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Proof of the main theorem

In order to use the methods developed in the first section we have to

reduce the formula of the Jacobi equation in corollary 5.1.4 to a first order

equation. So, consider the Fermi coordinates along a radial geodesic αv passing

through p.

Given a vector field along αv of the type η(t) = x(t)V (t) where x :

(−ρ − δ, ρ + δ) → R and V is the parallel vector field along αv introduced

in the definition of the Fermi coordinates. This vector field was chosen to be

perpendicular along αv.

Lemma 7.0.3. If x(−ρ) = 0 and x is not trivial then, in the Fermi coordinates

of corollary 5.1.4, the Jacobi operator applied on the perpendicular vector field

η(t) = x(t)V (t) is given by

Jση =

(

x′′(t)−
f ′(t)

Λ0

x′(t) (7.0.1)

+ (Kv(t) +
λ2(t)

Λ2
0

f ′(t)

|t|
−

f ′(t)

2Λ0

(C112)x2)x(t)

)

V (t),

where λ is a smooth positive function defined on [−ρ, ρ] with λ(0) = 1.

Proof. First of all, a Jacobi field η along a geodesic αv satisfies the relation

gα′

v
(α′v(t), η(t)) = gα′

v
(α′v(−ρ), η(−ρ)) + (t+ ρ)gα′

v
(α′v(−ρ), η

′(−ρ)). (7.0.2)

If we multiply both sides of the equation above by e2σ we obtain the same

relation for the Finsler metric Fσ. Then, the vector field η is perpendicular

to αv for both metrics, g and gσ. Therefore, given a parallel vector field W

along αv associated with the metric gσ such that gσα̇v
(α̇′v(s),W (s)) = 0, there

exists a function y = y(s) such that η = yW, where the dot corresponds to the

derivative in the new time parameter. Now, using the Chern-Rund connection

formalism

Jση = Dα̇v
Dα̇v

η +Rσ(η, α̇v)α̇v

but, from the parallelism of W, Dα̇v
W = 0 and

Rσ(η, α̇v)α̇v = Kσ
v (s)y(s)W (s).
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So, the vector Jση is parallel to W which is parallel to V because of equation

(7.0.2).

Since η = x(t)V (t) we have that Jσ
1iη

1 = 0. From what was done above

we have that Jσ
21η

2 = 0 because the vector Jση is parallel to V. After all this

reductions we conclude that

Jση = Jσ
22η

2 V (t).

To finish the proof we have to calculate the derivative σx2x2 . According

to the definition of σ, using the Fermi coordinate system defined on equation

(5.1.2) on a square contained inside the ball Bp(ρ),

σ(x1, x2) = σ0

(

(expp)
−1(x1, x2)

)

,

where (x1(s, t), x2(s, t)) = π◦φs (αv(t), V (t)) . Consider the vector field along tv

defined by V̄ (t) = d(exp−1p )αv(t)V (t). Gauss lemma implies that V̄ (t) = λ(t)V̄0,

where V̄0 is a unitary vector perpendicular to v and λ > 0 such that λ(0) = 1.

Therefore, we have that

σx2x2(x1(t, 0), x2(t, 0)) =
d2

ds2

∣

∣

∣

∣

s=0

(

σ0(tv + sV̄ (t))
)

= −
λ2(t)

2Λ2
0

f ′(t)

|t|
.

Lemma 7.0.4. If there is a non trivial solution y of equation

y′′(t) +

(

Kv(t) +
f ′(t)

|t|

)

y(t) = 0 (7.0.3)

such that y(−ρ) = y(t0) = 0, t0 ∈ (−ρ, ρ], then the geodesic αv has conjugate

points.

Proof. The equation

x′′(t)−
f ′(t)

Λ0

x′(t) + (Kv(t) +
λ2(t)

Λ2
0

f ′(t)

|t|
−

f ′(t)

2Λ0

(C112)x2)x(t) = 0 (7.0.4)

can be seen as a first order linear system of the type

X ′(t) = F (t,X, ǫ), (7.0.5)

where X = (x, p), p = x′, and F is linear in the X variable. Observe that,

although the dependence on the parameter ǫ is no explicit in (7.0.4), it appears

if we look to the definition of f. Moreover, f, f ′ → 0 uniformly when ǫ→ 0.
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Change the ǫ dependence associated with the terms f ′(t)
Λ0

and f ′(t)
2Λ0

(C112)x2

by ǭ such that ǭ ∈ [0, ǫ). Call these new terms gi(t, ǭ), i = 1, 2, respectively. It

is clear that this term also goes uniformly to zero when ǭ→ 0. We will obtain

another second order equation (now with parameters (ǫ, ǭ))

x′′(t)− g1(t, ǭ)x
′(t) +

(

Kv(t) +
λ2(t)

Λ2
0

f ′(t)

|t|
− g2(t, ǭ)

)

x(t) = 0 (7.0.6)

which will linearize to
X ′(t) = F̄ (t,X, ǫ, ǭ). (7.0.7)

Recall that we have to choose the constant ρ with respect to ǫ and this will only

depend on the infimum of the curvatures inside the coordinate ball chosen.

Consider the solution X̄(t) = X̄(t; ǫ, ǭ) of (7.0.7) with initial conditions

X̄(−ρ) = (0, 1). The continuous dependence on initial conditions and pa-

rameters (cf. [8], p. 58) implies that, if, for some t0 ∈ (−ρ, ρ) and ǭ = 0,

X̄(t0) = (0,−τ) then there exists δ > 0 such that for ǭ ∈ [0, δ) there is

t̄0 = t̄0(ǭ) with X̄(t̄0; ǫ, ǭ) = (0,−τ̄). Actually, by continuity, this will work

also for ǭ = δ. Then, applying several times the continuous dependence the-

orem we can cover the interval [0, ǫ) and finally conclude that the solution

X(t) = X(t; ǫ) of 7.0.5 with the same initial conditions of X̄ also has a zero at

some t1 > −ρ.

To finish the proof, just observe that λ2

Λ2

0

≥ 1 and apply Sturm comparison

theorem.

7.1

Proof of theorem 1.0.1

Let ǫ > 0. If ǫ > ǭ > 0, let β ∈ (0, 1), ρ(ǭ, β) and α(ǭ, β) be the

ones obtained in proposition 4.0.11. These constants together with the Finsler

metric F determine the functions σ0 and σ. Rename σ as σβ. Because of 6.1.2

we can suppose that

||1− eσβ ||1 <
ǫ

||F ||1
.

Define F̄ = ρ

a
F. Since Kv(t) ≥ K

ρ
0 , we have that Kv(t) +

f ′(t)
|t|
≥ K

ρ
ǭ,α,β

and, therefore, by proposition 4.0.11, equation (7.0.3) has conjugate points. So,

lemma 7.0.4, implies that the geodesic has conjugate points for every v ∈ T 1
pM.

Given a geodesic γ of F̄β = eσβ F̄ such that γ(0) = p, there exist

0 < t0 ≤ ρ such that the length of gamma restricted to [−t0, t0] is strictly bigger

that d(γ(−t0), γ(t0)). This fact is invariant by rescaling, so, all the geodesics

of eσβF = Fβ containing p have conjugate points.
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Finally, observe that

||F − eσF ||1 ≤ ||1− eσ||1 ||F ||1 < ǫ.

To finish the proof, Lemma 6.1.2 implies that ||σβ|| < ǫ.
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