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7
Proof of the main theorem

In order to use the methods developed in the first section we have to
reduce the formula of the Jacobi equation in corollary 5.1.4 to a first order
equation. So, consider the Fermi coordinates along a radial geodesic «, passing
through p.

Given a vector field along «, of the type n(t) = x(t)V(t) where z :
(—=p—0,p+0) — R and V is the parallel vector field along «, introduced
in the definition of the Fermi coordinates. This vector field was chosen to be

perpendicular along «,.

Lemma 7.0.3. If x(—p) = 0 and x is not trivial then, in the Fermi coordinates
of corollary 5.1.4, the Jacobi operator applied on the perpendicular vector field
n(t) = z(t)V (t) is given by

Jon = (x”(t) — %(j)m'(t) (7.0.1)

A f1(1) S

+ 0+ 2 L = P et Vi

where X\ is a smooth positive function defined on [—p, p| with A(0) = 1.

Proof. First of all, a Jacobi field n along a geodesic «,, satisfies the relation

o, (0 (1), (1)) = Gar, (@, (=p), 1(=p)) + (t + p) g, ((—p), 1 (=p)). (7.0.2)

If we multiply both sides of the equation above by e¢?* we obtain the same
relation for the Finsler metric F,. Then, the vector field 7 is perpendicular
to «, for both metrics, g and ¢°. Therefore, given a parallel vector field W
along a, associated with the metric g7 such that gg (&, (s), W(s)) = 0, there
exists a function y = y(s) such that n = yW, where the dot corresponds to the
derivative in the new time parameter. Now, using the Chern-Rund connection
formalism
J7n = Da,Da,n + R (1, cu)cv,

but, from the parallelism of W, D, W = 0 and

RJ(”: dv)dv - Kg(S)y(S)W(S)


DBD
PUC-Rio - Certificação Digital Nº 1012861/CA


PUC-Rio - Certificacdo Digital N° 1012861/CA

Chapter 7. Proof of the main theorem 54

So, the vector J77 is parallel to W which is parallel to V' because of equation
(7.0.2).

Since n = x(t)V (t) we have that JZn' = 0. From what was done above
we have that Jg;n? = 0 because the vector J7n is parallel to V. After all this

reductions we conclude that
Jon = J§72772 V(t)-

To finish the proof we have to calculate the derivative o,2,2. According
to the definition of o, using the Fermi coordinate system defined on equation

(5.1.2) on a square contained inside the ball B,(p),
oo, %) = oo ((expy) " (&1, %))

where (z'(s,t), 2%(s,t)) = o, (a(t), V(t)) . Consider the vector field along tv
defined by V(t) = d(exp, ") o,V (t). Gauss lemma implies that V (t) = A(t)Vj,
where Vj is a unitary vector perpendicular to v and A > 0 such that A\(0) = 1.

Therefore, we have that

2

0202 (2 (t,0), 2%(L,0)) = 5_52 . (Uo(tv + sV(t)))
RECOI0
3

Lemma 7.0.4. If there is a non trivial solution y of equation

y'(6) + (Kv(t) L ’(t)> y(t) =0 (7.0.3)

i

such that y(—p) = y(to) = 0, to € (—p, p|, then the geodesic cv, has conjugate

points.

Proof. The equation

(1) — %%'(t) (K (t) + 2 A(g) / |t(‘t> - J;X)) (Chia)e2)z(t) =0 (7.0.4)

can be seen as a first order linear system of the type
X'(t) = F(t, X, e), (7.0.5)

where X = (z,p), p = 2/, and F is linear in the X variable. Observe that,
although the dependence on the parameter € is no explicit in (7.0.4), it appears

if we look to the definition of f. Moreover, f, f/ — 0 uniformly when € — 0.
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Change the € dependence associated with the terms %((f) and %(?(Cllg)aﬂ

by € such that € € [0,¢). Call these new terms g¢;(¢,€), i = 1,2, respectively. It
is clear that this term also goes uniformly to zero when € — 0. We will obtain

another second order equation (now with parameters (¢, €))

2 — gn () (6) + (Kv(t) + A:g) / |§|t) ot g)) B =0  (7.06)

which will linearize to

X'(t) = F(t,X,¢,€). (7.0.7)
Recall that we have to choose the constant p with respect to € and this will only
depend on the infimum of the curvatures inside the coordinate ball chosen.
Consider the solution X (t) = X (t;¢,€) of (7.0.7) with initial conditions
X(=p) = (0,1). The continuous dependence on initial conditions and pa-
rameters (cf. [8], p. 58) implies that, if, for some t, € (—p,p) and € = 0,
X(tg) = (0,—7) then there exists § > 0 such that for € € [0,6) there is
to = to(€) with X(fp;e,€) = (0,—7). Actually, by continuity, this will work
also for € = 4. Then, applying several times the continuous dependence the-
orem we can cover the interval [0,¢) and finally conclude that the solution
X (t) = X(t;¢€) of 7.0.5 with the same initial conditions of X also has a zero at
some t; > —p.
To finish the proof, just observe that X—% > 1 and apply Sturm comparison

theorem. O]

7.1
Proof of theorem 1.0.1

Let € > 0. If ¢ > € > 0, let B € (0,1), p(¢,8) and «(€, ) be the
ones obtained in proposition 4.0.11. These constants together with the Finsler
metric F' determine the functions oy and 0. Rename o as 0. Because of 6.1.2
we can suppose that

_ o8 _
1=l =

Define F' = £F. Since K,(t) > K{, we have that K,(t) + % > KZ, 5
and, therefore, by proposition 4.0.11, equation (7.0.3) has conjugate points. So,
lemma 7.0.4, implies that the geodesic has conjugate points for every v € Tle :

Given a geodesic v of Fy = e?F such that v(0) = p, there exist
0 < to < psuch that the length of gamma restricted to [—tg, to] is strictly bigger
that d(vy(—to),v(to)). This fact is invariant by rescaling, so, all the geodesics

of e’ F' = Fj containing p have conjugate points.


DBD
PUC-Rio - Certificação Digital Nº 1012861/CA


PUC-RIo - Certificacdo Digital N° 1012861/CA

Chapter 7. Proof of the main theorem

Finally, observe that
|F = e"Fl[y < |1 = e[ [[Flly <€

To finish the proof, Lemma 6.1.2 implies that ||os]| < e.
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