8
 Appendix

Here we will approach the problem from a Hamiltonian perspective and prove a Hamiltonian version of the theorem. The substantial difference is that the perturbation will be done by potentials, which simplifies the calculations. Along this chapter, equip M with a Riemannian metric and consider the Riemannian metric induced in $T^{*} M$.

Theorem 8.0.1. Let $H: T^{*} M \rightarrow \mathbb{R}$ be a smooth 2-homogeneous reversible Hamiltonian and $\epsilon>0$. Then there exist $\beta \in(0,1)$ and a potential $U: M \rightarrow \mathbb{R}$ such that
i) U is ϵ-close to zero in the $C^{1, \beta}$ topology;
ii) If $k>\sup _{x \in M}|U(x)|$ then

$$
H^{U}=H+U
$$

have no invariant continuous graphs in the level set associated with k.
We begin with the definition of Tonelli Hamiltonian ${ }^{1}$.
Let $H: T^{*} M \rightarrow \mathbb{R}$ be a C^{∞} Tonelli Hamiltonian, that is, a smooth function that satisfies:
i) Convexity: For all $x \in M$ and $p \in T_{x}^{*} M$ the Hessian $H_{p^{i} p^{j}}(x, p)$ is positive definite;
ii) Superlinearity:

$$
\lim _{|p|_{x} \rightarrow \infty} \frac{H(x, p)}{|p|_{x}}=\infty
$$

In what follows, we will also require that H be 2-homogeneous, that is,

$$
H(x, \lambda p)=\lambda^{2} H(x, p) \quad \lambda \geq 0
$$

[^0]It is easy to see that this property implies the superlinearity. These kind of Hamiltonians are obtained from the convex dual of Finsler metrics. Namely, given a Finsler metric $F, H(x, p)=\sup _{v \in T_{x} M}\left\{p(v)-F^{2}(x, v)\right\}$.

The natural symplectic structure induces a vector field X_{H}, called the symplectic gradient of H, by

$$
d H=\iota_{X_{H}} \omega_{0} .
$$

In local coordinates, the equation $\dot{\theta}=X_{H}(\theta)$, for $\theta \in T^{*} M$, becomes

$$
\begin{equation*}
\dot{x}=H_{p} \quad \dot{p}=-H_{x} \tag{8.0.1}
\end{equation*}
$$

where H_{x} and H_{p} are the partial derivatives with respect to x and p. Observe that H is constant along the orbits of X_{H} then the energy levels $\Sigma_{e}=H^{-1}(e)$ contains the orbits of (8.0.1). Compactness of M and the superlinearity of H implies that Σ_{e} is compact. Since (8.0.1) is Lipschitz, its solutions are defined for all $t \in \mathbb{R}$. Denote the flow of X_{H} by ψ_{t}.

A potential is a smooth function $U: M \rightarrow \mathbb{R}$. The Hamiltonian $H^{U}=H+U$ still satisfies the properties of the Tonelli Hamiltonian, but it is no longer homogeneous.

Lemma 8.0.2. Let $\alpha(t)=(x(t), p(t))$ be an orbit of X_{H} without self intersection and such that $H(\alpha)=1$. If U is a potential such that $d_{x(t)} U=f(t) p(t)$, where f is a smooth positive real function, then there exists a reparametrization $t \rightarrow s(t)$ such that $\bar{\alpha}(s)=(\bar{x}(s), \bar{p}(s))$, where $\bar{x}(s)=x(t(s))$ and $\bar{p}(s)=\frac{d t}{d s} p(t(s))$, is an orbit of $X_{H^{U}}$.

Proof. Suppose that α is defined on $[a, b]$. Let $E>\sup _{t \in[a, b]} U(x(t))$. Define the function s by

$$
\begin{equation*}
s(t)=c+\int_{a}^{t}(E-U(x(u)))^{-\frac{1}{2}} d u \tag{8.0.2}
\end{equation*}
$$

We have that

$$
\frac{d \bar{x}}{d s}=\frac{d t}{d s} \frac{d x}{d t}=\frac{d t}{d s} H_{p}(x(t(s)), p(t(s)))
$$

But H_{p} is 1-homogeneous and $\bar{p}(s)=\frac{d t}{d s} p(t(s))$, which implies that

$$
\frac{d \bar{x}}{d s}=H_{p}^{U}(\bar{x}(s), \bar{p}(s)) .
$$

For the second equation,

$$
\begin{aligned}
\frac{d \bar{p}}{d s} & =\frac{d^{2} t}{d s^{2}} p(t(s))+\left(\frac{d t}{d s}\right)^{2} \frac{d p}{d t} \\
& =\frac{d^{2} t}{d s^{2}} p(t(s))-\left(\frac{d t}{d s}\right)^{2} H_{x}(x(t(s)), p(t(s))) \\
& =\frac{1}{f(t(s))} \frac{d^{2} t}{d s^{2}} d U(x(t(s)))-H_{x}(\bar{x}(s), \bar{p}(s)) \\
& =\frac{1}{f(t(s))} \frac{d^{2} t}{d s^{2}} d U(x(t(s)))+d U(x(t(s)))-H_{x}^{U}(\bar{x}(s), \bar{p}(s)),
\end{aligned}
$$

because H_{x} is 2-homogeneous. Remains to prove that the first two terms of the right-hand side of equation above cancel each other. Now, since

$$
\frac{d t}{d s}=\sqrt{E-U(x(t(s)))}
$$

we have that

$$
\frac{d^{2} t}{d s^{2}}=-\frac{1}{2}\left(\frac{d t}{d s}\right)^{-1} \frac{d t}{d s} \frac{d}{d t}(U(x(t)))=-\frac{1}{2} d U(x(t)) \cdot \frac{d x}{d t}
$$

Because H is 2-homogeneous, we have $p(t)\left(\frac{d x}{d t}\right)=p \cdot H_{p}=2$, therefore $\frac{d^{2} t}{d s^{2}}=-f(t)$.

In the above lemma, with the reparametrization s, the new orbit $\bar{\alpha}$ will satisfy $H^{U}(\bar{\alpha})=E$. Recall that our Hamiltonian H is the convex dual of a Finsler metric. So, this reparametrization suggests a Finsler like Maupertuis principle (cf [2]). In fact, this is part of a more general result: if L is the Lagrangian associated to a Tonelli Hamiltonian H then its flow restricted to some super critical level set of the energy is conjugated to the flow of a Finsler metric (cf [9]).

8.1
 The Hamiltonian Jacobi equation

The Levi-Civita connection ∇ associated with the Riemannian metric on M can be extended to 1 -forms in the following way

$$
\left(\nabla_{X} \omega\right)(Y)=X(\omega(Y))-\omega\left(\nabla_{X} Y\right)
$$

This is a torsion free linear connection on $T^{*} M$ and can be used to construct a isomorphism

$$
T_{\theta} T^{*} M \simeq T_{\bar{\pi}(\theta)} M \times T_{\bar{\pi}(\theta)}^{*} M .
$$

Let's construct this isomorphism. For $\xi \in T_{\theta} T^{*} M$, let $t \mapsto \alpha(t)=(x(t), p(t)) \in$ $T^{*} M$ be a curve satisfying $\alpha(0)=\theta$ and $\dot{\alpha}(0)=\xi$. The isomorphism is given by

$$
\xi \mapsto \Phi(\xi)=\left(d_{\theta} \bar{\pi}(\xi), \nabla_{\dot{x}} P(0)\right) .
$$

Here we can do another identification. Define the vertical subspace by $V(\theta)=$ $\operatorname{ker} d_{\theta} \bar{\pi}$ and we have that

$$
V(\theta) \simeq\{0\} \times T_{\bar{\pi}(\theta)}^{*} M \simeq T_{\bar{\pi}(\theta)} M
$$

The map $K_{\theta}(\xi)=\nabla_{\dot{x}} P(0)$ is called the connection map and we can define the horizontal subspace by $H(\theta)=\operatorname{ker} K_{\theta}$. From this, we have that

$$
H(\theta) \simeq T_{\bar{\pi}(\theta)} M \times\{0\} \simeq T_{\bar{\pi}(\theta)} M
$$

Therefore $T_{\theta} T^{*} M \simeq H(\theta) \oplus V(\theta)$.
Now, let $\sigma:(-\epsilon, \epsilon) \rightarrow T^{*} M$ be a smooth curve. Define $\left(x_{s}(t), p_{s}(t)\right)=$ $\psi_{t} \circ \sigma(s)$ be a variation of the orbit $(x(t), p(t))=\left(x_{0}(t), p_{0}(t)\right)$ by orbits of the of the vector field X_{H}. Using the decomposition $T_{\theta} T^{*} M \simeq T_{\bar{\pi}(\theta)} M \times T_{\bar{\pi}(\theta)} M$, let

$$
\xi(t)=d_{\theta} \psi_{t}(\xi)=(h(t), v(t)),
$$

where $\xi \in T_{\theta} T^{*} M$.
Lemma 8.1.1. The functions $h(t), v(t)$ satisfies system of the equations

$$
\begin{align*}
\dot{h} & =H_{p x} h(t)+H_{p p} v(t) \\
\dot{v} & =-H_{x x} h(t)-H_{x p} v(t), \tag{8.1.1}
\end{align*}
$$

where $H_{x x}, H_{x p}, H_{p x}$ and $H_{p p}$ are linear operators on $T_{\bar{\pi}(\theta)} M$ which coincides in a local coordinate system with the matrices of partial derivatives $\left(\frac{\partial^{2} H}{\partial x^{i} \partial x^{j}}\right)$, $\left(\frac{\partial^{2} H}{\partial x^{i} \partial p_{j}}\right),\left(\frac{\partial^{2} H}{\partial p_{i} \partial x^{j}}\right)$ and $\left(\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}\right)$.

8.2
 The perturbed Jacobi equation

Consider $U: M \rightarrow \mathbb{R}$ a potential such that, if $(x(t), p(t))$ is an orbit of X_{H}, then $d_{x(t)} U=f(t) p(t)$ for some smooth positive real function f. We would like to see how the Hamiltonian Jacobi equation behave for the Hamiltonian H^{U} when considered over the orbit $(\bar{x}(s), \bar{p}(s))$ obtained as in lemma 8.0.2.

Proposition 8.2.1. Let $\bar{\xi}(s)=(\bar{h}(s), \bar{v}(s))$ be a vector field along $(\bar{x}(s), \bar{p}(s))$ which satisfies the equations (8.1.1) for the Hamiltonian H^{U}. Using the change
of coordinates $t \mapsto s(t)$ from lemma 8.0.2 these equations looked over the orbit $(x(t), p(t))$ of $X_{H^{U}}$ become

$$
\begin{align*}
& \dot{h}=H_{p x} h(t)+\frac{d s}{d t} H_{p p} v(t) \\
& \dot{v}=-\left(\frac{d s}{d t}\right)^{-1} H_{x x} h(t)-H_{x p} v(t)-\frac{d s}{d t} U_{x x} h(t) . \tag{8.2.1}
\end{align*}
$$

Proof. From lemma 8.0.2, we know that $\bar{x}(s)=x(t(s))$ and $\bar{p}(s)=\frac{d t}{d s} p(t(s))$. If Y is a vector field along \bar{x} then

$$
\frac{d}{d s} Y=\frac{d t}{d s} \frac{d}{d t} Y
$$

If H is 2-homogeneous then $H_{x x}$ is 2-homogeneous, $H_{x p}$ and $H_{p x}$ are 1homogeneous and $H_{p p}$ is 0-homogeneous.

The first equation became

$$
\begin{aligned}
\frac{d}{d s} \bar{h} & =H_{p x}^{U} \bar{h}(s)+H_{p p}^{U} \bar{v}(s) \\
& =\frac{d t}{d s} H_{x p} h(t(s))+H_{p p} v(t(s))
\end{aligned}
$$

Then, multiplying by $\frac{d s}{d t}$, we have that the first equation over $(x(t), p(t))$ is

$$
\begin{equation*}
\dot{h}=H_{p x} h(t)+\frac{d s}{d t} H_{p p} v(t) . \tag{8.2.2}
\end{equation*}
$$

The second equation became

$$
\begin{aligned}
\frac{d}{d s} \bar{v} & =-H_{x x}^{U} \bar{h}(s)-H_{x p}^{U} \bar{v}(s) \\
& =-\left(\frac{d t}{d s}\right)^{2} H_{x x} h(t)-U_{x x} h(t)-\frac{d t}{d s} H_{x p} v(t)
\end{aligned}
$$

Again, multiplying by $\frac{d s}{d t}$, we obtain

$$
\begin{equation*}
\dot{v}=-\left(\frac{d s}{d t}\right)^{-1} H_{x x} h(t)-H_{x p} v(t)-\frac{d s}{d t} U_{x x} h(t) \tag{8.2.3}
\end{equation*}
$$

The following result is found in [11]. It can be regarded as an Hamiltonian version of the well known Fermi coordinates ${ }^{2}$ and we will call them Hamiltonian Fermi coordinates.

Lemma 8.2.2. Let $(x(t), p(t)), t \in[a, b]$, be a non-singular orbit of the flow of H without self intersections. Suppose that $(x(0), p(0))=(x, p)$. Up to

[^1]translation in the x variable and to take a smaller interval, there exist local coordinates $\Phi: \mathcal{O} \subset M \rightarrow \mathbb{R}^{n}, \Phi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where \mathcal{O} is an open neighbourhood of x and $\Phi(x)=0$, such that the Hamiltonian $\bar{H}=\Phi_{*} H$ defined in an open set $\mathcal{V} \times \mathbb{R}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ satisfies the following properties:
i) The orbit of \bar{H} through $\left(0, e_{1}\right)$ is $\bar{\psi}_{t}\left(0, e_{1}\right)=\left(t e_{1}, e_{1}\right)$ for every $t \in[a, b]$.
ii) In the coordinates (x, p) the Hamiltonian satisfies
(a) $\frac{\partial^{2} \bar{H}}{\partial x^{i} \partial p_{j}}\left(\bar{\psi}_{t}\left(0, e_{1}\right)\right)=0$ for any $i, j=1, \ldots, n$.
(b) $\frac{\partial^{2} \bar{H}}{\partial p_{1} \partial p_{j}}\left(\bar{\psi}_{t}\left(0, e_{1}\right)\right)$ for any $j=2, \ldots, n$.
(c) The $(n-1) \times(n-1)$ matrix whose entries are $\frac{\partial^{2} \bar{H}}{\partial p_{i} \partial p_{j}}\left(\bar{\psi}_{t}\left(0, e_{1}\right)\right)$, $2 \leq i, j \leq n$, is the identity matrix I_{n-1}.

They allow us to rewrite the Hamiltonian Jacobi equation in a much simpler way. In these coordinates we have that $H_{p x}=H_{x p}=0$. Since

$$
\frac{\partial^{2} H}{\partial x^{1} \partial x^{i}}=\frac{d}{d t} \frac{\partial H}{\partial x^{i}}=\ddot{p}^{i}=0
$$

because $\Phi_{*}(x(t), p(t))=\left(t e_{1}, e_{1}\right)$, the operator $H_{x x}$ becomes

$$
H_{x x}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{\partial^{2} H}{\partial x^{i} \partial x^{j}}
\end{array}\right)
$$

where $i, j=2, \ldots, n$.
Suppose that $\xi(t)=(h(t), v(t))$ is a solution of (8.1.1) with initial conditions in Hamiltonian Fermi coordinates $h(0)=\left(0, h_{0}(0)\right)$ and $v(0)=$ $\left(0, v_{0}(0)\right)$, where $h_{0}(0)$ and $v_{0}(0)$ are generated by $\frac{\partial}{\partial x^{i}}, i=2, \ldots, n$. From equation (8.2.1), lemma 8.2.2 and the matrix of the operator $H_{x x}$ we have that $h(t)=\left(0, h_{0}(t)\right)$ and $v(t)=\left(0, v_{0}(t)\right)$, that is, in the new coordinates, the space

$$
\Pi=\left\{\left.x^{i} \frac{\partial}{\partial x^{i}} \right\rvert\, i=2, \ldots, n\right\} \times\left\{\left.x^{i} \frac{\partial}{\partial x^{i}} \right\rvert\, i=2, \ldots, n\right\} \subset T_{x(t)} M \times T_{x(t)} M
$$

is invariant by $d \psi_{t}$. We will work only on the space Π.
If we use the Hamiltonian Fermi coordinates over $(x(t), p(t))$ with Hamiltonian H, the (projected) Hamiltonian Jacobi equation for H^{U} obtained on (8.2.1) become

$$
\begin{aligned}
& \dot{h}=\frac{d s}{d t} v(t) \\
& \dot{v}=-\left(\frac{d s}{d t}\right)^{-1} H_{x x} h(t)-\frac{d s}{d t} U_{x x} h(t)
\end{aligned}
$$

where all the operators are obtained from the derivatives on the projected space Π.

Since $\dot{h}(t)=\frac{d s}{d t} v(t)$, we have that h satisfies the second order equation

$$
\begin{equation*}
\ddot{h}(t)-\frac{d^{2} s}{d t^{2}}\left(\frac{d s}{d t}\right)^{-1} \dot{h}(t)+H_{x x} h(t)+\left(\frac{d s}{d t}\right)^{2} U_{x x} h(t)=0 . \tag{8.2.4}
\end{equation*}
$$

When the $\operatorname{dim} M=2$, the projected horizontal vector field is a scalar function. Call this scalar function h_{x}. In this case, equation (8.2.4), is the one dimensional second order linear equation

$$
\begin{equation*}
\ddot{h_{x}}(t)-\frac{d^{2} s}{d t^{2}}\left(\frac{d s}{d t}\right)^{-1} \dot{h_{x}}(t)+H_{x^{2} x^{2}} h_{x}(t)+\left(\frac{d s}{d t}\right)^{2} U_{x^{2} x^{2}} h_{x}(t)=0 . \tag{8.2.5}
\end{equation*}
$$

The function $H_{x^{2} x^{2}}$ will play the role of the flag curvature in this case.

8.3
 Proof of the Hamiltonian version of the main theorem

Suppose that $M=T^{2}$, the Hamiltonian H is reversible and 2 homogeneous. Let $\epsilon>0$ and $k>\epsilon^{-1}$.

Define the exponential map of the energy level $H_{k}=H^{-1}\{k\}$ as $\exp _{x}: T^{*} M \rightarrow M, \exp _{x}(t \theta)=\bar{\pi} \circ \psi_{t}(\theta)$. The reversibility together with the homogeneity of H, implies that $\psi_{-t}(x, p)=\psi_{t}(x,-p)$.

Now we will give another definition of conjugate point which is more suited to the Hamiltonian case. Of course it coincides with the other given.

Definition 8.3.1. Given $\theta \in T^{*} M$. The point $\eta \in T^{*} M$ is conjugated to θ if there is $t_{0} \in \mathbb{R}$ such that $\psi_{t_{0}}(\theta)=\eta$ and

$$
d_{\theta} \psi_{t_{0}}(V(\theta)) \cap V(\eta) \neq 0
$$

Let $H_{k}(\bar{\pi}(\theta))=H_{k} \cap T_{\bar{\pi}(\theta)}^{*} M$. let $x_{0} \in M$. For every $\theta \in H_{k}\left(x_{0}\right)$ there is $a_{\theta}>0$ such that the orbit $\psi_{t}(\theta)$ does not have conjugate points on $\left[0, a_{\theta}\right]$. Moreover,

$$
a=\inf _{\theta \in H_{k}(x)} a_{\theta}>0
$$

Let $K(\theta)=\sup _{u \in H_{k}\left(x_{0}\right)} H_{x x}(\theta) u u$, where $\theta=\left(x_{0}, \theta_{0}\right)$. Define

$$
K_{0}=\inf _{t \in[-a, a]}\left\{K\left(\psi_{t}(x, u)\right) \mid(x, u) \in H_{k}\left(x_{0}\right)\right\} .
$$

Let $\beta(\epsilon) \in(0,1)$. Define the constant $\rho=\rho\left(\epsilon, \beta, a, K_{0}\right)$ exactly as in (4.1.2). We will perturb the Hamiltonian

$$
H^{\rho}=\frac{\rho^{2}}{a^{2}} H
$$

Use the constants β, ρ and the exponential map to build the potentials U_{0} and U round the point x_{0} in the same way that was done in the subsection 6.1. Define the perturbed Hamiltonian by $H_{U_{0}}^{\rho}=H^{\rho}+U_{0}$ and $H_{U}^{\rho}=H^{\rho}+U$.

Since $\sup _{x \in M}|U(x)|=\sup _{x \in M \backslash\left\{x_{0}\right\}}\left|U_{0}(x)\right|<\epsilon$, there is no inconsistency in choose the constant E to be k at lemma 8.0.2.

Because of lemma 8.0.2 and equation (8.0.2) we have that $\frac{d s}{d t}<\epsilon$ and $\left(\frac{d^{2} s}{d t^{2}}\right)\left(\frac{d s}{d t}\right)^{-1}<\epsilon^{2}$. So, use the same proof that was done in lemma 7.0 .4 on equation (8.2.5) to use proposition 4.0.11 and show that every orbit containing x_{0} is not a minimizer of H_{U}^{ρ}. Note that, in the Finsler setting, the perturbed Jacobi equation is simpler and this passage becomes easier.

Since the orbits of $H_{\frac{a^{2}}{\rho^{2}} U}=H+\frac{a^{2}}{\rho^{2}} U$ are just a reparametrization of a orbit of H_{U}^{ρ}, we conclude that, for the potential $\bar{U}=\frac{a^{2}}{\rho^{2}} U, H_{U}$ has no invariant continuous graphs. For the remaining, just observe that by a reparametrization, the C^{1} norm increases, but not the C^{0} norm. This is sufficient in this case because ρ is of order $\epsilon^{\frac{1}{2+\beta}}$.

[^0]: ${ }^{1}$ Although the main theorem of this section is about 2-homogeneous, reversible Hamiltonians, the broader class of Tonelli Hamiltonians are very important because of their relation with Finsler metrics. See the discussion after lemma 8.0.2

[^1]: ${ }^{2}$ See proposition 5.1.1.

