Trip Delays of Unicast to MNs of each home machine (in ms). 82	
Table 3 – Round trip delays of unicast messages (to each home machine) under

different handover probabilities (in ms). 84	
Table 4 – Percentage of “missing” HT messages after stopping the MN-Simulator

programs. 84	
Table 5 – Round trip delays of unicast and groupcast messages (in ms). 85	
Table 6 – Parameters of Test 1 – part 1. 88	
Table 7 – Test 1 – part 1 results. 89	
Table 8 – Parameters of Test 1 – part 2. 90	
Table 9 – Test 1 – parte 2 results. 90	
Table 10 – Parameters of Test 1 – part 2 with 3 Gateways. 91	
Table 11 – Test 1 – parte 2 results with 3 Gateways. 91	
Table 12 – Parameters of Test 2. 92	
Table 13 – Test 2 results. 92	
Table 14 – Parameters of Test 3. 93	
Table 15 – Test 3 results. 94	
Table 16 – Parameters of Test 4. 96	
Table 17 – Test 4 results. 96	
Table 18 – Parameters of Test 5. 98	
Table 19 – Test 5 results. 98	
Table 20 – Parameters of Test 6. 99	
Table 21 – Test 6 results. 99	
Table 22 – Parameters of Test 7. 100	

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 13

1
Introduction

Advances in mobile communication, GPS positioning and sensor

technology networks are some of the driving forces that push computing to

mobile-networked systems, enabling new services and applications. Many

current distributed applications such as transportation and logistics, emergency

response, environmental monitoring, homeland security or mobile workforce

management, employ mobile networks as means of enabling communication,

collaboration and coordination among the mobile nodes – which might be people,

vehicles or autonomous mobile robots [8]. With the rapid increase of embedded

mobile devices many of such applications are faced with the challenge to support

several thousands of nodes, enabling both real-time tracking of their

context/location information, and also efficient means of interaction among the

mobile nodes [9], allowing the dissemination of wide interest information (e.g.,

emergency and traffic alerts, weather conditions, etc.) and direct communication

between two nodes or a sub-set of all nodes for private communication (e.g., text

messages). Moreover, in many of the systems the set of mobile nodes connected

to the network can vary constantly, as nodes may join and leave the system at

any time, either due to application-specific circumstances or because of

intermittent wireless connectivity. Such large-scale mobile applications thus

require a scalable communication infrastructure that supports reliable and on-

time data dissemination among large sets of mobile nodes/devices. For example,

in emergency response applications, emergency situations must be rapidly

detected and members of the rescue team be quickly informed about its

occurrence, as well as the actions that should be taken to lessen any possible

effect. Moreover, the system must have monitoring and dynamic adaptation

capabilities that enable automatic adjustment of the infrastructure services to the

very dynamic data communication load caused by the mobile nodes. To ease the

development of such applications, it is essential to use a middleware that

provides some data management services, which will eliminate from the

application developer most of the burden code related to data acquisition,

transformation and dissemination.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 14

It is important to note that despite their recent evolution, mobile devices still

have stringent resource limitations when compared to stationary nodes, notably,

limitations of energy supply (i.e., battery) and network reliability. So, middleware

for distributed mobile applications may have additional mechanisms to handle

those limitations.

Middleware to support communication in distributed mobile applications are

well known and are being explored by research projects for many years [1, 2, 3,

4]. Using such systems it is possible for the participant communicating nodes to

share data among them with some guaranties like fast, reliable and/or secure

dissemination.

A specific type of data the nodes may share is their context information,

which may be any information representing the actual context of the device

running the application (e.g., CPU usage, free memory status, network speed,

geographical location, or other sensor data), of the user that owns the device (its

gender, age, profile or preferences) or the environment where the device is

located (such as the environmental temperature, pressure, noise level, time,

nearby nodes, etc.). The applications that share this type of information are

known as Context Aware Application [5] and they usually use those data to adapt

its behavior according to the current context of the user device at the time of its

execution. For example, an application (Figure 1) could use the user food

preferences, combined with the user’s location, date, time of the day and weather

conditions to suggest nearby restaurants for lunch. This application can also

check for reviews posted by others users to make a choice, using previously

shared information. There are many examples and scenarios exploring context-

aware applications [6, 7].

Figure 1 – Context-aware mobile application example.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 15

1.1.
Motivation and Scenario

A common characteristics of the distributed applications considered in our

work is the fact that the mobile nodes periodically produce some data about their

state and/or their surrounding environment (i.e., its context), as for example, their

position, speed or ambient temperature and disseminate this data so that it can

be processed or visualized by other nodes – both stationary or mobile ones. We

also assume that each mobile node has some wireless network interface that is

capable of running the IP protocol, which in fact, is the case for most current

wireless and mobile networks. Examples of such applications include on-line

driver assistance, fleet monitoring and management, remote car monitoring

services, or police task force command and control systems. In several of such

applications the mobile nodes may also receive commands/instructions from

remote nodes (e.g., a Control Center or even other mobile nodes) that influence

its operations state or its future mobility pattern. For all these applications, the

main requirement is that, as long as the mobile node has some connectivity, data

and messages produced by it must be reliably transferred and disseminated on-

time to all interested nodes, i.e., with minimum possible delay1.

In our work, most mobile nodes we are considering are connected vehicles.

However, note that connected vehicles are a vast field of research, with a number

of technologies associated with it [10, 11, 12, 13]. Nevertheless, in our work we

assume a connected vehicle is any vehicle that carries a connected mobile

device, which may be a smartphone, tablet or any embedded device. Many are

the benefits a vehicle can leverage while connected. For example, if vehicles are

periodically sharing their location, they can infer traffic conditions and choose

better routes to avoid traffic.

Figure 2 – Scenario illustration picture.

1 This minimum delay, in fact, is largely determined by the latency of the wireless connection.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 16

Our scenario is defined by a concrete Mobile Vehicle Tracking and

Management system to be used by a major Brazilian gas distribution company,

which operates throughout the entire country. Through this system (please see

Figure 2), the company's Operations Center application should be able to track

the trajectories of its trucks in real-time, in order to optimize the trucks' itineraries,

to detect and notify drivers about obstructions or traffic jams on roads, to predict

and minimize delays, detect and notify truck drivers about bad weather

conditions, and to monitor individual driving behavior (e.g., elapsed time on both

planned and involuntary stops, detours, high-speed driving, frequent acceleration

and de-acceleration, and others). In order to monitor a single driver’s driving

behavior the application just needs that single truck’s context information data.

However, to detect traffic jams or weather-related driving conditions (e.g.,

slippery roads, fog, etc.), the context information data from various trucks (and

even from roadside sensors) must be combined and analyzed to infer such

higher-level information – e.g., the location variation in time of trucks on a road

could be processed to calculate its speed, which can indicate a traffic jam if that

velocity is below a defined threshold. Furthermore, all the data must be quickly

processed and combined with other information data corresponding to the same

period of time to avoid inference of wrong information (e.g., using old speed

information detecting an inexistent traffic jam). Moreover, the application must

also support communication with drivers – to send them instructions or alerts –

both individually and to subgroups of drivers. These groups of mobile nodes (i.e.,

the trucks) are typically determined by the geographic region in which the nodes

are currently located, or by any other context-based criteria. For communication

with the drivers/vehicles, the company will use several cellular operators, since in

each region of the country there are significant differences of connectivity quality

and coverage among the operators, especially in remote areas. Thus, it is

expected that the mobile nodes may obtain several IP addresses along their

journeys, may experience temporary data link disconnections, and that the links

have to cross the cellular operator-specific firewalls.

The company’s current fleet has almost 10,000 trucks and this number

grows every year. Additionally, there are other third-party transport companies

that serve the gas company, and whose trucks it must monitor and manage as

well, which increases the total number of trucks to be managed by the application

by almost 90,000 trucks. In spite of such large numbers, the system must enable

real-time monitoring (i.e., on-time dissemination of context information data), fast

and reliable detection of abnormal situations, as well as scalable communication

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 17

services. This implies that no context information or application message should

be missed, i.e., communication should also be reliable.

So, the described scenario presents the problem of how to perform a

reliable and scalable on-time dissemination of data among thousands of

producers and/or consumers mobile nodes, distributed across several networks

(including wireless networks), with no guarantee of availability of their

connectivity.

1.2.
Contributions

Much research has been done in communication middleware for large-

scale applications, but only few support large-scale mobile networks with QoS

guarantees for the mobile communications and data dissemination, in particular

reliable and low latency message delivery over the wireless connections.

In this thesis we will present some existing communication middleware and

models for large-scale applications supporting mobile nodes. We will then

propose a new model capable of reliable and on-time dissemination data for

mobile applications, even in environments with limited wireless network

capabilities – this is our hypothesis. Our data management model will be

implemented as a middleware and be evaluated with respect to its scalability and

communication reliability features. Then, the main contributions of this thesis are

the following:

1. Describe the features and implementation of a Mobile Reliable UDP

protocol for mobile nodes which transparently handles short-lived

temporary mobile node disconnections and ensures reliable packet

delivery across these intermittent disconnections;

2. We present a communication middleware model and

implementation, give evidence of its scalability, and show how it

supports efficient and reliable unicast, groupcast and broadcast

message delivery to mobile nodes in spite of IP address changes,

temporary disconnections, and Firewall/NAT traversal by using our

MR-UDP protocol.

The thesis is organized as follows: after the introduction in this chapter, in

Chapter 2 we will present state-of-art systems for large-scale mobile

communication. In Chapter 3 we present and discuss related work and their

applicability for our proposed model. Our proposed model is specified in Chapter

4. In Chapter 5 we describe the implementation of our model in details and

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Introduction 18

present proof-of-concept application and several performance tests and

evaluation in Chapter 6. Finally, in Chapter 7 we present our conclusion remarks

and points to future works.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 19

2
State of Art on Large-Scale Mobile Communication

A lot of research already has been done for large-scale communication on

distributed mobile applications. As pointed in [14] the Internet has considerably

changed the scale of distributed systems, which now may involve thousands of

entities widely distributed all over the world. Such distributed systems are

intrinsically heterogeneous in many aspects. Usually, nodes are running on

different devices, running different operating systems, different software versions,

connected to different networks, static or mobile, and must seamlessly be

integrated in the communication network despite any specific characteristic or

limitation. To cope with such large-scale communication in a heterogeneous

environment we need systems that provide mechanisms well adapted to this

situation.

2.1.
Publish-Subscribe Systems

It is widely agreed that Publish-Subscribe systems are well suited to be

used in systems that deal with the sharing of data among mobile nodes. Due to

its loosely coupling, it is well tailored to communication in large-scale distributed

applications [14].

Figure 3 – Publish-Subscribe communication paradigm.

A publish-subscribe system is characterized by the asynchronous

exchange of messages (events) between distributed nodes – which may be

mobile nodes. The main mechanics of a Publish-Subscribe system is depicted in

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 20

Figure 3. With the help of a middleware service, consumer nodes (commonly

called subscribers) indicate their interest in some kind of information type through

a subscription, where usually some filtering expression – or criteria – is passed

as an argument of the subscription operation. A subscription may be undone by

an unsubscription. The nodes that produce data items (events) are called

publishers and the middleware service is responsible to deliver (notify) new

events to all the subscribers whose filtering expression (subscription criteria)

matches the attributes of the published data items.

This communication paradigm promotes the decoupling between publishers

and subscribers by the middleware service, which can be decomposed in three

main dimensions:

• Space decoupling: The publishers and subscribers do not need to

know and to reach each other. It is the middleware’s task to

guarantee that publications matching subscriptions reach the

interested subscribers. So, publishers do not need to know which

subscribers are receiving its events, and vice-versa. This means

that no node needs to hold any reference or direct connection to

any other node, which is a good feature when dealing with a large

and dynamic set of nodes.

• Time decoupling: The parts involved in the communication do not

need to be active at the same time to communicate. The

subscribers may be temporally disconnected and after reconnection

should receive all pending notifications. At the same time, when a

notification reaches its destinations, the actual publisher of the

events may be disconnected itself. Thus, time decoupling supports

asynchronous communication, which is very suitable in mobile

environments, where the communicating nodes may join and leave

the network at unpredictable moments.

• Synchronization decoupling: The interaction between parts is

asynchronous and does not need to be instantaneous. After a

publication, the publisher continues its execution and the publish-

subscribe system will notify all the corresponding subscribers when

possible. Similarly, the consumption of the data item by the

subscriber may occur asynchronously, by receiving a notification

while executing any parallel activity. This is interesting in a large-

scale communication because it separates the communication

process from the normal application execution itself, so the

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 21

communication process does not interfere on the actual application

workflow.

This decoupling between the production and consumption of the

information also helps to increase the scalability, since the parts are only

responsible for the publications and subscriptions, leaving all the hard work of

matching the published data items with the subscription criteria (filtering

expressions) to the middleware.

A Publish-Subscribe system can be classified in three categories. Each one

presents some differences in regard to the supported subscription (and

notifications), but all follow the general idea of decoupled communication

explained so far [14].

In a Topic-Based publish-subscribe the subscriptions are made by

designating a topic which the subscriber is interested in receive notifications.

Usually the topic is represented by a keyword. When a publication is made to the

same topic, all subscribers are notified. For example, a subscriber indicates its

interest in the topic “photos” and once a new photo is published on this topic, the

middleware will deliver it to all subscribes. In practical terms, a topic-based boils

down to creating a specific tagged communication channel for every keyword

(i.e., topic).

Content-Based Publish/Subscribe systems do not matches its publishers

and subscribers by a tag on the data, but by some properties of that data. For

example, a subscriber may only be interested in photos of wild animals. The use

of a language for expressing the subscription (or filtering) criteria is essential in

this kind of communication, so that at subscription one can express what

information is needed. The matching is not as trivial as in the topic-based variant,

and the more powerful the language is, more computational expensive will it be to

check for the matching subscriptions at every publication. While in the topic-

based variant all publications in the same topic cause notifications to be

delivered, in the content-based case, every publication must be checked against

every subscription expression.

Yet another variant is the Type-Based Publish/Subscribe, which extends

the topic-based scheme by defining the type of publication that is desired. For

example, the photos topics may involve many picture formats (e.g., jpg, png and

others), but some subscriber may have only the rendering capability for just the

jpg type, and so this type will be informed on the subscription.

Because of it’s decoupled nature, the publish-subscribe communication is

well suited for mobile communication. Using mobile nodes as publishers and

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 22

subscribers, all the computational expensive and resources consuming

communication and subscription matching process will be done by the publish-

subscribe middleware’s infrastructure, which typically runs on servers in a cloud,

a cluster or a private backbone network. The mobile nodes will only use their

resources when there is need to publish a data item or when a notification is

received. As already mentioned, they do not even need to be always active (or

connected) to have its publications disseminated or notifications received, since

the middleware will intermediate all communication asynchronously.

Usually, the publishers produce new events with some interval between

publications, i.e., their basic behavior (and most middleware implementations)

does not focus a constant flow of events, which is the case of the dissemination

of context information for our proposed model in the previous chapter. However,

some research already identified this need and proposed some solutions [14, 15,

16].

However, despite the huge number of research and available

implementations, not all publish-subscribe systems are specifically tailored to

mobile communications and mobile networks. Some systems may offer some

Quality of Service (QoS) guarantees, but, in most cases, these guarantees are

given only for the interaction among stationary nodes interconnected through a

reliable and high-performance wired network infrastructure [17, 18, 19].

2.2.
DDS Systems

Much research has been done in publish-subscribe, but only few support

large-scale mobile networks and at the same time offer some QoS guarantees for

the mobile communications, specially reliability and low latency message

delivery. On the other hand, OMG’s Data Distribution Service for Real-time

Systems (DDS) standard [20] offers high performance communication

capabilities, and is currently used for several real-world distributed mission-critical

applications.

DDS specifies a fully decentralized (peer-to-peer), scalable middleware

architecture for asynchronous, publish-subscribe-like data dissemination,

supporting several Quality of Service (QoS) policies, like best effort or reliable

communication, support for late joiners, data flow priorization, and several other

message delivery optimizations, etc. [21]). Unlike other publish-subscribe

systems, DDS provides explicit control over the communication properties and

most efficient use of the available network resources, through its QoS policies

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 23

and fine-tuning of its underlying routing services (e.g., its QoS policies deadline,

latency budget or transport priority, etc.), that are critical for high performance

and almost real-time communications. Hence, since it combines the

asynchronous communication paradigm with efficient network usage and

guaranteed message delivery policies, DDS should be useful also for large-scale

mobile applications.

DDS specifies the Data-Centric Publish-Subscribe (DCPS) model, which

defines standard interfaces that enable applications running of heterogeneous

platforms to read/write data from/to a shared global data space. The DCPS

model is the core of a DDS system. Applications willing to publish some data

should declare its intent in that global data space, specifying the topics of interest

that are related to the data to be produced. Similarly, applications that want to

subscribe to some data, uses the same data space to declare their intent to

receive notification on specifics topics. The underlying DCPS middleware

propagates data samples written by publishing applications into the global data

space, where they are disseminated to subscribing applications [20]. The DCPS

model decouples the declaration of information access intent from the information

access itself [23], thereby enabling the DDS middleware to support and optimize

QoS-enabled communication.

Figure 4 – Architecture of DDS. Source: [22]

As shown in Figure 4, a typical DCPS model is comprised of the following

entities that provide functionalities for a DDS application to publish/subscribe data

samples of a certain topic of interest [22].

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 24

• Domain. A domain is a virtual data (and name) space that connects

publishing and subscribing nodes of applications. Only applications

within the same DDS domain can communicate. This helps to

isolate and optimize communication within a community that shares

common interests.

• Publisher/Subscriber and DataWriter/DataReader. A Publisher is

a factory that creates and manages a group of DataWriter entities

with similar QoS policies. A Subscriber is a factory that creates and

manages DataReader entities. DataWriter/DataReader entities are

the actual data objects required for application to publish/receive

data samples.

• Topic. A topic connects a DataWriter with a DataReader. Data flow

can happen only when the topic published by a DataWriter matches

the topic subscribed to by a DataReader. Communication via topics

is anonymous and transparent, i.e., publishers and subscribers

need not be concerned with how topics are created nor who is

writing/reading them since the DCPS middleware manages these

issues.

However, in spite of its advantages, DDS cannot be efficiently deployed

neither directly on mobile nodes nor in wide-scale wireless networks or WAN.

The main reasons are its extensive use of IP multicast in DDS domains, the lack

of proper mechanisms to handle intermittent connectivity and IP address

variability, and the problem that resource-limited (mobile) devices cannot function

well as DDS peers, since they must cache and route data for other peers.

During the development of our work, we have made some tests and

concluded that the main DDS implementations available (we mostly used

CoreDX2 and OpenSplice3) show very good high-performance topic-based

communication in a private and well-controlled and configured network [24]. The

support for communication between two LAN is precarious and promotes the lost

of some QoS guarantees, as pointed in [25]. CoreDX has one of the best mobile

implementation, however, the mobile node must be in the same LAN of the other

nodes. Consequently, DDS cannot be used in a large-scale mobile

communication scenario distributed over many mobile networks.

2 http://www.twinoakscomputing.com/coredx

3 http://www.prismtech.com/opensplice

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 25

For our scenario, we envision a communication middleware that could

provide the best of publish-subscribe and DDS systems for the communication of

mobile nodes. We would like the decoupling nature of publish-subscribe with the

QoS guarantees of the DDS to work with thousands of mobile nodes distributed

over many mobile networks presenting intermittent connectivity.

2.3.
Context Management

Context is "any information that can be used to characterize the situation of

an entity (person, place, physical or computational object) that is considered

relevant to the interaction between the entity and application." [1] The context

information is primarily used to adapt a context-aware application’s behavior

according to the actual situation at the moment of its execution. For example, a

personal meal assistance application could list food options from restaurants

nearby the device running the application, taking into account the time of the day

(i.e., food appropriate for breakfast, snacks, lunch or dinner), the user

preferences (which can be configured by the user or learned by the choices that

were made from previous suggestions) and quality ratings made by others users

of the application for each meal option. However, context-awareness is not used

only for adaptation. Sports tracking [26] and healthcare monitors are example of

applications that monitor the user’s context (e.g., his/her state of activity and well

being) but may not have adaptable behavior.

The scenario presented in Chapter 1 has shown that the trucks and the Control

Center might exchange any type of structured data, including application-specific

and as well as context information (e.g., trucks’ location, speed, fuel level, etc).

Since in mobile systems the communication (and processing) of structured data

carrying context information has specific performance requirements on the

dissemination and processing infrastructure, it is important do look at the required

features of such systems and propose an embracing solution.

In order to implement a context-aware application it is the programmer’s

responsibility to integrate the application’s main logic with the code to probe the

local sensor and read raw data, functions to interpret the this raw data to extract

useful information (e.g., detect some pattern in the sequence of probes), perhaps

combine the data from multiple sensors to infer higher-level information and

implement the application behavior switch according to any expected context the

application may meet while executing. Moreover, if the sensor is available in

another connected remote device, then network communication code should also

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 26

be coded. In many context-aware applications all this code is still interweaved

with the business logic of the application itself, which is not desirable in terms of

Software Engineering practice that recommends modular programming and

separation of concerns. The increased availability of sensor-rich mobile devices

(e.g., smartphones with embedded sensors, and many sorts of networked

sensors deployed in the environment, etc.) has as consequence a high

heterogeneity of sensor types and devices, which in turn can make the

implementation of context-aware applications an even more challenging task. For

example, two different smartphones models (even of the same make) may have

different GPS sensors and different APIs to probe the same context information,

depending on which version of the operating system is installed.

Recurrent requirements for context-aware application are identified in [27]:

• Handle heterogeneity by dealing with different sources of context,

e.g., sensors, Web Services, nearby devices, user, etc.;

• Specify the relation and dependencies between different types of

context information and how they depend on each other;

• Handle the sensor data imprecisions and model the confidence

level of context sources;

• Support some reasoning on context information or events, for

detecting specific situations or to infer higher-level context

information;

• A formal notation to describe all relevant context information, so as

to facilitate the integration between applications and sensors;

• Provide efficient context information provisioning, making the

information easily available to the applications.

Therefore, to implement a large-scale context aware system that supports

the dissemination of context information from/to thousands of mobiles nodes is a

demanding challenge (see next section). Knappmeyer et al. [28] summarized the

above requirements for such systems in two essential parts:

• The Context Management subsystem, responsible for the context

acquisition and dissemination; and

• Context Modeling, concerned with manipulation, representation,

recognizing and reasoning about context and situations.

Thus, the use of a middleware that provides context management services

makes the implementation of context-aware application much simpler by letting

the programmer focus only on the application-specific code [29]. Such

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

State of Art on Large-Scale Mobile Communication 27

middleware usually provides abstractions and mechanisms for the acquisition of

context from sensors, transformation of context data and the dissemination of

produced context to all interested nodes, as we will show in the next chapter.

2.3.1
Context Data Dissemination

As defined in [30], context data dissemination (or distribution) is the task of

delivering any relevant context data about the environment of one mobile node to

all interested entities of a distributed context-aware application. Context data

distribution is a critical function of most context aware systems. On the one hand,

context data has to be delivered timely to let systems promptly adapt to the

current context. On the other hand, the middleware should transparently manage

and route large amounts of context data sensed by the mobile nodes through the

system, while ensuring on-time delivery of these data to the interested parties.

And this has to happen in spite of intermittent connectivity and non-negligible

communication latency of wireless connections, thus hindering both system

scalability and reliability. The importance of context data dissemination has been

shown by several research projects and emphasized by several surveys about

middleware for context-aware systems [31, 32, 33, 34, 35].

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 28

3
Related Work

In this chapter we discuss related works that address the problem of large-

scale dissemination of data/context information for mobile nodes. We first define

the main features required for achieving data dissemination in large-scale mobile

systems, such as in the terms of the presented scenario. After the individual

description and evaluation of the works we then present a comparison table

based on the specified features. We focused on related work presenting solution

for context information dissemination because most of the data that is shared in

our scenario are context information. Moreover, those systems is more likely to

present a more embracing approach and concerns with mobile communication,

as will be detailed in the following sections.

3.1.
Desired Features

The scenario presented in the first chapter brings some

features/requirements that should be addressed in the models and middleware

systems intended for large-scale data context dissemination to/from mobile

nodes. We will separate these features in network-related, on one hand, and in

mobile device- and connection-related, on the other hand.

The network infrastructure that enables communication among mobile

nodes may be constituted either by fixed infrastructure-based service providers

(mobile operators or private networks) with a set of dedicated servers in a

backbone core network, or, else, by direct peer-to-peer links among the mobile

nodes and an ad-hoc routing algorithm. Due to the fast growth of the Mobile

Internet, in most cases a fixed infrastructure is used. It seems that the lack of

guaranties of mobile communications (e.g., unreliable and intermittent

connection) can only be well addressed by the use of fixed infrastructure

services. Moreover, the management of a peer-to-peer network of thousands of

mobile nodes can be very cumbersome or even impossible. In fact, most large-

scale mobile applications require a middleware that provides network

communication services with the following features:

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 29

• Reliable communication, meaning that all the data generated

should reach all interested active (i.e., currently connected) nodes.

However, data generated while a node was not active can be

missed, since some information lapses, as will be detailed in the

following;

• On-time dissemination of context information. For much context-

aware applications it is required that the information received is

accurate, meaning that adaptation should be done on the basis of

the freshest context information, as in many cases, information

representing a outdated context are useless [30]. Therefore, all

publications of context information should reach interested nodes

with the minimum possible delay, i.e., a time close to the common

delay noticed when using the actual network technologic being

used; and

• Scalability (in terms of the number of mobile nodes): the overall

network performance should not be significantly affected when the

number of nodes increases – at least the performance should not

be affected in the same proportion. Additionally, the increase in the

number of nodes should be compensated by the provisioning of

additional resources on the network infrastructure, which should

maintain the overall performance similar;

To effectively provide the above features to mobile nodes, the intrinsically

characteristics of such devices and its connectivity should be directly addressed.

Despite their recent evolution, mobile devices still have stringent resource

limitations when compared to fixed nodes, notably, limitations of energy supply

(battery) and network reliability. So, it is expected that models and middleware for

distributed mobile applications may have additional features to compensate those

limitations. We list some of them below:

• Support for dynamic connectivity configuration, meaning that

the system should be prepared for unpredictable connectivity status

of the mobile nodes, that could join and/or leave (for good) the

network at any time and with no warnings;

• Support for intermittent connectivity, which means that

temporary (short-term) disconnections should be transparent to the

applications. It is desirable that the system is capable of hiding such

short-lived disconnections from the applications that should be

notified only when the disconnection exceeds a certain time

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 30

threshold. Moreover, any message sending that was dispatched

during the disconnected period should be properly delivered after a

new reconnection;

• IP address change identification, especially when using mobile

networks, since every time the data link connection is broken and

reestablished the cellular provider assigns a new IP address. When

the node reconnects to the network, this should be detected and the

connection should be re-established, with any on-going

communication transparently resumed;

• Support for Firewall traversal – means that mobile nodes behind

firewalls, which is the case in most mobile networks, should be

reached for direct data communication at any time, even if they do

not have public IP addresses. It is a important requirement, since in

most mobile networks it is given private IP addresses to the mobile

devices.

3.2.
Discussion on Related Work

Several well-known research works have proposed models for context

management in mobile networks; some of them also provide middleware

implementations. In this thesis we focus on works that provide at least some of

the features described in the previous section and discuss their main strengths

and drawbacks [28, 36, 43, 44, 50].

Aiming in providing a global-scale infrastructure for context-awareness to

be shared simultaneously by many applications, Nexus [38] proposes the

integration of millions of context producing nodes (e.g., sensors) that produce an

arbitrary number of different kinds of context information and subscriber nodes.

The supported nodes are assumed to be heterogeneous, such as networked

sensors, mobile applications or static nodes. A federated network of servers that

are specialized to manage one type of context information each provides means

of scaling the system, in contrast to centralizes architectures. In Nexus, each

server is specially developed to handle the characteristics of this type of

information, such as location, temperature, map, etc. This specificity of the

servers makes the addition of new types of information not trivial, since it requires

a new server to be designed, implemented, deployed and its APIs distributed to

the application developers, before the context information can be used by the

applications. Moreover, context information is accessed through queries

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 31

submitted to server handling the desired information, which makes the server

behave much like a database of context information. This characteristic puts into

question Nexus’ scalability, since a type of context information that entails a high

volume of produced data items and which may be consumed by many nodes

(e.g., geographic coordinates of thousands of nodes in a tracking application)

could make that server a centralized bottleneck and thus compromise the

system’s scalability. Also, this synchronous, query-reply-based communication

mode does not support any decoupling between the servers and the consumers

of context information. Asynchronous notifications about new bits of context

information were still “being designed”.

The flow of transformations starting from raw sensor data until it becomes

useful context information and reaches the application can be specified in XML,

which is the approach adopted by Solar [39, 40]. The middleware enables the

construction of what it calls a Context Fusion Network (CFN), a planetary network

composed of so-called planets, where each one is responsible to execute a

single transformation step over the data/information flow (i.e., filter, aggregation,

etc.), which is defined in XML. By this, Solar supports expansibility of context

processing and supposedly heterogeneity, since any platform can potentially

handle XML. After visiting several planets, context information becomes

accessible to consuming nodes through asynchronous communication. The

communications between planets are handled by Pastry [41], a peer-to-peer

scalable communication substrate based on Distributed Hash Table. The Solar

middleware also supports dynamic adaptation of the planetary network, which

can rearrange and deploy new planets to help maintain a well-balanced

distribution of processing load among planets and to reuse already deployed

planets for multiple transformation graphs. Mobile devices are handled by proxy-

planets in the Pastry network. They cache data sent to/from the mobile devices

when the device presents temporary disconnections or during a handover to

another proxy-planet, and deliver any non-acknowledged communication after

connectivity is re-established.

Mobile devices are also the main subjects of the work in [46, 47], which

presents a completely decentralized architecture composed of federated brokers

that communicate in peer-to-peer, asynchronous mode. This decentralized and

decoupled approach promotes scalability. A publish-subscribe API is provided to

the applications. The routing mechanism is quite complex, and requires routing

tables to be exchanged between and managed by the brokers. Such routing table

includes every subscription, including filters, which are evaluated once every

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 32

publication is generated by both the producer and the brokers, reducing

performance and scalability. Mobility is handled by providing a mobile broker

deployed at the mobile device, which has essentially the same functions as the

brokers deployed in the fixed network, but are used exclusively by the mobile

applications. Intermittent connectivity is not directly handled by the system and an

error message is returned to the client application when a context producer tries

to publish information while the device is temporary disconnected, so it needs to

explicitly try again later. Furthermore, running a broker o a mobile device with all

its tasks, including subscription-filtering tests, should reduce the overall

performance and overload the mobile device’s resources.

LoCCAM [48] is a middleware for Android4 (hence, no platform

heterogeneity) that presents an architecture that implements a decoupling

between the component layers responsible to produce and consume context

information and the network communication. The middleware relies on already

established middleware solutions to build a concise framework: OSGi5 is used to

implement the ContextAquisitonComponents, which makes expansibility possible

since it allows the deployment of new components at runtime, and Linda [49] is

the network middleware, used for communication in both tuple-spaces and/or

publish/subscribe (decoupled) paradigms. The implementation does not use

much of the device resources. Despite targeting mobile devices, intermittent

connectivity is not addressed. Scalability is not mentioned, and seems to leave

this responsibility to Linda.

Apparently, so far there is only few research and development on DDS-

based middleware systems for mobile distributed applications in arbitrary wireless

networks. Most of DDS studies present comparisons between and benchmarks of

different DDS vendors’ implementations, such as [51, 52, 53], but none of them

mentions wireless networks or mobile DDS deployments. Among the few works

that focus on mobile devices, we found the DDS-based middleware proposed in

[54], named DDSS. It includes a specific architectural element that supports

mobile nodes and ensures reliable data delivery even for mobile subscribers that

switch their wireless access point during system operation (i.e., handover

support). In the proposed architecture all mobile devices execute a lightweight

version of DDS, the Mobile DDS Client, whereas stationary nodes on the fixed

communication network run full-fledged DDS nodes and are responsible for the

routing and dissemination of data to all nodes. Due to DDS’ connectivity and

4 http://www.android.com

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 33

Firewall/NAT traversal restrictions (unless a VPN is created), all these Mobile

DDS Clients must run in single network domain and rely on stable wireless

connectivity. Moreover, the authors present no data about the communication

performance over wireless networks.

REVENGE [25] is a DDS-compliant infrastructure for news dispatching

among mobile nodes and which is capable of transparently and autonomously

balancing the data distribution load in the DDS network. It implements a P2P

routing substrate - deployed on a LAN - that is fault tolerant and self-organizing.

More specifically, it is able to detect crashed nodes, and to re-organize the

routing paths from any source node to any mobile sink nodes. Multiple copies of

the deployed network infrastructure are available to increase reliability and

availability. For this, the sources of news (the information publishers) must

publish at each copy of the network, which therefore will use more mobile

devices’ resources. A relay-based protocol is presented to interconnect different

DDS domains in the Internet or Wide-area networks (WAN), which improves

scalability. Since all nodes run DDS (mobile nodes have the DDS minimum

profile), it has full support of DDS QoS policies. REVENGE has been tested in a

wireless network on an University Campus-wide wireless LAN, but the authors

have not shown performance data in situations where the mobile nodes had

intermittent wireless connections and suffered IP address changes. Concerning

asynchronous communication capabilities at the mobile nodes, this system

provides full DDS-based Pub/Sub support.

3.3.
Comparison of Related Work

As shown by all the research mentioned on the previous section, there is a

large amount of work focused on large-scale context/data dissemination

supporting mobile devices. However, only a few of them directly deal with the

limitations found in the mobile devices (specially the intermittent connectivity), or

offer means for on-time delivery of notifications. In almost all the proposed

middleware, the applications would have to explicitly handle such limitations;

however, we think that such features should be automatized by the system.

Scalability and reliability also does not seem to be a concern for many of the

works, especially the ones based on simpler publish-subscribe mechanisms. The

current research work that aim at extending (or using) DDS for mobile

communication and context awareness is promising, but DDS has a number of

5 http://www.osgi.org

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Related Work 34

limitations already pointed [55], particularly when dealing with mobile nodes and

multiple domain networks in a WAN. During our research we also encountered

several of these limitations of DDS [24]. Another feature we need for our scenario

is support for on-time dissemination of context information; nevertheless, none of

the works specifically mention such feature.

Moreover, despite the common objective to design and implement an

infrastructure for large-scale data dissemination among mobile nodes, the

specific requirements and model/system characteristics of the works described in

this chapter can be very different from each another. Most of them chose features

focusing at very specific scenarios, like [50] with a solution for peer-to-

peer/vehicle-to-vehicle communication. This makes it a bit difficult to compare the

works, including the fact that most of them do not present any graphs or numbers

about performance results. Thus, we chose to compare the works only according

to the features discussed in Section 3.1, which we think are the most important

ones for our scenario, as indicated in Table 1.

Features / Related Work

N
E

X
U

S

S
ol

ar

[4
6,

 4
7]

Lo
C

C
A

M

D
D

S
S

R
E

V
E

N
G

E

Reliable Communication Yes - No - Yes Yes

On-time Data Dissemination No - No - - Yes

Scalable Yes Yes Yes - Yes Yes

Supports Dynamic Connectivity - Yes No - - -

Handle Intermittent Connectivity No Yes No - - -

Identifies IP Changes of Nodes No - No - No -

Firewall Traversal No No No - No No

Table 1 – Features comparison of related works.

The lack of a generic solution that addresses all – or at least most – of the

features indicates that there is still much space for research in this field, that

many important issues are not addressed by current works, and that yet we don’t

have a universal, optimal solution for scalable mobile context management and

on-time dissemination. In the next chapter we present our model and argue about

its applicability for the scenario described in the first chapter.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 35

4
Proposed Model

Aiming the provision of scalable large-scale reliable and timely data

dissemination for applications composed of thousands of mobile nodes that are

continuously producing, sharing and processing structured data, we propose a

conceptual model called Data Sharing Network. The model tries to overcome the

limitations presented in current works regarding applicability to the scenario

presented in Chapter 1.

4.1.
Model Concepts and Overview

A fundamental element in our model is the mobile node (MN), which can

be any mobile device connected to a wireless network, such as a cellular network

or a WiFi Access Point, and capable of sending and receiving data. Typically, a

mobile node has some stringent limitations, like restricted battery life, inferior

processing power, limited memory resources and untrustworthy intermittent

network connectivity. In our model, we are considering that mobile personal

devices (i.e., smartphones, tablets) will be the most typical examples of mobile

nodes. However, a mobile node can also be an embedded device or a notebook.

When a mobile node is a machine without significant resource limitations (e.g., a

notebook), we may call it just as node for differentiation purposes, but from the

point of view of the model, and for the sake of generality, all elements are

considered mobile nodes.

While the mobile nodes are connected to a network, they may share any

kind of data among them. However, the majority of them will be structured data

representing some context information data, which is any information defining the

current state or the device, user or its environment [1]. When context information

is directly collected from a sensor, it is commonly referred to as primitive context.

But context information, may also be produced by the combination of multiple

primitive information, e.g. when processing the relative distance between a

mobile node and other nodes using the geographic location of these nodes. In

this example, the context information is referred as composed, derived or

aggregated. In our model, any mobile node can be the producer or the consumer

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 36

of any information, either primitive or derived. The information can be achieved

by probing data from a local embedded sensor or by acquiring external

information from others nodes, processing and combining them to derive higher-

level information like in the above-mentioned example.

Nowadays, there exists a wide spectrum of affordable and tiny sensors that

can be used to produce context information for context aware applications. Most

mobile devices already have embedded positioning sensors (using GPS,

network-based, or Wi-Fi fingerprinting technology), thermometer sensor, light

sensor, accelerometer, gyroscope, noise sensor, compass and others. The

process of probing and interpreting the raw data from sensors and produce useful

information is specific for each one of them. For this reason, we define a

specialized element called Data Provider (DtP), which is a software component

that is deployed on a mobile node and is responsible for polling raw data from a

sensor, process this data and generate the specific kind of useful information for

the applications. Usually there will be one Data Provider for each type of sensor

deployed in the system, and other Data Providers that convey more abstract

information which is derived from the more basic raw sensor data, e.g., the

devices’ geographic position (abstract information) may be obtained either from a

Data Provider that interacts with the GPS sensor, or by a Data Provider which

uses network-based position inference.

The Data Provider’s act of producing a new piece of information and

preparing this information for dissemination over the network is defined as Data

Update (DtU). Every Data Update generates an information object, which

carries the information and is disseminated to all the nodes that are interested in

that type of information, which may include the originating node itself.

When an application requires some type of structured data, it must express

this interest through a Data Consumer (DtC), which is responsible to receive and

process the Data Updates from the corresponding Data Providers. The Data

Provider may not be locally available on the device running the application, for

example, some application may depend on structured sensor data that Is only

available from a remote node (e.g. a sensor mote, a Electroencephalogram

(ECC) sensor device, etc.). Thus there must be a process of discovery of Data

Providers so that the applications can remotely invoke and deploy their needed

Data Providers on other mobile nodes. Once deployed, the Data Provider will

start producing Data Updates, which will be disseminated on the network and

reach the application that started this process.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 37

Sometimes an application needs information that cannot be produced by

other mobile node on the network except itself. For example, the device’s fine

geographic location can only be obtained by the device’s location sensor – like its

internal GPS. Still, the mobile node may not have a copy of the Data Provider

that probes the embedded sensor. In fact, due to memory size limitations, it is not

recommended to have a copy of all Data Providers deployed in every mobile

node. Therefore, there must be a process of deployment of Data Providers,

which stands for the sharing of the Data Provider’s software components

themselves between mobile nodes, i.e., the transfer of a copy of a DtP from a

node to another.

In Figure 5 we show an example of DtP deployments according to our

model. The mobile nodes are represented by yellow rectangles and each one has

several DtPs and/or DtCs locally deployed. DtPs for primitive context information

do not consume DtU (incoming black arrows), which is not the case for derived

context information DtP, which may consume DtU from more than one DtP.

Figure 5 – Data Sharing Network model overview.

4.2.
Underlying Architectural Model and Features

Complementing the model overview of the previous section, in this section

we explain and discuss some underlying characteristics and features of the

proposed model. Independently of implementation decisions, we argue that the

characteristics and features explained in the following sections are essential to

provide scalable and reliable on-time data dissemination among mobile nodes.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 38

4.2.1.
Intermediation Through a Fixed Network

Since in real world mobile applications it is impossible to predict when and

for how long a mobile node will be connected, our model does not make any

assumption about the mobile node’s connectivity, i.e. its long-term availability for

communication. Instead, we take it for granted that any mobile node can loose its

wireless connection anytime and for an arbitrary period of time, for any reason.

Thus, every communication between any two mobile nodes must count on the

support of a fixed network infrastructure (a “core network”), a characteristic that is

also present in most related work discussed in Chapter 3. Relying only on direct

and adhoc mobile-to-mobile connectivity can make it very difficult, or even

impossible, to implement reliable and on-time message delivery in any situation.

This fixed core network will manage, route and buffer any messages

to/from every mobile node until they are effectively delivered. Thus, one needs

the presence of brokers in the fixed network to act as connection points and

intermediaries for the mobile nodes. Some characteristics of the model in respect

to the brokers are:

• It must be possible to deploy as many brokers as necessary to

handle the number of currently connected mobile devices, since one

broker may get overloaded if thousands of mobile nodes are

connected to it;

• Each broker shall serve as the communication hub for a set of

mobile nodes, being and be responsible for intercepting and

forwarding any messages addressed to the mobile nodes

connected to them;

• The mobile nodes must maintain the connection with their broker

open all the time, so that it is possible to reach the mobile nodes as

soon as new messages are sent to them;

• The broker must intercept and translate the messages from the

protocol used for the mobile connections to the protocol used in the

fixed network, and vice-versa.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 39

Figure 6 – Message exchange between mobile nodes through brokers on a fixed

network.

Figure 6 illustrates mobile nodes connected with their brokers (brk). In the

figure the mobile node MN-1 sends a message to mobile node MN-2, which is

forwarded by MN-1’s broker – through the fixed network – to MN-2’s broker,

which then forwards the message to MN-2.

4.2.2.
Handover Support

When a mobile node disconnects from its broker, it may connect to another

one in a process called handover. The handover is a mechanism that may be

used by the mobile nodes to try a better connection with another broker when

they are experiencing poor connection quality with their current brokers – for

example when a large amount of disconnections are happening in short periods

of time.

A broker may also suggest to some of its connected mobile nodes a

handover to another broker. This handover may be used by the system to

promote load balancing between the brokers, for example, when there is some

overloaded broker, or when a new broker is added to the core network.

To avoid message loss during a handover, there must be a special service

on the core network that detects messages intercepted by the previous mobile

node’s broker and forwards these messages to the new broker.

4.2.3.
Flexible Services in the Fixed Network

Our model is extensible, in the sense that more nodes can be added to the

fixed core network to implement additional services. It should be possible to add

these services on the fly (while the application is executing) and to remove them

anytime, without having any impact on the other core network nodes. Hence, the

core network may feature also other types of nodes executing specific

communication, directory or processing services, and not only brokers.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 40

This extensibility may be used to add new services to the system that were

not a priori defined. These extra services may be generic (for any application) or

to satisfy specific applications requirements. For example, reliability of message

delivery can be implemented by a node that stores all recent exchanged

messages in a database and listens for notifications from the broker about every

node connection and disconnection. This service could then identify when a

message was sent to the wrong broker (e.g., the mobile node switched the

broker), and can forwarding the message to the correct broker.

4.2.4.
Data Production Management

The mobile nodes can exchange messages with any kind of structured

data, but since our model is focused at context information in mobile systems, it

shall reflect the many characteristics required for handling the dissemination and

processing of this sort of information. As mentioned in Section 4.1, Data

Providers generate an information object at every Data Update, and this object is

pasted into a message that are delivered to all interested Data Consumers. In our

model we assume that any mobile node may execute a collection of Data

Providers, one for each available embedded sensor, together with Data Providers

responsible for producing derived/composed information. The model further

establishes that a Data Provider is only deployed and activated when some

mobile node requests the corresponding information. The Data Provider is the

central concept in our communication model for structured data sharing; Figure 5

illustrated some mobile nodes with Data Providers deployed locally and sharing

information among them.

The frequency at which a Data Provider produces Data Updates usually is

determined by the type of the information produced, but we also consider some

use cases where it is required to configure a Data Provider with a specific Data

Update frequency. For example, for HVAC applications is not necessary to collect

the temperature of a node’s environment every few seconds, but instead, every

15 or 30 minutes, may be plenty enough. However, if the node’s sensor is

reading the temperature of an industrial oven, it might be necessary to probe the

temperature every second, because an increase of the oven’s temperature might

cause an emergency situation. So, even if the sensor and Data Provider used are

the same, they may have different Data Update frequency requirements

depending on specific applications needs.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 41

4.2.5.
Information Volatility

Context information is usually highly relevant at the moment it was

produced and only remains so for a limited time after that, which is often called

information volatility. For example, in our industrial oven example from the

previous section, it is important to know the current temperature as well as the

values from the recent past, e.g. one minute ago, while the oven’s temperature

from one hour ago is very likely deemed irrelevant.. This requirement of

timeliness is one of the reasons why the communication model for mobile nodes

should provide on-time information dissemination, so that the information reaches

all interested mobile nodes with the least possible delay.

If the application requires needs the history of all Data Updates, this may

still be implemented by a special service, that persists all updates for the desired

period of time.

4.2.6.
Discovery and Deployment of Data Providers

The model should use the same communication network used for

disseminating Data Updates also for the discovery of Data Providers. All nodes

executing Data Providers must wait for requests of other nodes to produce

information. When such a request occurs, the Data Provider responsible for this

information is activated and starts to produce the corresponding Data Updates.

For the application (i.e., its Data Consumer) it is irrelevant to know the identity or

where the Data Provider is executing, instead, it just needs to receive the Data

Updates. This is the same characteristic of space and reference decoupling

found in the publish-subscribe. If a node needs to locally deploy a Data Provider

to acquire a information about the device itself – for example, its current location

– this node can request a copy of this Data Provider from any other node that has

the required Data Provider on its local repository. Figure 5 showed an example of

a copy of a Data Provider from one node to another for local deployment

(represented by a dashed arrow in that figure).

Data Providers may be implemented and added anytime on the network, in

a similar extensibility and flexibility as the addition of special nodes – i.e., a new

application running on any mobile node and providing a newly implemented Data

Provider is ready to disseminate Data Updates to any existing applications;

moreover, the same Data Provider can be copied for local deployment at any

other mobile node.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 42

4.2.7.
Information Hierarchy and Data Updates Flow

Figure 7 – Information hierarchical transformation example.

To produce derived information, a Data Provider must request the primitive

information from the providers capable of producing it. This dependency relation

generates a tree of connections between Data Providers, where the Data

Providers on the tree’s leafs produces primitive information that are combined on

the parents nodes of the leafs, producing more specialized higher-level

information as the level of the tree decreases; Figure 7 illustrate this process. In

the picture, the DtP-a1, on the leaf of the tree is collecting the location of the

vehicle V1; based on the information produced over time by DtP-a1, the DtPa2 is

calculating and producing V1 speed. The same process occurs with DtP-b1 and

DtP-b2, calculating V2 speed. DtP-b1 and DtP-b2 are instances of the same

Data Providers DtP-a1 and DtP-a2, but deployed in V2. Combing the information

produced by DtP-a1, DtP-a2, DtP-b1 and DtP-b2 it is possible to DtP-c to

calculate the relative speed that the vehicles are moving from/to each other.

Another example is illustrated on Figure 8, where we add DtP-a3, responsible for

store user personal data, e.g., the user’s home location; and DtP-t, a Data

Provider not related to a unique user or node, but responsible to provide traffic

conditions to interested nodes. By combining all Data Providers’ information, it is

possible to built DtP-a4, which calculates the estimated time of arrival of vehicle

V1 at home, considering its current location, speed and the traffic conditions on

its route. So, every Data Update produced in the child node generates a

notification on the parent node, causing this node to produce a new Data Update

itself, notifying its parent and so on. In our model these Data Updates may be

produced in high frequency, creating a continuous flow of context information

being produced in a bottom-up direction on the dependency tree. It is worthwhile

to mention that the relations between Data Providers can be both local (i.e., at

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 43

the same mobile node) and remote (i.e., receiving information from another

mobile node).

Figure 8 – Information hierarchical transformation second example.

4.2.8.
Multiple Communication Modes

Another functionality in the model is the possibility to send arbitrary

messages to the mobile nodes. The two basic communication types for the

messages are: unicast messages to a specific node or broadcast messages to all

nodes. Any node within the core network, any application node in the core

network, or by any mobile node can send messages. The model is designed to

be a robust, high-performance message dissemination platform even under high

load periodic Data Updates messages from all mobile nodes. The main goal is to

offer a scalable large-scale communication infrastructure for the development of

mobile applications.

Additionally, the model defines that the mobile nodes could be grouped in

any set of nodes by any common characteristic, which makes groupcast

communication possible. Special nodes must implement some group-definition

logic and disseminate the group participants to all nodes. For example, a special

node on the core network could receive Data Updates about the nodes location

and create a group to put together nodes in the same city. Further details will be

explained in Chapter 5.

4.3.
Mobile-related Requirements

A large-scale communication model for mobile nodes should overcome

many limitations, such as: weak, intermittent and unpredictable connectivity, low

throughput and larger transmission delays, for example. In addition, it must

supports the heterogeneity regarding the mobile nodes’ resources and software

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 44

platforms. All these characteristics require special capabilities of the model. In

this section we discuss each of these special capabilities that we believe to be

essential for the implementation of reliable and efficient communication between

thousands of mobile nodes.

4.3.1.
Reliable Mobile Communication

Despite the wide adoption and use of cellular/mobile networks (2G, 3G,

LTE), these networks still experience moderate and variable quality of service,

which not rarely causes temporary disconnections of the mobile devices’ data

connections. A disconnection is undesirable for any application that needs to

maintain an open connection with any other mobile node. If we use TCP

connections, on every disconnection at network layer 2 (L2) all these connections

would break and the node would need to restart the TCP handshaking for

reconnecting and resuming of data transfers. Additionally, disconnections also

affect connectionless protocols, like UDP, because each time the communication

with the underlying network is re-established, usually a new IP address is

assigned to the mobile device. Hence, if a node switched its IP address, this

would require peer nodes to be informed about the new address and managing

the resuming of all data already transferred to the previous (now wrong) address.

This happens because the assignment of a new IP address is not instantaneous

and may cause some disruption of the data flow of packets.

Moreover, mobile disconnections are not only caused by cellular network

quality of service. There exist other situations that may cause disconnections that

are intrinsic of the cellular connectivity technology. For example, even if a mobile

user is served by the best possible connection quality, there always exists places

where cellular network connectivity is not guaranteed, such as inside an elevator,

in an underground station, or other insulated places. So, because mobile

connections are inherently weak connections and, on the other hand, several

applications need reliable mobile communications to/from the mobile devices, it is

paramount to have a communication model that compensates the problems of

intermittent connectivity.

Additionally, modern mobile devices are usually equipped with more than

one network interface and may switch the network interface during their use. For

example, if a mobile device connected via 3G enters a place where it had

previously used a Wi-Fi connection, it might automatically switch from the cellular

connection to the Wi-Fi connection, since the latter is probably cheaper, faster

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 45

and more reliable. This switching is called vertical handover, and in this process

the device will be assigned also a new IP address in a different network domain.

So, the disruption caused by a vertical handover is similar to the problems of

intermittent connectivity, and both should be handled in a similar and application-

transparent approach.

So, regarding the problems of mobile connectivity, we need a

communication model that is resilient to temporary disconnections and IP

changes. In our model, a connection is only considered broken if the mobile node

is not able to re-establish connectivity within a threshold period of time.

Furthermore, after each of these reconnections, all data dispatched for

transmission by the application during the offline period (outbound or inbound)

must be automatically buffered and retransmitted. Moreover, the model should

define a concept of reliable virtual connection that automatically handles IP

address changes of a node and maintains the communication seamlessly as any

disruptions happened.

Thus, a communication platform aiming the management of thousands of

reliable mobile connections needs to consider the frequent disconnections faced

in this environment, and must offer efficient support for shielding these

applications from the underlying intermittent network connectivity.

4.3.2.
Efficient Bandwidth Usage

Due to the limited bandwidth provided by some wireless technologies and

cellular services, the communication model should ensure that the mobile

connections are used only when it is really necessary to transmit data of interest

of the mobile nodes. This way the network channel would not be misused or

overused with, for example, routing related protocol messages, which may cause

higher transmission latency or even drop of messages when using a weak

wireless connection.

Typical reliable network protocols, like TCP, have a large amount of

signaling traffic for flow control and to ensure reliable data transmission. These

protocols may also involve complex algorithms (e.g., sliding window) that may

require some processing at the communicating peer nodes. Thus, our model

requires a mobile communication protocol that is optimized and lightweight in the

use of the communication channel for protocol-specific control messages and in

the use of the node’s resources.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 46

4.3.3.
Space Decoupling

Our model assumes that every node in the system can be a potential

source of any information. These information producing capabilities are a direct

consequence of its embedded sensors, as well as its processing, storage and

communication capabilities, and are independent of the node’s identification,

type, or location. For example, a node equipped with a thermostat sensor may

announce the provision of the temperature context information, and should be

contacted by any other node to provide the current temperature in the region it is

located. By such space decoupling, any other node may request (or subscribe to)

any information produced by a node, without having to know which node is

specifically producing the information. This space decoupling can be achieved by

a publish-subscribe communication paradigm described in Chapter 2.

4.3.4.
Unique Node Identification and Unicast Communication

In spite of the space-decoupling requirement, every single node in the

system must be individually identified and addressed. This makes it possible to

support also private unicast communication between any two mobile nodes,

which is also required by some applications.

4.4.
Discussion

The model described presents some benefits for mobile applications that

share data between the nodes. Comparing with the related work described in

Chapter 3, our model aims to provide reliable communication with mobile nodes,

reliable and fast message and an information transformation, composition and

dissemination infrastructure that can continuously spread the produced

information.

Regarding the mobile communication, the model can suppress the

deficiencies faced in cellular networks and provide a mechanism that offers

reliable communication even in intermittent connections. A mobile node can

become disconnected from a threshold period and still maintain a virtual open

connection and do not lose any messages. Even if the mobile node gets a new IP

address its connection will not break.

The handovers brings flexibility to the mobile nodes to choose the broker

that provides better connection quality from its network. The handover is also a

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 47

mechanism that can be used by the model itself to promote load balancing

regarding the number of mobile nodes connected in each broker.

Since the Data Providers are loaded and started on demand, the model

indicates a responsible use of resources on the mobile nodes. Data Providers will

only be activated and produce Data Updates when at least one node is interested

in the associated information. This premise may avoid the waste of resources to

produce information that is not being used by any node. Since the communication

network connects all mobile nodes, it is possible to have these Data Providers

running at only one mobile node and sharing the produced information to any

other node using it. For example, if some nodes are interested in the weather

conditions at a part of the city, it is necessary that only one node at this location

uses it temperature sensor to acquire the temperature and share it, through the

network, with all interested nodes.

Using a fixed network and brokers as proxies also implicates in better

resources usage at the mobile nodes. For example, if Data Provider deployed in

a mobile node is sending Data Updates to hundred of interested nodes, only one

Data Update must be sent to the broker which will replicate the Data Update to all

interested node using the fixed network.

The possibility to configure the Data Providers with a specific frequency for

the Data Updates is an important flexibility not only because it can save mobile

node resources but also because it makes possible to build applications with

different requirements about updated information. For example, a Data Provider

that probes a thermometer can be used differently accordingly with the

application use of this Data Provider: if it is a thermometer placed outside on the

environment, the application probably don’t need very frequent Data Updates;

however, it the thermometer is on a microwave, it will likely be important to know

the temperature every couple seconds.

Finally, the context information hierarchy tree is a powerful and flexible

mechanism to produce and disseminate high-level information by combining,

processing and transform any number of lower-level data. Since it is not a fixed

tree, new Data Providers may be implemented and deployed seamlessly on-the-

fly, and newly added Data Providers can also be used to produce even higher-

level information. Any new Data Update will trigger Data Updates from all Data

Providers in the higher-levels of the tree, producing a flow of updates – as was

illustrated in Figure 7. These dependencies guarantee that each Data Provider

reflects the actual state of its specific information in respect to the whole

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Proposed Model 48

contextual state. The dependency tree values represent a snapshot of the

universal context.

4.5.
Assumptions

Even while trying to specify a flexible and resilient model, some

assumptions must be made to guarantee its desired behavior. Despite the focus

on mobile nodes, which has limitations, we assume that the nodes on the core

network are nodes with high availability and with high network throughput, likely

servers machines. This way it is easier to guarantee a minimum quality of service

on the communication between the mobile nodes.

The model is resilient to the mobile nodes cellular connection intermittency,

however to maintain the message delivery reliability the disconnection time must

not extrapolate a previous defined threshold. If the threshold is exceeded the

mobile node connection with its GW must be considered broken and the buffered

messages to and from the mobile nodes considered lost.

To ease the implementation and to avoid undesired behavior, the maximum

number of concurrent mobile nodes connection on each broker must be defined,

so the system performance won’t degrade by a huge number of connections

using all the broker’s machine resources. If a higher number of mobile node

connections are needed, more brokers instances must be deployed to meet the

demand.

Finally, to avoid starvation on the applications, there must be guaranteed

that all requested information has a deployable Data Provider available on the

network, so no request will be unsatisfied. Similarly, all the applications know

previously which information is available for utilization.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 49

5
Implementation

The scenario presented in Chapter 1 and the limitations of the current

related work presented in chapters 2 and 3 to offer a suitable solution to such

scenario, specially the mobile-related DDS limitations, motivated us to design and

implement a middleware that extends DDS’ high-performance communication

capabilities to wireless-connected mobile devices. We try to ensure QoS-like

guarantees to the mobile devices’ communication, specifically delivery reliability

and low latency dissemination of messages.

Figure 9 – Model implementation overview.

An overview of our model is illustrated in Figure 9, which shows a set of

mobile nodes (yellow squares) connected to another set of fixed nodes (gw, gd,

and pm colored circles). The set of fixed nodes is forms the core network and is

composed of nodes that have stable and good connectivity, abundant

computational and memory resources, high availability and reliability, and virtually

no energy constrains. All nodes in the core network must interconnect through a

high performance wired network with quality of service guarantees regarding

message delivery reliability, high throughput and low transmission latency, such

as a Local Area Network or a dedicated switching network – in our current

implementation we use DDS. On the end of the spectrum, the mobile nodes

constitute a set of heterogeneous devices connected through a less reliable IP-

based cellular or wireless network, and with stringent limitations in regard to

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 50

processing, storage and energy resources. Thus, the mobile nodes must use a

lightweight communication protocol – with reliable message delivery – to connect

with the nodes on the core, so as to guarantee that no data transferred to/from a

mobile node is lost. For this purpose, we implemented the Mobile Reliable UDP

protocol (MR-UDP) protocol, which will be further detailed in the following

sections.

The work detailed in this chapter (and in the whole thesis) is part of a larger

project called ContextNet [24], aimed at developing a middleware for on-time

communication, coordination and collaboration in large-scale distributed mobile

applications composed by thousands of nodes. In the scope of this project, the

middleware presented here shows the basic layer for communication and the

information/data management parts. The Scalable Data Distribution Layer

(SDDL) is a communication middleware that connects stationary DDS nodes in a

wired “core” network to mobile nodes with an IP-based wireless data connection.

Likewise, the Structured Data Dissemination Service (SDDS) is a middleware

layer that offers data management features that implements our Data Sharing

Network defined in the previous chapter. The SDDS will also be explained further

in this chapter.

The Scalable Data Distribution Layer (SDDL) employs two communication

protocols: DDS’s Real-Time Publish-Subscribe Protocol RTPS [53] for the wired

communication within the SDDL core network, and MR-UDP for the inbound and

outbound communication between the core network and the mobile nodes. The

core elements rely on DDS Data Centric Model, where we defined some DDS

Topics to be used for communication and coordination between these core

nodes, which will be further detailed.

5.1.
Mobile Connection Protocol – MR-UDP

The mobile connection protocol is a very significant part of the SDDL, since

the whole model (specified in Chapter 4) aims to support efficient and scalable

communication with mobile nodes. The previously cited mobile network

limitations should not interfere with the system performance and reliability.

Instead, we ought to specify and implement a solution that hides all the weakness

of the mobile communication from the application developers and provide a

reliable and fast message delivery service.

The first solution one would think is to use a TCP based protocol, since it is

a reliable protocol. However, when used for mobile communication the TCP is not

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 51

an adequate solution, since its implementation and details could use a large

amount of the devices resources, and we also want a protocol light in resources

usage. Another undesired behaviour in TCP is that when a connection is broken

– a situation that is frequent in mobile communications – the ongoing

communication is also broken and a new connection must be made and all data

exchanged again.

So, one possible solution is to use an UDP based protocol, because it is

very light on resources consumption and has a simple implementation with no

high-level control over the transferred data. However, UDP has no reliability at all,

no confirmation on any technique that guarantees that the transferred data is

received. Thus, we need a high-level protocol on top of UDP that offers message

delivery reliability.

There are several freely available Reliable UDP (R-UDP) specifications and

implementations. We chose an implementation by Adrian Granados6 (which is

based on the draft available in [56]), because it’s an open source Java

implementation, which can run on any platform with a JVM implementation,

including Android. The fact of being open source was important because we

knew that intermittent connectivity resilience is absent in most R-UDP

implementations, and thus would have to be added to the protocol.

Hence, we implemented a protocol called Mobile Reliable UDP (MR-UDP)

[57], which is a reliable UDP extension with focus on mobile communication.

Compared with the original R-UDP, MR-UDP includes mobility-oriented

optimizations and extensions in following aspects: transparent continuation of a

MR-UDP connection across IP address or port changes; small number of

connection maintenance packets for Firewall/NAT traversal; reduced use of

mobile device resources and flexible use of threads.

All these optimizations are important for wireless connectivity. For example,

when a mobile node (MN) enters an area with no – or weak – connectivity, it may

suffer a temporary disconnection and when the wireless signal is back, the node

may get a new IP address (via DHCP). In this situation, whenever the

disconnection time is shorter than a threshold (e.g., 2 minutes), MR-UDP will

keep the original logical connection and all buffered UDP packets will be

delivered in the original order.

6 Simple Reliable UDP – http://sourceforge.net/projects/rudp/

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 52

5.1.1.
Main Characteristics

MR-UDP is implemented in Java. The programming interface provides

ReliableClientSocket and ReliableServerSocket classes, which extend the

conventional Java Socket’s programming interface, with the well-known Socket,

ServerSocket, InputStream, and OutputStream classes. MR-UDP has several

features inherited from Reliable UDP, such as: acknowledgment of received data

packets, in-order packet delivery with selective retransmission of lost packets,

and over-buffering. In addition, it has the following singular characteristics that

are described in the following sections.

5.1.1.1.
Simple Flow Control

A ReliableClientSocket can be used to transfer large amounts of data, by

invoking the send() primitive at high frequency (e.g., every few milliseconds). At

the other end of the connection, the ReliableServerSocket may handle thousands

of simultaneously MR-UDP connections with remote peers executing the

ReliableClientSocket. Since the underlying protocol is UDP, it does not provide

any flow control or delivery guaranties. On the other hand, Reliable UDP

implements only a best effort reliable delivery of packets, and hence operating

system buffers may suffer overflow when large chunks of data are transmitted

frequently, causing a progressive and silent (without warnings) loss of packets.

So, in order to avoid that the operating system socket drops packets while

exposed to bursts of data packet reception, MR-UDP defines a small,

configurable waiting time between consecutive sends, at the sender side. While

this flow control is much more simple that TCPs sliding window protocol, it is

quite effective in most cases (i.e., using 1ms inter-send wait time), and does not

require to keep any state of the logic connection.

5.1.1.2.
Use of UUID

Each node has a unique identifier (UUID) that is generated only once, when

the MR-UDP ReliableClientSocket or ReliableServerSocket object is created for

the first time at a given mobile node. This 128 bits identifier is used by the

ReliableServerSocket to identify the logical connection with each MN,

independently of the IP address and port number being currently used by this

MN. Thus, the mobile node may switch networks and receive a new IP address,

but will still be recognized as the same MN by the ReliableServerSocket. The

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 53

UUID also enables to resynchronize the state of the communication (by

retransmitting buffered packets which were not confirmed) on both connection

endpoints. To implement the unique MN identification, MR-UDP maintains an up-

to-date map that records the association between each UUID and its current IP

address and port, expressed as the function MN-UUID → “MN-IPAddress:Port”.

However, the creation and use of a UUID is not mandatory: i.e., if not used, the

MR-UDP protocol will work as the original R-UDP, without being resilient to IP

address and port changes.

5.1.1.3.
Types of Protocol Messages

MR-UDP implements the following types of messages (a.k.a. segments)

with the corresponding functions:

• UID Segment – carries the UUID of the sending node. When using

the UUID identification, this segment is periodically sent, which makes

it works also as a heartbeat control message to keep a connection

open to a peer node behind a firewall/NAT (this will be explained

further in this chapter). This segment is an addition of MR-UDP as an

extension of the original R-UDP protocol;

• SYN Segment – is used to initiate a new - or reset an existing -

connection and to synchronize the packet sequence numbers. It also

contains negotiable parameters and optional flags;

• DAT Segment – carries a data packet;

• ACK Segment – is used to acknowledge in-order received packets. It

has an ACK sequence number and contains also the sequence

number of the next expected data packet;

• EAK Segment - is used to acknowledge out-of-order received

packets. It carries a list of sequence numbers of the received packets;

• RST Segment – is used to reset the connection by closing and

reopening it. When received, a peer node must not schedule any new

packet for transmissions, but only try to deliver the not yet

acknowledged packets;

• FIN Segment – is used to close a connection;

• NUL Segment – in the original R-UDP protocol this message is used

to check if the node at the other end of the connection is still alive (i.e.,

AreYouAlive? Message). When received, and if the connection is still

active, the peer node must immediately acknowledge it. In MR-UDP,

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 54

this segment is used only if a MN does not use UUID for its

identification.

5.1.1.4.
Retransmission of undelivered messages

MR-UDP maintains a buffer of all “not yet acknowledged” packets for each

connection. For all packets in this buffer, it tries to re-send them a certain number

of times, and wait for the corresponding acknowledgement. When the configured

threshold of retries is reached, the node considers that the connection has been

dropped, and sends a FINSegment.

5.1.1.5.
Data segmentation

Large messages are split into blocks of data, each of which is sent in a

separate DATSegment. The block size is configurable, but in experiments we

noticed that block size of 384KB is a good choice for the mobile network

scenario. It minimizes the chances of dropping packets (due to overload the

networking component of the operating system), and the costs of packet

retransmission, while keeping the overhead of acknowledgements manageable

and providing a good transmission bandwidth despite use of the inter-send wait

time, MR-UDP’s simple flow control mechanism. The total size of the MR-UDP

buffer is also configurable by a desired number of blocks that must be retained.

5.1.1.6.
Connection Management: Disconnection Detection and Firewall/NAT
Traversal

Any endpoint of a MR-UDP connection detects a disconnection when: (a) it

does not receive any segments from the remote endpoint for some time interval;

(b) it sends a NULSegment or UIDSegment to the remote endpoint and does not

receive an ACKSegment back within some time interval (c) it has reached the re-

transmission threshold for non-acknowledged sent packets (in the connection’s

buffer).

When using the UUID identification some disconnections that would

happen can be hidden for the application that uses MR-UDP. When a MN

experiences a temporary disconnection from its network and gets a new IP

address upon the reconnection, it immediately sends a UIDSegment with its new

address. This enables the ReliableServerSocket to learn the node’s new location

and update the UUID-IPAddress:Port map. Thus, in this situation the

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 55

conventional Reliable UDP connection would be broken, but the MR-UDP

continues to work as if the connection were never lost.

Also by using the UIDSegment (or the original NULSegment), a MN behind

a Firewall/NAT can keep a connection active, and allows other nodes to reach it.

This is because the network routers will maintain a table with the information to

reach the packet sender back in the opposite direction. In some sense, this

mechanism replaces piggybacking of near real-time messages or control

information, as used in other approaches, and makes possible to reach the MN

without the need to wait for a message/signal originated from it. To traverse

Firewalls, it is necessary that the mobile node initiate the connection, which is the

case in our model.

5.1.2.
MR-UDP Overview

Figure 10 – Schematic view of MR-UDP in action with two clients.

Figure 10 illustrates some of MR-UDP's features and behavior. On the left

side, a ReliableServerSocket is handling several connections (ovals) with remote

clients by multiplexing them over its local port X. A pool of threads does this

handling. More specifically, it shows two connections – and the associated packet

buffers – for clients with UUDIs U1 and U2. Notice that a hashTable, the UUID-

IPAddress:Port map (purple box) associates each client to its current Internet

address and port. If some of this information changes for any known client/UUID,

for example, if the corresponding MN is connected to a new network, then the

ReliableServerSocket just updates this map. On the right side, client U1 is

serializing and segmenting a message object for transmission into packets and

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 56

putting these packets, one by one, into the OutBuffer. After data packet with

sequence number 13, D(13), arrives at the ReliableServerSocket, a

corresponding acknowledge packet, A(13), is sent and received by the

ReliableClientSocket. Client U2, on the other hand, is reassembling a message

object – to be delivered to the application – from its constituent packets D(2)

through D(6). After acknowledging packet with sequence number 3, data packet

D(4) is lost, but D(5) and D(6) arrive. Client U2 then sends an EAKSegment,

EAK(5,6) packet, which causes the ReliableServerSocket to re-transmit data

packet D(4). In the meantime, U2 sends another UIDSegment to keep the

connection through a Firewall open. The Figure also suggests that MR-UDP just

uses a single port (blue dot), associated with the UDP socket.

5.1.3.
Additional Implementation Details

Since we wanted the MR-UDP protocol to efficiently handle communication

in mobile networks, it was necessary to implement several optimizations and

extensions to the original R-UDP.

The first one that deserves notice is the use of a pool of threads. In MR-

UDP, the pool of threads has small, configurable number of worker threads,

which are automatically increased as new connections are being handled (by the

ReliableServerSocket). By this, it is able to manage thousands of simultaneous

connections. In the original R-UDP implementation that we used as the starting

point of our implementation, every connection used 15 threads! But since threads

consume much system resources (creating too many threads in one JVM can

cause the system to run out of memory or thrash due to excessive memory

consumption), this implementation was not scalable and the result was that many

connections were dropped. As all threads in the original R-UDP were used for

timeouts (in a class called Timer), in MR-UDP we just implemented a more

efficient Timer using the pool of threads. Our tests have shown that with just 3

worker threads, MR-UDP incurs in much less resource consumption, and is able

to handle 5-10 times more connections. Moreover, a reduced number of threads

together with the simple flow control and adequate configuration of the protocol

message frequencies helps to implicitly reduce energy consumption.

When using a transport protocol over an unreliable network, it is important

to enable that higher-level protocol layers be notified of some states of message

delivery or connectivity. For this reason, in MR-UDP we made some changes to

the message send and acknowledge APIs. We used the Observer design pattern

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 57

that enables high-level protocol layers to observe and be notified when specific

events happen within MR-UDP. For example, we made MR-UDP inform which

was the ACK number of a message sent, and enriched the internal socket

listener to inform the number of every ACK received. In this manner, the software

layer above MR-UDP can be informed if a message was correctly delivered at its

destination, or if a message was not delivered due to disconnection.

To keep current applications compatible, we made ReliableClientSocket

(and ReliableServerSocket) extend the default Java socket classes, which

means, that any application can use these sockets without significant

modifications. Basically, MR-UDP’s reliable socket will be created using another

constructor (that will inform the UUID), and nothing else needs to be changed.

Another noteworthy characteristic is that MR-UDP implements the Front

Controller design pattern, allowing the ReliableServerSocket to use a single UDP

port for all connections, i.e., through which all inbound and outbound message

traffic is multiplexed/de-multiplexed. For this, as already mentioned, MR-UDP

maintains an up-to-date map of the MN’s UUID and its current pair (IPAddress:

Port).

Finally, we also did some re-factoring to make MR-UDP Android-

compatible, since some Java constructions were causing problems in some

cases (e.g., causing deadlocks) when running MR-UDP in Android’s Dalvik JVM.

5.2.
Core Network

Figure 11 – Nodes and protocols used in SDDL.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 58

The core network uses DDS as the communication substrate to connect

stationary nodes. As part of the core network, there are three types of SDDL

nodes with distinguished roles that will be explained in the following sections and

are depicted in Figure 11.

5.2.1.
Gateway

The Gateway (GW – see Figure 9 on page 49) defines a unique Point of

Attachment (PoA), for connections with the mobile nodes, it is the implementation

element we used for the broker defined in our model in Chapter 4. The Gateway

is thus responsible for managing a separate MR-UDP connection with each of

these nodes, forwarding any application-specific message or context information

into the core network, and in the opposite direction, converting DDS messages to

MR-UDP messages and delivering them reliably to the corresponding mobile

node(s). The GW is also responsible for notifying other SDDL core network

nodes when a new MN becomes available, or when some MNs disconnect from

it. This information is necessary to implement other SDDL services in other core

nodes, e.g., a service that caches messages addressed to temporary offline

mobile nodes, for posterior delivery.

Communication and coordination between the GWs is done by special DDS

Topics created for that purpose. There are two main types of topics. The

SystemTopics are the topics used for internal system and services coordination

and are hidden from the applications. For example, there is a PingTopic, which

can be sent from any GW and instruct all the nodes in the core network to

respond to the topic; this topic can be used to check the overall network

performance. Special services can also implement their own SystemTopics to be

able to communicate among the nodes participating in their services providing.

For example, a distributed service for logging can create a topic to carry the data

that all nodes must persist. The ApplicationTopic is the topic used to carry data

from/to applications that use SDDL. For example, when a node sends its location

or a private message to another node, the GW translates this message and

publishes the data in an ApplicationTopic to all interested nodes. In addition to

the data, the topic has many additional metadata about the publication, e.g.,

sender identification and/or receiver identification. The GW uses these extra data

to be able to perform filtering at the subscription of the topic. For example, the

GW should only subscribe to private messages sent to mobile nodes connected

to it.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 59

5.2.2.
PoA-Manager

The PoA-Manager (pm in Figure 9 on page 49) is responsible for two

things: (a) to periodically distribute a Points of Attachments List (PoA-List) to the

MNs, and (b) to eventually request some MNs to switch to a new Gateway/PoA.

The PoA-List is always a subset of all available Gateways in SDDL. The order in

the list is relevant, i.e., the first element points to the preferred Gateway/PoA, and

so forth. By having an updated PoA-List, a MN could switch its Gateway if it

detects a weak connection or a disconnection with the current Gateway.

Moreover, by distributing different PoA-Lists to different groups of mobile nodes,

the PoA-Manager is able to balance the load among the Gateways, as well as

announce to the mobile nodes when a new Gateway is added to the network, or

an existing Gateway is removed (or failed) from the SDDL core.

5.2.3.
GroupDefiner

GroupDefiners (gd in Figure 9 on page 49) are responsible for evaluating

group-memberships of all mobile nodes. To do so, they subscribe to the DDS

topic where the Data Updates are disseminated, i.e., the ones sent from the MNs

and forwarded by the GWs, and map each node to one or more groups,

according to some application-specific group membership processing logic. This

group membership information is then disseminated to all Gateways in the SDDL

core network, using a SystemTopic. The GW is responsible to maintain a

structure about group-membership information for every MN connected to it.

Whenever a new message is sent to a group, each Gateway queries its group-to-

MN mapping, to learn to which of the connected MNs it must send the message.

The current groups of a node can be determined, for example, by its node ID, its

current position (e.g., if it is inside some region), or by any other attribute/field of

its context information (e.g., a node’s battery level). In any case, it is important to

notice that logic to define the groups is always application-specific and should

implemented by the application developer and deployed in the GroupDefiner.

5.2.4.
Architecture Overview

Figure 11 shows SDDL nodes types discussed so far and the

communication protocols they use. On the mobile side, a mobile application

(currently we only support Android) uses a client library (ClientLib) for

establishing and managing MR-UDP connections to send and receive messages

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 60

to a Gateway. On the SDDL core network side, all nodes use a DDS

implementation-independent Universal DDS Interface (UDI), whose API classes

and methods are mapped to the different primitives for setting up and configuring

the communication entities of each DDS product, which in turn uses the DDS

standard high-performance RTPS protocol. The Gateways are the only nodes in

the SDDL core that also use the ClientLib to manage (an arbitrary number of)

mobile connections. The Controller is a Java Applet that interacts with a

JavaScript for displaying all MN’s current locations on a map, with a Web browser

window. The Web browser also displays the current groups of MNs (which can be

defined and managed by the user), and supports operations to send (uni-/group-

/broadcast) messages to, as well as receive text messages from the MNs. The

other elements of SDDL shown in Figure 11 will be explained in mode detail

along the remainder of this chapter. While several people in our lab participate in

the development of SDDL/ContextNet, the author of this thesis has contributed in

the overall system architecture and participated in the high-level specification of

some parts of all components presented here. In terms of actual implementation,

the author was responsible for the entire development of the following

components: MR-UDP, ClientLib, GroupAPI, PubSubAPI and SDDS.

5.3.
Handling Mobile Handover

A Handover (HO) happens when a mobile node connected to a Gateway

drops or loses its connection and connects to a different Gateway. SDDL

supports both core-initiated handover, i.e., when a mobile node is requested by

the PoA-Manager to connect to a new GW, and a mobile-initiated handover, i.e.,

when the mobile node spontaneously decides to connect to a new GW. In both

cases, it is the mobile node that actually chooses another PoA from its PoA-List.

While performing a handover between Gateways, i.e., during the period of

time when the node is temporary disconnected, it is possible that some

messages fail to be delivery to it. In order to enable reliable delivery of messages

during a handover (a.k.a. smooth handover), SDDL also implements the Mobile

Temporary Disconnection Service (MTD), which may run on any node(s) of the

SDDL core network.

The MTD is responsible to listen to disconnected-MN messages produced

by the Gateways, and subsequently collect all messages sent to the mobile node

during its HO offline period. As soon the node is connected to a new GW – which

will also be announced by a connected-MN message – the MTD Service will send

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 61

all the collected messages to the node through the new GW. Since not all

applications require such reliable delivery, the MTD Service is optional in SDDL.

And, of course, the buffering capacity of MTS is limited by the amount of memory

allocated to it at deployment time. So far, we have not implemented any specific

garbage-collection algorithm for minimizing message loss due to buffer overflow.

5.4.
Nodes IDs and Message Delivery

In the SDDL, every mobile node and every Gateway has a unique identifier

(ID). Every MR-UDP message carry the mobile node’s ID, and the ID of the GW

currently serving the mobile node is automatically attached to any message

entering the SDDL core network. By this, any corresponding node can learn

which is the mobile node’s current GW, and most messages addressed to a

mobile node will thus carry also a Gateway ID, allowing them to be directly routed

to the corresponding Gateway serving the mobile node. However, if the mobile

node becomes suddenly unreachable/disconnected, its most recent Gateway, will

notify this to all other nodes in the SDDL core network, and any future message

to the node will omit the Gateway ID. However, even in this case where the

current Gateway of a mobile node is not specified, messages to the mobile node

will be delivered, because they will be received by all Gateways but only properly

forwarded by the correct GW. Hence, as soon as any of the Gateways gets a

new MR-UDP connection from the ‘lost’ mobile node, it will forward properly

forward future messages to the mobile node including the new GW ID.

As SDDL’s basic functionality, it is possible to send two types of messages:

UnicastMessages to a specific node, or BroadcastMessages, to all active nodes.

In the SDDL core, sending a message is just as simple as writing into the DDS

PrivateMessageTopic the message payload object, and the ID of the mobile

node, or, alternatively, setting a broadcastFlag. As mentioned before, it is further

possible to set also the Gateway ID, in which case all the Gateways not serving

the mobile node will filter and discard the message.

Messages can be sent by an SDDL-specific node within the core network,

by an arbitrary application node in the core network or by any mobile node. In the

latter case, the mobile node just sends the message payload object, the ID of the

addressee (or the broadcastFlag) through its MR-UDP connection and does not

care on how the message is delivered to its destination. In out tests, we achieved

message delivery times of less then 200ms, and experienced no message loss

when the mobile node is connected.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 62

Applications developed using SDDL can include also groupcast

communication, whose group-definition logic is processed at the GroupDefiner

nodes and the group-membership information is disseminated to all Gateways,

by which they are able to update their MN-to-Group and Group-to-MN mappings,

and as mentioned before and will be explained in more detail below.

5.5.
Group Communication and Management

Applications developed using SDDL can extend message delivery

functionality by implementing a classifying service on a core network node. This

service is responsible to classify all mobile nodes into groups, according to any

criteria, such as by mobile node ID, current position, its speed, or any other

particular application specific context. Once the groups are defined, it is possible

to send messages to all nodes of any group. In this case, only the Gateways that

have some node in the group will subscribe to group-specific messages and will

forward them to the locally served mobile nodes that are group members.

Groups of nodes may be either long-lived/explicit or context-defined. In the

former category they are explicitly defined by the application developer/operator,

e.g., nodes belonging to a certain user group, to a same company or

administrative domain, or nodes of a same type. For context-defined groups, the

membership of a node is dynamically determined by its most recently updated

context data (via a Data Update – DtU). For example, if the context means the

“geographic position”, then all nodes located within a certain region (e.g., a

metropolitan area or within the boundaries of a state), can form a context-defined

group. Alternatively, nodes could also be grouped by their current type of

connectivity (3G vs 2G), their residual energy level, accelerometer data, local

weather condition, or any other dynamic context information. Hence, context-

defined group membership has to be continuously updated according to the most

recent DtU sent by the nodes, and this is done by the GroupDefiners in tandem

with the Gateways: for each DtU the GroupDefiners check if some membership

changed, and if this is the case, disseminate this node’s group change to all

Gateways, which update their mappings accordingly.

Each GroupDefiner internally consists of a generic DtU message

processing part, and an application-specific, Group selection module. The

generic part is responsible for reading DtU messages from the DDS domain,

recording the current groups related to the message, and handling the DtU object

to the Group Selection module. This module will execute a specific group-

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 63

mapping algorithm to determine the group/s that the corresponding producer of

the DtU is member of and must be implemented accordingly with any application

specific rule.

This split between the generic and the specific group membership

processing parts has some advantages: (i) it is possible to deploy several

GroupDefiners in the SDDL core, each of which executing a Group selection

module that examines a certain type of the DtU object independently of the other

modules, and (ii) Group selection modules may be easily exchanged in the

GroupDefiner, without compromising the remaining function of the SDDL group

management and communication capabilities.

5.6.
Universal DDS Interface and General Application Topics

The Universal DDS Interface (UDI) is a library that fully abstracts the DDS

implementation utilized, promoting reusability and interoperability of SDDL

components. The main goal is to hide away the idiosyncrasies of the APIs of

each DDS implementation, and simplify the set-up and configuration of DDS

entities.

UDI supports the creation of DDS topics (and content filtered topics),

Domain Participants, Publishers, Subscribers, Data Readers and Data Writers,

as well as the definition of QoS policies for each such entity, all in a straight and

uniform way. As mentioned before, the DDS standard defines about 48 possible

QoS policies [21, 58], but every DDS implementation has different ways of

assigning them to Topics, Domain Participants, Publishers, Subscribers, Data

Readers and Data Writers, as well as configuring the corresponding network

services, which makes the proper use of QoS of DDS a cumbersome task.

Moreover, several DDS products only support DDS setting at build time. Hence,

one of our goals in designing UDI was also to simplify this process, and to

support QoS setting at deployment time. Therefore, in UDI QoS policies are

defined by passing a single QoS policy object at the initialization method, which

aggregates the chosen QoS parameter settings for all DDS entities at a single

place. Thus, whenever a DDS implementation is to be replaced or added, it

requires only implementing the new UDI port to the chosen DDS

implementation/product. UDI is also topic independent in that it is able to

manipulate any DDS topic, not only the SDDL topics.

As already mentioned, all SDDL core components interact through DDS

topics. Some of them are used for control purposes, i.e., for coordination among

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 64

GroupDefiners, Gateways, PoA-Manager, etc., while other topics are used for

Application messages. Concerning the latter one, SDDL defines a single, and

generic Application Topic type, which is to be used by the application

programmer to create its application topics. The main components of this topic

type are a content attribute, which holds any Java-serialized object, and a list of

group IDs for the exchanged message. This single generic topic type makes

SDDL a general-purpose communication middleware which is completely

agnostic to the application-specific classes, and which is responsible only for the

reliable and efficient message delivery to/from the mobile nodes, as well as for

the management of group memberships of the nodes.

5.7.
ClientLib

The ClientLib is a Java library part of the ContextNet that is provided to

applications developers that want to implement applications that uses SDDL as

the communication substrate. It hides most details of the underlying protocol

utilization (e.g., MR-UDP) and handles several connectivity issues from the

communication protocol between the mobile node and the Gateway(s). The

current ClientLib implementation was designed to work in Java for desktops and

Android.

The fundamental element of the ClientLib API is the NodeConnection

interface, which provides methods to connect to a remote GW and to send and

receive messages. The communication is asynchronous, which means that the

applications do not block when calling the send() method. There are two listeners

provided with the API: (a) the NodeConnectionListener should be registered

before a connection takes place, so the application can be notified when the

connection is established or if the connection could not be made – among other

notifications; (b) the SDDLConnectionListener is provided to applications that

want to be informed when SDDL related events occurs, e.g., when a new PoA-

List is received. All messages sent by the application to the GW are queued in an

internal buffer to be sent as soon as possible. However, if for some reasons

some messages could not be send, mostly because a broken connection that

could not be re-established, the application will be notified about which messages

where not sent in the NodeConnectionListener – though it only happens if the

node could not make any connection after trying to handover to any of the known

Gateways.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 65

Currently, ClientLib has been implemented only for MR-UDP protocol

described in the previous sections (implemented in the MrudpNodeConnection

class). However, the ClientLib implementation is decoupled from the

communication protocol that may implement the NodeConnection interface,

which makes possible to seamlessly integrate other underlying protocols (e.g.,

HTTP). Thus, with future developments, it could be possible to the application

developer to select a protocol that best suits his/her application’s needs – since

not necessarily all mobile nodes will necessary have stringent resources and

network limitations.

The ClientLib also implements and hides from the application developer all

low-level SDDL functionalities, like handovers between Gateways, or

retransmission attempts for non-acknowledged packets. Concerning handovers,

the ClientLib is responsible for handling and managing the PoA-List (i.e., the list

of Gateway IP addresses and ports received from the PoA-Manager), reacting to

a mandatory handover request, and deciding when to performing a spontaneous

handover If the application tries to send any information during the short

disconnection period between handovers, the ClientLib buffers the packets and

sends them as soon as a new connection is established.

When the client application is running on a mobile node with a very

unstable wireless connectivity, with frequent temporary disconnections, the

ClientLib tries to shield these disconnection events and reconnection attempts

from the application, so that the mobile client application may behave as if the

client had a stable and continuous connection. For all communication, ClientLib

uses the abstract class Message, which is the superclass that all other messages

must inherit. An ApplicationMessage subclass is already provided for general

communication purpose, which must be extended and implemented by the

application developer with details and data needed for his application if needed.

The application is notified about the receipt of new Messages in the

NodeConnectionListener.

The ClientLib has also a server part (NodeConnectionServer class), which

is used by the Gateways to wait for and handle mobile client connections. The

MR-UDP implementation offers a better use of Threads when comparing with the

original R-UDP. We have reduced the number of Threads utilized by the protocol

from 15 per connection to 5 Threads per 1,000 connections, making possible to

the MR-UDP server to maintain several thousands of concurrent connections to

mobile nodes. Additionally, the ClientLib is also responsible for the serialization

and deserialization of all exchanged data. ClientLib also implements some other

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 66

features that happen without any interaction with the applications, like the

reception and response to Ping Messages, which are used by the SDDL to

collect statistics about the latency of mobile connections – the application is only

notified of these events if an SDDLConnectionListener was registered.

5.8.
ClientLib’s ExtendedAPIs

In general terms, the ClientLib is a high-level protocol API that provides to

application developers means of communication among mobile nodes using in

the underlying implementation the MR-UDP protocol and the SDDL core network.

However, some application developers may not consider the ClientLib API

completely suited for their needs, and may want even higher-level abstractions.

For this matter, the ClientLib was designed and implemented to be an extensible

library where other communication protocols and APIs can be implemented over

the basic NodeConnection concept – we call them ExtendedAPIs. The ClientLib

already has two of such higher-level communication protocols and APIs, the

GroupAPI and the PubSubAPI (please, see Figure 12); the former provides

means for groupcast communication among the mobile nodes and the latter

topic-based publish-subscribe communication. Further details will be explained in

the following sections.

Figure 12 – ClientLib’s internal APIs layers.

As Figure 12 suggests, the ClientLib can be used to hide not only the MR-

UDP protocol and SDDL functionalities but its NodeConnection API as well. If an

application is implemented, for example, using the PubSubAPI it will only use its

APIs methods and the ClientLib will handle all communication that happens

underneath. Moreover, a high-level API can be implemented over another high-

level API, which is the case for the PubSubAPI implemented over the GroupAPI.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 67

The ClientLib’s extensibility is supported by the class ExtendedMessage

and the ExtendedMessageListener. As explained in the previous section, the

basic communication element in ClientLib is the Message superclass, which has

ApplicationMessage as an extension, already provided. However,

ApplicationMessage has a sibling message type called ExtendedMessage (see

Figure 13). The ClientLib’s implementation regarding the reception of messages

hides from the NodeConnectionListener any messages types received that is

derived (extended) from ExtendedMessage. Thus, only messages types

extended from ApplicationMessages reach the application through the

NodeConnectionListener. So, to implement a higher-level protocol over ClientLib,

the developer only needs to design and implement its protocol messages

(extending ExtendedMessage) and register an ExtendedMessageListener for that

type of messages with the NodeConnection. To send an ExtendedMessage, the

developer uses the normal ClientLib’s send() method. When an

ExtendedMessage is received from the remote node that the application is

communicating with, the ExtendedMessageListener is notified. Figure 13 shows

an example of the GroupMessage type that has two subclasses

(JoinGroupMessage and LeaveGroupMessage), they are used by the GroupAPI

implementation (that we will describe in the next section) to implement the group

membership management of a mobile node by the application.

Figure 13 – Message class hierarchy example.

From the point of view of MR-UDP and the SDDL parts, the

ExtendedMessage is handled as any other message that has some basic fields

such as a source and a destination. It is important to note that because of the

aforementioned every ClientLib/SDDL feature (e.g., resilience to temporary

disconnections, IP address changes and handovers) will work transparently for

any higher-level protocol developed on top of ClientLib. This makes it possible to

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 68

implement new protocols that take advantage of SDDL’s reliability, scalability and

on-time dissemination properties – without the need to design and implement

them again from scratch.

5.9.
GroupAPI

As its name suggests, the GroupAPI is an ExtendedAPI that provides group

communication to applications implemented with the ClientLib. The API

implements the GroupMessage type that extends ExtendedMessage and another

few classes that extend GroupMessages for the API implementation (for example

the JoinGroupMessage and LeaveGroupMessage types – please see Figure 13).

The GroupAPI works in tandem with the Gateway. To create an application that

supports group communication, the developer needs to create a

GroupCommunicationManager and pass a reference to an active

NodeConnection. Thus, after creation, the application can communicate using

exclusively the GroupCommunicationManager.

In the Section 5.5 we explained that the SDDL provides means for group

communication via groupcast messages that are sent to a specific group of

nodes that are managed by the GroupDefiner. A mobile node will either

automatically enter one (or more) groups through the GroupDefiner imposition

(e.g., which assigns a group to the node based on its context information), or by

explicitly calling method joinGroup() in the GroupAPI. In both cases the Gateway

will add a filter to the DDS messages that carries messages for the groups. The

GroupAPI provides a GroupCommunicationListener that can be registered by the

application to be notified when the GroupDefiner had assigned or unassigned the

node to a group and about the incoming groupcast messages of the groups the

mobile node is part of.

In SDDL a group of nodes is defined by two integers: one specifies the

group ID and the other the group type. It is important to have this pair of

identifiers since distinct application could use the same group id for different

purposes, so we added a group type for differentiation. Thus, to enter or leave a

group, the application must specify the group ID and group type and call the

joinGroup() or leaveGroup() methods in the GroupCommunicationManager. The

sendGroupcastMessage() method sends messages to specific groups and, when

called, the GroupAPI automatically encapsulates the message in a

GroupcastMessage and send it via MR-UDP, SDDL and to therefore reach all

mobile nodes participating in that group. Groups are open in the sense that a

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 69

node do not need to be a member of a group in order to be allowed send a

groupcast message to that group. Moreover, the joinGroup() and leaveGroup()

methods only have effect if the node is not already asociated to a group througth

the GroupDefiner. If the node is already in a group, it will receive all the groucast

messages anyway.

5.10.
PubSubAPI

The PubSubAPI is implemented over the GroupAPI and uses it to provide a

topic-based publish-subscribe communication service (explained in Section 2.1)

to the application. The fundamental element of PubSubAPI is the

PublishSubscribeMananager, which needs a GroupCommunicationManagager

and a NodeConnection in its constructor.

The application can register publishers of, or subscribe to, publish-

subscribe topics. Each topic is defined by a topic name represented by a

keyword. The calculated keyword’s hash value is an integer used to represent the

topic group ID in the PubSubAPI’s underlying GroupAPI utilization (e.g., the

keyword “location” will generate the group ID 74518). The PubSubAPI defines

two different ClientLib group types to implement the communication paradigm:

one for managing the matching of publishers and subscribers and the other for

the event dissemination in each topic (e.g., group types 100 and 101).

Figure 14 – PubSubAPI example.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 70

Figure 14 shows an example of the PubSubAPI utilization. When an

application registers a publisher of some topic (1), the PubSubAPI calculates the

topic name keyword’s hash value (2) and uses the GroupAPI to join the group ID

defined by this integer and the control messages group type (3). When the

application is registering a subscriber for some topic (4), the corresponding group

ID is also calculated (5) and the GroupAPI is used to join the group ID with the

group type where the messages events are disseminated (6). Additionally, when

registering a new subscriber of a topic, a groupcast message with the new

subscription is sent to the control group type of the topic group (match-making

group) (7), which will be received by all mobile nodes that had registered

publishers to that topic (8 and 9). At every publication of new events, the

publishers send groupcast messages to the event dissemination group type of

the topic group ID, which will reach all interested subscribers.

For application development, the Publisher, Subscriber and

PublishSubscriberListerner interfaces are provided and must be used to

implement publishers, subscribers and a listener to the PubSubAPI. The

PublishSubscriberListerner interface is used only if the application needs to be

informed about underlying publish-subscribe events, like for example when a

match between a publisher and subscriber occurs. A subscription is defined using

the Subscription class that can optionally attach a SubscriptionFilter as a

parameter. The subscription filter is implemented by an abstract method that

receives the event published and should be implemented by the application

developer to return true or false in the case that the event should be processed

by the subscriber or not. Since the filter is attached to the subscription, the

publisher has access to all filters in all subscribers of its topic. This way is

possible to do the filter processing both at the event source (i.e., the Publisher)

and in the event consumer (i.e., the Subscriber). The Subscriber interface defined

the newInformationReceived() method that should be implemented by the

application developer and is called by the PublishSubscribeMananager when a

new event is received.

In general terms, the PubSubAPI makes possible to use all SDDL features

using a standard topic-based publish-subscribe API. Applications using it will

have the additional benefit of the reliable, scalable, and on-time dissemination of

events with the automatic Gateway handovers and load balancing management

provided by the PoA-Manager and PoA-Lists. Moreover, since the PubSubAPI

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 71

has small code footprint, the application can be deployed at mobile devices with

stringent resources and intermittent wireless connections.

5.11.
Structured Data Dissemination Service – SDDS

The Structured Data Dissemination Service (SDDS) is another extension of

the ClientLib. It provides general abstractions and implements a protocol for

collecting (probing from mobile sensors), processing and sharing of structured

data information among any mobile nodes. The SDDS is implemented on top of

the PubSubAPI. It allows the applications developers to consider only the types

of information of interest to build its applications, instead of dealing with publish-

subscribe topics and their filters. As mentioned before (in Section 4.2.7), SDDS

thus supports the implementation and operation of a data sharing application as

an arbitrary web of (mobile and distributed) producers, transformers and

consumers of different types of information.

 Two are the main abstractions used by the applications to interact with

SDDS: the Data Provider and the Data Consumer.

The Data Provider – or just DtP – is the software entity responsible for

producing Data Updates of a single information type. Each DtPs is thus

specialized in the construction of a DataUpdate object of single information type.

The data is typically obtained by probing a specific sensor embedded in the

device, or an external source of information, such as a database, a web service.

Through SDDS each DataUpdate object will be delivered to all the interested

Data Consumers, which may be applications or other Data Providers, that may

be device local or remote, The Data Providers must be implemented using the

DataProvider class, indicating which context information they provide and in

which platform they can run (i.e., Java, Android or both).

A Data Consumer – or just DtC – is a subscriber for Data Updates. When

an application (or another Data Provider) needs some kind of context data as

input, it must provide a DataConsumer listener that will be notified by the SDDS

when every new Data Update is produced by the DtPs.

In SDDS it is also possible to create Data Providers that subscribe to Data

Updates from other DtPs (local or remote), in order to produce aggregate or

transformed higher-level information from simpler information – e.g., a high-level

DtP that subscribes to the location of a group of mobile nodes that are traveling in

a specific road and produces Data Updates about this road traffic conditions.

Thus, in this case, the DtP becomes also a DtC that is notified by SDDS of new

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 72

Data Updates and from which will be generated a higher-level Data Update. This

capability to arbitrarily interconnect DtPs is the basis for the construction of a

networked/hierarchical flow of Data Updates of our model.

As a service executing on top of PubSubAPI, the SDDS thus enables a

distributed, mobile network of DtPs and DtCs for structured data/information

sharing between application instances executing on either mobile or static nodes.

And since SDDL handles all the details and problems concerning node mobility

and intermittent connectivity, the information-sharing networks enabled by SDDS

become completely independent of the underlying communication infrastructure.

Each Data Provider can be deployed and activated/deactivated independently,

depending on whether there is some DtC or other DtP interested in the

corresponding information type. SDDS also supports the discovery and dynamic

download of new Data Providers from a remote repository of DtPs.

SDDS has been implemented in Java as a part of the ClientLib. It has a

single implementation that runs on the Android platform as well, making it

suitable for mobile nodes. To use its services, the application must instantiate a

new StructuredDataDisseminationService object by providing an instance of the

PublishSubscribeManager.

There is an abstract class DataProvider, which must be extended to

implement a new DtPs. These classes must be compiled in the platform in which

they are suppose to run, even if they don’t have platform-specific code. In most

cases, where no platform-specific sensor of library is used, the same code can be

compiled to both Java and Android.

The DataUpdate object must be created and populated by the DtPs to

issue Data Updates. After generate a new DtU, the DtP just need to call the

provided publishDataUpdate() method so the SDDS will deliver it to all interested

DtC.

A DataProviderRepository is provided and works also as a Java

ClassLoader. It dynamically loads and activates required DtPs. Since there are

some differences between the Java and Android ways of dynamically load

classes, the repository must be created by the application, providing the specific

class loader of the corresponding platform. The repository automatically loads all

DtP locally available and registers them at the SDDS, which will be listening to

subscriptions from any node interested in those types of DtUs. Once a

subscription is received, the correspondent DtP is activated to start producing

DtUs

.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 73

sdds://any/location?frequency=5s
Figure 15 – Information URI example.

Within SDDS a information is identified by an URI, for example

sdds://this/location, which represents the location of the local device. Figure 15

shows an example of an URI that are used by the subscribers. The blue part is

the address of the device from which the information is needed; this may be this

or any too. The green part is the desired information itself, represented by a

keyword. In the query string (red part) it is possible to configure the Data

Providers parameters, for example, setting its update frequency to five per

second. The subscriber uses a URI to identify what information it needs.

Figure 16 – SDDS interactions upon new context subscription.

Figure 16 illustrates the basic interactions between an application, the

SDDS and the PubSubAPI: A DataConsumer of an application issues a

subscription to PubSubAPI for some specific type of information, e.g., Battery

level, through SDDS (step 1). Then, the SDDS searches for any locally deployed

Data Provider that can produce the requested information. If none can be found

locally, SDDS searches, downloads the corresponding DtP from the remote

repository or others mobile nodes and activates it (steps 2 and 3). Once

activated, the DtP delivers the created data to SDDS as a DataUpdateObject.

SDDS adds some data to this object (e.g., the deviceID and timestamp), and

publishes it through PubSubAPI (steps 5 and 6). This object is then delivered to

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Implementation 74

all DataConsumers with matching subscriptions, which in turn pass it to the

applications for specific handling.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 75

6
Evaluation and Tests

Our model and middleware was designed and implemented in accordance

with the desired features listed in Chapter 3. We studied the most promising

researches and improved their ideas with some of our own. In this chapter we

would like to evaluate our solution, presenting proof of concept applications,

performance and stress test results and compare it with the related work.

6.1.
Fleet Tracking and Management Application

Figure 17 – Fleet Management Application architecture.

The ContextNet has been deployed in a real-world Fleet Tracking and

Management application (InfoPAE Móvel) of a major gas distribution company,

which operates throughout the entire country in Brazil. Using this application, the

company's Operations Center is able to track trajectories of its trucks in real-time,

in order to optimize the trucks' itineraries, to detect and notify obstructions or

jams on roads, and to monitor the vehicle driver's actions (e.g., elapsed time on

both planned and involuntary stops). Moreover, it does simple text messaging

with drivers, to send them instructions or alerts, both individually as well as to

subgroups of the vehicle's drivers, according to the country region they are

currently located. For the communication with the vehicles, the company uses

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 76

any of the four Brazilian cellular network operators, since one or the other

operator(s) better serves each region of the country. Moreover, in each region,

there are significant differences of connectivity quality (e.g., 2G vs. 3G) and

extension of the wireless coverage. Thus, during a long journey, vehicles may

experience several IP address changes, temporary data link disconnections (due

to weak coverage, and caused by handover latency). Finally, in most cases their

2G/3G connections will be behind firewalls of the cell operators.

Figure 17 shows our application architecture, with all nodes in the SDDL

core network (DDS Domain) and our Fleet Tracking and Management

application. In the next sections we will present the implementation and

performance test results as a proof-of-concept application for our middleware.

6.1.1.
Implementation

Using the ContexNet as the middleware to implement this application, the

mobile nodes are represented by the company’s trucks. Once connected, the

Data Provider at the vehicle sends up to 20 location updates (probed from the

GPS sensor) every 30 seconds to the Gateway. This on-line tracking of all mobile

nodes can enrich the quality of collaboration among the operator at the Fleet

Management Operations Center (FMOC) and the drivers, and among the drivers

themselves. Since all participants can be made aware of each other’s location (in

fact, it could be also other context information about the truck or its environment),

it is possible to react immediately to any abnormal situation, and perhaps initiate

a communication session with the drivers. For example, one could ask a driver

why he/she has stopped or is traveling at low speed, and by such get informed

about a traffic jam or an accident, allowing other drivers to choose a different

route.

As part of the fleet management system we implemented another specific

element, the Controller. The Controller runs at the FMOC and is used to display,

in real-time, the vehicle’s position on a map, as well as to send unicast, broadcast

and groupcast messages to groups of vehicles. In the current version, the

Controller is a Java Applet that interacts with a JavaScript to display vehicle

positions, groups and text boxes for messaging in a Web browser window.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 77

Figure 18 – Fleet Management Application Controller.

Figure 19 – Mobile Client App prototype running in Android.

Figure 18 shows a screenshot of the FMOC Controller (InfoPAE Móvel

Monitor) browser window, with some vehicles (blue icons) with their traces, and

some informed road problems/alerts (red icons) displayed on the map, as well as

a “bubble window” for messaging with one specific vehicle (the green icon). On

the right hand side, from top to bottom are: a section for editing and sending a

message to a group of vehicles (with a group selector), a control panel for

measuring round trip delays to individual vehicles or groups of vehicles, and a

window displaying a log of message exchanges, respectively.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 78

Regarding the mobile client for this application, so far we have

implemented a prototype using the Android framework (version 2.3). This

prototype uses the ClientLib in an Android’s AsynchTask to connect to a Gateway

(the first in the PoA-list), and is capable of sending and receiving simple text

messages to/from any node, but most often, to the Controller. Using Android’s

MapView, it displays on a map the current vehicle’s position (the green icon), as

well as any red icon about a road problem/alert in its vicinity (see Figure 19).

6.1.2.
Performance Tests and Results

We have tested our middleware in lab experiments and not in the real-world

Fleet Management application, due to two main reasons. For one, our Controller

and mobile client are still prototypes and do not implement all the required

Vehicle Management functionality, and secondly, because we wanted to test our

system with thousands of nodes, and doing such a large-scale deployment of the

client software is currently not feasible. Therefore, we used a program to launch

and simulate an arbitrary number of concurrent mobile nodes that connect to

some Gateway and periodically send their position.

The main goal of the tests was to evaluate the ContextNet performance, in

terms of communication latencies within the core network and on the Gateway-

mobile links, both of them for unicast, broadcast and groupcast messages from

the Controller to the mobile nodes, all in a real-world-like scenario.

We did two separated tests, one with all participants’ nodes and simulated

MNs executing in a local network (LAN) and another one with the simulated MNs

connected through a remote link on the WAN. The local area test was primarily

aimed to evaluate the ContextNet performance at serving a large number of

mobile nodes and significant amount o data being exchanged, while the wide-

area tests showed the reliability of the mobile communications using MR-UDP

protocol, even in the presence of handovers. The PoA-Manager and handovers

were active only on the WAN tests.

Even though we tested ContextNet with simulated mobile nodes, their

communication behavior is very similar to the expected one of real mobile clients,

except for the lack of mobile-initiated messaging, and moreover they use the

same ClientLib/MR-UDP implementations. For example, in the WAN tests we

also let the simulated MNs randomly disconnect from their current Gateway and

try to connect to another Gateway. Therefore, the simulated MNs did in fact

produce quite realistic traffic data, allowing us to measure the system’s

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 79

performance in high workload scenario, i.e., with huge volume of data exchanged

between the mobile nodes and the core nodes. So, we believe that analyzing the

system’s performance graphs gives a realistic picture of the middleware’s

scalability and robustness.

6.1.2.1.
LAN Tests

The main goal of the Local Area Network experiments was to evaluate

ContextNet’s performance under high traffic load of LocationUpdates (i.e., Data

Updates), generated by thousands of mobile nodes.

Configuration and Simulation Parameters

Our mobile node simulation program, MN-Simulator, uses a thread pool of

size 30 to indefinitely execute an arbitrary number of MNs, where each MN is

scheduled to periodically send 20 simulated coordinates (pairs latitude, longitude)

packed into the DataUpdate object to one of the Gateways. Thus, the total size of

this LocationUpdate (LU) message is approximately 1 KB7. In addition to sending

LUs, each MN also receives sporadic ping messages from the Controller, and

immediately replies with a pong message.

The performance tests were executed with following system configurations

and simulation parameters: (a) 2,000, 4,000, 6,000, 8,000 and 10,000 MNs

connected to each Gateway; (b) one or two Gateways; (c) LocationUpdate

frequencies of 2 LU/min, 4 LU/min and 10 LU/min; (d) one GroupDefiner.

Experimental Setup

To test the communication performance, in each test round we connected

all simulated MNs to the Gateways and then sent unicasts messages to some

MNs, broadcast messages to the Gateways on the DDS domain (Core) and

broadcast messages to all MNs. For each type of message we calculated the

round trip delay as the difference between the moments the message was sent

and the moment the confirmation response was received.

Our hardware test setup was composed by 4 computers (virtual and real), 2

of them running Gateways and 2 others running the MN-Simulator. The

GroupDefiner was running on one of the simulations machine. All machines were

connected through a 10/100 Mbps switch.

We have run experiments with most of the simulation parameters explained

in the previous section. However, due to memory and processing limitations of

7 Because the MR-UDP configuration for the tests carries 256 Bytes on each UDP packet, each LU is split to

at least three UDP packets.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 80

the machines executing the MN-Simulator, we were able to simulate at most a

total number of 12,000 MNs performing 10 Location updates per minute.

Testing unicast and broadcast

The results are presented on Figure 20 and Figure 21. All round trip times

are shown in milliseconds. For the sake of better legibility, subtitles were

abbreviated, e.g., LU means Location Updates; 8,000v 2GW means a total of

8,000 MNs connected at 2 Gateways (4,000 at each GW). In all experiments we

started to measure the delays only after all MNs were sending their LUs, and all

results are the mean value of 5 measurements.

Figure 20 – Core and Unicast round trip delays.

Figure 21 – Broadcast round trip delays.

As Figure 20 shows, the unicast and core round trip delays are very stable

for all test parameters (20-45 ms). This suggests that our system is not yet

overloaded. Unicast messages to any MN are delivered quite fast (up to 50 ms),

and the ContextNet core network is yet far from saturation (< 20 ms), which

means that it could handle a lot more messages. As shown by Figure 21, the

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 81

broadcast delays are much higher (up to 45 sec), which is expected as all MNs

must be contacted individually and their response must be obtained until the total

round trip is completed. As mentioned before, we couldn’t send a broadcast

message to more than 10,000 MNs connected to a Gateway, because this

caused a drop of connections during broadcast tests. We think that this is

partially caused by the overload of the network interface, as all messages are

sent almost instantaneously, probably causing a UDP buffer overflow.

Additionally such storm of message causes a huge increase in CPU and memory

resources on both the GW and MN-Simulator, causing the application to not

working properly.

6.1.2.2.
WAN Tests

In order to evaluate the performance of the middleware in an WAN

environment with high latency connections and subject to intermittent connectivity

and/or the occurrence of IP address changes (such as those experienced by

mobile nodes connected by mobile network providers), we did the following

experiments: we ran several performance tests involving 3 Gateways and 1 PoA-

Manager executing in our lab, and several thousand simulated mobile

nodes/vehicles launched in parallel on 4 to 5 remote machines served by

different broadband ISP internet connections. We measured the Round Trip

Delay of both unicast and groupcast messages to the MNs. Some experiments

also included frequent handovers, both initiated by the mobiles and/or by the

PoA-Manager, the latter aiming load balancing among the Gateways. For all

these tests, the LU frequency was every 30 seconds (2 LU/min).

Experimental Setup

The experimental set-up was as follows: In our lab, the three Gateways

executed on separate machines: a Dell PowerEdge server (3.0 GHz, 2x Dual

Core), a PowerMac G5 (2.5GHz Quad-core with 8GB RAM), and a PC (CPU

Core i5 with 8GB RAM), while the PoA-Manager and a GroupDefiner executed

on a separate PC. All these machines were connected to a 10/100/1000-Mbps

switch. This switch, in turn, was connected to a 10/100-Mbps switch at the router

serving the Internet connection of our lab. At the remote side, the machines were

diverse, but all were connected via wired Ethernet to the ISP modem or router.

Before executing the experiment, all home testers measured their effective uplink

capacity, (which was always the range 0.25 to 0.9 Mbps) and downlink capacity

(in the range 1.01 Mbps to 9.56 Mbps). We chose not to use WiFi wireless

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 82

network, as this would create a less realistic simulation scenario, since all

simulated MNs would be competing with each other for a single wireless IEEE

802.11 connection, which is not collision free, as opposed to what happens with

real-world Edge or 3G connections. However, we emulated the intermittent

connectivity of real-world wireless connections by making the simulated MNs

randomly their MR-UDP connections and reconnect to a new Gateway. Also,

there was very little interference of the Internet connection usage by other

applications on the remote machines.

Testing unicast and broadcast without handovers

In these experiments, the MN-Simulator program (let’s denote by MS-i the

MN_simulator program launched at remote/home machine i) initially connected

all the simulated MNs to a single Gateway, but right after each of them

established the MR-UDP connection with this Gateway, it received (only once) a

PoA-List of size 3, containing the IP addresses and ports of all the three

gateways running in our lab (which was used for the handover tests – later in this

section). In this experiment, we turned off the load-balancing function of the PoA-

Manager, since we wanted to evaluate exclusively the ContextNet's performance

with mobile-initiated, spontaneous handover, i.e., without any

interference/overload caused by mandatory handover requests by the PoA-

Manager.

Table 2 shows the round trip delays (RTD) of the unicast messages for

three total amounts of simulated MNs executing at the remote machines. Since

the Internet connectivity and the remote machine's capacities were so different,

we measured the mean RTD time for each vehicle simulation programs

separately.

Total nr
of MNs MS-1 MS-2 MS-3 MS-4 MS-5

Global
mean

1000 108 67.80 70 67.2 78.25
4123 115.8 86.20 84.4 87 93.35
7174 98.8 68.60 77.4 67.4 78.05

Table 2 – Round Trip Delays of Unicast to MNs of each home machine (in ms).

The lower value for unicast RTD for 7174 simulated MNS was probably

caused by a sudden performance boost in the throughput of the ISP up/downlinks

at one or more of the remote Internet connections. It also indicates that the

increased number of clients does not yet affect the communication performance.

The total number of MNs is not a multiple of 4 because during the parallel launch

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 83

and connection of >1000 MNS to a Gateway some of the MR-UDP connections

failed to be established, and our vehicle simulation program was not conceived to

retry all failed connections several times.

In this same test run, we also measured the RTD of a broadcast to – and

reply from – all 1000 MNs, executing on the 4 home machines, which was only

47,1 seconds. Since the broadcast incurs in too much instantaneous

communication load at the MN-Simulator program and their Internet connections,

we were only able to execute it for 250 MNs per machine.

Tests with mobile-initiated handovers

In order to test the performance of SDDL with spontaneous, mobile-initiated

handovers and with intermittent connectivity of the mobile nodes, we added – just

for this experiment – a new message to the system, the Handover Test

messages (HT), and modified the PoA-Manager and the MN-Simulator program,

accordingly to do also the following:

Every 3 minutes, each MNs decides if it will disconnect from the current

Gateway and reconnect to another Gateway, chosen randomly from its PoA-list.

This decision is controlled by a handover probability (HO_P), which we varied

from 0% to 15%. Whenever a MN starts a handover, it first closes the current

MR-UDP connection, and then requests a new MR-UDP connection to the newly

chosen Gateway, i.e., for some short period of time – a few ms – the simulated

MN is entirely disconnected from any Gateway. Each handover is printed at the

terminal console. Each MN also accepts the HT message and increments a

global counter, which is also printed at the console.

The purpose of the HT message is to test the reliable delivery of messages

to the MNs during a handover/disconnection. It is sent by the PoA-Manager

immediately after it receives a "connection closed" message from the

corresponding Gateway. Since the mobile node is disconnected, the non-

delivered messages are received by the MTD service, and later forwarded to the

new Gateway where the MN reconnected. Thus, we wanted to check, at each

MN-Simulator program, if the total number of received HT messages equals the

total number of performed handovers by the MNs, i.e., if the MTD service had

replayed all the non-delivered unicast messages, or if some unicast message had

been loss during the handover.

Table 3 shows the mean values of round trip delays (RTD) of unicast

messages for four combinations of total number of MNs and handover probability

(HO_P), again, presented separately for each home machine.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 84

Total nr of
MNs/HO_P MS-1 MS-2 MS-3 MS-4 MS-5

Global
mean

1800/15% 103.6 72 65 61.2 70.2 74.4
3979/5% 93.2 68.2 84 63 73.4 76.36
5812/5% 112.6 79.2 102 70 92.2 91.2

7815/10% 79 58.8 59.6 50.4 334.8 116.52

Table 3 – Round trip delays of unicast messages (to each home machine) under different

handover probabilities (in ms).

From this data, we can see two things: (i) a higher handover probability,

does not necessarily increase the overall RTD of unicast messages, showing that

the retransmissions by the MTD and the disconnection management by the

Gateways only affect the message delivery times of the migrating mobile nodes;

(ii) for a same handover probability, e.g., 5%, larger number of total mobile nodes

does slightly impact on the increase of the overall message RTD.

When comparing the data of Table 2 and Table 3(for approximately 4000

MNs), it is interesting to notice that the unicast RTD are similar, and even

decreased a little bit in the experiments with low-probability mobile-initiated

handovers.

Total #

MNs/HO_P MS-1 MS-2 MS-3 MS-4 MS-5
1800/15% 2.4 1.7 4.9 3.1 1.5
3979/5% 4.9 5.9 2.5 3.0 6.2

Table 4 – Percentage of “missing” HT messages after stopping the MN-Simulator

programs.

Concerning the delivery of HT messages, there is a natural delay due to the

fact that the MTD service only resends non-delivered messages to the mobile

nodes, after the connection establishment is announced by the new Gateway.

And since we did not implement the MN-Simulator to stop doing handovers after

some time, at the end of the simulation, there is always a gap between the last

announced handover, and the corresponding delivery of the HT message, and

this gap obviously increases with the number of MNs, and their probability of

doing handovers. Table 4 shows the percentage of “missing” HT messages at the

end of the simulation for the tests with 1800 and 3979 MNs. However, when

examining the output logs of the MN-Simulator, almost all the HT messages (of

past handovers) were delivered. This raises our confidence that ContextNet

supports reliable delivery of messages in the presence of handovers between

Gateways.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 85

Tests with groupcast messages

The purpose of this test was to measure the RTD of groupcast messages

(including the corresponding acknowledgements by all group members), for

different sizes of groups, where the group members were simulated by MN-

Simulator programs (MS-i) executing on the remote machines served by the

different ISPs. Since we did this experiment on a different day and from other

remote machines, we named them MS-6 to MS-11 to make clear that the RTD

times of this and previous experiments cannot be compared. In this experiment,

common ping delay was around 25 ms (except for MS-11, that was 444ms), and

down- and up-links varied between 1.59 – 1.2 Mbps and 0.93 – 0.33 Mbps,

respectively. It should be noted that MS-11 was a machine connected in Europe,

and therefore its RTD is so much higher than the other vehicles executing on

Brazilian machines. For this experiment we turned off the induced mobile-initiated

handover behavior of the simulated MNS (HO_P=0), i.e., they would only switch

to another Gateway if their MR-UDP connection in fact failed.

 The group size is approximate, as it was determined by the GroupDefiner

using a mod operation (e.g., x%100) over the least significant byte of the MN-

identifier, which is a randomly generated UUID. Thus, in the Gr-10%, the group

had approximately 10% of 5795 MNs, etc. Recall that in all test runs, the core

nodes were also busy processing the LU messages sent every 30 seconds by

each MNs.

Vehicles/Mode Group0size MS36 MS37 MS38 MS39 MS310 MS311 Gr3cast0RTD
5794/Unicast 0 100 59,6 58,4 59,2 50 289,4
5795/Gr310% 579 19720,60
5430/Gr325% 1358 66437,80

Table 5 – Round trip delays of unicast and groupcast messages (in ms).

Table 5 shows the mean RTD times of 5 measurements, both for the

unicast and the groupcast communication modes. The color of the field indicates

which remote machines actually executed vehicles that participated in the group-

cast (red means: not used). The numbers reveal that the mean RTD time for the

estimated 579 and 1358 group members is only 19.7 and 66.4 seconds. This

suggests that a one-way groupcast message is probably delivered to the entire

group members is 40-70%-fraction of this time. Moreover, although we don’t

know how many group members were actually executed by MS-11, its longer

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 86

ping delay certainly contributed to the total increase of the RTD in the Gr-10%

experiment. As mentioned in the previous sections, we also tested and measured

the RTD of a broadcast to 1000 MNs, and the obtained results for 1000 and 1358

deliveries and replies seem to be consistent.

6.2.
Data Dissemination Tests

The data dissemination tests described in this section aim to isolate and

stress specific situations to evaluate the middleware’s performance so to certify

specific features such scalability, reliability, on-time dissemination, intermittent

connection resilience, etc. Different from the tests with the Fleet Management

Application, the data dissemination tests uses semi-automatic and hypothetic

applications implemented with the SDDS API designed specifically for the tests.

Hence they do not work as a proof of concept application, but aim to stress the

middleware in situations that are unlikely to happen in real world and so find

some of the current implementation limits.

Experimental Setup

All the test experiments were performed in our lab using five notebooks

connected to a 10/100/1000 switch. One of the machines is a MacBook with a

2.3GHz Intel Core i5 processor and 8GB of RAM. The other 4 machines are PCs

equipped with 2.6GHz Intel Core i5 processor and 4GB of RAM running Ubuntu

12.04 LTS. However, in the each PC we used a virtual machine with 2GB of RAM

running the same Ubuntu 12.04 LTS. It is worth to mention that the use of virtual

machines may reduce the overall performance, especially by using such a small

amount of memory. However, we chose to use virtual machines since we decided

to use them for the sake of uniformity and the ability to deploy new machines as

needed, a means to test scalability of the middleware. For the experiments with

mobile devices, we used a Motorola Xoom 2 Media Edition, running Android

4.0.4.

We chose to run the experiments with real simulations – i.e., experiments

with the entire software stack, and where only the Data Update data (i.e., the

position update) was emulated – instead of using network simulation software,

such as ns-2 or OMNET++, because it would be we needed to test all

implementation layers of our solution, as well as test with real mobile. Also, we

think that such real-world-like experiments, testing specific parts of the system,

can give a better picture of the system’s behavior and reveal the real middleware

implementation’s limitations.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 87

Experimental Application

To run the experiments we implemented a TesDataProvider that provides

the testDataUpdate information. This DtP can receive three configuration

parameters: the total number of DtUs that should be sent, the frequency (in

messages per second - Hz) in which the DtUs should be produced and the

number of times (repeats) that the test is expected to run. The DtP class file was

placed in the local repository directory and is automatically loaded by the SDDS

when the application starts. When a subscription is received by an instance of

SDDS, the DtP is activated locally. The first message sent by the DtP is a

testStarted DtU (which of course, would not exist in a real DtP) with all test

configuration parameters. Through this message the corresponding remote DtC

will become aware of what will be the test. Next, the DtP will start producing the

total number of testDataUpdate DtUs in the frequency freq specified by the test,

and will close the DtU data generation with an endTest DtU message.

The DtC was implemented through the TestConsumer class, which is used

to subscribe to the textDataUpdate in SDDS. When the testStarted DtU is

received, the DtC starts a new test round, resets its internal number of DtU-

received-counter and saves the time the test started. Subsequently, when

receiving each DtU, the DtC increments the corresponding counter and sets the

time of the last message received. When the endTest is received, the DtC groups

the information from the test (i.e., test round, number of expected DtUs, number

of received DtUs and total time elapsed) in a structure that is added to a list that

will maintain the results in memory until the application finishes, writing all test

results to disk. This in-memory list is shared by all DtC that the test application

may have. We chose to maintain the results in memory until the end of the test to

avoid decreasing the application performance due to file output.

 The aforementioned programs were the basic DtP and DtC implemented

for all the tests. An application that receives command line parameters controls

the components. Additional components implemented for specific tests will be

explained when appropriate.

 As for the experiments, explained in what follows, we ran each test at

least five times and collected the results in each phase. Thus, the results in this

section will present the average result and the standard deviation after analysis of

the data of each test round.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 88

6.2.1.
Test 1 – Dissemination Rate for One Information

The goal of this test is to evaluate how the system performs when one

DataProvider (DtP) is generating DataUpdates at high frequency for some

interested DataConsumers (DtC). We want to evaluate the maximum sustainable

data flow rate of DtU messages.

Part 1 – Finding one information production and dissemination rate

Figure 22 – Architecture of Test 1 – part 1.

In this first part we tested with only one DtP and one DtC, each connected

to one specific GW, as shown Figure 22. First we connect the DtP and then the

DtC. We ran tests with 100, 1,000 and 10,000 DtUs with the frequency set to

1000 Hz (one message each ms). This frequency is very high and is very unlikely

that the system would perform in this rate. However, this forces the performance

to its maximum, including testing the MR-UDP’s buffers and reliability, which

would slow down the DtU throughput to real maximum due to its simple control

flow feature. Table 6 summarizes the test parameters.

TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQUENCY

2 1 1 10/1,000/10,000 1,000 Hz
Table 6 – Parameters of Test 1 – part 1.

Table 7 shows the test results. The first column (TEST ID) identifies the test

round (i.e., the test with 100, 1,000 or 10,000 DtU). The column TOTAL DtU

displays the total number of DtU produced in the DtP for all tests rounds. The

next column (LOST DtU) shows the total number of lost DtU that didn’t arrive at

the DtC. The AVG DtU/s column shows the average number of DtU per second

received in the DtC and the column (STDDEV DtU/s) presents the standard

deviation for the average number of DtU per second.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 89

TEST ID TOTAL DtU LOST DtU AVG DtU/s STDDEV DtU/s
100 DtU 500 0 97.64 5.92
1000 DtU 5,000 0 110.48 1.78
10000 DtU 50,000 0 113.92 0.82

Table 7 – Test 1 – part 1 results.

As the results of all the test shows, the middleware can deliver around 110

Data Updates per second, which is a good performance result. Since ContextNet

was designed to disseminate context information, the values are more than well

suited for this kind of information dissemination. In real world applications, most

of the types of context information will not generate updates at this rate. For

example, one of the context types that could generate updates at high frequency

is geographical location, but current applications only update this information

each tens of few seconds. So, if we want the location to be updated at every

second or twice a second, our middleware would still perform very well.

Moreover, Table 7 also shows that the communication is reliable, since no

Data Updates were lost, even when 50,000 of them were generated and

delivered at the rate of 113,92 Hz. In fact, this characteristic was also noticed in

all other tests explained in this section. Combining these numbers with the round

trip delays of pings presented in the previous section, we can also deduce that

ContextNet indeed is suitable for on-time dissemination of context information.

The standard deviation is very low, which points to a representative average

value.

In Table 7 it is also noticeable that the performance increases with more

Data Updates being generated. This can be explained by analyzing the values

together with the CPU and memory resources usage on the experiment

machines. Unfortunately we didn’t have a good means of gathering the resource

usage during the tests, so as to present them together with the results. However,

the system monitor of the machines revealed that at the start of the test a burst of

CPU usage and memory allocation occurs (specially for the following tests),

causing the system to perform a little slower in this situation. After this initial

burst, however, the system (i.e., all the software components like the GW and

simulation applications) usually accommodates itself and begins working more

smoothly. This also explains that the standard deviation is lower in the 10,000-

context-updates test, which happened because the system had more time than in

the other test configurations (and more data to process) to reach the state of

resource accommodation.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 90

In the next sections we will use the same tables structures to show the test

configuration parameters and results. However, we will exclude the TOTAL DtU

and LOST DtU columns from the results, because we think these columns do not

present any benefits for the tests performance results. Their main purpose is to

show reliability, which already was demonstrated.

Part 2 – Finding one information consumption rate

Figure 23 – Architecture of Test 1 – part 2.

In this part in chose an intermediary value of Data Updates and increased

the number of Data Consumers gradually with the purpose to find for how many

Data Consumers the system would still perform disseminating 110 DtU/s. Table 8

and Table 9 shows the test parameters and results, respectively.

TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQUENCY

2 3000 10 ~ 100 3,000 1000 Hz
Table 8 – Parameters of Test 1 – part 2.

TEST ID AVG DtU/s STDDEV DtU/s
10 DtC 111.44 2.57
25 DtC 111.74 3.07
30 DtC 111.08 2.91
50 DtC 67.91 1.97
100 DtC 33.28 1.27

Table 9 – Test 1 – parte 2 results.

Analyzing the results, we found that 30 Data Consumers is a good limit to

maintain the 100 DtU/s rate. So, we assume that one GW can deliver around

3,300 DtU/s for any number of DtP and DtC. We also ran the test with 1,000 DtC,

but it was not possible to finish the test because the CPU usage on both GW and

DtC machines went to its top, and therefore MR-UDP starts dropping connection.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 91

A high-usage of machine resources was also the case in the 50 DtC and 100

DtC, but the system could still deliver a solid performance, which we seem fairly

enough for the majority of current real world context-aware applications and

sensor probing rates. However, it is desirable to operate the system in good

conditions of machine resources usage, to avoid undesirable behavior.

Therefore, from this point on, we assumed that each GW delivers 3,000 DtU/s.

And to evaluate the scalability of the system we added another GW to the SDDL

core and connected another set of 30 DtC to this new GW. Then we ran the

same test to check if our system reaches the same DtU delivery rate for 60 DtC.

Figure 24, Table 10 and Table 11 shows this test architecture, parameters and

results.

Figure 24 – Architecture of Test 1 – part 2, now with 3 Gateways.

TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQUENCY

3 1 60 3,000 1 Hz
Table 10 – Parameters of Test 1 – part 2 with 3 Gateways.

TEST ID AVG DtU/s STDDEV DtU/s

60 DtC / 2 GW 111.65 6.56
Table 11 – Test 1 – parte 2 results with 3 Gateways.

As Table 11 shows, when we added another GW with more 30 DtC the

system maintained the same rate of 110 DtU/s in each GW. This seems to be an

indicator of our middleware’s scalability. One could ask why we did not add

more Gateways be sure about the system’s scalability. The reason is that since

DDS uses multicast or broadcast within SDDL core, the DDS messages received

by some GWs are not copied to be delivered to additional GWs. Thus, adding

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 92

more GWs is equivalent to just add more listeners for the DDS messages, and

these listeners will not impact the overall system performance.

We think 3,000 DtU/s for each GW is already a pretty good number. And

we chose it for the other tests because we wanted to ensure a “fair use” of CPU

and memory resources in our notebooks. Thus, we believe that if the Gateways

were deployed on more powerful server machines the overall performance would

most probably increase substantially.

In both parts of Test 1 we measured a 45Mbps data transfer rate in the

network adapter of the GW when it was delivering 110 DtU/s to 30 DtC.

6.2.2.
Test 2 – Feasible Dissemination of Context Information

The goal of this test is to evaluate the limit of 3,000 DtU/s per GW to deliver

an adequate number of context information at a rate that could happen in a real

world application. We still deploy only one DtP, but now producing DtU at a lower

rate but for much more DtC. The architecture of this test is the same as the one

of Test1 – Part 2, but the parameters are different and are shown on Table 12.

We again have divided the test in three parts, but this time without big

changes in the architectural organization of the components. In the first and

second parts we used three GWs, one receiving DtUs from the DtP, and the

other two GWs serving 2000 DtC each. The frequency of DtU is modest, with

only 2 or 1 Hz, as indicated in the table. The results are shown in Table 13.

PART TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQ.
Part 1 3 1 4,000 30 2 Hz
Part 2 3 1 4,000 60 1 Hz
Part 3 2 1 3,000 5 1 Hz

Table 12 – Parameters of Test 2.

TEST ID AVG DtU/s STDDEV DtU/s

Part 1 0.50 0.01

Part 2 1.00 0.03
Part 3 0.61 0.03

Table 13 – Test 2 results.

In parts 1 and 2 the average of DtU/s perceived in each of the 4,000 DtC

was exactly the same as the DtU production frequency from the DtP. Thus, we

can see that the system was preforming in perfect condition delivering the DtU

on-time. In the Part 3, however, we had 3,000 DtC connected to a single GW,

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 93

which overloaded the machine resources and degraded its performance. But it

still delivers DtU at a good rate equally for all DtC, as indicated by the standard

deviation.

6.2.3.
Test 3 – Concurrent Dissemination of Information

In this test we evaluated the middleware performance with the presence

of multiple DtPs disseminating the information to multiple DtCs. This situation,

as shown in Figure 25 (b), is much alike to what will happen in real world

deployment.

 (a) (b)

Figure 25 – Test 3 architectures (a) with 2 Gateways and (b) with 3 Gateways.

PART TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQ.
Part 1 2 50 2000 10 1 Hz
Part 2 3 50 4,000 10 1 Hz
Part 3 2 50 1500 100 1000 Hz
Part 4 3 50 3000 70 1000 Hz

Table 14 – Parameters of Test 3.

We ran the tests with 50 DtP producing 50 different types of information. As

for the DtC, we have divided the test in parts, each with different parameters, as

shown in Figure 25. Each DtC subscribes to only one information type that was

chosen randomly at the start of each test. Using the Java Random class it is

guaranteed that the pseudo-random generation of numbers (i.e., numbers 1 to

50, each one representing one DtP) will distribute each number almost equally,

generating the division of each DtP to a similar number of DtC. In our tests, it is

not necessary to have the same number of DtC for each DtP. However, it is

important to have at least one DtC for every DtP, because we want that the DtU

of each DtP to be disseminated. Anyway, after the analysis of test results, we can

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 94

confirm that every DtP was activated in all test parts. The results are displayed in

Table 15.

TEST ID AVG DtU/s STDDEV DtU/s

Part 1 1.06 0.06
Part 2 1.09 0.05
Part 3 4.93 2.38
Part 4 79.93 14.10

Table 15 – Test 3 results.

Analyzing the results we can see that in Part 1 and 2, where the DtU

generation was at 1 Hz, the middleware has disseminated the DtU in the same

frequency of its production, meaning that the system was working in fair

conditions. The first two tests emulate real world behavior with a production rate

of 1 DtU per second. In the following tests (i.e., Parts 3 and 4), however, we have

forced the middleware to disseminate the DtU in the most highest possible

production rate (1000 Hz) for all 50 DtP. As we can see in Part 3 results, the test

seems to be not so successful, as we were expecting a 110 DtU/s rate (the same

from Test 1) and only got around 5 DtU/s. But, it is important to point that in Part

3 the information production of all 50 DtP initiated almost at the same time, which

means that all 50 DtP were producing 110 DtU/s. Therefore, the actual

production rate of DtU was around 550 DtU/s and that was been disseminated for

1500 DtC on a single GW. Thus, this means that the Gateway was disseminating

around 7300 DtU/s to all its 1500 DtC (i.e., the number of DtC multiplied by the

average reception rate). Moreover, let’s suppose that all DtC are condensate in

just one that counts for 50 DtC (because it receives 50 different information

types). Now, if we multiply the number of DtC by the average DtU dissemination

rate we get 250 DtU/s and if we subtract the standard deviation from the average

and multiply it by the number of DtC we have 50 multiplied by 2.55, which results

in 127.5 DtU/s, a number that is consistent with the DtU/s dissemination rate

observed in the previous tests. Additionally, if we subtract the standard deviation

from the average and multiply by the number of DtC we get 3800 DtU/s, a

number equally consistent with previous test results.

To avoid that all DtP initiate the production of DtU at the same time we did

a small modification in the test application for Part 4. Here, each DtP waits 1

second after the another DtP started to produce information and lower the

production rate of DtU to 70 Hz. With this setup we wanted that each DtP takes 1

second to produce all its 70 DtUs exclusively using the network and then stops

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 95

using the dissemination network for other DtP. So, each test round ran for around

50 seconds, with a second for each DtP. As results shows, since at any given

time only one DtP was producing information for approximately 30 DtC (assuming

that the 1500 DtC were equally divided to the 50 different DtP, which, actually,

was not), the average dissemination rate was close to 80 DtU/s. Taking into

account the standard deviation value (adding it to the average), we can correctly

suppose that some of the DtU was disseminated in 100 DtU/s, as we could notice

in the raw test results (i.e., the text output file generated by the simulation

application). However, it is very important to point that we did not have control of

how many DtC was subscribed to each DtP. Also, we could not guarantee that

the waiting time of 1 second between DtU bursts was precisely adopted by the

application. Moreover, even if the waiting time was respected, it did not mean that

each DtP could disseminate all its information in 1 second, especially if one of

this DtP had a number much greater than 30 DtC, and if, for example, a DtP had

40 DtC it will last more than 1 second to disseminate all its information and will

use a little of the time that we reserved for another DtP, which will decrease the

perceived performance. Another difference of part 4 is that it has two Gateways

with 1,500 DtC each, which is twice the number of DtC in Part 3, but still

presenting consistent values with all previous test, which again indicates our

model and middleware scalability.

Thus, comparing the results of tests results of Part 3 and Part 4, we can

observe that the system shows a uniform and scalable behavior, always

providing a consistent value of around 3,000 DtU/s for each Gateway. So, if each

DtP could use the network exclusively for a small amount of time to disseminate

its information it could disseminate at 110DtU/s and 6,600 DtU per minute. If we

have a real world DtP that produces a new DtU every 2 seconds and if we could

orchestrate the production and dissemination on each DtU, in one minute we

would have room for 220 DtP (during 2 seconds we would have 220 DtU and

each DtP would produce 1 DtU) to produce 30 DtU each (in one minute) that

could be disseminated to 6,600 different DtC (30 DtC to each DtP and because

the GW can disseminate 6,600 DtU at every 2 seconds), in a total of 198,000 DtU

in one minute. This with only one gateway with 220 DtP that produces a DtU

every 2 seconds to 6,600 different DtC. In a real world this situation is very unlike

to happen.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 96

6.2.4.
Test 4 – One Hierarchical Information Dissemination

So far, we have tested only a Data Sharing Network with primary Data

Providers. For this and the following tests we have implemented a new,

secondary DtP provider called HierarchicalTestDataProvider that subscribes to

the primary TestDataProvider and forwards any DtU as soon as it receives it to

the DtC, which will subscribe to the HierarchicalTestDataProvider. Figure 26

illustrates the architecture of this test. As can be seen, for the sake of clarity we

have removed the core elements (GWs) from the images and show only the

SDDS elements (DtPs and DtCs). The test configuration parameters can be

found in Table 16. In this test we deployed one GW serving the primary DtP, one

GW for the secondary (HierarchicalTestDataProvider) and the third gateway to

the DtCs.

Figure 26 – Test 4 architecture.

TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQUENCY
3 2 30 10,000 1 ms

Table 16 – Parameters of Test 4.

The goal of this test was the same of Test 1, i.e. to evaluated the highest

possible dissemination rate, but now with a three-level hierarchical network. And

as can be seen from the results in Table 17, this information flow indirection

incurred in no overhead, and the middleware was capable of data dissemination

of around 110 DtU/s.

AVG DtU/s STDDEV DtU/s

109.32 4.55
Table 17 – Test 4 results.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 97

6.2.5.
Test 5 – Multiple Hierarchical Information Dissemination

Figure 27 – Test 5 architecture (a).

In this test we want to combine the Tests 3 and 4 to evaluate the

dissemination of multiples hierarchical DtP to multiples DtC, as shown figures

Figure 27 and Figure 28. In the figures of the architectures we now show the

mobile node because the test is a little different than the others. In the previous

tests, each DtC was located in one single MN, so there was one DtC per MN

(which means one DtC per connection to the GW). This time, however, each MN

will have once DtC for each subscription. The test parameters are shown in Table

18. In parts 1 and 2 there was only one primary DtP and 100 intermediaries

(hierarchical); in parts 3 and 4 we had 50 primary DtP and each one of the 100

intermediaries DtP was subscribed to 2 different primaries, so each intermediary

DtP produces DtU twice as fast then the primaries, because each DtU received is

replicated upon reception. The core components are used as the previous

section, as will be for the next tests: one GW for the primaries DtP, another for

the intermediaries and the third for the DtC.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 98

Figure 28 – Test 5 architecture (b).

PART TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQ.
Part 1 3 101 5,000 10 5 s
Part 2 3 101 5,000 10 4 s
Part 3 2 150 5,000 40 10 ms
Part 4 3 150 5,000 40 1 ms

Table 18 – Parameters of Test 5.

Please note that there is 5,000 DtC because each one of the MN has one

DtC to each of the 100 intermediaries DtP. The test results are presented in

Table 19. As we can see, the parts 1 and 2 ran smoothly, with the DtU being

delivered in the same frequency as was produced. In parts 3 and 4, however, the

standard deviation is not so low. This happens because for these test we ran 7

rounds to get the average value. This is why we set each DtP to wait 1.2 seconds

to start after the initialization of the other. This causes the first test and the last to

happen without all DtP initialized. In the raw results we had a more stable value,

but still very close to the global average presented in the results. If this test we

want to show that the middleware is capable to maintain its performance even

with a arbitrary number of DtP and DtC creating a \ complex transformation tree

and will still present consistent performance values.

TEST ID AVG DtU/s STDDEV DtU/s

Part 1 0.20 0.00
Part 2 0.30 0.01
Part 3 29.00 9.55
Part 4 23.24 13.22

Table 19 – Test 5 results.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 99

6.2.6.
Test 6 – Dissemination to Mobile Devices with Intermittent
Connectivity

For this test we will repeat the Test 1, but now with the DtC deployed on

our Android mobile device connected in our lab Wi-Fi network. In specific parts

we also had a DtP installed on an Android, however running in the Android

emulator. The DtP and DtC Java implementation, and the SDDS, are the same

for the Android. Though, we needed to implement a very simple Android

application just to connect to the GW and start the SDDS. The test parts

parameters are specified in Table 20 and the results in Table 21.

PART TOTAL
GW

TOTAL
DtP

TOTAL
DtC

TOTAL
DtU FREQ. TOTAL

DISCONNECTIONS
Part 1 2 1 1 2,000 1 Hz 0
Part 2 2 1 1 100 100 Hz 1
Part 3 2 1 1 600 10 Hz 3
Part 4 2 1 1 1,000 1 Hz 0

Table 20 – Parameters of Test 6.

TEST ID AVG DtU/s STDDEV DtU/s

Part 1 97,60 4,07
Part 2 8,24 1,18
Part 3 9,96 0,12
Part 4 16,94 1,14

Table 21 – Test 6 results.

In the parameters table we introduced a new column “Total Disconnections”

that shows the number of manual disconnections we did in the mobile device by

switching off its wireless antenna. The goal was to evaluate the reliability and

impact of intermittent connectivity in the MR-UDP protocol and data

dissemination. In the raw test results we did not notice any DtU lost. Every

disconnection lasts around 5 seconds.

 In part 1 we did not force any disconnection because we were only

interested to check if the middleware could disseminate the same 110 DtU/s to

the mobile device. As the results table shows, the middleware can disseminate

with the almost same rate as in Test 1. The average value is not 110 DtU/s, but

the standard deviation is not very close to zero. It is also important to notice that

the mobile device has less CPU and memory power and is communicating via a

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 100

wireless technology (IEEE 802.11) where a large amount of collisions can

happen because it is shared with many other mobile devices of the other users of

the lab, which is a situation that does not occur if 3G/4G networks were used

instead.

In parts 2 and 3 we manually caused disconnection periods. In part 3 a test

round lasts for 10 seconds, so we only did one disconnection. In part 4 a round

lasts 60 seconds, so we did 3 disconnections. In both cases none a single DtU

was missed and after every reconnection all DtU were promptly delivered. It is

important do notice that these disconnection was actually totally hidden to the

applications and gateways by the MR-UDP protocol, for them it was like the

connection was never lose. Moreover, the results show good dissemination

values even in the presence of intermittent connectivity.

In part 4 both the DtP and the DtC was deployed in one mobile device. The

value seems a little inconsistent from the previous test. However, we need to take

into account that one mobile device was emulated (meaning that its performance

was even lower) and that they both were sharing the same Wi-Fi network (with

another number of phones and notebooks) and they both was generating traffic

on the network in the same time.

6.2.7.
Test 7 – The Last Dissemination Evaluation

For the last test of this section we would like to repeat the second part of

test 3, where 50 different DtP produce DtU to an arbitrary number of DtC. This

time one of the DtP was deployed on the mobile device (emulated) and an

additional DtC was also deployed on another mobile device. As the reader can

remember, in this test each MN has only one DtC to one kind of information

randomly chosen. The Table 22 shows the test parameters and results.

TOTAL GW TOTAL DtP TOTAL DtC TOTAL DtU FREQ. AVG
DtU/s

STDDEV
DtU/s

2 50 501 100 10 ms 90.99 13.58
Table 22 – Parameters of Test 7.

As the results table shows, the middleware provided consistent

performance values even when mobile and fixed MN are used to produce and

consume information.

Analyzing and combining the tests in all the previous sections, we can

indicate that our model and middleware supports scalable, reliable and resilient

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Evaluation and Tests 101

to intermittent connectivity on-time data dissemination to mixed mobile and

fixed nodes with a dissemination rate near 3,300 DtU/s for each deployed

Gateway.

6.3.
Features Evaluation

Despite the fact that the ClientLib maintains an open connection from the

mobile node to the Gateway, the MR-UDP protocol currently used is based on

the connection-less UDP and promotes only a higher-level connection. With the

native NodeConnection API and the extended GroupAPI and PubSubAPI, the

ClientLib offers decoupled communication and an extensible API for

implementation of new protocols by the developers. With the help of the MR-UDP

features on the mobile connection, DDS on the core network and special services

(e.g., MDT) the ContextNet offers reliable communication even in the occurrence

of handovers and intermittent connections. The MR-UDP was implemented to

cope to mobile connections, using few resources, identifying IP changes and able

to traverse Firewalls. The Java implementation provides heterogeneity, since

many platforms have virtual machines, including Android.

The high-performance core network supports the on-time dissemination of

messages. The PoA-Manager, Group Definer and MTD Service are all optional,

meaning that they can be deactivated if the applications do not need them. This

makes the system adaptable to the context of the applications. However these

services helps maintain a scalable, expansible and dynamic adaptable

communication platform. For example, the PoA-Manager supports better use of

resources, by requesting handovers from overloaded GW to more free ones.

Moreover, it could deploy new GW if the current number does not meet the

demand. The Group Definer also separates various communication channels,

which helps in scalability. The MTD increases message reliability.

The SDDS provides the Data Management features. Offering abstract

classes to Data Providers makes the system expansible since the developers can

implement new providers at any time.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Conclusion and Future Work 102

7
Conclusion and Future Work

In this thesis we proposed a data management model that enables

deployment of a network of Data Provider components with reliable and on-time

dissemination and transformation of information among many mobile nodes

interconnected through wireless internet. We also presented the design of a

middleware that implements this model and showed performance results that

indicate that our model scales to thousands of mobile nodes and supports

reliable, high throughput and on-time dissemination of messages between

several thousands of mobile Data Providers and Data Consumers.

The main contributions of this thesis are the following:

1. The desing and implementation of a Mobile Reliable UDP protocol

for mobile nodes which transparently handles short-lived temporary

mobile node disconnections and ensures reliable packet delivery

across these intermittent disconnections;

2. A communication middleware model and implementation, give

evidence of its scalability, and show how it supports efficient and

reliable unicast, groupcast and broadcast message delivery to

mobile nodes in spite of IP address changes, temporary

disconnections, and Firewall/NAT traversal by using our MR-UDP

protocol;

3. A means for middleware and application developers to easily

expand their models and application by adding a robust mobile

communication via MR-UDP or new higher-level and application-

oriented communication protocols, which will benefit from all

features of our underlying model of SDDL/SDDS;

Results of several performance tests done in LAN and WAN settings show

the suitability of our middleware for data dissemination and communications in

large-scale mobile applications with thousands of nodes. Thus, we believe that

our work offers a robust solution for the development and deployment of large-

scale mobile applications that need reliable and timely dissemination of

messages.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Conclusion and Future Work 103

Despite these encouraging results, in future more stress tests are required,

especially to find the performance limits of the SDDL core network. In particular, it

would be important to measure how many DtU/s the core network using DDS can

handle, independently of the number of DtPs. With the current tests we found that

a single Gateway can handle around 3,300 DtU/s, but how many Gateways

disseminating in this same rate can the SDDL core and the DDS domain handle?

Moreover, the core network is not used only for dissemination of DtUs but for

application messages as well.

We already have some QoS features in ClientLib/MR-UDP, like the reliable

and timeless delivery of messages. However it is important to investigate how

well other QoS features could be supported in this mobile distributed environment

with wireless connectivity. For example, it should be fairly easy to add message

durability to the SDDL, meaning that any newly added subscriber for information

could be informed of previous published information. On the other hand, other

QoS policies such as DDS’ PriorityLanes or LatencyBudget (i.e. a time limit to

deliver data) are much more difficult, if not impossible, to support over WiFi and

3G wireless connections.

Our current implementation only supports Java and Android, but there are

several other platforms that do not run our middleware. Thus, it is worth the effort

to make ClientLib interoperable between different systems. One possibility would

be to use ContextML [45] (which uses XML) to make both the communication and

the DtP definitions independent of the platform. The MR-UDP version described

in this thesis uses Java object serialization, but a newer version already uses

Protocol Buffers so as to achieve independence of the programming language at

the communication endpoints. We also like the idea of using HTTP Rest, for the

mobile communication and think that it could be intersting to investigate the

benefits that this technology could bring for our model.

 Moreover, the SDDS uses the Java ClassLoader to load and activate the

DtPs. But we think we can investigate how to use component management

middleware, like OSGi, and evaluate how we can benefit its services and only

focus on our model evolution and implementation.

Taking advantage of the flexible deployment of Data Providers, the next

logical step would be to provide a library of DtPs that support polling from

different types of mobile device sensors, or else, implement common

aggregation, transformation, or summarization functions for context data. Such a

DtP library would certainly ease even more the development of context-

awareness applications using ContextNet. Additionally, in a similar manner, we

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

Conclusion and Future Work 104

think it is important to investigate how we could provide means for unique context

information naming to avoid conflicts and wrong notification of DtU with he same

name.

The PubSubAPI already offers publish-subscribe communication with good

performance, but it is important to evaluate in more depth the performance of the

current filtering mechanism and investigate how it can support, for example,

complex filtering expressions. Moreover, one should investigate if it is best to do

filtering at the publisher or at the subscriber end. If done at the source, for

example, it may be overloaded with many filters and the evaluation of each of

these filters. On the other hand, if filtering is at the destination, the network can

be overloaded with DtUs that may later be discarded anyway.

Finally, current design and implementation of the context model focuses on

the deployment of DtP in smartphone-like devices. However, we have an

increasing number of sensors embedded in many different devices and

appliances, which use many different communication technologies. Thus, an

interesting line of future work is to investigate how our model can be adapted to

incorporate also such small sensor devices.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 105

8
References

1. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. Human-

Computer Interaction 16 (2001) 97–166

2. Chen, G., Li, M., Kotz, D.: Design and implementation of a large-scale context

fusion network. In: 1st Annual International Conference on Mobile and

Ubiquitous Systems (MobiQuitous), IEEE Computer Society (2004) 246–255

3. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H.,

Nahrst- edt, K.: Gaia: A middleware infrastructure for active spaces. IEEE

Pervasive Computing, Special Issue on Wearable Computing 1 (2002) 74–83

4. Yau, S.S., Huang, D., Gong, H., Seth, S.: Development and runtime support

for situation-aware application software in ubiquitous computing

environments. In: 28th Annual International Computer Software and

Application Conference (COMPSAC), Hong Kong (2004) 452–457

5. A. Dey, G. A. (Abril de 2000). Towards a Better Understanding of Context and

Context-Awareness. Workshop on the what, who, where, when and how of

context-awareness at CHI 2000.

6. TIBCO Inc. TIB/Rendezvous. http://www.tibco.com/products/rv/index.html.

7. Vitria BusinessWare. http: //www.vitria.com/products/businessware.html.

8. D. Stojanovic, B. Predic;, I. Antolovic et al., “Web information system for

transport telematics and fleet management,” 9th International Conference on

Telecommunication in Modern Satellite, Cable, and Broadcasting Services,

(TELSIKS '09), pp. 314 - 317, October, 2009.

9. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: "Design and evaluation of a

wide-area event notification service". ACM Transactions on Computer

Systems 19(3), 332–383 (2001)

10. José Santa, Antonio F. Gómez-Skarmeta, Marc Sánchez-Artigas,

Architecture and evaluation of a unified V2V and V2I communication system

based on cellular networks, Computer Communications, Volume 31, Issue

12, 30 July 2008, Pages 2850-2861

11. Fei Ye; Adams, M.; Roy, S., "V2V Wireless Communication Protocol for Rear-

End Collision Avoidance on Highways," Communications Workshops, 2008.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 106

ICC Workshops '08. IEEE International Conference on , vol., no., pp.375,379,

19-23 May 2008

12. Jerbi, M.; Marlier, P.; Senouci, S.M., "Experimental Assessment of V2V and

I2V Communications," Mobile Adhoc and Sensor Systems, 2007. MASS

2007. IEEE Internatonal Conference on , vol., no., pp.1,6, 8-11 Oct. 2007

13. Matolak, D.W.; Sen, I.; Wenhui Xiong, "Channel Modeling for V2V

Communications," Mobile and Ubiquitous Systems: Networking & Services,

2006 Third Annual International Conference on , vol., no., pp.1,7, July 2006

14. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. 2003. The many faces of publish/subscribe. ACM Comput. Surv.

35, 2 (June 2003), 114-131.

15. Oki, B., Pfluegel, M., Siegel, A., Skeen, D.: The information bus - an

architecture for extensive distributed systems. In: Proceedings of the 1993

ACM Symposium on Operating Systems Principles. (December 1993)

16. Campailla,A.,Chaki,S.,Clarke,E.M.,Jha,S.,Veith,H.:Efficient filtering in publish-

subscribe systems using binary decision diagrams. In: Proceedings of The

International Conference on Software Engineering. (2001) 443–452

17. Banavar, G.; Chandra, T.; Mukherjee, B.; Nagarajarao, J.; Strom, R.E.;

Sturman, D.C., "An efficient multicast protocol for content-based publish-

subscribe systems," Distributed Computing Systems, 1999. Proceedings.

19th IEEE International Conference on , vol., no., pp.262,272, 1999

18. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2000.

Achieving scalability and expressiveness in an Internet-scale event

notification service. In Proceedings of the nineteenth annual ACM symposium

on Principles of distributed computing (PODC '00). ACM, New York, NY,

USA, 219-227.

19. Cugola, G.; Di Nitto, Elisabetta; Fuggetta, A., "The JEDI event-based

infrastructure and its application to the development of the OPSS WFMS,"

Software Engineering, IEEE Transactions on , vol.27, no.9, pp.827,850, Sep

2001

20. OMG, "Data Distribution Service for Real-time Systems Specifications".

www.omg.org/technology/documents/dds_spec_catalog.htm (visited on May.

5, 2014)

21. RTI. “RTI Connext — Comprehensive Summary of QoS Policies”. RTI, 2011.

http://community.rti.com/rti-

doc/500/ndds.5.0.0/doc/pdf/RTI_CoreLibrariesAndUtilities_QoS_Reference_

Guide.pdf (visited on May. 5, 2014)

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 107

22. Ming Xiong ; Jeff Parsons ; James Edmondson ; Hieu Nguyen ; Douglas

Schmidt; Evaluating technologies for tactical information management in net-

centric systems. Proc. SPIE 6578, Defense Transformation and Net-Centric

Systems 2007, 65780A (May 01, 2007)

23. G. Pardo-Castellote, “DDS Spec Outfits Publish-Subscribe Technology for

GIG,” COTS Journal, April 2005.

24. David et al.: A DDS-based middleware for scalable tracking, communication

and collaboration of mobile nodes. Journal of Internet Services and

Applications 2013 4:16.

25. Corradi, A.; Foschini, L.; Nardelli, L., "A DDS-compliant infrastructure for fault-

tolerant and scalable data dissemination," Computers and Communications

(ISCC), 2010 IEEE Symposium on , vol., no., pp.489,495, 22-25 June 2010

26. Y. Lee, S. S. Iyengar, C. Min, Y. Ju, S. Kang, T. Park, J. Lee, Y. Rhee, and J.

Song. Mobicon: a mobile context-monitoring platform. Commun. ACM,

55(3):54–65, Mar. 2012.

27. C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A.

Ranganathan, and D. Riboni. A survey of context modelling and reasoning

techniques. Pervasive Mob. Comput., 6(2):161–180, Apr. 2010.

28. Michael Knappmeyer, Nigel Baker, Saad Liaquat, and Ralf Tönjes. 2009. A

context provisioning framework to support pervasive and ubiquitous

applications. In Proceedings of the 4th European conference on Smart

sensing and context (EuroSSC'09), Payam Barnaghi, Klaus Moessner, Mirko

Presser, and Stefan Meissner (Eds.). Springer-Verlag, Berlin, Heidelberg, 93-

106.

29. Yau, S.S.; Karim, F.; Yu Wang; Bin Wang; Gupta, S. K S, "Reconfigurable

context-sensitive middleware for pervasive computing," Pervasive Computing,

IEEE , vol.1, no.3, pp.33,40, July-Sept. 2002

30. Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini. 2012. A

survey of context data distribution for mobile ubiquitous systems. ACM

Comput. Surv. 44, 4, Article 24 (September 2012)

31. BALDAUF, M., DUSTDAR, S., AND ROSENBERG, F. 2007. A survey on

context-aware systems. Int. J. Ad Hoc Ubiq- uitous Comput. 2, 4, 263–277.

32. GADDAH, A. AND KUNZ, T. 2003. A survey of middleware paradigms for

mobile computing. Tech. rep. SCE-03-16, Dept. of Systems and Computing

Engineering, Carleton University, Ottawa.

33. HIGHTOWER, J. AND BORIELLO, G. 2001. A survey and taxonomy of

location systems for ubiquitous computing. IEEE Comput. 34, 8, 57–66.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 108

34. KJÆR, K. E. 2007. A survey of context-aware middleware. In Proceedings of

the 25th Conference on IASTED International Multi-Conference: Software

Engineering. 148–155.

35. VAN SINDEREN, M. J., VAN HALTEREN, A. T, WEGDAM, M.,

MEEUWISSEN, H. B., AND EERTINK, E. H. 2006. Supporting context-aware

mobile applications: An infrastructure approach. IEEE Commun. Mag. 44, 9,

96–104.

36. Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan

Balasubramaniam. 2005. Middleware for distributed context-aware systems.

In Proceedings of the 2005 Confederated international conference on On the

Move to Meaningful Internet Systems - Volume >Part I (OTM'05), Robert

Meersman and Zahir Tari (Eds.), Vol. >Part I. Springer-Verlag, Berlin,

Heidelberg, 846-863.

37. Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based

routing with Elvin4. In: AUUG2K Conference, Canberra (2000)

38. Grossmann, M.; Bauer, M.; Honle, N.; Kappeler, U.-P.; Nicklas, Daniela;

Schwarz, T., "Efficiently Managing Context Information for Large-Scale

Scenarios," Pervasive Computing and Communications, 2005. PerCom 2005.

Third IEEE International Conference on , vol., no., pp.331,340, 8-12 March

2005

39. Guanling Chen; Ming Li; Kotz, D., "Design and implementation of a large-

scale context fusion network," Mobile and Ubiquitous Systems: Networking

and Services, 2004. MOBIQUITOUS 2004. The First Annual International

Conference on , vol., no., pp.246,255, 22-26 Aug. 2004

40. Guanling Chen, Ming Li, David Kotz, Data-centric middleware for context-

aware pervasive computing, Pervasive and Mobile Computing, Volume 4,

Issue 2, April 2008, Pages 216-253

41. Antony Rowstron, Peter Druschel, Pastry: Scalable, decentralized object

location, and routing for large- scale peer-to-peer systems, in: Proceedings of

the 2001 International Middleware Conference, Heidelberg, Germany,

November 2001, pp. 329–350.

42. Martin Strohbach, Martin Bauer, Ernoe Kovacs, Claudia Villalonga, and Nils

Richter. 2007. Context sessions: a novel approach for scalable context

management in NGN networks. In Proceedings of the 2007 Workshop on

Middleware for next-generation converged networks and applications

(MNCNA '07). ACM, New York, NY, USA, , Article 5 , 6 pages.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 109

43. Nguyen, T.H.; Sadiku, M.N.O., "Next generation networks," Potentials, IEEE ,

vol.21, no.2, pp.6,8, Apr/May 2002

44. Dowden, D. C., Gitlin, R. D. and Martin, R. L. (1998), Next-generation

networks. Bell Labs Tech. J., 3: 3–14.

45. Moltchanov, B., et al.: Context-Aware Content Sharing and Casting. In: ICIN

2008, Bor- deaux, France (2008)

46. Kiani, S.L.; Knappmeyery, M.; Baker, N.; Moltchanov, B., "A Federated

Broker Architecture for Large Scale Context Dissemination," Computer and

Information Technology (CIT), 2010 IEEE 10th International Conference on ,

vol., no., pp.2964,2969, June 29 2010-July 1 2010

47. Saad Liaquat Kiani, Ashiq Anjum, Michael Knappmeyer, Nik Bessis, Nikolaos

Antonopoulos, Federated broker system for pervasive context provisioning,

Journal of Systems and Software, Volume 86, Issue 4, April 2013, Pages

1107-1123

48. Marcio E. F. Maia, Andre Fonteles, Benedito Neto, Romulo Gadelha,

Windson Viana, and Rossana M. C. Andrade. 2013. LOCCAM - loosely

coupled context acquisition middleware. In Proceedings of the 28th Annual

ACM Symposium on Applied Computing (SAC '13). ACM, New York, NY,

USA, 534-541.

49. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–

458, Apr. 1989.

50. Yasar, A.; Vanrompay, Y.; Preuveneers, D.; Berbers, Y., "Optimizing

information dissemination in large scale mobile peer-to-peer networks using

context-based grouping," Intelligent Transportation Systems (ITSC), 2010

13th International IEEE Conference on , vol., no., pp.1065,1071, 19-22 Sept.

2010

51. C. Esposito, S. Russo, and D. Di Crescenzo, “Performance assessment of

OMG compliant data distribution middleware,” in 2008 IEEE International

Symposium on Parallel and Dis- tributed Processing, 2008, pp. 1-8.

52. M. Xiong, J. Parsons, and J. Edmondson, “Evaluating the Performance of

Pub- lish/Subscribe Platforms for Information Management in Distributed

Real-time and Em- bedded Systems,” . omgwiki. org/dds, 2010.

53. OMG, “Data Distribution Service for Real-time Systems.” 2007.

54. K.-J. Kwon et al., “DDSS: A Communication Middle-ware based on the DDS

for Mobile and Pervasive Systems”, Int. Conf. on Advanced Communication

Tech-nology (ICACT08), 2008.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

References 110

55. Esposito, C.: Data Distribution Service (DDS) Limitations for Data

Dissemination w.r.t. Large-scale Complex Critical Infrastructures (LCCI).

Mobilab Technical Report (March 2011)

56. Bova, T., and T. Krivoruchka. "Reliable UDP protocol." draft-ietf-sigtran-

reliable-udp-00. txt (1999).

57. L.D. Silva, M. Endler, M. Roriz, MR-UDP: Yet another Reliable User

Datagram Protocol, now for Mobile Nodes. Technical Report. 2013

58. Pardo-Castellote, G, Farabaugh, B., Warren, R.: "An Introduction to DDS and

Data-Centric Communications." Real-Time Innovations. August 2005.

DBD
PUC-Rio - Certificação Digital Nº 0912916/CB

