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Appendix

Here we will approach the problem from a Hamiltonian perspective and

prove a Hamiltonian version of the theorem. The substantial difference is that

the perturbation will be done by potentials, which simplifies the calculations.

Along this chapter, equip M with a Riemannian metric and consider the

Riemannian metric induced in T ∗M.

Theorem 8.0.1. Let H : T ∗M → R be a smooth 2-homogeneous reversible

Hamiltonian and ǫ > 0. Then there exist β ∈ (0, 1) and a potential U :M → R

such that

i) U is ǫ−close to zero in the C1,β topology;

ii) If k > supx∈M |U(x)| then

HU = H + U

have no invariant continuous graphs in the level set associated with k.

We begin with the definition of Tonelli Hamiltonian 1.

Let H : T ∗M → R be a C∞ Tonelli Hamiltonian, that is, a smooth

function that satisfies:

i) Convexity : For all x ∈M and p ∈ T ∗xM the Hessian Hpipj(x, p) is positive

definite;

ii) Superlinearity :

lim
|p|x→∞

H(x, p)

|p|x
=∞.

In what follows, we will also require that H be 2-homogeneous, that is,

H(x, λp) = λ2H(x, p) λ ≥ 0.

1Although the main theorem of this section is about 2-homogeneous, reversible Hamilto-

nians, the broader class of Tonelli Hamiltonians are very important because of their relation

with Finsler metrics. See the discussion after lemma 8.0.2
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It is easy to see that this property implies the superlinearity. These kind of

Hamiltonians are obtained from the convex dual of Finsler metrics. Namely,

given a Finsler metric F, H(x, p) = supv∈TxM
{p(v)− F 2(x, v)}.

The natural symplectic structure induces a vector field XH , called the

symplectic gradient of H, by

dH = ιXH
ω0.

In local coordinates, the equation θ̇ = XH(θ), for θ ∈ T
∗M, becomes

ẋ = Hp ṗ = −Hx (8.0.1)

where Hx and Hp are the partial derivatives with respect to x and p. Observe

that H is constant along the orbits of XH then the energy levels Σe = H−1(e)

contains the orbits of (8.0.1). Compactness of M and the superlinearity of H

implies that Σe is compact. Since (8.0.1) is Lipschitz, its solutions are defined

for all t ∈ R. Denote the flow of XH by ψt.

A potential is a smooth function U : M → R. The Hamiltonian

HU = H + U still satisfies the properties of the Tonelli Hamiltonian, but

it is no longer homogeneous.

Lemma 8.0.2. Let α(t) = (x(t), p(t)) be an orbit of XH without self intersec-

tion and such that H(α) = 1. If U is a potential such that dx(t)U = f(t)p(t),

where f is a smooth positive real function, then there exists a reparametriza-

tion t → s(t) such that ᾱ(s) = (x̄(s), p̄(s)), where x̄(s) = x(t(s)) and

p̄(s) = dt
ds
p(t(s)), is an orbit of XHU .

Proof. Suppose that α is defined on [a, b]. Let E > supt∈[a,b] U(x(t)). Define

the function s by

s(t) = c+

∫ t

a

(E − U(x(u)))−
1

2 du. (8.0.2)

We have that

dx̄

ds
=
dt

ds

dx

dt
=
dt

ds
Hp(x(t(s)), p(t(s))).

But Hp is 1-homogeneous and p̄(s) = dt
ds
p(t(s)), which implies that

dx̄

ds
= HU

p (x̄(s), p̄(s)).
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For the second equation,

dp̄

ds
=
d2t

ds2
p(t(s)) +

(

dt

ds

)2
dp

dt
;

=
d2t

ds2
p(t(s))−

(

dt

ds

)2

Hx(x(t(s)), p(t(s)));

=
1

f(t(s))

d2t

ds2
dU(x(t(s)))−Hx(x̄(s), p̄(s));

=
1

f(t(s))

d2t

ds2
dU(x(t(s))) + dU(x(t(s)))−HU

x (x̄(s), p̄(s)),

because Hx is 2-homogeneous. Remains to prove that the first two terms of

the right-hand side of equation above cancel each other. Now, since

dt

ds
=
√

E − U(x(t(s))),

we have that

d2t

ds2
= −

1

2
(
dt

ds
)−1

dt

ds

d

dt
(U(x(t))) = −

1

2
dU(x(t)) ·

dx

dt
.

Because H is 2-homogeneous, we have p(t)(dx
dt
) = p · Hp = 2, therefore

d2t
ds2

= −f(t).

In the above lemma, with the reparametrization s, the new orbit ᾱ will

satisfy HU(ᾱ) = E. Recall that our Hamiltonian H is the convex dual of a

Finsler metric. So, this reparametrization suggests a Finsler like Maupertuis

principle (cf [2]). In fact, this is part of a more general result: if L is the

Lagrangian associated to a Tonelli Hamiltonian H then its flow restricted to

some super critical level set of the energy is conjugated to the flow of a Finsler

metric (cf [9]).

8.1

The Hamiltonian Jacobi equation

The Levi-Civita connection ∇ associated with the Riemannian metric on

M can be extended to 1-forms in the following way

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ).

This is a torsion free linear connection on T ∗M and can be used to construct

a isomorphism

TθT
∗M ≃ Tπ̄(θ)M × T ∗π̄(θ)M.
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Let’s construct this isomorphism. For ξ ∈ TθT
∗M, let t 7→ α(t) = (x(t), p(t)) ∈

T ∗M be a curve satisfying α(0) = θ and α̇(0) = ξ. The isomorphism is given

by

ξ 7→ Φ(ξ) = (dθπ̄(ξ),∇ẋP (0)) .

Here we can do another identification. Define the vertical subspace by V (θ) =

ker dθπ̄ and we have that

V (θ) ≃ {0} × T ∗π̄(θ)M ≃ Tπ̄(θ)M.

The map Kθ(ξ) = ∇ẋP (0) is called the connection map and we can define the

horizontal subspace by H(θ) = kerKθ. From this, we have that

H(θ) ≃ Tπ̄(θ)M × {0} ≃ Tπ̄(θ)M.

Therefore TθT
∗M ≃ H(θ)⊕ V (θ).

Now, let σ : (−ǫ, ǫ) → T ∗M be a smooth curve. Define (xs(t), ps(t)) =

ψt ◦ σ(s) be a variation of the orbit (x(t), p(t)) = (x0(t), p0(t)) by orbits of the

of the vector field XH . Using the decomposition TθT
∗M ≃ Tπ̄(θ)M × Tπ̄(θ)M ,

let

ξ(t) = dθψt(ξ) = (h(t), v(t)),

where ξ ∈ TθT
∗M.

Lemma 8.1.1. The functions h(t), v(t) satisfies system of the equations

ḣ = Hpxh(t) +Hppv(t);

v̇ = −Hxxh(t)−Hxpv(t), (8.1.1)

where Hxx, Hxp, Hpx and Hpp are linear operators on Tπ̄(θ)M which coincides

in a local coordinate system with the matrices of partial derivatives
(

∂2H
∂xi∂xj

)

,
(

∂2H
∂xi∂pj

)

,
(

∂2H
∂pi∂xj

)

and
(

∂2H
∂pi∂pj

)

.

8.2

The perturbed Jacobi equation

Consider U : M → R a potential such that, if (x(t), p(t)) is an orbit of

XH , then dx(t)U = f(t)p(t) for some smooth positive real function f.We would

like to see how the Hamiltonian Jacobi equation behave for the Hamiltonian

HU when considered over the orbit (x̄(s), p̄(s)) obtained as in lemma 8.0.2.

Proposition 8.2.1. Let ξ̄(s) = (h̄(s), v̄(s)) be a vector field along (x̄(s), p̄(s))

which satisfies the equations (8.1.1) for the Hamiltonian HU . Using the change
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of coordinates t 7→ s(t) from lemma 8.0.2 these equations looked over the orbit

(x(t), p(t)) of XHU become

ḣ = Hpxh(t) +
ds

dt
Hppv(t)

v̇ = −

(

ds

dt

)−1

Hxxh(t)−Hxpv(t)−
ds

dt
Uxxh(t). (8.2.1)

Proof. From lemma 8.0.2, we know that x̄(s) = x(t(s)) and p̄(s) = dt
ds
p(t(s)).

If Y is a vector field along x̄ then

d

ds
Y =

dt

ds

d

dt
Y.

If H is 2-homogeneous then Hxx is 2-homogeneous, Hxp and Hpx are 1-

homogeneous and Hpp is 0-homogeneous.

The first equation became

d

ds
h̄ = HU

pxh̄(s) +HU
ppv̄(s)

=
dt

ds
Hxph(t(s)) +Hppv(t(s)).

Then, multiplying by ds
dt
, we have that the first equation over (x(t), p(t)) is

ḣ = Hpxh(t) +
ds

dt
Hppv(t). (8.2.2)

The second equation became

d

ds
v̄ = −HU

xxh̄(s)−HU
xpv̄(s)

= −

(

dt

ds

)2

Hxxh(t)− Uxxh(t)−
dt

ds
Hxpv(t).

Again, multiplying by ds
dt
, we obtain

v̇ = −

(

ds

dt

)−1

Hxxh(t)−Hxpv(t)−
ds

dt
Uxxh(t). (8.2.3)

The following result is found in [11]. It can be regarded as an Hamiltonian

version of the well known Fermi coordinates2 and we will call them Hamiltonian

Fermi coordinates.

Lemma 8.2.2. Let (x(t), p(t)), t ∈ [a, b], be a non-singular orbit of the flow

of H without self intersections. Suppose that (x(0), p(0)) = (x, p). Up to

2See proposition 5.1.1.
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translation in the x variable and to take a smaller interval, there exist local

coordinates Φ : O ⊂ M → R
n, Φ = (x1, x2, ..., xn), where O is an open

neighbourhood of x and Φ(x) = 0, such that the Hamiltonian H̄ = Φ∗H defined

in an open set V × R
n ⊂ R

n × R
n satisfies the following properties:

i) The orbit of H̄ through (0, e1) is ψ̄t(0, e1) = (te1, e1) for every t ∈ [a, b].

ii) In the coordinates (x, p) the Hamiltonian satisfies

(a) ∂2H̄
∂xi∂pj

(ψ̄t(0, e1)) = 0 for any i, j = 1, ..., n.

(b) ∂2H̄
∂p1∂pj

(ψ̄t(0, e1)) for any j = 2, ..., n.

(c) The (n − 1) × (n − 1) matrix whose entries are ∂2H̄
∂pi∂pj

(ψ̄t(0, e1)),

2 ≤ i, j ≤ n, is the identity matrix In−1.

They allow us to rewrite the Hamiltonian Jacobi equation in a much

simpler way. In these coordinates we have that Hpx = Hxp = 0. Since

∂2H

∂x1∂xi
=

d

dt

∂H

∂xi
= p̈i = 0,

because Φ∗(x(t), p(t)) = (te1, e1), the operator Hxx becomes

Hxx =

(

0 0

0 ∂2H
∂xi∂xj

)

,

where i, j = 2, ..., n.

Suppose that ξ(t) = (h(t), v(t)) is a solution of (8.1.1) with initial

conditions in Hamiltonian Fermi coordinates h(0) = (0, h0(0)) and v(0) =

(0, v0(0)), where h0(0) and v0(0) are generated by ∂
∂xi , i = 2, ..., n. From

equation (8.2.1), lemma 8.2.2 and the matrix of the operator Hxx we have

that h(t) = (0, h0(t)) and v(t) = (0, v0(t)), that is, in the new coordinates, the

space

Π = {xi
∂

∂xi
|i = 2, ..., n} × {xi

∂

∂xi
|i = 2, ..., n} ⊂ Tx(t)M × Tx(t)M

is invariant by dψt. We will work only on the space Π.

If we use the Hamiltonian Fermi coordinates over (x(t), p(t)) with Hamil-

tonian H, the (projected) Hamiltonian Jacobi equation for HU obtained on

(8.2.1) become

ḣ =
ds

dt
v(t),

v̇ = −

(

ds

dt

)−1

Hxxh(t)−
ds

dt
Uxxh(t),
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where all the operators are obtained from the derivatives on the projected

space Π.

Since ḣ(t) = ds
dt
v(t), we have that h satisfies the second order equation

ḧ(t)−
d2s

dt2

(

ds

dt

)−1

ḣ(t) +Hxxh(t) +

(

ds

dt

)2

Uxxh(t) = 0. (8.2.4)

When the dimM = 2, the projected horizontal vector field is a scalar

function. Call this scalar function hx. In this case, equation (8.2.4), is the one

dimensional second order linear equation

ḧx(t)−
d2s

dt2

(

ds

dt

)−1

ḣx(t) +Hx2x2hx(t) +

(

ds

dt

)2

Ux2x2hx(t) = 0. (8.2.5)

The function Hx2x2 will play the role of the flag curvature in this case.

8.3

Proof of the Hamiltonian version of the main theorem

Suppose that M = T 2, the Hamiltonian H is reversible and 2-

homogeneous. Let ǫ > 0 and k > ǫ−1.

Define the exponential map of the energy level Hk = H−1{k} as

expx : T ∗M → M, expx(tθ) = π̄ ◦ ψt(θ). The reversibility together with the

homogeneity of H, implies that ψ−t(x, p) = ψt(x,−p).

Now we will give another definition of conjugate point which is more

suited to the Hamiltonian case. Of course it coincides with the other given.

Definition 8.3.1. Given θ ∈ T ∗M. The point η ∈ T ∗M is conjugated to θ if

there is t0 ∈ R such that ψt0(θ) = η and

dθψt0(V (θ)) ∩ V (η) 6= 0.

Let Hk(π̄(θ)) = Hk ∩ T
∗
π̄(θ)M. let x0 ∈ M. For every θ ∈ Hk(x0) there

is aθ > 0 such that the orbit ψt(θ) does not have conjugate points on [0, aθ].

Moreover,

a = inf
θ∈Hk(x)

aθ > 0.

Let K(θ) = supu∈Hk(x0)Hxx(θ)uu, where θ = (x0, θ0). Define

K0 = inf
t∈[−a,a]

{K(ψt(x, u))| (x, u) ∈ Hk(x0)}.

Let β(ǫ) ∈ (0, 1). Define the constant ρ = ρ(ǫ, β, a,K0) exactly as in

(4.1.2). We will perturb the Hamiltonian

Hρ =
ρ2

a2
H.
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Use the constants β, ρ and the exponential map to build the potentials U0 and

U round the point x0 in the same way that was done in the subsection 6.1.

Define the perturbed Hamiltonian by Hρ
U0

= Hρ + U0 and Hρ
U = Hρ + U.

Since supx∈M |U(x)| = supx∈M\{x0} |U0(x)| < ǫ, there is no inconsistency

in choose the constant E to be k at lemma 8.0.2.

Because of lemma 8.0.2 and equation (8.0.2) we have that ds
dt
< ǫ and

(d
2s
dt2

)(ds
dt
)−1 < ǫ2. So, use the same proof that was done in lemma 7.0.4 on

equation (8.2.5) to use proposition 4.0.11 and show that every orbit containing

x0 is not a minimizer of Hρ
U . Note that, in the Finsler setting, the perturbed

Jacobi equation is simpler and this passage becomes easier.

Since the orbits of Ha2

ρ2
U
= H + a2

ρ2
U are just a reparametrization of a

orbit of Hρ
U , we conclude that, for the potential Ū = a2

ρ2
U, HU has no invariant

continuous graphs. For the remaining, just observe that by a reparametrization,

the C1 norm increases, but not the C0 norm. This is sufficient in this case

because ρ is of order ǫ
1

2+β .
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