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5 Architecture Sensitive Heuristics for Prioritizing and 
Ranking Critical Code Anomalies  

The previous chapter motivated the need for automating the prioritization and 

ranking of critical code anomalies. Due to the aforementioned reasons, it is not 

possible to rely on the ad hoc use of blueprints. In this chapter, we introduce the 

architecture sensitive heuristics proposed in this thesis. The architecture sensitive 

heuristics aim at assisting software developers when prioritizing and ranking critical 

code anomalies even in the early stages of the software development lifecycle. We 

have defined three groups of heuristics based on different architectural information 

related to the descriptive architecture, which can be exploited in the process of 

prioritizing and ranking critical code anomalies. By proposing heuristics, we are able 

to assist developers deciding which code anomalies should be refactored first 

according to the several drift problems observed in the descriptive architecture. The 

proposed heuristics consider different criteria to evaluate how critical code anomalies 

might be related to architecture degradation symptoms. Therefore, the heuristics 

exploits the combination of architecture blueprints and source code artifacts to better 

prioritize and rank potential candidates of critical code anomalies that should be 

refactored first. It is important to mention that the results of this chapter have been 

submitted to a premier conference on software modularity, with the participation of an 

international collaborator from Drexel University, who has also participated in order 

research results presented in Chapters 3 and 4 of this thesis. 

In this sense, the heuristics provide means for assigning scores to each code 

anomaly based on different criteria, according to the heuristic under analysis (or even 

a combination of different heuristics). It is important to reinforce that the main goal 

on prioritizing and ranking critical code anomalies is to prevent architectural drift 

problems as early as possible during the system evolution. In this sense, aiming to 

propose and evaluate the architecture sensitive heuristics, we have initially defined a 

set of architectural information sources used in the process of prioritizing and ranking 

critical code anomalies: 
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Types of architecture blueprint. The architecture blueprints provided in our 

study represents the high level design of the descriptive architecture.  Eventually, the 

use of architecture blueprints with different level of abstraction (e.g. class and 

component-connector diagrams) may also be considered in a way that the 

prioritization and ranking of critical code anomalies is not impaired. It is essential 

though, that the architecture blueprint reaches a minimal set of properties so that it 

can be used to guide the prioritization and ranking process. The quality of the 

architecture blueprints is granted by assessing the three properties (see Chapter 2). 

Representing essential information on the architecture blueprint. The 

information represented on the architecture blueprints should allow software 

developers to: (ii) select architectural problems they want to focus on given the 

characteristics of the descriptive architecture represented for all software systems 

under investigation; (ii) minimize the effort regarding the time spent when prioritizing 

and ranking the most critical code anomalies related to architectural drift problems; 

and (iii) assist software developers when building strategies for prioritizing and 

ranking anomalies related with different architectural drift problems. 

Representing architectural information. Notations and profiles available in 

the UML specification (OMG-UML, 2013) can be used to aggregate information in 

the architecture blueprints. Moreover, there are other ways for mapping system 

concerns in the source code by using (semi)-automatic tools, such as ConcernMapper 

(Robillard and Warr, 2005) – it allows the representation of architectural concerns in 

the source code. Therefore, it makes possible, for example, detecting classes 

responsible for implementing a given architectural component or which class is 

responsible for realizing one or more system concerns. Nevertheless, the mapping 

between source code and architectural elements facilitates developers’ tasks when 

prioritizing and ranking critical code anomalies. For instance, when anomalous code 

elements are prioritized and ranked as critical to the architecture design, software 

developers can more easily investigate which architecture component each anomalous 

code element is responsible for realizing. In this sense, the prioritization and ranking 

process focuses mainly on architectural drift problems occurring in those architectural 

components and interfaces.  
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5.1. Criteria Selection and Relation to Architectural Problems 

Several factors might indicate to what extent a code anomaly is harmful to the 

system’s descriptive architecture. As previously mentioned in Chapter 2, differently 

from existing approaches our work focuses specifically on architectural drift 

problems. The reason is that architectural drift problems impair the adaptability in the 

software architecture, and therefore, its evolution. In addition, architectural drift 

symptoms are normally cause by: (i) applying a solution within an inappropriate 

context; and (ii) applying abstractions in the architecture design with an incorrect 

level of granularity. For instance, we can mention as architecture drift problem the 

implementation of a class that provides a lot of methods and implements many 

architectural concerns. This class might suffer from the code anomaly God Class, and 

violates the design principles: Single Responsibility Principle and Separation of 

Concerns.  

In addition, the architectural component realized by this class might also be 

suffering from the architecture drift problems known as Scattered Parasitic 

Functionality and Concern Component Overload. As possible solution, this class 

must be decomposed in many classes, where each of them implements a specific 

architectural concern. It is important to mention that this type of refactoring operation 

may require changes in interfaces and architectural components. In this sense, we 

briefly describe 4 design principles commonly adopted by software architects when 

modeling the architectural design. These design principles might also be violated 

when architecture drift problems (see Chapter 2) occurs in the descriptive 

architecture. In this sense, the architecture sensitive heuristics proposed in this thesis 

investigate situations where one or more design principles are violated characterizing 

architectural drift symptoms. In the following we briefly describe each of the design 

principles that might be related to architectural drift problems we not properly 

addressed in the system architecture. 

Dependency Inversion Principle (DIP) states that high-level modules should 

not depend on low-level modules (Martin, 2003). Both should depend on abstractions. 

In addition, abstractions should not depend on details, but the details should depend 

on abstractions.  
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Interface Segregation Principle (ISP) states that client classes are not forced 

to depend on interfaces that they do not use (Martin, 2003). When those classes are 

forced to depend of such interfaces, they are subject to changes performed in the 

interfaces. As result, we can observe an inadvertent coupling between all the classes 

in the client. Therefore, the coupling should be avoided and the interfaces should be 

separated whenever it is possible.  

Single Responsibility Principle (SRP) states that there must be no more than 

one reason to change a class. The importance of separating responsibilities in 

distinguished classes is due to the fact that each responsibility is an axis of change 

(Martin, 2003). Therefore, when requirements change, the modifications will manifest 

through the modification in the responsibility between classes. If a class assumes 

more than a single responsibility, those responsibilities become coupled. Changes in a 

responsibility may impair the ability of a class to satisfy other requirements. This type 

of coupling can lead to a poor design that might break unexpectedly when modified.  

Separation of Concerns Principle (SoC) states that a given problem involve 

different concerns, which should be identified and separated to deal with its 

complexity (Kiczales et al., 1997), and achieve the factors required to the software 

quality (e.g. maintainability and reusability). This principle can be applied in many 

ways, and one might say that the separation of concerns is a ubiquitous principle of 

software engineering. In addition, the separation of concerns may bring benefits to the 

software quality properties, such as: (i) facilitate the system reusability; (ii) guarantee 

the system maintainability; (iii) allow developers to work in independent modules in a 

software system; and (iv) allow new functionalities to be easily added to existing 

software. 

 

5.2. 
Study Settings  

As mentioned in Chapter 2, existing techniques do not provide developers with 

means for prioritizing and ranking critical code anomalies according to their 

architectural relevance. All the existing prioritization and ranking techniques are 

limited to the use of source code analysis (Section 2.1) and, as a consequence, they 

fail to identify code anomalies hat might be associated to architectural problems 
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(Garcia et al., 2009a)(Macia et al. 2012a)(Macia et al., 2012b). Many cases of 

software projects, as reported in the literature, resulted in partial or full 

discontinuation due to degradation problems on their descriptive architecture 

(Hochstein and Lindvall, 2005). Hence, there is a need for solutions that assist 

developers in anticipating the emergence of more severe architectural problems by 

avoiding drift symptoms in their programs.  

The use of architecture blueprints, representing information about the system’s 

descriptive architecture, is a promising direction for assisting developers when 

prioritizing and ranking critical code anomalies. Recent empirical study in several 

companies revealed that high-level design blueprints or sketches are widely archived 

and analyzed in industry projects (Baltes and Diehl, 2014). Similarly to our previous 

studies (see Chapter 3 and 4), we define an auxiliary research question to be 

addressed in our investigation as well as the study hypotheses. The research auxiliary 

question (ARQ) is defined as:  

• ARQ5 - To what extent critical code anomalies are accurately prioritized and 

ranked with the heuristics based on descriptive architecture information provided 

in blueprints?	
  

The expectation is that the proposed heuristics can assist developers when 

prioritizing critical code anomalies in the early stages of system development – 

therefore avoiding architectural degradation. However, the answer to this research 

question is far from being obvious. Architecture blueprints are very often high-level, 

incomplete and inconsistent with respect to the descriptive architecture. As a 

consequence, their use in the heuristics can lead to inaccurate prioritization and 

ranking results. In order to make clearer the purpose of the study, Table 15 defines it 

using the GQM methodology (Basili et al., 1994).  

Our study has been organized in 4 different phases: (i) first, we performed the 

mapping between architectural elements presented in the blueprints and the elements 

in the system implementation. In this phase, we also evaluate if the architecture 

design models satisfy the properties defined (see Chapter 2) in order to be 

characterized as architecture blueprint; (ii) we validate instances of critical code 

anomalies detected for each target application based on the detection strategies 

compiled in (Macia et al., 2013); (iii) we have applied the architecture sensitive 

heuristics for prioritizing and ranking critical code anomalies, and the score was 
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computed for each anomaly given the criteria specified by each heuristic; and (iv) 

finally, we evaluated the results produced by the heuristics in terms of their accuracy 

on the process of prioritizing and ranking critical code anomalies. In order the 

compare the results achieved by the heuristics, we have considered ground truth (or 

reference list of the most critical code anomalies) previously defined by the software 

developers of each target application. 

Table 15 - Study Definition using GQM format 

GQM (Goal, Question, Metric) 
Analyze: The blueprint-based prioritization heuristics 
For the purpose of: Evaluating their accuracy for prioritizing code anomalies 
With respect to: Prioritizing anomalous code elements based on inter-connected 

code anomalies  
From the viewpoint of: Researchers and developers 
In the context of: Two software systems from different domains with different 

architectural designs 

It is important to mention we have proposed and tested two sets of heuristics 

according to the study hypotheses summarized in Table 16. Firstly, we evaluated 

heuristics for prioritizing and ranking critical code anomalies that affect the 

communication of two or more architectural components (Section 5.3.1). Secondly, 

we evaluated the heuristics for prioritizing and ranking critical anomalies related to 

problems on the implementation of system concerns (Section 5.3.1).  

Table 16 - Study Hypothesis for Evaluating the Heuristics 

Hypothesis Description 

Hypothesis H1.0 
Inter-component heuristics cannot help developers on prioritizing 
critical code anomalies. 

Hypothesis H1.1 
Inter-component heuristics can help developers on prioritizing 
critical code anomalies. 

Hypothesis H2.0 
Architectural concern heuristics cannot help developers on 
prioritizing critical code anomalies. 

Hypothesis H2.1 
Architectural concern heuristics can accurately identify critical 
code anomalies. 

Our goal is to evaluate the accuracy of the proposed heuristics for prioritizing 

and ranking code anomalies based on their architectural relevance. To analyze how 

the heuristics performed in terms of their accuracy for prioritizing and ranking critical 

code anomalies, we defined three different values: low (0-30%), acceptable (30-80%) 

and high (80-100%). The thresholds have been similarly adopted in experimentations 

in software engineering (Wohlin et al., 2000). Therefore, we analyzed the three levels 

of accuracy to investigate to what extent the proposed heuristics would be effectively 
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assist developers when helpful when prioritizing and ranking code anomalies. For 

instance, an accuracy level of 50% means that a given heuristic was able to correctly 

prioritize and rank at least half of all instances of the critical code anomalies. 

 

5.3. 
Heuristics for Prioritizing and Ranking Critical Code Anomalies 

In this section, we proposed 4 different heuristics to assist developers when 

prioritizing and ranking critical code anomalies based on information regarding the 

system’s descriptive architecture. The proposed architecture sensitive heuristics are 

organized into two groups based on the main information used according to different 

criteria adopted on the prioritization and ranking process: (i) inter-component 

heuristics; and (ii) concern-based heuristics. Each architecture sensitive heuristics is 

described in more details in the following sections. 

 

5.3.1. 
Inter-Component Heuristics 

Our first set of architecture sensitive heuristics exploit information related with 

code anomaly affecting the communication between architectural components. The 

investigation of co-occurrences of code anomaly is related with effects on software 

maintenance, seeing that those code anomalies can be spread through many 

architectural elements. Occurrences of such code anomalies can be related with the 

violation of the Interface Segregation Principle and Single Responsibility Principle 

(Martin, 2003). Aiming to prioritize and ranking anomalous code elements according 

to their architectural relevance, the software artifacts required as input data for these 

heuristics are: (i) a set of source code artifacts, including software metrics 

(Marinescu, 2004)(Lanza and Marinescu, 2006); (ii) architecture blueprints 

representing information about the descriptive architecture of the software system 

(e.g. components, interfaces and concerns); and (iii) mapping between artifacts of 

both level of abstraction. It is important to mention that before applying the 

prioritization heuristics, the mapping between architecture and source code elements 

have already been performed.  
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5.3.1.1. 
Heuristic Based External Attractor Component 

Our first heuristic investigates occurrences of code elements implementing a 

given architectural component, whose provided interface is used by many code 

elements belonging to external architectural components. This situation characterizes 

an occurrence of the External Attractor Component. A code element is considered to 

be external if it is located in other architectural component than the one under 

assessment. Moreover, the heuristic helps developers on the identification of 

architectural components that have, for example, an Overused Interface (Garcia et al., 

2009) that is responsible for realizing different concerns in the system. Code elements 

realizing the overused (provided) interface are accessed by the client code.  

The problem is that code elements accessed by external code elements, which 

are responsible for realizing different architectural components, might favor the 

insertion of code anomalies in the latter. When an accessed code element implements 

many concerns, its client components are forced to deal with concerns they are not 

interested. Moreover, it is important to mention that when situation occurs, the 

Interface Separation Principle (Martin, 2003) is neglected, and hence, the internal 

complexity of the architectural component is increased. Consequently, the 

maintainability of the component’s provided interface used by other external 

components decreases, and whenever a code element in the interface needs to be 

changed, the client’s component might also be updated. In the following, we provide 

a formal definition for identifying occurrences of the External Attractor Component. 

Formal definition. The set of occurrences of the External Attractor Component 

(EAt) in a system S is denoted by EAtS. Considering an architectural component AC1 

∈ ACS (set of architectural components in the system S), a code element CE1 ∈ 

ACAC1 (set of architectural components realized by anomalous code elements), a set of 

architectural components AC2 ∈ ACS and a set of code elements CE2 ∈ ACCE2, the 

formal definition of EATS is: 

• EATS = {CE1 ∪ CE2 | (CE1, CE2) ∈ DCE1,CE2 ^ |CE1| > th1 ^ |AC1| > th2}	
  
where: 

• DCE1,CE2 represents a dependency from the Code element CE1 to the code 
element CE.	
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It is important to mention that the generic thresholds th1 and th2 can be chosen 

depending on the characteristics of the software system under analysis and the design 

decisions defined by the software architect.  

 

Figure 6 –Scenario for External Attractor Component  

Abstract Example. An abstract representation an External Attractor 

Component is depicted in Figure 6. In this example, three architectural components 

are defined in the architecture blueprint. The architectural component AC2 have an 

anomalous code element CE2 that is accessed by other code elements belonging to the 

external architectural components 3 external components AC1 and AC3. That is, the 

interface provided by the architectural component AC2 is being overused by other 

architectural components. In this scenario, a code element C2 defined in the 

architectural component AC2 might be affected by the Overused Interface since it 

methods are called by many classes. Additionally, it neglects the Single 

Responsibility Principle. In particular, the methods provided through the interface 

defined in this component are called by different client classes, which might indicate 

the inappropriate declaration of those methods. The code elements realizing the 

components AC1 and AC3, may suffer from the Long Method anomaly since they 

implement different types information that are propagated from code elements 

defined in AC2. Furthermore, those code elements might also be affected by several 

changes due to modifications performed in the CE2. 
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5.3.1.2. 
Heuristic Based on External Addictor Component 

Our second heuristic investigates the occurrence of code elements implementing 

a given architectural component that has lots of dependencies with code elements 

realizing external components. This situation characterizes an occurrence of an 

External Addictor Component, which is associated with the violation of the Single 

Responsibility Principle and Interface Segregation Principle. A code element is 

considered to be external if it is located in other architectural component than the one 

under evaluation. In Addition, the heuristic aims at assisting developers to better 

detect architectural problems where anomalous code elements depend on several code 

elements realizing external components functionalities. For example, in some cases 

code elements might be affected as consequence of several changes in other external 

components, which might lead to many side effects. Those cases situation may also 

indicate a tight coupling between the anomalous code element realizing a given 

architectural component, which centralizes the communication between its own 

component and the adjacent ones. Moreover, side effects and tight coupling between 

architecture components has been recognized as source of reengineering of software 

systems and frequently impact on its discontinuation (MacCormak et al, 2006). 

Formal definition. The set of occurrences of the External Addictor (EAd) in a 

system S is denoted by EAdS. Considering an architectural component AC1 ∈ ACS 

(set of architectural components in the system S), a code element CE1 ∈ ACAC1 (set 

of architectural components affected), a set of architectural components AC2 ∈ ACS 

and a set of code elements CE2 ∈ ACCE2, the formal definition of EAdS is: 

• EATS	
  =	
  {CE1	
  ∪	
  CE2	
  |	
  (CE1,	
  CE2)	
  ∈	
  DCE1,CE2	
  ^|CE2|	
  >th1	
  ^	
  |AC2|	
  >th2},	
  where:	
  
DCE1,CE2 represents a dependency from the Code element CE1 to the code 

element CE. Similarly to the definition of the External Addictor Component, th1 and 

th2 represent thresholds that can be chosen depending on the characteristics of the 

software system under analysis and the design decisions defined by the software 

architect. 
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Figure 7 – Scenario for External Addictor Component 

Abstract Example. An abstract example characterizing an External Addictor 

Component (Ead) is illustrated in Figure 7. Let us assume that the architectural 

component AC2 have an anomalous code element CE2, which access several classes 

belonging to the other 2 external components AC1 and AC3. Thus, the architectural 

component AC2 is more interested in accessing the interfaces provided by other 

components (AC1 and AC3) than realizing the functionality it was initially designed to 

accomplish. We should also assume that architectural components AC1 and AC3 are 

implemented by 2 anomalous code elements CE5, CE6, CE7, and CE8, respectively 

and those code elements are infected with DataClass anomaly (Fowler et al., 1999). 

In addition, the code element CE2 is infected by a God Class anomaly (Fowler et al., 

1999), and hence, it defines several non-cohesive methods as well as it implements 

much functionality in this component. In this way, the CE2 class might propagate 

several concerns that should only be treated internally. The propagation forces the 

code element CE2 to deal with those concerns that were not properly addressed. 

 

5.3.2. 
Concern-Based Heuristics  

Our second set of heuristics investigates the anomalous implementation of 

system concerns in relation to the descriptive architecture. A system concern (Banker 

et al., 1989) is defined as an architect interest that significantly influences the 

system`s descriptive architecture. Therefore, the concern-based heuristics aim at 

investigating the sources of critical code anomalies that violate the principle of 

Separation of Concerns (SoC) (Kickzales et al., 1997). The detection architecture 
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drift problems related to the separation of concerns once those problems can hinder 

the maintenance of the descriptive architecture as the system evolves. When a 

component violates the principle of Separation of Concerns, its maintenance may also 

be impaired since it is responsible for the implementing several architectural 

concerns. Moreover, cases where the code elements realize many architectural 

concerns might lead to tight coupling between the components specified in the 

descriptive architecture represented in the blueprint. The tight coupling between those 

architectural components is a factor that delimitate the prioritization and ranking of 

specific anomalous code elements. 

 

5.3.2.1. 
Heuristic for Concern Overload 

Our fourth heuristic aims at identifying architectural components realizing 

many different concerns. That is, the heuristic detect instances of anomalous code 

elements realizing the same architectural component, which is responsible for the 

modularization of several independent concerns. The system concerns are considered 

independent when each of them could be modularized by different architectural 

components. In this scenario, we can observe the violation of the principle of 

Separation of Concerns (Kickzales et al., 1997) and Single Responsibility Principle 

(Martin, 2003). Moreover, it is important to highlight that if an architectural 

component implements several concerns in a software system, it centralizes more than 

it should actually implement, and therefore, its maintainability can be compromised. 

Before applying the heuristic, all concerns represented in the descriptive architecture 

should be identified and validated with the system architect. After that, the mapping 

between architectural components and code elements responsible for realizing a 

system concern is performed. Once anomalous code elements are identified for each 

architectural component, we verify whether the number of concerns modularized by 

an architectural component, as well as if the number of classes existing in a given 

architectural component respect the thresholds defined by the system architect. If the 

architecture component does not respect the thresholds, the anomalous code elements 

within the architecture component must be identified as an occurrence of concern 
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overload in this architectural component. The verification is performed for all the 

existing components represented in the architecture blueprint.  

Formal Definition. The set of occurrences of Concern Overload (CO) in a 

system S is denoted by COS. Before formally defining the COS, we need to identify 

the list of concerns realized by each code element in a software system. Therefore, we 

define a list of all concerns (COS) realized by a code element CE1,c ∈ CES (where 

CEs represents all the code elements realized in the system S). In this sense, 

considering an architectural component AC1 ∈ ACS (set of architectural components 

in the system S) and a code element CE1 ∈ CES, the forma definition for occurrences 

of CO is represented as: 

• COS = {CE1 | CE1∈ CEACx ˆ | COS(CE1) | > th1 ˆ | CE1 | > th2}, where: 

• CEACx represents all the anomalous code elements realizing a given architectural 

component ACx. 

• The threshold th1 represents the maximum number of concerns that a given code 

element should realize, while the threshold th2 represents the number of code 

elements that should be considered in an occurrence of Concern Overload. 

 

Figure 8 - Scenario for Misplaced Concern 

Abstract Example. An abstract example of the Concern Overload is depicted 

in Figure 8. As we can observe the architectural component is realized by four 

different classes. The architectural components AC1, AC3, and AC4 are responsible 

for three different concerns in the software system. In turn, the AC2 modularizes 3 

different concerns. Thus, code elements realizing the component AC2 will have to 

deal with several concerns, and therefore, this architectural component violates both 

the Separation of Concerns and Single Responsibility Principle. 
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5.3.2.2. 
Heuristic for Misplaced Concern 

Finally, our fourth heuristic investigates the occurrence of anomalous code 

elements that realize the same architectural component and modularize several 

independent concerns. The concerns are considered independent when each of them 

could be modularized by different architectural components. When this situation 

occurs, it is characterized as a Misplaced Concern. Instances of Misplaced Concerns 

violate either Separation of Concerns or Single Responsibility principles. However, 

the problem can be more severe when an inter-related architectural component also 

modularizes a misplaced concern. The fact is that dispersed anomalous code elements 

favor scattering for a concern in the architectural design. Moreover, violations to the 

separation of concerns often affect the system maintainability since changes in 

specific concerns can spread over many other components.  

Formal Definition. The set of occurrences of Misplaced Concern  (MC) in a 

system S is denoted by MCS. Consider a concern COA ∈ COS (represents the list of 

all concerns realized in a system S), and two different architectural components AC1 

∈ ACS and AC2 ∈ ACS (set of all architecture components in a system S). The 

formal definition for occurrences of MC in system S is represented as: 

• MCS = {CE1 | CE1 ∈ ACEAC1,COa |CEAC1,COa| < th1 ˆ |CEAC2,COa| > th2}, where: 	
  
• CEAC1,COa represents a code element responsible for realizing the architectural 

component AC1 and implementing the system concern COa. 

• CEAC2,COa represents a code element responsible for realizing the architectural 

component AC2 and implementing the system concern COa. 

• The thresholds th1 and th2 represents respectively the number of concerns 

realized in a software system, the maximum number of concerns a given code 

element should realize. In summary, those values indicate the acceptable measures 

of which the system concerns are scattered. In this sense, the thresholds th1 and th2 

must respect the following values 0 ≤ th1 ≤ 1 and 0 ≤ th2 ≤ 1. 
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Figure 9 - Scenario for Misplaced Concern 

Abstract Example. An abstract example where a component suffers from 

Misplaced Concern is depicted in Figure 9. As we can observe, code elements 

realizing the architectural components AC1, AC3 and AC4 are responsible to deal with 

only one specific concern that is predominant for each of these architectural 

components. On the other hand the architectural component AC2 should implement 

only on specific concern. However, code elements realizing this architectural 

component might also have to deal with concerns E and F, which are not predominant 

in this component. In other words, the architectural component AC2 is implementing 

two concerns whose responsibility should be implemented by other components. 

Therefore, this situation characterizes an occurrence of an architectural problem 

related with misplaced concerns in software systems. 

 

5.4. 
Research Findings on Prioritizing and Ranking Critical Code Anomalies  

This section presents the evaluation of the proposed architecture-sensitive 

heuristics for assisting developers when prioritizing and ranking critical code 

anomalies. Before evaluating the heuristics, we describe how the detection of 

individual code anomalies was performed. We also describe the evaluation method 

used to compare the results and the ground truth provided for each target application. 

 

5.4.1. 
Procedures for Data Collection and Evaluation Method 

The first step before evaluating the proposed heuristics was the automatic 

detection of code anomalies for each target application. We have used well-known 
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detection strategies and thresholds defined in other studies (Macia et al., 

2012a)(Macia et al., 2012b). It is also important to mention that we identified types of 

code anomalies already catalogued in the literature and extensively investigated in 

other studies (Arcoverde et al., 2012) (Macia et al., 2012a)(Macia et al., 2012b). In 

this sense, we included the ten most critical code anomalies found in the three target 

applications, namely: Divergent Change, Shotgun Surgery, Middle Man, Duplicated 

Code, God Class, Small Class, Feature Envy, Data Class, Large Class, and Deep 

Inheritance Tree.  Those code anomalies are documented in different catalogues – i.e. 

(Fowler et al., 1999)(Piveta et al., 2006)(Marinescu, 2004). 

After that, the list of code anomalies was checked and validated by developers 

and architects of each target application. The validation process is important to 

guarantee that the detection strategies detected instances of critical code anomalies. 

Furthermore, we also obtained the ground truth to compare results with the top-N 

code anomalies prioritized and ranked by the proposed heuristics. The ground truth is 

a list of the most critical anomalous code elements (according to their architectural 

relevance) provided by developers and maintainers of each target application. For the 

Mobile Media, the architects provided the top 10 code elements that they believed to 

represent the main sources of maintainability problems along the software project 

history. The architects of the Health Watcher system provided a list with the top 30 

code elements that exhibited maintainability problems along its evolution history. 

Finally, developers from the SubscriberDB system provided a list with the top 15 

anomalous code elements considering the impact on the system evolution.  

The anomalous code elements listed by the developers as the most critical ones 

that should be urgently refactored so that severe maintainability problems could be 

avoided. In summary, the architects and developers of the target applications were 

asked to reason about the most important and critical classes. For instance, the critical 

code elements are those responsible for realizing the more important architectural 

components. In addition, they can also be those code elements s responsible for 

implementing the key provided and required interfaces.  

After the architecture sensitive heuristics have been applied, we compared the 

list of the most critical code anomalies prioritized and ranked by each heuristic with 

the ground truth provided for each target application. The main reasons for 

performing the comparison analysis are: (i) if we asked developers to produce a 
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ranked list containing all the code elements that could impact on the architecture 

design, our analysis would be unviable; and (ii) we wanted to evaluate our heuristics 

in terms of the most critical anomalous code elements. Those code elements should be 

properly refactored in the early stages of the system development, otherwise deeper 

maintainability problems are likely to be manifested during the system evolution. 

Aiming to analyze set of code elements prioritized and ranked by the 

architecture sensitive heuristics, we have used the Size of Overlap between the 

different prioritization lists. Calculating this measures is very straightforward, and it 

allows evaluating whether the heuristics could accurately distinguish the top k for 

each target application. The size of overlap indicates the accuracy of the proposed 

heuristic when prioritizing and ranking the most relevant code elements according to 

their architectural relevance. 

Table 17 - Additional Architecture Sensitive Metrics 

Metric Description 
Density of Code Anomalies (DCA) It calculates the density of code anomalies in a code element 

realizing a given component. 
External Dependencies (ED)	
   It counts the number of external code elements that a given 

code elements depends. 
Concerns per Code Element (CE) It counts the number of architectural concerns a measure 

code element implements 
Number of Concerns per Architecture 
Element 

It counts the number of architectural concerns a measure 
architecture component realizes 

Concern Diffusion over Components It counts the number of code elements affected by the 
implementation of an architectural concern 

Concern Diffusion over Operations It counts the number of methods and constructors affecter by 
the implementation of an architectural concern 

After the list of the most critical code anomalies has been produced by each 

heuristic, different criteria might be applied for breaking ties between code anomalies 

that have the same architectural relevance. For doing so, we introduce different 

metrics and source code information that may also be used during the prioritization 

process. Depending on the heuristics used for prioritizing and ranking critical code 

anomalies, different metrics might be applied according to criteria defined by the 

system architect. Table 17 shows the architecture sensitive metrics used as additional 

measures for breaking ties when prioritizing and ranking critical code anomalies. For 

instance, the metrics CDC and CDO can be used when detecting cases of the 

Misplaced Concern. These two metrics allow to measure how system concerns are 

diffused in the actual system implementation. Therefore, we can distinguish whether a 

given concerns is indeed predominant in a given architectural component. 
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5.4.2. 
Target Applications  

We selected 3 medium-size applications to evaluate the architecture sensitive 

heuristics proposed in this thesis. Two of those systems, Mobile Media (Figueiredo et 

al., 2008) and Health Watcher (Soares et al., 2002), have already been introduced in 

our empirical investigations (see Chapter 3 and 4). In this evaluation, we also selected 

the last version of this application, because it comprises many changes performed 

during the system evolution. Those changes range from functionality increments and 

enhancements on error handling policies to the incorporation of design patterns to 

improve the system modularity. Our third application is the SubscriberDB system, 

which is a large software of a publishing house. It manages data related with the 

subscribers of its publications and it supports complex queries on several types of 

data. There are several other functionalities supported by this system and, for this 

reason, we selected version 2.4 of this system. The selected version encompasses all 

the features implemented in the system, as well as it has a more stable version of the 

system’s descriptive architecture. Table 18 summarizes the main characteristics of the 

three target applications investigated in our study. 

Table 18 - Characteristics of Target Applications 

Target Application	
   Mobile Media	
   Health Watcher	
   Subscribers DB	
  
System Type	
   SPL	
   Web	
   Web	
  
Programming Language	
   Java	
   Java	
   Java	
  
Architecture Design	
   MVC	
   Layered	
   MVC	
  
Selected Version	
   5	
   8	
   2.4	
  
KLOC	
   54	
   49	
   100	
  
Number of Architectural Elements	
   81	
   48	
   42	
  
Number of Code Anomalies	
   260	
   497	
   582	
  

These systems were also chosen because they met a number of relevant criteria 

for our study: (i) these are non-trivial systems and their sizes (varying from 54 to 100 

KLOC) are manageable for an in-depth analysis of code anomalies analysis as 

required in our study; (ii) the applications have been extensively and successfully 

evaluated in other studies (Arcoverde et al, 2012)(Vidal and Marcos, 2012)(Macia et 

al, 2014)(Oizumi et al, 2014); (iii) we needed to rely on the availability of the 

system’s developers to validate our identification of code anomalies instances; and 

(iv) the architecture blueprints, used to reason about changes requests and produce 

new versions, were available for all the target applications. 
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5.4.3. 
Inter-Component Heuristics  

As the first step, components represented in the architecture blueprints should 

be mapped to the corresponding code elements responsible for realizing them. In 

addition, it is important to mention that this precondition is related with the 

completeness of artifacts in both levels of the system representation. Thus, even when 

the architecture blueprint is incomplete, all the components need be mapped to at least 

one element in the system implementation. Recalling that our first set of heuristics 

investigates the occurrence of two different scenarios related with problems in the 

inter-component communication. The first scenario characterizes when code elements 

are used by (or attracts) several external anomalous code elements. In turn, the 

second scenario is characterized by code elements that depend a lot (or are addicted) 

of external anomalous code element. Each of these scenarios will be described in the 

next subsections. Those scenarios might also be related to different types of 

architectural drift problems introduced in Chapter 2. 

This External Attractor heuristic is based on the assessment of anomalous code 

elements that are used by several code elements belonging to other architectural 

components. In addition, occurrences of External Attractor Component might lead to 

the introduction of critical anomalies in the code elements using the architectural 

component under assessment. For example, if the anomalous code element under 

investigation implements different concerns, the external code elements depending on 

the assessed code element can be forced to deal with concerns that they are not 

interested. When applying the inter-component heuristics for prioritizing and ranking 

critical code anomalies, we first detected the anomalous code elements responsible for 

realizing each architectural component. After that, the heuristic computes the number 

of anomalous code elements realizing external components that depend on the 

component under assessment. Finally, the anomalous code elements detected as 

instance of External Attractor Component are ranked according to their architecture 

relevance. 

This heuristic was applied for all the three target applications selected in our 

study. We observed the results indicated an acceptable accuracy of the heuristics in 
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terms of prioritizing and ranking critical anomalies. Table 19 shows the results of 

applying the heuristic for detecting occurrences of External Attractor Components. 

For the Mobile Media, we observed that 5 of 10 measures had low accuracy when 

compared to the anomalous code elements defined in the ground truth. In the case of 

Health Watcher, the results showed an accuracy level of 40% when prioritizing and 

ranking critical code anomalies. The recurrent problem is that most part of anomalous 

code elements identified by the heuristics had the same number of code anomalies. In 

addition, those anomalous code elements are all implementing the GUI concern. 

Although this concern is represented in the architecture blueprint by two components, 

there are 47 elements in the source-code responsible for its implementation. Finally, 

the heuristics performed better when prioritizing and ranking the anomalous code 

elements in the Subscriber DB. As we can observe, the accuracy for prioritizing and 

ranking critical code anomalies was around 67%. However, we observed that in the 

SubscriberDB the number of instances of code anomalies in many code elements 

were the same.   

Table 19 - Results for Inter-Component Heuristics 

Name	
   N-ranked CE	
   External Attractor	
   External Addictor 
Overlap Size	
   Accuracy	
   Overlap Size Accuracy 

Mobile Media	
   10	
   5	
   50%	
   5 50% 
Health Watcher	
   30	
   12	
   40%	
   11 37% 
Subscribers DB	
   15	
   10	
   67%	
     

This heuristic identifies groups of anomalous code elements that depend (or 

are addicted) on anomalous code elements belonging to external architectural 

components. In order to identify the critical code anomalies, we firstly identify the 

anomalous code elements in the architectural component under assessment. For each 

anomalous code element, we need to detected external dependencies with other code 

elements realizing external components At the end, a higher score must be assigned to 

architectural components where we observe: (i) a higher number of anomalous code 

elements; and (ii) a higher of number code elements realizing external components 

depending on the code elements in architectural component under assessment.  

Furthermore, Mobile Media represents 18 architectural components, while 

Health Watcher and Subscriber DB have respectively 6 and 8 architectural 

components represented in the architecture blueprint. Even with a different level of 

abstraction for representing the architectural elements, we could only observe 
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instances of External Addictor Component in 2 out of 3 target applications. In the 

Mobile Media, 6 architectural components were involved in occurrences of External 

Addictor Component, while in the Health Watcher we observed 3 architectural 

components. Table 19 shows the results of applying our second heuristics for 

prioritizing and ranking critical code anomalies. For Mobile Media, we observed that 

5 of 10 code elements are correctly prioritized and ranked, which indicates an 

accuracy of 50%. In the Health Watcher, we observed that 11 of 30 code elements are 

correctly prioritized and ranked as being critical to the software architecture design. 

That is, this heuristic for detecting instances of External Addictor Components 

achieved an acceptable accuracy when prioritizing and ranking critical code elements 

that might contribute to architectural drift problems. In addition, as we have not 

detected instances of External Addictor Component in the Subscribers DB system 

when this heuristic was applied. 

 

5.4.4. 
Concern-Based Heuristics 

Similarly to our first set of heuristics, we discuss how the heuristics evaluation 

was carried as well as the expected results of applying the concern-based heuristics. 

This set of heuristic is directly related with problems on the implementation of 

system’s concerns. Therefore, anomalous code elements responsible for implementing 

a high number of system concerns have to be properly prioritized and ranked, since 

they violate, for instance, the Single Responsibility Principle. Different weights (or 

level of importance) can be assigned to system’s concerns according to the system 

architect. When this information is not available, a criterion for assigning weights can 

be also adopted, such as the number of concerns realized by each architectural 

component. On the other hand, a concern can have high priority when it is 

implemented by a many code elements - considering the total number of code 

elements in the system under investigation.  

Moreover, architectural problems caused by violation this principle can be 

observed when anomalous code elements within an architectural component contain 

several independent concerns. Thus, architecture blueprint should initially be mapped 

to the source code elements of the existing concerns modularized by the architectural 
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components. Those concerns were validated by the system architects before the 

heuristic have been applied. When deciding what architectural components have a 

higher importance, we firstly detected the number of anomalous code elements 

implementing a given architectural component, which are responsible for realizing the 

same concerns.  

Our third heuristic aims at detecting code elements within the same architectural 

component that modularizes several independent concerns. A system concern is 

considered to be independent when it should be modularized by a different 

architectural component. Firstly, we detected the number of anomalous code elements 

that implements the same concern within an architectural component. For example, in 

the Health Watcher system we could detect architectural components that implements 

more than one concern: GUI (4 concerns), Business Rules (2 concerns), Distribution 

Manager (4 concerns) and Data Manager (2 concerns). Similarly, the SubscriberDB 

implements more 8 architectural components (AddSubscribersUI, EditSubscribersUI, 

MailingUI, SearchUI, SubsriberController, MailingController, SearchController and 

Persistence). Each architectural component in this application is responsible for 

realizing 2 concerns.  

Code elements implementing one of those architectural components are likely to 

suffer from Concern Overload, since they have to deal with most part of the system’s 

concerns realized for a given architectural concern. Calculating the results for this 

heuristic can be straightforward. We considered three main measures: (i) number of 

architectural concerns responsible for realizing more than a system concern; (ii) 

number of anomalous code elements in a given component, which are responsible for 

implementing more a concern; (iii) given a list of anomalous code elements in each 

architectural component, we quantify the number of anomalies affecting code 

elements within each component to break ties when the prioritization and ranking 

process. For the Mobile Media, 6 out of 10 (60% accuracy) anomalous code elements 

are correctly prioritized and ranked when compared to the ground truth. The 

performance for this heuristic is even better for the Health Watcher and SubscriberDB 

systems. While SubscriberDB achieved 73% of accuracy, in the case of Health 

Watcher the accuracy of the heuristics when prioritizing and ranking anomalous code 

elements reached 87% of accuracy. In addition, if we consider only the top 10 

anomalous code elements, 9 out of 10 code elements were correctly prioritized and 
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ranked when compared to the ground truth of the most critical code anomalies. 

Similarly, for the SubscriberDB system the heuristic correctly prioritized and ranked 

8 out of 10 anomalous code elements. 

The fourth heuristic identifies groups of code elements modularizing an 

architectural concern that is not the predominant one of their enclosing architectural 

component. A concern is considered predominant in a given architectural component 

if most of the code elements in this component are dedicated to modularize it. When 

prioritizing and ranking code elements using this heuristic, we could only identify 

instances of Misplaced Concern on Mobile Media and Health Watcher. Although all 

the architectural components in the SubscriberDB implement at least two concerns in 

the system, developers have not provided information of which concern is 

predominantly addressed by each component. In this sense, we could not apply the 

heuristic for detecting instances of Misplaced Concerns in this system.  

Table 20 illustrates the concerns implemented in Health Watcher and Mobile 

Media. It is important to recall that the concerns of Mobile Media and Health Watcher 

have already been well documented, respectively, in (Figueiredo et al., 2008) and 

(Soares et al., 2002). As we can observe, Health Watcher implements 6 architectural 

concerns, while Mobile Media implements 5 architectural concerns. To define which 

architectural concern would be more relevant for the prioritization heuristic, we 

analyzed two additional metrics: (i) Concern Diffusion over Components (CDC) and 

(ii) Concern Diffusion over Operations (CDO). Those metrics together quantify the 

degree of scattering of the architecture concerns. A higher measure of scattering 

means that more code elements are implementing the architectural concerns in a 

software system.  

In this sense, Table 21 indicates that this heuristic produced good results for 

both systems. For the Mobile Media system, we observed that 5 (out of 10) measures 

had acceptable accuracy. When comparing the list of code anomalies provided by the 

prioritization heuristic and the ground truth, we observed that some code elements 

were equally prioritized. In this scenario, we can use, for instance, the density of code 

anomalies for breaking ties on the prioritization of anomalous code elements. 

Moreover, it is important to mention that for this heuristic we only considered the top 

10 elements for the Mobile Media (no ties were considered). On the other hand, we 

observed that 25 of 30 measures in the Health Watcher had high accuracy. That is, the 
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heuristic can produce highly accurate prioritization of critical code anomalies. It 

indicates that the most part of the elements affected by multiple code anomalies are 

frequently identified with a high priority. For the Health Watcher system, this 

heuristic achieved 84% of accuracy when comparing with the ground truth. The 

Health Watcher also had a higher number of concerns. 

Table 20 – Architectural Concerns for Health Watcher and Mobile Media 

Target Application Concerns CDC CDO 

Health Watcher Concurrency 8 42 

Distribution 49 76 

Exception 73 294 

Transaction 41 158 

Business 37 222 

View 21 44 

Mobile Media Counting/Sorting 5 42 

Favorites 5 32 

Exception 28 256 

Persistence 25 106 

Media Management 49 68 

Table 21 – Results for Concern Based Heuristics 

Name	
   N-ranked CE	
   Concern Overload	
   Misplaced Concern 
Size Overlap	
   Accuracy	
   Size Overlap Accuracy 

Mobile Media	
   10	
   6	
   60% 5 50% 
Health Watcher	
   30	
   26	
   87%	
   25 84% 
SubscriberDB	
   15	
   11	
   73%	
     

 

5.4.5. 
Accuracy of the Architecture Sensitive Heuristics 

After each architecture sensitive heuristic have been applied, we observed some 

findings when analyzing the results. On the analysis of occurrences of External 

Attractor Components and External Addictor Components, we observed that both 

scenarios occur for, (at least) 2 out of 3 target application. Those occurrences 

concentrate more than 60% of dependencies between architectural components in 

those the target applications. The high percentage indicates a tight coupling between 

architectural components representing information about the descriptive architecture. 

This strong coupling is likely to be related with anomalous code elements that realize 
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the communication between the architectural components. When analyzing the results 

for the Inter-Component Heuristics, we observed, in general, the heuristics presented 

an acceptable accuracy for all the target applications where they have been applied. 

When analyzing the results for the inter-component heuristics, we also observed that 

code elements infected by multiple code anomalies are often perceived as high 

priority. The results observed in the analysis helped rejecting the null hypothesis H1.0, 

as the inter-component heuristics were able to prioritize and rank critical code 

anomalies with an acceptable accuracy in all the target applications under assessment.  

On the other hand, the number of occurrences of Misplaced Concern and 

Concern Overload indicates a high proportion of anomalous code elements are related 

with problems on the implementation of system concerns. We observed that in both 

systems some architectural concerns are crosscutting several code elements. That is, 

they are scattered through anomalous code elements. In this sense, the mapping of 

concerns was clearly useful for prioritizing and ranking a significant number of 

critical code anomalies. Moreover, the results showed that, in general, the heuristics 

presented an acceptable or high accuracy for all the applications where the heuristics 

have been applied. In this sense, the analysis of the results indicated that the null 

hypothesis H2.0 is rejected, as the Concern-Based Heuristics were able to identify 

code elements containing critical code anomalies in both target applications. 

 

5.5. 
Discussions  

In addition to the data analysis performed for each architecture sensitive 

heuristics, we also discuss other intesresting findings observed when analyzing the 

results. Firstly, we discuss how the architecture sensitive heuristics influenced the 

number of False Positives and False Negatives when prioritizing and ranking critical 

code anomalies (Section 5.5.1). After that, we compare how the architecture sensitive 

heuristics performed in relation to other existing approach for prioritizing and ranking 

critical code anomalies (Section 5.5.2).  
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5.5.1. 
Identifying False Positives and False Negatives.  

This section discusses the proportion of False Positives and False Negatives 

considering the target applications under investigation. This proportion was computed 

by applying each of the heuristics proposed in thesis: external attractor (EAt), 

external addictor (EAd), misplaced concern (MC) and concern overload (CO). Table 

22 summarizes the number of False Positives and False Negatives observed for each 

target application considering the N-ranked code elements (CE) prioritized and 

ranked according to the proposed heuristics. When analyzing the Mobile Media 

system, we observed that the heuristics indicated False Positives mostly related with 

the implementation of Data (10 instances), View (6 instances) and Controller (2 

instances) concerns. On the other hand, all the code elements prioritized and ranked as 

False Negatives by the heuristics implement the Controller functionality. 

Table 22 - False positives and negatives achieved by the prioritization heuristics 

System Measure N-CE Prioritization Heuristic 
EAt EAd MC CO 

Mobile Media FP 10 5 5 4 4 
FN 10 5 5 4 4 

Health Watcher FP 30 18 19 3 4 
FN 30 12 11 3 4 

Subscribers DB 
FP 15 5   5 

FN 15 5   5 

Moreover, we have also analyzed the anomalous code elements prioritized and 

ranked by the heuristics in the Health Watcher and SubscriberDB systems. For the 

Health Watcher, we observed that the False Positives are mainly related with code 

elements implementing, respectively, Data, Concurrency and Distribution 

functionalities. However, one reason for ranking those code elements, as False 

Positives is the fact that they implement a high number of code anomalies when 

compared to the other ranked code elements. This result is specially observed when 

the External Attractor (Eat) and External Addictor (Ead) heuristics are applied.  

In the case of the Misplaced Concern and Concern Overload (CO) heuristics, 

the code elements prioritized and ranked as False Positives are mainly with two 

important functionalities in the system, which are GUI (19 instances) and Business 

Rules (3 instances) functionalities. Moreover, the code elements realizing the GUI 
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functionality are responsible for implementing the key interfaces that provide access 

to all the services available in the system. Although those code elements implement 

one of the most important components in the descriptive architecture of Health 

Watcher system, code elements do not have a high number of code anomalies – and 

therefore the heuristic have not ranked those elements as being critical to the 

architectural design.  

Finally, for the Subscribers DB (SDB), we observed instances of code elements 

prioritized and ranked as False Positives are responsible for implementing different 

functionalities, namely: Model (1 instance), View (2 instances) and Controller (2 

instances). The problem is that the anomalous code elements are similarly distributed 

through the architectural components represented in the architecture blueprint. In 

addition, we have not applied the Misplaced Concern heuristic, since developers have 

not provided information about the predominant concerns each component is 

responsible for realizing according to the descriptive architecture specification. 

 

5.5.2. 
Comparing Ranking Provided by Different Heuristics  

Despite the existence of many different strategies for detecting code anomalies, 

only a few of them provide support for prioritizing and ranking code anomalies. Even 

in this restricted scenario, those approaches do not consider architecture information 

when prioritizing and ranking critical code anomalies. Therefore, developers are not 

able to distinguish what code anomalies should be correctly prioritized and ranked, 

for instance, according to architectural problems. In this sense, critical code anomalies 

are remaining in the source code since they refactoring are not correctly prioritized 

and architectural problems might emerged as the system evolves. In severe cases, the 

critical code anomalies can lead to the degradation of the descriptive architecture. In 

the following, we perform a comparison analysis of different heuristics for 

prioritizing and ranking critical code anomalies. 

Our previous joint work (Arcoverde et al., 2012) proposed heuristics for 

prioritizing and ranking critical code anomalies based on the evolution history of 4 

target applications. Those heuristics are based strictly on source code information, 

such as number of bugs, number of errors and density of code anomalies. Moreover, 
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the heuristics collect this information considering the evolution history of a software 

system. Moreover, those heuristics were applied for prioritizing critical code 

anomalies related to the presence of code anomalies and erosion problems (Hochstein 

and Lindvall, 2005) in the descriptive architecture. The problem is that the heuristics 

required the system’s history information when prioritizing and ranking critical code 

anomalies in a given software system. However, this information usually is not 

available in the early stage of system development. In this sense, Table 21 shows the 

results of applying such heuristics. It is important to emphasize that the heuristics 

were applied for the same version of Mobile Media ad Health Watcher investigated in 

this paper. As we can see the heuristics performed well in most part of the cases 

achieving from acceptable to high accuracy. Moreover, the heuristics also prioritized 

code anomalies associated with architectural problems. For each prioritization 

heuristic, it was ranked the top 10 code elements according to their architectural 

relevant, the four heuristics performed well when prioritizing the critical code 

elements, since all heuristics achieved accuracy higher than 70%. 

Table 23 – Relevance based on the system history evolution 

Heuristics Based on History Evolution 
Heuristic Name N-Ranked ArchRel % ArchRel 

Change-Proneness 
Health Watcher 14 10 71% 
Mobile Media  10 7 70% 
PDP 10 10 100% 

Error Proneness 
Health Watcher 14 10 85% 
Mobile Media 10 8 80% 
PDP 10 8 80% 

Architecture Role 
Health Watcher 10 4 40% 
Mobile Media 10 9 90% 
PDP 10 10 100% 

Anomalies density 

Health Watcher 10 5 50% 
Mobile Media 10 9 90% 
PDP 10 8 80% 
MIDAS 10 6 60% 

Heuristics Based on Architecture Sensitive Information 
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Heuristic Name N-Ranked ArchRel % ArchRel 

External Attractor 
Health Watcher 30 21 70% 
Mobile Media 10 9 90% 
Subscribers DB 15 10 67% 

External Addictor Health Watcher 30 22 74% 
Mobile Media 10 5 50% 

Misplaced Concern Health Watcher 30 24 80% 
Mobile Media 10 8 80% 

Concern Overload 
Health Watcher 30 24 80% 
Mobile Media 10 9 90% 
Subscribers DB 15 11 74% 

 

On the other hand, the architecture sensitive heuristics proposed in this paper 

exploits architecture information provided in the architecture blueprints3, which 

represents the system’s descriptive architecture. Those heuristics allow developers 

prioritize and rank critical code anomalies according to architectural drift symptoms 

in the early stage of software development. In addition, it is important to mention that 

architectural drift symptoms are more difficult to detecting than drift problems, since 

they are not possible to detect by only analyzing the actual system implementation. 

Moreover, architecture drift symptoms usually are precursor of erosion problems that 

are likely to be manifested during the evolution of software systems.  

Although the proposed heuristics have not presented superior results when 

compared to the heuristics based on the system history evolution (see Table 23), most 

part of anomalous code elements is related with architectural drift problems. Thus, we 

performed an analysis to evaluate how accurate the heuristics performed when 

prioritizing and ranking critical code elements related with architectural problems. 

The collected data showed most part of the anomalous code elements are related with 

architectural problems. That is, in average more than 75% of the anomalous code 

elements identified by the architecture sensitive heuristics proposed in this thesis are 

related with architectural problems. 

 

5.6. 
Summary 

As previously discussed in Chapter 4, architecture blueprints, which represent 

the system’s descriptive architecture, can be used as means to improve the 

prioritization and ranking of critical code anomalies. Our controlled experiments 

                                                
3 System developers and maintainers produced the architecture blueprints 
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showed that process of prioritizing and ranking critical code anomalies can be 

improved in terms of the Precision and Recall measures. In addition, the results also 

showed that architecture blueprints did not bring any additional effort in terms of time 

spent when prioritizing and ranking code anomalies. The problem is that not all 

participants in the controlled experiment were able to reason about how architecture 

information could be properly used when performing the experimental tasks. 

In this sense, this chapter introduces and evaluates architecture sensitive 

heuristics. They exploit different information about the system’s descriptive 

architecture in order to prioritizing and ranking critical anomalies. In addition, the 

heuristics consider different architecture information based on the type of the 

architecture drift symptoms that architects and developers are interested to 

investigate. Therefore, we exploit the architecture blueprints to semi-automate the 

prioritization and ranking of critical code anomalies. In addition, as main 

contributions of this chapter we can mention: (i) two sets of prioritization heuristics 

based on different criteria for prioritizing and ranking the most critical anomalous 

code elements based on their architectural relevance; (ii) the evaluation of the 

proposed architecture sensitive heuristics regarding the architectural relevance of the 

anomalous code anomalies; (iii) a discussion on how the architecture sensitive 

heuristics impact in the process of correctly prioritizing and raking the critical code 

anomalies in the target applications under analysis.  

Furthermore, we discuss how the proposed heuristics performed when they are 

applied in three medium-size applications by measuring their accuracy according to 

the size of overlap achieved in comparison to the ground truth provided by 

developers. As main findings observed during the empirical evaluation of the 

proposed heuristics, we can mention: (i) there are architectural problems involving 

groups of classes that realize architectural components, which are intended to 

implement a specific functionality in the system’s descriptive architecture; (ii) there 

are several symptoms of degradation involving architecture components infected by 

multiple anomalies; and (iii) even for the architectural concerns that are well defined 

and relevant to a software system, the prioritization heuristics were efficient to 

pinpoint problems with the implementation of those concerns.  

Finally, we evaluated each set of heuristics in a systematic way by comparing to 

the heuristics defined in our previous work. They are based on analyzing the history 
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about the evolution of software systems; they aim at exploring this history 

information to prioritize critical code anomalies regarding degradation symptoms. It is 

important to reinforce that we decided to focus on architectural drift problems since 

they manifest in the early stages of the system development. Unlike erosion 

symptoms, their detection is not effective through source code analysis only.  
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