
2

A geometric approach

In this section, we will make some further developments of Bangert’s idea

in [3]. This is new in the literature and shall motivate the analytic construction

for Finsler metrics.

Our aim is to prove the following.

Theorem 2.0.2. Let g be a C∞, non flat Riemannian metric in the two torus

T 2. Given ǫ > 0 there is a C∞ metric ḡ with the properties:

i) ||g − ḡ||1 < ǫ and ||g − ḡ||1, 1
3

< C, where C > 0 does not depend on ḡ;

ii) ḡ admits no continuous field of minimizers.

As an immediate corollary we obtain:

Corollary 2.0.3. Let g be any C∞ metric in the two torus T 2. Arbitrarily

close to g in the C1 topology there exists a metric ḡ without continuous field

of minimizers and with finite C1, 1
3 norm.

We shall begin by showing the above theorem for a metric g with a

neighbourhood where the sectional curvature is positive and constant. To be

more specific, there exists p ∈ T 2, r > 0, ρ > 0, and δ > 0 with ρ ≫ δ such

that the sectional curvature K satisfies

K(q) =
1

r2
,

for all q in the geodesic ball Bp(ρ+ δ).

If γ : (−ρ− δ, ρ+ δ)→ Bp(ρ+ δ) is a unit speed geodesic, then introduce

the polar coordinates P : [0, ρ+ δ)× (−π, π)→ Bp(ρ+ δ) by

P (R, τ) = expp(R cos τγ′(0) +R sin τ(γ′(0))⊥).

Define the set

S(τ,θ) = P ([0, ρ+ δ)× (τ, θ)),

where τ, θ ∈ (−π, π) and τ < θ. Consider the set

Bθ = Bp(ρ+ δ) \ P ([0, ρ+ δ)× {0}).
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Chapter 2. A geometric approach 15

Using Cartan’s theorem ([6], p.174) the set S(−θ,0) is isometric to S(0,θ). Let C
0
θ

be the spherical cone obtained by identifying Bθ with this isometry. It is clear

that C0
θ is a smooth Riemannian manifold with the metric inherited from Bθ.

Define Cθ = C0
θ . The process is illustrated in the Figure 2.1. The Riemannian

distance in C0
θ ⊂ Cθ can be extended to make Cθ a complete metric space.

Figure 2.1: In the right, the curve connecting x1 and x2 is a minimizing geodesic
of length 2ρ that not intersect Vp.

Lemma 2.0.4. Suppose that θ ∈ (0, π). If x1, x2 ∈ Cθ satisfy

d(p, x1), d(p, x2) ≥ ρ

then

d(x1, x2) < 2ρ.

Proof. Let γ1 and γ2 be geodesics in Cθ joining x1 to p and p to x2, respectively.

At p the angle between them is

∠ (−γ′1(ρ), γ′2(0)) = π − θ.

If we consider a comparison triangle in R
2 determined by the line segments

(σ1, σ2, σ2) such that σ1 and σ2 have length ρ and ∠ (−σ′1(ρ), σ′2(0)) = π − θ

then the length of σ3 is

ℓ(σ3) = 2ρ cos(
θ

2
) < 2ρ.

By Toponogov’s theorem ([7], p. 35),

d(x1, x2) ≤ ℓ(σ3).

Therefore, d(x1, x2) < 2ρ.

Denote by Aδ the set of points in x ∈ Cθ such that ρ + δ > d(x, p) ≥ ρ.

The previous lemma implies that the minimizing geodesics connecting points
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in Aδ avoid a neighborhood around the vertex p. In the following, we shall

estimated the size of this neighborhood in order to smooth the cone.

2.1

Perturbations by cones

Let a > 0 such that a ≪ ρ. The cone Cθ we defined previously has

constant sectional curvature 1
r2
. Let Sρ+δ = Cθ \ C0

θ ∪ {p}.
The singular surface Cθ could be obtained as a surface of revolution but

we prefer to work with the surface that is the revolution of

α(x) = (x, 0, fa(x)),

where
fa(x) =

(

r2 − (x+ a)2
)

1

2 (2.1.1)

and x ∈ [0, rρ+δ], around the z axis. The constant rρ+δ < r is given implicitly

by ρ + δ =
∫ rρ+δ

0
||α′(s)|| ds. Since ρ is close to zero, both singular manifolds

are close in the C1 topology. So, from now on we will consider Cθ to be the

spherical cone generated by the revolution of the curve α around z axis.

Let Vp be the geodesic ball around p with radius δa > 0. We wish to

estimate δa in terms of the constant a in the function f such that every

minimizing geodesic with end points in Aδ avoid Vp.

First, we will relate δa with θ. Consider an Euclidean geodesic triangle

(σ1, σ2, σ3) such that ℓ(σ1) = ℓ(σ2) = ρ and the angle at the vertex p̄ = σ1(ρ) =

σ2(0) given by ∠ (−σ′1(ρ), σ′2(0)) = π − θ. If d0 is the Euclidean distance, then

d0(p̄, σ3) = ρ sin(
θ

2
).

By the Toponogov’s theorem, the distance from p to any minimizing geodesic

of Cθ connecting points in Aδ is greater than d0(p̄, σ3) = ρ sin( θ
2
). Set

δa = ρ sin(
θ

2
).

If θ is small then
δa ≃

ρ θ

2
. (2.1.2)

Now we will relate δa and a. Since ρ = ℓ(α|[0,rρ]) then

ρ = r arcsin

(

rρ + a

r

)

− r arcsin
(a

r

)

. (2.1.3)
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Expand arcsin up to order 4 at x = −a to obtain

ρ = r

(

rρ + a

r
− a

r
+

1

3!r6
(r3ρ + 3r2ρ a+ 3rρ a) +O(5)

)

≥ rρ +
7a3

6r5
+O(5) ≃ rρ +

7a3

6r5
, (2.1.4)

because a ≪ rρ. On the other hand, it is possible to calculate the perimeter

2π rρ by means of Jacobi fields. Given a unit speed geodesic γ : [0, ρ] → Cθ,

γ(0) = p, let γs : [0, ρ] → Cθ, s ∈ [0, 2π − θ) be a polar parametrization of

all radial geodesics of length ρ such that γs(0) = 0 and γ0 = γ. If Es(t) is a

perpendicular parallel vector field of norm 1 and the sectional curvature K of

Cθ is 1
r2

then

Js(t) =
1√
K

sin(
√
Kt)Es(t)

is a perpendicular Jacobi field. The perimeter is given by

2πrρ =

∫ 2π−θ

0

||Js(ρ)|| ds

= (2π − θ)
sin(

√
Kρ)√
K

.

We have the following estimative for the perimeter

2πrρ ≃ (2π − θ) ρ. (2.1.5)

With the results obtained from (2.1.4) and (2.1.5) we conclude that

2π(ρ− 7a3

6r5
) ≥ 2πrρ ≃ (2π − θ) ρ.

Therefore,

θ ρ ≥ 2π
7a3

6r5
. (2.1.6)

Substituting this equation on (2.1.2) we have

δa ≥
7πa3

6r5
. (2.1.7)

Consider the spherical cone Φa : B0(rρ) ⊂ R
2 → R

3, where Φa(x, y) =

(x, y, fa(
√

x2 + y2)). Define the singular metric gsa in B0(rρ) by

gsa = Φ∗ageuc,

where geuc is the standard Euclidean metric in R
3. In the same way, the metric

of the sphere of radius r is given by gr = Φ∗0geuc.

Lemma 2.1.1. There exists a sequence of C1 metrics ga in B0(rρ), such that
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i) ga has no continuous field of minimizers;

ii) ga converges to gr in the C1 topology;

iii) for a > 0 sufficiently small,

||ga − gr|| <
(

7πK

6

)− 1

3

.

Proof. Let ra be given implicitly by δa =
∫ ra
0
||α′(s)|| ds. Since a ≪ ρ, and,

therefore, a≪ r, we have that ra ≃ δa.

The neighbourhood Vp of radius δa which the minimizing geodesics avoid

is open but there exist a geodesic that realizes the infimum of

{d(p, γ)|γ is a minimizing geodesic with endpoints in Aδ}.

Then we can extend Vp to a neighbourhood of radius δa + ω.

Let rω > ra be given implicitly in the same way ra, but with respect to

δa+ω. Consider the bump function β such that β(t) = 1 for [0, ra] and β(t) = 0

for t ∈ [rω, rρ].

Figure 2.2: On the interval [−ra, ra] we used a function of order x
1

3 to smooth
f ′a.

Define λa : [0, rρ+δ]→ R by

λa(x) = −β(x)
(

7πK

6

)− 1

3

x1/3 + (1− β(x))f ′a(x), (2.1.8)

where K = 1
r2

is the sectional curvature of the metric gr. In Figure 2.2, it is

shown the graph of λa.
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Now, define the function Λa : [0, rρ+δ]→ R by

Λa(x) =
√

r2 − (rρ + a)2 −
∫ rρ

0

λa(s) ds+

∫ x

0

λa(l) dl. (2.1.9)

The metric

ga = Ψ∗ageuc,

where Ψa(x, y) = (x, y,Λ(
√

x2 + y2)), is C1 in B0(rρ) and C∞ in B0(rρ) \ {0}.
When a → 0+, the metric ga converges in the C1 topology to the spherical

metric gr because fa
C∞

→ f0, ra → 0 and λa → f ′0. The convergence of the

derivatives happens because |λa| is bounded above by |f ′a|. More precisely, on

[0, ra],

λa(t) ≥ λa(ra) ≃ λa(
7πa3

6r
) = −a

√
K ≥ f ′a(0).

The Hölder norm of λa − f ′a is given by

||λa − f ′a|| 1
3

= sup
x 6=y; x,y∈[0,rw]

|λa(x)− λa(y)|
|x− y| 13

=

(

7πK

6

)− 1

3

,

where K = 1
r2
.

Outside the neighbourhood Vp, the manifold (B0(rρ+δ), ga) is isometric to

the cone Cθ. Therefore, every minimizing geodesic on length greater than 2ρ

do not intersect Vp, then these geodesics do not contain p. We conclude that

ga cannot have a continuous field of minimizers.

2.2

Proof of theorem 2.0.2

Let g be any Riemannian C2 metric in the 2−torus. If g is not flat, by

the Gauss-Bonnet theorem there exists p such that the sectional curvature

K(p) > 0. Then, given ǫ > 0, there exists a metric g0, in an ǫ neighbourhood

of g such that the sectional curvature of g0 satisfies

K0(q) = K(p)

for every q in a neighbourhood of p of radius ρ + δ. When g is flat, we can

perturb g in order to obtain a non-flat metric and apply the same argument.

Anyway, given ǫ > 0, there is, ǫ−close to g in the C2 topology a metric with

positive constant curvature in a neighbourhood around a point.

Now we can use the preceding construction. Let Bp(ρ + δ) and let

f0 : B0(rρ+δ) → Bp(ρ + δ) be given by (2.1.1). Choose θ ∈ (0, π) such that

DBD
PUC-Rio - Certificação Digital Nº 1012861/CA



Chapter 2. A geometric approach 20

2πrρ− θρ ∈ [2πrρ, 2πrρ+δ]. So, θ and a > 0 are related by (2.1.2) and θ(a)→ 0

as a→ 0.

The metrics ga in B0(rρ) obtained in lemma 2.1.1 can be smoothed, by

means of a bump function, in a small neighbourhood of radius r0 ≪ ra without

changing the convergence in the C1, 1
3 topology. Let

(Φ0)∗ga

be a metric in Bp(ρ).

Finally, if ∆ is a bump function in Bp(ρ+ δ) such that ∆(q) = 1 in Bp(ρ)

and ∆(q) = 0 in Bp(ρ + δ) \ Bp(ρθ), where ρθ is the radius of (B0(rρ+δ, ga).

Define Ga by

Ga = ∆(Φ0)∗ga + (1−∆)g.

The result follows from lemma 2.1.1.
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