7
 Proof of the main theorem

In order to use the methods developed in the first section we have to reduce the formula of the Jacobi equation in corollary 5.1.4 to a first order equation. So, consider the Fermi coordinates along a radial geodesic α_{v} passing through p.

Given a vector field along α_{v} of the type $\eta(t)=x(t) V(t)$ where x : $(-\rho-\delta, \rho+\delta) \rightarrow \mathbb{R}$ and V is the parallel vector field along α_{v} introduced in the definition of the Fermi coordinates. This vector field was chosen to be perpendicular along α_{v}.

Lemma 7.0.3. If $x(-\rho)=0$ and x is not trivial then, in the Fermi coordinates of corollary 5.1.4, the Jacobi operator applied on the perpendicular vector field $\eta(t)=x(t) V(t)$ is given by

$$
\begin{align*}
J^{\sigma} \eta= & \left(x^{\prime \prime}(t)-\frac{f^{\prime}(t)}{\Lambda_{0}} x^{\prime}(t)\right. \tag{7.0.1}\\
& \left.+\left(K_{v}(t)+\frac{\lambda^{2}(t)}{\Lambda_{0}^{2}} \frac{f^{\prime}(t)}{|t|}-\frac{f^{\prime}(t)}{2 \Lambda_{0}}\left(C_{112}\right)_{x^{2}}\right) x(t)\right) V(t),
\end{align*}
$$

where λ is a smooth positive function defined on $[-\rho, \rho]$ with $\lambda(0)=1$.
Proof. First of all, a Jacobi field η along a geodesic α_{v} satisfies the relation

$$
\begin{equation*}
g_{\alpha_{v}^{\prime}}\left(\alpha_{v}^{\prime}(t), \eta(t)\right)=g_{\alpha_{v}^{\prime}}\left(\alpha_{v}^{\prime}(-\rho), \eta(-\rho)\right)+(t+\rho) g_{\alpha_{v}^{\prime}}\left(\alpha_{v}^{\prime}(-\rho), \eta^{\prime}(-\rho)\right) . \tag{7.0.2}
\end{equation*}
$$

If we multiply both sides of the equation above by $e^{2 \sigma}$ we obtain the same relation for the Finsler metric F_{σ}. Then, the vector field η is perpendicular to α_{v} for both metrics, g and g^{σ}. Therefore, given a parallel vector field W along α_{v} associated with the metric g^{σ} such that $g_{\dot{\alpha}_{v}}^{\sigma}\left(\dot{\alpha}_{v}^{\prime}(s), W(s)\right)=0$, there exists a function $y=y(s)$ such that $\eta=y W$, where the dot corresponds to the derivative in the new time parameter. Now, using the Chern-Rund connection formalism

$$
J^{\sigma} \eta=D_{\dot{\alpha}_{v}} D_{\dot{\alpha}_{v}} \eta+R^{\sigma}\left(\eta, \dot{\alpha}_{v}\right) \dot{\alpha}_{v}
$$

but, from the parallelism of $W, D_{\dot{\alpha}_{v}} W=0$ and

$$
R^{\sigma}\left(\eta, \dot{\alpha}_{v}\right) \dot{\alpha}_{v}=K_{v}^{\sigma}(s) y(s) W(s) .
$$

So, the vector $J^{\sigma} \eta$ is parallel to W which is parallel to V because of equation (7.0.2).

Since $\eta=x(t) V(t)$ we have that $J_{1 i}^{\sigma} \eta^{1}=0$. From what was done above we have that $J_{21}^{\sigma} \eta^{2}=0$ because the vector $J^{\sigma} \eta$ is parallel to V. After all this reductions we conclude that

$$
J^{\sigma} \eta=J_{22}^{\sigma} \eta^{2} V(t)
$$

To finish the proof we have to calculate the derivative $\sigma_{x^{2} x^{2}}$. According to the definition of σ, using the Fermi coordinate system defined on equation (5.1.2) on a square contained inside the ball $\mathcal{B}_{p}(\rho)$,

$$
\sigma\left(x^{1}, x^{2}\right)=\sigma_{0}\left(\left(\exp _{p}\right)^{-1}\left(x^{1}, x^{2}\right)\right)
$$

where $\left(x^{1}(s, t), x^{2}(s, t)\right)=\pi \circ \phi_{s}\left(\alpha_{v}(t), V(t)\right)$. Consider the vector field along $t v$ defined by $\bar{V}(t)=d\left(\exp _{p}^{-1}\right)_{\alpha_{v}(t)} V(t)$. Gauss lemma implies that $\bar{V}(t)=\lambda(t) \bar{V}_{0}$, where \bar{V}_{0} is a unitary vector perpendicular to v and $\lambda>0$ such that $\lambda(0)=1$.

Therefore, we have that

$$
\begin{aligned}
\sigma_{x^{2} x^{2}}\left(x^{1}(t, 0), x^{2}(t, 0)\right) & =\left.\frac{d^{2}}{d s^{2}}\right|_{s=0}\left(\sigma_{0}(t v+s \bar{V}(t))\right) \\
& =-\frac{\lambda^{2}(t)}{2 \Lambda_{0}^{2}} \frac{f^{\prime}(t)}{|t|}
\end{aligned}
$$

Lemma 7.0.4. If there is a non trivial solution y of equation

$$
\begin{equation*}
y^{\prime \prime}(t)+\left(K_{v}(t)+\frac{f^{\prime}(t)}{|t|}\right) y(t)=0 \tag{7.0.3}
\end{equation*}
$$

such that $y(-\rho)=y\left(t_{0}\right)=0, t_{0} \in(-\rho, \rho]$, then the geodesic α_{v} has conjugate points.

Proof. The equation

$$
\begin{equation*}
x^{\prime \prime}(t)-\frac{f^{\prime}(t)}{\Lambda_{0}} x^{\prime}(t)+\left(K_{v}(t)+\frac{\lambda^{2}(t)}{\Lambda_{0}^{2}} \frac{f^{\prime}(t)}{|t|}-\frac{f^{\prime}(t)}{2 \Lambda_{0}}\left(C_{112}\right)_{x^{2}}\right) x(t)=0 \tag{7.0.4}
\end{equation*}
$$

can be seen as a first order linear system of the type

$$
\begin{equation*}
X^{\prime}(t)=F(t, X, \epsilon), \tag{7.0.5}
\end{equation*}
$$

where $X=(x, p), p=x^{\prime}$, and F is linear in the X variable. Observe that, although the dependence on the parameter ϵ is no explicit in (7.0.4), it appears if we look to the definition of f. Moreover, $f, f^{\prime} \rightarrow 0$ uniformly when $\epsilon \rightarrow 0$.

Change the ϵ dependence associated with the terms $\frac{f^{\prime}(t)}{\Lambda_{0}}$ and $\frac{f^{\prime}(t)}{2 \Lambda_{0}}\left(C_{112}\right)_{x^{2}}$ by $\bar{\epsilon}$ such that $\bar{\epsilon} \in[0, \epsilon)$. Call these new terms $g_{i}(t, \bar{\epsilon}), i=1,2$, respectively. It is clear that this term also goes uniformly to zero when $\bar{\epsilon} \rightarrow 0$. We will obtain another second order equation (now with parameters $(\epsilon, \bar{\epsilon})$)

$$
\begin{equation*}
x^{\prime \prime}(t)-g_{1}(t, \bar{\epsilon}) x^{\prime}(t)+\left(K_{v}(t)+\frac{\lambda^{2}(t)}{\Lambda_{0}^{2}} \frac{f^{\prime}(t)}{|t|}-g_{2}(t, \bar{\epsilon})\right) x(t)=0 \tag{7.0.6}
\end{equation*}
$$

which will linearize to

$$
\begin{equation*}
X^{\prime}(t)=\bar{F}(t, X, \epsilon, \bar{\epsilon}) \tag{7.0.7}
\end{equation*}
$$

Recall that we have to choose the constant ρ with respect to ϵ and this will only depend on the infimum of the curvatures inside the coordinate ball chosen.

Consider the solution $\bar{X}(t)=\bar{X}(t ; \epsilon, \bar{\epsilon})$ of (7.0.7) with initial conditions $\bar{X}(-\rho)=(0,1)$. The continuous dependence on initial conditions and parameters (cf. [8], p. 58) implies that, if, for some $t_{0} \in(-\rho, \rho)$ and $\bar{\epsilon}=0$, $\bar{X}\left(t_{0}\right)=(0,-\tau)$ then there exists $\delta>0$ such that for $\bar{\epsilon} \in[0, \delta)$ there is $\bar{t}_{0}=\bar{t}_{0}(\bar{\epsilon})$ with $\bar{X}\left(\bar{t}_{0} ; \epsilon, \bar{\epsilon}\right)=(0,-\bar{\tau})$. Actually, by continuity, this will work also for $\bar{\epsilon}=\delta$. Then, applying several times the continuous dependence theorem we can cover the interval $[0, \epsilon)$ and finally conclude that the solution $X(t)=X(t ; \epsilon)$ of 7.0 .5 with the same initial conditions of \bar{X} also has a zero at some $t_{1}>-\rho$.

To finish the proof, just observe that $\frac{\lambda^{2}}{\Lambda_{0}^{2}} \geq 1$ and apply Sturm comparison theorem.

7.1
 Proof of theorem 1.0.1

Let $\epsilon>0$. If $\epsilon>\bar{\epsilon}>0$, let $\beta \in(0,1), \rho(\bar{\epsilon}, \beta)$ and $\alpha(\bar{\epsilon}, \beta)$ be the ones obtained in proposition 4.0.11. These constants together with the Finsler metric F determine the functions σ_{0} and σ. Rename σ as σ_{β}. Because of 6.1.2 we can suppose that

$$
\left\|1-e^{\sigma_{\beta}}\right\|_{1}<\frac{\epsilon}{\|F\|_{1}}
$$

Define $\bar{F}=\frac{\rho}{a} F$. Since $K_{v}(t) \geq K_{0}^{\rho}$, we have that $K_{v}(t)+\frac{f^{\prime}(t)}{|t|} \geq K_{\bar{\epsilon}, \alpha, \beta}^{\rho}$ and, therefore, by proposition 4.0.11, equation (7.0.3) has conjugate points. So, lemma 7.0.4, implies that the geodesic has conjugate points for every $v \in T_{p}^{1} M$.

Given a geodesic γ of $\bar{F}_{\beta}=e^{\sigma_{\beta}} \bar{F}$ such that $\gamma(0)=p$, there exist $0<t_{0} \leq \rho$ such that the length of gamma restricted to $\left[-t_{0}, t_{0}\right]$ is strictly bigger that $d\left(\gamma\left(-t_{0}\right), \gamma\left(t_{0}\right)\right)$. This fact is invariant by rescaling, so, all the geodesics of $e^{\sigma_{\beta}} F=F_{\beta}$ containing p have conjugate points.

Finally, observe that

$$
\left\|F-e^{\sigma} F\right\|_{1} \leq\left\|1-e^{\sigma}\right\|_{1}\|F\|_{1}<\epsilon .
$$

To finish the proof, Lemma 6.1.2 implies that $\left\|\sigma_{\beta}\right\|<\epsilon$.

