

96

5 Architecture Sensitive Heuristics for Prioritizing and
Ranking Critical Code Anomalies

The previous chapter motivated the need for automating the prioritization and

ranking of critical code anomalies. Due to the aforementioned reasons, it is not

possible to rely on the ad hoc use of blueprints. In this chapter, we introduce the

architecture sensitive heuristics proposed in this thesis. The architecture sensitive

heuristics aim at assisting software developers when prioritizing and ranking critical

code anomalies even in the early stages of the software development lifecycle. We

have defined three groups of heuristics based on different architectural information

related to the descriptive architecture, which can be exploited in the process of

prioritizing and ranking critical code anomalies. By proposing heuristics, we are able

to assist developers deciding which code anomalies should be refactored first

according to the several drift problems observed in the descriptive architecture. The

proposed heuristics consider different criteria to evaluate how critical code anomalies

might be related to architecture degradation symptoms. Therefore, the heuristics

exploits the combination of architecture blueprints and source code artifacts to better

prioritize and rank potential candidates of critical code anomalies that should be

refactored first. It is important to mention that the results of this chapter have been

submitted to a premier conference on software modularity, with the participation of an

international collaborator from Drexel University, who has also participated in order

research results presented in Chapters 3 and 4 of this thesis.

In this sense, the heuristics provide means for assigning scores to each code

anomaly based on different criteria, according to the heuristic under analysis (or even

a combination of different heuristics). It is important to reinforce that the main goal

on prioritizing and ranking critical code anomalies is to prevent architectural drift

problems as early as possible during the system evolution. In this sense, aiming to

propose and evaluate the architecture sensitive heuristics, we have initially defined a

set of architectural information sources used in the process of prioritizing and ranking

critical code anomalies:

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

97

Types of architecture blueprint. The architecture blueprints provided in our

study represents the high level design of the descriptive architecture. Eventually, the

use of architecture blueprints with different level of abstraction (e.g. class and

component-connector diagrams) may also be considered in a way that the

prioritization and ranking of critical code anomalies is not impaired. It is essential

though, that the architecture blueprint reaches a minimal set of properties so that it

can be used to guide the prioritization and ranking process. The quality of the

architecture blueprints is granted by assessing the three properties (see Chapter 2).

Representing essential information on the architecture blueprint. The

information represented on the architecture blueprints should allow software

developers to: (ii) select architectural problems they want to focus on given the

characteristics of the descriptive architecture represented for all software systems

under investigation; (ii) minimize the effort regarding the time spent when prioritizing

and ranking the most critical code anomalies related to architectural drift problems;

and (iii) assist software developers when building strategies for prioritizing and

ranking anomalies related with different architectural drift problems.

Representing architectural information. Notations and profiles available in

the UML specification (OMG-UML, 2013) can be used to aggregate information in

the architecture blueprints. Moreover, there are other ways for mapping system

concerns in the source code by using (semi)-automatic tools, such as ConcernMapper

(Robillard and Warr, 2005) – it allows the representation of architectural concerns in

the source code. Therefore, it makes possible, for example, detecting classes

responsible for implementing a given architectural component or which class is

responsible for realizing one or more system concerns. Nevertheless, the mapping

between source code and architectural elements facilitates developers’ tasks when

prioritizing and ranking critical code anomalies. For instance, when anomalous code

elements are prioritized and ranked as critical to the architecture design, software

developers can more easily investigate which architecture component each anomalous

code element is responsible for realizing. In this sense, the prioritization and ranking

process focuses mainly on architectural drift problems occurring in those architectural

components and interfaces.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

98

5.1. Criteria Selection and Relation to Architectural Problems

Several factors might indicate to what extent a code anomaly is harmful to the

system’s descriptive architecture. As previously mentioned in Chapter 2, differently

from existing approaches our work focuses specifically on architectural drift

problems. The reason is that architectural drift problems impair the adaptability in the

software architecture, and therefore, its evolution. In addition, architectural drift

symptoms are normally cause by: (i) applying a solution within an inappropriate

context; and (ii) applying abstractions in the architecture design with an incorrect

level of granularity. For instance, we can mention as architecture drift problem the

implementation of a class that provides a lot of methods and implements many

architectural concerns. This class might suffer from the code anomaly God Class, and

violates the design principles: Single Responsibility Principle and Separation of

Concerns.

In addition, the architectural component realized by this class might also be

suffering from the architecture drift problems known as Scattered Parasitic

Functionality and Concern Component Overload. As possible solution, this class

must be decomposed in many classes, where each of them implements a specific

architectural concern. It is important to mention that this type of refactoring operation

may require changes in interfaces and architectural components. In this sense, we

briefly describe 4 design principles commonly adopted by software architects when

modeling the architectural design. These design principles might also be violated

when architecture drift problems (see Chapter 2) occurs in the descriptive

architecture. In this sense, the architecture sensitive heuristics proposed in this thesis

investigate situations where one or more design principles are violated characterizing

architectural drift symptoms. In the following we briefly describe each of the design

principles that might be related to architectural drift problems we not properly

addressed in the system architecture.

Dependency Inversion Principle (DIP) states that high-level modules should

not depend on low-level modules (Martin, 2003). Both should depend on abstractions.

In addition, abstractions should not depend on details, but the details should depend

on abstractions.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

99

Interface Segregation Principle (ISP) states that client classes are not forced

to depend on interfaces that they do not use (Martin, 2003). When those classes are

forced to depend of such interfaces, they are subject to changes performed in the

interfaces. As result, we can observe an inadvertent coupling between all the classes

in the client. Therefore, the coupling should be avoided and the interfaces should be

separated whenever it is possible.

Single Responsibility Principle (SRP) states that there must be no more than

one reason to change a class. The importance of separating responsibilities in

distinguished classes is due to the fact that each responsibility is an axis of change

(Martin, 2003). Therefore, when requirements change, the modifications will manifest

through the modification in the responsibility between classes. If a class assumes

more than a single responsibility, those responsibilities become coupled. Changes in a

responsibility may impair the ability of a class to satisfy other requirements. This type

of coupling can lead to a poor design that might break unexpectedly when modified.

Separation of Concerns Principle (SoC) states that a given problem involve

different concerns, which should be identified and separated to deal with its

complexity (Kiczales et al., 1997), and achieve the factors required to the software

quality (e.g. maintainability and reusability). This principle can be applied in many

ways, and one might say that the separation of concerns is a ubiquitous principle of

software engineering. In addition, the separation of concerns may bring benefits to the

software quality properties, such as: (i) facilitate the system reusability; (ii) guarantee

the system maintainability; (iii) allow developers to work in independent modules in a

software system; and (iv) allow new functionalities to be easily added to existing

software.

5.2.
Study Settings

As mentioned in Chapter 2, existing techniques do not provide developers with

means for prioritizing and ranking critical code anomalies according to their

architectural relevance. All the existing prioritization and ranking techniques are

limited to the use of source code analysis (Section 2.1) and, as a consequence, they

fail to identify code anomalies hat might be associated to architectural problems

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

100

(Garcia et al., 2009a)(Macia et al. 2012a)(Macia et al., 2012b). Many cases of

software projects, as reported in the literature, resulted in partial or full

discontinuation due to degradation problems on their descriptive architecture

(Hochstein and Lindvall, 2005). Hence, there is a need for solutions that assist

developers in anticipating the emergence of more severe architectural problems by

avoiding drift symptoms in their programs.

The use of architecture blueprints, representing information about the system’s

descriptive architecture, is a promising direction for assisting developers when

prioritizing and ranking critical code anomalies. Recent empirical study in several

companies revealed that high-level design blueprints or sketches are widely archived

and analyzed in industry projects (Baltes and Diehl, 2014). Similarly to our previous

studies (see Chapter 3 and 4), we define an auxiliary research question to be

addressed in our investigation as well as the study hypotheses. The research auxiliary

question (ARQ) is defined as:

• ARQ5 - To what extent critical code anomalies are accurately prioritized and

ranked with the heuristics based on descriptive architecture information provided

in blueprints?	

The expectation is that the proposed heuristics can assist developers when

prioritizing critical code anomalies in the early stages of system development –

therefore avoiding architectural degradation. However, the answer to this research

question is far from being obvious. Architecture blueprints are very often high-level,

incomplete and inconsistent with respect to the descriptive architecture. As a

consequence, their use in the heuristics can lead to inaccurate prioritization and

ranking results. In order to make clearer the purpose of the study, Table 15 defines it

using the GQM methodology (Basili et al., 1994).

Our study has been organized in 4 different phases: (i) first, we performed the

mapping between architectural elements presented in the blueprints and the elements

in the system implementation. In this phase, we also evaluate if the architecture

design models satisfy the properties defined (see Chapter 2) in order to be

characterized as architecture blueprint; (ii) we validate instances of critical code

anomalies detected for each target application based on the detection strategies

compiled in (Macia et al., 2013); (iii) we have applied the architecture sensitive

heuristics for prioritizing and ranking critical code anomalies, and the score was

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

101

computed for each anomaly given the criteria specified by each heuristic; and (iv)

finally, we evaluated the results produced by the heuristics in terms of their accuracy

on the process of prioritizing and ranking critical code anomalies. In order the

compare the results achieved by the heuristics, we have considered ground truth (or

reference list of the most critical code anomalies) previously defined by the software

developers of each target application.

Table 15 - Study Definition using GQM format

GQM (Goal, Question, Metric)
Analyze: The blueprint-based prioritization heuristics
For the purpose of: Evaluating their accuracy for prioritizing code anomalies
With respect to: Prioritizing anomalous code elements based on inter-connected

code anomalies
From the viewpoint of: Researchers and developers
In the context of: Two software systems from different domains with different

architectural designs

It is important to mention we have proposed and tested two sets of heuristics

according to the study hypotheses summarized in Table 16. Firstly, we evaluated

heuristics for prioritizing and ranking critical code anomalies that affect the

communication of two or more architectural components (Section 5.3.1). Secondly,

we evaluated the heuristics for prioritizing and ranking critical anomalies related to

problems on the implementation of system concerns (Section 5.3.1).

Table 16 - Study Hypothesis for Evaluating the Heuristics

Hypothesis Description

Hypothesis H1.0
Inter-component heuristics cannot help developers on prioritizing
critical code anomalies.

Hypothesis H1.1
Inter-component heuristics can help developers on prioritizing
critical code anomalies.

Hypothesis H2.0
Architectural concern heuristics cannot help developers on
prioritizing critical code anomalies.

Hypothesis H2.1
Architectural concern heuristics can accurately identify critical
code anomalies.

Our goal is to evaluate the accuracy of the proposed heuristics for prioritizing

and ranking code anomalies based on their architectural relevance. To analyze how

the heuristics performed in terms of their accuracy for prioritizing and ranking critical

code anomalies, we defined three different values: low (0-30%), acceptable (30-80%)

and high (80-100%). The thresholds have been similarly adopted in experimentations

in software engineering (Wohlin et al., 2000). Therefore, we analyzed the three levels

of accuracy to investigate to what extent the proposed heuristics would be effectively

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

102

assist developers when helpful when prioritizing and ranking code anomalies. For

instance, an accuracy level of 50% means that a given heuristic was able to correctly

prioritize and rank at least half of all instances of the critical code anomalies.

5.3.
Heuristics for Prioritizing and Ranking Critical Code Anomalies

In this section, we proposed 4 different heuristics to assist developers when

prioritizing and ranking critical code anomalies based on information regarding the

system’s descriptive architecture. The proposed architecture sensitive heuristics are

organized into two groups based on the main information used according to different

criteria adopted on the prioritization and ranking process: (i) inter-component

heuristics; and (ii) concern-based heuristics. Each architecture sensitive heuristics is

described in more details in the following sections.

5.3.1.
Inter-Component Heuristics

Our first set of architecture sensitive heuristics exploit information related with

code anomaly affecting the communication between architectural components. The

investigation of co-occurrences of code anomaly is related with effects on software

maintenance, seeing that those code anomalies can be spread through many

architectural elements. Occurrences of such code anomalies can be related with the

violation of the Interface Segregation Principle and Single Responsibility Principle

(Martin, 2003). Aiming to prioritize and ranking anomalous code elements according

to their architectural relevance, the software artifacts required as input data for these

heuristics are: (i) a set of source code artifacts, including software metrics

(Marinescu, 2004)(Lanza and Marinescu, 2006); (ii) architecture blueprints

representing information about the descriptive architecture of the software system

(e.g. components, interfaces and concerns); and (iii) mapping between artifacts of

both level of abstraction. It is important to mention that before applying the

prioritization heuristics, the mapping between architecture and source code elements

have already been performed.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

103

5.3.1.1.
Heuristic Based External Attractor Component

Our first heuristic investigates occurrences of code elements implementing a

given architectural component, whose provided interface is used by many code

elements belonging to external architectural components. This situation characterizes

an occurrence of the External Attractor Component. A code element is considered to

be external if it is located in other architectural component than the one under

assessment. Moreover, the heuristic helps developers on the identification of

architectural components that have, for example, an Overused Interface (Garcia et al.,

2009) that is responsible for realizing different concerns in the system. Code elements

realizing the overused (provided) interface are accessed by the client code.

The problem is that code elements accessed by external code elements, which

are responsible for realizing different architectural components, might favor the

insertion of code anomalies in the latter. When an accessed code element implements

many concerns, its client components are forced to deal with concerns they are not

interested. Moreover, it is important to mention that when situation occurs, the

Interface Separation Principle (Martin, 2003) is neglected, and hence, the internal

complexity of the architectural component is increased. Consequently, the

maintainability of the component’s provided interface used by other external

components decreases, and whenever a code element in the interface needs to be

changed, the client’s component might also be updated. In the following, we provide

a formal definition for identifying occurrences of the External Attractor Component.

Formal definition. The set of occurrences of the External Attractor Component

(EAt) in a system S is denoted by EAtS. Considering an architectural component AC1

∈ ACS (set of architectural components in the system S), a code element CE1 ∈

ACAC1 (set of architectural components realized by anomalous code elements), a set of

architectural components AC2 ∈ ACS and a set of code elements CE2 ∈ ACCE2, the

formal definition of EATS is:

• EATS = {CE1 ∪ CE2 | (CE1, CE2) ∈ DCE1,CE2 ^ |CE1| > th1 ^ |AC1| > th2}	

where:

• DCE1,CE2 represents a dependency from the Code element CE1 to the code
element CE.	

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

104

It is important to mention that the generic thresholds th1 and th2 can be chosen

depending on the characteristics of the software system under analysis and the design

decisions defined by the software architect.

Figure 6 –Scenario for External Attractor Component

Abstract Example. An abstract representation an External Attractor

Component is depicted in Figure 6. In this example, three architectural components

are defined in the architecture blueprint. The architectural component AC2 have an

anomalous code element CE2 that is accessed by other code elements belonging to the

external architectural components 3 external components AC1 and AC3. That is, the

interface provided by the architectural component AC2 is being overused by other

architectural components. In this scenario, a code element C2 defined in the

architectural component AC2 might be affected by the Overused Interface since it

methods are called by many classes. Additionally, it neglects the Single

Responsibility Principle. In particular, the methods provided through the interface

defined in this component are called by different client classes, which might indicate

the inappropriate declaration of those methods. The code elements realizing the

components AC1 and AC3, may suffer from the Long Method anomaly since they

implement different types information that are propagated from code elements

defined in AC2. Furthermore, those code elements might also be affected by several

changes due to modifications performed in the CE2.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

105

5.3.1.2.
Heuristic Based on External Addictor Component

Our second heuristic investigates the occurrence of code elements implementing

a given architectural component that has lots of dependencies with code elements

realizing external components. This situation characterizes an occurrence of an

External Addictor Component, which is associated with the violation of the Single

Responsibility Principle and Interface Segregation Principle. A code element is

considered to be external if it is located in other architectural component than the one

under evaluation. In Addition, the heuristic aims at assisting developers to better

detect architectural problems where anomalous code elements depend on several code

elements realizing external components functionalities. For example, in some cases

code elements might be affected as consequence of several changes in other external

components, which might lead to many side effects. Those cases situation may also

indicate a tight coupling between the anomalous code element realizing a given

architectural component, which centralizes the communication between its own

component and the adjacent ones. Moreover, side effects and tight coupling between

architecture components has been recognized as source of reengineering of software

systems and frequently impact on its discontinuation (MacCormak et al, 2006).

Formal definition. The set of occurrences of the External Addictor (EAd) in a

system S is denoted by EAdS. Considering an architectural component AC1 ∈ ACS

(set of architectural components in the system S), a code element CE1 ∈ ACAC1 (set

of architectural components affected), a set of architectural components AC2 ∈ ACS

and a set of code elements CE2 ∈ ACCE2, the formal definition of EAdS is:

• EATS	
 =	
 {CE1	
 ∪	
 CE2	
 |	
 (CE1,	
 CE2)	
 ∈	
 DCE1,CE2	
 ^|CE2|	
 >th1	
 ^	
 |AC2|	
 >th2},	
 where:	

DCE1,CE2 represents a dependency from the Code element CE1 to the code

element CE. Similarly to the definition of the External Addictor Component, th1 and

th2 represent thresholds that can be chosen depending on the characteristics of the

software system under analysis and the design decisions defined by the software

architect.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

106

Figure 7 – Scenario for External Addictor Component

Abstract Example. An abstract example characterizing an External Addictor

Component (Ead) is illustrated in Figure 7. Let us assume that the architectural

component AC2 have an anomalous code element CE2, which access several classes

belonging to the other 2 external components AC1 and AC3. Thus, the architectural

component AC2 is more interested in accessing the interfaces provided by other

components (AC1 and AC3) than realizing the functionality it was initially designed to

accomplish. We should also assume that architectural components AC1 and AC3 are

implemented by 2 anomalous code elements CE5, CE6, CE7, and CE8, respectively

and those code elements are infected with DataClass anomaly (Fowler et al., 1999).

In addition, the code element CE2 is infected by a God Class anomaly (Fowler et al.,

1999), and hence, it defines several non-cohesive methods as well as it implements

much functionality in this component. In this way, the CE2 class might propagate

several concerns that should only be treated internally. The propagation forces the

code element CE2 to deal with those concerns that were not properly addressed.

5.3.2.
Concern-Based Heuristics

Our second set of heuristics investigates the anomalous implementation of

system concerns in relation to the descriptive architecture. A system concern (Banker

et al., 1989) is defined as an architect interest that significantly influences the

system`s descriptive architecture. Therefore, the concern-based heuristics aim at

investigating the sources of critical code anomalies that violate the principle of

Separation of Concerns (SoC) (Kickzales et al., 1997). The detection architecture

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

107

drift problems related to the separation of concerns once those problems can hinder

the maintenance of the descriptive architecture as the system evolves. When a

component violates the principle of Separation of Concerns, its maintenance may also

be impaired since it is responsible for the implementing several architectural

concerns. Moreover, cases where the code elements realize many architectural

concerns might lead to tight coupling between the components specified in the

descriptive architecture represented in the blueprint. The tight coupling between those

architectural components is a factor that delimitate the prioritization and ranking of

specific anomalous code elements.

5.3.2.1.
Heuristic for Concern Overload

Our fourth heuristic aims at identifying architectural components realizing

many different concerns. That is, the heuristic detect instances of anomalous code

elements realizing the same architectural component, which is responsible for the

modularization of several independent concerns. The system concerns are considered

independent when each of them could be modularized by different architectural

components. In this scenario, we can observe the violation of the principle of

Separation of Concerns (Kickzales et al., 1997) and Single Responsibility Principle

(Martin, 2003). Moreover, it is important to highlight that if an architectural

component implements several concerns in a software system, it centralizes more than

it should actually implement, and therefore, its maintainability can be compromised.

Before applying the heuristic, all concerns represented in the descriptive architecture

should be identified and validated with the system architect. After that, the mapping

between architectural components and code elements responsible for realizing a

system concern is performed. Once anomalous code elements are identified for each

architectural component, we verify whether the number of concerns modularized by

an architectural component, as well as if the number of classes existing in a given

architectural component respect the thresholds defined by the system architect. If the

architecture component does not respect the thresholds, the anomalous code elements

within the architecture component must be identified as an occurrence of concern

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

108

overload in this architectural component. The verification is performed for all the

existing components represented in the architecture blueprint.

Formal Definition. The set of occurrences of Concern Overload (CO) in a

system S is denoted by COS. Before formally defining the COS, we need to identify

the list of concerns realized by each code element in a software system. Therefore, we

define a list of all concerns (COS) realized by a code element CE1,c ∈ CES (where

CEs represents all the code elements realized in the system S). In this sense,

considering an architectural component AC1 ∈ ACS (set of architectural components

in the system S) and a code element CE1 ∈ CES, the forma definition for occurrences

of CO is represented as:

• COS = {CE1 | CE1∈ CEACx ˆ | COS(CE1) | > th1 ˆ | CE1 | > th2}, where:

• CEACx represents all the anomalous code elements realizing a given architectural

component ACx.

• The threshold th1 represents the maximum number of concerns that a given code

element should realize, while the threshold th2 represents the number of code

elements that should be considered in an occurrence of Concern Overload.

Figure 8 - Scenario for Misplaced Concern

Abstract Example. An abstract example of the Concern Overload is depicted

in Figure 8. As we can observe the architectural component is realized by four

different classes. The architectural components AC1, AC3, and AC4 are responsible

for three different concerns in the software system. In turn, the AC2 modularizes 3

different concerns. Thus, code elements realizing the component AC2 will have to

deal with several concerns, and therefore, this architectural component violates both

the Separation of Concerns and Single Responsibility Principle.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

109

5.3.2.2.
Heuristic for Misplaced Concern

Finally, our fourth heuristic investigates the occurrence of anomalous code

elements that realize the same architectural component and modularize several

independent concerns. The concerns are considered independent when each of them

could be modularized by different architectural components. When this situation

occurs, it is characterized as a Misplaced Concern. Instances of Misplaced Concerns

violate either Separation of Concerns or Single Responsibility principles. However,

the problem can be more severe when an inter-related architectural component also

modularizes a misplaced concern. The fact is that dispersed anomalous code elements

favor scattering for a concern in the architectural design. Moreover, violations to the

separation of concerns often affect the system maintainability since changes in

specific concerns can spread over many other components.

Formal Definition. The set of occurrences of Misplaced Concern (MC) in a

system S is denoted by MCS. Consider a concern COA ∈ COS (represents the list of

all concerns realized in a system S), and two different architectural components AC1

∈ ACS and AC2 ∈ ACS (set of all architecture components in a system S). The

formal definition for occurrences of MC in system S is represented as:

• MCS = {CE1 | CE1 ∈ ACEAC1,COa |CEAC1,COa| < th1 ˆ |CEAC2,COa| > th2}, where: 	

• CEAC1,COa represents a code element responsible for realizing the architectural

component AC1 and implementing the system concern COa.

• CEAC2,COa represents a code element responsible for realizing the architectural

component AC2 and implementing the system concern COa.

• The thresholds th1 and th2 represents respectively the number of concerns

realized in a software system, the maximum number of concerns a given code

element should realize. In summary, those values indicate the acceptable measures

of which the system concerns are scattered. In this sense, the thresholds th1 and th2

must respect the following values 0 ≤ th1 ≤ 1 and 0 ≤ th2 ≤ 1.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

110

	

Figure 9 - Scenario for Misplaced Concern

Abstract Example. An abstract example where a component suffers from

Misplaced Concern is depicted in Figure 9. As we can observe, code elements

realizing the architectural components AC1, AC3 and AC4 are responsible to deal with

only one specific concern that is predominant for each of these architectural

components. On the other hand the architectural component AC2 should implement

only on specific concern. However, code elements realizing this architectural

component might also have to deal with concerns E and F, which are not predominant

in this component. In other words, the architectural component AC2 is implementing

two concerns whose responsibility should be implemented by other components.

Therefore, this situation characterizes an occurrence of an architectural problem

related with misplaced concerns in software systems.

5.4.
Research Findings on Prioritizing and Ranking Critical Code Anomalies

This section presents the evaluation of the proposed architecture-sensitive

heuristics for assisting developers when prioritizing and ranking critical code

anomalies. Before evaluating the heuristics, we describe how the detection of

individual code anomalies was performed. We also describe the evaluation method

used to compare the results and the ground truth provided for each target application.

5.4.1.
Procedures for Data Collection and Evaluation Method

The first step before evaluating the proposed heuristics was the automatic

detection of code anomalies for each target application. We have used well-known

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

111

detection strategies and thresholds defined in other studies (Macia et al.,

2012a)(Macia et al., 2012b). It is also important to mention that we identified types of

code anomalies already catalogued in the literature and extensively investigated in

other studies (Arcoverde et al., 2012) (Macia et al., 2012a)(Macia et al., 2012b). In

this sense, we included the ten most critical code anomalies found in the three target

applications, namely: Divergent Change, Shotgun Surgery, Middle Man, Duplicated

Code, God Class, Small Class, Feature Envy, Data Class, Large Class, and Deep

Inheritance Tree. Those code anomalies are documented in different catalogues – i.e.

(Fowler et al., 1999)(Piveta et al., 2006)(Marinescu, 2004).

After that, the list of code anomalies was checked and validated by developers

and architects of each target application. The validation process is important to

guarantee that the detection strategies detected instances of critical code anomalies.

Furthermore, we also obtained the ground truth to compare results with the top-N

code anomalies prioritized and ranked by the proposed heuristics. The ground truth is

a list of the most critical anomalous code elements (according to their architectural

relevance) provided by developers and maintainers of each target application. For the

Mobile Media, the architects provided the top 10 code elements that they believed to

represent the main sources of maintainability problems along the software project

history. The architects of the Health Watcher system provided a list with the top 30

code elements that exhibited maintainability problems along its evolution history.

Finally, developers from the SubscriberDB system provided a list with the top 15

anomalous code elements considering the impact on the system evolution.

The anomalous code elements listed by the developers as the most critical ones

that should be urgently refactored so that severe maintainability problems could be

avoided. In summary, the architects and developers of the target applications were

asked to reason about the most important and critical classes. For instance, the critical

code elements are those responsible for realizing the more important architectural

components. In addition, they can also be those code elements s responsible for

implementing the key provided and required interfaces.

After the architecture sensitive heuristics have been applied, we compared the

list of the most critical code anomalies prioritized and ranked by each heuristic with

the ground truth provided for each target application. The main reasons for

performing the comparison analysis are: (i) if we asked developers to produce a

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

112

ranked list containing all the code elements that could impact on the architecture

design, our analysis would be unviable; and (ii) we wanted to evaluate our heuristics

in terms of the most critical anomalous code elements. Those code elements should be

properly refactored in the early stages of the system development, otherwise deeper

maintainability problems are likely to be manifested during the system evolution.

Aiming to analyze set of code elements prioritized and ranked by the

architecture sensitive heuristics, we have used the Size of Overlap between the

different prioritization lists. Calculating this measures is very straightforward, and it

allows evaluating whether the heuristics could accurately distinguish the top k for

each target application. The size of overlap indicates the accuracy of the proposed

heuristic when prioritizing and ranking the most relevant code elements according to

their architectural relevance.

Table 17 - Additional Architecture Sensitive Metrics

Metric Description
Density of Code Anomalies (DCA) It calculates the density of code anomalies in a code element

realizing a given component.
External Dependencies (ED)	
 It counts the number of external code elements that a given

code elements depends.
Concerns per Code Element (CE) It counts the number of architectural concerns a measure

code element implements
Number of Concerns per Architecture
Element

It counts the number of architectural concerns a measure
architecture component realizes

Concern Diffusion over Components It counts the number of code elements affected by the
implementation of an architectural concern

Concern Diffusion over Operations It counts the number of methods and constructors affecter by
the implementation of an architectural concern

After the list of the most critical code anomalies has been produced by each

heuristic, different criteria might be applied for breaking ties between code anomalies

that have the same architectural relevance. For doing so, we introduce different

metrics and source code information that may also be used during the prioritization

process. Depending on the heuristics used for prioritizing and ranking critical code

anomalies, different metrics might be applied according to criteria defined by the

system architect. Table 17 shows the architecture sensitive metrics used as additional

measures for breaking ties when prioritizing and ranking critical code anomalies. For

instance, the metrics CDC and CDO can be used when detecting cases of the

Misplaced Concern. These two metrics allow to measure how system concerns are

diffused in the actual system implementation. Therefore, we can distinguish whether a

given concerns is indeed predominant in a given architectural component.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

113

5.4.2.
Target Applications

We selected 3 medium-size applications to evaluate the architecture sensitive

heuristics proposed in this thesis. Two of those systems, Mobile Media (Figueiredo et

al., 2008) and Health Watcher (Soares et al., 2002), have already been introduced in

our empirical investigations (see Chapter 3 and 4). In this evaluation, we also selected

the last version of this application, because it comprises many changes performed

during the system evolution. Those changes range from functionality increments and

enhancements on error handling policies to the incorporation of design patterns to

improve the system modularity. Our third application is the SubscriberDB system,

which is a large software of a publishing house. It manages data related with the

subscribers of its publications and it supports complex queries on several types of

data. There are several other functionalities supported by this system and, for this

reason, we selected version 2.4 of this system. The selected version encompasses all

the features implemented in the system, as well as it has a more stable version of the

system’s descriptive architecture. Table 18 summarizes the main characteristics of the

three target applications investigated in our study.

Table 18 - Characteristics of Target Applications

Target Application	
 Mobile Media	
 Health Watcher	
 Subscribers DB	

System Type	
 SPL	
 Web	
 Web	

Programming Language	
 Java	
 Java	
 Java	

Architecture Design	
 MVC	
 Layered	
 MVC	

Selected Version	
 5	
 8	
 2.4	

KLOC	
 54	
 49	
 100	

Number of Architectural Elements	
 81	
 48	
 42	

Number of Code Anomalies	
 260	
 497	
 582	

These systems were also chosen because they met a number of relevant criteria

for our study: (i) these are non-trivial systems and their sizes (varying from 54 to 100

KLOC) are manageable for an in-depth analysis of code anomalies analysis as

required in our study; (ii) the applications have been extensively and successfully

evaluated in other studies (Arcoverde et al, 2012)(Vidal and Marcos, 2012)(Macia et

al, 2014)(Oizumi et al, 2014); (iii) we needed to rely on the availability of the

system’s developers to validate our identification of code anomalies instances; and

(iv) the architecture blueprints, used to reason about changes requests and produce

new versions, were available for all the target applications.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

114

5.4.3.
Inter-Component Heuristics

As the first step, components represented in the architecture blueprints should

be mapped to the corresponding code elements responsible for realizing them. In

addition, it is important to mention that this precondition is related with the

completeness of artifacts in both levels of the system representation. Thus, even when

the architecture blueprint is incomplete, all the components need be mapped to at least

one element in the system implementation. Recalling that our first set of heuristics

investigates the occurrence of two different scenarios related with problems in the

inter-component communication. The first scenario characterizes when code elements

are used by (or attracts) several external anomalous code elements. In turn, the

second scenario is characterized by code elements that depend a lot (or are addicted)

of external anomalous code element. Each of these scenarios will be described in the

next subsections. Those scenarios might also be related to different types of

architectural drift problems introduced in Chapter 2.

This External Attractor heuristic is based on the assessment of anomalous code

elements that are used by several code elements belonging to other architectural

components. In addition, occurrences of External Attractor Component might lead to

the introduction of critical anomalies in the code elements using the architectural

component under assessment. For example, if the anomalous code element under

investigation implements different concerns, the external code elements depending on

the assessed code element can be forced to deal with concerns that they are not

interested. When applying the inter-component heuristics for prioritizing and ranking

critical code anomalies, we first detected the anomalous code elements responsible for

realizing each architectural component. After that, the heuristic computes the number

of anomalous code elements realizing external components that depend on the

component under assessment. Finally, the anomalous code elements detected as

instance of External Attractor Component are ranked according to their architecture

relevance.

This heuristic was applied for all the three target applications selected in our

study. We observed the results indicated an acceptable accuracy of the heuristics in

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

115

terms of prioritizing and ranking critical anomalies. Table 19 shows the results of

applying the heuristic for detecting occurrences of External Attractor Components.

For the Mobile Media, we observed that 5 of 10 measures had low accuracy when

compared to the anomalous code elements defined in the ground truth. In the case of

Health Watcher, the results showed an accuracy level of 40% when prioritizing and

ranking critical code anomalies. The recurrent problem is that most part of anomalous

code elements identified by the heuristics had the same number of code anomalies. In

addition, those anomalous code elements are all implementing the GUI concern.

Although this concern is represented in the architecture blueprint by two components,

there are 47 elements in the source-code responsible for its implementation. Finally,

the heuristics performed better when prioritizing and ranking the anomalous code

elements in the Subscriber DB. As we can observe, the accuracy for prioritizing and

ranking critical code anomalies was around 67%. However, we observed that in the

SubscriberDB the number of instances of code anomalies in many code elements

were the same.

Table 19 - Results for Inter-Component Heuristics

Name	
 N-ranked CE	
 External Attractor	
 External Addictor
Overlap Size	
 Accuracy	
 Overlap Size Accuracy

Mobile Media	
 10	
 5	
 50%	
 5 50%
Health Watcher	
 30	
 12	
 40%	
 11 37%
Subscribers DB	
 15	
 10	
 67%	

This heuristic identifies groups of anomalous code elements that depend (or

are addicted) on anomalous code elements belonging to external architectural

components. In order to identify the critical code anomalies, we firstly identify the

anomalous code elements in the architectural component under assessment. For each

anomalous code element, we need to detected external dependencies with other code

elements realizing external components At the end, a higher score must be assigned to

architectural components where we observe: (i) a higher number of anomalous code

elements; and (ii) a higher of number code elements realizing external components

depending on the code elements in architectural component under assessment.

Furthermore, Mobile Media represents 18 architectural components, while

Health Watcher and Subscriber DB have respectively 6 and 8 architectural

components represented in the architecture blueprint. Even with a different level of

abstraction for representing the architectural elements, we could only observe

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

116

instances of External Addictor Component in 2 out of 3 target applications. In the

Mobile Media, 6 architectural components were involved in occurrences of External

Addictor Component, while in the Health Watcher we observed 3 architectural

components. Table 19 shows the results of applying our second heuristics for

prioritizing and ranking critical code anomalies. For Mobile Media, we observed that

5 of 10 code elements are correctly prioritized and ranked, which indicates an

accuracy of 50%. In the Health Watcher, we observed that 11 of 30 code elements are

correctly prioritized and ranked as being critical to the software architecture design.

That is, this heuristic for detecting instances of External Addictor Components

achieved an acceptable accuracy when prioritizing and ranking critical code elements

that might contribute to architectural drift problems. In addition, as we have not

detected instances of External Addictor Component in the Subscribers DB system

when this heuristic was applied.

5.4.4.
Concern-Based Heuristics

Similarly to our first set of heuristics, we discuss how the heuristics evaluation

was carried as well as the expected results of applying the concern-based heuristics.

This set of heuristic is directly related with problems on the implementation of

system’s concerns. Therefore, anomalous code elements responsible for implementing

a high number of system concerns have to be properly prioritized and ranked, since

they violate, for instance, the Single Responsibility Principle. Different weights (or

level of importance) can be assigned to system’s concerns according to the system

architect. When this information is not available, a criterion for assigning weights can

be also adopted, such as the number of concerns realized by each architectural

component. On the other hand, a concern can have high priority when it is

implemented by a many code elements - considering the total number of code

elements in the system under investigation.

Moreover, architectural problems caused by violation this principle can be

observed when anomalous code elements within an architectural component contain

several independent concerns. Thus, architecture blueprint should initially be mapped

to the source code elements of the existing concerns modularized by the architectural

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

117

components. Those concerns were validated by the system architects before the

heuristic have been applied. When deciding what architectural components have a

higher importance, we firstly detected the number of anomalous code elements

implementing a given architectural component, which are responsible for realizing the

same concerns.

Our third heuristic aims at detecting code elements within the same architectural

component that modularizes several independent concerns. A system concern is

considered to be independent when it should be modularized by a different

architectural component. Firstly, we detected the number of anomalous code elements

that implements the same concern within an architectural component. For example, in

the Health Watcher system we could detect architectural components that implements

more than one concern: GUI (4 concerns), Business Rules (2 concerns), Distribution

Manager (4 concerns) and Data Manager (2 concerns). Similarly, the SubscriberDB

implements more 8 architectural components (AddSubscribersUI, EditSubscribersUI,

MailingUI, SearchUI, SubsriberController, MailingController, SearchController and

Persistence). Each architectural component in this application is responsible for

realizing 2 concerns.

Code elements implementing one of those architectural components are likely to

suffer from Concern Overload, since they have to deal with most part of the system’s

concerns realized for a given architectural concern. Calculating the results for this

heuristic can be straightforward. We considered three main measures: (i) number of

architectural concerns responsible for realizing more than a system concern; (ii)

number of anomalous code elements in a given component, which are responsible for

implementing more a concern; (iii) given a list of anomalous code elements in each

architectural component, we quantify the number of anomalies affecting code

elements within each component to break ties when the prioritization and ranking

process. For the Mobile Media, 6 out of 10 (60% accuracy) anomalous code elements

are correctly prioritized and ranked when compared to the ground truth. The

performance for this heuristic is even better for the Health Watcher and SubscriberDB

systems. While SubscriberDB achieved 73% of accuracy, in the case of Health

Watcher the accuracy of the heuristics when prioritizing and ranking anomalous code

elements reached 87% of accuracy. In addition, if we consider only the top 10

anomalous code elements, 9 out of 10 code elements were correctly prioritized and

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

118

ranked when compared to the ground truth of the most critical code anomalies.

Similarly, for the SubscriberDB system the heuristic correctly prioritized and ranked

8 out of 10 anomalous code elements.

The fourth heuristic identifies groups of code elements modularizing an

architectural concern that is not the predominant one of their enclosing architectural

component. A concern is considered predominant in a given architectural component

if most of the code elements in this component are dedicated to modularize it. When

prioritizing and ranking code elements using this heuristic, we could only identify

instances of Misplaced Concern on Mobile Media and Health Watcher. Although all

the architectural components in the SubscriberDB implement at least two concerns in

the system, developers have not provided information of which concern is

predominantly addressed by each component. In this sense, we could not apply the

heuristic for detecting instances of Misplaced Concerns in this system.

Table 20 illustrates the concerns implemented in Health Watcher and Mobile

Media. It is important to recall that the concerns of Mobile Media and Health Watcher

have already been well documented, respectively, in (Figueiredo et al., 2008) and

(Soares et al., 2002). As we can observe, Health Watcher implements 6 architectural

concerns, while Mobile Media implements 5 architectural concerns. To define which

architectural concern would be more relevant for the prioritization heuristic, we

analyzed two additional metrics: (i) Concern Diffusion over Components (CDC) and

(ii) Concern Diffusion over Operations (CDO). Those metrics together quantify the

degree of scattering of the architecture concerns. A higher measure of scattering

means that more code elements are implementing the architectural concerns in a

software system.

In this sense, Table 21 indicates that this heuristic produced good results for

both systems. For the Mobile Media system, we observed that 5 (out of 10) measures

had acceptable accuracy. When comparing the list of code anomalies provided by the

prioritization heuristic and the ground truth, we observed that some code elements

were equally prioritized. In this scenario, we can use, for instance, the density of code

anomalies for breaking ties on the prioritization of anomalous code elements.

Moreover, it is important to mention that for this heuristic we only considered the top

10 elements for the Mobile Media (no ties were considered). On the other hand, we

observed that 25 of 30 measures in the Health Watcher had high accuracy. That is, the

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

119

heuristic can produce highly accurate prioritization of critical code anomalies. It

indicates that the most part of the elements affected by multiple code anomalies are

frequently identified with a high priority. For the Health Watcher system, this

heuristic achieved 84% of accuracy when comparing with the ground truth. The

Health Watcher also had a higher number of concerns.

Table 20 – Architectural Concerns for Health Watcher and Mobile Media

Target Application Concerns CDC CDO

Health Watcher Concurrency 8 42

Distribution 49 76

Exception 73 294

Transaction 41 158

Business 37 222

View 21 44

Mobile Media Counting/Sorting 5 42

Favorites 5 32

Exception 28 256

Persistence 25 106

Media Management 49 68

Table 21 – Results for Concern Based Heuristics

Name	
 N-ranked CE	
 Concern Overload	
 Misplaced Concern
Size Overlap	
 Accuracy	
 Size Overlap Accuracy

Mobile Media	
 10	
 6	
 60% 5 50%
Health Watcher	
 30	
 26	
 87%	
 25 84%
SubscriberDB	
 15	
 11	
 73%	

5.4.5.
Accuracy of the Architecture Sensitive Heuristics

After each architecture sensitive heuristic have been applied, we observed some

findings when analyzing the results. On the analysis of occurrences of External

Attractor Components and External Addictor Components, we observed that both

scenarios occur for, (at least) 2 out of 3 target application. Those occurrences

concentrate more than 60% of dependencies between architectural components in

those the target applications. The high percentage indicates a tight coupling between

architectural components representing information about the descriptive architecture.

This strong coupling is likely to be related with anomalous code elements that realize

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

120

the communication between the architectural components. When analyzing the results

for the Inter-Component Heuristics, we observed, in general, the heuristics presented

an acceptable accuracy for all the target applications where they have been applied.

When analyzing the results for the inter-component heuristics, we also observed that

code elements infected by multiple code anomalies are often perceived as high

priority. The results observed in the analysis helped rejecting the null hypothesis H1.0,

as the inter-component heuristics were able to prioritize and rank critical code

anomalies with an acceptable accuracy in all the target applications under assessment.

On the other hand, the number of occurrences of Misplaced Concern and

Concern Overload indicates a high proportion of anomalous code elements are related

with problems on the implementation of system concerns. We observed that in both

systems some architectural concerns are crosscutting several code elements. That is,

they are scattered through anomalous code elements. In this sense, the mapping of

concerns was clearly useful for prioritizing and ranking a significant number of

critical code anomalies. Moreover, the results showed that, in general, the heuristics

presented an acceptable or high accuracy for all the applications where the heuristics

have been applied. In this sense, the analysis of the results indicated that the null

hypothesis H2.0 is rejected, as the Concern-Based Heuristics were able to identify

code elements containing critical code anomalies in both target applications.

5.5.
Discussions

In addition to the data analysis performed for each architecture sensitive

heuristics, we also discuss other intesresting findings observed when analyzing the

results. Firstly, we discuss how the architecture sensitive heuristics influenced the

number of False Positives and False Negatives when prioritizing and ranking critical

code anomalies (Section 5.5.1). After that, we compare how the architecture sensitive

heuristics performed in relation to other existing approach for prioritizing and ranking

critical code anomalies (Section 5.5.2).

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

121

5.5.1.
Identifying False Positives and False Negatives.

This section discusses the proportion of False Positives and False Negatives

considering the target applications under investigation. This proportion was computed

by applying each of the heuristics proposed in thesis: external attractor (EAt),

external addictor (EAd), misplaced concern (MC) and concern overload (CO). Table

22 summarizes the number of False Positives and False Negatives observed for each

target application considering the N-ranked code elements (CE) prioritized and

ranked according to the proposed heuristics. When analyzing the Mobile Media

system, we observed that the heuristics indicated False Positives mostly related with

the implementation of Data (10 instances), View (6 instances) and Controller (2

instances) concerns. On the other hand, all the code elements prioritized and ranked as

False Negatives by the heuristics implement the Controller functionality.

Table 22 - False positives and negatives achieved by the prioritization heuristics

System Measure N-CE Prioritization Heuristic
EAt EAd MC CO

Mobile Media FP 10 5 5 4 4
FN 10 5 5 4 4

Health Watcher FP 30 18 19 3 4
FN 30 12 11 3 4

Subscribers DB
FP 15 5 5

FN 15 5 5

Moreover, we have also analyzed the anomalous code elements prioritized and

ranked by the heuristics in the Health Watcher and SubscriberDB systems. For the

Health Watcher, we observed that the False Positives are mainly related with code

elements implementing, respectively, Data, Concurrency and Distribution

functionalities. However, one reason for ranking those code elements, as False

Positives is the fact that they implement a high number of code anomalies when

compared to the other ranked code elements. This result is specially observed when

the External Attractor (Eat) and External Addictor (Ead) heuristics are applied.

In the case of the Misplaced Concern and Concern Overload (CO) heuristics,

the code elements prioritized and ranked as False Positives are mainly with two

important functionalities in the system, which are GUI (19 instances) and Business

Rules (3 instances) functionalities. Moreover, the code elements realizing the GUI

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

122

functionality are responsible for implementing the key interfaces that provide access

to all the services available in the system. Although those code elements implement

one of the most important components in the descriptive architecture of Health

Watcher system, code elements do not have a high number of code anomalies – and

therefore the heuristic have not ranked those elements as being critical to the

architectural design.

Finally, for the Subscribers DB (SDB), we observed instances of code elements

prioritized and ranked as False Positives are responsible for implementing different

functionalities, namely: Model (1 instance), View (2 instances) and Controller (2

instances). The problem is that the anomalous code elements are similarly distributed

through the architectural components represented in the architecture blueprint. In

addition, we have not applied the Misplaced Concern heuristic, since developers have

not provided information about the predominant concerns each component is

responsible for realizing according to the descriptive architecture specification.

5.5.2.
Comparing Ranking Provided by Different Heuristics

Despite the existence of many different strategies for detecting code anomalies,

only a few of them provide support for prioritizing and ranking code anomalies. Even

in this restricted scenario, those approaches do not consider architecture information

when prioritizing and ranking critical code anomalies. Therefore, developers are not

able to distinguish what code anomalies should be correctly prioritized and ranked,

for instance, according to architectural problems. In this sense, critical code anomalies

are remaining in the source code since they refactoring are not correctly prioritized

and architectural problems might emerged as the system evolves. In severe cases, the

critical code anomalies can lead to the degradation of the descriptive architecture. In

the following, we perform a comparison analysis of different heuristics for

prioritizing and ranking critical code anomalies.

Our previous joint work (Arcoverde et al., 2012) proposed heuristics for

prioritizing and ranking critical code anomalies based on the evolution history of 4

target applications. Those heuristics are based strictly on source code information,

such as number of bugs, number of errors and density of code anomalies. Moreover,

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

123

the heuristics collect this information considering the evolution history of a software

system. Moreover, those heuristics were applied for prioritizing critical code

anomalies related to the presence of code anomalies and erosion problems (Hochstein

and Lindvall, 2005) in the descriptive architecture. The problem is that the heuristics

required the system’s history information when prioritizing and ranking critical code

anomalies in a given software system. However, this information usually is not

available in the early stage of system development. In this sense, Table 21 shows the

results of applying such heuristics. It is important to emphasize that the heuristics

were applied for the same version of Mobile Media ad Health Watcher investigated in

this paper. As we can see the heuristics performed well in most part of the cases

achieving from acceptable to high accuracy. Moreover, the heuristics also prioritized

code anomalies associated with architectural problems. For each prioritization

heuristic, it was ranked the top 10 code elements according to their architectural

relevant, the four heuristics performed well when prioritizing the critical code

elements, since all heuristics achieved accuracy higher than 70%.

Table 23 – Relevance based on the system history evolution

Heuristics Based on History Evolution
Heuristic Name N-Ranked ArchRel % ArchRel

Change-Proneness
Health Watcher 14 10 71%
Mobile Media 10 7 70%
PDP 10 10 100%

Error Proneness
Health Watcher 14 10 85%
Mobile Media 10 8 80%
PDP 10 8 80%

Architecture Role
Health Watcher 10 4 40%
Mobile Media 10 9 90%
PDP 10 10 100%

Anomalies density

Health Watcher 10 5 50%
Mobile Media 10 9 90%
PDP 10 8 80%
MIDAS 10 6 60%

Heuristics Based on Architecture Sensitive Information

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

124

Heuristic Name N-Ranked ArchRel % ArchRel

External Attractor
Health Watcher 30 21 70%
Mobile Media 10 9 90%
Subscribers DB 15 10 67%

External Addictor Health Watcher 30 22 74%
Mobile Media 10 5 50%

Misplaced Concern Health Watcher 30 24 80%
Mobile Media 10 8 80%

Concern Overload
Health Watcher 30 24 80%
Mobile Media 10 9 90%
Subscribers DB 15 11 74%

On the other hand, the architecture sensitive heuristics proposed in this paper

exploits architecture information provided in the architecture blueprints3, which

represents the system’s descriptive architecture. Those heuristics allow developers

prioritize and rank critical code anomalies according to architectural drift symptoms

in the early stage of software development. In addition, it is important to mention that

architectural drift symptoms are more difficult to detecting than drift problems, since

they are not possible to detect by only analyzing the actual system implementation.

Moreover, architecture drift symptoms usually are precursor of erosion problems that

are likely to be manifested during the evolution of software systems.

Although the proposed heuristics have not presented superior results when

compared to the heuristics based on the system history evolution (see Table 23), most

part of anomalous code elements is related with architectural drift problems. Thus, we

performed an analysis to evaluate how accurate the heuristics performed when

prioritizing and ranking critical code elements related with architectural problems.

The collected data showed most part of the anomalous code elements are related with

architectural problems. That is, in average more than 75% of the anomalous code

elements identified by the architecture sensitive heuristics proposed in this thesis are

related with architectural problems.

5.6.
Summary

As previously discussed in Chapter 4, architecture blueprints, which represent

the system’s descriptive architecture, can be used as means to improve the

prioritization and ranking of critical code anomalies. Our controlled experiments

3 System developers and maintainers produced the architecture blueprints

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

125

showed that process of prioritizing and ranking critical code anomalies can be

improved in terms of the Precision and Recall measures. In addition, the results also

showed that architecture blueprints did not bring any additional effort in terms of time

spent when prioritizing and ranking code anomalies. The problem is that not all

participants in the controlled experiment were able to reason about how architecture

information could be properly used when performing the experimental tasks.

In this sense, this chapter introduces and evaluates architecture sensitive

heuristics. They exploit different information about the system’s descriptive

architecture in order to prioritizing and ranking critical anomalies. In addition, the

heuristics consider different architecture information based on the type of the

architecture drift symptoms that architects and developers are interested to

investigate. Therefore, we exploit the architecture blueprints to semi-automate the

prioritization and ranking of critical code anomalies. In addition, as main

contributions of this chapter we can mention: (i) two sets of prioritization heuristics

based on different criteria for prioritizing and ranking the most critical anomalous

code elements based on their architectural relevance; (ii) the evaluation of the

proposed architecture sensitive heuristics regarding the architectural relevance of the

anomalous code anomalies; (iii) a discussion on how the architecture sensitive

heuristics impact in the process of correctly prioritizing and raking the critical code

anomalies in the target applications under analysis.

Furthermore, we discuss how the proposed heuristics performed when they are

applied in three medium-size applications by measuring their accuracy according to

the size of overlap achieved in comparison to the ground truth provided by

developers. As main findings observed during the empirical evaluation of the

proposed heuristics, we can mention: (i) there are architectural problems involving

groups of classes that realize architectural components, which are intended to

implement a specific functionality in the system’s descriptive architecture; (ii) there

are several symptoms of degradation involving architecture components infected by

multiple anomalies; and (iii) even for the architectural concerns that are well defined

and relevant to a software system, the prioritization heuristics were efficient to

pinpoint problems with the implementation of those concerns.

Finally, we evaluated each set of heuristics in a systematic way by comparing to

the heuristics defined in our previous work. They are based on analyzing the history

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

126

about the evolution of software systems; they aim at exploring this history

information to prioritize critical code anomalies regarding degradation symptoms. It is

important to reinforce that we decided to focus on architectural drift problems since

they manifest in the early stages of the system development. Unlike erosion

symptoms, their detection is not effective through source code analysis only.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

