

Thiago Pinheiro de Araújo

Using runtime information and maintenance knowledge to
assist failure diagnosis, detection and recovery

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação
em Informática of the Departamento de Informática,
PUC-Rio as partial fulfillment of the requirements for the
degree of Doutor em Informática.

Advisor: Prof. Arndt von Staa

Rio de Janeiro

 October 2014

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Thiago Pinheiro de Araújo

Using runtime information and maintenance knowledge
to assist failure diagnosis, detection and recovery

Thesis presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática do Centro
Técnico Científico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Prof. Arndt von Staa
Advisor

Departamento de Informática – PUC-Rio

Prof. Roberto da Silva Bigonha
UFMG

Prof. Guilherme Horta Travassos
UFRJ

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research – Brazil

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico da

PUC-Rio

Rio de Janeiro, October 7th, 2014

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

 All rights reserved.

 Thiago Pinheiro de Araújo

Graduated in Computer Engineering from Pontifícia
Universidade Católica do Rio de Janeiro (2007, Brazil, Rio
de Janeiro), and obtained the degree of Mestre em
Informática also from Pontifícia Universidade Católica do
Rio de Janeiro (2010, Brazil, Rio de Janeiro).

 Bibliographic data

 Araújo, Thiago

Using runtime information and maintenance
knowledge to assist failure diagnosis, detection and
recovery / Thiago Pinheiro de Araújo; advisor: Arndt von
Staa. — Rio de Janeiro : PUC–Rio, Departamento de
Informática, 2014.

v., 192 f.: il. ; 29,7 cm

Tese (Doutorado em Informática) – Pontifícia
Universidade Católica do Rio de Janeiro, Rio de Janeiro,
2014.

 Inclui bibliografia.

1. Informática - Teses. 2. Engenharia de Software. 3.
Qualidade de Software. 4. Diagnóstico de falhas. 5.
Detecção de Falhas. 6. Recuperação de falhas. I. Staa,
Arndt von. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

To my parents, Ítalo and Antônia,
 my aunt Maria do Carmo,
and my wife Ana Carolina.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Acknowledgements

To my father, Ítalo José de Araújo, the main responsible for my upbringing. Without your

presence, your life experience, your participation, your support, your joy, and your

interest, I would not have gotten this far. Thank you for your relentless dedication while

you were among us. Thank you very much for everything and watch over us.

To my mother, Antônia dos Santos Cunha Pinheiro, and my aunt, Maria do Carmo Cunha

Pinheiro, for the support and love in all through my moments of hardship. Thank you for

your steadfast dedication in providing the necessary means so I could always keep on with

my education.

To my wife, Ana Carolina Froes da Fonseca Martins de Andrade, for your love, support,

and great patience, especially in the final months I spent working on this thesis. Thank

you also for your advices, always very useful in all the moments of our lives.

To my advisor, prof. Arndt von Staa, for all your dedication and interest in my research.

Thank you for your advice, your guidance, and for all our meaningful conversations, so

constructive to my academic, professional, and personal life. Without your support and

teachings, this work would not have been possible. It has been an honor working with you

for the last 9 years, which I hope will be only the beginning of a long interaction in joint

academic and professional projects.

To prof. Renato Cerqueira, for all the conversations, ideas, and teachings that in several

ways influenced and contributed so much to the production of this thesis. Thank you, also,

for your support and for the high standards set in all the work I produced under your

guidance, ever since I got into the university. Thank you, still, for offering me the chance

to teach, awakening in me a growing desire to become an educator.

To my best friend, Roberto Maia, for all the support and patience in these last few years.

Thank you for helping me with my personal issues whenever I needed it, for the steadfast

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

believe in my work, and for the words of encouragement ever said in difficult moments.

To my great friend and co-worker, Pedro de Goes, for your interest in my research, for

making yourself available for our discussions, and for your help in spreading this new

technique among other co-workers.

To all my colleagues at Aevo, for the exchange of ideas and observations during the

experiments and case studies.

To all my family and friends, who somehow contributed to this work. In particular,

Patrícia Correa and Thuener Silva.

To CNPq, for the financial support without which this work would not have been possible.

To all the members of the examining committee.

To all the teachers of the department, for sharing their great knowledge.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Abstract

Araújo, Thiago Pinheiro; Staa, Arndt von (Advisor). Using runtime
information and maintenance knowledge to assist failure diagnosis,
detection and recovery. Rio de Janeiro, 2014. 192p. Thesis - Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Even software systems developed with strict quality control may expect

failures during their lifetime. When a failure is observed in a production

environment the maintainer is responsible for diagnosing the cause and eventually

removing it. However, considering a critical service this might demand too long a

time to complete, hence, if possible, the failure signature should be identified in

order to generate a recovery mechanism to automatically detect and handle future

occurrences until a proper correction can be made. In this thesis, recovery consists

of restoring a correct context allowing dependable execution, even if the causing

fault is still unknown. To be effective, the tasks of diagnosing and recovery

implementation require detailed information about the failed execution. Failures

that occur during the test phase run in a controlled environment, allow adding

specific code instrumentation and usually can be replicated, making it easier to

study the unexpected behavior. However, failures that occur in the production

environment are limited to the information present in the first occurrence of the

failure. But run time failures are obviously unexpected, hence run time data must

be gathered systematically to allow detecting, diagnosing with the purpose of

recovering, and eventually diagnosing with the purpose of removing the causing

fault. Thus there is a balance between the detail of information inserted as

instrumentation and the system performance: standard logging techniques usually

present low impact on performance, but carry insufficient information about the

execution; while tracing techniques can record precise and detailed information,

however are impracticable for a production environment. This thesis proposes a

novel hybrid approach for recording and extracting system’s runtime information.

The solution is based on event logs, where events are enriched with contextual

properties about the current state of the execution at the moment the event is

recorded. Using these enriched log events a diagnosis technique and a tool have

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

been developed to allow event filtering based on the maintainer’s perspective of

interest. Furthermore, an approach using these enriched events has been

developed that allows detecting and diagnosing failures aiming at recovery. The

proposed solutions were evaluated through measurements and studies conducted

using deployed systems, based on failures that actually occurred while using the

software in a production context.

Keywords

Runtime information extraction; Failure diagnosis; Failure detection; Failure

recovery.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Resumo

Araújo, Thiago Pinheiro; Staa, Arndt von. Utilizando informações da
execução do sistema e conhecimentos de manutenção para auxiliar o
diagnóstico, detecção e recuperação de falhas. Rio de Janeiro, 2014.
192p. Tese de Doutorado - Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Mesmo sistemas de software desenvolvidos com um controle de qualidade

rigoroso podem apresentar falhas durante seu ciclo de vida. Quando uma falha é

observada no ambiente de produção, mantenedores são responsáveis por produzir

o diagnóstico e remover o seu defeito correspondente. No entanto, em um serviço

crítico este tempo pode ser muito longo, logo, se for possível, a assinatura da falha

deve ser utilizada para gerar um mecanismo de recuperação automático capaz de

detectar e tratar futuras ocorrências similares, até que o defeito possa ser

removido. Nesta tese, a atividade de recuperação consiste em restaurar o sistema

para um estado correto, que permita continuar a execução com segurança, ainda

que com limitações em suas funcionalidades. Para serem eficazes, as tarefas de

diagnóstico e recuperação requerem informações detalhadas sobre a execução que

falhou. Falhas que ocorrem durante a fase de testes em um ambiente controlado

podem ser depuradas através da inserção de nova instrumentação e re-execução da

rotina que contem o defeito, tornando mais fácil o estudo de comportamentos

inesperados. No entanto, falhas que ocorrem no ambiente de produção apresentam

informações limitadas à situação específica em que ocorrem, além de serem

imprevisíveis. Para mitigar essa adversidade, informações devem ser coletadas

sistematicamente com o intuito de detectar, diagnosticar para recuperar e,

eventualmente, diagnosticar para remover a circunstância geradora da falha. Além

disso, há um balanceamento entre a informação inserida como instrumentação e a

performance do sistema: técnicas de logging geralmente apresentam baixo

impacto no desempenho, porém não provêm informação suficiente sobre a

execução; por outro lado, as técnicas de tracing podem registrar informações

precisas e detalhadas, todavia são impraticáveis para um ambiente de produção.

Esta tese propõe uma abordagem hibrida para gravação e extração de informações

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

durante a execução do sistema. A solução proposta se baseia no registro de

eventos, onde estes são enriquecidos com propriedades contextuais sobre o estado

atual da execução no momento em que o evento é gravado. Através deste registro

de eventos com informações de contexto, uma técnica de diagnóstico e uma

ferramenta foram desenvolvidas para permitir que eventos pudessem ser filtrados

com base na perspectiva de interesse do mantenedor. Além disso, também foi

desenvolvida uma abordagem que utiliza estes eventos enriquecidos para detectar

falhas automaticamente visando recuperação. As soluções propostas foram

avaliadas através de medições e estudos conduzidos em sistemas implantados,

baseando-se nas falhas que de fato ocorreram enquanto se utilizava o software em

um contexto de produção.

Palavras-chave

Extração de informações da execução do sistema; Diagnóstico de falhas;

Detecção de Falhas; Recuperação de falhas.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Summary

1	 Introduction 16	

1.1	 Terminology definition 23	

1.2	 Document Structure 24	

2	 Problem Formulation 26	

2.1	 General runtime information extraction problems 27	

2.2	 How to extract relevant information? 29	

2.3	 Richer runtime information are needed for failure diagnosis 33	

2.4	 Automated failure detection and recovery 36	

2.5	 Solution Requirements 40	

2.6	 Overview of the Solution 41	

3	 Logs Annotated with Contextual Meta-information 43	

3.1	 A Hybrid Instrumentation Approach 46	

3.2	 Defining the Instrumentation Policy 49	

3.2.1	 Programming Language Abstractions 51	

3.2.2	 Architecture and Design Abstractions 53	

3.2.3	 Domain Abstractions 56	

3.3	 Threats and Solutions 57	

4	 Architecture of the Solution 60	

4.1	 The Instrumentation Libraries 61	

4.2	 Tips to Reduce Instrumenting Effort 66	

4.3	 Event Transmission Issues 67	

4.4	 The Query Engine 68	

4.5	 Conclusions and Technical Requirements 71	

5	 Lynx: Diagnosing with Contextual Information 72	

5.1	 The Inspection Approach 72	

5.2	 Failure Detection and The Diagnosis Process 74	

5.3	 The Inspection Tool 76	

5.4	 Closure 78	

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

6	 Hydra: A Tag-Based Self-Healing Mechanism 81	

6.1	 Solution Overview 82	

6.2	 Detecting Failure Signatures Through the Execution Flow 84	

6.3	 Solution Architecture 86	

6.4	 Implementing Failure Handlers 88	

6.4.1	 A Framework for the Global Autonomic Cycle 88	

6.4.2	 The Local Autonomic Cycle as an Instrumentation Library

Extension 92	

6.5	 Threats and Validity 98	

7	 Evaluation 100	

7.1	 What and how to evaluate 101	

7.1.1	 Instrumentation Measurements 103	

7.1.2	 Diagnosis Assessment 104	

7.1.3	 Failure Handling Assessment 105	

7.2	 WinePad 106	

7.2.1	 Instrumentation 108	

7.2.2	 The Diagnosis Tool Evaluation 111	

7.2.3	 The Failure Handling Mechanism Evaluation 115	

7.3	 Environment Monitoring Robot (EMR) 118	

7.3.1	 Instrumentation 120	

7.3.2	 The Diagnosis Tool Evaluation 123	

7.3.3	 The Failure Handling Mechanism’s Evaluation 125	

7.4	 Subsea Equipment Monitoring (SEM) 137	

7.4.1	 Instrumentation 138	

7.4.2	 The Diagnosis Tool Evaluation 142	

7.5	 Team and Equipment Management System (TEMS) 145	

7.5.1	 Instrumentation 145	

7.6	 Discussion 148	

7.6.1	 The Instrumentation 148	

7.6.2	 The Diagnosis Tool Evaluation 150	

7.6.3	 The Failure Handling Mechanism 152	

7.7	 Concluding Remarks 154	

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

8	 Comparing with Related Work 157	

8.1	 Event-based approaches 158	

8.1.1	 The Most Simple Solution: Verbosity 158	

8.1.2	 Log Patterns, Data Mining, and Clustering 159	

8.1.3	 Tracing as a solution for full state extraction 162	

8.1.4	 Tracing for failure diagnosis 164	

8.1.5	 State machine inference for diagnosis support 165	

8.1.6	 Visualization tools to assist manual diagnosis 166	

8.1.7	 Capture & replay 166	

8.1.8	 Self-healing 167	

8.2	 State-based approaches 169	

8.2.1	 Checkpointing and Restart 169	

8.2.2	 Redundancy 169	

8.2.3	 Closure 171	

9	 Conclusions and Future Work 173	

10	 Bibliographic References 179	

11	 Appendix I – Failure Handler Examples 190	

11.1	 Keep-alive and Restart (Global Cycle) 190	

11.2	 Inconsistent Version (Local Cycle) 191	

11.3	 Forgotten Retro-Compatibility (Local Cycle) 192	

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Figures

Figure 1 - Solution Architecture 60	

Figure 2 – Inspection tool interface. 78	

Figure 3 – Example of an event with collapsed area. 78	

Figure 4 – Solution overview. 83	

Figure 5 – Autonomic global cycle 86	

Figure 6 – Autonomic local cycle 87	

Figure 7 –Framework for global cycle implementation. 89	

Figure 8 - Framework for local cycle implementation. 93	

Figure 9 – Event Action Failure Handler. 94	

Figure 10 – Interceptor Failure Handler. 94	

Figure 11 – WinePad Architecture’s Overview. 107	

Figure 12 – WinePad Failure Example. 116	

Figure 13 – EMR Architecture 128	

Figure 14 – Autonomic global cycle 129	

Figure 15 – Relation between all entities involved in the Disparity

Failure Handler. 136	

Figure 16 – Relationship between solutions in field of dynamic analysis. 158	

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

Tables

Table 1 – WinePad’s implementation effort. 111	

Table 2 – WinePad’s computing performance overhead. 111	

Table 3 – WinePad’s storage performance overhead. 111	

Table 4 – Time in minutes to diagnose each failure on the first study in

WinePad. 113	

Table 5 – Time in minutes to diagnose the failure on the second study in

WinePad. 114	

Table 6 – EMR’s implementation effort. 123	

Table 7 – EMR’s computing performance overhead. 123	

Table 8 – EMR’s storage performance overhead. 123	

Table 9 – Time in minutes to diagnose the failure in the EMR study. 125	

Table 10 – SEM’s implementation effort. 141	

Table 11 – SEM’s computing performance overhead. 141	

Table 12 – SEM’s storage performance overhead. 142	

Table 13 – Time in minutes to diagnose each failure in the SEM study. 144	

Table 14 – TEMS’s implementation effort. 147	

Table 15 – TEMS’s computing performance overhead. 147	

Table 16 – TEMS’s storage performance overhead. 147	

Table 17 – Overall implementation effort. 148	

Table 18 – Overall computing overhead. 149	

Table 19 – Overall storage overhead. 149	

Table 20 – Overall performance overhead for the failure handlers. 154	

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

1
Introduction

Despite the effort spent in fault prevention techniques, every software

system may expect failures during its lifetime (Brown & Patterson, 2001). Since

software development is produced or guided by humans, the result is vulnerable to

human mistakes too. Although tools and techniques are continuously improved to

aid developers to avoid these mistakes, it is impossible to guarantee that the

specification of a system or even the deployed instance of a system is fault-free.

Faults can be due to different reasons: specification errors, inadequate

architecture, wrong implementation, incorrect or missing configuration, hardware

defects, defects in third party systems, and misuse due to inexistent, misleading or

incomplete documentation (Brown & Patterson, 2001; NIST, 2002). Even if

successfully avoiding the insertion of faults during development, the system may

be vulnerable to faults due to external causes, such as third-party libraries

(Thomas, 2002), frameworks, and remote services. Unfortunately, in modern

system development, application developers do not own all the source-code,

neither can third-party developers predict all configurations and environments

where their software will be used. Thus, although software development must

prevent fault insertion, software engineers cannot assume that this approach alone

is sufficient to avoid runtime failures. It is, therefore, extremely important to

incorporate the notion of run time failure handling in all phases of system

development. The terminology used in this work is defined in Section 1.1.

The observation of a failure should be followed by a diagnosis session, in

order to determine its cause and proceed with the correction. However, during the

time elapsed between the first observation of a failure and the deployment of a

proper correction, the system is vulnerable to other occurrences of failures caused

by the same fault. One of the characteristics of a fault is its criticality, which is

based on the severity of the consequences of the failures it provokes, which

depend on the application domain. The consequence of simple application failures

is the loss of work, which causes rework and dissatisfaction with the system;

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

17

however, the consequences in mission-critical systems may cause damage to high-

value equipment, loss of business credibility, environmental disasters, or even the

loss of human life. Thus, the occurrence of a critical failure frequently requires

instant reactions to avoid disasters even before the causing fault can be duly

removed. Among the actions needed to recover, another form of diagnosis occurs.

This form must identify which data have been corrupted and determine how to

bring them to a valid state. The state must be structurally correct (e.g. satisfies the

data model) as well as accurate (the state corresponds to the real world state).

We call recovery the sequence of actions that must be performed to prevent

serious consequences of a failure and to reestablish the functional integrity of the

system. After recovery, the system may resume working, even if slightly

degraded. Recovery does not necessarily mean that the causing fault has been

properly removed. The time elapsed between the moment a fault is exercised

generating an error, and the moment the corresponding failure is observed, is the

mean-time-to-observe (MTTO). The longer this elapsed time is, the more difficult

it tends to be to diagnose the fault. The mean elapsed time between the

observation of the occurrence of a failure and the end of its recovery is called

mean-time-to-recover (MTTRc). The mean elapsed time between observation of a

failure’s occurrence and the moment the properly corrected system is available to

be deployed is called mean-time-to-repair (MTTRp), which does not include the

time to redeploy the corrected components. When actions are executed to handle a

failure, the MTTRc is expected to require much less time than the MTTRp. There

is also the mean-time-between-failures (MTBF), which represents the time

between successive failures. A larger MTTF does not guarantee system stability; a

short MTTRc, however, contributes to reduce the risk of disasters due to failures

(Patterson & Brown, 2002). The conclusion is that faults and failures are facts to

be coped with, and should not be treated just as development errors that can

eventually be removed. The team must expect run time failures, and take

advantage of all failure occurrences to learn more about the weaknesses of the

system, thus investing more effort in its evolution in order to minimize the

chances of similar failures in the future.

Since failures may occur, system maintainers must be prepared to diagnose

them in a short time and implement, as quickly as possible, a mechanism to detect

and handle future occurrences, in order to prevent or minimize disasters. There are

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

18

two diagnosing approaches: the most effective, in order to determine the root

cause and remove the fault; and the most efficient, looking for the failure

signature in order to produce the failure handler. Despite the need of a manual

diagnosis to determine the fault when a failure is first observed, future failures

occurrences of the corresponding fault should ideally be automatically detected

and handled without human intervention. Ideally, the first failure occurrence of a

fault should be automatically handled too. However this would require automatic

diagnosis, for which the available solutions are usually limited to superficial

faults, such as network, disk access, and performance issues (Chen et al., 2004;

Yuan et al., 2010; Meng et al., 2012), and are thus ineffective when diagnosing

logic-specific failures, since for these type of failures the diagnosis needs specific

information about the target system. Moreover, solutions that use a system’s

specification written by humans (in a given format) to evaluate the runtime

execution require a huge effort to implement and are also susceptible to faults,

since they, too, may contain errors. This topic is further discussed in chapters 2

and 8.

Fault diagnosis, failure detection, and recovery capabilities are requirements

of modern systems that must be available 24 hours per day and for which

acceptable downtime is very short, measured in minutes or even seconds,

depending on the application domain. It is undeniable that faults must be removed

from the system as soon as possible. However, some of them impose a larger

MTTRp due to different factors: the code modification or the redeployment may

increase the risk of other faults; the effort to remove and redeploy may not

compensate; the system platform may impose time limitations (for example, the

review time in AppStore submissions can take up to three weeks); or, even, all of

the previous factors together. Sometimes, it may be safer to avoid fault removal

until the next release or even until a given error threshold, proportional to the

acceptable consequences, such as number of errors or amount of resources lost.

However, in these cases a recovery solution must be available to handle failure

consequences.

It has been observed that due to the complexity of modern systems, faults

will not be completely eliminated from deployed applications (Business Internet

Group, 2004), even after several maintenance patches. It is safe to assume that

even if faults are correctly removed, some will remain due to incorrect diagnostics

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

19

or will reappear due to specification ambiguity. As an example we may consider a

very complex system, with an asset shared between two components (A and B).

The asset specification contains an ambiguity that favors one of these

components, and causes a failure when executing the other. When the fault is

diagnosed, the maintainer does not notice that it is in fact a specification error, and

hence just corrects the asset without analyzing the consequences in other

components, which had until then presented a correct behavior but will eventually

fail in future executions of the yet undetected fault. This fault will be unsolved

until the maintainer finds out that it is a specification error and asks to meet the

developers of these components to talk about the issue. The conclusion will be

that both implementations are correct from each point of view, and that an

evolution of the specification is necessary to define how the asset will comply

with both needs. Observe that the time to repair will be inevitably long, and a

solution must be applied to handle new failures during this period.

Some faults cannot be removed due to technical or even business

limitations. For example, consider a project with recently purchased hardware,

whose library implements a proprietary state-of-art algorithm to process and

provide a excellent results. Unfortunately, the project is based on an operating

system that is not fully supported by the library needed by this hardware, thus an

unstable beta version is the only option available. The system will have to handle

the consequences of these library failures until the hardware provider publishes a

new version of the library, something that may never happen. Observe that, due to

business decisions, it is impossible to change the hardware to a supported one and,

therefore, a recovery mechanism is the only solution to maintain system stability

during occurrences of failures of this type.

There are also mission-critical systems that require a high-level of fault

tolerance due to the possibility of failures leading to irreparable disasters. Hence,

these failures must be detected and handled promptly, and cannot wait for a

correction diagnosis, fault removal and redeployment. Therefore, faults must be

foreseen during development to enable the implementation of mechanisms that

detect and handle failures, where this must be done before the system is deployed

in a production environment. Such systems usually rely on the use of replicas and

a voting mechanism (Avizienis & Chen, 1977; Avizienis et al., 2004).

Unfortunately, even these approaches do not work if failure independence cannot

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

20

be assured (Knight & Levenson, 1986), not even when considering hardware,

since these may suffer from design faults (BEA, 2009).

Failure handling and fault removal tasks are classified as corrective

maintenance, which represents about 17% of the effort spent in general

maintenance (Nosek & Palvia, 1990). There are other forms of maintenance, such

as evolution and adaptive maintenance, which represent respectively about 65%

and 18% (Nosek & Palvia, 1990). System monitoring and failure detection are

also corrective maintenance tasks, since they aid in leading the system to a correct

and accurate state. Compared to the total effort spent in software development, the

cost of maintenance is usually high, representing about 80% of the total lifecycle

cost of a software system, of which 40% is invested in understanding the software

(Diehl, 2007; Lanza & Marinescu, 2008; Telea et al., 2010). This topic will be

further discussed in Section 2.1. It is worth mentioning that in the last decade the

NIST (2002) reported that corrective maintenance cost the US economy around

60 billion dollars per year.

Usually, small businesses and startups1 cannot handle the cost of high

dependability, thus they relax on quality while striving to assure an acceptably

working system. Hence, low cost methods and tools are needed to aid those

businesses to reduce the effort of corrective maintenance. For the moment,

however, software systems must be able to coexist with faults. Some will remain

active for short periods (a release and a subsequent patch), others for the system

lifetime (when the removal is not worth the effort, or is impossible). Hence, for

each known failure, a recovery mechanism should be available to handle its

occurrences. These mechanisms must be easily removed when no longer needed.

Newer failures need to be diagnosed to understand what went wrong during

execution, and then proceed with the creation of this recovery mechanism. Last

but not least, all of this should be provided in a way that common developers can

apply into their own software to increase reliability, with traditional paradigms

and minor changes in the way the code is written.

1 These kinds of businesses are relevant to the Brazilian market, where they represent 70%

of the software production (MCT, 2001).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

21

Tools and techniques designed for fault diagnosis, failure detection, and

system recovery require, regardless of the approach adopted, a technique to

extract system’s runtime information, which can be evaluated inside or outside

each process, synchronously or not, but it must exist to enable behavior

understanding. Sometimes, this information is combined with other data, such as

maintenance knowledge and software source-code, to produce a richer content for

these support tools. Available solutions for extracting this information expose a

drastic trade-off between the effort to apply the methodology and the quality of

the information content. Current solutions will be discussed in Chapter 8. There

are also the requirements to apply the methodology, which even when presenting

low-cost, in some cases can influence the system or the software architecture in an

unwanted way by their designers. This topic will be further discussed in Chapter

2.

A survey conducted during this work in the field of information extraction

identified that the effectiveness of the approach must be evaluated based on four

aspects: context completeness, abstraction preservation, effort to instrument, and

technology limitations. In order to provide a solution for traditional projects and

development teams, its implementation must demand little effort and it must be

free of technology, such as language and frameworks that will be used. However,

current solutions that fit this profile usually present low information quality.

The problem addressed in this thesis is how to design a solution that extracts

runtime data with adequate levels of contextual properties, and how to embed

them with software abstractions created during development, in order to provide

richer information for diagnosing tools and failure recovery mechanisms, with the

objective of reducing the effort of failure diagnosis tasks and failure handling

implementation.

The solution must impose as little technological limitations as possible, and

must have low implementation costs. This extraction technique must support

failure diagnosis tools and failure handling mechanisms. It is not designed for

fault tolerance, however, as we shall present in the evaluation chapter, some fault

tolerant solutions may use the proposed information extraction solution as an

information source. Therefore, instead of relying on replicas and a voting

mechanism, it relies on observing the runtime history and taking appropriate

action to avoid, or recover from, failures. This solution has been chosen since it is

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

22

relatively low cost and because software replicas are not necessarily reliable

(Knight and Levenson, 1986). Furthermore, hardware replicas are also not

necessarily reliable, since the hardware may not satisfy the independent fault

hypothesis, or may trigger incorrect human response that leads to a disastrous

behavior2 (Reason, 2003).

The solution presented in this work is based on a novel hybrid logging

technique capable of extracting properties from the full execution state, without

breaking the encapsulation neither imposing great effort from the developer. The

solution is slightly more expensive than the traditional logging technique, is

technology-free, and drastically improves the context completeness and

abstraction preservation of the extracted information. Developers insert

instrumentation in a semi-automatic way following an established instrumentation

policy, which is written for each project using some guidelines that are explained

in Chapter 3. These guidelines suggest how to represent abstractions as properties

and insert them in the log content in a way that can be used further to correlate

events in a diagnosing tool or in failure handling mechanisms. Following our

approach, tools and mechanisms that depend on log to detect, diagnose, and

recover from failures will receive richer data to analyze. Thus, the outcome will

be a reduced mean time to recover (MTTRc), since these tools and mechanisms

will have (1) a better description of the system execution history to determine the

root cause, (2) known-failure detectors will be more powerful, and (3) recovery

mechanisms will be fed with precise information to execute the handling routines.

The technical solution is composed of (1) a code instrumentation technique,

which supports the information extraction approach (described in Chapter 4), and

(2) tools to assist failure diagnosis by providing an interface capable of selecting

only events related to a maintainers perspective of interest (described in Chapter

5); and (3) a self-healing mechanism that uses both the events produced by the

instrumentation and the knowledge about the system faults to detect and handle

failures (described in Chapter 6).

2 The Air France 447 crashed due to human error after the autopilot disengaged after non-

recoverable incorrect readings of the three pitots (speed meters). The pitots suffered from a known

design flaw that could lead them to freeze if flying in certain kinds of turbulence (BEA, 2009).

Hence, they failed the independent fault hypothesis.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

23

The solution has been evaluated on four real systems developed by a small

software company (described in Chapter 7), which were used to identify problems

and execute experiments. Some studies were executed in a controlled environment

capable of measuring the solution’s effectiveness during the assessments. These

systems are from different domains and developed by different teams. The

solution was applied during the development phase, without influencing the

technology definition, neither impacting the way software is modeled or coded.

The instrumentation inserted in these four systems was measured in order to

evaluate the effort in applying the technique. The result showed us that the

average implementation overhead is 4% of the full development effort. Also, two

studies were conducted: (1) faults once discovered in the deployed version of the

system were injected into the controlled environment and maintainers were

submitted to the task of diagnosing them with the inspection tool; and (2) failure

handlers were developed for failures caused by hard-to-remove faults, in order to

verify the efficacy of our solution for failure detection and recovery. These

failures were selected from all those identified on systems that participated in the

evaluation. The results showed that both the inspection tool and the failure

handler mechanism are capable of reducing the effort of the maintainer in the

tasks of diagnosing and implementing failure handlers, respectively.

1.1 Terminology definition

We will adopt the following terminology ― adapted from IEEE (2010) ―:

fault is an incorrect code fragment or configuration in the software which, when

executed or accessed, may cause the system to perform in an unintended or

unanticipated manner. Faults may be due to incorrect implementation, incorrect

maintenance, incorrect specifications, incorrect third party software, or platform

faults. Executing a fault may generate an error, which is a discrepancy between

the instantaneous computed state and what it is expected to be. Faults may

correspond to vulnerabilities that may lead users to, accidentally or willfully,

provoke an error. The sequence of instantaneous, possibly parallel, states

establishes the behavior of the system. Observing that an error occurred

corresponds to detecting a failure. A failure is, thus, the observed inability of a

system to perform its required functions within expected performance

requirements. This means that a failure corresponds to an error that has been

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

24

observed. There is a latency between the moment the error is generated and the

moment it is detected and reported as a failure. Unfortunately, it might happen

that an error is never detected, or is detected only a long time after having been

generated. When a failure is observed at use time, the corresponding fault must be

diagnosed. The longer the latency, the harder it is to diagnose the failure in order

to precisely determine the corresponding fault. A diagnostic should describe the

exact root cause, i.e. the very fault that lead to the failure. Log is a set of events

generated by the system execution, which are sorted and presented in

chronological order. The diagnosis process investigates the log set looking back

searching a failure footprint. It starts at the state were the failure was detected and

ends at the state that exercised the fault. The footprint should convey the

necessary information to create the diagnostic. The process of evaluating a

hypothesis over the log set is an inspection, which may restrict events based on

some properties considered more relevant for the analysis. This set of restrictions

is the perspective of interest. As mentioned before, the root cause may be other

than just a faulty code. To eliminate the fault, either code fragments must be

removed, added, replaced or encapsulated in a control wrapper, or configurations

must be corrected. The encapsulation solution is often required when using third

party code. Failure recovery is the system’s capability of detecting and handling

failure occurrences. The recovery handler is an entity that targets a specific type

of failure and that is developed using the failure footprint to generate the failure

signature, which is an event correlation capable of detecting when a failure will

occur, or has occurred in the past few moments. Debugging corresponds to

performing the three operations: detecting the occurrence of an error; diagnosing

it to find the root cause; and correctly and completely removing the causing fault.

1.2 Document Structure

The rest of this work is organized in the following sections:

2) Problem Formulation - Discusses the corrective maintenance problem and

recovery solutions in more detail based on the existing literature, defines

the problems addressed by this work and enumerates the requirements the

solution must fulfill to be acceptable.

3) Solution Overview – Presents a solution for the outlined problems and

discusses how it complies with the requirements.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

25

4) Logs Annotated With Meta-Information – Describes a solution to extract

the system execution information in a format that supports diagnosis and

failure handling.

5) Lynx: a Diagnosing Tool based on Contextual Information – Describes the

tool provided for diagnosing, capable of studying the system execution

restricted to a perspective of interest.

6) Hydra: a Low-Cost, Self-healing Mechanism – Describes how the

proposed self-healing mechanism works, how it must be implemented, and

how the maintainer should evolve the system’s specific knowledge during

its lifetime.

7) Evaluation – Describes how this work was evaluated on real systems, all

executed in controlled environments capable of measuring the solution

effectiveness.

8) Comparing with Related Work – Discusses how this work is compared

with others in the field of fault diagnosis and failure handling.

9) Conclusions and Future Work – Discusses the contributions and proposes

some future work.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

26

2
Problem Formulation

Since faults are a concern to be coped with, software systems must provide

mechanisms to detect failures at run-time and attempt to avoid the correspondent

consequences by employing recovery strategies. Obviously, these mechanisms

should be designed and inserted at development time. However, faults remain

undetected until they cause the first observable failure, otherwise they could have

been removed or encapsulated during development. Unfortunately, there are faults

that, despite being known, cannot be removed – faults due to external conditions

such as hardware defects, for example, or faults localized in a third-party asset,

which will go along with the system during its lifetime, or until a new version of

the asset is released. Such faults are often identified while the system is being

developed or evolved.

When a failure is observed at run-time, it must be diagnosed with the goal of

determining the root cause, which corresponds to a failure signature (the event

correlation that represents the misbehavior), thus enabling the development of a

recovery handler for this kind of failure. After that, the effort of removing the

fault must be estimated and compared to the effort of implementing the recovery

mechanism. This effort, combined with other factors, such as the criticality of the

consequences and the availability of the development team, should be used to

decide if the recovery mechanism must be implemented, in order to handle future

occurrences until the fault is removed. Observe that some systems require more

effort to remove faults due to several factors, such as redeployment time, the

absence of the development team, or simply the fact that the code modification is

complex and a proper solution requires substantial effort to be designed and

developed. In short, fault removal can take up days, weeks or even months. While

waiting for a new version, the system in use is vulnerable to repeated occurrences

of the same kind of failure. Therefore, if a temporary recovery handler could be

implemented in a reasonably short time, it would be worth the effort to handle

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

27

future occurrences until the fault is removed and a new corrected version of the

system is deployed.

After deploying the recovery handler, maintainers can plan when and how

the causing fault will be removed, based on its severity and the human resources

needed to execute the necessary tasks. Hence, there are two diagnosing goals:

1. Determining the root cause in order to remove the fault.

2. Identifying the failure signature in order to develop the recovery

mechanism.

If the first goal cannot be made in a period of short time, the second should

be sufficient for properly handling the failure. Therefore, a promising solution to

cope with known failures is learning from the diagnosis result and developing a

specific recovery handler for these failures. The shorter the execution time for

these tasks (diagnosis and recovery handler deployment), the sooner the system

will be protected from the recently discovered fault.

The rest of this chapter will (1) explain why the information extraction

problem plays the main role in the solution and, thus, why it is the focus of this

thesis; (2) discuss which are the limitations of the available approaches and what

can still evolve; (3) present a list of requirements the solution must fulfill to

become acceptable; and, finally, (4) present an overview of the proposed solution,

which will be described in Chapter 3.

2.1 General runtime information extraction problems

Adequate information about system execution is needed to aid maintainers

in the process of error detection and diagnosis. Traditional techniques are based

on logs, which are sequences of messages in a human-readable format (Hansen &

Siewiorek, 1992), where the corresponding instrumentation has been written by

developers. A log message is called an event. It may contain values that describe

the state of the execution at the moment it is notified (Gülcü, 2002; Liu, 2007),

such as context variables and, if possible, the stack trace of the execution, usually

inserted in events that represent errors. Libraries such as Unix syslog (Lonvick,

2001), log4J (Gülcü, 2002) and Microsoft Event Logging (Murray, 1998) support

this approach. When an event is generated, these libraries also append the current

local timestamp to enable temporal analysis, before storing the event in a local file

or in a remote database.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

28

Although this technique may produce some result, the effort required to

analyze the log is usually huge (Mendes & Reed, 2002). Distributed system

failures are often hard or even impossible to replicate, hence the data available at

the moment of failure detection should ideally provide sufficient information to

support diagnosis and removal of the causing fault without the need for replicating

the error (Skwire, 2009). Furthermore, in distributed or multi-programmed

systems, an incorrect state may be itself distributed, which may involve states of

several processes. Hence, the data available at the point of detection (i.e. within a

specific process) is not necessarily sufficient to provide all the data needed for a

proper diagnosis.

Undoubtedly, the log technique helps understanding system execution.

However, several authors have identified limitations in this approach:

• The log set is often very extensive and presents information from different

contexts mixed in the same dimension (Mariani & Pastore, 2008),

reducing the visibility of information that is needed to detect and diagnose

the failure.

• The log files are usually distributed over various machines (Liu, 2007),

imposing an additional effort to access and adequately organize them in a

chronological order, needed for determining inter-state faults.

• The available information is very often insufficient whenever the

application context is not represented in the events (Oliner & Stearley,

2007).

Considering all the different contexts, it is hard to correlate events creating

logical links that could explain the undesired behavior. While diagnosing, simply

searching for the keyword “error” in logs may find evidence that a failure has

been detected, but this is usually insufficient to determine the failure footprint

(sequence of events that matches the failure signature) and, hence, to create a

precise diagnostic (Oliner & Stearley, 2007; Jiang et al., 2009), as we need much

more information about the system’s execution to understand the scenario that led

to the failure. The most challenging failures are not the ones that will crash the

system immediately, but the ones that corrupt some data and drive the system to

unexpected behavior after long runs (Liu, 2007). To diagnose these failures, we

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

29

need to study execution histories and have access to properties that could explain

the unexpected behavior.

Notice that we are addressing the problem of diagnosing and handling

failures in a deployed system while running in a production environment. During

the development and test phases, other approaches are available for the problem,

which may not suffer from the limitations discussed in the following sections.

2.2 How to extract relevant information?

Several works present solutions to aid behavior understanding (discussed in

Chapter 8). However, the information extraction technique always relies on three

main approaches:

• Logs written manually by developers (Ruffin, 1995).

• Static traces inserted by a language or binary preprocessor (Lindlan

et al., 2000).

• Dynamic traces inserted at runtime (Maebe et al., 2002).

Log and trace approaches are very similar. The main difference is that logs

are usually written directly into the source-code with some abstractions, but

without a fixed structure, and are intended for system administrators; traces, on

the other hand, are generated automatically, based on some insertion criteria

defined by the developer and are usually designed to track execution behavior or

to measure non-functional requirements, such as performance and resource

allocation. Each logged event may be categorized in a few, fixed set of types, later

used to filter events using a perspective of interest. This solution is usually

ineffective, due to incomplete information stored in events and the inability to

foresee which perspectives of interest will be needed, since each of these

perspectives must be created from the specific characteristics of each failure.

Traces present a higher frequency than logs, and usually capture the current state

of system properties, which are, in addition, stored in a more accessible way than

logs, since they are indexed by their name, not blended in text messages. Due to

this well-defined format, traces are more appropriate for automated analysis, since

they present the event properties in an indexable form, avoiding the use of a

mechanism to extract them heuristically, thus introducing errors or imprecision as

discussed before. However, this approach also imposes a higher overhead than

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

30

logs, due to event notification frequency. The solution presented in Chapter 3 is a

hybrid approach, based on logs generated using automated features that allow

them to be classified as specialized traces. The rest of this section will discuss in

more depth the problems found in extracting relevant information that are intrinsic

to log and trace approaches.

One of the hardest problems in the field of runtime information extraction is

the definition of the data that will be necessary in further investigations. It is

particularly hard due to two issues: (1) acquisition granularity and (2) the set of

properties that must be present in each event. The granularity is associated with

the number of event notifications along the system behavior, which usually

follows an instrumentation policy, even when not formally defined (developers

tend to insert event notifications in every code block controlled by conditionals

and repetitions). The second problem, the definition of the property set, is

controversial, since it is impossible to know beforehand which information will be

needed during a diagnosis session. The main reason is that every diagnosis session

investigates newer failures, with little and sometimes no guess to formulate

hypotheses. As previously mentioned, an unstructured log usually contains

insufficient information due to the difficulty in expressing the full context in each

log event. In this approach, event notifications are written manually and if one

wants to notify all properties of all scopes in each event notification, the task

would consume an effort that invalidates the approach.

When the information is insufficient to diagnose a failure, developers try to

replicate the scenario that lead to the failure in a controlled environment. This

allows them to inspect the execution environment with a debugging tool such as

GDB (Stallman et al., 2002), which enables the operator to pause the execution at

each point of interest to evaluate the state of the process. In large systems, with

many concurrent users, it is very difficult to find out how to build the initial

scenario, since the internal state related to the failure is unknown, and the user

may not be available or might be unable to explain what he did or was trying to

do. Furthermore, these approaches are subject to heisenbugs (Gray, 1985), which

are failures that disappear (or appear) when inserting or removing

instrumentation, and are hence almost impossible diagnose.

There are solutions based on capture & replay techniques (Wittie, 1988)

(Steven, 2000), also for distributed systems (Geels et al., 2006), which store the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

31

full state of each process following a given execution granularity and, after a

failure is detected, the initial scenario can be precisely recreated. However, this

type of solution has a considerable impact on the system’s performance, since it

requires much storage or disk space and consumes a fair amount of network

bandwidth in spite of trying to use lightweight approaches. These problems take

us back to the original information extraction problem: how to extract a system’s

runtime information in such a way that it exposes relevant properties just when

the failure occurs for the first time without facing a tradeoff between performance

overhead and information completeness?

There are several works based on tracing that automate the task of event

notification (Maebe et al., 2002; Mirgorodskiy et al., 2005; Toupin, 2011). These

approaches capture the entire state at the moment of the event creation, which

contains all the properties available in the runtime stack, and obviously provide

sufficient information to aid in the diagnosis process. However, they tend to

overwhelm the user with much more information than is needed, since it captures

auxiliary variables and complex objects that will not present a readable

description. Also, they cannot be applied to large systems, since capturing all

properties would impact the system’s performance and the cost of storing all the

generated data would be too high.

Lightweight approaches that focus on distributed systems (Hendrickson et

al., 2003; Reynolds et al., 2006) solve this problem by capturing only events

related to node interaction. These works claim that distributed systems are hard to

diagnose and their solutions focus on understanding communication behavior

between nodes, keeping each component as a black-box, and discarding the

possibility of diagnosing internal logic failures. However, the internal logic of

these components is also difficult to debug due to all the problems listed in the

previous section.

Another concern related to log content is abstraction preservation, which is

divided into multiple levels, from hardware to software conceptual models

(Maebe et al., 2002). An abstraction is the result of a cognition process where

software engineers and developers remove details from complex definitions and

generalize them as a virtual entity, design, or structure, which receives a name that

will thereon be used to reference them, reducing the effort in describing its full

complexity (Timpf, 1999; Kramer & Hazzan, 2006). When a software model is

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

32

transformed into a source-code, some high-level abstractions are lost since

programming languages usually do not provide means to represent them. Then,

when source-code is converted to a machine language (a set of instructions and

symbols), application-specific abstractions are lost because the machine does not

need them to execute the software. Reflection and introspection techniques

available in some modern languages (Cazzola, 2004) provide means to retrieve

some language abstractions such as class definitions, methods, parameters, etc.

These techniques enable approaches, such as automatic traces, to extract the

software call hierarchy and notify events when each method is executed.

However, high-level abstractions are not represented since they were lost in the

coding phase. The presence of these abstractions in the runtime information would

reduce the effort of the cognitive process of understanding an expected behavior,

since they would remove complexity by representing the execution using the same

entities, designs and structures created by developers and learned by other

maintainers. A solution is, therefore, needed to bind the runtime information with

these abstractions, enabling the process of diagnosis to act not only at source-code

level, but also at design level.

Despite of the effort demanded by manual instrumentation, it achieves better

results in terms of abstraction preservation than the automatic approach, since

developers describe each event using application-specific abstractions. However,

in addition to properties in the instrumentation data possibly being insufficient,

they are blended into the notified messages without maintaining homogeneity

among different events. Assuring that the entire software will follow a fixed set of

terms to represent abstractions is very difficult, due to the fact that large systems

are written by different teams, which may adopt different names for the same

abstractions. We must stress that property name uniformity is extremely important

to reach maximum precision in further event correlation (Hendrickson et al.,

2003), thus improving the results of log analysis. Another difficulty is property

accessibility due to modularization. In some situations, it is impossible to identify

the context that leads to a local scenario, because the necessary information to

identify it is contained in outer scopes or even in a different process. Dependence

mining techniques try to extract this information from raw logs to create the

relations (Lou et al., 2010). However, the effectiveness of the result relies on the

log uniformity discussed before.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

33

There are also technology limitations imposed by each extraction approach:

(1) log events require a log library implemented for the target programming

language; (2) static traces require a tool capable of interpreting the source code

and injecting calls for the tracer; and (3) dynamic traces require a specific library

for the target language that provides introspection and reflection capabilities.

Solutions that are more easily applicable to different languages and become

portable between operational systems are more appropriate for modern systems,

since their subsystems are usually implemented in different languages and

executed in many environments (desktop, mobile, cloud, etc).

The conclusion is that automatic instrumentation usually induces a small

extra development cost and implies some technological limitations, but generates

a large volume of data, many times containing information of little use. Manual

instrumentation, on the other hand, is inserted by the developer and requires a

noticeably greater effort to implement, exposes few context properties, and poses

a considerable risk of inadequacy, but it tends to keep a higher level of

application-specific abstractions and has almost no limitations. Therefore, a

technique is needed that better balances these four aspects: context completeness,

abstraction preservation, instrumentation effort, and technology limitations. Since

abstractions are an intrinsic knowledge to humans, and manual instrumentation

takes advantage of the developer’s expertise and unveils promising paths, it was

defined as the starting point for this research. However, solutions are needed to

increase context completeness with precise data neither increasing implementation

effort, nor introducing considerable technology limitations.

2.3 Richer runtime information are needed for failure diagnosis

Every diagnosis session starts with a failure report created by the person

who identified the failure occurrence, which can be a maintainer, an end user or

even a software assertion. In the first case, the report is expected to contain

technical details, steps to reproduce and few hypotheses for the fault. However,

when created by the end user, in a best case scenario it will provide some

minimum information on which to formulate the first hypothesis, because

ordinary users do not know the application architecture, their specific abstractions

or even general software abstractions, needed to precisely describe the unexpected

behavior. Furthermore, failures that occur in production are usually harder to

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

34

diagnose, since the software components have already passed through unit and

integration tests during development, where simple failures were identified and

removed. Some of the failures identified in production are related to exogenous

causes, like hardware performance or network instability, and can be diagnosed

by seeing components as a black-box. The occurrence of internal failures,

however, needs detailed information about each component behavior, which are

difficult to obtain, as we shall see in the final sections.

During a diagnosis session, maintainers and developers use all available

information they can access to understand the unexpected behavior. This

information is usually in the software source-code, in logs or traces that reflect the

runtime information (containing the failed execution), in the version control

history, and in additional configuration files, when applicable. A common

approach starts by localizing the event that represents the failure occurrence in the

log or trace, then back stepping through the execution log, discovering the

conditional decisions made, discarding irrelevant events, and gathering properties

from some events, until the selected set corresponds to the failure footprint that

enables behavior comprehension and the establishment of a diagnostic for the

failure. This approach produces good results when events near the start event

contain the necessary information, even when it is unstructured. Some failures,

however, are more complex and this approach can be hindered by extensive logs,

sometimes spread over different threads and routines, requiring the maintainer to

intertwine events from different threads, and identify the start and end events that

connect two logically-connected routines.

It is important to keep in mind that for an extensive log, a considerable

effort is required to answer the most basic questions, like: what was the action

being performed, triggered by which feature, from which user, using which

environment, what is the client’s version, etc. Note that the failure can be

observed inside a function of a common library, while the context of interest is far

away, at the beginning of the footprint, and triggered by some user input. The

second problem is that the footprint may be segmented along several routines,

processes, machines, and environments. The logical relation between these

routines can be due to local or remote call or shared data.

The call relation can be explained through the following example: consider

a failure identified in a cloud service that interacts with thousands of mobile

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

35

devices per minute. The maintainer starts the inspection in the server application,

but the footprint backtracking reaches the web service interface and the diagnostic

is still incomplete. To continue diagnosing, the maintainer needs to find the last

event before the remote call, from the exact device that triggered the fault.

However, even when these events are available, they are usually intertwined with

many of other events, from all devices, requiring a huge effort to find the exact set

of events that represents the footprint associated with the failed call in the remote

server.

The shared data relation can be explained through another example: an

application enables editing a given type of record by many use cases, which are

implemented in separated source-codes, where some are automated and others are

executed through human interaction; the result of a record editing is stored in the

application database; many features read these records from the database, and

most of them use an auxiliary function to convert the record data to another

format. During retrieval, a failure is identified in this auxiliary function. After

some inspection steps, the maintainer concludes that the data stored is in a wrong

format and that the corresponding fault must, thus, be in one of the editing

features. However, it is very difficult to track it back, since the failed routine does

not present a clue of which feature wrote the last data into the record. When the

diagnosis footprint is not clear, as in this situation, maintainers must hypothesize

and evaluate each possibility searching for the traces that modified that exact

record. In most cases, this approach is unfeasible, since an unstructured log does

not provide the necessary organization to filter routines based on a given

perspective of interest.

In addition, there is also a transversal problem that affects every footprint:

log events are intertwined, mixing events from different contexts and reducing the

visibility of the ones that are interesting for the diagnosis session. The set of

relevant events that correspond to a footprint is usually extremely small when

compared to the full log. However, to select them the log set must be indexed

according to these contexts, which are unknown since their selection depends on

the failure under analysis. This leads us to the problem of extracting events with

information that makes them indexable. This problem is indirectly addressed by

some state-of-art solutions, discussed in Chapter 8. The most relevant is

dependency mining (Hellerstein et al., 2002; Zheng et al., 2002; Zhang et al.,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

36

2009; Lou et al., 2010), referenced before, which is an approach that aims at

extracting properties from traditional logs and traces. Unfortunately, this solution

has a considerable lack of precision due to the problems related to runtime

information extraction techniques, discussed along this section. The proper

contextual properties are usually not represented in the log information, since they

are defined at a higher level of abstraction. Therefore, a technique that extracts

richer information from a higher level of abstraction is needed to aid in event

indexing during a diagnosis session.

Finally, there are some works describing automatic diagnosis techniques

(Chen et al., 2004; Mirgorodskiy et al., 2006; Yuan et al., 2010), which aim at

dismissing human intervention when handling failures. We believe, however, that

human knowledge is still a fundamental part of the diagnosis process, as discussed

before, and even if manual work could be partially automated, it cannot be

ignored. It is worth mentioning that others, as for instance Bodik et al. (2005) and

Xu et al. (2008), follow the same assumption. Current automated diagnosis

techniques are appropriate only for superficial failures, not for those that need

internal-logic hypotheses investigation, thus requiring human knowledge to

complement the necessary information and determine the root cause.

2.4 Automated failure detection and recovery

Once the failure’s cause has been identified, the knowledge acquired can be

used to develop mechanisms capable of handling future occurrences of the failure

while the causing fault is awaiting to be removed and to redeploy the

corresponding artifact. In order to identify the scenario that can lead to a failure, a

signature of the failure is needed, and also mechanisms capable of detecting it

during the system execution. The resulting detection routine is a translation of the

diagnostic applied to a running system, since the diagnostic was defined based on

the knowledge acquired during the diagnosis session, which was learned from an

execution footprint, composed by a sequence of events exhibiting the state of the

system’s properties. This detection rule must attempt to identify the failure

signature using the properties available in the execution context. However, the

chosen set of properties, and the relations between them, must not be corrupted or

masked by those properties that do not contribute to precisely detect the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

37

generalization of the failure (i.e. the unique characteristics that classify all

occurrences of the same failure).

The most common form of implementing detection and recovery

mechanisms is the ad-hoc way, based on the developer’s knowledge about the

fault and his experience with the software domain. The result is not a well-thought

out solution, carefully designed for future maintenance; it demands minimum

effort to implement and should be removed when the fault has been corrected.

This approach is usually implemented directly in source code, sometimes spread

over different modules, making it difficult to track back when removing the fault,

since the workaround code blends with the normal code (experienced

programmers annotate their code with comments to quickly find them in future

maintenance). Thus, since the inserted code is just a quick and fast way to handle

the fault occurrences, and not a true correction of the normal behavior, it pollutes

the logic of the software, increasing code complexity and reduces maintainability.

There are better approaches than ad-hoc implementations, which formalize

some aspects in order to reduce design degradation. For example, in the context of

failure detection, systems developed with design by contract (Meyer, 2002) can

insert into the source code executable assertions for each contract defined. These

contracts are evaluated at runtime to validate the context, and when one fails, it is

possible to act on it. Defensive programming can be applied stopping execution to

prevent further consequences. Nevertheless, when a recovery action is known and

feasible, a proper handler can be implemented and associated with the executable

assertion. Another approach is based on the language exception mechanism,

which aids in failure handling by passing the error descriptor through an exception

flow in the opposite direction of the call hierarchy, until a proper handler is

reached. This approach is less polluting to the software logic and its architecture,

since it formalizes the communication between the module that identifies the

failure and the one that will handle it. However, this approach still does not reach

the expected result, since 70% of the failures are manifested by exceptions,

mainly because it is difficult to write an exception handler that correctly recovers

the failure signaled by the exception (Li et al., 2007).

Ad-hoc assertions and language exception mechanism approaches are only

applicable in situations where part or the entire system can easily be modified and

redeployed, and, even in those cases, there are situations when a fault cannot be

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

38

removed, such as when it occurs in third-party services. When the system can or

should not be modified and redeployed, sophisticated solutions are needed to

handle failure occurrences. Another limitation of ad-hoc assertions is that

concurrent system contracts cannot be evaluated using these approaches, since

they may require access to states of more than one component, which may be

executed in separated processes. Therefore, there is a trade-off between

performance impact and consistency while acquiring the global state. Moreover,

for some types of failure, it would not be reliable to implement their

corresponding failure handlers inside the process, since the error may compromise

the recovery routine. The design by contract concept is applied in the Hydra

solution (Chapter 6), guiding how to write failure detectors over the event flow.

The most primitive solution for fault tolerance without modifying and

redeploying the system is the action-base approach (Hansen & Atkins, 1993),

which executes a recovery handler based on log patterns, relying on the log

content, as discussed before. There are more general solutions that do not depend

on execution runtime information, such as checkpointing & restart (Johnson &

Zwaenepoel, 1990; Sankaran et al., 2005; Hursey et al., 2007), N-version software

(Avizienis, 1995), data diversity (Ammann & Knight, 1988), and different

combinations of all these methods (Kazinov & Mostafa, 2009). These works will

be discussed in Chapter 9. The fact is that checkpointing has a considerable

impact on system performance, and its rollback solution does not guarantee that

failure consequences will be properly handled, since the output may have already

been propagated for other systems. The other two techniques require a huge effort

to implement because they depend on logic and data redundancy, and ― even

with this robustness enhancement ― produce systems with questionable

reliability, since failures may occur due to faults being inserted in all versions

(Holloway, 2007). In addition, these approaches handle failures with generic

solutions, while some failures require specific knowledge about its fault to

efficiently handle the consequences.

Most of the work done in the field of failure handling in the last decade is

based on self-healing approaches, which are a facet of Autonomic Computing

(Murch, 2004). In short, this concept states that every component must be aware

of itself; reason about its own behavior and its relation with the system

environment; and take actions to better achieve high-level system goals. They are

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

39

also called self-adaptive systems and present two main control loops: local, for the

component, and global, for the environment. This approach enables self-healing

mechanisms to target failures with specific knowledge about the fault, learned

previously or during reasoning about the cause of the failure. In addition, this

technique offers the flexibility to handle failures inside the component execution

(local loop) or in the system environment (global loop). However, this approach

impacts directly on the component design, thus requiring specialized developers

that master the technique and must also be familiar with high-level software

concepts. This approach is very powerful and has had great influence in modern

software system development, but is unfeasible for ordinary software, since a

team with the necessary skill is usually not worth the cost. Solutions are needed,

thus, to address this problem without requiring high-level expertise from all

developers involved.

Traditional methods and tools, spread among developers and properly

adapted to most application domains, must be used as a basis on which to build a

solution to aid in failure diagnosis and handling, since they are common

knowledge for most developers and would not require specific training. As long

as specific information about the failure is required to properly heal the system,

the efficacy will continue to rely on the completeness and precision of the

recovery footprint content extracted from the system runtime. In other words, to

become able to detect and handle new failure occurrences, events generated by the

failed execution of the software must expose relevant information. Therefore, the

richer the runtime information, the greater the chances of directly using diagnosis

results to create the detection rule, thus reducing the effort in detection and

recovery implementation tasks.

Finally, there is the problem of knowledge distribution among all team

members. Since fault descriptions may vary considering the level of abstraction,

some team members may have limited knowledge about the best way to detect

and handle the corresponding failure occurrences. For example, in a team

composed of developers with different expertise and experience levels, a novice

programmer may have developed a software component that presents a risk of

failure when integrated into the system. This developer does not have sufficient

knowledge to understand the failure scenario in order to develop the solution to

handle the failure consequences. In this case, the solution may be developed by an

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

40

experienced developer and installed at the system level. The opposite case may

also occur if the software engineer observes an internal failure in a component and

is capable of developing the detection strategy for future failure occurrences, but

the recovery routine requires the expertise of the component’s developer. In this

case, the solution may be hybrid, developed by both team members. This does not

mean that team members cannot handle failures outside their expertise, but effort

necessary for doing so may vary greatly. Thus, the appropriate solution must

provide mechanisms to enable writing failure handlers to be installed: (1) inside a

single component, (2) at the system level, and (3) in a hybrid form, as in the

Autonomic Computing solution.

2.5 Solution Requirements

This section summarizes the discussion of this chapter, and presents a list of

requirements that the solution must fulfill to be acceptable for the problem.

Foremost, the main problem addressed by this thesis is the runtime information

extraction. However, solutions for this problem are evaluated through the

information usage, which is mainly represented by failure diagnosis, detection and

recovery capabilities. Therefore, the solution must address these four aspects. The

list of solution requirements elaborated after discussion is:

• Must be based on low-cost methods and tools.

• Must rely only on traditional programming paradigms.

• Must be applicable to failures in local, as well as in distributed software.

• Must be portable between different programming languages and

environments without implying in considerable development effort.

• The use of libraries and frameworks must not restrict project decisions.

• Must address both scenarios where code can and cannot be changed to

detect and recover from a recently diagnosed failure.

There are some aspects that need more attention, such as providing methods

and tools that can be applied to ordinary projects, guided by usual developers, and

without requiring new paradigms, theoretical concepts, language extensions,

experimental tools to assist coding, etc. In short, the objective is to provide means

for existing systems to increase their reliability with a solution that does not

disincentive its usage due to an overwhelming effort in changing the development

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

41

course, or even its impossibility due to technical and business issues. Therefore,

the solution must be easy to integrate and only minimally impact the way

developers write their code.

2.6 Overview of the Solution

With the purpose of achieving a good result in recovery diagnosis and

removal diagnosis, tools must help expose the system’s runtime information in a

way that maintainers can easily understand the execution, elaborate hypotheses

about possible causes of the observed failures, and efficiently verify them against

the runtime information, until the diagnostic is complete.

After the failure signature is known, a mechanism may be developed to

detect future occurrences, through the corresponding signature, and proceed with

a recovery routine. Although such a routine is implemented for an exact kind of

failure, it must be complemented with runtime data about the failure occurrence to

enable proper recovery. Observe that different occurrences of a same type of

failure may depend on occurrence specific data, and, hence, the recovery routine

must be able to use the footprint data as parameters, in order to properly recover

from the current failure instance.

When writing the failure handler, the necessary information must be

gathered from the footprint generated by the failure occurrence, from where one

must retrieve the set of properties that is needed to write (1) the failure signature

for the detection strategy, and, if needed, (2) the set of properties which values

will be extracted from future failure footprints and passed on to the recovery

routine.

Moreover, the usual ad-hoc approach for failure handling tends to modify

the behavior that was initially designed to address the system requirements, thus

polluting the system’s logic as new recovery handlers are inserted without proper

reasoning about engineering concerns.

Therefore, the main research questions are: (1) how to extract rich

information about the system execution considering the restrictions presented in

the previous section; (2) how to enable developers and maintainers to diagnose

failures using this rich information source; (3) how to use this information source

to support the development of mechanisms to recover from identified failures; and

(4) how to implement these mechanisms avoiding spreading temporary

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

42

modifications in the system’s source code (i.e. the ad-hoc failure handling

approach).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

43

3
Logs Annotated with Contextual Meta-information

The main problem addressed by this thesis is the search for a solution

capable of exposing relevant contextual information about the execution behavior,

which must be useful for further analysis and must not impose a considerable

overhead on performance. As discussed in the previous chapter, the tracing

approach imposes an overhead that prevents it from being used in a production

environment. On the other hand, traditional logs are not suitable for runtime

analysis, due to their incompleteness and absence of structure to handle

information. The rationale used as basis in our research is that there must be a way

to balance the benefits of logging and tracing through a hybrid technique that

imposes a small overhead when applied, while offering a better cost-benefit

regarding the quality of the extracted information.

From the problem diagnosis point of view, the three main difficulties

encountered by a developer who is using traditional methods to study system logs

are:

1. Finding out which machines are involved in the failure under

analysis and gather its log files.

2. Correlating events between different machines in order to retrieve

the complete footprint between the triggering-event and the point

where the failure was observed ― an executable assertion, for

instance, may identify that an object has an inconsistent state, which

is the observation of the failure, but the triggering-event that

produced the error may be in the past, where this object was

modified, possibly in a different context.

3. Viewing only the relevant events and properties, discarding the

enormous amount of irrelevant information from contexts unrelated

with the failure.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

44

These difficulties are the reason why manual inspection requires a great

effort. The first one is addressed by logging tools that aggregate events from

different machines in a central repository. For the second one, there are some

proposed solutions in the state-of-art, discussed in Chapter 8, that can infer

relationships between executions in different machines, processes and threads.

However, these solutions impose either a high impact on performance, or produce

inaccurate results leading to many false positives. The third problem presents a

greater difficulty: how to select, from the set of events, only those events that are

interesting for the diagnosis session.

The simpler and direct solution of separating events into different profiles

does not solve the problem, since most events can be classified in more than one

profile. For example, an event that represents an authentication fault during login

can be interesting both for the developer who is verifying why his component

does not interact correctly with the system, and for the infrastructure administrator

who is verifying why an user cannot execute the login action. Note that not every

security event will be interesting for the developer, neither will every login-related

event be interesting for the system administrator. Moreover, if we try to generate

profiles based on groups of contexts, a recently discovered fault may require a

profile based on an unexpected combination of contexts, for which the

possibilities are countless. Thus, the profile ― or, better, the perspective of

interest ― must be precisely created for the specific failure under analysis,

embracing all contexts that may have some connection with it. However, it is

impossible to foresee all possible profiles that will be needed during a diagnosis

session, since one does not know which faults a system will present after

deployed. Therefore, it is necessary that the solution enables the generation of

perspectives of interest on-the-fly, based on the contexts the developer desires to

inspect, which are learned from the failed scenario and combined with acquired

knowledge about the system.

Information extraction also presents some problems for detection and

recovery mechanisms. Since the tracing approach is impracticable for a

production environment, logging becomes the more appropriate applicable

solution. However, due to its unstructured format, the system properties

embedded in the extracted information are hard to access, and even when some of

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

45

them are available, they are usually insufficient to precisely diagnose de cause of

the failure. Mining solutions (discussed in Chapter 8) produce an imprecise result,

and are, furthermore, limited to the information available in the string that

represents the event, which is restricted by the way developers report events

during the coding phase, and hampered due to scope visibility, as we shall discuss

later.

While developing failure handling mechanisms, actuators are implemented

by transferring developer and maintainer knowledge into code fragments, scripts,

configuration files, and whatever is needed for these mechanisms to identify and

handle failure occurrences. During this task, developers study the system’s

behavior through the information in the execution flow, in order to determine the

scenario characteristics that represent the failure and, thus, must be used to detect

future occurrences. As a simple example, it is possible to determine that an

operation failed looking for an event that represents the beginning of an action

without a corresponding event that represents the end of this action. This scenario

is the signature of the failure, which ends up consisting of relations between

events and their properties, which are the atomic fragments in the execution flow

and, therefore, the main source of information for detection and recovery

mechanisms. In other words, these mechanisms must use the sequence of

instantaneous, possibly parallel, states to gather the necessary information to:

(1) Identify scenarios that can lead to or represent a failure.

(2) Feed the recovery mechanism, specifying how it must behave to handle

that specific failure occurrence.

However, here we face the problems discussed in the beginning of this

section: logging techniques producing lean results, with few and hard-to-index

properties, and a resulting scenario requiring events and properties that do not

exist on the extracted information, thus imposing software modification and

redeployment in order to attempt identifying the missing information in future

failure occurrences.

Even when considering systems that can be partially redeployed and allow

evolutions of the instrumentation, some of the properties must be fetched from

scopes that are not visible at the place where the event is reported, such as outer

scopes, other modules, or even other components. To address this problem, the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

46

instrumentation solution must consider the execution context, and not only the

data available at the point where the event is notified. Additionally, the solution

must also provide a mechanism to index event properties in a straightforward

way, necessary for detection and recovery mechanisms.

Therefore, the extracted runtime information design plays a fundamental

part in failure diagnosis and failure handling, by influencing the event selection

capabilities and easing the knowledge transcription process, respectively, thus

influencing these tools and mechanisms effectiveness. Ergo, the information

extraction mechanism is the main problem addressed by this thesis, which

proposes, as a solution, a novel approach based on hybrid instrumentation that

enriches events based on the software context, increasing the chance of the

required information being available during failure diagnosis, detection and

handling and, thus, ensuring the mechanisms effectiveness. The main

requirements for this solution were listed in Section 2.5.

3.1 A Hybrid Instrumentation Approach

The way to represent and select the events among all those available in the

execution flow is the key to develop solutions for diagnosis and failure handling.

Ideally, while performing a diagnosis, only the events that match a context of

interest should be selected and displayed in a unique temporal list combining the

execution flow originating from different components. It is interesting to find out

location information ― e.g., from what machine the event was sent, which

process was running, in which component, in which procedure, triggered by what

user, some local and global variable values, the execution stack point, etc. It is

desirable to identify non-explicit relationships between the events, which can

often provide clues to determine the cause of the failure. Finally, it is important

that only the necessary information from each event is presented to the user,

according to his/her perspective of interest. The needs for detection and recovery

mechanisms are similar, since they require events with properties that can be

easily indexed, in order to evaluate if each known failure scenario has been

activated. Therefore, those system properties are the key-solution for developing

tools to support diagnosis, and mechanisms to support failure handling

implementation. Chapters 5 and 6 explain how to combine these tools and

mechanisms with this instrumentation approach.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

47

Current logging techniques insert these properties in an unstructured form,

within a human-readable message, which is not appropriate for indexing. Hence,

these properties must be appended as meta-information instead of raw text in the

message. In our solution, every event is a composition of tags, which are key-

value pairs representing the state or value of a property at the exact moment when

the event is generated. The key is the name of the property being notified. Values

are optional, since in some cases the goal is merely to inform the presence of a

property ― such as Error, for example ―, sometimes not conveying any other

information. In other cases values inform some state, for example, the id of the

component responsible for a computation. The set of properties that may be

recorded in an event is not limited and does not have to follow a given schema:

the developer may inform any property he/she wants, in any point of the

execution. However, there is a basic set of tags that must be present in every

event, which is guaranteed by the log library. These tags are:

• A timestamp used to sort the events from each thread into a timeline.

• A message representing a human-readable description of the event

(the traditional log).

• An action describing the high-level intention of the current

procedure under execution.

• The location representing the runtime origin of the event, defined by

the application domain (ex: component X, thread Y).

• The pair file/line representing the place in the source code where the

event is notified.

The rest of the tag set must be defined based on the project’s artifacts, such

as design, architecture, domain, etc. This topic will be discussed in the next

session.

The event notification calls are inserted into the software using a novel

instrumentation technique that enables developers to insert properties about the

current context as meta-information into the event. During the execution, each

routine exposes its runtime information through these notifications to a central

repository. This repository stores all the events received, keeping the structured

format, which will be exploited by tools and mechanisms later on. Nevertheless,

applying this approach, alone, imposes more effort than the traditional log

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

48

approach, since it requires developers to expose more information and also reason

about what information might be important in the future.

The recorded event must be composed of all the relevant properties about

the context, leading us to two potential problems: (1) breaking encapsulation, due

to the need to access variables defined in outer scopes, or even in other modules;

and (2) abhorrence, since all context variables must be inserted in every event

notification. To solve these problems, our solution introduces the concepts of the

scoped-tag and the tag-stack. The tag-stack contains tags that represent high-level

abstractions and must grow and shrink synchronously with the execution stack.

There is only one stack per thread, and sub-threads are treated as new threads,

identified by name. During the execution, each new scope may insert information

into the tag-stack using scoped-tags; and, when the scope ends, all corresponding

scoped-tags must be removed. In order to avoid the risk of forgetting a scoped-tag

in the end of the scope mechanisms based on the current programming language

are employed, which are explained in Chapter 4. Following this way, all event

notifications executed inside this scope are enriched by tags present in the tag-

stack of the current thread, thus solving the abhorrence problem, since the effort

of inserting the specific tag is made only once per scope (considering, mainly,

inner scopes). For illustration, consider the following code:

int myFunc(char strategy) {
 log.push('choice', strategy);
 int someValue = f();
 if (someValue > 0) {
 log.push('curr_value', someValue);
 if (strategy == 'x') {
 other.executeX();
 } else if (strategy == 'y') {
 other.executeY();
 } else {
 log.notify('Invalid strategy', 'error');
 }
 }
}

...

void executeX() {
 log.notify('Executing X strategy');
 ...
}

...

void init() {

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

49

 log.push('component', 'myNode');
 log.notify('Starting');
 myFunc('x');
}

Then, if we call init() we may have an output similar to:

[component:myNode] Starting

[component:myNode] [choice:x] [curr_value:12] Executing X strategy

Observe that all tags defined in outer scopes enrich the inner notification,

despite being inserted due to a function or language control scope. There is also

an example hereafter to demonstrate that properties intrinsic of the notification

may be inserted as additional arguments in the notification call. Therefore,

following the scoped-tag approach the required effort is dramatically reduced,

since developers will only need to annotate scopes with properties that must be

present in all related events. In addition, encapsulation will remain unchanged, as

inner notifications will take advantage of already recorded outer properties

without needing to explicitly access them.

Finally, this instrumentation approach solves the problem of extracting

properties from higher levels of abstraction in the execution flow, since these

properties are inserted by developers during the coding phase, when they can

transcribe more knowledge about the system’s design and architecture than while

just executing maintenance activities. This approach is classified as hybrid since it

enables developers to manually transpose high-level abstractions, as in the

logging technique; however, being automatically extracted in an indexable format

as in the tracing technique; thus, providing richer information that better supports

tools for diagnosis and mechanisms for failure handling.

3.2 Defining the Instrumentation Policy

An existing issue in logging techniques is defining the instrumentation

policy in such a way that it assures a coverage rate that sufficiently describes the

execution behavior. Following the presented hybrid approach, sufficient coverage

can be achieved since the activity of inserting event notifications also inserts

contextual properties, which may occur during the event creation or in source-

code scopes. In addition to the definition of granularity and strategy of event

notifications, the policy must also inform rules to notify scoped-tags.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

50

There is no generic formula to address this issue, since information

extraction requirements change from system to system. Hence, all team members

involved in system creation must participate in the policy definition, contributing

with:

• Knowledge about the domain;

• Abstractions developed during the software modeling; and

• Their own creativity, as commonly used in the development of

functional requirements for novel solutions.

Thus, the policy manifest must emerge from discussions that use these three

core elements (listed above) as a starting point, and the result must be presented as

a document with two sections: the first one with a list of rules for inserting event

notifications, each one with an indicator defining if the pattern must always be

followed or if it may be skipped depending on component’s risk for the system;

and the second with a list of tags with the property name, an associated

description, and when applicable an indicator if it must be used as a scoped-tag ―

meaning that this tag always represents a contextual property and must be present

in a group of events in order to make them relate.

When instrumenting, it is crucial to know the risk represented by each

component, in order to guide the developers while following the indicator on the

first section of the policy’s document. Thus, it becomes necessary to define the

degree of instrumentation that must be applied to each of them. Also, after the

conclusion of the policy document, the developers must discuss and decide how to

rate all components defined in the architecture. This rating will define the

instrumentation granularity for each component, which must be directly related to

the expectations of using its runtime information for any of the further

applications: fault diagnosis, failure detection, and recovery. Observe that these

definitions are intrinsic to each specific system and must, thus, be defined based

on the risk each component implies to the system’s goals. While the system is

being developed, the complexity of each component, directly related to the risk of

inserting a defect, might be evaluated based on metrics (McCabe & Butler, 1989;

Chidamber & Kemerer, 1994; Macia, 2013), such as McCabe’s cyclomatic

complexity, total number of lines of code, fan-in, fan-out, number of services that

share the component or even the running instance, or, yet, on the intuition the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

51

developers have, based on the component’s responsibilities into the solution.

However, when the system is in productive use, this risk might be defined based

on the component’s history of failures, flagging the ones that have participated in

the footprint of previous failures. In addition, this definition can be automatically

evaluated based on the extracted information itself, through applications

implemented over our solution basis ― these, however, will remain a theme for

future work.

Moreover, this technique is meant to be used as a lightweight approach,

allowing the maintenance team to learn from the flaws during the software’s

lifetime and to add new instrumentation as needed. The rest of this session will

describe some guidelines to aid software developers in the task of defining the

instrumentation policy. The resulting rules of the policy may not be complete in

the early phases of the system’s lifetime. Some failure occurrences would require

more information than which is exposed, thus imposing additional

instrumentation. As risk and requirement specifications, this policy must be

refined along the software lifetime while learning from its weaknesses.

3.2.1 Programming Language Abstractions

The most generic approach for applying the proposed instrumentation

technique is using programming language abstractions, since they are very similar

among different languages. For example, it is undeniable that the set of

abstractions provided by all C-inspired languages (C++, Java, C#, etc) have a

large intersection between them, such as classes, methods, parameters, operators,

and flow controls. However, these are also the abstractions that can be retrieved

from automated solutions, such as traces, since the information needed is already

available on the software itself. Nevertheless, they are also valuable when

combined with high-level abstractions, and should, thus, be present on the

instrumentation policy.

The most trivial approach is to insert at least one event notification per edge

in the syntax tree, leaving breadcrumbs to track runtime decisions when needed,

as the example in the following code:

log.push('action', 'generate_report');
log.notify('Initializing the report generation', ('group',

request('param_group']));
if (report == 'simple') {

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

52

 log.notify('Simple report chosen');
 ...
} else if (report == 'full') {
 log.notify('Full report chosen');
 ...
 for (obj in report_list) {
 log.notify('Processing item', ('item', obj));
 ...
 }
} else {
 log.notify('Invalid option', 'error');
}

Observe that whichever path the program executes, the footprint will be able

to retrieve all decisions made, thus supporting further behavioral analysis.

Moreover, there is the problem of information content in event messages,

which might be assisted by applying coding techniques such as writing comments

into a logic sketch (a source skeleton with defined flow controls), disclosing an

explanation of what the following code must do, before its writing. The same

content on the comments may also be used as content in event notifications. In

addition, this coding technique is renowned for forcing the developer to think

about the logic before writing it.

Another guideline is to insert notifications into the usage of language

exception mechanisms. For example:

try {
 log.notify('Synchronizing');
 ...
 while (something != otherthing) {
 log.notify('Current state', ('state', something));
 ...
 if (!result.valid()) {
 log.notify('Invalid result', ('data',

request.data));
 throw exception('Invalid result');
 }
 }
} catch (exception e) {
 log.notify('Unexpected operation', 'error',

('stacktrace', e.stacktrace()));
}

The notification should explicitly inform an error tag when the state is

surely wrong, and a warning if the unexpected local result might be considered

valid for the external environment. This decision relies on the knowledge the

developer has about the system. The warning approach is controversial and is

considered a bad smell, however one may disagree. At least, this warning tag may

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

53

be a tip for the diagnosis session, if a failure actually occurs. Moreover, the throw

scope must also be instrumented in order to expose properties that may be

involved in the unexpected behavior ― for example, the parameters of a failed

request.

Another suggestion is to associate the event notification with other

development methods, such as contract-driven development, and use an

executable assertion for each contract item to notify the failed ones. This approach

can be further enhanced by also reporting valid assertions, which confirm that the

system is presenting a correct, expected, behavior. Moreover, these assertions can

be used as checkpoints for verification and actuation of recovery mechanisms.

Observe that all previous examples insert an event notification in every

decision edge of the program. While instrumenting the developer’s task is to

expose as much as he can, considering all decisions made by the software during

execution, including, mainly, those that are unexpected, which may aid as tips for

the root-cause diagnosis. In addition, there is the problem of execution edge

completeness (granularity in path coverage) versus system performance. Thus, in

order to address instrumentation for deployed systems, the developer must avoid

decision edges that would have higher impact on performance and would

contribute little for a diagnosis session. For example, the size method of a generic

array may not be instrumented since it is called several times along the execution.

On the other hand, it should be notified when it is used by a more complex code

(for example, when used in a parser that processes a command received by a data

stream). Furthermore, the key to enhance the instrumentation’s efficacy is the

adaptation for using the technique presented here paired with existing methods

that suggest better coding practices, such as contract-driven development (Meyer,

2002), correctness by construction (Hall & Chapman, 2002), or even the

pragmatic programmer guide (Thomas & Hunt, 1999).

3.2.2 Architecture and Design Abstractions

The second main guideline is to define the policy based on software models,

which must expose the decisions made regarding the system’s architecture and

design. Developers must take advantage of high-level abstractions created during

the modeling phase to define them as properties that will be notified in events,

inserted as scoped-tags or not. These are the same abstractions the person who is

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

54

diagnosing will attempt to find in the footprint, even when possibly not being

aware of it.

From software developed by model-driven methods to software developed

using simple, ad-hoc sketches, the process is the same: model artifacts must be

studied and each abstraction identified must be rated based on its relevance to the

system’s main goals, then selected or not to be represented as a tag when

referenced in the source code. The set of properties that must be inserted into the

instrumentation depends on the architecture, and some examples will be presented

and discussed hereafter. However, from class and sequence diagrams (if

available), we might apply a generic approach: abstractions derived from

sequence diagrams must answer questions about the program behavior, while

abstractions derived from class diagrams must answer questions of which entities

were participating, and which data was being handled. In order to accomplish

these goals, we introduce the tags action and record, which are native tags in the

solution. A tag action must be created as a scoped-tag for each high-level

operation being executed, with the possibility of being nested. The value of the

action tag is the operation name, for example:

log.push('action', 'sync')

...

if (invalid_report) {

 log.push('action', 'build_report');

 ...

}

Similarly, a tag record must be generated when an object representing a data

record is used (created, removed, or modified), having as tag-value, in the worst

case, a tuple composed by the record type and the identifier, and, in the best case

scenario, the full state of the record. The problems with always storing the full

state regard the space required and language limitation, since those without

reflection mechanisms would require an additional effort to serialize each object

type. Here is an example, considering a language with reflection capabilities:

database.save(new_user);

log.notify('Finised user registration', ('record',

new_user));

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

55

Additionally, since this is a novel technique, future research is encouraged

to address other model types and formalize how they can be studied in order to

guide instrumentation policy definition. Furthermore, each architecture type

exposes its intrinsic abstractions, which must be transformed into tags in order to

enable developers to benefit from them while diagnosing or implementing failure-

handling mechanisms. For example, every distributed system architecture may

have a tag indicating the entity identifier, and a tag indicating the remote

procedure call, since these are the most basic properties in software divided into

several independent parts. However, the semantics of these properties may vary

between different architectures: a client-server application will use a client_id tag

to identify each piece of software interacting with a central server (assuming there

is only one) and a tag request to reference each RPC; a parallel architecture using

map-reduce will prefer mapper_id and reducer_id as tags for identifying each

node in the cluster; and, finally, component-based systems, with much more

complex abstractions, will use instance_id for each running component and

instance_type to annotate the type of component.

Moreover, depending on the requirements of the instrumentation design,

more abstractions may be necessary to achieve the expected efficacy when using

the runtime information. The client-server architecture may also expose the client

environment and the request feature. Observe that it is possible to aggregate

different actions through a common tag, for example, using the tag

[feature:info_update] to group three request types that are used together for the

same feature, albeit in separated requests: (1) load the webpage template; (2) load

available controllers based on the user profile; and (3) retrieve the most recent

data related to the information service. Following this policy, a developer

inspecting this system’s behavior will be able to select all events from a feature by

using this abstraction, which aggregates all actions associated to it. Another good

example is the component-based architecture, with running systems presenting

heterogeneous entities with different types of components and more than one

instance per component. This type of architecture requires, for instance, one tag to

represent the component type (instance_type) and another one for representing the

running instance (instance_id), thus requiring more tags to represent the service

usage, depending on the implementation. A message-based system, for example,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

56

will require tags for identifying the message instance along the execution flow

(message_id), its type (message_type), and, if possible, the content

(message_content). Finally, architectures such as Model-View-Controller (MVC)

may also take advantage of this technique by extending the record tag to map the

model elements, then create event notifications for controller manipulations and

update notifications for these elements.

One of the key-characteristics of this technique is its flexibility to adapt to

the system’s specific architecture, therefore it is not expected that a single, thus

generic, instrumentation process will achieve success in exposing the system’s

abstractions, since these abstractions are derived from very specific decisions

made based on the problem each system is solving. Again, we encourage future

work aiming at refining and formalizing these guidelines based on other

architecture types.

3.2.3 Domain Abstractions

The third main guideline is related to abstractions identified in the software

domain. They must be gathered from requirement specifications and knowledge

acquired from the environment where the system will be used. For example, a

system designed for chatting applications may involve abstractions such as room,

conversation, message, sender, receiver, profile, among others, which will be

transformed into tags and appended to events such as “Sending message”,

“Receiving message”, and “Network down, failed to send”. Another example,

enumerating a completely different set of abstractions, would be a mission-critical

embedded software for monitoring oil pipelines, which might require tags to

represent joint positions, level of detected leak, level of battery, radio status,

among others; and notifications such as “Sampling oil sensor”, “Evaluating risk”,

“Notifying alarm”, “No satellite network available”, etc.

Furthermore, the resulting set of tags from the domain should follow a

terminology that is familiar to both the users and the maintainers that will provide

support for the system. This approach increases the chances of a maintainer who

did not participate in the development, or even a non-technical user, investigating

hypothesis about unexpected behaviors; we do not expect, however, with the

present technology, to enable these actors to produce detection and recovery

mechanisms, since this might require internal knowledge about the system.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

57

3.3 Threats and Solutions

There are two main threats in this approach for extracting runtime

information. The first one is that it requires developers to insert event notifications

and manage tags between scopes, which may be exhaustive even with the tag-

stack solution that avoids re-inserting contextual properties in every event

notification. Observe that some guidelines may require an enormous effort in their

implementation, such as in saving properties of each remote request: developers

following this approach will have to write a code block at the beginning of each

request handler in order to stack up a bunch of properties related to the specific

request. Other guidelines may be error-prone, requiring a log for each database

manipulation, for example, something one may easily forget to insert. These

difficulties could, in theory, reduce adherence to the technique, but the problem is

solved combining basic software reuse principles, which we shall discuss in

Chapter 4 and assess in Chapter 7.

The second threat is the necessary disk space and the communication

bandwidth for transferring and storing all generated data. Since each event

contains a fair amount of contextual information, which increases the volume of

the required space, a log database using this approach may grow quite fast. If not

addressed, this problem would turn the solution proposed here non-cost effective.

The required space issue may be mitigated, however, by creating an event discard

policy to maintain the stored data volume near to a given size limit. The rest of

this section will describe some conjectures about this discard policy, which was

implemented on some of the systems used in the evaluation of this thesis (Chapter

7), however the discarding technique needs further experiments to define how it

must be designed and applied for each system, and will, thus, be addressed in

future research.

Observe that the proposed approach generates less data than tracing, since it

does not save the full state of the system, however having a log size limit,

eventually some data will be needed to be discarded. It may compromise the

efficacy in failure diagnosis, which implies a tradeoff between the log size limit

and the quality of information to support diagnosis. The proposed solution

leverages the chances of having the required information when needed.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

58

The discarding solution works as follows: when the database size reaches its

size limit, some of the stored information is selected for elimination. In this case,

which information should be removed? Traditional log approaches uses a first-in

first-out (FIFO) policy, which removes the oldest events first, and are not

necessarily the less relevant information in the log. When dealing with a log

where each event contains lots of contextual properties, sophisticated methods can

be applied in order to avoid removing relevant information, which could aid in

diagnosing failures. Observe that the information can be only part of the event, i.e.

just a few tags, not the entire event.

Our proposed solution is based on the assignment of a time-to-live property

(TTL), representing days, for each generated event. The value for this property

must be defined based on the information the event is carrying, thus enabling that

relevant information remains more time in the log. Our methodology suggests that

the instrumentation tool must propose an initial value, and then sequentially apply

a group of rules capable of measuring the event’s relevance, in order to reach a

final value that exhibits the estimated relevance for that specific event. This value

will be appended to the event as a hidden tag. Also, the rule may change the

relevance of previously evaluated events, in order to adequate them to the

knowledge acquired later on. Each rule must receive as input the event data and

the current TTL value; and return the new computed TTL value. Moreover, during

the system’s lifetime, a daily routine must be executed to decrement the TTL

value of each event and remove those that reach zero.

There is also an extension of this approach that defines patterns for tag

removing, thus reducing the space required to store the event instead of removing

it completely. This pattern can be (1) a given size limit for a tag type or (2) a set

of tags together; both with a threshold based on TTL or event age (lifetime) to

remove them. This approach is extremely useful when applied to events that

contain large data tags, such as the tag record, since the content after the removal

represents a summary of what the event was before, indicating, for example, that

an object was saved into the database, but in this case without having data to

inform what happened exactly. This approach is valid, since having to choose

between recent and older serialized data, one will prefer the recent but will keep

the option of not removing all of the information about the older event, thus

leaving a breadcrumb to its footprint.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

59

The development team must create these rules based on the specific domain

requirements, following the relevance of each defined abstraction, and

considering the use of heuristics to define how each rule must be applied to a

specific system. There are also some generic guidelines that may be used, or at

least adapted, to every system, which are exemplified using some values to ease

the comprehension of the relation between them:

• Every event starts with TTL=30 (1 month)
• If the event has an error tag, its TTL is increased by 11*30.

o Events with the same request_id have their TTL raised by 5*30.
o Events with the same action tag have their TTL raised by 2*30.
o Events with the same device_id tag have their TTL raised by 30.
o Events that present a timestamp with a difference of 1 second have

their TTL increased by 5.
• If the event has a [feature:sync] tag, its TTL is increased by 30 (forcing

events of a specific feature to remain longer in the database).
Thus, there are also tag-based rules, which must be defined based on the

TTL or living days (AGE):

• Remove tag cpu when AGE > 7.
• Remove tag memory when AGE > 7.
• Remove tag disk_space when AGE > 7.
• Remove tag record when AGE > TTL * 0.7.
• Remove tag request_post when AGE > TTL*0.5.

The definition of these TTL increment is subject to future research and were

defined empirically during this thesis. The guidelines above just exemplify how to

implement the technique. Finally, we have also observed that an analysis

involving the computed TTL and tags such as location, file, and action can be

used to determine modules, components, or even services that present higher

risks, aiding developers to determine flow inspection priority when diagnosing a

failure. However, this type of analysis will be addressed in future work.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

60

4
Architecture of the Solution

This chapter presents how the requirements described in the previous chapter

can be implemented in a software system. An overview of the solution is shown in

Figure 1, which is based on an instrumentation library and a central repository.

The instrumentation library must provide primitives for notifying events and

handling the tag-stack state, while the central repository is responsible for storing

the events received, handling the information lifetime, and providing mechanisms

to access the stored events based on a perspective of interest. Therefore, the

solution is based on a client-server architecture, where each software entity that

generates events must notify them through the instrumentation library.

Figure 1 - Solution Architecture

The instrumentation library implements an entity for each abstraction

discussed in the theory: an Event descriptor consisting of a timestamp and a set of

contextual properties, all represented as a list of Tags; each Tag being represented

as a key-value pair, where the key is the name of the property, and the value part

represents the property’s state at the moment of the associated timestamp. There is

also a tag-stack abstraction, which handles a stack with contextual properties,

easing the information gathering process, and a device manager, which holds the

logic for the notification process.

Software Component

Instrumentation library

Specific Implementation

Tag Event

Device
ManagerTag Stack

<<Notify>>

* 1

*

1

Central Server

Event
Subscriber

Recovery
Mechanism

Diagnosis
Tool

* 1

Detection
Mechanism

Event
Database

Query Engine

Discard
Agent

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

61

This Central Server Repository (CSR) contains an event subscriber, which

provides a remote interface for receiving event notifications. This entity is

responsible for adjusting the event data and storing them into a database. It also

contains a discard agent, which implements the logic for information removal,

with a hot-spot to register specific policy implementations. Last but not least, the

query engine entity provides mechanisms to query data based on a perspective

that limits the result according to restrictions selected and passed on as parameters

by the maintainer or the automated failure handling mechanisms.

The following sections will specify the instrumentation library interface and

explain in more detail the behavior of the CSR.

4.1 The Instrumentation Libraries

An instrumentation library must be implemented for each domain and

language used. For example, the C++ instrumentation library may be used in

desktop applications and in components of a distributed system, but the

requirements are not the same, since the distributed system will need a more

sophisticated design in order to handle transmission failures. There are also minor

differences between each language implementation, since the chosen language

may present some limitations or an intrinsic characteristic that enables a refined

approach. For example, in Python language we can define as a tag-value any

object type, which is transparently serialized, while in C++ this approach cannot

be implemented without a third-party solution for serialization. The C++ language

provides, nevertheless, a solution for scope-tag implementation that only works in

languages in which destructors are called immediately when the object is deleted,

and is impossible to implement in most languages with garbage collection (for it

requires a handler synchronized with the moment the object is dereferenced by the

allocation scope).

The library interface must exhibit only the operations related to tag handling

and event notification, while the operations that deal with multi-threading, event

recording, and data transmission must be encapsulated into the library’s

implementation. Hence, it must provide the following interface ― written in IDL

(Lamb, 1987):

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

62

Tag {
 attribute string key;
 attribute string value;
}

typedef sequence<Tag> TagList;
TagDictionary {
 attribute TagList tags;
}

module EventMonitor {
 void notifyEvent(in string message);
 void notifyEvent(in string message,
 in TagDictionary dict);
 void pushTag(in string name);
 void pushTag(in string name, in string value);
 void popTag();
}

Observe that except for tag handling, this instrumentation does not differ

much from traditional logging. For example, in Python, a notification could be

written as:

logger.notify(’Invalid client settings’, {
 ’platform’: ’web server’,
 ’request_id’: ’1234’,
 ’step’: ’verifying client settings’
})

This example exposes a problem discussed in the previous chapter, which is

the exhaustive and error-prone effort of writing the same property in all event

notifications. To illustrate, let us consider that the tag platform should be included

in every event, and that the tag request_id will possibly be included in several

events of a feature that handles requests. In such case, to ease the instrumentation

task, we use a tag-stack mechanism provided by the pushTag and popTag

primitives, which control the abstraction information of the current routine that

will be appended to notified events. Refactoring, the code looks like this:

In the 'main function'
logger.push_tag(’platform’: ’web server’)
...

In the request handler function
logger.push_tag(’request_id’: request.id)
...

At the notification raising point
logger.notify(’Invalid client settings’, {
 ’step’: ’verifying client settings’
})

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

63

In addition to eliminating the need of rewriting tags, this approach also

eliminates encapsulation violations. The tag platform should be present in all

events and its value is constant, so it may be pushed directly in the main function

of the application. The tag request_id is also present in all events that handle a

specific request, however its value changes as requests are made and, therefore, it

must be pushed in the scope of a specific request.

The function calls for push_tag and pop_tag must always form a pair;

hence, each call to push_tag must be associated with exactly one call to pop_tag,

limiting the scope of the tag. Following the previous example, the pop_tag calls

would be inserted as follows:

At the end of the request handler function
logger.pop_tag()
...

At the end of the 'main' application
logger.pop_tag()

This approach is obviously risky, since the developer may forget to pop

some tags, making the stack inconsistent until the end of the execution. To

overcome this problem we suggest adapting the instrumentation library according

to the implementation language. The main idea is to consider the tag as a resource

and ensure that the allocator entity, i.e. method, is also responsible for its

deallocation. For example, the scoped tag is implemented in C++ language as a

class that allocates a variable on the stack whose constructor pushes the tag, and

the destructor automatically pops it at the end of the current scope. In both normal

and exception paths the variable will be deallocated. A simplified example of this

class is presented below:

class ScopedTag {
 ScopedTag(string name, string value) {
 TagStack::push_tag(name, value)
 }

 ~Scopedtag() {
 TagStack::pop_tag()
 }
};

The usage of this class can be exemplified as:

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

64

Response authenticateUser(Resquest req) {
 ScopedTag request('request_id', req.id);
 ScopedTag user('user_id', req.user.id);
 ScopedTag action('action', 'authentication');
 ...

 if (is_superuser) {
 ScopedTag user_type('user_type', 'superuser');
 ...

 if (user_does_not_exist) {
 logger.notify('Invalid user ID', 'error');
 }
 }
 ...
}

The same approach cannot be implemented in languages that automatically

manage memory, hence do not have a destructor called deterministically when the

object reaches the end of scope (dereferenced), only when it is destroyed by the

garbage collector. Java and Python programming languages, for example, have

this limitation, imposing the use of other approaches for implementing this syntax-

sugar. In Java it can be implemented through the combination of Aspects

(Gradecki & Lesiecki, 2003) with the language annotation capabilities, which is

found in Python as decorators. Both can create function wrappers in order to

surround the function call with some extra-operations. These language capabilities

enable the implementation of mechanisms in the instrumentation library to create

aspects (or decorators) that receive tags as parameters, push them before the call

and pop them after, in normal or exception flow. This wrapper may also transform

some of the function parameters into tags, register the function name as a tag

action, and notify events after or before the call. Here is an example of a Python

decorator extracted from one of the systems used to evaluate the theory:

def action_tag(f):
 """
 Decorator to insert a tag with the function name as an
 action in the stack, and automatically remove it in
 the exit (normal or exception). Also the time required
 to execute the function will be notified as an event.
 """
 def wrapped(*args):
 start_ts = datetime.now()
 push_tag('action', f.__name__)
 result = f(*args)
 log('Time to execute',
 [('elapsed',
 human_date_format(start_ts, precise=True))])
 pop_tag()
 return result

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

65

However, this approach does not handle tags that must be pushed onto the

stack in inner scopes of a function such as inside an “if” or “for” flow control.

There is a solution in Python, using the “with” statement, which is not

straightforward but enables developers to safely insert tags into inner scopes. It

requires a class to represent the scope handler, similar to the ScopedTag class

presented before for C++:

class ScopeTag:
 """
 Container to be used with the 'with' statement, to
 push tags in the middle of a function.
 """
 def __init__(self, key, value=None):
 self.key = key
 self.value = value

 def __enter__(self):
 push_tag(self.key, self.value)

 def __exit__(self, type, value, traceback):
 pop_tag()

And it can be used as follows:

def myFunc():
 f1()
 if (something):
 myVar = f2()
 with ScopedTag(‘some_var’, my_var):
 f3()
 ...

Notice that the property some_var is pushed into the stack in the middle of

an “if” statement, and will be valid until the scope of the “with” statement exists.

The same approach cannot be applied to Java, but each language has its

mechanisms or extensions to implement a similar solution ― for example, in Java

language the Aspect concept (Gradecki & Lesiecki, 2003) may be used to generate

a variety of instrumentation helpers.

Therefore, its imperative that the pop primitive is not called directly by the

developer, being always used through the ScopedTag in order to avoid mistakes

that render the extracted data useless.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

66

4.2 Tips to Reduce Instrumenting Effort

Despite of the ScopedTag concept, the effort to apply every guideline

presented in the last chapter may be annoying for some development teams. While

it is impossible to reach an effective result without employing some effort in tag

insertion along the code, the software architect is encouraged to search for

technical solutions to reuse the code inserted for most general tags.

A practical example is the guideline to address abstractions in the interaction

of a remote client with a webserver: in all requests, a set of properties will be

gathered, such as user id, session id, request id, POST or GET content, among

others. Regardless of the implementation, there is always a point in the code to

intercept incoming requests. When implementing from scratch, the developer may

use a command pattern to execute a given action after and before the request

execution; and when using web frameworks, there is usually a hot-spot that

achieves the same objective. The suggestion is to use this mechanism to gather as

much properties as possible from the request, in order to minimize the effort of

other developers during the functional behavior implementation. Observe that the

way this approach is designed can be adapted to other guidelines, such as the

guideline related to generating an event for every database object manipulation. A

solution can be implemented using the dynamic proxy pattern, by creating a proxy

for the database descriptor, then using the proxy object to notify every action

executed, without even having access to the object class. The simpler proxy

pattern can also be used if the language does not provide reflection mechanisms,

but it will require more effort than the previous one.

Another example concerns components. According to the guidelines, each

component instance is expected to push the following tags: device_id,

component_type, component_id, and execution_params. The base implementation

of a component is usually a loop to gather inputs, process something, and export

outputs. Therefore, the best code point to insert all these properties into the stack

is before the loop, thus reducing the implementation effort by inserting a

framework as a layer between the middleware used for componentization and the

application code. This framework must handle the component initialization by

gathering those properties and inserting them in each thread created. Another way

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

67

to achieve this result is by using the Aspect concept (Gradecki & Lesiecki, 2003)

instead of developing a framework.

In order to avoid misunderstanding of the proposed approach, we must discuss

why the use of Aspect-Oriented programming (Gradecki & Lesiecki, 2003)

cannot be proposed as the only method of instrumenting the code (with the

objective of reducing the effort in the task). Since Aspects are essentially

abstractions to represent crosscutting concerns, they cannot be used to represent

specific abstractions related to each piece of the code. The developer’s knowledge

is required to identify and expose these abstractions, thus the motivation to adopt

manual instrumentation.

As a rule of thumb, the most important advice is to reason about how the

guidelines can be easily implemented through the introspection and reflection

features available in the technology of choice.

4.3 Event Transmission Issues

When an event is notified, its record is converted into a serialized form and is

eventually sent to the central server repository. However, considering that target

systems are distributed, and are assembled using a variety of devices and

components, the sending process becomes vulnerable to several problems, such

as: message loss, network availability, and bandwidth priority. The sending device

must guarantee that the event was sent and stored before deleting it. This process

must not compete with other requests made from that device, hence avoiding

noticeable losses of quality due to interference in the system’s normal behavior.

Furthermore, low quality networks may require multiple retransmissions of the

same event until it is correctly received. Also, mobile applications do not have

constant network availability and tend to be more susceptible to power failures,

since many devices may pass through regions without network signal and usually

rely on battery power. These difficulties impose the need to keep unsent events in

local persistent memory until their successful transmission is confirmed.

In order to solve these problems, the libraries used in mobile applications must

implement a producer-consumer pattern to transmit events. Events must be saved

into files, which then wait in a queue until successfully transmitted. When an

event is notified, it is immediately appended to the current file, i.e. the last file in

the queue. When this file reaches a given size limit, it is closed, tagged for

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

68

shipment, and a new file is created and appended to the file queue. In case of

restarting after, for instance, a crash, a power failure, or loss of connection, the

application continues to write new events into the last file and attempts to transmit

all the files that are already closed but remain in the queue. In case of a disaster ―

for example, when attempting to access invalid memory ―, this approach assures

that the centralized log set will contain information near the point where the

failure occurred, helping to locate the faulty code.

Another problem concerns timestamp normalization among all devices in

the system. Considering that each device has its own clock, which may differ

from the central server’s clock, it is necessary to normalize the timestamps of all

events received by the central server so they are all congruent with the server’s

clock. Therefore, when starting the transmission of a package, the device’s current

timestamp is appended to this package. By using this timestamp, the server

calculates the temporal delta between its own current clock value and the

package’s timestamp. The computed difference is then applied to all timestamps

contained in the events of the received package, normalizing them to the server

clock. This approach does not consider the transmission delay, which might

produce inconsistencies. It is also vulnerable to clock updates occurring after

recording events and before transmitting the corresponding package. For the time

being, we accept that risk, which will be addressed in future work. Meanwhile, a

rather easy way of overcoming this risk is by using a network time protocol (NTP)

server for synchronizing all clocks in the system.

4.4 The Query Engine

In addition to the event handling described in this chapter, the implementation

of tools based on runtime information flow needs the support of a mechanism to

access the stored runtime information. This query mechanism must be capable of

selecting only events that are relevant for the scenario under analysis, independent

of whether the requisition came from a human or from an automated mechanism.

This scenario must be described using properties present on the runtime

information to create a perspective of interest, which restrictions can be

transformed into filters to be applied over the execution flow in order to discard

all undesirable events, leaving only those that are relevant for the current

objective.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

69

Therefore, the Central Server Repository must provide a primitive to query for

a sequence of events. This primitive receives, as parameters, a list of restrictions,

which are transformed into filters. The result of this primitive is a sequence of

events, ordered by date, which matches all the restrictions. There are three types

of restrictions: temporal limit, interesting property pattern, and undesirable

property pattern. The temporal limits are expressed as a start and an end date.

Every event that has its timestamp between those dates is considered a match. The

interesting and undesirable property patterns are two lists of tag restrictions ― a

tag restriction is composed of a key, representing the property name, and a

pattern, representing a set of values. The set of restrictions may be empty, in this

case, instructing the engine to match every possible value. With this approach, it

is possible to query for events that have only a specific tag, with any associated

value, for events with values that match a given pattern (implemented using

regular expressions), or for events that have a tag with an exact value. The final

result of the interesting properties restriction is a composition of filters that

matches an event if, and only if, it has a tag matching each property, and the

values of these tags are matched to the corresponding pattern. The result of the

undesirable properties restriction, on the other hand, is the opposite: a

composition of filters that holds if the event does not match any of the tag

restrictions. Therefore, when the query is evaluated, the search algorithm selects,

by means of the restriction lists, all the events between the start and end date that

have all the interesting tags and do not have any of the undesirable tags.

As a simple example of this query feature, consider the following log

sequence stored into the database, comprising events from a routine being

executed by two different execution threads (with less tags than usual and

abbreviated names, avoiding visual pollution):

[env:mobile][dev_id:123][action:get_list][req_id:456] Requesting for items

[env:mobile][dev_id:123][action:get_list][req_id:456] Creating filters

[env:mobile][dev_id:789][action:get_list][req_id:321] Requesting for items

[env:mobile][dev_id:789][action:get_list][req_id:321] Creating filters

[env:mobile][dev_id:789][action:get_list][req_id:321] Generating the request obj

[env:mobile][dev_id:123][action:get_list][req_id:456] Generating the request obj

[env:mobile][dev_id:123][action:get_list][req_id:456] Executing the async request

[env:server][action:get_list][req_id:456][security] Authenticating

[env:mobile][dev_id:789][action:get_list][req_id:321] Executing the async request

[env:server][action:get_list][req_id:321][security] Authenticating

[env:server][action:get_list][req_id:456][security] Verifying permissions

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

70

[env:server][action:get_list][req_id:456][security] Checking params

[env:server][action:get_list][req_id:321][security] Verifying permissions

[env:server][action:get_list][req_id:321][security] Checking params

[env:server][action:get_list][req_id:321][user:ABC] Reading GET data

[env:server][action:get_list][req_id:456][user:ABC] Reading GET data

[env:server][action:get_list][req_id:456][user:ABC] Loading filters

[env:server][action:get_list][req_id:456][user:ABC] Reading related items

[env:server][action:get_list][req_id:321][user:ABC] Loading filters

[env:server][action:get_list][req_id:321][user:ABC] Reading related items

[env:server][action:get_list][req_id:321][user:ABC] Processing data for response

[env:server][action:get_list][req_id:456][user:ABC] Processing data for response

[env:server][action:get_list][req_id:456][analytics:56ms] Reading GET data

[env:mobile][dev_id:123][action:get_list][req_id:456] Unpacking response

[env:mobile][dev_id:123][action:get_list][req_id:456] Notifying the view

[env:server][action:get_list][req_id:321][analytics:56ms] Reading GET data

[env:mobile][dev_id:789][action:get_list][req_id:321] Unpacking response

[env:mobile][dev_id:789][action:get_list][req_id:321] Notifying the view

Observe that events from different routines ― i.e. events from different

devices executing a server request and events from the server processing these

requests ― are mixed together. Now, consider that, while diagnosing, a

maintainer needs to inspect the request 456, avoiding non-functional information.

He would generate a perspective of interest using as interesting property the

[req_id:456], and as undesirable properties [security] [analytics]. When submited

to the query engine, the result would be a single execution combining mobile and

server events from the same request, discarding security and measurement events,

as presented below:

[env:mobile][dev_id:123][action:get_list][req_id:456] Requesting for items

[env:mobile][dev_id:123][action:get_list][req_id:456] Creating filters

[env:mobile][dev_id:123][action:get_list][req_id:456] Generating the request obj

[env:mobile][dev_id:123][action:get_list][req_id:456] Executing the async request

[env:server][action:get_list][req_id:456][user:ABC] Reading GET data

[env:server][action:get_list][req_id:456][user:ABC] Loading filters

[env:server][action:get_list][req_id:456][user:ABC] Reading related items

[env:server][action:get_list][req_id:456][user:ABC] Processing data for response

[env:mobile][dev_id:123][action:get_list][req_id:456] Unpacking response

[env:mobile][dev_id:123][action:get_list][req_id:456] Notifying the view

Furthermore, the implementation of the query algorithm is trivial, since

most of the complexity is solved by modern databases and provided as features

for the application layer. During our evaluation, the query engine was

implemented using a NoSQL database, which enables unstructured data

manipulation. The specific implementation was MongoDB (2013), which

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

71

provides some features that facilitate the implementation of these restriction

filters. However, nothing prevents the solution from being implemented in an

SQL database.

4.5 Conclusions and Technical Requirements

The solution presented here allows the instrumentation and the event storage

to be designed without needing a fixed set of maintainer profiles, a problem

discussed in the previous chapter. Furthermore, it is not necessary to specify the

set of all possible properties of interest in the development onset, as new tags may

be defined whenever they are needed. However, as already mentioned, tags are

identified by their names and, thus, a document must be available allowing

developers and maintainers to know all available tags and the instrumentation

policy for a given system. If developers correctly use tag names, profiles can be

defined at runtime according to the needs of each query perspective of interest.

Moreover, the solution can be used by most development teams, since there

is no technical requirement outside the set of traditional methods and tools. The

instrumentation libraries must be implemented accordingly to the target

programming languages, relying on the traditional programming paradigms. It

also does not impose architecture or design decisions and is used as usual log

libraries. The application on the central repository may be implemented using any

programming language that allows accessing a database. Furthermore, the effort

to instrument the software code is small, as we will show in Chapter 7.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

72

5
Lynx: Diagnosing with Contextual Information

This chapter presents a diagnosis technique developed using the query

engine presented in Chapter 4. This is the first example of the benefits provided

by a log containing contextual information. Chapter 6 presents a failure handling

mechanism that takes advantage of this characteristic. This diagnosis technique is

based on: (1) an inspection approach, presented in Section 5.1, which describes

how maintainers may take advantage of the contextual information when

investigating hypothesis; (2) a diagnosis process, presented in Section 5.2, which

describes how the maintainer may use this approach for failure diagnosis; and (3)

a tool named Lynx, presented in Section 5.3, which provides features to aid

maintainers in the process of failure diagnosis.

The problem addressed by this technique has already been discussed in

chapters 2 and 3, while formulating the thesis problem and describing the

motivations for a log annotated with meta-information. In brief, while diagnosing

a failure maintainers elaborate some hypothesis and attempt to investigate them in

the execution log. However, common log techniques present limitations, such as

mixed contexts, execution flow spread along files in different machines, and

insufficient information on events. Thus, the large amount of irrelevant events

displayed hampers efficiency, while the insufficient information associated with

relevant events identified reduces efficacy. These problems were deeply discussed

in Chapter 3, where we concluded that the appropriate solution must provide a

mechanism to select events based on a perspective of interest, created and evolved

on-the-fly by the maintainer who is diagnosing the failure. Hence, the assumption

behind this novel technique is that if we are able to extract and display only the

sequence of relevant events, both the efficacy and the efficiency will be improved.

5.1 The Inspection Approach

The proposed approach is based on the query engine described in the

previous chapter, which provides a mechanism to select events based on a

perspective of interest. This approach consists of investigating each formulated

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

73

hypothesis using the query mechanism, by filtering events based on properties

identified in the failure occurrence description. With this mechanism, each

hypothesis can be transformed into a perspective of interest, which is transcribed

as a set of restrictions used to retrieve a sequence of rich events that may be

capable of aiding the maintainer to confirm the hypothesis. For example, a

hypothesis may be “the port permission was not set”, which will stimulate the

maintainer to inspect the footprint looking for events related to port permission,

transcribed as a restriction that requires the event to have the tag [action :

set_port_permission]. In addition, the perspective of interest should be refined

during the inspection, by the evolution of the restriction set based on what is

learned from the footprint under analysis. For example, an inspection starts

looking for errors occurred while a specific user was working with the system.

This perspective of interest may be represented with restrictions that require the

tags [error] [user_id : john doe]. Then, while studying the result, the maintainer

identifies that all errors occur in the same action, hence the perspective of interest

must be refined to consider this property, in this case also removing the tag error,

in order to reach all footprints of this specific action when triggered by the given

initial user.

Moreover, some hypothesis may be broken into a tree, with some

possibilities that must be verified. The maintainer may use a depth-first search

algorithm to walk through this tree, inspecting each path and discarding those

with leafs that do not verify the hypothesis. It is also necessary to consider that the

tree may grow during the verification, since retrieved information may lead to

other paths. A simple example of a tree scenario is: a maintainer following a

hypothesis discovers that the erroneous data were retrieved from the database. Its

is known that it was written that way into the database, however when there are

more than one piece of code executing insert-operations on this type of record,

new branches are created in the hypothesis tree, one for each writing call, and all

must be verified.

On yet a last different hypothesis, consider a system composed of mobile

devices communicating with a server in the cloud. Each event created by this

system has a tag name that represents the device’s origin, and a tag action, which

represents the current operation the device was performing. Suppose that, among

other operations, each mobile device triggers data sync actions on the server. We

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

74

know that when a specific device triggers this operation, the server fails to

process. We do not know, however, which device is causing the failure.

Inspecting in the traditional way, by collecting manually the logs of each device,

would take a great effort to correlate them in a single timeline and filter the

events, leaving only those related to the failed sync action. Using the approach

suggested here, a system maintainer would only need to specify his perspective of

interest ― in this case, informing the tags [action:sync][error] ― and, after

finding an event that represents the failure, use the name of the source device to

refine the search, i.e. a new query using the tags [action:sync][name:tablet_1],

for example. Continuing this way, the maintainer may come to a clear view of the

footprint that displays only events related to the failed execution.

Observe that the examples above are hard to diagnose using the traditional

log. Therefore, the approach presented in this work may increase inspection

efficiency by enabling maintainers to restrict the number of events they need to

study by using a mechanism to select only these related to the hypothesis under

analysis. This approach, however, is limited by the events and properties on these

events, gathered by the instrumentation mechanism. If a property that is relevant

for the hypothesis investigation is not present on the event set, the diagnosis may

be compromised or require more effort than strictly necessary. Thus, the success

in this diagnosis approach relies on the system’s instrumentation policy.

5.2 Failure Detection and The Diagnosis Process

The approach presented in the last section has been devised for use in the

following scenario: a failure is observed, and a maintainer needs to produce its

diagnostic in order to remove the fault and, if necessary, implement a detection

and recovery mechanism to handle future occurrences while the fault is being

removed. The failure observation may occur by human detection while using the

system or by an automated solution that identifies unexpected behaviors

(assertions, exception notifications, etc.). Whichever the observation mode, a

failure report must always be filled up describing all possible characteristics of the

failed scenario, what would vary depending on the project domain. In a system

composed of mobile devices and a web service, for example, the report is

expected to register the username that triggered the failure, the type of his device,

the feature that failed, the input if applicable, the observed error, etc; in an

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

75

embedded supervision system, on the other hand, the characteristics would be the

state of all logical and analog ports in the microcontroller; thus the full memory

content, which in this case is predictably small.

When the occurrence of a failure is automatically detected, the system may

also automate the report generation. However, when observed by a human,

someone in the production team must be responsible for creating this report. The

automated option is preferable, since it does not depend on the final user’s

goodwill to inform the occurrence. The automatic detection may be enhanced by

creating a software agent to monitor the event flow in order to find events with

error tags. When an event with this tag is identified, an alarm must be activated,

generating human notifications with an appropriate implementation based on the

application domain. In a web service, for example, it can be implemented as a

simple e-mail, while in an embedded system, isolated from the network, the

notification may be an SMS message. This approach must be supported by the

instrumentation policy, which must determine rules for notifying every error

detected during execution. Furthermore, the moment the software detects a failure

occurrence, it is of utmost importance to gather as much information as possible

about the current execution state, in order to aid future diagnosis, even if this

requires inserting larger values into tags, such as the stack trace of the execution

or database records.

The proposed diagnosis process starts analyzing the failure report, which

provides the observed error and the context environment where the failure

occurred. After that, the maintainer must execute the following steps:

1. Generate a set of hypothesis that may explain the observed error.

2. Generate a base perspective of interest, using properties identified in

the contextual environment described in the report.

3. Order the set of hypothesis in a list, using as criterion the expected

holding possibility of each one.

4. For each hypothesis,

a. Reason about which contextual properties related to the

hypothesis may be transformed into restrictions.

b. Append the restrictions created in the last step to the

perspective of interest.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

76

c. Analyze the resultant footprint.

i. If the root cause of the failure was found, stop and

conclude the process.

ii. If the root cause of the failure was not found, then

evaluate:

1. If the hypothesis was proven wrong, walk in the

tree to the next hypothesis to be tested, then go

to step 4.

2. If the hypothesis remains open, or elaborate

nested hypothesis, walk to the first one and go to

step 4.

Observe that, for each perspective of interest, the maintainer will study the

resultant footprint and refine the perspective of interest, in order to query a

perspective that presents the exact footprint that contains the explanation of the

unexpected behavior, i.e. the root-cause of the failure. In addition, the footprint

that represents the diagnostic may provide events and properties’ relations that

may be used to develop a failure handler for detecting and recovering future

occurrences of the recently diagnosed failure. This approach will be explained in

Chapter 6.

5.3 The Inspection Tool

An inspection tool is needed to support the process described in the last

section. This tool must provide mechanisms for the maintainer to describe the

perspective of interest as a set of restrictions, which will be evaluated by the query

engine in order to select the set of events that are relevant for the hypothesis under

analysis. The result must be displayed in an appropriate format, exhibiting the

sequence of events in chronologic order, and the contextual properties of each

one. Also, the tool must previse that the perspective of interest will change during

the inspection, and update the sequence of events accordingly.

With the purpose of assessing the inspection technique, this tool was

implemented as a web application. An example of its interface can be seen in

Figure 2, which shows fields that define the perspective of interest and the

extracted event list corresponding to this perspective (Figure 2a). These input

fields are: (1) fields for temporal restrictions: start and end dates (Figure 2b); and

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

77

(2) fields for tags restrictions (Figures 2c and 2d). The maintainer can represent

tag restrictions using two lists: the first containing tags that must be present, and

the second containing tags that must not be present in the events. Restrictions can

be specified either using only the tag name or a regular expression.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

78

Figure 2 – Inspection tool interface.

When an event is displayed and the set of tags is extensive, the entire

representation may be confusing. In order to reduce this visual pollution, two

solutions are provided. The first one is based on controllers to hide undesired tags:

a meaningful event must contain all tags, but only a few of them should be

displayed, depending on the ongoing investigation. For this reason, this tool

implements a feature that allows selecting only those tags that should be shown

(Figure 2e). Consider the following example, which shows an event that is

interesting both to evaluate the application performance (tags cpu and memory)

and to inspect screen flow:

[environment:mobile] [application:hello world] [cpu:80]
[memory:2524] [version:3] [flow:main] [message:window loaded]

An inspection that does not need to evaluate device resources may hide cpu

and memory tags, in order keep only relevant tags visible.

The second solution is a mechanism to automatically generate a collapsed

area for each event, where tags with large values are displayed, as presented in

Figure 3. This solution is appropriate for tags such as stack traces, urls, records,

etc.

Figure 3 – Example of an event with collapsed area.

Finally, the inspection tool also provides a history of restrictions’ sets used

in previous queries, with the goal of supporting a fast walk into the hypothesis

tree: when the maintainer needs to change the course of his/her investigation, he

or she may use the history to quickly change the perspective of interest.

5.4 Closure

With this inspection technique, we allow an operator to study the behavior

of the system by filtering the events to be displayed according to the perspective

of interest. This, in turn, is formed by a set of restrictions created from tags related

to the hypothesis under investigation. The solution can be applied to diagnose

failures in local as well as in distributed software, addressing both scenarios

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

79

where code can and cannot be changed to add more information about the

execution. This technique is based on manual analysis in order to take advantage

of maintainer’s knowledge about the system’s history of failures; and software

design and architecture. We believe that maintainers with adequate tools are often

more efficient when diagnosing than fully automated techniques for two main

reasons: (1) humans can reason in a level of complexity that software still cannot;

(2) and humans also hold tacit knowledge that has not been transferred to the

source code during development, hence limiting automated reasoning about the

software. Developers and maintainers hold knowledge such as system’s high-level

abstractions, architecture anomalies, issues that arose during development, and

history of errors ― among others ―, which are useful to elaborate effective

hypotheses that lead to the determination of the root cause of the failure.

Moreover, semi-automated techniques may reduce the effort in diagnosing

without removing the benefits of human reasoning, and can also be implemented

over this type of log. There are two future works prevised in this regard:

• Extracting the system’s state machine from a structured log, in order

to attempt to detect anomalous behavior (related work discussed in

Chapter 8). By using annotated logs, the efficacy should be higher

than solutions based on traditional log.

• Investigating how the maintainer’s experience with the tool can be

used to learn how types of failures are individually diagnosed, then

using this knowledge as tips for future diagnosis.

Furthermore, the objective of the technique introduced here is to reduce the

diagnosing effort, by providing mechanisms to investigate hypotheses in a more

efficient and effective way. The efficacy problem is addressed by the

instrumentation technique, through the contextual information annotated on

events, which improves the maintainer’s view during an investigation. This

approach alone makes the resulting log sequence capable of unifying events from

different devices in a single view and informs for each one a range of properties

that goes from language to application abstractions ― such as the source-line

number, the modules involved, the high-level action, the user that triggered it,

request parameters, etc. Moreover, this meta-information also addresses the

efficiency problem, since they turn the event descriptor into a comparable

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

80

structure. This enables the mechanism to filter events based on a set of

restrictions, which in turn uses properties’ relations to determine if an event must

be considered relevant or not for the perspective under analysis. Therefore, the

technique provides means to analyze the hypotheses under investigation selecting

only those events that are directly related to the failure occurrence, which is

usually formed by a small set of events compared to the full log. As previously

said, however, both the efficacy and the efficiency rely on the log content, which

should provide the necessary information for the diagnosis. Thus, the

instrumentation policy is of paramount importance, since it will guide developers

while coding, making them leave the necessary information for future,

unexpected, diagnosis sessions.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

81

6
Hydra: A Tag-Based Self-Healing Mechanism

This chapter presents a mechanism for supporting failure detection and

recovery implementation for systems in production. This is the second example of

the applicability of the logging technique presented in Chapter 4. The problem

addressed by this mechanism is the development of failure handlers, which are

modules that will aim at detecting failure occurrences and, when possible,

recovering the system to a valid state. Observe that some handlers will be capable

of prevent the failure consequences, whilst others will at least minimize them.

During our research, we have encountered two main scenarios where this

type of mechanism is needed. The first one aims at future occurrences of a

recently discovered failure that requires a fair amount of time to remove the

corresponding fault; or is located in a component that exhibits some deployment

issues, thus requiring a solution without redeploying the entire system. The

solution addresses this problem by deploying the specific detection and recovery

routines for the corresponding failure, without modifying components and

redeploying them. An example of this scenario would be a recently discovered

fault in a web-service protocol that would take a week to be removed due to team

unavailability, thus during this period a recovery handler would avoid failure

occurrences by identifying the corresponding failure signature and proceeding

with the recovery.

The second scenario is the development of failure handlers for faults that

cannot be removed from the system, thus will remain during its lifetime. Since

handlers for these failures will always be present in the software, the detection and

recovery concerns should be decoupled from component implementation, thus

avoiding the ad-hoc design that so often degrades the code by mixing the failure

handling instructions with the functional instructions. Examples of this scenario

are the usage of a faulty third-party library or even the possibility of hardware

malfunction, which cannot be avoided.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

82

Observe that the requirements of this second scenario also benefit the first

scenario, since the developer can define and implement the failure handler without

adding complexity to the functional code, which also reduces the effort when later

removing the failure handler from the system. Observe that after the fault is

removed, the handler may no longer be needed and can be uninstalled. By

following this approach there is no need to revert ad-hoc instructions along the

functional code, since they were never inserted. Therefore, the main requirements

for this solution are:

• Detect failures signatures without explicitly writing code in the

functional implementation.

• Avoid, whenever possible, modifications in the functional

implementation, what depends, however, on the failure being

handled.

• Deploy the failure handler without redeploying the system, and

keeping it loosely coupled for easy removal.

The rest of this chapter presents the solution overview, discusses how the

event flow can be used to detect failure occurrences and extracts the necessary

information to recover the system; and describes how this mechanism can be

implemented in a software system.

6.1 Solution Overview

The logging technique presented in Chapter 3 can help extracting a better

representation of the failure signature due to the extra information about the event

flow, which improves the developers’ (or maintainers’) efficacy when designing

the failure detection handler that will attempt to identify future occurrences of the

correspondent failure. Observe that some known failure signatures are difficult to

transcribe into a verification routine due to accessibility issues, such as

modularization limitations or even the desired set of properties belonging to

different processes. The first issue is usually solved by ad-hoc approaches when

violating the encapsulation, while the second requires more effort to generate

remote calls. When using events with contextualization properties, however, there

is no need to break the encapsulation, since the information required is in the tag

stack or in the event flow. It is an information source.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

83

The failure handling mechanism presented here was inspired by the

Autonomic Computing concept (Murch, 2004). Figure 4 presents the solution

overview of our approach, describing the process of detecting and handling

failures. The event flow and the tag-stack content are the input of the process,

which is handled by the Event Monitoring process in order to unify the event data

representation and provide mechanisms to inspect past information. The Failure

Detection process attempts to detect known-failures in the event flow by using

recent events and individual tags, explained in depth in the next sections. The

detection step may also need to gather extra information about the system’s state

through sensors (when available). When an occurrence is found, the Failure

Handling process executes the failure’s corresponding recovery routine, in order

to handle its consequences. This task is done by modifying the system’s state

through actuators and by changing environmental settings.

Figure 4 – Solution overview.

It is important to observe that the specific detection and recovery knowledge

is provided by humans, based on their previous experience with the system. This

knowledge is transcribed into Failure Handlers, which are software modules

stored in the Knowledge Base, which evolves constantly during the system’s

lifetime by the addition or removal of failure handlers in response to failure

diagnosis and fault removals. For example, the first system deployed by an

organization would, therefore, start with an empty knowledge base, so when a

first failure occurs, it will be diagnosed by looking for a signature that may be

used to detect future occurrences. Based on the diagnostic and the knowledge

Event Monitoring Failure Detection Failure Handling

Knowledge
base

Alarm
base

Log Actuation
Knowledge

Data flow

Notification

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

84

about the system’s logic, the developer (or maintainer) will develop a software

module that complies with one of the Failure Handler’s interfaces, presented

hereafter. This Failure Handler will provide a mechanism for detecting the failure

signature and another for handling the occurrence. This handler will be installed

in the production environment as the first knowledge-item. For each new failure,

the process will be the same, and then the base will be populated. When a

corresponding fault is removed, the failure descriptor may be removed with it.

This decision is made considering failure characteristics: some handlers may be

helpful to keep, while others may lead to unnecessary perturbations. Moreover,

when the organization develops the next system, some handlers may be availed, if

generic enough, to protect the deployed instance from common known-failures.

This is also the case for those failures originated from faults that cannot be

removed, and which receive a failure handler already during development.

When the mechanism detects and handles a failure while executing, events

are generated to feed an alarm base, which informs properties about the failure

being handled. This alarm base is a component that keeps updated information

about the failure occurrences and can be used to develop tools for human

operators, keeping them aware of the unexpected executions in the system and,

thus, avoiding bad decisions. For example, in a robot control system, an alarm

informing that the position information is compromised may lead the operator to

adopt a more cautious attitude.

6.2 Detecting Failure Signatures Through the Execution Flow

The technique of enriching logs with contextual properties enables

sophisticated and precise analyses about the system’s execution. The proposed

failure handling mechanism takes advantage of these analyses’ benefits, by

attempting to identify failure occurrences in the execution flow. This can be done

(1) through the meta-information contained on events, or (2) through the tag-stack

state in some checkpoints along the execution. As mentioned in the last chapter,

the diagnosis of a known failure aims at identifying the signature of this failure,

and this signature must contain sufficient data to allow a specific handler to

identify the occurrence and properly recover from the failure.

Therefore, there are two variants in the failure handling mechanism of our

solution, which differ in the detection approach ― both approaches will be

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

85

explained in this section, while more details about the mechanism will be given in

the next one. The first approach is asynchronous, since the mechanism analyses

the event flow looking for the system’s history, thus with a small delay between

the failure occurrence and the moment it is detected. This method is implemented

though an external agent that monitors the system execution, enabling it to write

detectors that relate events between different component instances and do time

relations. However, this approach presents some limitations for the recovery

implementation, since it is executed outside the failed process’s memory space,

hence imposing the need for actuators, which are procedures implemented in the

target component.

The second approach is synchronous, executed at checkpoints along the

execution. It aims to identify a failure signature through the current state of the tag

stack. Observe that some configuration of the values in the tag stack may

represent a failure signature (however, sometimes it is necessary to look in the

event history in order to complement the verification input). Since this approach is

synchronous, the execution only continues after the verification has been

completed, guaranteeing that any recovery applied will be effective from that

point on. For example, consider a system composed of different types of devices

interacting with a web service; and when a specific type of device (d314, for

instance) makes a request named process_some_data for this web service, a

failure occurs, resulting in a bad request response. When the failure is diagnosed,

the maintainer identifies that this type of device sends one of the request

parameters using an unexpected data format, which produces an error in the

internal function data_to_object. Therefore, a mechanism can be created to detect

the occurrence of this exact context by monitoring the tag-stack for the presence

of tags [device: d314] [action: process_some_data, data_to_object]. Hence, if a

recovery routine is available (for example, one which converts the data to the

correct format) it can be called at this point of execution to avoid the cause of the

failure. However, depending on the state of the system, it will only be possible to

avoid or minimize the failure consequences. Observe that this failure handler

could not be implemented using the previous approach, since it must be executed

during the system’s execution flow. However, there are two drawbacks in the

synchronous approach:

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

86

1. Since the verification is done over the tag-stack state, it is limited to

the information contained in the stack. An extra-verification step can

be made using the query engine to inspect the event flow, but the

impact on performance will be increased from retrieving extra

information from the database.

2. If the failure cause has already been triggered and it leads the

process to be closed (segmentation fault), the handler may not be

executed.

The implementation of both approaches will be explained in Section 6.4.

6.3 Solution Architecture

Similar to the Autonomic Computing concept, this solution presents an

autonomic global cycle (Figure 5), executed by an independent component in the

system’s environment.

Figure 5 – Autonomic global cycle

This cycle monitors the system’s behavior, attempting to detect failure

signatures through the event flow, as explained in the first approach of the

previous section. This approach is asynchronous and enables the detection of

failure signatures based on temporal relations. For example, consider a failure

Software System

Event
monitoring

Failure
detection

Failure
handling

Knowledge
base

Alarm
base

Query

Knowledge

Data flow

Notification

Log
Sensors

Actuators

<< extra >>

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

87

with a signature described by the absence of the last action event in a given

request type. In this case, the detection handler may attempt to identify this

situation by looking for a sequence of events that represents the request execution

― events A, B, and C, with the last event, D, missing from the log ― and by

using an error threshold in seconds to consider this scenario a failure occurrence.

When a failure occurrence is detected, the corresponding recovery routine must be

executed, optionally with contextual properties as parameters, which may

specialize the procedure. However, a failure recovery that needs immediate action

in the execution context (before continuing the execution) will not be supported

by this approach, as discussed before. Beyond this asynchronous limitation, the

recovery routine is also executed outside the component-under-failure space. In

other words, it is executed in another process, possibly in another machine, thus

requiring actuators implemented in the target-component to modify its current

state when needed, in order to handle the failure consequences.

There is also an autonomic local cycle (Figure 6), which is slightly different

from the original autonomic concept: the mechanism’s cycle in our solution is

triggered by instrumentation code, instead of being executed in a parallel routine.

Figure 6 – Autonomic local cycle

The goal of this approach is to fill the gaps left by the shortcomings of the

global cycle, which are: the possibility to handle failures synchronously and to

have direct access to the component’s state. From the failures we could observe in

the set of systems used in our evaluation (Chapter 7), we managed to identify two

Query

Data flow

Notification

Software Component

Failure
detection

Failure
handling

Local state

Tag-stack

Event
notification

Log

Sensors

Actuators

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

88

distinct recovery groups: those needing to modify the process or the environment

state, and those needing to modify the parameters passing through method calls.

Therefore, we have developed two mechanisms to detect and handle failures

synchronously for each of these groups ― explained in the next section. The

underlying concept shared by these mechanisms is having the tag-stack as a

source of information that can be used to identify a failure signature ― or at least

part of it ―, consequently putting the execution in a “state of alarm” while

running a vulnerable scope. While in this state, the corresponding mechanism is

allowed to make high-cost verifications, which may have an impact on system

performance. Hence, the smaller the scope, the lower will be the overhead for the

system.

Therefore, this approach is appropriate for recovery routines that need to

modify the component’s state or the data flow in function calls immediately after

the failure detection and before the execution continues. The trigger of the local

cycle is embedded in the instrumentation contained in the code, being executed

from the following operations: push tag, pop tag, notify event, start action, and

end action (these last two are coupled in the action_tag interceptor, described in

Chapter 4). The implementation design of both cycles will be described in the

next section.

6.4 Implementing Failure Handlers

Each failure handler must be developed for a specific failure, designed in a

way that better detects and handles its occurrences. The handler must also provide

two main primitives: one for evaluating the software state, seeking for its failure

signature, and another for handling the failure occurrence, when an instance is

detected. The following subsections will discuss how to implement the handler as

a failure descriptor, which must be supported by a framework in order to reduce

the effort employed in the handling implementation task. Each subsection will

also discuss for which types of failure a given handler is the most appropriate,

since the first decision when developing the handler is whether the descriptor

must be implemented for the local or the global cycle.

6.4.1 A Framework for the Global Autonomic Cycle

The global autonomic cycle must be implemented in an independent

component, in order to avoid compromising its execution when a failure corrupts

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

89

the system’s environment. The most basic example is when a segmentation fault

occurs in a software component and consequently ends its process – in this case,

the global cycle is not affected and may proceed with a re-execution type of

recovery in the failed component.

In order to support the failure descriptor implementation, a framework is

proposed and presented in Figure 7. Hot spots are the classes shown in red. The

Autonomic Manager is a singleton class, responsible for the entire cycle, created

when the system starts. During the initialization, it looks for available Failure

Descriptors, which are the implementation of the failure handler, and loads all

those it finds through a reflection mechanism (Smith, 1982). Observe that this

solution enables the installation of handlers without having to change or redeploy

the system.

Figure 7 –Framework for global cycle implementation.

After the system is started, the Autonomic Manager initiates its verification

cycle. During each loop of this cycle, the Detection Strategy of each Failure

Handler is used to detect failure occurrences, which are represented as Failure

Occurrence instances. A Failure Occurrence holds the information about that

+ verification_frequency

Failure Handler

+ loop()
+ detect_new_failures()
+ update_alarms()
+ registerAlarm(occurrence)
+ enabled

Autonomic Manager

+ [bool] verify()

Detection Strategy

+ num_tries
+ handle(occurrence)
+ [bool] check(occurrence)

Recovery Strategy

+ init(footprint_data)
+ check_recovery()
+ detection_datetime
+ parameters

Failure Occurrence

+ clusterize(occurrence)
+ update()
+ state

Alarm

«creates»

+ query(perspective)

Query Engine

«uses»

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

90

specific occurrence until it is recovered. Each Failure Handler must also provide

the verification frequency, which must be configured in a way that avoids

impacting the performance of the system. During our evaluation, this frequency

was empirically defined based on the characteristics of each failure, resulting in a

low overhead as presented in Chapter 7.

Once a Failure Occurrence is created the Autonomic Manager attempts to

cluster it in a previous Alarm. This clusterization routine consists of verifying if

the failure occurrence corresponds to a previously detected occurrence, for which

a recovery routine is in progress. The objective of this approach is to avoid

multiple alarms due to the same failure occurrence. The clusterization method

considers a re-occurrence when the footprint data from both instances are equal.

The data scheme is free, and can be composed by events or tags extracted from

events in the footprint (that contains the failure signature). This data is gathered in

the detection phase, and passed on in order to contribute to the recovery

mechanism by specifying the occurrence context. When there is no preexisting

identical alarm, a new instance is created.

When a failure is being handled, the Autonomic Manager applies each

Recovery Strategy associated to the Failure Handler (in the same order they were

registered on the handler’s list). The handling operation of each strategy is

composed of (1) the invocation of the handle method to execute the recovery

routine, (2) and the continuous verification for the result through the check

method, indicating if the recovery was successful, if it wasn’t, or if it is still being

applied. A successful result proceeds with the next step of the failure handling, by

executing the next Recovery Strategy operation; an unsuccessful result re-executes

the handling operation based on the number of tries configured for the strategy, or

terminates the operation if the maximum number of attempts is reached; and the

third option, still being applied, just wait until the next check verification. The

base implementation of the check method is to call the verify method of the

corresponding Detection Strategy, but it may be evolved when implementing a

specific handler. The Alarm is initialized in the open state, and when the check

execution of the last Recovery Strategy confirms success, the alarm transitions to

resolved state. Similarly, when a check fails the Alarm is set to unresolved state.

Finally, for each failure descriptor the developer (or maintainer) must only

implement a concrete class for the interfaces’ Detection Strategy and Recovery

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

91

Strategy. The first one may use the query engine presented in Chapter 4 to search

for the failure signature in the event flow. A failure may also be detected in the

local cycle and handled by a Failure Handler in the global cycle. This approach

can be implemented by a Detection Strategy that looks for an event (emitted by

the component) with the tag failure, as well as other tags representing the

signature data.

As a simple example, consider a failure handler that works as a watchdog

for a given component named MotorManager. The detection consists on verifying

the component’s availability, and the handling on killing the zombie process and

restarting the component’s instance. The detection and handling strategies may be

implemented as the following pseudo-code:

class WatchDogDetectionStrategy
 : extends DetectionStrategy
{
 bool verify () {
 // Every component must notify a keep-alive
 // tag at every 30 seconds.
 result = query_engine.lookup(
 '[component:MotorManager][keep-alive]',
 date.now() - 30,
 date.now()
);
 if (result.count() == 0) {
 result = query_engine.lookup(
 '[component:MotorManager][PID]'
);

 // Get the last PID registered and pass it
 // as parameter
 parameters = List(result.last_event['PID']);

 // Create the failure occurrence
 AutonomicManager.registerOccurrence(
 new FailureOccurrence(parameters);
);

 return true;
 }
 return false;
 }
}

class WatchDogHandlingStrategy
 : extends HandlingStrategy
{
 void handle(FailureOccurrence occurrence) {
 // Kill the last process
 pid = occurrence.parameters['PID'];
 System.execute('kill -9 %s', pid);

 // Re-launch the component instance
 SomeMiddleware.launch(

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

92

 'com.projectX.MotorManager', // Instance type
 'Motors' // Instance name
);
 }

 bool check(FailureOccurrence occurrence) {
 result = query_engine.lookup(
 '[component:MotorManager][keep-alive]',
 date.now() - 30,
 date.now()
);
 return result.count() > 0;
 }
}

This is just a simplification of the watchdog implementation. In a real

system, the implementation would be generic enough to be reused for different

component types and instances, which is one of the contributions of the proposed

mechanism. The complete example will be presented in the evaluation (Chapter

7).

6.4.2 The Local Autonomic Cycle as an Instrumentation Library
Extension

The local autonomic cycle must be implemented as an addition to the Lynx

library in order to take advantage of triggers already available in the component’s

process space. With this approach, it is possible to develop handlers for failures

that require a recovery action before continuing the execution. An example can be

a recovery routine that avoids a failure by modifying the parameter values of a

method call to a correct format. Observe that this failure handler must be

synchronous, in order to change the passing data in the execution flow.

The instrumentation library extension is composed of an evolution in the

Logger module and of a framework for the local cycle. The evolution in the

Logger module consists of providing listeners for the following operations: push

tag, pop tag, notify, start action, and end action. The first three are called on its

respective primitives, and the last two in the action_tag interceptor (described in

Chapter 4), respectively before and after the function call. Each listener must

provide a mechanism to register observer modules, which in this case is the local

cycle framework presented in the Figure 8, with hot-spot classes shown in red.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

93

Figure 8 - Framework for local cycle implementation.

The Autonomic Manager class is the observer of the Logger module, thus it

implements a callback for each listener listed before. These are the triggers for the

autonomic loop cycle, explained hereafter. This manager class also holds a list of

Failure Handlers descriptors, which can be loaded by a registration method

(register_handler). There are two types of failure handlers:

EventActionFailureHandler and InterceptorFailureHandler. The first one is for

handlers that must modify the state at an exact point of the execution (Figure 9),

and the second one for handlers that must modify passing parameters (Figure 10).

+ init(signature)
+ check_scope()

Failure Handler

+ push_tag_callback()
+ pop_tag_callback()
+ notify_callback(event)
+ start_action_callback(params, method_ref)
+ end_action_callback(result, method_ref)
+ register_handler(handler)

Autonomic Manager

+ init(signature)
+ [bool] explicit_verification(event)
+ [bool] handle(event)

Event Action Failure Handler

+ init(signature, method_ref)
+ [bool] explicit_verification_before(params)
+ [list] handle_before(params)
+ [bool] explicit_verification_after(result)
+ [object] handle_after(result)

Interceptor Failure Handler

+ active()

Vulnerable Scope

+ query(perspective)

Query Engine

«uses»

«uses»

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

94

Figure 9 – Event Action Failure Handler.

Figure 10 – Interceptor Failure Handler.

Some Object
push_tag(key, value)

Lynx Hydra

push_tag_cb(key, value)

Failure Handler

check_scope()

vulnerable

if (vulnerable)

new Vulnerable
Scope

notify(event)
notify_cb(event)

[for each vulnerable_scope]
explicit_verification(event)

failure

if (failure)
handle(event)

[for each failure_handler]

Some Object
action_tag(params)

Lynx

params

Hydra

start_action(params)

Failure Handler

check_scope()

vulnerable

if (vulnerable)

explicit_verification()

failure

if (failure)
handle(params)

corrected_params

params

[for each failure_handler]

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

95

Both handler classes are initialized with a list of tags, representing the

failure signature or part of it, which are used by the check_scope method to

evaluate if the current state of the tag stack corresponds to a failure or a vulnerable

scope. The explanation for this vulnerable scope representation is that some

failure signatures cannot be completely represented on the tag stack, thus

requiring an additional verification based on explicit and specific calls, which may

impact on performance if called in every detection cycle. This is why the explicit

verification is called only after confirming that the tag-stack state matches a

possible failure signature. Therefore, subclasses of these handler classes must

implement the explicit_verification method, which can immediately return true if

the signature is completely represented on the stack, or execute further

investigation through the current event or the log history (using the query engine).

Let us consider, for example, a failure signature described by the presence

of the tags [action, create_entry] and [user_type, manager] on the stack, which

also requires an explicit verification if the associated company has more than one

manager (which would require a database query). In most cases, the current user

will not be a manager, so before executing the expensive call that will make a

database request in order to verify the explicit verification, the mechanism must

confirm that all related tags are matched, since a false response avoids an impact

on performance. Observe that the tag-stack state verification is done in the same

process space of the execution, avoiding remote calls to evaluate the signature.

Moreover, the normal execution continues only when the verification and

recovery routines return, since this handling mechanism is designed for

synchronous purposes.

The autonomic cycle is triggered by the lynx instrumentation, as already

explained. When the cycle is triggered, the normal execution stops and all

registered failure signatures are evaluated, thus the recovery routine is called if a

signature is found. The cycle is triggered from two approaches: (1) based on the

tag-stack manipulation and event notifications, which is implemented through the

EventActionFailureHandler; and (2) based on actions notified by interceptors in

method calls, which is implemented through the InterceptorFailureHandler.

The first approach is related to the push tag, pop tag, and notify operations,

and hence uses the corresponding listeners. The push tag callback is used to

execute the check_scope verification for each descriptor, in order to identify if the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

96

current tag stack represents a vulnerable scope, and if one is found, an instance of

VulnerableScope is created and registered in the manager. For each notify

operation, the explicit_verification of handlers with a vulnerable scope are called,

passing the event as parameter; if it detects a failure, the corresponding handler

method is called, also with the event used as a source to identify the occurrence.

Finally, the pop tag callback is used to identify when the vulnerable scope ends, in

order to remove its corresponding instance from the manager, thus avoiding the

explicit verification in future execution.

The second approach addresses failure handlers that must access passing

variables to and from a specific function, and change them according to the

recovery needs. This approach uses the start action and end action callbacks to

verify if the specific function called is addressed by any of the registered failure

handlers. This verification is made by comparing the method reference received

from the callback with the one received during the handler initialization. The

method reference representation may vary depending on the programming

language, since it can be as simple as the function name, which may be

ambiguous, or a descriptor generated by an introspection mechanism, which is

expected to be precise. Hence, if a handler for the specific method is found, the

check_scope verification is called in order to verify if the current scope is

vulnerable; if it returns true, the corresponding explicit verification is called

(explicit_verification_before or explicit_verification_after) in order to attempt to

detect the failure.

When a failure is detected, the handle_before method is called with the

function parameters (received from the callback). This handler method must

return a modified version of these parameters with corrected values, which are

passed on to the specific function (through the callback return) in order to

continue the execution. The same process is made with the specific function

result, which is passed on to the handle_after method in order to be modified to a

corrected value (if needed), and then returned to the caller function. Observe that

in our solution the listeners were installed on the action_tag interceptor, which is

implemented as a decorator in Python, for example. These listeners can be

implemented, however, through other mechanisms, such as Aspects (Gradecki &

Lesiecki, 2003) in Java, or as a simple object proxy.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

97

 The following example (pseudo-code hereafter) uses the second approach

to show how a data inconsistency failure may be handled by a synchronous

routine that intercepts the method call. The scenario consists of a function

(generate_report) of a web-service that is used by different applications (a

website, a mobile app, and a desktop application), which sometimes receives an

inconsistent record (report_data) to process. Since the fault cannot be removed

immediately, for example, because it requires a huge coding effort, a handler must

be implemented in order to cope with the failure. Moreover, from the diagnostic

of this failure we have identified that it is only triggered when the function is

called by a request originated from a recent version (2.26) of the mobile app. This

generates, in some cases, a record report_data with a reference to a ship record

(located in the server database) that does not have an owner (which should be an

instance of the company class). The failure cause is a lack in the specification,

since it does not determine that mobile applications may generate incomplete ship

records. The failure observation is an exception while attempting to access the

ship’s owner. Since the association with a generic owner is irrelevant for all

operations in the web-service, the handling routine associates the incomplete ship

record with a generic owner named “No owner”, which was manually created in

the database.

class DataInconsistencyFailureHandler
 : extends InterceptorFailureHandler
{
 void init() {
 super.init(
 '[from:mobile][version:2.26]',
 ReportEngine.generate_report);
 }

 bool explicit_verification_before(Object[] params) {
 data = params['report_data'];
 ship = database.load(data.ship_id, Ship.class);
 return (ship.owner_id == -1);
 }

 Object[] handle_before(Object[] params) {
 data = params['report_data'];
 ship = database.load(data.ship_id, Ship.class);
 ship.owner_id = NO_OWNER_ID;
 ship.save();
 return params;
 }

 bool explicit_verification_after(Object result) {
 return false;
 }

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

98

 Object handle_after(Object result) { return result; }
}

Observe that this approach is only feasible due to the information in the tag-

stack, which enables the evaluation on whether the recovery must be applied. This

approach reduces the impact on performance, since the high-cost verification

(explicit verification) is only executed when a vulnerable scope is found.

Moreover, the installation of both handlers is transparent for the functional code

(thus avoiding polluting it), since it is encapsulated in instrumentation already

written on it. In other words, the software methods remain unchanged, leaving the

traditional way of writing code.

6.5 Threats and Validity

There are three main threats that may compromise the mechanism discussed

above. The first one is the absence of tags required for matching the failure

signature and extract additional properties to feed the recovery routine. It is

impossible to predict which information will be needed to this end; however, if

the most common properties are available, the possibility of achieving an effective

result is higher. This threat is mitigated by the instrumentation policy described in

Section 3.2, which is the most precise definition we can contribute with at this

moment. These instrumentation guidelines were developed based on our

experience with the four systems described in Chapter 7. However future research

will be made along these systems’ lifetime, in order to verify if it is possible to

produce a more accurate set of guidelines. We have also observed that the tag

action is required in most failure signatures, since it is a filter that drastically

narrows down the signature for a single operation in the system. However, these

signatures also require information about the execution state, for which there is

still no defined pattern.

The second threat is the impact of the verification tasks over the

performance, since these tasks must not compromise the main functionalities of

the system under protection. This issue is addressed in the global cycle by

adjusting each failure verification frequency to the maximum acceptable interval,

which depends on both failure and the system’s characteristics. The local handlers

were designed to have a low impact, since the high-cost verification is only

executed when a vulnerable scope is detected. The impact of a local handler over

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

99

the performance is defined by a function of the number of handlers installed, the

number of tags in each handler’s failure signature, the number of tags in the tag

stack, and the granularity of the instrumentation that triggers the cycle. For now,

the trigger is associated with the push tag, pop tag, notify, start action, and end

action operations, which are a coarsely grained instrumentation; hence, with a few

failures being handled, its impact on performance is smaller than that of a

continuous verification would have.

The third threat is the inability of installing a failure handler after

deployment. The solution depends on the system’s architecture and the

technology available. As suggested in this chapter, when the mechanism is being

implemented with a language that provides a reflection mechanism, it must be

used to load all classes that represent failure descriptors (ex: from a given folder).

Therefore, by using the reflection mechanism, the problem is reduced to the task

of installing the failure handler module into the production environment, which in

most cases will be a file copy. However, software written in languages that do not

provide a mechanism to load and execute external code may also take advantage

of the proposed solution. They will, however, be limited to a simpler approach,

which would be using an external configuration (xml file, table in the database,

etc.) to associate failure signatures to static pre-defined commands, which have to

be implemented in the deployed component.

Finally, analyzing the visibility of the local handlers, there is the

impossibility of modifying the state of variables that are not accessible from a

global reference, such as those located on functions scopes (local variables). In

some situations, this capability will be mandatory for the recovery approach, but

the current solution does not provide mechanisms to inspect higher scopes in the

call stack, neither to modify its content. This is a desired improvement and will be

a topic for future research.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

100

7
Evaluation

This research was performed using systems developed and maintained by a

small software company. Most of the problems that were studied showed up as a

need to solve some kind of difficulty in developing and maintaining these

systems, which acted as a workbench, challenging with real-world problems. This

was a major contribution to the solutions, as they were conceived in scenarios

with the same complex variables expected to be found in the problems targeted by

this thesis — variables such as technology, architecture and effort limitations;

human fallibility; team competence; and most importantly, failure occurrences.

The proposed solutions were, therefore, evolved along the systems’ development.

For example, an initial version of the information extraction solution was

provided to the development teams, which provided feedback on every difficulty

observed while instrumenting or inspecting the execution, allowing us to further

improve the techniques. The failure handling solutions were developed through a

similar approach: every failure — or risk of failure — identified in a system was

used as a scenario for studying how the proposed information extraction technique

could be used to detect the occurrence of the failure and to provide the necessary

information for a recovery routine.

Four systems developed within that company were used as sources of

information for the research. The process for choosing these systems aimed to

form a heterogeneous set of domains that ensures a wider applicability range for

the solution. The development teams for each system consisted of members with

different skills and development experiences, contributing to a realistic — and, as

expected, less-than-perfect — development environment. The evaluation of the

solutions occurred in the context of these systems, which demonstrated that

techniques developed for a given system could be migrated seamlessly to the

others, even if from a different domain, with different architectures, requiring

different sets of tools and frameworks, and developed by different teams.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

101

The generality of the solution was demonstrated by the successful results

obtained while applying the techniques to these four different domains, without

any adaptation on the base principles, and little adaptations in the implementation

— the instrumentation library was the only part of the solution submitted to these

adaptations, since it is the most influenced by the domain characteristics,

however, it showed a high rate of reuse while being ported between domains, thus

softening even more the solution’s portability. Therefore, we can attest that our

evaluation evidences that the solution have a solid definition and one may expect

the same result while applying to other domains.

This chapter is organized as follows: Section 7.1 describes the evaluation

goals and how each part was evaluated; sections 7.2, 7.3, 7.4, and 7.5 describe

each system used in the evaluation, with its main characteristics, a description of

the instrumentation with measurements, the diagnosis assessment, and the failure

handler assessment; finally, Section 7.6 wraps-up the chapter with a discussion on

the results.

7.1 What and how to evaluate

The solution proposed by this thesis, described in previous chapters,

consists of:

(1) A source code instrumentation technique to extract runtime

information while the system is used in production;

(2) A policy to guide developers in using this technique;

(3) A tool to diagnose observed failures in order to determine their root

cause, or at least discover their signature; and

(4) A mechanism to implement a handling routine to detect known-failure

signatures and associate a recovery routine, which will be

automatically applied when an occurrence is detected.

The diagnosis tool and the handling mechanism depend on a log annotated

with contextual information, generated by the instrumentation technique.

Evidently, if the log contains insufficient information, the solutions will be

compromised. Therefore, the aim of this chapter is to demonstrate that:

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

102

(1) The instrumentation technique requires little effort to implement and

implies a low overhead for the system execution, making the solution

applicable in production environments.

(2) Failures can be diagnosed efficiently with the proposed diagnosis

approach. Moreover, the precision of the instrumentation policy

provides the necessary information for each diagnosis session.

(3) The recovery handler requires little effort to implement, avoids

polluting the source-code, and imposes a low overhead on the system

execution.

(4) The solution is applicable to usual system domains.

The first item is evaluated though measurements that compute the effort to

instrument the code and its corresponding impact on system performance. The

second and third are assessed through studies, both conducted using failure

occurrences that were observed in a production environment. These failures will

be separated into two groups: the first one for evaluating the diagnosis technique,

and the second one for evaluating the failure handling mechanism. This separation

into two groups enables a precise selection of the failures for each one, in order to

explore more challenging scenarios for each solution.

Another possibility would be the application of mutant testing (DeMillo et

al., 1978), by developing code to generate random failure occurrences while the

system is being used, resulting in logs that are presented to maintainers who then

have to diagnose the failures or generate failure handlers. The problems with

evaluating the diagnosis solution by means of mutants are (1) having to insert a

very large number of faults leading to a very large number of failures, so that in

theory at least some of them will have some similarity with failures that could

occur in a production environment; (2) without any guarantee the diagnoses will

require relevant hypotheses (these related to faults in architecture, design,

specification understanding, etc); and (3) the lack of a failure report that describes

the reporter’s point of view on each occurrence and provides a more realistic

failure scenario for those doing the diagnosis. Therefore, this evaluation approach

is unfeasible due to the effort required to generate and diagnose said failures with

a group of maintainers. The problem considering failure handling is similar, with

emphasis to the failure relevance issue: only failures with relatively serious

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

103

consequences would motivate the development of a handler to mitigate future

occurrences. In addition, each failure would have to be reproduced in order to test

the developed failure handler. This would require great effort, since the type of

inconsistency that produces the error may not be stimulated from the interface

level (human or component), imposing the development of instrumentation to

reproduce the failure scenario in order to test its corresponding handler.

The fourth item in the list above — the solution’s wide applicability range

— has been addressed by choosing systems from four different domains: web

services, mobile applications integrated through a server, robotics, and embedded

systems. Since their objectives, requirements, architectures, and development

teams’ proficiencies differ from one another, having success applying the solution

in all of them is an indication that the approach has a reasonably wide range of

applicability.

7.1.1 Instrumentation Measurements

The objective of these measurements is to demonstrate that the effort

required to implement the instrumentation technique is very close to that of the

traditional log technique, and the resulting overhead during the system’s

execution is acceptable for a production environment. Obviously, the result

depends on the type and quality of instrumentation inserted, which must be

sufficient to provide the necessary information for diagnosing and automatically

handling failure occurrences.

The four systems described in the following sections were instrumented

with the technique presented in this thesis (described in chapters 3 and 4). The

first one, WinePad, was instrumented after having been completely implemented,

and the other three, during development. Ideally, instrumentation should be

inserted during development, when it is expected to require less effort than when

added after this phase. Furthermore, this approach contributes to writing correct

code, as the use of lightweight formal methods (Hall, 1990) stimulates developers

to think about the problem at hand instead of starting to write before the solution

is sufficiently well understood. Moreover, all of the four systems were

instrumented by their own developers using their specific instrumentation

policies, which are presented here in each of the system’s descriptions.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

104

The instrumentation effort was estimated based on the percentage of

instrumented code, which was measured by counting the number of lines that use

any of the instrumentation libraries’ primitives (tag manipulation and event

notification), then dividing it by the total number of lines in the code — after

discarding comments and empty lines.

The impact on system execution was assessed based on two measurements:

(1) the computing overhead when using the instrumentation, and (2) the additional

space required to store the log meta-information. The first one was evaluated by

subjecting each system to a controlled execution under a profiler mechanism,

developed inside the instrumentation library to compute the time spent on

instrumentation operations. The second measurement was evaluated by dividing

the space required to store the meta-information of all events in the database —

the set of tags excluding the message of each event -— for the total space required

to store all events. Therefore, the result is the additional space required for

applying our solution. It was also measured by a mechanism implemented into

each instrumentation library. In both measurements, the system was stimulated for

several minutes executing its main functionalities.

7.1.2 Diagnosis Assessment

In order to assess the effectiveness and the diagnosis effort required by the

diagnosing tool (Lynx), we performed studies involving users in a controlled

environment. Collaborators were asked to diagnose a set of faults purposely

injected into the current version of the system, which was deployed as a clone of

the instance in the production environment. All collaborators were familiar with

the tool, since they had used it while developing the system.

We chose failures that had previously occurred during usage time and for

which the diagnosis time was known, allowing the comparison with the time

measured in these studies. As discussed before, this approach increases the

assessment’s validity since these faults correspond to real incidents occurred in

the past. In addition, since the faults were removed in newer versions of the

production environment, all faults were re-injected into the system and then

stimulated to generate the log footprint. In addition to the footprint events, many

other events were logged, as the instrumentation remained fully active. After that,

each collaborator received access to the Lynx tool and to the corresponding failure

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

105

report, containing all known information at the time the first occurrence of the

failure was observed in the production environment. The objective was to recreate

a scenario closest as possible to the first failure occurrence, in order to maintain

the assessment’s validity. We recorded the time needed to diagnose each of the

reinserted failures and compared it to the time spent in the real occurrence.

Moreover, all failures were selected after the instrumentation had been inserted,

allowing us to assess if the events and tags defined in the instrumentation policy

would be sufficient to explain the root cause of the arisen failures.

Choosing participants for this type of study was very difficult, since the

selectable candidates must not have participated in the first diagnosis session, but

must have some knowledge about the system’s design and architecture in order to

be capable of formulating hypothesis about the failure’s root cause. Since the

system was developed in a small company, very few candidates satisfied both

requirements. We ended up selecting developers who had participated in system

development, even for a short period of time, avoiding to present a failure to

someone who had privileged knowledge about it — such as being the coder of the

broken feature or someone who participated in the original diagnosis session

when the failure was first detected. In addition, during the assessment we took

care not to influence the collaborators, assisting them only in the use of the

inspection interface.

7.1.3 Failure Handling Assessment

In order to evaluate the proposed solution’s ability to handle known failures,

we applied the Hydra mechanism (described in Chapter 6) to two systems. The

objective was evaluate the impact on the system’s performance and assess the

solution’s design — we expected seamless integration into the system. The impact

on performance was measured by computing the execution time for the detection

attempts inside and outside the component’s process space. Moreover, the

autonomic cycle framework was implemented using Python, and both the Python

and C++ instrumentation libraries were extended to implement the failure handler

support.

The efficacy of the solution was measured by exploring failures identified in

the target-systems. Both systems presented, during development and production

phases, failures that could be handled by the proposed mechanism, but most of

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

106

them are too simple and would contribute little for this evaluation. Thus, we

selected a few to employ effort in explaining the failure and how it was handled

by the solution, in order to demonstrate the mechanism capabilities.

Sections 7.2 and 7.3, which respectively address the specific evaluation of

WinePad and EMR systems, will describe these selected failures as well as their

corresponding handler solutions. The assessment consisted in developing the

failure handlers, installing them on the system, removing the ad-hoc approach

when applicable, and then submitting the system to scenarios that stimulate the

failures, in order to verify if the mechanism was capable of detecting each failure

signature and proceed with the recovery routine. Each failure’s scenario was

generated by either real hardware or mock objects, depending on the input

requirements.

7.2 WinePad

This system is a digital menu implemented as a distributed system with

client-server architecture. The application that runs on each client was developed

in Objective-C using the iOS platform, while the web-service runs in a cloud —

Amazon Web Services (AWS, 2014) — and was implemented in Python using the

Django framework.

This system (Figure 11) consists of sets of tablets used by sommeliers,

waiters, sales people, and, mainly, restaurant guests. Each set of tablets interacts,

over a wireless network, with a central server in a cloud, which handles all

customer accounts. The server provides a web application for content

management and a synchronization service to handle the tablets’ content update.

The customer administrator uses this application to manage the content delivered

to the tablets. Moreover, any specific business may have more than one

administrator, like a chef who defines the menu for each day of the week, a

sommelier who daily updates the wine list and suggests food and wine pairings; a

manager who defines the price for each item in the wine list and its availability in

stock; and a marketing analyst who manages advertisement content. The

synchronization service provided by the central server compiles the information

for each business and publishes it in each tablet owned by the business. Finally,

other tablet users may access the menu and choose what they want.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

107

Figure 11 – WinePad Architecture’s Overview.

The application that runs on the tablet is a simple Software Product Line with

two layers: (1) a core asset providing hot-spots that allow the change in

appearance and usability of a view, and (2) a group of features bound to these hot

spots. The appearance and usability are sensitive to the choice of assets and the

settings defined in configuration files. The web application content management

allows the product manager to create, edit, and remove different types of features,

also providing a mechanism to configure the mobile application’s behavior.

Finally, the synchronization service is responsible for the incremental update of

the content and settings of the tablets.

This system is interesting for the evaluation of our solution due to the

difficulties inherent to its usage environment, which relies on concurrent work of

different kinds of actors, simultaneously using the same business account. These

actors are: a system administrator configuring the product line for each business

according to his/her needs; a cataloging team entering the product’s data sheet

(e.g. wines, dishes) required by the business administrator; a design team

producing the layout according to the specifications of each business’ brand; and

the business administrators listed above. These actors interact not only during

system implementation, but also while it is being used. In other words, the system

Cloud

Database

Synchronization
Service

Management
Web-application

System Administrator

Customer

Tablet app

Business Administrators

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

108

admits an unusual number of super users, who sometimes work concurrently

within the same account, frequently without being aware of it. In such a context,

lack of communication between the involved actors, lack of attention and human

fallibility may lead to inconsistent environment configurations. As an example, let

us suppose that an administrator changes the settings in assets A and B, and inserts

asset C. Afterwards, this administrator asks the designer to adapt the layout to

these changes, forgetting to mention the inclusion of asset C. Furthermore, each

component of the software is versioned independently, and the mobile application

must maintain backward compatibility. Hence, whenever evolving the web

application, the server must provide content compatible with all the versions

currently in use. This system presents yet another difficulty for diagnosing

failures, as end users have no interest in reporting failures and lack knowledge

necessary for doing so.

7.2.1 Instrumentation

The WinePad system was developed by a team of three members: one

software engineer, who wrote the most sensitive modules from each application

(mobile and server), and two novice developers, one developing the mobile and

the other the server application. The instrumentation was written by two of these

three members, after the development phase had ended, by using the following

instrumentation policy:

Rules for notification

For the server application:

• Starting and ending of functions and methods (parameterized

routines representing an specified action of the system, discarding

helper ones such as getters and setters)

• Every decision edge of a view (function that renders a webpage or

handles a remote request from the mobile application).

• Authentication mechanism.

• Create, remove, update and delete (CRUD) of database entries,

indicating the type of operation.

• Explicit database query (when not using a framework for building

SQL or NoSQL queries).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

109

• Sending emails.

• Routine tasks (ex: compute statistics based on recent data).

For the mobile application

• Create/show a ViewController (iOS class for controlling a view).

• User interaction, notified at the start of the corresponding callback.

• Every edge of a callback that handles a user interaction (except

auxiliary functions).

• System parameter modification.

• Explicit database query (when not using a framework for building

SQL queries).

• Every edge of the synchronization routine.

Used tags

• src_line – source-code line.

• src_file – source-code filename.

• error – error description.

• warning – suspicious function.

• exception – placed in the catch block, without value.

• stacktrace – the execution stacktrace.

• environment – the execution environment (ex: mobile).

• thread – identifier for the current thread.

• action – high level operation being executed.

• collection – database collection that is being manipulated.

• database – name of the database that is being used for the operation.

• host – computer hostname that made the access.

• ip - IP address of the user that made the request

• is_admin – indicates if the user is an administrator of the system

• user – identifier of the user that made the request

• request_id – identifier of the request

• device_id – identifier of the mobile device

• organization – identifier of the customer related to the operation

• device_status – device state (active, inactive, pending update,

synchronizing).

• device_version – identifier of the client’s version.

• current_view – current view in the mobile application.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

110

• model – typename of the record.

• id – identifier of the record.

• item_code – identifier of the product item being manipulated or

exhibited.

As described in Chapter 3, some reuse patterns were applied to avoid

rewriting frequent tags. The most relevant patterns are:

• The application startup pushed the tag environment.

• The instrumentation library automatically appends the tags in every

notification: timestamp, thread, src_line and src_file.

• The instrumentation library automatically appends the tag stacktrace

when the tags error or exception is present on the tag set received for

notification.

• An interceptor in the webserver interface to automatically identify

information from the request and append it to the tag stack. This

implementation pushes the following tags: host, ip, is_admin, user,

request_id, device_id and organization.

• The action_tag mechanism that uses the function name as the tag

value. Implemented in Python with decorator, and in Objective-C

with a macro.

• A listener for the database intercepts the CRUD operation and

notifies events with the operation type and data.

This system’s instrumentation did not present any specific difficulty to be

made. As expected, developers created new tag types while instrumenting,

shaping the log content to the specific abstractions of the code they were writing.

Both applications were measured as explained in Section 7.1.1, with the results

presented in the tables below.

Source lines

(KLOC)

Event notification

(%)

Tag manipulation

(%)
Total (%)

Mobile app 13 6.40 4.11 10.51

Server app 16 7.43 1.14 8.57

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

111

Table 1 – WinePad’s implementation effort.

 Computing Overhead (%)

Mobile app 1.43

Server app 9.95

Table 2 – WinePad’s computing performance overhead.

 Number of events Data Overhead (%)

WinePad 14.748 647.17

Table 3 – WinePad’s storage performance overhead.

The discussion about these results is at the end of this chapter, in Section

7.6.

7.2.2 The Diagnosis Tool Evaluation

Two studies were executed, each with different failures observed in the

deployed system. The first one was executed with the first version of the

WinePad, which was initially instrumented without the policy guide — this was

the tool’s first assessment. The second was conducted using only one failure,

recently observed in the production environment. This time the system was

instrumented according to the instrumentation policy. The following subsections

will describe the selected failures, informing the failure observation and the

correct diagnostic. After that, we present the studies’ results. Observe that failures

from different types were selected, forming a heterogeneous set, in order to

demonstrate the generality of the solution.

7.2.2.1 Misconfiguration failure

The failure observation was: “A new customer signed up, I configured his

account and sent him his login and password by e-mail. He just called saying that

although he has correctly installed the application on the tablet, he cannot

activate it with his credentials. The error message says there is a problem in the

account configuration”. The correct diagnostic is that the administrator who

registered the account forgot to upload the layout produced for this customer.

Without having all the resources, the application in the tablet cannot start.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

112

7.2.2.2 Logic error

The failure observation was: “A customer just called complaining that his

tablets are not synchronizing. He has modified a dish specs in the web

application, but hours have passed and the tablet continues to exhibit the old

information”. The correct diagnostic is an implementation error that allows a dish

to be paired with a wine that is marked as unavailable for customers. When the

synchronization server compiles the data to be sent to the tablets, it lacks

information and aborts the operation.

7.2.2.3 Retrocompatibility error

The failure observation was: “A customer installed a trial version of the

mobile application in his tablet three months ago and did not activate the account

at that moment. Now that he became a regular customer, he activated the account,

but the tablet says that there is a configuration problem. He is using the correct

credentials and I am sure I uploaded his layout and configuration file correctly”.

The correct diagnostic is that the application version installed on this customer’s

tablet was outdated and required a previous version of the layout. As the account

was not active at the time when he made the installation, a compatible

configuration was not automatically installed. It is a fault in the web-service view

layer, of which is meant to support previous versions.

7.2.2.4 Data inconsistency

The failure observation was: “All tablets’ menus are presenting some

sections that were not defined in the web application. The dishes inside these

sections actually exist, but belong in another section”. The correct diagnosis is

that a recently implemented feature that copies entries (wines and dishes) between

customer’s accounts produces a data inconsistency that is imperceptible in the

management system, due to an anomaly design in the model that enables a dish to

be associated with more than one section. In other words, a dish record has a

foreign key to a category, which has a foreign key to the corresponding section;

however, the dish also has a foreign key directly to the section. When the new

feature was written, the developer did not know this anomaly, or forgot to correct

the association in the record’s clone. This failure was especially difficult to

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

113

diagnose due to the root cause being far from the observation, and cloaked by a

considerable amount of similar records.

7.2.2.5 The First Diagnosis Study

The first study was conducted with four people, more specifically two

developers and two system administrators. The failures chosen for this study were

those described in sections 7.2.2.1, 7.2.2.2, and 7.2.2.3. Observe that the faults

chosen are simple to explain; however, their diagnosis based on observation is

difficult when using traditional techniques. Usually, tablets’ logs are inaccessible

and the server presents a considerable volume of records involving several

operations from different customers, making the analysis more difficult. The first

fault occurred in the first months after deployment, and had an average diagnosis

cost of 30 minutes per incident. It occurred several times before it was removed.

The time to diagnose each failure did not vary much, even after the maintainers

learned the fault’s cause, because the co-evolution of the software masked it in

different ways, exposing at each occurrence a different footprint. The other two

faults occurred only once, the first having a diagnosis cost of one hour and the

second of 2 hours and 30 minutes.

The measured times are shown in table 4, along with the times spent using

the traditional approach when the failures were discovered in the production

system.

 F1 F2 F3

Traditional approach ≈ 30 ≈	 60 ≈	 150

Developer 1 18 7 5

Developer 2 6 6 9

Administrator 1 3 2 6

Administrator 2 4 3 2

Table 4 – Time in minutes to diagnose each failure on the first study in

WinePad.

The result exceeded our expectations and surprised by showing that the non-

technical users had a better performance than the developers. When trying to

identify the cause, we concluded that this was due to two factors: (1) these users

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

114

act directly on the production system, close to these types of faults, and (2) they

have a simplified view of the whole system, conceiving a smaller set of

hypotheses for the possible causes of the failure.

7.2.2.6 The Second Diagnosis Study

The second study was conducted with 3 developers, one who had actually

participated in the development of the system, and other two who had necessary

domain expertise and knowledge about the system’s design and architecture to

diagnose the failure. The failure chosen for this study was the remaining one,

described in Section 7.2.2.4. This failure was very difficult to diagnose when

observed during production, since when the error was observed (the data

inconsistency), there was no clue allowing the elaboration of hypothesis to search

for the fault that produced the inconsistent record.

 F1

Traditional approach ≈ 360

Developer 1 9

Participant 1 12

Participant 2 31

Table 5 – Time in minutes to diagnose the failure on the second study in

WinePad.

The measured times represent a huge discrepancy when compared with the

time of the original diagnosis. Although we must consider some psychological

factors, such as the absence of the stress to avoid failure consequences and its

impact on business (as in the production environment), while analyzing the

diagnosis strategy used by the collaborators during this study, we could identify

two the key factors for their effectiveness: the record identifiers present on the

events, which enabled them to quickly locate its correlations; and the request

identifier, which enabled them to look for all events in the interesting request. In

the original occurrence, the developer had to look for this information through

trial-and-error attempts, re-executing the system and inspecting the production

database — at the time of the original occurrence, the logs either did not provide

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

115

this information or had it without being indexed, as opposed to the presented

solution.

7.2.3 The Failure Handling Mechanism Evaluation

The WinePad system (as well as two other systems which are not in this

evaluation) presented failures related to component versioning, between devices

and web-services, which demanded some time to handle due to third-party

services’ limitations. We chose one of these failures, which proved to be the most

difficult to handle at the time, to illustrate the capabilities of the proposed

solution, and explain how failure handlers must be developed for the local cycle.

Before this explanation, however, it is necessary to describe the system’s

development scenario. At the time the company that developed this system was

releasing the second version of the client’s software — the software embedded in

the tablets —, it had only three developers. The first version of the system was

just a beta, released to few costumers invited to participate on the product’s

evaluation. Despite the quality control effort made during the development phase,

when the second version was being released the team’s workload was beyond

what the startup could handle, and some mistakes got through. One of them was

extremely difficult to handle and, although not a critical service, harmed the

product’s reliability for a while, seriously threatening the company’s existence.

Therefore, if the failure handling mechanism proposed in this thesis were

available when the failure occurred, the risk and the effort spent handling its

consequences would be lower.

7.2.3.1 Mistaken retro-compatibility

The failure derived from mistakes while releasing the second version of the

client’s application. The person responsible for the release forgot to increment the

version property of the mobile application. As a consequence, for some time the

two different versions were simultaneously available and using the same version

identifier. There was also a second fault, which was the update procedure of the

server application being developed without a retro-compatibility mechanism to

handle requests from the older version of the mobile application. This caused

every request made from devices using the older version to fail processing the

response, as the returned data was considered an unsupported format (the data

structure had changed). This scenario is illustrated in Figure 12:

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

116

Figure 12 – WinePad Failure Example.

There was no quick process to remove these faults, since the client’s

application was delivered by Apple’s AppStore service, which takes between two

and three weeks to approve every new version. As the error could only be

observed on the mobile’s application, there was also no good indication on how to

generate an automatic ad-hoc solution on the server’s side to choose the

appropriate format. The webserver application could be modified with less effort,

but there was also no hint in the request parameters to identify whether it was

generated by the newer or the older client’s version. The ad-hoc solution was the

generation of a list of customers, then manually identifying which had updated the

software (and ask the others not to update until the next release), and then to use

this list in the server application as a guide to decide which client application

should use the newer version of the procedure. This ad-hoc process demanded a

huge effort, involving contacting dozens of customers — and could be even worse

if applied for tablet devices, of which there were hundreds at that time.

In order to demonstrate the capabilities of the proposed technique, two

failure handlers were implemented to handle occurrences of the described fault.

The objective was not to assess the specific recovery routine for this failure, but to

demonstrate that our solution is capable of introducing an atomic software artifact

to handle a given failure, then removing it from the system with little effort when

no longer needed. Both handlers were developed for the local cycle (described in

Chapter 6), since this type of failure needs to be handled synchronously. The first

handler targeted the versioning failure, detecting when a device is running the

faulty version of the software and modifying the request descriptor (in the server)

App (v0) Server

request()

response

process_response()

Error routine

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

117

to exhibit the correct one. The second handler detected when a device running the

old version of the application executes an update procedure, which would trigger

the failure, and then modify the content of a file, which will be sent in the

response, in order to avoid the failure. Both handlers were installed in the server

application.

The first handler, targeting the version failure, was implemented using the

interceptor approach. The tags used to identify the vulnerable scope were

[version:1][action:update], and the explicit verification method was implemented

using the query engine to find a previous request of the given device that resulted

on a failure. This can be done by looking for an event with the following six tags:

(1) the device’s environment (mobile); (2) the request name (update); (3) the same

device tag as the contained in the current request; (4) the tag error; (5) the

message explaining that fault (“Failed while parsing field”); and (6) the tag field

containing the name of the field that failed to be parsed (price). If this event is

found in recent events (temporal limit of 5 minutes), the device that made the

request is using the faulty version, thus the recovery routine must be applied.

Hence, the recovery routine consisted of a simple modification of the request

descriptor by correcting the version parameter to the right value.

The second failure handler, targeting the absence of the retro-compatibility

mechanism, was implemented using the event action approach. The tags used to

identify the vulnerable approach were [version:1][action:update], and the explicit

verification method (which receives an event as parameter) was implemented

looking for an event with the message “Data compilation complete”, which is

immediately notified after the data to be sent as the response was saved on a file,

which is located in the path tag (also present on the event). Hence, when a failure

occurrence is detected the handle method opens the file and process the content

modifying its structure, in order to return a compatible format with the old version

of the mobile application. Hypothetically, if the content was not in a file, but

compiled in memory and then returned, the recovery solution would require the

interceptor approach instead of the event action approach.

Observe that this second handler must be executed after the first one, in

order to avoid matching requests from the ambiguous mobile version. This sorting

was made by registering the handlers explicitly on the local cycle, which was not

a problem since the server application could be modified with little effort

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

118

(however, it was the only modification, consisting in two lines in a single startup

script of the server).

Therefore, the necessary tags to develop these handlers were: (1) the

environment identifier in all events; (2) the device identifier (tablet serial number)

in all events notified by the mobile application; (3) the action name in all events

related to a server procedure, comprising events from mobile and server

applications; (4) the error tag inserted in the specific event that notifies the failure

observation when processing the response; (5) the version tag in all events,

comprising events from mobile and server applications; and (6) the path tag in the

event related to the file manipulation. It is undeniable that the device’s application

must use these tags in order to make the approach feasible, however when

creating a policy guide for this type of system these tags are considered the basic

ones, thus it is expected to be present.

This handler solution was tested on all versions of the client software: the

correct first version, the faulty first version (which is the second version), and the

corrected second version. It worked as expected, applying the recovery of each

failure descriptor when needed. Observe that our objective was not to assess the

specific recovery routine for this failure type, but to demonstrate that we can

introduce a handler and remove it with little effort. Moreover, the first handler

could be generalized to address similar failures on other procedures (due to

similar faults), and then remain in the system until the old version becomes

unsupported, since this fault cannot be removed (due to the impossibility of

forcing the client’s update). On the other hand, the second handler could be used

as a quick solution until the proper retro-compatibility mechanism is developed

and deployed, being removed thereafter.

7.3 Environment Monitoring Robot (EMR)

The environment monitoring robot (EMR) system was developed for a

robotics platform that aims to provide loosely coupled mechanical and hardware

components. Its goal was to adapt the solution to newer environments with little

effort and without having to redesign the entire robotics solution. In order to

comply with these requirements, the software system was developed as a

component system using a middleware for robotic (described hereafter), which is

deployed as a distributed system. The components of this system are deployed in

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

119

(1) embedded PCs, which are responsible for data acquisition and robotic control;

(2) microcontrollers, responsible for hardware interfacing and low-level security;

and (3) a notebook for human control and supervision. These components were

implemented using C/C++ and Python languages. All PCs and notebooks execute

an Ubuntu Linux environment.

The robot system can operate in automatic, semi-automatic and manual

modes, being the semi-automatic a composition of components in automatic and

manual modes — for example, even while the operator is controlling the robot, a

component in automatic mode may automatically modify the robot’s path if it

identifies obstacles through ultrasound sensors.

The Robot Operating System (ROS) middleware (ROS, 2014) provides an

infrastructure for developing software components that are executed

independently, even when deployed in the same machine. The ROS component

provides two mechanisms for message passing. The first one is the topic, which

provides the functionality of a data producer in the producer-consumer design

pattern. Every component that registers for listening to a given topic will receive

generated messages as a flow. The second mechanism is the service, which

provides client-server functionality. When a service request is generated for a

given pair <component, service>, the target component processes the input and

returns a response. The client is able to handle the response in a synchronous or an

asynchronous way. In addition, the ROS Component provides the property

concept, which is an externalization of an internal state that may be read and

written by other components.

System components are classified into three categories: drivers, controllers,

and viewers. Drivers are components that interact with hardware equipment, thus

being responsible for providing a software interface for interacting with the

physical component. This type of component also monitors the equipment’s

behavior through sensors, in order to provide more information for the controller

layer. Controllers are the clients of the drivers. This type of component usually

implements robotics concerns in order to evaluate the physical environment

through sensors, and then plans the next steps to reach the desired target,

implemented through component drivers. For example, odometer sensors for

wheels, an inertial measurement unit (IMU), and a GPS may be combined by an

algorithm in order to determine the vehicle’s position, direction, and orientation,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

120

using the result to reason about how it can reach a desired position. These sensors

are sampled by driver components; the locomotion algorithm, however, is

implemented in the controller components, which use the new perspective to

define the command set for each driver component. All viewer components are

deployed in the control base software, located in the mentioned notebook. This

type of component is responsible for providing (1) mechanisms to control the

vehicle; (2) mechanisms to expose the internal state of the system; and (3)

physical and biological information about the surrounding environment, which is

the main goal for the robot’s mission. These viewer components are combined in

a MVC architecture and executed in the same process space, in order to facilitate

the task of rendering its associated visualization in the same graphical interface.

Finally, there is also a deployer tool, that allows the operator to select the

available equipment set in the robot, in order to only deploy components related to

them in the embedded PCs and in the base control application.

This system is interesting to evaluate for being a mission-critical system,

which relies on complex interactions between different types of equipment in

order to achieve high-level goals. Failures on this system are usually related to

equipment malfunction, thus handling mechanisms must be developed to cope

with them in order to keep the system running — even if this leads to reduced

functionality or reduced information precision.

7.3.1 Instrumentation

The EMR software system was developed by a team of six members: one

software engineer with expertise in mission-critical systems development, two

experienced developers with expertise in software development for hardware

equipment interaction, one developer with expertise in human computer

interaction (HCI), and two experienced engineers from the robotics field, with

little coding proficiency. The instrumentation was written during system

development by three of these six members, by using the following

instrumentation policy:

Rules for notification

• Exception notification and handling.

• Access to component properties.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

121

• Instantiation/finalization of a component.

• Localization at startup (machine and PID).

• Component setup routine.

• Starting and ending the component’s main loop.

• When sending or receiving messages from a topic or service.

• When sending or receiving data from a device (ex: probe, motors,

camera, etc.).

• When a failure or suspicious activity occurs (ex: error when

communicating with a device).

Used tags

• src_line – source-code line.

• src_file – source-code filename.

• error – error description.

• machine – name of the machine.

• pid – identifier of the process.

• keep-alive – presence indicator.

• warning – suspicious malfunction.

• exception – placed in the catch block, without value.

• stacktrace – the execution stacktrace.

• action – high level operation being executed.

• component – type of the component.

• node – name of the component instance.

• start_exec – indicator for the moment the component started.

• end_exec - indicator for the moment the component terminated.

• publisher – scope of a publishing routine.

• topic – name of the topic.

• service – name of the service.

• yaml – access to the parameter’s file.

• param_name – parameter name.

• param_value – parameter value.

• init – scope of a node’s initialization.

• loop – scope of a node’s main loop.

• data – data sent/received in a communication operation.

• port – port path (ex: /dev/ttyS0).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

122

• ip_addr – IP address (ex: 192.168.0.1).

• equipment – type of equipment.

• sensor – type of the sensor.

• measure – measurement of the sensor.

• alarm – type of alarm.

As described in Chapter 3, some reuse patterns were applied to avoid

rewriting the frequent tags. The most relevant patterns are:

• Every component’s main function pushes the tags: machine, pid,

component, node, start_exec and end_exec.

• The setup is usually executed in a separated function, which received

the scope tag init.

• The main loop is usually executed in a separated function, which

received the scope tag loop, and a notification with the tag keep-

alive in each loop.

• The instrumentation library automatically appends the tags in every

notification: timestamp, src_line and src_file.

• The instrumentation library automatically appends the tag stacktrace

when the tags error or exception is present on the received tag set for

notification.

• The tags publisher, topic and service were inserted by a Python

decorator that uses the function name as the tag value.

• The action_tag mechanism that uses the function name as the tag

value. Implemented in Python with decorator, and in C++ with a

macro.

The only specific difficulty encountered while instrumenting this system

was in the association of the values of the tags topic and services with their real

paths. Specifically for this type of system (based on ROS middleware), a

mechanism was developed to push these scoped tags in a more transparent way.

Similar to the WinePad result, developers created new tags to represent

specific abstractions, unforeseen by the instrumentation policy. All components

were measured as explained in Section 7.1.1, the results being found in the tables

below.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

123

Source lines

(KLOC)

Event notification

(%)

Tag manipulation

(%)
Total (%)

C/C++

components
13.7 6.24 4.05 10.29

Python

components
15.1 6.96 7.23 14.20

Table 6 – EMR’s implementation effort.

 Computing Overhead (%)

C/C++

components
0.51

Python

components
0.84

Table 7 – EMR’s computing performance overhead.

 Number of events Data Overhead (%)

EMR 30.889 615.51

Table 8 – EMR’s storage performance overhead.

We shall discuss these results at the end of this chapter, in Section 7.6.

7.3.2 The Diagnosis Tool Evaluation

The study was executed on a failure observed while using the system in a

field test. Most of the failures in the EMR field test were simple, being caused by

obviously misconfiguration, such as forgetting to power on a microcontroller or

configuring a wrong IP address in one of the cameras. The failure chosen for this

study, however, was a misconfiguration that demanded more time than usual to

diagnose, making it appropriate for this evaluation. The objective with this

scenario is to demonstrate the generality of the solution to exhibit system

properties as meta-information in a way that aids identifying inconsistencies, thus

elaborating hypothesis earlier that would have been with the traditional approach.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

124

The next subsection will describe the failure, informing the observation and the

correct diagnosis. After that, we present the study’s results.

7.3.2.1 Misconfiguration

The failure was observed due to the absence of a video streaming in the

user’s interface. This video streaming was produced by a component responsible

for decoding video images, which are received by a camera IP that transmits data

over an ethernet connection. This failure occurred in a field test and the obvious

diagnosis — verifying if the camera node was running and then checking whether

it was configured with the correct IP address — was executed. Surprisingly, when

accessed by a browser interface, the streaming images appeared as they should.

Thus, with all verifications having been made, the component’s node still didn’t

receive images to process. This led all the personnel involved in the test (without

any concrete hypothesis in mind) to start verifying physical connections and to

restart the environment many times. Only much latter one tester came up with the

idea of verifying the component’s launch configuration, which contained the fault.

The camera instance had been created in the wrong machine, so its IP was

unreachable for the component, since it was configured for a different network

(the robotics internal one). Therefore, the error was the launch configuration

instructing the deployer tool to instantiate the camera node in the control base

instead of in the embedded PC, thus preventing the camera node from accessing

the streaming images.

This failure scenario was recreated in a slightly different form, as the

camera equipment and the embedded network were not available at the time the

study was conducted. The new scenario is the water probe component node being

deployed in the wrong machine (the control base), thus being prevented from

receiving data from a serial port, available in the embedded PC. Observe that this

scenario keeps all of the interesting characteristics of the original one, and, hence,

can be used to evaluate the same failure type.

7.3.2.2 The Diagnosis Assessment

The study was conducted with 3 developers. Two of them had actually taken

part in the development of the system and the other one was a novice developer

but with sufficient knowledge about the system to diagnose the failure.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

125

 F1

Traditional approach ≈ 30

Developer 1 5

Developer 2 6

Participant 1 9

Table 9 – Time in minutes to diagnose the failure in the EMR study.

All the times observed were significantly lower than those required to

diagnose the original occurrence. Despite this successful result, these times could

have been even lower, since we have noticed that the failure footprint was quickly

presented to the collaborators when they were filtering events from the probe

node: every event had the tag [machine:base], which is the only necessary

information for the diagnosis. However, visual pollution, due to other tags,

prevented them from observing it.

7.3.3 The Failure Handling Mechanism’s Evaluation

The EMR system was developed using strict quality control, making the

application of the hydra mechanism preventive, instead of remediative as occurred

in the WinePad system. During the EMR modeling phase, a study inspired on

risk-based inspection (RBI, 2014) was conducted to list all the risks that could

lead to possible failures in the system, in order to guide the developers during the

implementation of the corresponding failure handlers. Even though, as discussed

in the first chapters of this thesis, it is impossible to predict all possible failures

that may occur, we managed to identify a group of recurring failures based on our

previous experience. Before preparing the abovementioned list, we established a

set of properties that must be defined for each one. The properties and its

descriptions are:

• General

o Name – Short description of the failure.

o High-level signature – Observed behavior after the

occurrence.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

126

o Services compromised – Description of how the failure

deprecates the system.

• Detection

o Mechanism – Can be (1) global autonomic cycle or (2) local

autonomic cycle.

o Subsystem – The machine where it should be installed.

Possible options are (1) embedded PC, (2) embedded

microcontroller, or (3) control base.

o Component – The target’s component name. Only

applicable for handlers of the local cycle.

o Signature – Description of how the detection strategy must

be implemented.

• Recovery

o Routine – Description explaining how the recovery must be

applied.

o Policy – Defines whether it must be applied. Possible

options: (1) always; (2) N times, informing N; and (3) never.

This last one is used for failures without remedy but that

must at least be detected, thus notified.

o Check routine – Description explaining how the recovery

success must be verified.

o Actuators – Component services required for applying the

recovery.

All developers participated in creating the failure list, which resulted in 176

possible failures, both internal (software and hardware) and external (robotics and

mechanics). The process required listing all failures for each component group or

machine, then aggregating all of them in a single list. A component group is a set

of components with the same objective, such as the controller of the vehicle’s

movement. The total number of component groups was 31 at the time of this

evaluation.

The total number of failures comprises repeated ones — the failure of losing

a serial connection with a device, for example, appeared nine times. Hence, the

total number of unique failures is 41, which can be detailed as 20 for software, 11

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

127

for hardware, 06 for robotics and 04 for mechanics (non-software failures are

those for which the root cause is external to the software environment, but that

can be detected, and maybe handled, by software). Each one of these failures was

evaluated in order to define if a hydra handler could be implemented. We found

out that this was not possible for 07 of the failures: none in software, 05 in

hardware, none in robotics, and 02 in mechanics. The hardware and mechanics

failure handlers that could not be implemented were limited by the absence of

sensors or equipment capable of providing necessary information to detect failure

occurrences. For example, a damaged ultrasound sensor cannot be detected since

others cannot be installed for monitoring the same spot (thus comparing the

results). This demonstrates that solutions based on redundancy cannot always be

applied, as mentioned in the introduction. Some other equipment can aid detecting

collisions, but the specific failure of the damaged sensor cannot be detected in this

system. Furthermore, from these 34 failures handlers feasible to be implemented,

10 only detect the occurrence, since an automatic recovery routine does not exist

or cannot be developed. It is possible, for example, to detect that the underwater

probe is streaming the data in a wrong format (not NMEA, as expected), but there

is no programming interface to automatically configure it, thus the handler is

restricted to only informing the operator. Therefore, in order to keep the operator

aware of failure occurrences, an interface component was developed to exhibit the

list of raised alarms, sorted by status (open and resolved), priority (indicator

defined by the operator’s experience), and timestamp.

It is also worthy to discuss some aspects of applying the hydra mechanism

on this system — although it is not part of the proposed technique. The designed

architecture for this system (Figure 13), which is not completely implemented at

the moment this thesis is being written, is divided into three logical computing

units (Base Control PC, Embedded PC, and Embedded Microcontroller). These, in

turn, are implemented as five physical computing units: (1) the base control PC,

which is a laptop that provides a software interface with mechanisms to monitor

and control the robot; (2) the primary PC, which is a x64 embedded PC that

executes the robot’s software components; (3) the secondary embedded PC, which

is extremely limited on resources and is used only for emergency scenarios (when

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

128

the primary PC is damaged); and (4) an Arduino3 microcontroller for hardware

interfacing, with a (5) replica for redundancy (the secondary Arduino).

Figure 13 – EMR Architecture

With the exception of the base control PC, the other units are present in a

local network inside the vehicle, thus taking advantage of an environment with

higher communication reliability than when discussing an Internet system.

Nevertheless, when the solution was designed, each computing unit received a

global cycle agent instance, which can be recognized as an environment-local

cycle instance, and then a failure handler solution was specified for each unit to

address the lack of communication with all other units. For example, the

microcontroller’s communication failure handler was responsible for detecting

when the most powerful PC is inoperative and for activating its redundancy (the

weakest PC), and, if this one also becomes inoperative, for activating the disaster

routine that notifies the GPS position by SMS. However, when the most powerful

PC becomes operative again, the control is transferred back to it.

At the moment this thesis is being written, there already is an initial version

of this system, but as this is a very large project, there are still many features

awaiting implementation, and peripheral equipment awaiting integration. In fact,

some failure handlers defined in the list address failures on these same equipment,

and thus were not yet implemented yet. For example, the failure handler in each

3 Arduino is an open-source platform developed for building digital devices and interactive

objects that can sense and control the physical world.

Primary PC Secondary PC

Primary
Arduino

Secondary
Arduino

Base Control PC

ETH

ETH and Serial

Embedded PC

Embedded
Microcontroller

ETH

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

129

computing unit to address lack of communication and proceed with a recovery is a

future implementation, however the solution’s design is based on the approach

presented in this thesis. On the other hand, a set of different failure handlers is

already implemented and has been used to assess the proposed technique. We

have selected a small set of failures to demonstrate how its corresponding handler

solution was designed, and present them in three groups in the following

subsections.

7.3.3.1 Inoperative component

This handler targets one of the most basic failure types: the component stops

working. This situation may occur due an internal error that makes the process

hang or be closed by the operating system. Both detection and recovery routine

implementations are generic, in order to use the same handler solution to address

this kind of failure in all running components. This handler is implemented for the

global cycle, presented again in Figure 14, since after the failure occurs the

component’s instance is terminated or become inoperative. Therefore, the

handler’s observation of the failure is made externally, and exclusively, by the

log.

Figure 14 – Autonomic global cycle

Software System

Event
monitoring

Failure
detection

Failure
handling

Knowledge
base

Alarm
base

Query

Knowledge

Data flow

Notification

Log
Sensors

Actuators

<< extra >>

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

130

The specific detection strategy receives in his constructor the instance name

(node tag) that must be monitored; in each posterior cycle, the handler looks for

the absence of the keep-alive4 tag among the recent events from that component

instance. As presented in the instrumentation, an event with the keep-alive tag is

notified at the end of the main component’s loop, in order to indicate its presence

in the environment. When the tag cannot be found, the handler concludes that the

instance has failed and must be restarted; the recovery routine is then called and

receives as parameters the failed node id, which is used to gather the last process’s

id (PID), and the launcher used in the last execution. Before the re-execution, the

PID value is used to kill the zombie process (if there is any) and then re-executes

the component instance with the received launcher. Observe that the recovery

routine is generic, and that the information needed to address the occurrence

(process’s id and launcher) is gathered from the footprint, using the query engine.

The aim in this evaluation is to demonstrate that recovery mechanisms can be

developed using the proposed solution for information extraction (the log with

meta-information). The recovery solution applied to this failure is actually a

traditional restart, in spite of being triggered and fed by the annotated event flow.

An evolution of this recovery handler exists but has not yet been

implemented. It consists on taking advantage of the possibility of changing the

startup parameters. These parameters are provided by a launch file, — a single

component may have more than one of them — thus, when restarting, the

recovery handler may evaluate the failure and select a different one. For example,

the current and preferred launch file makes the node instance produce a better

result, but also makes it unstable in some situations. In this case, when restarting,

the handler may choose a more stable version.

The necessary tags and events required by this handler are: (1) the tag node

in each event; (2) an event positioned at the end of the component’s main loop,

with the keep-alive tag; (3) an event in the startup with the launcher name; and (4)

an event in the startup with the pid value. This handler was assessed by running a

group of component instances and (1) forcing them to be closed using the kill

4 Keep-alive is a signal generated within an interval in order to indicate the emitter is

available.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

131

command, and (2) activating a purposely injected actuator that hangs the

execution without closing the process.

7.3.3.2 Broken information source

There are nine equipment in this system that provide information through a

serial connection, and three failures that may occur in this context: (1) absence of

data due to a malfunctioning hardware; (2) corrupted data due to the

communication environment; and (3) unexpected format due to misconfiguration.

Moreover, in this system there are five available recovery solutions for these

failures: (1) restarting the connection; (2) switching to a redundant data source (if

available); (3) switching to a redundant connection for the same equipment; (4)

restart the equipment (physically); and (5) restart a software service inside the

equipment. To illustrate, there is the possibility of an extremely accurate GPS

board — that is used to obtain the vehicle’s position —, presents some

malfunction. In such a case, one possible solution would be changing for the

IMU’s GPS information, a less accurate solution but enables the system to

continue relying on the position to operate. A similar failure, however presenting

a different architectural solution, is being capable of establishing the connection

between both PCs and the microcontroller using serial or ethernet. In this case,

instead of using another equipment, the redundancy targets only the

communication, providing an alternative way for interacting with the same

hardware — a component in the PC is responsible for acquiring the information

published by the microcontroller and propagate it through ROS topics, thus it is

the one having an actuator for changing the connection type. In this specific case,

the Ethernet is preferable, however if it is unavailable, the recovery may change

for the serial approach; but after a recovery, the handler must monitor the

environment to change back for the Ethernet connection, when available again.

This is an interesting example of the proposed approach, since the failures

among different equipment drivers are very similar, although not all exhibit the

same characteristics. For example, the probe could suffer from a wrong protocol

configuration but does not have a recovery routine based on redundancy; on the

other hand, the temperature sensor has a redundant information source, but does

not need (does not make sense in this case) to monitor for a wrong protocol

configuration. Therefore, the composition of detection and recovery strategies

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

132

provided by the framework enables the generation of different pairs for each

equipment failure, thus enabling the reuse of strategies. This conclusion is

plausible while the information used by detection and recovery strategies —

provided by the annotated log — are the same for every component. Therefore,

such conclusion relies on the log homogeneity between component

implementations.

The solution for these failure handlers is: every driver component that

receives data from an external connection must notify an event with a tag received

data for each package received from the equipment. These may assume the values

success or error, depending on the result of the data processing. When an error is

placed, another tag reason must be present in the event in order to determine if it

is a data corruption error (ex: checksum) or the inability to process the package,

characterizing a wrong protocol. The event must also be enriched with the tag

data, associated with the serialized format of the values in the received data (ex:

sequence of bytes in hexadecimal). Therefore, three detection strategies must be

developed:

• DataAbsenceStrategy – Look for any event with a keep-alive tag

from the target node, in order to guarantee the instance is executing

(if not, other detector will identify the failure), and then look for any

event with the received data tag arrived from the monitored

equipment in a given time window. If none was received, the failure

occurrence is characterized.

• CorruptedDataStrategy – Count the number of events with the

reason tag for the corruption error and divide it by the count of

events with the tag received data in the same time window, then

consider a failure if the result is above a given threshold, configured

by per equipment.

• WrongFormatStrategy – The same approach for the previous one,

however looking for suspicious wrong format instead of corruption

error.

When a failure is identified by one of these approaches, it informs the name

of the node and the name of the topic for the recovery strategy, both received as

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

133

parameters in the initialization. Hence, considering the options available in this

system for these failures, we chose these three recovery strategies to present:

• ReconnectStrategy - Restart the connection with the external device,

requiring an actuator implemented on the target component to

proceed with the recovery in its process space. In this system, the

actuators were implemented as a ROS service, which consists on a

callback function and a statement in the main function to register the

service.

• ChangePublisherStrategy - Activate the information source

redundancy. Requires an actuator implemented on each component

involved, which receives a boolean parameter indicating if it must

turn on or off the ROS topic that publishes the information, and the

name of the topic. Observe that in this strategy we are relying on the

ROS infrastructure to transparently change the information source

for the client’s components, since this infra-structure enables

publishing data from two sources in the same topic. The recovery

strategy is initialized with the name of the topic and a list of node

names that are capable of publishing the given topic; activate the

topic of the first node in the list, deactivate the others; and when a

failure is detected the recovery routine receives the current node

name, finds it in the list and selects the next one as the new source of

information (deactivate the topic in the current node and activate it

in the newer). Moreover, the handler reconfigures the associated

detection strategy indicating the new node that must be monitored

(changing the node name used by the verify method).

• ChangeInterfaceStrategy - Activate the connection redundancy by

executing an actuator implemented in the target component. This

actuator must be implemented in a way that internally changes the

information source according to a received parameter — in this case,

ethernet or serial —, which can be implemented, for example, using

a strategy design pattern. This handler strategy is used together with

the ChangeBackToEthStrategy, which is a recovery strategy

installed in the same failure handler, placed after the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

134

ChangeInterfaceStrategy instance. Therefore, after the first handler

changes the interface to the serial connection, this second handler

verifies the ethernet connectivity (through a ping command) to the

target equipment, and when succeeds executes the actuator again in

order to change the connection back to ethernet, which is preferable.

The required tags for this solution are received data, reason, topic, keep-

alive, and node. The usage of these last tags was not described, since they follow

the same solution as the one explained in the last subsection.

This solution was assessed by creating nine failure handlers for four

components that uses serial connections (Probe, IMU, GPS and the

microcontroller’s proxy), with different compositions of detection and recovery

strategies — among these presented in this section. The composition of each

failure handler was defined according to the characteristics of the target

component and its possible failures. Therefore, for each failure of each

component, an implementation was made to trigger a failure occurrence based on

a random variable, generated from a configured probability. The solution was first

tested with mocks (used in the development), and after that assessed in the actual

driver component.

As explained in the previous failure case, the recovery strategies described

are based on well-known fault tolerance solutions. The goal, however, is to

demonstrate that the proposed solution for runtime information extraction is

flexible enough to be used as a basis for the Hydra framework, allowing us to

evaluate inconsistent or suspicious states outside the component’s process space

and, in this case, illustrating the potential of the handler’s strategy composition

provided by the framework, which demonstrated a high-level of reuse in this

study.

7.3.3.3 Faulty third-party library

This section describes a very specific failure occurred due to a faulty library

provided by the equipment supplier, which is an unstable version since the

supplier does not provide support for Linux. The equipment is a stereo camera

that takes two photos simultaneously from narrow lenses and computes for each

pixel (X, Y) the relative distance (Z) to the camera, thus generating a depth map.

Before deciding to cope with this failure, we attempted to adapt an open source

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

135

component for stereo processing to this specific camera. The result, however, was

far from what we wanted when compared with the supplier’s proprietary

algorithm. Therefore, coping with the failure was the only solution to continue

with the system development until the supplier releases a stable Linux version —

what is not yet scheduled to occur.

The library was a beta version, and in addition to a very rough interface, it

hangs after several calls for stereo processing. Moreover, there was a serious issue

related to using it in the same process space of a ROS node: due a boost library

(Dawes et al., 2007) version incompatibility, that cannot be linked to the

component. The immediate ad-hoc solution was to implement a single application

with this library and create a D-BUS (inter-process communication system)

service in this application, in order to use it from the ROS component — named

DisparityNode — as a proxy. Observe that the D-BUS service with the disparity

algorithm, named DisparityEngine, is executed in a separated process, using an

inter-process communication mechanism to communicate with the client — i.e.:

the ROS node.

The solution worked well. However, in addition to handling the camera’s

library failures, we also had to handle more complexity and possible failures from

the D-BUS connection — and, thus, also the re-configuration of the proxy object

when it restarts after a failure occurrence. Observe that this algorithm is guided by

a set of properties intrinsic to image processing (ex: stereo mask, edge mask, min

disparity, max disparity, surface validation difference, etc.), which may change

independently along the execution. Hence, the ad-hoc solution handled the failure

but polluted the logic of the component by adding a considerable amount of code

to detect and handle errors. When the hydra handler was implemented, this issue

was minimized, since most of the detection and recovery code was transferred to

the handler. The following example demonstrates that a complex handler can be

implemented with the proposed solution, avoiding blending most of the detection

and recovery code with the component’s functional code, and using a generic

approach, since is based on the log flow with meta-information as information

source.

The failure was addressed by a failure handler in the global cycle for

creating and monitoring the stereo processing sub-process. The monitoring was

based on a strategy similar to that described in 7.3.3.1 (inoperative component).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

136

However, instead of monitoring a component, the detector strategy was modified

to detect a D-BUS service and to reconfigure it after a restart. Figure 15 illustrates

this solution. The detection strategy was implemented by looking for the absence

of a keep-alive tag from the DisparityEngine in a given time window, and by

looking for an error tag in the DisparityNode instance, which could also represent

a DisparityEngine failure. Hence, whenever an occurrence is found, the recovery

strategy is called, receiving the process id of the D-BUS service — also gathered

from the footprint —, and then proceeding to kill the previous instance and launch

a newer one. Moreover, it queries the log for the last value configured for each

property, and then sets this configuration through actuators in the sub-process,

restoring the same state as when the failure occurred. When the instance reaches

stability (meaning keep-alive tags are detected), another actuator is called in the

ROS component to restart the D-BUS connection with the sub-process. After that,

the component stays reliable for a while, until a new failure occurs.

Figure 15 – Relation between all entities involved in the Disparity

Failure Handler.

Therefore, the requirements for implementing this handler are: (1) an event

with the tags node, keep-alive, and pid emitted in an internal cycle of the sub-

process; (2) an event with the tags [action:set_property], name, and value for

each property modification; (3) an actuator for changing the property in the D-

BUS process; and (4) an actuator for reconnecting the ROS component with the

new D-BUS service.

This handler was assessed by simply running the camera’s component, since

the failure occurs after a while due the faulty library. The failure handler behaved

 Disparity Node

Failure Handler

 Disparity Engine

D-BUS Service

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

137

as expected, and the failure occurrences were almost imperceptible for the

operator. This example demonstrated that a complex handler can be implemented

with the proposed approach, avoiding blending the detection and recovery code

with the component’s functional code. In brief, this handler is capable of

monitoring two component nodes for failures, and when an occurrence is

detected, it restarts the DisparityEngine, configures it with the last valid state and

after it reaches stability the other node is stimulated to re-establish connection

with the new service (provided by the new node). Observe that the proposed

mechanism enables developing specific detection and recovering solutions using a

generic approach, which is based on the log flow with meta-information as

information source.

7.4 Subsea Equipment Monitoring (SEM)

This is an embedded system developed for monitoring equipment installed

in deep water, such as oil pipelines. The system’s architecture is composed by

Arduino microcontrollers and a satellite radio for external communication. The

software that runs on the microcontrollers was written in the C++ language.

However, during development, a prototype was coded in Python instead of C++

and executed on an x86 PC instead of a microcontroller, thus providing an

environment that requires less effort to assess the system’s specific solutions and

provides mechanisms to simulate most hardware interfaces.

This type of software is extremely difficult to develop, since it requires

physical hardware equipment to test and, sometimes, specific environment

conditions, as described hereafter. Although software simulators have been used

for a long time while testing, some critical situations can only be evaluated in a

real environment and must be subjected to field tests. Field tests usually require a

preparation phase and, once started, are restricted by limited resources or time.

Moreover, during the test the developer usually has more concerns than when

developing in a controlled environment, since it is harder to concentrate in this

type of environment while debugging. Therefore, these system’s field tests are

interesting scenarios to evaluate the diagnosis solution proposed in this thesis.

When a failure occurs in a field test, the developer does not have the necessary

environment to debug the occurrence (for example, a debugger and the possibility

to redeploy in order to rerun some tests), which makes the extracted information

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

138

of paramount importance for further analysis. Two versions of the SEM system

were evaluated: the prototype and the final version (embedded software).

As mentioned, a prototype was developed in order to evaluate the

monitoring solution and to allow us to learn from the eventual problems,

involving equipment limitations and third-party software failures. The main

objective of the prototype was to simulate the software solution with the external

equipment, in order to learn failures quicker and before implementing the final

version of the solution for the microcontroller. For example, the satellite radio

only works when it has a completely clear line of sight to the sky, imposing the

field test to be outdoors in an open space. In this case, however, the development

environment is impaired by battery limitations (for laptops and other equipment

such, as the microcontrollers and the radio) and by other factors, such as clarity in

laptop screen and presence of mosquitoes on the base. Hence, when a software

expected to be correct presents some malfunction, such as an impossibility to

transmit messages to a web server using the satellite, the developer must gather all

the information he can about the environment for later inspection of the failure.

Nevertheless, the execution log for this type of system is huge, including many

abstraction levels — such as higher-level actions to report the equipment state,

measure sensors, transfer a sample, etc.; and low-level operations such as the

serial protocol implementation, the satellite message construction, the real time

clock (RTC) configuration, etc. Therefore, these system’s characteristics are

interesting for evaluating the diagnosis tool proposed in this thesis.

7.4.1 Instrumentation

The SEM software system was developed by a team of two members: one

software engineer with expertise in mission-critical system development, and an

experienced developer. The instrumentation was written by both members during

system development, using the following instrumentation policy:

Rules for notification

• Every decision edge of a function.

• Every code-block planned as an action (ex: sample sensors, build

message, compute the sleep time, etc.).

• Read/write from the SD (the data disk).

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

139

• Read/write from the EEPROM (the non-volatile memory).

• Read from analog port.

• Result from an algorithm or complex math formula.

• State transition of a digital port.

• Access to the real time clock (RTC).

• Data sent to another device, indicating the communication method

(UART, SPI, IC2, ETH, etc.).

• When entering or leaving the low consumption battery mode.

• When entering and leaving an alarm state, indicating the type

(critical measurement or low battery).

• When entering and leaving the warning state, with suspicious of

malfunction, indicating the type (SD, communication, EEPROM and

radio).

Used tags

• src_line – source-code line.

• src_file – source-code filename.

• error – error description.

• memory – available space in the volatile memory.

• component – name of the component (CPU1, CPU2, Radio and

Display).

• action – high level operation being executed.

• init – scope of the microcontroller’s initialization.

• loop – scope of the microcontroller’s main loop.

• data – data sent/received in a communication operation.

• interrupt – scope of an interrupt callback. The value is the port

number.

• comm_type – type of communication (UART, SPI, IC2, ETH, etc).

• ip_addr – IP address (ex: 192.168.0.1).

• eeprom - address from a memory block.

• data – data sent/received by a communication; or data written/read

from a SD operation.

• sensor – type of the sensor.

• measure – measurement of the sensor.

• port – port of the microcontroller.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

140

• state – state of the related microcontroller port.

• rtc – any operation related to the external real time clock.

• alarm – type of alarm (critical measurement or low battery).

• warning – type of the suspicious malfunction (SD, comunicação,

EPROM and radio).

As described in Chapter 3, some reuse patterns were applied to avoid

rewriting the frequent tags. The most relevant patterns are:

• Every component’s main function pushes the tag component.

• The setup code receives the scope tag init.

• The main loop code receives the scope tag loop.

• The instrumentation library automatically appends the tags in every

notification: src_line, src_file, and memory.

• The instrumentation library automatically appends the tag stacktrace

when the tags error or exception are present on the received tag set

for notification.

• Auxiliary functions are used to encapsulate the access to hardware,

such as pins (ports), communication, SD, and EEPROM. Following

this pattern, we could generate a message to inform each operation,

test the result, and automatically generate a notification in case of

failure.

We encountered three difficulties when instrumenting this system. The first

one was memory limitation: when using Arduino Uno the execution frequently

reached the maximum memory available (1Kb) and rendered the logging

approach unfeasible. When the hardware was changed to Arduino Mega (8Kb),

the problem was solved. The second difficulty was the clock availability: this

problem is intrinsic to this type of system, since the usual real time clock (RTC)

used in PCs, which maintain the date and time even when the machine is turned

off, is an expensive feature for a microcontroller. In this project, the CPU1 had

one of these, but the CPU2 did not, preventing the instrumentation library from

generating a timestamp for each event notification. The problem was solved by

notifying events without timestamps, and inserting them on the remote server.

Since events are sent immediately notified by each CPU, and the timestamps are

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

141

generated from the same origin (the server), events from both CPUs become

normalized in a single timeline with a maximum error proportional to the

transmission delay, which is acceptable for our purposes. Another solution would

be using a Network Time Protocol (NTP) to synchronize the clock every time the

microcontroller was awoken from sleep, but it would require an NTP server and

access to a network — this, however, was the third difficulty we encountered. As

with the RTC, the network access for an Arduino is made through an expansion

card. Observe that every new device connected requires more power, thus

increases the battery consumption. In addition, microcontrollers’ ports are limited,

and each one of these expansion cards requires some of them to work properly.

The network expansion card was used in this project only for debugging purposes

during development, in order to make the Lynx usage feasible. The final version

was shipped without it, since having ethernet capability makes no sense in the

deployed version, as the system does not communicate with the external world

after deployed. Observe that these three difficulties are related to hardware

specifications, not the technique itself. The application was measured as explained

in Section 7.1.1, with the results presented in the tables below.

Source lines

(KLOC)

Event notification

(%)

Tag manipulation

(%)
Total (%)

C/C++

(Arduino)
2.3 12.13 6.74 18.87

Python (PC

prototype)
2.7 18.16 5.03 23.19

Table 10 – SEM’s implementation effort.

 Computing Overhead (%)

C/C++

(Arduino)
9.3

Python (PC

prototype)
0.21

Table 11 – SEM’s computing performance overhead.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

142

 Number of events Data Overhead (%)

SEM 12.054 660.47

Table 12 – SEM’s storage performance overhead.

These results will be discussed further ahead, in Section 7.6.

7.4.2 The Diagnosis Tool Evaluation

A study was conducted with three failures observed while using the system

in distinct field test, used to evaluate the solution in a real world environment. The

first two were observed in the radio’s component prototype written in Python, and

the third one in the final software system. The following subsections will describe

the selected failures, informing the failure observation and the correct diagnosis,

before presenting and discussing the results. These scenarios will demonstrate the

generality of the solution to diagnose failures related to communication and

resource allocation.

7.4.2.1 Escaping error

The failure observation was due to one of the messages transmitted to the

satellite’s modem failing to register, blaming a checksum error. In the field test,

we observed that the problem was related to the dataset being transmitted, since

every transmission of the exact same package produced the same result, while

other messages had success in registering. However, during the field test no

hypothesis was conceived regarding why the failure only occurred with that

payload. The correct diagnosis was that during implementation, two of the five

escape sequences had had their placements switched, causing some (very few)

messages to send a payload that could not be parsed by the satellite’s modem, thus

generating the error. However, in order to diagnose this failure, the developer

needed to review, step-by-step, the process of message transmission, studying the

data buffer transformation. In a traditional log, there is a conflict between

exposing this data in order to support diagnosis and avoiding it, to make the event

log more legible. Before the study, the expectation was the Lynx tool to be able to

filter the relevant events for the footprint, which was confirmed, thus solving this

conflict.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

143

7.4.2.2 Endianness error

Endianness5 describes how multi-byte data is represented by a computer

system and is dictated by the CPU architecture of the system (Blanc & Maaraoui,

2005). The available options are: big endian, which stores the most significant

byte of a word in the smallest address, and little endian, which stores the least

significant byte of a word in the smallest address.

The following failure is similar to the previous one, and is also related to the

message transmission protocol. The observation was that some messages were

arriving with less bytes than expected, without any obvious pattern that could be

used to create the first hypothesis. The correct diagnosis was that the length field

in the message was written in little endian, when it should have been in big

endian. Since we do not have access to the modem’s embedded logic, we assumed

that it sends a number of bytes according to length field, even when more bytes

are available in the data field (and it is fault tolerant to send all the bytes in the

data field when the value of the length field is higher than the data field’s count).

This failure’s diagnosis depends heavily on the knowledge and experience

of the developer, since after reaching the footprint it is necessary to carefully

analyze the data being transmitted. Without comparing the buffer data with the

protocol’s specification, the developer would never find the root cause. However,

our expectation was that the Lynx tool would quickly make the operator reach the

footprint that represents the failure, which occurred for all participants during the

assessment.

7.4.2.3 Limited memory

The failure observation was an unexpected behavior in the embedded

software, which executed an impossible path in the program’s logic: a return

statement being ignored. Much time was spent following hypotheses that did not

contribute to understanding the unexpected behavior, such as changing the

microcontroller assuming hardware malfunction, looking for knowledge bases for

a past occurrence, and distrusting the compiler’s reliability. The actual cause was

a dynamic array allocation with a required length that overpassed the memory

limit. After that, the software made some invalid access to memory, writing in

5 The convention used to interpret bytes in memory generating a data word.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

144

addresses without permission, which resulted in the observed misbehavior. The

memory allocation operation is usually followed by a verification code, which

confirms success. In this case, however, the developer forgot to write it.

This is a very simple failure, but without a proper tool, it becomes quite

hard to diagnose. The expectation is that with the Lynx, the operator will quickly

identify the root cause, since the available memory is a tag notified in every event.

7.4.2.4 The Diagnosis Assessment

The study was conducted with three developers. One of them had actually

participated in the development of the system, and the other two had sufficient

knowledge about the system to diagnose the failure.

 F1 F2 F3

Traditional approach ≈ 40 ≈ 60 ≈ 240

Developer 1 5 14 2

Participant 1 10 8 4

Participant 2 9 11 4

Table 13 – Time in minutes to diagnose each failure in the SEM study.

As in the previous studies with the Lynx tool, all failures were diagnosed in

less time than the original occurrence. F1 (escaping error) was quickly identified

by developer 1, who started with the assumption that the checksum was correct,

since the radio accepted the command. Thus, he only had to verify the log after its

calculation. The other two participants reviewed the entire process of message

building. As expected, the Lynx tool aided in removing unnecessary events, but

F1 (escaping error) and F2 (endianness error) required external knowledge and

mathematical calculations in order to verify each step of the process. The F3

failure (memory limit) had its root cause exhibited in the first query made on the

tool – the diagnostic could be defined in less than a minute. Nevertheless, all

collaborators needed some time to conclude the problem was related to memory

allocation. As previously mentioned, the visual pollution of unnecessary tags

hampers the identification of the obvious characteristics that aid in determining

the failure’s root cause, or even of those that would help creating a newer

hypothesis to advance the diagnosis.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

145

7.5 Team and Equipment Management System (TEMS)

The TEMS system was developed as a modular platform that provides

mechanisms to implement support applications for specific processes in an

organization. For example, one of these modules is the Key-Performance-

Indicators (KPI), designed to reduce the effort in managing indicators in an oil &

gas company that needs to process daily reports for a large set of ships. The

system was implemented as an ordinary web application that provides a user

interface though desktop browsers, and was deployed in a cloud service with

access to an SQL database. The web application was implemented in Python and

uses the Django framework.

The main non-functional requirements in this system are security and

traceability, in order to determine past interactions in case of an auditing. Hence,

the instrumentation policy is heavily based on determining what occurred, when it

occurred, who did it, with whose permission, from which machine, etc. The

proposed logging approach enabled a different design perspective to accomplish

these implementations. Our solution does not attempt to provide any additional

benefit when compared to other solutions for auditing purposes. The goal here is

to demonstrate that the proposed solution can be applied to systems with different

levels of complexity. Moreover, this deployed system did not present any failure

that was worth evaluating, thus this system will only be used for instrumentation

measurements.

7.5.1 Instrumentation

The TEMS system was developed by a team of four members: one senior

developer, two novice developers, and one web-designer with limited coding

proficiency. The instrumentation was written during system development by two

of these four members, using the following instrumentation policy:

Rules for notification

• Starting and ending a function.

• Every decision edge of a view (function that renders a webpage).

• Authentication mechanism.

• Create, remove, update, and delete (CRUD) database entries,

indicating the type of operation.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

146

• Explicit database query (when not using a framework for building

SQL or NoSQL queries).

• Sending emails.

Used tags

• src_line – source-code line.

• src_file – source-code filename.

• error – error description.

• warning – suspicious malfunction.

• exception – placed in the catch block, without value.

• stacktrace – the execution stacktrace.

• environment – the execution environment (ex: mobile).

• thread – identifier for the current thread.

• module – indicates the high-level system module.

• action – high level operation being executed.

• collection – database collection that is being manipulated.

• database – name of the database that is being used for the operation.

• host – computer hostname that made the access.

• ip - IP address of the user that made the request.

• is_admin – indicates if the user is an administrator of the system.

• is_manager – indicates if the user is a manager.

• user – identifier of the user that made the request.

• request_id – identifier of the request.

• report_id – identifier of the current report.

• progress – current value of the user’s progress (0-100).

Observe that this instrumentation policy is extremely similar to the one used

in the WinePad system, as it is a reuse of it, with few adaptations. As described in

Chapter 3, some reuse patterns were applied to avoid rewriting the frequent tags.

The most relevant patterns are:

• The application startup pushed the tag environment.

• The instrumentation library automatically appends the tags in every

notification: timestamp, thread, src_line, and src_file.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

147

• The instrumentation library automatically appends the tag stacktrace

when the tags error or exception are present on the received tag set

for notification.

• An interceptor in the webserver interface to automatically identify

information from the request and append it to the tag stack. This

implementation pushes the following tags: host, ip, is_admin,

is_manager, user, request_id, device_id, and organization.

• The action_tag mechanism that uses the function name as the tag

value, implemented in Python with decorator.

• A listener for the database intercepts the CRUD operation and

notifies events with the operation type and data.

This system’s instrumentation did not pose any specific difficulty. The

applications were measured as explained in Section 7.1.1, with the results seen in

the tables below.

Source lines

(KLOC)

Event notification

(%)

Tag manipulation

(%)
Total (%)

Server app 10.63 4.56 1.52 6.08

Table 14 – TEMS’s implementation effort.

 Computing Overhead (%)

Python 10.04

Table 15 – TEMS’s computing performance overhead.

 Number of events Data Overhead (%)

TEMS 12.143.772 463.88

Table 16 – TEMS’s storage performance overhead.

Hereafter, we shall discuss such results.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

148

7.6 Discussion

7.6.1 The Instrumentation

All systems were instrumented with the proposed technique without much

effort. An instrumentation library was developed for each of them, being similar

among languages but with few minor differences in order to better suit the

domain’s needs. For example, the auxiliary decorators were developed based on

the abstractions introduced by the infrastructure where the system is executed. As

explained in Chapter 4, the library must be developed with focus on the domain of

the systems it will serve. Furthermore, the overall instrumentation effort was low,

as presented in the following table, which aggregates all measurements discussed

in the previous sections.

Source lines

(KLOC)

Event notification

(%)

Tag manipulation

(%)
Total (%)

WinePad (Obj-C) 13 6.40 4.11 10.51

WinePad (Python) 16 7.43 1.14 8.57

EMR (C/C++) 13.7 6.24 4.05 10.29

EMR (Python) 15.1 6.96 7.23 14.20

SEM (C/C++) 2.3 12.13 6.74 18.87

SEM (Python) 2.7 18.16 5.03 23.19

TEMS 10.63 4.56 1.52 6.08

Table 17 – Overall implementation effort.

The total instrumentation effort had a median of 10%, with maximum and

minimum, respectively, as 23% and 6%, when comparing projects with different

sizes. From our point of view, the application of our instrumentation technique

requires little effort. Moreover, observe that event notification statements already

exist in traditional software development in the form of simple log notifications,

and our technique extends it with the meta-information concept. Looking at the

effort overhead of our solution, we have measured that tag manipulation effort

(push and pop by any mechanism) have a median of 4%, with maximum and

minimum, respectively, of 7% and 1%. We attribute this effort level to the reuse

techniques applied for stacking general tags, described in Chapter 4 and illustrated

in the previous sections. With this approach, the tag set that must be inserted in

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

149

most events is defined in a common piece of code for the entire software. The

following table presents an aggregation of the measurements made to evaluate the

computing overhead on each system. These values were computed by dividing the

time spent processing the instrumentation by the time spent executing functional

code.

 Computing Overhead (%)

WinePad (python) 9.95

WinePad (Obj-c) 1.43

EMR (C++) 0.51

EMR (python) 0.84

SEM (C++) 9.3

SEM (Python) 0.21

TEMS 10.04

Table 18 – Overall computing overhead.

From the computing overhead results, we may conclude that the impact

depends on the domain and language. Web applications (WinePad and TEMS)

present higher impact, what could be attributed to the automatic log generators

(ex: the one installed in the database callback). Even with this higher overhead,

however, the user experience regarding the productive use of the system was not

affected. The SEM instrumentation also indicated a higher computing overhead,

which we anticipated since the notification procedure of its library executes high

cost operations for a microcontroller, such as accessing the external SD disk and

handling HTTP requests6. The table below presents the aggregation of the storage

overhead measurements.

 Storage Overhead (%)

WinePad 647.17

EMR 615.51

SEM 660.47

TEMS 463.88

Table 19 – Overall storage overhead.

6 There is a planned evolution that consists in using the Arduino’s default serial port to

transmit the log content, instead of using an ethernet board.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

150

From these measurements, we conclude that the presented log technique

required more than six times more storage space than when using the traditional

log technique. Since we have selected for the evaluation a heterogeneous set of

system domains, and the measurements from all systems resulted the same order

of magnitude, we expect a similar result when applying the technique to other

domains. However, this overhead depends on the number of tags inserted on the

events, which is guided by the instrumentation policy of each system. Thus, as

discussed in Chapter 3, an event discard policy is a theme for future work, which

may provide rules for keeping only the relevant information in the long-time

storage, discarding the rest after a critical period (defined from system to system).

Another technical evolution might be achieved by applying a data compressing

technique. However, we must highlight that during this work there was no attempt

to solve this specific problem, since in modern hardware storage space is usually

very cheap. It is important to stress that even for the most limited system in this

evaluation — which is the SEM system using a SD card for storage —, the

calculated space for storing the log lifetime of this system is less than 1GB.

7.6.2 The Diagnosis Tool Evaluation

All failure diagnoses made in this study were much quicker than the original

diagnosis made by a developer without instrumentation. However, despite the

times from the original diagnoses were spent entirely to generate the diagnostic,

they could not be entirely dedicated to log analysis, since some hypothesis could

not be evaluated using the traditional log, as it surely did not expose some

required information. Hence, the times of the original occurrence include coding

and redeploying tasks, employed for hypotheses instigation.

It is important to notice that, despite the simple description, failures from all

studies are difficult to diagnose when employing traditional techniques: it is hard

to elaborate relevant hypotheses only by observing that a failure occurred, and to

investigate them in log sets with thousands of events, mostly unrelated to the

desired footprint. Thus, the traditional log does not help much, due to all

limitations described in Chapter 2. The log enrichment and diagnosis techniques

described in chapters 4 and 5 contributed by initially providing properties about

the failed context that aided in the elaboration of hypotheses. These, in addition,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

151

were closer to the right one, effectively leading to the determination of the root

cause. However, one of the first suppositions of the instrumentation policy was

that critical components should have a smaller granularity. This was proven

wrong by the failures in the WinePad, since some failures related to critical

components required information about non-critical components, initially

considered less relevant for diagnosing and given less attention in the policy. For

example, in order to determine the root cause of the data inconsistency failure

(described in Section 7.2.2.4), observed in the synchronization service (critical

component), the instrumentation must expose events from edit operations located

in the user interface, which is considered a non-critical component. The

conclusion from this result is that the policy cannot be generated based only on

assumptions and similar system’s experiences. It must start with these

assumptions, but must evolve during the system’s lifetime as a live document.

We have observed that the visual pollution was one of the main difficulties

while using the tool. In fact, in many scenarios the many unrelated tags obscured

what otherwise would be the obvious diagnostic, which just required looking to a

key-property in an event that explained the failure’s root cause. The tool provides

a feature to hide tags by type, which solves the problem, but the operator must

remember to do it in every query result: before analyzing, wipe it by hiding

irrelevant tags.

Another conclusion is that the diagnosis tool helps in investigating all

hypotheses when the log contains the necessary tags to support the filtering.

However, external (human) information is needed to identify the root cause of the

failure. Automatic diagnosis was not a goal of this research. Nevertheless, during

the study we have observed that, while diagnosing some failures, the collaborators

managed to quickly locate the root cause, but needed some extra-time to fully

understand it. Thus, the Lynx tool presents an efficient mechanism to investigate

hypotheses, which can be further evolved by implementing semi-automated

diagnosis techniques. Therefore, since the log annotated with meta-information

better supports the diagnosis tools, semi-automated techniques may present better

results when using this instrumentation technique, avoiding the issues discussed in

Chapter 2. This, however, is a topic for future work.

Last but not least, we have observed that the Lynx tool’s efficiency is not

limited to finding the footprint that describes the root cause, which is produced by

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

152

the correct hypothesis. The tool also aids in investigating wrong hypotheses, thus

reducing the time spent looking into event sets that eventually lead to dead ends.

During our studies, some of the collaborators explored the same wrong

hypotheses investigated in the original occurrence, but left them much quicker, as

the richer information on events avoided try-and-error attempts, as discussed

before.

Furthermore, while testing the system using a debugger tool in a controlled

environment, it is common to establish a breakpoint configuration to meet

recurrent scenarios, which is similar to the perspective of interest of this approach.

Hence, we expect that this diagnosis solution may also contribute for testing

larger systems, as a complementary tool in the debugging toolset, since a

breakpoint with a complex expression might be transformed into a query based on

tags. However, this is a topic for future work, which needs to be further studied

and experimented in order to verify its feasibility.

7.6.3 The Failure Handling Mechanism

The proposed solution for writing failure handlers was successfully applied

to all failure types used in our research. As discussed before, this solution does not

attempt to introduce a new fault tolerance approach. Its goal is to provide

mechanisms that enable the creation of independent entities capable of detecting

and recovering known failures, in a way that avoids polluting the target’s

functional logic. This goal was achieved by using the event flow with meta-

information as a generic source of information for developing failure handlers that

use the query engine to inspect the log history in order to identify suspicious

activities and behavioral inconsistencies that represent a failure footprint, then

using the footprint-specific data to feed the recovery routine. As expected, many

of the recovery routines developed during this evaluation were inspired on usual

fault tolerance solutions, such as Randell (1978), Ammann & Knight (1988),

Johnson & Zwaenepoel (1990), Kazinov & Mostafa (2009), for example.

While using the hydra solution in the EMR production’s environment we

have observed some issues in the system’s startup and shutdown operations. For

example, if the hydra component is launched before others, it won’t detect any

instance (as there is no event with keep-alive tag), thus will conclude that all have

failed, and then proceed with a restart recovery strategy for all of them, however,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

153

in a scenario that all are still initializing. Therefore, as a solution, the hydra

component instance is launched by the deployer tool after all components have

reached the stability (an event with keep-alive was notified). The same approach

is done in the shutdown operation: the hydra instance if the first to be closed.

Another observation is the high degree of reuse achieved in the EMR

system, in which failure handlers frequently consisted of common detection and

recovery strategies already developed for previous failures. This result also

demonstrates that, in addition to modularization, the solution may be applied with

efficiency. However, since we evaluated the solution only in the WinePad and

EMR systems, further investigation is necessary in order to verify this result for

other domains. Moreover, we expect that the co-evolution of the EMR system will

present more complex situations to apply the mechanism and identify further

evolutions. There are two planned evolutions:

• Nesting failure handlers in a tree structure in order to define

precedence while detecting failures. For example, the connection

failure verification is executed only if the node’s stability (keep-alive

monitoring) was already confirmed.

• Nesting recovery strategies in a tree in order to represent alternatives

handling paths.

Furthermore, there is the risk of considerably impacting the system’s

performance, what would prevent the solution from being installed on deployed

systems. Some measurements were made in each system in order to demonstrate

that the failure handler’s impact on performance is actually low. The measurement

in WinePad was similar to the one made for the logging instrumentation —

compute the time for functional and instrumentation code using a profiler

mechanism. For this measurement there were installed both failure handlers

presented in Section 7.2.3.1. In EMR, since each component is executed in a

different process — and the Hydra global cycle is also a component —, the

measurement was made comparing the CPU allocation for each process of a

running system with 9 component instances (including the Hydra component),

and 19 failure handlers active (all with verification frequency configured as

500ms). Table 20 presents these results.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

154

 Performance Overhead (%)

WinePad 0.31

EMR 0.52

Table 20 – Overall performance overhead for the failure handlers.

The overhead is actually low, however, as discussed in the Chapter 6, it may

vary based on some variables: the system functional implementation, the number

of failure descriptors installed, the number of tags in the tag stack, the number of

tags in the vulnerable scope of each handler, etc. From our observation, in the

EMR system, for example, the component instances have an impact an order of

magnitude greater than the corresponding failure handlers.

Another confirmation from our case studies was that modules developed in

low-level languages require much more effort to apply the solution, since they do

not provide appropriate mechanisms to implement the handler in the most

transparent form. When available, mechanisms based on language introspection

and reflection were used to implement the solution in order to minimize the effort

of in (1) instrumentation, (2) failure handling implementation and (3) failure

handling installation. This last item is important, since when a failure is

discovered during production use, we expect to install the recovery handler by

deploying a single source file, which is integrated to the system by a class loader

in the Hydra mechanism — thus without modifying the system’s source code.

7.7 Concluding Remarks

In this chapter, we have evaluated the solutions proposed in this thesis. The

assessments consisted on:

• Measure the effort to apply the instrumentation technique, and its

impact on the system’s performance.

• Verify that failures can be diagnosed more efficiently by the

proposed diagnosis technique than the traditional approach.

• Assess that failure handlers can be developed without polluting the

code or impacting on the system performance.

The solutions were applied to four different systems, in order to verify their

validity in real world scenarios. The expectations met were: (1) applying the

solution requires little effort; (2) it imposes low impact on the system’s behavior;

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

155

(3) the diagnosis technique effectively aids in diagnosing failures; and (4) the

proposed self-healing mechanism can assist in writing failure handlers for

expected faults, in most situations without requiring changes in the faulty code.

An identified weakness of the solution is its reliance on the quality of the

instrumentation policy. In fact, if the instrumentation policy fails to cover a given

aspect, or if the developer ignores it while developing, both diagnosis and

recovery solutions will be impaired. These issues did not occur in our evaluation,

but it is fair to expect them in organizations that are learning the technique. Since

learning depends on the characteristics of the target system, this difficulty can

possibly be attenuated using the technique and improving the instrumentation

policy already during development and test phases. Therefore, the instrumentation

design is a theme for future research, and must be further evolved in order to

ensure the solution’s effectiveness.

We also observed some limitations in components that present resource

limitations, such as those implemented in microcontrollers. During the evaluation,

the SEM system was evolved to use an ethernet board solely for notifying events.

This is a valid solution for a lab or field test, but in a production environment, this

requirement can produce a huge impact on the project, rendering the solution

unfeasible due to the high costs imposed by the ethernet board and to the fact that

it requires a battery with higher specifications. There is also the memory

limitation problem, due to the space required for the tag stack in the latent

memory. This was also not an issue during our evaluation, but it might become a

critical issue in microcontrollers with less memory or with programs that handle a

larger amount of data. These issues related to limited hardware will be a theme for

future work.

The next chapter will present the state-of-art related to this thesis and

discuss how the proposed technique is situated. In short, the hybrid

instrumentation technique proposed is a strong candidate for solving the problems

presented and discussed in Chapter 2, related to runtime information extraction.

The proposed diagnosis technique has the capability of selecting events based on a

perspective of interest — which is only feasible due to the novel instrumentation

technique already mentioned —, but it does not implement semi-automated

analysis, which is known to reduce the operator’s effort while diagnosing. We

consider these techniques complementary, and expect they may also be improved

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

156

by our instrumentation technique. Finally, the proposed failure handling solution

is a self-healing approach, which does not implement all guidelines of the

Autonomic Computing (Murch, 2004) concept, in spite of being inspired by it.

The goal was not to provide a new approach for fault tolerance, but a mechanism

that enables known fault tolerance solutions to be applied with modularization

and, when possible, reuse.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

157

8
Comparing with Related Work

This chapter will present the state-of-art of the research in field of Dynamic

Analysis (Cornelissen et al., 2009), and then discuss how it is usually combined

with recovery mechanisms. The dynamic analysis approach consists on evaluating

a program while executing it in order to detect failures, instead of examining the

system’s source-code looking for faults (known as the Static Analysis approach).

Hence, the dynamic analysis’s main objective is to aid in the comprehension of

the system’s behavior.

Dynamic Analysis

Event-based
approach

State-based
approach

Logging Tracing

N-Version
Software

Pattern mining

FSA AnalysisDependency
Analysis

Event Flow

Checkpointing &
Restart

Data Diversity

Capture & Replay

Information
Extraction

Fault Tolerance

Failure diagnosis

Self-HealingPattern-based
action

Behavioral
Analysis

Failure Detection & Recovery

Recovery Blocks

Redundancy

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

158

Figure 16 – Relationship between solutions in the field of dynamic

analysis.

The following sections will discuss the fields of information extraction,

failure diagnosis, fault tolerance, and failure detection and recovery. The

relationship between techniques and their respective fields of research is

represented in Figure 16.

8.1 Event-based approaches

This section will present solutions based on approaches that focus on

studying system executions, in order to understand the behavior of the software

and causality relationships.

8.1.1 The Most Simple Solution: Verbosity

A common mechanism to reduce the set of log events to be studied is the

verbosity level (Microsoft, 2013), which enables maintainers to select the level of

detail in which they desire to view past system executions: if the current level is

not sufficient to explain the root cause of the failure, the detail level is raised and

the set of visible events grows an order of magnitude. This type of log is created

using mechanisms that enable developers to define in which level the notified

event should be stored. Although this approach contributes to granularity control,

it does not solve the problem of selecting only the relevant events needed to

diagnose the failure, mainly because some of the key events may be at a higher

level of detail that is shadowed in the log. We believe it is necessary to gather,

right away, as much information about the system’s execution as possible, and

apply a later a filtering to distinguish which events are relevant for a given

diagnosis session. This would be especially the case when trying to detect and

diagnose failures without having to replicate the conditions that lead to the error

(Skwire et al., 2009), something usually impossible to perform regarding multi-

programmed or distributed systems. However, to support this approach, each

logged event must contain more information about the context that originated it.

Also, this information must be stored in an adequate way for the filtering

mechanism.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

159

8.1.2 Log Patterns, Data Mining, and Clustering

There are many works based on data mining and clustering (Manilla, 1997;

Ma, 2000; Pei, 2000; Srivastava 2000; Hellerstein, 2002; Vaarandi, 2003;

Vaarandi, 2004; Makanju, 2009), which are generated in a free-format, without a

defined protocol. Data clustering is a data mining technique to sort events into

groups called clusters, consisting of events that are similar to each other and

different from events in other groups. For example, an event “The interface ETH2

failed to reply IP 192.168.2.34” would be defined in a pattern “The interface {0}

failed to reply IP {1}”, where the numbers represent the variable part ― i.e., the

context properties ― from which the specific data is retrieved. Some works try to

infer the property names based on empirical knowledge (Lou et al., 2010), with

approaches to evaluate the text fragments nearest to the values. Hence, this

approach provides execution information that helps maintainers understand the

system behavior during a diagnosis session.

Arguably, this technique provides some result without impacting the

development process, since it uses raw text logs as input. However, efficacy is

compromised due to three major problems: (1) property names and values may

have been written in different formats, making the association very difficult or

even impossible. Consider, for example, these two forms of writing an IP address:

“ip”, “device_addr”. They won’t be matched. This situation can happen in an

environment where events were notified from components implemented by

different teams; (2) the second problem is the information in events being

insufficient, as cited before. Depending on the failure under analysis, different

properties from the notification scope will be needed. During development time,

developers insert just the information that is relevant from that scope, discarding

others that could help in some diagnosis sessions; and (3) related to problem 2,

properties of the outer context will not be present in the event, making it more

difficult to relate events of the same flow or to understand in which circumstances

that routine was executed (for example, from which service a common asset was

called). The first problem can be attenuated by implementing a rule policy that

renames properties based on an incremental knowledge base. The second and

third problems, however, will only be solved by changing the way events are

notified.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

160

Another output of some mining algorithms (Ma, 2000; Hellerstein et al.,

2002; Vaarandi, 2002) is the pattern frequency, which helps maintainers identify

performance issues when compared to failure occurrences. For instance, consider

that a given routine works well for 50 executions per second, but, when it is called

more than a hundred times a minute, failures starts to occur. This approach is

complementary to our solution, and can be adapted in future evolutions. From the

pattern frequency we can derive the periodicity, which suggests the system’s

normal behavior and the outliers, formed by a group of infrequent events that may

or may not represent a failure occurrence and should be investigated. Despite the

benefits of this output, it does not aid in locating root faults, since the root cause

of the unexpected behavior may be in the events with normal periodicity. If the

infrequent pattern exposes sufficient information, some of it could be used to

guide the maintainer when searching for related events, but context properties are

often not expressed in the event (Oliner & Stearley, 2007).

There are works that evolved this technique by post-processing patterns in

order to mine dependencies between them (Hellerstein et al., 2002; Zheng et al.,

2002; Zhang et al., 2009; Lou et al., 2010). A dependency is a causal relationship

between events in different components of the system. This approach would help

maintainers identify relations that are hard to detect without proper tools, and then

diagnose the root cause of a failure. For example, this approach allows following

backwards a user’s request along different system services, starting from an error

event produced by a generic common library. Zheng et al. (2002) works over logs

composed by alarms (warnings, in the terminology adopted by this thesis), and

uses the causality approach to merge related alarms into one containing all the

information. This may describe the root cause of the failure and the fault location,

if the necessary information is present in the final alarm.

Another approach is presented in (Xu et al., 2009), which detects patterns

based on the source code instead of data mining techniques. This technique

extracts the abstract syntax tree (AST) from the source-code and identifies all

statements that produce events. These statements represent the set of patterns that

will be used to match the events during the execution. A good side effect of this

approach is the log structure being precisely defined due to the known location of

the pattern in the AST. As per previous related work, the result of this approach

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

161

could be further enhanced with contextual properties associated in each event. A

weakness of this technique is the need for an AST, which requires a set of parsers

for each supported language, limiting the tool’s implementation.

There are works in failure prediction based on logs (Fulp et al., 2008;

Zehng et al., 2009; Lo et al., 2009; Lou e al., 2010), which focus in failure

detection by using the extracted patterns and its correlations to identify anomalous

behaviors. Most of these works detect known failures, provided by a knowledge

base created by developers and maintainers. Lo et al. (2009) presents a novel

technique capable of detecting unknown behavior through the analysis of log

histories and past failures, which are used as training data for a pattern classifier.

Lo et al.’s (2009) approach uses the common execution tree to identify forgotten

or out of order calls, which may represent hard-to-detect failures. Lou et al. (2010)

proposes a different approach: searching for system invariants in the log history to

define the set of patterns that correspond to normal behavior, and then evaluating

the log flow using these patterns. This approach can help detecting problems such

as wrong API usage, and is complementary to our approach. There are some

works that use rule-based tools to associate patterns by describing failures with

recovery routines which are executed when one of those patterns is matched in the

log flow (Vaarandi, 2002; Prewett, 2003). Due to the fact that these approaches

use unstructured logs, they present a high-level of false-positives (Lo et al., 2009),

even with all the effort made in developing techniques and algorithms to enhance

their accuracy.

Most of the works described in this sub-section target superficial failures,

related to network, performance and security layers of the system. Since the

information extracted from logs is limited to a few properties, its contribution to

context comprehension is less than adequate, which renders these techniques not

suitable for diagnosing and handling internal logic failures. Our solution follows

the same trend of dynamic analysis (Cornelissen et al., 2009), by inspecting

system execution through system logs, however using an enhanced

instrumentation capable of extracting context properties and keeping some

software abstractions. Related to the rule-based actions pattern, our solution

carries the system properties from the diagnosis to the detection and recovery

steps. Also, its results can reach the maximum level of accuracy due to the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

162

precision and completeness of the software context present in annotated log

events, which depends on the instrumentation policy defined for the system.

8.1.3 Tracing as a solution for full state extraction

Software tracing is a technique to automatically extract runtime information

based on a unified criterion. It is very similar to software logging, but the

frequency of event notifications is much higher and each event is composed of

much more information about the execution scope. Since this information is

automatically inserted, the application of such technique demands no extra effort

from the developer. The granularity and content of the event notifications depend

on the insertion criterion, which may vary depending on the approach. The most

common criterions, in this case, are instruction-level (Maebe et al., 2002),

function-level (Mirgorodskiy et al., 2005), and remote interfaces (Hendrickson et

al., 2003), registering each function call and its parameters. The higher the

frequency, the greater is the impact on performance.

Trace notifications can be inserted either statically (Srivastava & Eustace,

1994; Romer et al., 1997) or dynamically (Maebe et al., 2002; Mirgorodskiy et al.,

2005). The static approach can operate on source-code level (Lindlan et al., 2000)

or byte-code (Eggers et al., 1990), transforming the software to be traced into an

instrumented version. This approach presents a considerable overhead, which may

vary depending on the granularity policy and on the volume of information

inserted in the notified events. Previous works measured this overhead as being

between 29% and 178% (Luk et al., 2005; Mirgorodskiy et al., 2005; Horwitz et

al., 2010), considering the normal execution (discarding warm-up and inactive

times), which makes this approach unfeasible for deployed systems. The dynamic

approach solves this problem by inserting the instrumentation only when needed

by replacing instructions (Buck & Hollingsworth, 2000; Cantrill et al., 2004),

using just-in-time compiler features (Maebe et al., 2002; Bruening, 2004; Luk et

al., 2005), or operational system mechanisms (Toupin, 2011). This approach

enables the operator to activate the event notification only during a diagnosis

session, thus reducing the impact on performance. There is also a warm-up

overhead in the dynamic approach technique, which is reduced in Mirgorodskiy et

al.’s (2005) work by inserting instrumentation only in the execution path that is

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

163

relevant for the diagnosis session, which is similar to our vulnerable scope

concept.

Undoubtedly, the trace approach produces good results, however it is

usually applied for performance debugging. It is less suitable for debugging logic-

specific faults, since the volume of extracted information is huge, exposing

auxiliary variables and complex objects that will not present a readable

description. Thus, most part of the data will be irrelevant for the operator,

reducing the visibility of the relevant properties and its relations. Also, traces do

not express software abstractions, since automatic approaches do not incorporate

the human knowledge in the process, as discussed in Chapter 2. On the other

hand, the output of a trace can be much more structured than a common log, since

the properties can be indexed by name instead of blended into text messages,

suggesting the technique for automated analyses.

The way the static approach impacts performance prevents the technique

from be applied to a system in production. The dynamic approach, however, also

does not effectively solve the problem of diagnosing faults, since no data will be

saved in the first occurrence and, even if the failure is observed, maintainers may

not know how to reproduce it. There are lightweight approaches designed for

distributed systems (Hendrickson et al., 2003; Reynolds et al., 2006), which

gather only the message calls between nodes, thus reducing the performance

impact and storage requirements. These approaches, however, are prevented from

diagnosing failures involving nodes’ internal logic. Therefore, tracing is not

suitable for system lifetime monitoring, i.e. continuous information extraction for

diagnosis and automatic detection and recovery.

The approach presented in this thesis is a hybrid solution between log and

traces, which enables developers to expose software abstractions in an way that

part of the information is inserted automatically, thus reducing the effort in the

task; and also achieves richer contextual information, since design and

architecture abstractions are inserted due to the corresponding information being

written by the developers that created or learned them. Also, the solution has a

low impact on performance, which makes it feasible for continuous monitoring.

Moreover, the tag-stack technique solves the problem of accessing properties in

unreachable software state (due to encapsulation) by inserting tags of an outer

scope into events notified in an inner scope, without breaking encapsulation or

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

164

requiring great effort from the developer. Even the tracing technique that has

access to all properties during runtime is unable to select the few properties that

should be promoted to scoped tags, thus inserting them in the notifications of that

scope. Human reasoning is required to make these decisions, however, current

development techniques and tools do not express in the software code all

abstractions created during development.

8.1.4 Tracing for failure diagnosis

There are works that use traces to automatically determine the failure’s root

cause (Chen et al., 2002; Barham et al., 2004; Yuan et al., 2006; Mirgorodskiy et

al., 2006). With few differences between these works, the basic idea is to apply

clustering and statistical analysis techniques over the runtime information

extracted, in order to determine anomalous footprints based on past executions.

The main limitation of this approach is the performance overhead imposed by the

tracing technique. When it is coarse-grained, as in Chen et al.’s (2002) work, the

solution is feasible for a production environment. However, since it monitors only

the component’s interface level, internal information about the component’s

execution is not gathered, thus preventing diagnosis of internal failures. The

opposite case, using a fine-grained policy, as in Mirgorodskiy et al.’s (2006)

work, makes internal failure diagnosis possible, but the impact on performance

prevents the trace from being active during the full execution flow, in order to

evaluate each request and detect anomalous ones. A second issue with this

approach is the high rate of false positives, reported by Chen et al. (2002) as being

of 40-50% of detected anomalies. Although this approach is also complementary

to our work, we believe that this technique alone will not be able to precisely

diagnose complex failures ― even though its result, combined with human

knowledge about the domain, the system, and previous experiences, could yield

better results than a manual diagnosis. Moreover, the implementation of this

automatic diagnosis technique, combined with our instrumentation approach, may

produce a more effective result, since by using the tag concept system abstractions

are better represented in the events, thus contributing to identify the failure

signature, hence reducing the cognitive effort needed to understand the fault.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

165

8.1.5 State machine inference for diagnosis support

There are works that aid in failure diagnosis by exposing the state machine

of each node in the system (Lorenzoli et al., 2008; Tan et al., 2008). Lorenzoli et

al. (2008) present the GK-tail algorithm that enables the extraction of Extended

Finite State Machines (EFSM), which annotate each edge with property values

that distinguishes it from all other edges originated from a same vertex. Tan et al.

(2008) presents an FSM extraction approach that also annotates the execution

time duration between vertexes to enable performance analysis. Tan et al. (2008)

and Fu et al. (2009) apply data mining over traditional logs, in order to extract

system properties present in the log messages. The main problem of this approach

is that it relies on the information provided by the traditional log, which is usually

insufficient to understand the execution context. However, the tracing option is

not feasible for a production environment. Therefore, FSM extraction technique is

complementary to our work since the hybrid instrumentation would improve the

precision of the FSA due to the richer information used to infer it, without

imposing a considerable performance overhead.

There are also works that use the FSM extraction technique to automatically

detect anomalous behavior using the normal system execution as a specification

(Mariani & Pastore, 2008; Fu et al., 2009). This technique works as follows: the

system is executed under supervision of an operator, generating training data that

outputs an FSA without failure edges (or it is expected to be). This resulting

model is used as the correct FSA of the system, and after that every edge that does

not match an existing edge is considered anomalous and becomes a candidate for

inspection. Despite its great contribution for failure diagnosis, this technique

presents a high rate of false-positives due to edges of the FSA not being exercised

during the training. There is also the opposite case: failures being exercised during

training without being revealed for the operator, which may cause faults to go

unnoticed.

The evolution of these works produced AVA (Babenko et al., 2009; Pastore

& Mariani, 2013), a tool based on FSA analysis to annotated anomalous

behaviors, with tips that can lead to the cause of the failure. The goal of this tool

is to reduce the operator’s effort in diagnosing. However, it focuses on behavioral

aspects of the execution ― such as presence, absence, anticipation, swapping, or

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

166

replacement of events ―, which is a great advance, and will identify failures

related to event ordering and temporal dependencies. It will not, on the other

hand, be able to explain failures triggered by invalid data or a complete new flow

executed (set of edges not present in the FSA). Finally, there is also an evolution

of these techniques that present the BCT tool (Mariani et al., 2011) and enhances

diagnosis focusing on integration faults.

8.1.6 Visualization tools to assist manual diagnosis

Some works (Takada & Koide, 2002; Stearley, 2004; Bodik et al., 2005;

Tan et al., 2008) invest in visualization tools to assist manual inspection. These

studies aim at solving the visual pollution problem of long log files by condensing

the events and generating statistical graphs. This solution gives good results when

detecting and diagnosing network and security faults, but tends to be inadequate

for diagnosing the application’s logic, which requires detailed information about

the state of execution. Our approach follows the opposite direction, seeking

mechanisms to increase log details rather than simplifying it. We solved the visual

pollution problem using filters that follow the maintainer’s perspective of interest,

showing only events related to the target failure.

8.1.7 Capture & replay

There are failures that are very hard to diagnose since their causes are

usually complex, involving process timing and hardware low-level operations.

Due to these characteristics, said failures cannot be easily reproduced. The attempt

to reproduce concurrence faults, observed in systems with distributed behavior,

using the same parameters and system state of the original execution, may not

trigger the failure. This is due to the fact that such failures depend on

perturbations produced by intermittent factors that lead the system, even if for a

few moments, to an inconsistent global state which is sufficient to produce errors

that crash the system. Therefore, these failures are diagnosed using the trace

captured of the failed execution, and maintainers depend on the information in the

events of this trace to determine the cause of the failure. However, it is difficult to

identify temporal behaviors looking directly at the trace flow instead of at the

global scenario.

There is a diagnosis approach based on tracing, called Capture & Replay

(Wittie, 1988; Dunlap et al., 2008), which attempts to, faithfully and

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

167

deterministically, re-execute a failed routine with the exact temporal

characteristics of the original execution. This approach enables developers to

study the scenario of a failed execution by using mechanisms to inspect the global

state at each point of interest. The limitation of this approach is that it relies on the

tracing technique, which imposes a considerable overhead for a production

environment. Since the objective is to study low-level details of the execution,

traces with the full system’s state must be stored, occupying considerable disk

space. However, this approach is appropriate for debugging and testing (Steven,

2000), and is also applicable for virtual machine migration (Liu, 2007), as long as

system accepts the overhead during the migration period. Another limitation of

this approach is the interaction with external services: modern systems usually use

remote third-party services to execute many tasks, which would not be reproduced

under the replay capabilities. This is called limited consistency, and is tolerated by

some approaches (Geels et al., 2007).

8.1.8 Self-healing

Murch (2004) proposed the Autonomic Computing concept, which suggests

that all system components must be aware of their actions and of changes in the

environment, in order to reason about them and act accordingly to accomplish the

system’s high-level goals. The autonomic computing concept is divided in four

facets, which are: self-management, self-configuration, self-protection, and self-

healing. This last is related to the field of failure detection and recovery, which is

the subject of this thesis.

This concept’s objective is to allow complex systems to adapt their

behaviors to unpredictable events, choosing a path that will be the most effective

solution for the system’s main goals. This complexity is solved by a divide to

conquer approach, where each component is complemented with a local

autonomic cycle to reason about its internal behavior and the external events that

occur in the system. The system itself has a global autonomic cycle to gather

information from all component cycles, which defines the high-level goals that are

passed back to the component cycles as feedback. The Rainbow implementation

(Garlan et al., 2004) proposes an architectural solution for self-adaptive systems,

based on a framework that formalizes the autonomic cycle execution flow.

According to it, sensors in the system provide runtime execution information,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

168

which are mapped onto the system model; some constraints are then evaluated, in

pursuit of violations, which are addressed by the adaptation engine that may

define which and how effectors must be called in order to bring the system to the

most effective path. Sensors and effectors must be provided by the component,

while the rest must be implemented in the framework, as external knowledge

provided by specialists.

This concept has influenced many works in the last decade, including this

thesis. However, the full implementation of the autonomic approach directly

impacts software design and requires high-level expertise from all developers

involved, preventing the technique from being implemented in usual software

development teams, since the developers available with the needed profile being

scarce and an entire team would be unfeasible for the project budget. Furthermore,

systems that rely on specific frameworks or are executed on limited hardware,

such as microcontrollers, sometimes lack the ability to integrate or implement a

self-adaptive solution, due to resource integration incompatibility, or even to the

impact caused by the approach. These are some of the problems dealt with during

the last decade. Some works, however ― including this one ―, propose a solution

towards self-healing, but without complying with all its characteristics. For

example, Carzaniga et al. (2008) proposes a mechanism to reorder the sequence of

operations of a routine that contains a fault, hoping that it avoids the failure.

Chang et al. (2009) describes how to create healing adaptors for components that

will be used as third-party software by application developers. Chang’s work is

very similar to ours in the way that known-faults are handled by a workaround

solution. Their users, however, are the developers of the third-party components

trying to minimize the impact of integration faults, while our users are the

application developers trying to work with third-party faulty components (or their

own components that cannot be redeployed at the moment). Denaro et al. (2009)

presents an approach similar to Chang et al.’s work, by providing a self-healing

layer, focused in service interoperability, which tests each new component that

would like to interact with the service, by executing some test suits in order to

identify interface misuses. When a misuse is detected, an adaptor is defined to

handle the interactions with that specific component. Observe that these three

relevant and recent works are in the same path as ours, which supports that the

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

169

knowledge present in the developers’ high-level abstractions is indispensable to

effectively deal with logic faults.

8.2 State-based approaches

The following sections will present works in the field of fault tolerance,

which aims at finding workaround for faults by providing rollback mechanisms

and redundancy.

8.2.1 Checkpointing and Restart

Checkpointing technique (Johnson & Zwaenepoel, 1990; Sankaran et al.,

2005; Hursey et al., 2007; Kazinov & Mostafa, 2009) is usually applied to

distributed systems, and consists on saving the system’s state (the checkpoint) in

moments where it is believed to be consistent. When a failure is detected by any

mechanism (exception, log pattern, assertion, etc.), the part of the system that has

been compromised is rolled back to the last stable checkpoint, from where the

execution continues normally. This rollback operation loads the previous snapshot

(saved state of the software), recreating a consistent state. When available, the

messages received since the loaded checkpoint are re-transmitted, in order to

bring the recovered node to a synchronized state with the rest of the system.

Sankaran et al. (2005) and Hursey et al. (2007) focus the technique over a

message passing interface (MPI) implementation, which is a standard for many

parallel and distributed applications. Sankaran et al. (2005) also discusses other

uses of checkpoint/restart, such as scheduling and process migration. With the

scheduler feature, it becomes possible to define when and which nodes should be

restarted, in order to reduce the impact in the system’s performance and

availability. The major limitation to this approach is that the failure consequences

are not directly handled, such as an invalid result propagated to another system or

even to a physical device (ex: airplane controller).

8.2.2 Redundancy

This field is divided into execution and data redundancy. Execution

redundancy is addressed by software replication, which can be designed through

Recovery Blocks (Randell, 1978) and N-version programs (Avisienis, 1995). Both

approaches are based on providing more than one strategy to achieve the same

result. These strategies are implemented in critical areas of the code, considering

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

170

that different programmers would not fail in the same code area ― an assumption

that has been proven wrong (Knight and Levenson, 1986; Holloway, 1997).

The recovery blocks technique is similar to checkpointing and restart,

previously discussed, but applied inside a node execution. Before a critical path,

the process saves its state and, if a failure occurs, the state is rolled back to the last

checkpoint and an alternative implementation is executed. The cycle is repeated

until the routine is successfully completed or the number of redundant

implementations ends. In addition to the problem of developers tending to insert

similar faults (Knight and Levenson, 1986), the rollback does not assure that the

global state is consistent, since many statements in the failed execution may have

changed other component’s and the external service’s state.

N-version software technique is a different approach, which applies an

oracle at the end of the critical routine to evaluate the result and choose the most

reliable one. This oracle is formed by an algorithm that votes on each result; the

most voted one wins and is passed through the execution flow. There are still

doubts about how to write these algorithms that will vote for the correct answer

and how reliable they are. Moreover, a better question is how to precisely define

areas of code that must be implemented with redundancy, since naive parts can

influence complex parts to fail.

A third approach is data diversity, which is applicable to software that

process some input in order to achieve an output. The technique is similar to the

N-version approach, but instead of re-executing the software with another

implementation, it is re-executed with another input ― a logically equivalent that

preserves the data semantics. There are three main formulas to generate this input:

(1) changing the input data to an equivalent format, (2) changing the input data to

a format that can be reversed in the output data, and (3) the decomposition of the

input data and re-composition of the output.

A common problem to all approaches is how to ensure that the execution

finishes without inserting a dormant failure, which will only be exercised in a

different part of the software. Also, all of them present a drawback that makes

their application unfeasible: implement multiple versions of the same code pieces

require a much larger team, usually not affordable by small software companies.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

171

8.2.3 Closure

A novel instrumentation technique presented in this thesis is a hybrid

approach between logging and tracing. It enables developers to write events

manually and to enrich them with some design abstractions, as in logging, all

while requiring less effort due to automatically gathered contextual properties, as

in tracing. These properties are defined by the developer and saved in a tag-stack,

which is a mechanism that solves the modularity problem for accessing outer

scopes and reduces the effort of describing each context. This approach produces

much less data than tracing, thus imposing a lower overhead. Also, the extracted

information presents a richer set of properties, since it was originally informed by

developers using the system’s specific abstractions. It is undeniable that the

information relevance will be directly dependent on the instrumentation policy,

which must be defined in a way that expresses the system’s design and

architecture. The end result relies, therefore, on the developers’ devotion to this

concern during the coding phase.

Moreover, the set of contextual properties in events are presented in a

structured format, which is appropriate for further analysis. Observe that this

characteristic is only made possible from the instrumentation approach, by using

the tag concept. Hence, the event is structured, not only with local contextual

properties, as in tracing, but also with many other properties, from higher

contexts, that may reflect some architectural and design abstractions. The

proposed technique follows an inverse approach when compared to dependence

mining techniques, which try to gather the set of properties only after the

execution, thus producing an imprecise, incomplete, and error prone result. The

proposed technique may raise the effectiveness of behavioral analysis techniques,

such as FSA extraction, by providing a richer input. Furthermore, these behavioral

analysis techniques are complementary to our approach, and in future work we

shall study how they can be adapted to our event model and evolved to take

advantage of our approach.

The benefits of the recovery approach are a consequence of the event

structure we just described. The recovery mechanism follows the action-pattern

approach, by enabling developers and maintainers to associate recovery

procedures to known failure signatures, which, due to the way the instrumentation

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

172

is inserted, can be defined using system properties from the event database. The

approach excels similar techniques by providing mechanisms that work directly

over the abstractions created by developers and by allowing them to write

temporal detectors for known-faults in a free form, taking advantage of the greater

flexibility provided by the structured log format. Observe that the properties that

may have defined the root cause can be directly used to create this detector, and

that later some contextual properties can be passed for the recovery routine to

guide them during the failure handling.

It is important to observe that this thesis does not attempt to detect unknown

failures, as in Mariani & Pastore’s (2008) work. The main goal is to support

failure diagnosis between software components, considering their internal logic,

and to provide mechanisms to implement handlers that can minimize future

failures consequences. These automatic failure detection techniques can contribute

by giving warnings of system malfunctions, which may represent failure

occurrences, and by providing tips for determining the root cause of these failures.

We do not expect them, however, to produce a final diagnosis, since the system’s

runtime information does not contain all the necessary information.

Fault redundancy mechanisms are not discarded in our work, but their role

is limited to building blocks of recovery handlers. Mission-critical projects that

can afford the cost of implementing these techniques may use this thesis’

approach to bind them into a single solution, as discussed in the evaluation

(Chapter 7). The proposed approach allows the technique’s sophistication to be

adjusted to the needs of the software under development: the simplest system

would use just an action-based pattern for single events to alert about the

occurrence of a failure, while mission-critical projects may detect complex

behaviors and proceed with an available redundancy mechanism.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

173

9
Conclusions and Future Work

This work addressed the problem of coping with failures observed while

using deployed software. As discussed in the introduction, failures must always be

expected while using a deployed version of a system, even if it was developed

using strict quality control. Since software development is still a human labor

intensive activity, the process is heavily influenced by whom is executing the

development tasks and is obviously susceptible to mistakes. Even if we manage to

develop a perfect software code, modern development relies on third-party assets,

which may contain faults. Therefore, we must assume that software will fail and

be prepared to, when it happens, put it back to work as quickly as possible.

Ideally, the fault should always be removed and the system redeployed. In

order to do this, we must first diagnose the observed failure by understanding the

failed execution ― thus identifying the root cause ―, then produce the

modification that demonstrably removes correctly and completely the fault before

finally redeploying. However, while these operations are being executed, the

deployed system is in use and susceptible to new failure occurrences due to the

very same fault. Sometimes, however, the consequences are critical, and it

becomes necessary to find and apply solutions that avoid disasters or at least

minimize said consequences. This goal may be accomplished by using either a

preventive approach ― such as fault tolerance techniques ― or a reactive one ―

such as failure handling techniques ― or, still, a combination of both, as

described in the evaluation chapter.

In order to detect and diagnose failures, one needs information about the

execution. Analyzing works from the last decade, we have identified that little

attention was given to this subject, despite the large amount of work dedicated to

log and tracing processing with the purpose of automated or semi-automated

detection and diagnosis. As discussed in Chapter 2, both techniques present

opposite benefits and limitations: logs are appropriate to expose high-level

information with low impact on performance, but with few data items per event,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

174

and exposes such data in a non-indexable format, since the event notification and

its content are usually written by the developer in a string format; on the other

hand traces overcome these limitations by automatically generating events with

indexable properties, but usually has a significant impact on system performance

and additionally produces large volumes of data with little use, hence polluting

the log set.

In this thesis, we have addressed the problem of runtime information

extraction in order to aid failure diagnosis with a double purpose: precisely

identifying and removing the causing fault; and determining how to correctly

recover the execution in a very short time providing richer information to assist

the development of failure handlers, which are responsible for detecting and

recovering the system from known-failures. The main goals of this research were:

(1) To develop a technique to extract runtime information with an

acceptable impact on performance, allowing use in deployed systems operating in

a production environment;

(2) To use instrumentation restricted to traditional methods, tools, and

language paradigms;

(3) To use a portable concept between languages and domains, thus

imposing little effort to adapt to a new project class;

(4) To avoid influencing design decisions of the target system; and

(5) To provide appropriate information to develop diagnosing tools and

failure-handling mechanisms.

The solution presented in Chapter 3 is a novel log concept based on events

annotated with meta-information, which represent contextual properties about the

execution and expose some abstractions that normally would not be transcribed

into source code. These properties are extracted in an indexable format, and are

thus appropriate for further analysis. The log is implemented following an

instrumentation policy, for which there are guidelines, described in Chapter 3. The

log is generated with support of an instrumentation library (described in Chapter

4), which provides the traditional methods to notify events, and methods to insert

and remove contextual properties on a stack. The tag-stack is another novel

concept developed during this thesis.

The solution proposed here for extracting runtime information about

possible failures from the log was used as a source to develop a diagnosis tool –

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

175

Lynx –, described in Chapter 5. This tool introduces an inspection technique:

several operators can restrict the event set to be displayed based on a given

perspective of interest, built from the contextual information on the failure report,

and evaluated by a query engine based on the meta-information found in events

recorded in the log.

Another product developed using the extracted information is a failure

handling mechanism – Hydra –, described in Chapter 6, which is capable of

automatically detecting and recovering the system from known-failures. Due to

the proposed log concept, this failure handling mechanism enables developers to

implement detection strategies decoupled from the functional code, thus avoiding

polluting the software’s pure logic, as usually occurs when using ad-hoc

solutions. This solution also presents a modular characteristic, allowing the

handler to be installed or removed with little effort.

Therefore, the main contributions of this thesis are:

• The concept of a log annotated with contextual information to

support tools and mechanisms for failure diagnosis, detection and

recovery.

• The instrumentation technique that solves the abhorrence and break

of encapsulation problems using the tag stack concept.

• The inspection tool capable of exhibiting events based on a given

perspective of interest, thus reducing the effort in studying the

system’s execution, therefore the failure diagnosis.

• The failure handling mechanism capable of representing the

maintainer’s knowledge in a modular approach, thus avoiding

corrupting the functional logic.

The solution was developed and assessed within a small software company.

Four systems from different domains were chosen, in order to study the range of

the proposals and their limitations. The evaluation consisted of applying the

instrumentation technique to each system, observing how this was done,

measuring its impact on the system’s overall performance, and measuring the

implementation effort. As discussed in Chapter 7, the impact on performance

varies from domain to domain, but none of the systems presented significant

performance decay. Moreover, the instrumentation effort was similar among all

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

176

systems, and imposed a small overhead when compared to the traditional logging

technique.

Both the inspection technique, aimed at diagnosis, and the failure handling

mechanism, aimed at detection and recovery, were tested on actual failures,

occurred in deployed versions of these systems, thus making the assessment more

reliable. The overall result of the inspection technique was effective, since all

collaborators have diagnosed the submitted failures in less time than the original

occurrence. The result of the failure handling assessment confirmed that the

proposed solution allows a developer to write short and simple modules that can

be installed on the system with little effort, in order to detect and recover from a

given failure occurrence, and then be removed, when no longer necessary.

Limitations and ideas for future work were identified, and will be discussed

below.

The main threat observed in our evaluation is the instrumentation not

addressing a given concern, making it obviously unavailable for the inspection

tool and the failure handler mechanism, possibly making the approach useless.

Hence, learning how to further develop the instrumentation guidelines to assure

that the necessary data remains available in the log in case of a failure will be the

subject of future research. An assumption is that this issue can possibly be

attenuated using the technique and improving the instrumentation policy already

during development and test phases.

Another threat is the log volume: as our measurements have shown, using

instrumentation policies similar to those described in Chapter 7 brings data

overhead to around 600% of the traditional log size. Even though none of the

systems (from different domains) used in the evaluation was impaired by this

overhead, if limited storage space is available, the technique will be unfeasible.

Therefore, it is important to further improve the instrumentation guidelines, in

order to ensure the writing of complete and precise instrumentation that

minimizes the amount of useless data in the log.

Two possible alternative uses for the instrumentation technique proposed in

this work have been identified. They arose after the development teams were

comfortable with the solution and confident that it would not require more effort

than the traditional solution, but escaped the scope of this thesis and, therefore,

were not addressed here. The first such use would be diagnosing or verifying

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

177

execution behavior in complex test scenarios, as a tool to help testers and

developers creating better software. For example, when the software of the

microcontrollers of the SEM system were being integrated, the Lynx tool helped

us understand the distributed behavior and usual failures much quicker than it

would take with the traditional log output. The second possible use of the

instrumentation would be to study the final-user behavior analyzing the event

flow, filtered by a perspective of interest that leaves only events generated by the

user interface of the system. This use was tried on a mobile app ― not among the

systems evaluated in Chapter 7 ― that was already deployed and had more than

10 thousand users at that moment, hence motivating the study of every human-

computer interaction (HCI) decision made in the application. It was a satisfaction

to see initiatives like this coming from the first developers who had contact with

our solution.

A relevant work derived from this thesis was the Master’s dissertation of

Rocha (2014), who used contracts to analyze the distributed behavior that could

be extracted from the event log generated by the instrumentation. This dissertation

produced the following contributions: a language to write contracts for distributed

behavior considering temporal relations and a mechanism capable of evaluating

these contracts over the event flow. The key-characteristic of this dissertation’s

solution was the usage of event tags as variables in the contracts, thus enabling a

developer to represent signatures through the abstractions identifiers he used in

the system’s instrumentation.

Finally, here are some suggestions for future works:

• Research how the instrumentation design can be enhanced. If it

is not possible to generate precise instrumentation, then study how to

improve the guidelines presented on Chapter 3.

• Evolve the GK-tail algorithm (Lorenzoli et al., 2008) to use the

annotated log as information source, and then verify if the state

machines extracted are produced with the maximum precision,

avoiding the current rate of false positives.

• Develop a correlation algorithm to generate usual and unusual

paths considering the data flow, in order to detect suspicious

activities. After that, comparing the results with similar approaches,

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

178

in order to verify if the approach based on annotated logs is more

effective.

• Assess the discarding policy proposal throughout the lifetime of

a set of systems. Study this result in order to identify how the

heuristics must be defined in a way that keeps relevant information

for the diagnosis moment.

• Assess the technique using other programming languages. The

assessment in this thesis addressed C++, Python and Objective-C

languages. Instrumentation libraries must be developed for

languages such as Java, C#, Lua, and Ruby, in order to identify if

any of them exposes limitations for the technique.

• Research how to implement mechanisms for the recovery

handler that enable modifying the state of variables that cannot

be accessed from a global reference, such as those located on

functions scopes (local variables).

• Evolve the Lynx tool interface in order to achieve a better user

experience. During the inspection technique evaluation, and in daily

use, we have observed recurrent activities that may be optimized by

implementing specific features. For example, the possibility of

viewing multiple results in the same window or enabling custom

rendering for each tag, thus reducing the cognitive effort required to

understand its information.

• Research how Aspect-oriented programming can be used to

reduce the effort in instrumenting the code. Since aspects have

been successfully used for logging, we expect that some recurrent

tags that are hard to insert by a reuse technique may be scoped with

less effort than they currently are.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

179

10
Bibliographic References

AMAZON web-services. Disponível em: <http://aws.amazon.com/>. Acesso em:
20 jun 2014.

AMMANN, P. E.; KNIGHT, John C. Data diversity: an approach to software
fault tolerance. Computers, IEEE Transactions on, v. 37, n. 4, p. 418-425, abr.
1988.

ANDREWS, J. H.; ZHANG, Y. Broad-Spectrum Studies of Log File Analysis. In:
International Conference on Software Engineering, 22°, 2000, Nova Iorque.
Anais…Nova Iorque: ACM, 2000. p. 105-114.

AVIZIENIS, A.; CHEN, L.; On the Implementation of N-Version
Programming for Software Fault Tolerance During Execution. Proc. IEEE
COMPSAC 77 Conf., p. 149-155, nov. 1977.

AVIZIENIS, A.; The Methodology of N-Version Programming, Chapter 2 of
software fault tolerance, M. R. Lyu (ed.), Wiley, 23-46, 1995.

AVIZIENIS, A.; LAPRIE, J-C.; RANDELL, B.; LANDWEHR, C.; Basic
Concepts and Taxonomy of Dependable and Secure Computing; IEEE
Transactions on Dependable and Secure Computing 1(1); Los Alamitos, CA:
IEEE Computer Society; 2004; p. 11-33.

BABENKO, A.; MARIANI, L.; PASTORE, F. AVA: automated interpretation of
dynamically detected anomalies. In: Eighteenth international symposium on
Software testing and analysis, 18, 2009. Nova Iorque. Anais…Nova Iorque:
ACM, 2009. p. 237-248.

BARHAM, P. et al. Using Magpie for Request Extraction and Workload
Modelling. In: Symposium on Operating Systems Design and Implementation, 6,
2004. California. Anais…California: OSDI, 2004. p. 259-252.

BEA. Interim report on the accident on 1 June 2009 to the Airbus A330-203
registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro –
Paris. Paris: Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile
(BEA), 2009.

BLANC, B.; MAARAOUI, B. Endianness or where is byte 0. White Paper,
2005.

BODIK, P. et al. Combining visualization and statistical analysis to improve
operator confidence and efficiency for failure detection and localization. In: IEEE

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

180

International Conference on Autonomic Computing, 2, 2005. Seattle.
Anais…Seattle: IEEE Computer Society, 2005. p. 89-100.

BROWN, A. B.; PATTERSON, D. A. To err is human. First Workshop on
Evaluating and Architecting System dependability, 1, 2001.California. Anais…
California, 2001.

BROWN, A. B.; PATTERSON, D. A. et al. Recovery Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case Studies. EECS
Department, University of California, Berkeley. 2002.

BRUENING, D. L. Efficient, transparent, and comprehensive runtime code
manipulation. Massachusetts: Massachusetts Institute of Technology, 2004.

BUCK, B.; HOLLINGSWORTH, J. K. An API for runtime code patching.
International Journal of High Performance Computing Applications, v. 14,
n.4, p. 317-329. 2000.

CABRAL, B.; MARQUES, P. Exception handling: a field study in java and .net.
In: European conference on Object-Oriented Programming, 21, 2007. Berlin.
Anais… Berlin: Springer-Verlag, 2007. p. 151–175.

CANTRILL, B.; SHAPIRO,M. W.; LEVENTHAL, A. H. Dynamic
Instrumentation of Production Systems. USENIX Annual Technical
Conference, General Track. 2004.

CARZANIGA, A.; GORLA, A; PEZZÈ, M. Healing Web applications through
automatic workarounds. International Journal on Software Tools for
Technology Transfer, v. 10 n.6, p. 493-502. 2008.

CAMPBELL, D.T.; STANLEY, J.C. Experimental and quasi-experimental
designs for research. Chicago: Rand McNally College Pub. Co.1966.

CAZZOLA, W. SmartReflection: efficient introspection in Java. Journal of
Object Technology, v. 3, n.11, p. 117-132. 2004.

CHANG, H.; MARIANI, L.; PEZZE, M. In-field healing of integration
problems with COTS components. Software Engineering, 2009.

CHEN, M. et al. Failure diagnosis using decision trees. In: International
Conference on Autonomic Computing, 2004. Washington. Anais… Washington,
2004. p. 36-43.

CHEN, M. Y. et al. Path-based faliure and evolution management. In: Symposium
on Networked Systems Design and Implementation, 1, 2004, California. Anais…
California: USENIX Association, 2004. p.23-23.

CHEN, X. et al. Auto- mating network application dependency discovery:
experiences, limitations, and new solutions. USENIX , 2008.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

181

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, v. 20, n.6 , p. 476-493.
1994.

COELHO, R. et al. Assessing the impact of aspects on exception flows: An
exploratory study. In In: European conference on Object-Oriented Programming,
22, 2008. Berlin. Anais… Berlin: Springer-Verlag, 2008. p. 207–234.

CORNELISSEN, B. et al. A systematic survey of program comprehension
through dynamic analysis. Software Engineering, IEEE Transactions on, v. 35,
n. 5, p. 684 – 702. 2009.

COTRONEO, D. et al. Investigation of failure causes in workload-driven
reliability testing. In International workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting, 4, 2007. 78-85. ACM: New
York, NY, USA. DOI: 10.1145/1295074.1295089.

CREŢU-CIOCÂRLIE, G. F.; MIHAI, B.; GOLDSZMIDT, M. Hunting for
problems with Artemis. In: USENIX conference on Analysis of system logs, 1,
2008. Anais… USENIX Association, 2008.

DAWES, B.; ABRAHAMS, D.; RIVERA, R. Boost C++ libraries. 2007.
Disponível em: <http://www.boost.org/> Acesso em: 20 jun 2014.

DE PAUW, W.; HEISIG, S. Visual and algorithmic tooling for system trace
analysis: a case study. ACM SIGOPS Operating Systems Review, v. 44, n.1, p.
97-102. 2010.

DEMILLO, R. A.; LIPTON, R. J.; SAYWARD, F. G.; Hints on test data
selection: Help for the practicing programmer. IEEE Computer, 11(4), p. 34-
41. abr 1978.

DENARO, G.; PEZZÈ, M.; TOSI, D. Ensuring interoperable service-oriented
systems through engineered self-healing. In: Joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 4, 2009. Anais... ACM, 2009.

DIEHL, S. Software Visualization—Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, 2007.

DUNLAP, G. W. et al. Execution replay of multiprocessor virtual machines. In:
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, 4, 2008. Nova Iorque. Anais…Nova Iorque: ACM, 2008. p. 121-
130.

ECKHARDT, D. E. et al. An experimental evaluation of software redundancy as a
strategy for improving reliability. Software Engineering, IEEE Transactions on,
v. 17, n.7, p. 692-702. 1991.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

182

EGGERS, S. J. et al. Techniques for efficient inline tracing on a shared-memory
multiprocessor. ACM, v. 18, n. 1. 1990.

FU, Q. et al. Execution Anomaly Detection in Distributed Systems through
Unstructured Log Analysis. In: IEEE International Conference on Data Mining, 9,
2009. Washington . Anais… Washington : IEEE Computer Society, 2009. p. 159-
168.

FULP, E. W.; FINK, G. A.; HAACK, J. N. Predicting Computer System Failures
Using Support Vector Machines. WASL, v. 8, p. 5. 2008.

GARLAN, D. et al. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer, v. 37, n.10, p. 46-54. 2004.

GEELS, D. et al. Friday: global comprehension for distributed replay. In:
USENIX conference on Networked systems design; implementation, 4, 2007.
California. Anais…California: USENIX Association, 2007. p. 21.

GEELS, D. M. et al. Replay debugging for distributed applications. v. 68, n.
02. 2006.

GRADECKI, J. D.; LESIECKI, N. Mastering AspectJ: aspect-oiented
programming in Java. Wiley. p. 456.

GRAY, J. Why do computers stop and what can be done about it? In:
BÜROAUTOMATION, 1985. p. 128–145.

BUSINESS INTERNET GROUP. The black friday report on web application
integrity. BIG-SF, 2004.

GÜLCÜ, C. Short introduction to log4j. 2002. Disponível em:
<http://logging.apache.org/log4j/1.2/manual.html> Acesso em: 20 jul 2014.

HALL, A.; CHAPMAN, R. Correctness by construction: Developing a
commercial secure system. Software, IEEE, v. 19, n. 1, p. 18-25. 2002.

HALL, A. Seven Myths of Formal Methods. IEEE Softw, v. 7, n. 5, p. 11-19.
1990.

HANSEN, S.E.; ATKINS, E. T. Automated System Monitoring and Notification
With Swatch. Anais… 7th USENIX conference on System administration, 1993.
p. 145-152.

HANSEN, J. P.; SIEWIOREK, D. P. Models for time coalescence in event logs.
Anais…Fault-Tolerant Computing, 1992.

HENDRICKSON, S. A.; DASHOFY, E. M.; TAYLOR, R. N. An approach for
tracing and understanding asynchronous architectures. Automated Software
Engineering, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

183

HELLERSTEIN, J. L.; MA, S.; PERNG, C. S. Discovering actionable patterns in
event data. IBM Syst. J. , v. 41, p. 475-493. 2002.

HOLLOWAY, C. M. Why engineers should consider formal methods. Digital
Anais…Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE. Vol. 1.
IEEE, 1997.

HORWITZ, S.; LIBLIT, B.; POLISHCHUK, M. Better debugging via output
tracing and callstack-sensitive slicing. Software Engineering, IEEE Transactions
on, v.36, n.1, p. 7-19. 2010.

HURSEY, J. et al. The design and implementation of checkpoint/restart
process fault tolerance for Open MPI. Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007.

IEEE. IEEE Standard Classification for Software Anomalies. IEEE Std 1044.
2009

JAIDEEP, S. et al. Web Usage Mining: Discovery and Applications of Usage
Patterns from Web Data. ACM SIGKDD Explorations, v. 1, n. 2, p. 12-23.
2000.

JIAN, P. et al. Mining Access Patterns Efficiently from Web Logs. Anais… 4th
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000. 396-
407

JIANG, W. et al. Understanding customer problem troubleshooting from storage
system logs. Anais… USENIX FAST’09, 2009.

JOHNSON, D. B.; ZWAENEPOEL. Recovery in distributed systems using
optimistic message logging and checkpointing. Journal of algorithms, v. 11, n.3,
p. 462-491. 1990.

KANNAN, J. et al. Semi-Automated Discovery of Application Session Structure.
Anais… 6th ACM conf. on Internet measurement, 2006. p. 119-132.

KAZINOV, T. H.; MOSTAFA, J. S. Software fault tolerance. Computer science
and engineering: proc. of the third intern. conf. of toung scientists. Lviv,
Ukraine. 2009. p. 17-20.

KNIGHT, J. C., LEVESON N. G. An experimental evaluation of the assumption
of independence in multiversion programming. Software Engineering, IEEE
Transactions on, v. 1, p. 96-109. 1986.

KRAMER, J.; HAZZAN, O.The role of abstraction in software engineering.
Anais… 28th international conference on Software engineering. ACM, 2006.

LAMB, D. A. IDL: Sharing intermediate representations. ACM Transactions on
Programming Languages and Systems (TOPLAS), v. 9, n.3, p. 297-318. 1987.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

184

LANUBILE, F.; VISAGGIO, G. Evaluating empirical models for the detection
of high-risk components: Some lessons learned. Proc. of the Twentieth Annual
Software Engineering Workshop, Goddard Space Flight Center. 1995.

LANZA, M.; MARINESCU, R. Object-Oriented Metrics in Practice - Using
software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer, 2008.

LI, J.; HUANG, G.; ZOU, J.; MEI, H. Failure analysis of open source j2ee
application servers. Quality Software, 2007. Anais… QSIC ’07. Seventh
International Conference on (2007), p. 198–208.

LIBURD, S. D. An N-version Electronic Voting System. Diss. Massachusetts
Institute of Technology, 2004.

LINDLAN, K. A. et al. A tool framework for static and dynamic analysis of
object-oriented software with templates. Anais…Supercomputing, ACM/IEEE
2000 Conference. IEEE, 2000.

LIU, X. WiDS checker: Combating bugs in distributed systems. NSDI, 2007.

LIU, H. et al. Live migration of virtual machine based on full system trace and
replay. Anais…18th ACM international symposium on High performance
distributed computing. ACM, 2009.

LO, D.; MARIANI, L.; PEZZE, M. Automatic steering of behavioral model
inference. Anais… 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, 2009.

LONVICK, C. The BSD Syslog Protocol. The Internet Soc. 2001.

LORENZOLI, D.; MARIANI, L.; PEZZE, M. Automatic generation of software
behavioral models. In: International conference on Software engineering, 30,
2008. Nova Iorque. Anais…Nova Iorque: ACM, 2008. p. 501-510.

LOU, J. G. et al. Mining dependency in distributed systems through unstructured
logs analysis. SIGOPS Oper. Syst. Rev.v. 44, n. 1, p. 91-96. 2010.

LUK, C. et al. Pin: building customized program analysis tools with dynamic
instrumentation. ACM Sigplan Notices, v. 40, n.6, p. 190-200. 2005.

MA, S.; HELLERSTEIN, J. L. Mining partially periodic event patterns with
unknown periods. Anais…International Conference on Data Engineering, 2000.

MACIA, I. On the Detection of Architecturally-Relevant Code Anomalies in
Software Systems. 2013. Tese (Doutorado em Informática) - Pontifícia
Universidade Católica do Rio de Janeiro, Conselho Nacional de Desenvolvimento
Científico e Tecnológico. Orientador: Arndt von Staa. 2013.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

185

MAEBE, J.; RONSSE, M.; DE BOSSCHERE, K. DIOTA: Dynamic
instrumentation, optimization and transformation of applications.
Compendium of Workshops and Tutorials held in conjunction with PACT’02.
2002.

MAKANJU, A.; ZINCIR-HEYWOOD, A. N.; MILIOS, E. E. Extracting Message
Types from BlueGene/L's Logs. In: ACM SIGOPS SOSP Workshop on the
Analysis of System Logs(WASL), 2009. Nova Iorque. Anais… Nova Iorque:
ACM, 2006.

MANNILA, H.; TOIVONEN, H.; VERKAMO, A. I. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery, v. 1, n. 3.
1997.

MARIANI, L.; PASTORE, F. Automated Identification of Failure Causes in
System Logs. In: International Symposium on Software Reliability Engineering,
19, 2008. Washington. Anais… Washington: IEEE Computer Society . p. 117-
126.

MARIANI, L.; PASTORE, F.; PEZZE, M. A toolset for automated failure
analysis. In: International Conference on Software Engineering, 31, 2009.
Washington. Anais... Washington: IEEE Computer Society. p. 563-566.

MARIANI, L.; PASTORE, F.; PEZZE, M. Dynamic Analysis for Diagnosing
Integration Faults. IEEE Trans. Softw. Eng, v. 37, n. 4, p. 486-508. 2011.

MARIANI, L. et al. SEIM: static extraction of interaction models. In:
International Workshop on Principles of Engineering Service-Oriented Systems,
2, 2010. Nova Iorque. Anais… Nova Iorque: ACM. p. 22-28.

MCCABE, T. J.; BUTLER, C. W. Design complexity measurement and testing.
Communications of the ACM, v. 32, n.12, p. 1415-1425. 1989.

MENDES, C. L.; REED D.A. Monitoring Large Systems via Statistical Sampling.
Anais… LACSI Symposium, 2002.

MENG, S. et al. Reliable state monitoring in cloud datacenters. Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012.

MEYER, B. Design by contract. Prentice Hall, 2002.

MICROSOFT. TraceLevel Enumeration. 2013. Disponível em:
<http://msdn.microsoft.com/en-us/library/system.diagnostics.tracelevel.aspx>
Acesso em: 10 ago 2014.

MINISTÉRIO DE CIÊNCIA E TECNOLOGIA. Pesquisa Nacional de
Qualidade e Produtividade no Setor de Software Brasileiro. 2001.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

186

MIRGORODSKIY, A.V; MARUYAMA, N; MILLER, B. P. Problem diagnosis
in large-scale computing environments. In: 2006 ACM/IEEE conference on
Supercomputing, Nova Iorque, 2006. Anais…Nova Iorque: ACM, 2006.

MONGO, D.B. The MongoDB 2.6, 2013. Manual.

MURCH, R. Autonomic computing. IBM Press, 2004.

MURRAY, J.D. Windows NT Event Logging. O'Reilly. 1998.

NAGY, L.; FORD, R.; ALLEN, A. N-version programming for the detection
of zero-day exploits, 2006.

NIST. The Economic Impacts of Inadequate Infrastructure for Software
Testing. National Institute of Standards and Technology Program Office. 2002.

NOSEK, J.T.; PALVIA, P. Software Maintenance Management: changes in the
last decade. Software Maintenance: research and practice, v. 2, n. 3, p. 157-174.
1990.

OLINER, A.; STEARLEY, J. What Supercomputers Say: A Study of Five System
Logs. In: IEEE/IFIP International Conference on Dependable Systems and
Networks, 37, 2007. Washington. Anais… Washington: IEEE Computer Society.
p. 575-584.

PASTORE, F.; MARIANI, F. AVA: Supporting Debugging with Failure
Interpretations. Software Testing, Verification and Validation (ICST), 2013.

PEZZE, M. Dynamic Analysis for Diagnosing Integration Faults. IEEE
transactions on software engineering, v.37, n.4. 2011.

PORTER, A. A.; SELBY, R. W. Empirically guided software development using
metric-based classification trees. Software, IEEE, v. 7, n. 2, p. 46-54. 1990.

PREWETT, J. E. Analyzing cluster log files using logsurfer. In: Proceedings of
the 4th Annual Conference on Linux Clusters. 2003.

RANDELL, B. System structure for software fault tolerance. Springer, 1978.

REASON J. Human error. Cambridge University Press; 2003.

REYNOLDS, P.et al. Pip: detecting the unexpected in distributed systems. In:
Conference on Networked Systems Design \& Implementation, 3, 2006.
California. Anais… California: USENIX Association, 2006.

RBI. Risk-Based Inspection. Disponível em: <http://en.wikipedia.org/wiki/Risk-
based_inspection> Acesso em: 10 ago 2014.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

187

ROCHA, P. A mechanism for contract verification in distributed-systems

based on logs with meta-information. 2014. Dissertação (Mestrado em

Informática) - Pontifícia Universidade Católica do Rio de Janeiro, Conselho

Nacional de Desenvolvimento Científico e Tecnológico. Orientador: Arndt von

Staa. 2014.

ROMER, T. et al. Instrumentation and optimization of Win32/Intel executables

using Etch. Anais…USENIX Windows NT Workshop, 1997.

ROS. ROS.org | Powering the world's robots. 2014. Disponível em:

<http://www.ros.org/.> Acesso em: 10 ago 2014.

RUFFIN, M. A survey of logging uses. Technology report, Dept of Computer
Science, University of Glasgow,1995.

SANKARAN, S. et al. The LAM/MPI checkpoint/restart framework: System-
initiated checkpointing. International Journal of High Performance
Computing Applications, v.19, n.4, p. 479-493. 2005.

SCHROEDER, B.; GIBSON, G. A large-scale study of failures in high
performance computing systems. Proc. of DSN, 2006.

SKWIRE, D. et al. First fault software problem solving: a guide for engineers,
managers and users. Opentask, Kindle Edition. 2009.

SMITH, B. C. Reflection and semantics in a procedural language. Technical
Report MIT-LCS-TR-272, Massachusetts Institute of Technology, 1982.

STALLMAN, R.; PESCH, R. H.; SHEBS, S. Debugging with GDB. Gnu Press,
2002.

STEARLEY, J. Towards informatic analysis of syslogs. Washington : IEEE
Computer Society, 2004. p. 309-318.

STEVEN, J. et al. jRapture: A capture/replay tool for observation-based
testing. ACM, 2000.

STRINGER, E.T. Action research. Sage, 2013.

SRIVASTAVA, A.; EUSTACE, A. ATOM: A system for building customized
program analysis tools. ACM, v. 29, n. 6. 1994.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

188

TAN, J. et al. SALSA: analyzing logs as state machines. In: USENIX conference
on Analysis of system logs, 1, 2008. California. Anais…California: USENIX
Association, 2008.

TAKADA, T.; KOIDE, H. MieLog: A Highly Interactive Visual Log Browser
Using Information Visualization and Statistical Analysis. In: USENIX conference
on System administration, 16, 2002. California. Anais…California: USENIX
Association, 2002. p. 133-144.

TASSEY, G. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology. Planning Report, 2002.

TELEA, A.; VOINEA, L.; SASSENBURG, H. Visual tools for software
architecture understanding: A stakeholder perspective. Software IEEE, v.27, n. 6,
p. 46-53. 2010.

THOMAS, D. The Deplorable State of Class Libraries. Journal of Object
Technology, v. 1, n. 1, p. 21-27. 2002.

THOMAS, D.; HUNT, A. The Pragmatic Programmer: From Journeyman to
Master, 1999.

THOMSON, K. LogSurfer - Real Time Log monitoring and Alerting. 2012.
Disponível em: <http://www.crypt.gen.nz/logsurfer/ > Acesso em: 20 jul 2014.

TOUPIN, D. Using Tracing to Diagnose or Monitor Systems. IEEE software, v.
28, n.1. 2011.

TIMPF, S. Abstraction, levels of detail, and hierarchies in map series. Spatial
Information Theory. Cognitive and Computational Foundations of Geographic
Information Science. Springer Berlin Heidelberg, 1999. p.125-139.

VAARANDI, R. A breadth-first algorithm for mining frequent patterns from
event logs. Anais… v. 3283, p. 293- 308. 2004.

VAARANDI, R. A data clustering algorithm for mining patterns from event
logs. IEEE IPOM'03, 2003. p. 119-126.

VAARANDI, R. SEC: a lightweight event correlation tool. IEEE Workshop on,
2002. p.111-115.

WITTIE, L. D. Debugging distributed C programs by real time reply. v. 24, n.
1, ACM, 1988.

XU, W. et al.. Mining console logs for large-scale system problem detection. In:
Conference on Tackling computer systems problems with machine learning
techniques, 3, 2008. California. Anais… California: USENIX Association, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

189

XU, W. et al. Detecting large-scale system problems by mining console logs. In:
ACM SIGOPS 22nd symposium on Operating systems principles, 22, 2009. Nova
Iorque. Anais… Nova Iorque: ACM, 2009. p. 117-132.

YUAN, C. et al. Automated known problem diagnosis with event traces. ACM
SIGOPS Operating Systems Review, v. 40, n. 4. 2006.

YUAN, D. et al. SherLog: error diagnosis by connecting clues from run-time logs.
ACM SIGARCH Computer Architecture News, v. 38, n. 1. 2010.

ZHANG, R. et al. A Bayesian network approach to modeling IT service
availability using system logs. USENIX workshop on WASL. 2009.

ZHENG, Q. et al. Intelligent Search of Correlated Alarms from Database
Containing Noise Data Anais… 8th IEEE/IFIP Network Operations and
Management Symposium, 2002.

ZHU, K.Q.; FISHER, K.; WALKER, D. Incremental learning of system log
formats. SIGOPS Oper. Syst. Rev, v.44, n. 1, p. 85-90. 2010.

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

190

11
Appendix I – Failure Handler Examples

This appendix presents an example for each failure handler approach

proposed in the thesis.

11.1 Keep-alive and Restart (Global Cycle)

Detection Strategy
class KeepAliveDetectionStrategy(DetectionStrategy):
 """
 Defines the strategy for detecting when a node crashes
 """
 def __init__(self, node, *args, **kwargs):
 super(KeepAliveDetectionStrategy, self).__init__(*args, **kwargs)
 self.node = node

 def verify(self):
 """
 Verifies if an occurrence of this fault can be detected by looking
 for the absence of a keep alive in the past seconds.

 :return None if no failure found, or the failure-specific data
 """
 result = lynx.scan_range(
 {
 'node': self.node,
 'keep-alive': {'$exists': True}
 },
 {},
 datetime.utcnow() - relativedelta(seconds=3),
 datetime.utcnow()
)
 failed_data = None
 if result.count() == 0:
 failed_data = {'node': self.node}
 return failed_data

Recovery Strategy
class RestartHandlingStrategy(HandlingStrategy):
 """
 Defines the class for handling node restarts
 """
 def __init__(self, package):
 super(RestartHandlingStrategy, self).__init__()
 self.package = package

 def handle(self, data):
 """
 Restart the node using the associated launcher
 """
 node = data['node']
 try:
 # Find the process id
 result = lynx.scan_range(
 {'node': node, 'pid': {'$exists': True}},
 direction=SORT_DESC
)
 if not result.count():

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

191

 raise Exception(
 'No event [(node, {0}), pid] was found'.format(node))

 # Attempt to kill the process
 process_id = int(result[0]['pid'])
 try:
 os.kill(process_id, 0)
 except OSError:
 # Process not running
 pass
 else:
 os.kill(process_id, signal.SIGKILL)

 # Find the launcher
 result = lynx.scan_range(
 {'node': node, 'launcher': {'$exists': True}},
 direction=SORT_DESC
)
 if not result.count():
 raise Exception('No event [(node, {0}), launcher] found'.format(node))

 # Restart the node
 launcher = result[0]['launcher']
 print 'Restarting node with launcher {0}'.format(launcher)
 result = subprocess.call(
 'roslaunch {0} {1}&'.format(self.package, launcher), shell=True)
 except Exception, e:
 print e

11.2 Inconsistent Version (Local Cycle)

class MisversioningFailureHandler(InterceptorFailureHandler):
 """
 Detects and handles the misversioning failure
 """
 def __init__(self):
 signature = [('app_version', '1'), ('action', 'update')]
 super(MisversioningFailureHandler, self).__init__(
 signature, wineserver.device.views.update')

 def explicit_verification_before(self, *args, **kwargs):
 # Check if the request was made by a faulty app version by looking for
 # an error in the mobile environment associated with the update action
 # (in the recent log).
 must_have_dict = {
 'environment': 'mobile',
 'device': logger.value_from_stack('device'),
 'action': 'update',
 'message': 'Failed while parsing field',
 'field': 'price',
 'error': {'$exists': True}
 }
 result = lynx.scan_range(
 must_have_dict,
 {},
 datetime.utcnow() - relativedelta(minutes=5),
 datetime.utcnow(),
 SORT_DESC
)
 return result.count() > 0

 def handle_before(self, *args, **kwargs):
 print 'Fixing the version'

 # Fix the request descriptor
 request = args[0]
 request.GET['app_version'] = '2'

 # Fix the tag stack state
 logger.change_stack_value('app_version', '2')

 def explicit_verification_after(self, result):
 # Nothing to do
 pass

 def handle_after(self, result):

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

192

 # Nothing to do
 pass

11.3 Forgotten Retro-Compatibility (Local Cycle)

class RemoteUpdateRetrocompatibilityFailureHandler(EventActionFailureHandler):
 """
 Detects and handles the remote update retrocompatibility failure
 """
 def __init__(self):
 signature = [('app_version', '1'), ('action', 'update')]
 super(RemoteUpdateRetrocompatibilityFailureHandler, self).__init__(signature)

 def explicit_verification(self, event):
 return event['message'] == 'Data compilation complete'

 def handle(self, event):
 print 'Handling the retro-compatibility failure'
 f = open(event['path'], 'r+')
 data = json.load(f)
 for item in data: # Convert to the old format
 item['price'] = item['price']['bottle']
 f.truncate(0)
 f.seek(0)
 json.dump(data, f)
 f.close()

DBD
PUC-Rio - Certificação Digital Nº 1012700/CA

