2

A geometric approach

In this section, we will make some further developments of Bangert's idea in [3]. This is new in the literature and shall motivate the analytic construction for Finsler metrics.

Our aim is to prove the following.
Theorem 2.0.2. Let g be a C^{∞}, non flat Riemannian metric in the two torus T^{2}. Given $\epsilon>0$ there is a C^{∞} metric \bar{g} with the properties:
i) $\|g-\bar{g}\|_{1}<\epsilon$ and $\|g-\bar{g}\|_{1, \frac{1}{3}}<C$, where $C>0$ does not depend on \bar{g};
ii) \bar{g} admits no continuous field of minimizers.

As an immediate corollary we obtain:
Corollary 2.0.3. Let g be any C^{∞} metric in the two torus T^{2}. Arbitrarily close to g in the C^{1} topology there exists a metric \bar{g} without continuous field of minimizers and with finite $C^{1, \frac{1}{3}}$ norm.

We shall begin by showing the above theorem for a metric g with a neighbourhood where the sectional curvature is positive and constant. To be more specific, there exists $p \in T^{2}, r>0, \rho>0$, and $\delta>0$ with $\rho \gg \delta$ such that the sectional curvature K satisfies

$$
K(q)=\frac{1}{r^{2}},
$$

for all q in the geodesic ball $\mathcal{B}_{p}(\rho+\delta)$.
If $\gamma:(-\rho-\delta, \rho+\delta) \rightarrow \mathcal{B}_{p}(\rho+\delta)$ is a unit speed geodesic, then introduce the polar coordinates $P:[0, \rho+\delta) \times(-\pi, \pi) \rightarrow \mathcal{B}_{p}(\rho+\delta)$ by

$$
P(R, \tau)=\exp _{p}\left(R \cos \tau \gamma^{\prime}(0)+R \sin \tau\left(\gamma^{\prime}(0)\right)^{\perp}\right)
$$

Define the set

$$
S_{(\tau, \theta)}=P([0, \rho+\delta) \times(\tau, \theta))
$$

where $\tau, \theta \in(-\pi, \pi)$ and $\tau<\theta$. Consider the set

$$
B_{\theta}=\mathcal{B}_{p}(\rho+\delta) \backslash P([0, \rho+\delta) \times\{0\})
$$

Using Cartan's theorem ([6], p.174) the set $S_{(-\theta, 0)}$ is isometric to $S_{(0, \theta)}$. Let C_{θ}^{0} be the spherical cone obtained by identifying B_{θ} with this isometry. It is clear that C_{θ}^{0} is a smooth Riemannian manifold with the metric inherited from B_{θ}. Define $C_{\theta}=\overline{C_{\theta}^{0}}$. The process is illustrated in the Figure 2.1. The Riemannian distance in $C_{\theta}^{0} \subset C_{\theta}$ can be extended to make C_{θ} a complete metric space.

Figure 2.1: In the right, the curve connecting x_{1} and x_{2} is a minimizing geodesic of length 2ρ that not intersect V_{p}.

Lemma 2.0.4. Suppose that $\theta \in(0, \pi)$. If $x_{1}, x_{2} \in C_{\theta}$ satisfy

$$
d\left(p, x_{1}\right), d\left(p, x_{2}\right) \geq \rho
$$

then

$$
d\left(x_{1}, x_{2}\right)<2 \rho
$$

Proof. Let γ_{1} and γ_{2} be geodesics in C_{θ} joining x_{1} to p and p to x_{2}, respectively. At p the angle between them is

$$
\angle\left(-\gamma_{1}^{\prime}(\rho), \gamma_{2}^{\prime}(0)\right)=\pi-\theta
$$

If we consider a comparison triangle in \mathbb{R}^{2} determined by the line segments $\left(\sigma_{1}, \sigma_{2}, \sigma_{2}\right)$ such that σ_{1} and σ_{2} have length ρ and $\angle\left(-\sigma_{1}^{\prime}(\rho), \sigma_{2}^{\prime}(0)\right)=\pi-\theta$ then the length of σ_{3} is

$$
\ell\left(\sigma_{3}\right)=2 \rho \cos \left(\frac{\theta}{2}\right)<2 \rho
$$

By Toponogov's theorem ([7], p. 35),

$$
d\left(x_{1}, x_{2}\right) \leq \ell\left(\sigma_{3}\right)
$$

Therefore, $d\left(x_{1}, x_{2}\right)<2 \rho$.
Denote by \mathcal{A}_{δ} the set of points in $x \in C_{\theta}$ such that $\rho+\delta>d(x, p) \geq \rho$. The previous lemma implies that the minimizing geodesics connecting points
in \mathcal{A}_{δ} avoid a neighborhood around the vertex p. In the following, we shall estimated the size of this neighborhood in order to smooth the cone.

2.1
 Perturbations by cones

Let $a>0$ such that $a \ll \rho$. The cone C_{θ} we defined previously has constant sectional curvature $\frac{1}{r^{2}}$. Let $S_{\rho+\delta}=C_{\theta} \backslash C_{\theta}^{0} \cup\{p\}$.

The singular surface C_{θ} could be obtained as a surface of revolution but we prefer to work with the surface that is the revolution of

$$
\alpha(x)=\left(x, 0, f_{a}(x)\right)
$$

where

$$
\begin{equation*}
f_{a}(x)=\left(r^{2}-(x+a)^{2}\right)^{\frac{1}{2}} \tag{2.1.1}
\end{equation*}
$$

and $x \in\left[0, r_{\rho+\delta}\right]$, around the z axis. The constant $r_{\rho+\delta}<r$ is given implicitly by $\rho+\delta=\int_{0}^{r_{\rho+\delta}}\left\|\alpha^{\prime}(s)\right\| d s$. Since ρ is close to zero, both singular manifolds are close in the C^{1} topology. So, from now on we will consider C_{θ} to be the spherical cone generated by the revolution of the curve α around z axis.

Let V_{p} be the geodesic ball around p with radius $\delta_{a}>0$. We wish to estimate δ_{a} in terms of the constant a in the function f such that every minimizing geodesic with end points in \mathcal{A}_{δ} avoid V_{p}.

First, we will relate δ_{a} with θ. Consider an Euclidean geodesic triangle $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\ell\left(\sigma_{1}\right)=\ell\left(\sigma_{2}\right)=\rho$ and the angle at the vertex $\bar{p}=\sigma_{1}(\rho)=$ $\sigma_{2}(0)$ given by $\angle\left(-\sigma_{1}^{\prime}(\rho), \sigma_{2}^{\prime}(0)\right)=\pi-\theta$. If d_{0} is the Euclidean distance, then

$$
d_{0}\left(\bar{p}, \sigma_{3}\right)=\rho \sin \left(\frac{\theta}{2}\right)
$$

By the Toponogov's theorem, the distance from p to any minimizing geodesic of C_{θ} connecting points in \mathcal{A}_{δ} is greater than $d_{0}\left(\bar{p}, \sigma_{3}\right)=\rho \sin \left(\frac{\theta}{2}\right)$. Set

$$
\delta_{a}=\rho \sin \left(\frac{\theta}{2}\right)
$$

If θ is small then

$$
\begin{equation*}
\delta_{a} \simeq \frac{\rho \theta}{2} . \tag{2.1.2}
\end{equation*}
$$

Now we will relate δ_{a} and a. Since $\rho=\ell\left(\left.\alpha\right|_{\left[0, r_{\rho}\right]}\right)$ then

$$
\begin{equation*}
\rho=r \arcsin \left(\frac{r_{\rho}+a}{r}\right)-r \arcsin \left(\frac{a}{r}\right) . \tag{2.1.3}
\end{equation*}
$$

Expand arcsin up to order 4 at $x=-a$ to obtain

$$
\begin{align*}
\rho & =r\left(\frac{r_{\rho}+a}{r}-\frac{a}{r}+\frac{1}{3!r^{6}}\left(r_{\rho}^{3}+3 r_{\rho}^{2} a+3 r_{\rho} a\right)+O(5)\right) \\
& \geq r_{\rho}+\frac{7 a^{3}}{6 r^{5}}+O(5) \simeq r_{\rho}+\frac{7 a^{3}}{6 r^{5}} \tag{2.1.4}
\end{align*}
$$

because $a \ll r_{\rho}$. On the other hand, it is possible to calculate the perimeter $2 \pi r_{\rho}$ by means of Jacobi fields. Given a unit speed geodesic $\gamma:[0, \rho] \rightarrow C_{\theta}$, $\gamma(0)=p$, let $\gamma_{s}:[0, \rho] \rightarrow C_{\theta}, s \in[0,2 \pi-\theta)$ be a polar parametrization of all radial geodesics of length ρ such that $\gamma_{s}(0)=0$ and $\gamma_{0}=\gamma$. If $E_{s}(t)$ is a perpendicular parallel vector field of norm 1 and the sectional curvature K of C_{θ} is $\frac{1}{r^{2}}$ then

$$
J_{s}(t)=\frac{1}{\sqrt{K}} \sin (\sqrt{K} t) E_{s}(t)
$$

is a perpendicular Jacobi field. The perimeter is given by

$$
\begin{aligned}
2 \pi r_{\rho} & =\int_{0}^{2 \pi-\theta}\left\|J_{s}(\rho)\right\| d s \\
& =(2 \pi-\theta) \frac{\sin (\sqrt{K} \rho)}{\sqrt{K}}
\end{aligned}
$$

We have the following estimative for the perimeter

$$
\begin{equation*}
2 \pi r_{\rho} \simeq(2 \pi-\theta) \rho \tag{2.1.5}
\end{equation*}
$$

With the results obtained from (2.1.4) and (2.1.5) we conclude that

$$
2 \pi\left(\rho-\frac{7 a^{3}}{6 r^{5}}\right) \geq 2 \pi r_{\rho} \simeq(2 \pi-\theta) \rho
$$

Therefore,

$$
\begin{equation*}
\theta \rho \geq 2 \pi \frac{7 a^{3}}{6 r^{5}} \tag{2.1.6}
\end{equation*}
$$

Substituting this equation on (2.1.2) we have

$$
\begin{equation*}
\delta_{a} \geq \frac{7 \pi a^{3}}{6 r^{5}} \tag{2.1.7}
\end{equation*}
$$

Consider the spherical cone $\Phi_{a}: B_{0}\left(r_{\rho}\right) \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $\Phi_{a}(x, y)=$ $\left(x, y, f_{a}\left(\sqrt{x^{2}+y^{2}}\right)\right)$. Define the singular metric g_{a}^{s} in $B_{0}\left(r_{\rho}\right)$ by

$$
g_{a}^{s}=\Phi_{a}^{*} g_{e u c}
$$

where $g_{\text {euc }}$ is the standard Euclidean metric in \mathbb{R}^{3}. In the same way, the metric of the sphere of radius r is given by $g^{r}=\Phi_{0}^{*} g_{\text {euc }}$.

Lemma 2.1.1. There exists a sequence of C^{1} metrics g_{a} in $B_{0}\left(r_{\rho}\right)$, such that
i) g_{a} has no continuous field of minimizers;
ii) g_{a} converges to g^{r} in the C^{1} topology;
iii) for $a>0$ sufficiently small,

$$
\left\|g_{a}-g^{r}\right\|<\left(\frac{7 \pi K}{6}\right)^{-\frac{1}{3}}
$$

Proof. Let r_{a} be given implicitly by $\delta_{a}=\int_{0}^{r_{a}}\left\|\alpha^{\prime}(s)\right\| d s$. Since $a \ll \rho$, and, therefore, $a \ll r$, we have that $r_{a} \simeq \delta_{a}$.

The neighbourhood V_{p} of radius δ_{a} which the minimizing geodesics avoid is open but there exist a geodesic that realizes the infimum of

$$
\left\{d(p, \gamma) \mid \gamma \text { is a minimizing geodesic with endpoints in } \mathcal{A}_{\delta}\right\} .
$$

Then we can extend V_{p} to a neighbourhood of radius $\delta_{a}+\omega$.
Let $r_{\omega}>r_{a}$ be given implicitly in the same way r_{a}, but with respect to $\delta_{a}+\omega$. Consider the bump function β such that $\beta(t)=1$ for $\left[0, r_{a}\right]$ and $\beta(t)=0$ for $t \in\left[r_{\omega}, r_{\rho}\right]$.

Figure 2.2: On the interval $\left[-r_{a}, r_{a}\right]$ we used a function of order $x^{\frac{1}{3}}$ to smooth f_{a}^{\prime}.

Define $\lambda_{a}:\left[0, r_{\rho+\delta}\right] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\lambda_{a}(x)=-\beta(x)\left(\frac{7 \pi K}{6}\right)^{-\frac{1}{3}} x^{1 / 3}+(1-\beta(x)) f_{a}^{\prime}(x) \tag{2.1.8}
\end{equation*}
$$

where $K=\frac{1}{r^{2}}$ is the sectional curvature of the metric g^{r}. In Figure 2.2, it is shown the graph of λ_{a}.

Now, define the function $\Lambda_{a}:\left[0, r_{\rho+\delta}\right] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Lambda_{a}(x)=\sqrt{r^{2}-\left(r_{\rho}+a\right)^{2}}-\int_{0}^{r_{\rho}} \lambda_{a}(s) d s+\int_{0}^{x} \lambda_{a}(l) d l . \tag{2.1.9}
\end{equation*}
$$

The metric

$$
g_{a}=\Psi_{a}^{*} g_{e u c},
$$

where $\Psi_{a}(x, y)=\left(x, y, \Lambda\left(\sqrt{x^{2}+y^{2}}\right)\right)$, is C^{1} in $B_{0}\left(r_{\rho}\right)$ and C^{∞} in $B_{0}\left(r_{\rho}\right) \backslash\{0\}$. When $a \rightarrow 0^{+}$, the metric g_{a} converges in the C^{1} topology to the spherical metric g^{r} because $f_{a} \xrightarrow{C^{\infty}} f_{0}, r_{a} \rightarrow 0$ and $\lambda_{a} \rightarrow f_{0}^{\prime}$. The convergence of the derivatives happens because $\left|\lambda_{a}\right|$ is bounded above by $\left|f_{a}^{\prime}\right|$. More precisely, on $\left[0, r_{a}\right]$,

$$
\lambda_{a}(t) \geq \lambda_{a}\left(r_{a}\right) \simeq \lambda_{a}\left(\frac{7 \pi a^{3}}{6 r}\right)=-a \sqrt{K} \geq f_{a}^{\prime}(0)
$$

The Hölder norm of $\lambda_{a}-f_{a}^{\prime}$ is given by

$$
\begin{aligned}
\left\|\lambda_{a}-f_{a}^{\prime}\right\|_{\frac{1}{3}} & =\sup _{x \neq y ; x, y \in\left[0, r_{w}\right]} \frac{\left|\lambda_{a}(x)-\lambda_{a}(y)\right|}{|x-y|^{\frac{1}{3}}} \\
& =\left(\frac{7 \pi K}{6}\right)^{-\frac{1}{3}}
\end{aligned}
$$

where $K=\frac{1}{r^{2}}$.
Outside the neighbourhood V_{p}, the manifold $\left(B_{0}\left(r_{\rho+\delta}\right), g_{a}\right)$ is isometric to the cone C_{θ}. Therefore, every minimizing geodesic on length greater than 2ρ do not intersect V_{p}, then these geodesics do not contain p. We conclude that g_{a} cannot have a continuous field of minimizers.

2.2
 Proof of theorem 2.0.2

Let g be any Riemannian C^{2} metric in the 2 -torus. If g is not flat, by the Gauss-Bonnet theorem there exists p such that the sectional curvature $K(p)>0$. Then, given $\epsilon>0$, there exists a metric g_{0}, in an ϵ neighbourhood of g such that the sectional curvature of g_{0} satisfies

$$
K_{0}(q)=K(p)
$$

for every q in a neighbourhood of p of radius $\rho+\delta$. When g is flat, we can perturb g in order to obtain a non-flat metric and apply the same argument. Anyway, given $\epsilon>0$, there is, ϵ-close to g in the C^{2} topology a metric with positive constant curvature in a neighbourhood around a point.

Now we can use the preceding construction. Let $\mathcal{B}_{p}(\rho+\delta)$ and let $f_{0}: B_{0}\left(r_{\rho+\delta}\right) \rightarrow \mathcal{B}_{p}(\rho+\delta)$ be given by (2.1.1). Choose $\theta \in(0, \pi)$ such that
$2 \pi r_{\rho}-\theta \rho \in\left[2 \pi r_{\rho}, 2 \pi r_{\rho+\delta}\right]$. So, θ and $a>0$ are related by (2.1.2) and $\theta(a) \rightarrow 0$ as $a \rightarrow 0$.

The metrics g_{a} in $B_{0}\left(r_{\rho}\right)$ obtained in lemma 2.1.1 can be smoothed, by means of a bump function, in a small neighbourhood of radius $r_{0} \ll r_{a}$ without changing the convergence in the $C^{1, \frac{1}{3}}$ topology. Let

$$
\left(\Phi_{0}\right)_{*} g_{a}
$$

be a metric in $\mathcal{B}_{p}(\rho)$.
Finally, if Δ is a bump function in $\mathcal{B}_{p}(\rho+\delta)$ such that $\Delta(q)=1$ in $\mathcal{B}_{p}(\rho)$ and $\Delta(q)=0$ in $\mathcal{B}_{p}(\rho+\delta) \backslash \mathcal{B}_{p}\left(\rho_{\theta}\right)$, where ρ_{θ} is the radius of $\left(B_{0}\left(r_{\rho+\delta}, g_{a}\right)\right.$. Define G_{a} by

$$
G_{a}=\Delta\left(\Phi_{0}\right)_{*} g_{a}+(1-\Delta) g
$$

The result follows from lemma 2.1.1.

