
Adriano Francisco Branco

Scripting customized components for Wireless
Sensor Networks

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Doutor
em Ciências – Informática.

Advisor : Prof. Noemi de La Rocque Rodriguez
Co–advisor: Prof. Silvana Rossetto

Rio de Janeiro
September 2015

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Adriano Francisco Branco

Scripting customized components for Wireless
Sensor Networks

Thesis presented to the Programa de Pós–Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Prof. Noemi de La Rocque Rodriguez
Advisor

Departamento de Informática — PUC–Rio

Prof. Silvana Rossetto
Co–advisor

UFRJ

Prof. Roberto Ierusalimschy
Departamento de Informática — PUC-Rio

Prof. Markus Endler
Departamento de Informática — PUC-Rio

Prof. Claudio Luis de Amorim
UFRJ

Prof. Bruno Oliveira Silvestre
UFG

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, September 10th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



All rights reserved.

Adriano Francisco Branco
Adriano Branco currently is a PhD candidate of Computer
Science Department at PUC-Rio. His research focus on Wi-
reless Sensor Network (WSN) in distributed system area. He
also got his master in computer science at PUC-Rio in 2011
working with WSN. He undergraduates in Electronic Engine-
ering at CEFET/RJ in 1992. From the undergraduate course
he worked as electronic engineer and system developer at
CBPF/CNPq (Brazil) and CERN (Switzerland). At CPBF,
in the LAFEX laboratory, he worked on the parallel compu-
ter program from Fermilab collaboration group. At CERN he
spent two years working in the New Trigger Project for LEP
Delphi Experiment. After that he had worked more than 12
years in system integration consulting projects (as developer
and project manager) for large companies. Mainly for the In-
dustrial Automation and Telecommunications industries, in-
cluding an international project in Manila/Philippines.

Bibliographic data
Branco, Adriano Francisco

Scripting customized components for Wireless Sensor
Networks / Adriano Francisco Branco; advisor: Noemi de La
Rocque Rodriguez; co–advisor: Silvana Rossetto. — 2015.

100 f. : il. (color.); 30 cm

Tese (doutorado) - Pontif́ıcia Universidade Católica do
Rio de Janeiro, Rio de Janeiro, Departamento de Informática,
2015.

Inclui bibliografia.

1. Informática – Teses. 2. Rede de Sensores sem Fio
(RSSF). 3. Sistemas Distribúıdos. 4. Modelo de Pro-
gramação. 5. Linguagem Reativa. 6. Máquina Virtual.
I. Rodriguez, Noemi de La Rocque. II. Rossetto, Silvana. III.
Pontif́ıcia Universidade Católica do Rio de Janeiro. Departa-
mento de Informática. IV. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Acknowledgement

Thank to my advisors Prof. Noemi Rodriguez and Prof. Silvana Rossetto for

their support and encouragement for this work.

Thank to CNPq, PUC-Rio, and FAPERJ, for the financial support which

allowed this work to be done.

To my wife, who accompanied me all this time with direct and indirect

support.

To my parents, family and friends who supported me even with my ab-

sence in family life.

To all colleagues, faculty and staff of the Department of PUC-Rio, for

the fellowship, learning and support.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Abstract

Branco, Adriano Francisco; Rodriguez, Noemi de La Rocque
(Advisor); Rossetto, Silvana (Co-Advisor). Scripting customized
components for Wireless Sensor Networks. Rio de Janeiro,
2015. 100p. D.Sc. Thesis — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Programming wireless sensors networks (WSN) is a difficult task. The

programmer must deal with several concurrent activities in an environment

with severely limited resources. In this work we propose a programming

model to facilitate this task. The model we propose combines the use of

configurable component-based virtual machines with a reactive scripting

language which can be statically analyzed to avoid unbounded execution

and memory conflicts. This approach allows the flexibility of remotely

uploading code on motes to be combined with a set of guarantees for

the programmer. The choice of the specific set of components in a

virtual machine configuration defines the abstraction level seen by the

application script. To evaluate this model, we built Terra, a system

combining the scripting language Céu-T with the Terra virtual machine and

a library of components. We designed this library taking into account the

functionalities commonly needed in WSN applications — typically for sense

and control. We implemented different applications using Terra and using

an event-driven language based on C and we discuss the advantages and

disadvantages of the alternative implementations. Finally, we also evaluate

Terra by measuring its overhead in a basic application and discussing its

use and cost in different WSN scenarios.

Keywords
Wireless Sensor Network (WSN); Distributed Systems; Programming

Model; Reactive Language; Virtual Machine.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Resumo

Branco, Adriano Francisco; Rodriguez, Noemi de La Rocque; Ros-
setto, Silvana. Programando redes de sensores sem fio com
scripts sobre componentes customizados. Rio de Janeiro,
2015. 100p. Tese de Doutorado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Programar redes de sensores sem fio (RSSF) é uma tarefa dif́ıcil. O

programador tem que lidar com várias atividades simultâneas em um am-

biente com recursos extremamente limitados. Neste trabalho propomos um

modelo de programação para facilitar essa tarefa. O modelo que propomos

combina o uso de máquinas virtuais configuráveis baseadas em componentes

com uma linguagem de script reativa que pode ser analisada estaticamente

para evitar conflitos de memória e execução de laços infinitos. Essa abor-

dagem permite a flexibilidade de carregamento remoto de código nos nós

da rede combinado com um conjunto de garantias para o programador. A

escolha de um conjunto espećıfico de componentes numa configuração de

máquina virtual define o ńıvel de abstração visto pelo script da aplicação.

Para avaliar esse modelo, constrúımos Terra, um sistema que combina a

linguagem de script Céu-T com uma máquina virtual e uma biblioteca de

componentes. Nós projetamos esta biblioteca considerando as funcionali-

dades comumente necessárias em aplicações de RSSF — tipicamente para

sensoreamento e controle. Implementamos diferentes aplicações utilizando

Terra e uma linguagem orientada a eventos baseados em C. Além disso dis-

cutimos as vantagens e desvantagens dessas implementações alternativas.

Finalmente, também avaliamos Terra medindo o custo adicional em uma

aplicação básica e discutimos sua utilização e custo em diferentes cenários

de aplicações WSNs.

Palavras–chave
Rede de Sensores sem Fio (RSSF); Sistemas Distribúıdos; Modelo de

Programação; Linguagem Reativa; Máquina Virtual.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Contents

1 Introduction 8
1.1 Research Question 8
1.2 Major problems in programming WSNs 9
1.3 Contributions 13
1.4 Document structure 13

2 Terra programming System 14
2.1 Terra basics 14
2.2 Terra in details 18
2.3 Terra Customizations 26

3 Programming evaluation 36
3.1 Execution strategy and Metrics 37
3.2 Test applications 38
3.3 App #1 - Multi-Hop monitoring & alarm 39
3.4 App #2 - Complex Grouping 50
3.5 App #3 - Topology Control Protocol 55
3.6 App #4 - Volcano Application 60
3.7 Items outside the programming evaluation procedure 65
3.8 Analysis 67

4 Cost evaluation 70
4.1 Execution strategy and Metrics 70
4.2 Test scenarios 70
4.3 Results 71

5 Related work 82

6 Final remarks 85
6.1 Main findings 86
6.2 Future work and related improvements 87

7 Bibliography 89

A Terra – complementary informations 95
A.1 Execution model example 95
A.2 Terra operation 96
A.3 Integration between script and components 97

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



1
Introduction

Programming a wireless sensor network (WSN) remains a challenge.

WSNs are typically composed by computing devices (motes) that commu-

nicate via radio and rely on batteries for energy. Although a whole range of

microcontrollers can be used in this setting, it is very common, due to cost

restrictions and scale of usage, to employ units with very limited memory and

computing resources. This scarcity of resources, along with the event-oriented

nature of applications and the need for coordination among large numbers of

nodes, makes programming applications a difficult and error prone task (Awan

et al., 2007; Kothari et al., 2007; Mottola and Picco, 2011).

It is also often the case that the user must reprogram sensor network

nodes after they are in place. This is hard to do physically, because in most

cases it is difficult to recover the motes from the position in which they are

installed. The obvious solution is to do the updates through radio messages;

however, transferring complete binaries over radio can lead to high energy

consumption, and is thus undesirable.

On the other hand, because of their restricted resources and deployment

characteristics, a given sensor network is normally used for a single category

of application, such as environment control or building security, even if

the application itself evolves over time. This indicates that a small set of

coordination and processing patterns can support all of the applications that

a sensor network must run along its lifetime.

1.1
Research Question

We believe that WSN programming environments can benefit from

commonality not only inside a single application area. Programming patterns

such as collecting values to a base station or broadcasting them to the

whole network are recurrent in different application areas, with variations

regarding issues of reliability or security. So we discuss an approach in which

common programming patterns are designed and implemented separately as

a component-based virtual machine. These components may be combined as

needed, creating customized virtual machines with abstractions provided by

the component interfaces. As discussed by Ousterhout (Ousterhout, 1998),

scripting languages enforce a programming model that glues components

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 1. Introduction 9

together to create powerful applications in a few lines of code, We thus propose

the use of a scripting language with support for several of the problems

encountered in WSNs. This makes them suitable for creating programs that

benefit from the pre-defined and pre-installed set of components and that can

be easily sent over the network. We argue that this model, based on virtual

machine and combining a reactive scripting language with a set of customized

components, is highly convenient for use in WSN.

We formulated the following as research question for this thesis: To what

extent can a programming environment based on the combination of a reactive

high-level scripting language with safety guarantees with a virtual machine

that encapsulates customized components facilitate the task of programming

WSNs, providing abstractions to simplify programming, reducing the possibility

of errors, and allowing reprogramming?

To investigate this idea we built Terra, a flexible system that targets

both WSN programmer experts and application programmer. The application

programmer benefits from a high-level programming environment where the

WSN programmer expert may easily integrate new operations as needed.

The system uses virtual machines which embed these new operations as

components and facilitate remote distribution of scripts with low energy

consumption. Our scripting language is based on the reactive programming

language Céu (Sant’Anna et al., 2013).

In the next section we describe some typical difficulties in building

distributed systems and event-driven programming in WSNs projects.

1.2
Major problems in programming WSNs

Probably, the major concern in WSN systems is with energy consump-

tion. An approach to reduce this consumption is to put the CPU in sleep mode

during idle state and waits for a hardware interruption to wake up the CPU.

For example, a sensor converts some physical unit to a voltage value and the

microcontroller uses its analog to digital converter (A/D) to read this voltage

value. In general, this operation interacts with the CPU in two points, first the

CPU starts the conversion and second the converter signals an interruption to

indicate a valid value to be read. During this two points, probably, the CPU

may be idle and may stay in sleep mode to save energy. The interruptions are

also used in timers, radio interface and data memory chip. Depending of the

application, a WSN node may be in idle mode during long time. For example,

a periodic monitoring application may wake-up the CPU each hour.

The event-driven programming model is very suitable to this execution

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 1. Introduction 10

regime that alternates sleep, interruption, and processing. In general, a WSN

programming system supports the application program with a way to register

event handlers and function calls. These systems also implement a control of

idle state that puts the CPU in sleep mode. Traditional programing systems

for WSNs, like TinyOS (Levis et al., 2004) and Contiki (Dunkels et al., 2004),

extend the C language with support for event-driven programming.

Programming distributed systems is not so an easy task even in con-

ventional computer networks. In WSN projects, this task get more difficult

because of the combination of resource scarcity with the event-driven pro-

gramming model. Terra presents an alternative to this programming model,

combining a reactive programming model with a set of specialized operations

and a remote load support for scripts.

In the next two subsections, about programming issues and cost, we

present in detail the problems we want to target with our work.

1.2.1
Programming issues

We separate the programming issues in two main groups. One group is

highly related to the programming environment based on event-driven models

that extend a procedural language like C. In the other group, we include

more general difficulties found in programming a WSN application. These

programming issues were also identified in our experience developing WSN

applications.

A. Programming complexity

A.1. Sequential and event-driven programming

A1.i. Learning curve

A1.ii. Split phase

A1.iii. Global variables

A.2. Local starvation

A.3. Invalid pointers

B. Networking complexity

B.1. Radio operations

B.2. Communication protocols

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 1. Introduction 11

Programming complexity

The main concern in programming event-driven systems like WSN ap-

plications is the opposition between sequential and event-driven coding styles.

The majority of programmers learned programming using a procedural lan-

guage and coding program operations in a sequential manner. In an event-

driven environment, the programmer needs to split operations into different

event handlers. This complicates context visualization and also is an error

prone activity.

Typical WSN development environments like TinyOS and Contiki extend

the C language including new constructors to support event-driven operations.

The user has a learning curve that affects code productivity and quality (Levis,

2012). Other concerns are related to some weak points of the C programming

language, basically the possibility of infinite loops and invalid memory access.

These two weak points are more difficult to debug in embedded systems than

in standard operating systems in a typical computer.

A typical pattern in event-driven programming is that of split-phase

operations, where the programmer needs to split an operation in two parts.

For example, when working with timers, one part will contain the command

to start the timer and another part a function to handle the elapsed time

(function callback). This same structure applies to sensor operations and radio

operations.

To maintain the application state in this model, the programmer must

typically resort to global variables. But to maintain these states in an event-

driven environment is error prone, mainly because the state variables are

accessed independently in different locations of the code.

Another recurring problem is local starvation. This happens, in general,

when a process enters an infinite loop and does not release the CPU for other

processes. This kind of operation prevents the system to handle new events

and blocks all application

Related to invalid pointers, we have another issue that are the program-

ming errors enabled by some programming languages that allow pointer manip-

ulation, like C. Also a simple array malformed index may generate an invalid

access to memory, causing program malfunction.

Networking complexity

Typically, WSN platforms are limited in memory and CPU resources

and, also, have simple radio communication interfaces. These characteristics

increase some of regular difficulties of programming distributed systems.

Merging the application layer with the communication layer is a common

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 1. Introduction 12

strategy to reduce code size and work around these resource limitations.

However, this merging strategy brings more difficulties in developing new

applications.

Basic radio operations, when needing some level of safety or guarantee,

may incur in more complexity to manage queue/buffer operations and acknowl-

edgement controls. For example, a simple combination of acknowledgements

and message retries must be complemented with a duplicated-message check

to prevent duplicated messages when an acknowledgement is lost. Another ex-

ample is a program that may send messages from different points in the code.

It must implement a control component to manage an output message queue

and avoid conflict in the use of the radio.

Programming communication protocols is an additional burden that

pushes the programmer from the application domain to the distributed com-

munication system domain. In general, the application programmer is not a

distributed system programming expert. In WSN applications, the distributed

communication programming activity is complicated by the typical resource

constraints, like radio energy consumption and small memory size. The pro-

gram may not be able to build even a simple routing table in memory because

of the size restrictions.

1.2.2
Cost

This section identifies two of main costs from the benefits provided by

the proposed model – the costs related to virtual machine architecture and to

code dissemination.

Typically, the use of virtual machine architecture incurs an additional

use of CPU and memory. We evaluate the impact of this overhead on CPU

processing, memory usage and energy consumption for typical WSN applica-

tions.

In this work we target motes with memory limitations. One of the motes

we use has 128k bytes of ROM and only 4k bytes of RAM. Another mote has

only 48k bytes of ROM and 10k bytes of RAM. The size of ROM limits the size

of the virtual machine and as a consequence the size of the embedded custom

components. RAM is shared by the built-in customized components and the

memory space available for the user script: the more memory the embedded

components use, less is left for the script.

Nodes in a WSN project typically form an ad-hoc network that may

cover a large area. In practical term, it is in most cases difficult, expensive,

or impossible to recover the nodes to reprogram them over a serial cable.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 1. Introduction 13

Reprogramming the nodes via radio interface is an alternative, but it incurs

in an undesirable code dissemination cost, in special for battery energy

consumption.

1.3
Contributions

We propose a programming model based on configurable virtual machine

and combining a reactive scripting language with a set of customized compo-

nents. The main contribution of this work is to show that this proposed model

is feasible to programming WSN applications. We also show that is possible

to apply this model even in nodes with very limited resources.

A second contribution is the Terra system, a system that implements

the proposed programming model. Terra allows expert programmers to build

customized environments for safer and easier application developments. We

also built a set of high-level ready-to-use generic components that are useful

for several WSN application domains.

1.4
Document structure

In the next chapter we present the Terra system. Chapter 3 presents the

evaluation of programming aspects and the Chapter 4 presents the evaluation

of aspects related to cost. Chapter 5 presents related works and, finally,

Chapter 6 presents our final remarks.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



2
Terra programming System

In this chapter we present the Terra programming system. In the next

sections we introduce the Terra model and the used technologies, then we

present the Terra system in more details and finally we present the three Terra

customizations used in the evaluation.

2.1
Terra basics

We propose the Terra programming System, aiming to reduce the WSN

programming difficulties of using the event-driven model and programming

network protocols. The Terra model is based on a virtual machine and combines

a reactive scripting language with a set of customized components. These

components may be selected as needed, creating customized virtual machines

with abstractions provided by the component interfaces. A scripting language

enforces a programming model that glues components together to create

powerful applications in a few lines of code. This makes them suitable for

creating programs that benefit from the pre-defined and pre-installed set of

components and that can be easily sent over the network.

Terra uses Céu-T as its scripting language and implements a component-

based virtual machine VM-T to be customized for different applica-

tion domains. Céu-T implements a variation of Céu programming lan-

guage (Sant’Anna et al., 2013). This variation, on one hand, excludes some

of Céu’s characteristics and, on the other hand, includes some language exten-

sions. We use Céu as Terra’s scripting language because of its reactive nature

and its high-level control primitives and compile-time safety guarantees.

The Terra Virtual machine VM-T, with its customizations, runs on WSN

nodes with limited resources. We built VM-T using the nesC programming

language (Gay et al., 2003) and the TinyOS operating system (Levis et al.,

2004). We used TinyOS, basically, because it is the operating system for WSN

most ported to different mote types.

Figure 2.1 presents the three basic elements of Terra – a scripting

language (Céu-T), a set of customized pre-built components, and an embedded

virtual-machine engine. The VM-T runtime environment is the virtual machine

combined with a set of customized components. In the next two subsections we

present the basic technologies related to Terra – the nesC/TinyOS environment

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 15

used to built the VM-T and the Céu language that we used as the basis for

Céu-T.

Figure 2.1: Terra programming system basic elements.

2.1.1
nesC and TinyOS

TinyOS (Levis et al., 2004) is an operating system designed for resource-

constrained WSN devices. It was built using the nesC programming lan-

guage (Gay et al., 2003). The nesC language is also used as the application

programming language. Its official revision is the 2.1.2 version on August,2012,

but the code repository still has some activity. Despite the age of its last revi-

sion, TinyOS currently is the WSN operating system ported to more different

types of motes. The list of WSN motes maintained in Wikipedia (Wikipedia,

2015) has two predominant operating systems for WSN devices – TinyOS and

Contiki (Dunkels et al., 2004). TinyOS covers 49% of total mote types and

Contiki covers 12%. Most of the other operating systems in the list cover only

one type of mote. These other systems, in general, are proprietary systems or

systems created for single experiments. If we count only our target type of

constrained motes, with RAM ranging from 4k bytes to 10k bytes, TinyOS

covers 66% and Contiki covers 16% of these type of motes.

nesC is a component-based programming language that extends the C

language with an event-driven programming model. It includes resources like

task management interface and atomic sessions. nesC is a static language that

avoids dynamic memory allocation and that determines the program call graph

at compile time.

A nesC program consists of a set of components that implement ser-

vices defined by interfaces. An interface may define commands and events.

The component that uses an interface may call its commands and must imple-

ment its event handlers. On the other side, the component that provides an

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 16

interface must implement its commands and may signal its events. This model

allows for different implementations of the same interface, facilitating system

configuration for different platforms.

TinyOS provides a library of components and some tools that simplify

the task of building new applications. TinyOS does not work as a conventional

operating system which runs user applications, but rather as a library that

must be linked to these applications to build a single executable program.

This executable must be loaded into the WSN mote.

TinyOS implements a task queue to support nesC task management.

In TinyOS, each task runs to completion, one at a time. In that way, only

an interruption handler may run concurrently with a task. Typically the

interruption handler posts a task to the scheduler as soon as possible, to avoid

conflicts. When the task queue is empty, TinyOS keeps the CPU in sleep mode

to save energy.

The use of the nesC component model facilitate modularity, allowing

TinyOS to have equivalent components to access different types of hardware.

The selection of suitable components for each hardware is done during the

build process and is transparent to the user.

In addition to the tools to compile and load programs, TinyOS provides

the TOSSIM tool (Levis et al., 2003) for network simulations.

2.1.2
The Céu programming language

Céu (Sant’Anna et al., 2013) was originally developed as a compiled

language, and has bindings1 to Arduino2, to the TinyOS environment, and

to SDL3 running in conventional computers (Linux, Windows, and Mac OS

X). Céu is a reactive language strongly influenced by Esterel (Boussinot

and Simone, 1991). Céu provides a parallel construct and a blocking await

statement that allows programs to handle multiple events at the same time.

In contrast with standard split-phase event-based systems, such as nesC (Gay

et al., 2003) and Contiki (Dunkels et al., 2004), Céu can keep sequential and

separate lines of execution (trails) for each activity in the program. Trails

in Céu are guided by reactions to the environments. Furthermore, the extra

support for parallelism provides precise information about the program control

flow to the Céu compiler, enabling a number of static safety guarantees, such

as race-free shared-memory (Sant’Anna et al., 2013).

1http://ceu-lang.org/
2Arduino open-source microcontroller platform (https://www.arduino.cc/)
3SDL - Simple DirectMedia Layer (http://www.libsdl.org/)

http://ceu-lang.org/
DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 17

Programs in Céu are designed by composing blocks of code through

sequences, conditionals, loops, and parallelism. The combination of parallelism

with standard control flow enables hierarchical compositions, in which self-

contained blocks of code can be deployed independently. To illustrate the

expressiveness of compositions in Céu, consider the two variations of the

structure in Figure 2.2.

loop do

par/and do

<...>

with

await 1s;

end

end

loop do

par/or do

<...>

with

await 1s;

end

end

Figure 2.2: Compositions in Céu.

In the par/and loop variation, the code block in the first trail (represented

as <...>) is repeated every second at minimum, as the second trail must also

terminate to rejoin the par/and primitive and restart the loop. In the par/or

loop variation, if the code block does not terminate within one second, the

second trail rejoins the composition (canceling the first trail) and restarts the

loop. These structures represent, respectively, sampling and timeout patterns,

which are typically found in WSN applications.

Scripts in Céu follow the synchronous concurrency model, that is, reac-

tions to input events run to completion and never overlap: in order to proceed

to the next event, the current event must be completely handled by the script.

To ensure that scripts are always reactive to incoming events, the synchronous

model relies on the guarantee that a reaction always executes in bounded

time. The Céu compiler statically verifies that programs contain only bounded

loops (i.e., loops that contain an await statement in every possible execution

path) (Sant’Anna et al., 2013). Even though Céu supports multiple lines of

execution, accesses to shared memory are safe. Because programs can react

to only one component-triggered event at a time, the Céu compiler also per-

forms a flow analysis to detect concurrent accesses (Sant’Anna et al., 2013): if

two accesses to a variable can occur in reactions to the same event and are in

parallel trails, then the compiler issues an error message.

As a trade-off for safety, the Céu design imposes limitations on language

expressiveness; it is not possible to program computationally-intensive opera-

tions and hard real-time responsiveness, possibly making it hard to program

low level code such as radio protocols (Sant’Anna et al., 2013). In the original

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 18

language, the programmer can resort to C for this tasks, but this means loosing

the safety guarantees.

2.2
Terra in details

In this section we describe in more details the Terra programming system.

Branco and others (Branco et al., 2015) describe a previous version quite close

to the this one.

Figure 2.3 shows the Terra application life cycle. The Céu-T program is

compiled and checked statically in the user computer to generate the virtual

machine bytecode. The user then transfers the generated bytecode to the motes

in the network and the virtual machine runtime, previously installed, executes

the bytecode. In this version of Terra the same bytecode is loaded in all nodes.

The only part of scripts that escapes static analysis are calls to components

provided by Terra’s VM, which are encapsulated in modules and have been

extensively tested beforehand. In this way, Terra strives to provide adequate

abstractions while providing a safe execution environment and allowing remote

program update.

Figure 2.3: Terra application life cycle: compilation and execution.

2.2.1
Céu-T scripting language

For the use of Céu in Terra, we implemented a new variation of the

language that generates code for VM-T. Céu is originally compiled to C and

Céu scripts can include chunks of C code, however, any call to C is exempt of

verification. In Terra, we want only the VM components to escape the safety

analysis, so we took out the facility to include arbitrary C code, but we did

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 19

maintain all of Céu’s original control structures. The Céu-T language inherits

almost all characteristics of Céu 0.3 version4 discussed in section 2.1.2, and

its implementation inherited all the safety checks from the original compiler.

Because Céu relies on C for typing, function calls, event operations, and

expressions, we had to extend Céu-T to include these language elements.

Figure 2.4 shows these compilation differences.

Figure 2.4: Ceu x Terra

In Terra, the Céu-T language is used only to glue components written

in nesC/TinyOS. All virtual-machine code and low-level components rely on

the TinyOS architecture. Céu-T and components in the VM-T communicate

through system calls, output events and input events. System calls and output

events cross the script boundary towards the VM components, while input

events go in the opposite direction, crossing the VM boundary towards the

script. In the Céu-T implementation, the system calls provided by Terra are

the only way to escape this verification. Because only the system calls that are

part of component interfaces are available, it is feasible to ensure that these

run in bounded time (e.g., do not contain recursive calls and infinite loops).

To allow the configuration of these events and system calls we extended the

Céu-T language with a special syntax for a configuration block, as detailed in

the Appendix section A.3 Integration between script and components.

The type system for WSN applications is, in general, very simple. Besides

the basic integer types, we need some kind of data structures to exchange data

with the customized components. For example, to send a radio message we

need to populate the data message, and this data structure may be different

4Terra is based on the previous version 0.3 of Céu (Sant’Anna et al., 2013).

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 20

depending on the application. The type system we developed and the facilities

for defining data structures are explained in the subsection Types and data

structures.

Types and data structures

In Céu, data definition and manipulation relies on the use of C. For

Céu-T, we defined a basic type system that includes integer values with 8,

16, and 32 bits and float values of 32 bits. Pointer types are not allowed for

safety reasons. The basic types supported by Céu-T are: byte, short, long, ubyte,

ushort, and ulong – respectively 8, 16, and 32-bit signed and unsigned integers

and float.

But we need more complex data structures to use in the interfaces be-

tween the user Céu-T script and the VM components. For that, we define three

types of data structures – one-dimension arrays, registers and packets. One-

dimension arrays are defined as a basic type within a dimension. Listing 2.1,

in line 3, shows an example of one-dimension array with five ubyte elements.

A regtype declaration creates new register type. A register can only have fields

that are values of basic types or arrays of basic types. Listing 2.1 (lines 5–11)

shows an example of register declaration and use. We also defined a packet

declarations for partial predefined structures. This kind of data structure is

useful when a component interface needs to specify some fields and the user

can define other fields as needed. A typical example of packet use is in the ra-

dio message interface, where some fields are mandatory, such as message type

and target node, and other fields depend on the application needs. The packet

command declares a new abstract register type which must contain, at least,

a field of a special type called payload and its length in bytes. Later on, during

application writing, the pktype declaration may be used to create a new reg-

ister type based on the abstract register. In pktype declaration the user must

specify at least one basic type field or array field for the abstract packet regis-

ter’s payload. The only restriction is that the sum of bytes of all user-defined

fields can not exceed the payload length defined by the packet command. List-

ing 2.1 (lines 13–27) shows an example. The packet declarations can be used

only in the configuration block as its use is intended to the developer of the

customization.

Céu-T type system has simple rules for expressions. Assignments of

integer values to any integer variable are allowed and, if necessary, automatic

type casting occurs. Assignments of integer to float or float to integer are also

allowed and, if necessary, automatic type casting occurs. In expressions, math

operations with at least one float operand will be evaluated converting all

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 21

operands to float. In all other cases, the operation will be done with integers.

Each automatic type casting generates a compile-time warning. A register

value can be assigned only to another identically-typed variable.

The integer and float assignment rules are also applied to arguments of

functions and events. A register argument is always passed by reference and

an additional rule verifies the compatibility between the packet type and the

register type.

The end of Listing 2.1, lines 30–34 show examples of valid assignment for

the variables, array, and register defined in the previous rows.

Listing 2.1: Examples of the Terra type system implementation

1 va r u sho r t node Id ; // S imple i n t e g e r va r

2 va r f l o a t ave rage ; // S imple f l o a t p o i n t va r

3 va r u sho r t [ 5 ] s en so rReads ; // Array va r

4

5 r e g t yp e myData wi th // R e g i s t e r type

6 va r ubyte sequence ;

7 va r u sho r t nodeID ;

8 va r u sho r t s e n s o rVa l u e ;

9 end

10

11 va r myData senso rData ; // R e g i s t e r va r

12

13 // Abs t r a c t r e g i s t e r type

14 packet rad ioMsg wi th

15 va r ubyte msgId ;

16 va r u sho r t t a r g e t ;

17 va r pay load [ 2 0 ] data ; // 20 by t e s

18 end

19

20 // R e g i s t e r / packet type

21 pktype userMsg o f rad ioMsg wi th

22 va r ubyte seq ;

23 va r u sho r t s e n s o rVa l ;

24 end

25

26 // R e g i s t e r / packet va r

27 va r userMsg sendMsg ;

28

29 // Va l i d a t t r i b u t i o n examples

30 node Id = 5 ;

31 ave rage = node Id / 2 . 0 ;

32 s enso rData . s e n s o rVa l u e = senso rReads [ 0 ] ;

33 sendMsg . t a r g e t =1;

34 sendMsg . s e n s o rVa l=senso rData . s e n s o rVa l u e ;

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 22

2.2.2
Terra Implementation

A Céu-T program is compiled to a bytecode file that can then be

disseminated to the network nodes, where it is interpreted by the VM-T,

which implements the bytecode interpreter, the execution model, the code

dissemination service, and some specific customized components.

In the next subsections we present the Céu-T compiler, the component-

based VM-T architecture, and the bytecode dissemination algorithm. In the

Appendix A.2 we present the basic operation process.

The Céu-T Compiler

The implementation of the Céu-T compiler is based on the Céu compiler

implementation. The compiler was written em Lua programming language

and uses the LPeg library (Ierusalimschy, 2009) for pattern-matching. From

this base implementation we inherit all the static checking. The compiler

checks scripts for non-deterministic memory accesses and tight loops (loops

without awaits), and others properties, such as whether all possible block

cancellations are correctly captured. Also, the compiling process uses the

C preprocessor (cpp) to allow inclusion of header files, macro expansions,

conditional compilation, and line control.

The main modifications for Céu-T are the types and the configuration

block described in section 2.2.1 and the bytecode generation. Other modifi-

cations include the addition of expression operations, as Céu relies on the C

compiler for expressions, and some checks and code optimizations. The absence

of pointers in the Céu-T type system avoids all kind of references to external

variables and also avoids memory leaking. Checking types on assignments fur-

ther enhances safety.

Terra has a hybrid set of instructions with some opcodes using a stack and

other opcodes using arguments. Most opcodes accept variable-sized arguments.

We choose to use a stack-based architecture because of its smaller code size in

comparison to register-based architecture (Gregg et al., 2005). Since memory

is a limited resource, it is important to reduce the bytecode program size. In

Terra all script variables are statically arranged in the program memory and

the stack is used only for expression operations. Some assignment instructions

access directly the memory variables and the push/pop instructions put

and get values into/from the stack. All expression operations are evaluated

using the stack. During code generation the compiler checks for code size

optimization opportunities. Whenever possible, code generation prioritizes

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 23

accesses to memory instead of use of stack. Expressions with binary operations

like sum or minus always need to use the stack.

Listing 2.2 shows an example of optimization for a simple assignment like

v1 = v2;. Considering both as short type variables and with the memory address

bellow 256 (i.e needing only 1-byte for address). In this example, the first part

(lines 2–8) pushes to the stack two 16 bits addresses for each variable and, the

last instruction, pops these addresses to copy the contents of one address to the

other address. The second part (lines 12–14) uses only one instructions that

does all work without using the stack. In this case using addresses of 8 bits.

In this example, the optimization changes from seven bytes of non-optimized

code to three bytes of optimized code

Listing 2.2: A code optimization example.

1 /∗∗∗ Not op t im i z ed and u s i n g s t a c k ∗∗∗/
2 push &v2 : opcode

3 : addr2Low

4 : addr2High

5 push &v1 : opcode

6 : addr1Low

7 : addr1High

8 s e t s h o r t : opcode

9 t o t a l o f 7 by t e s o f code + 2 s t a ck word (8 by t e s )

10

11 /∗∗∗ Opt imized ∗∗∗/
12 s e t s h o r t &v1 , &v2 : opcode

13 : addr2Low

14 : addr1Low

15 t o t a l o f 3 by t e s

Another kind of optimization is to reduce the path to terminate hierar-

chical blocks. For example, in the follow code:

1 i f x do

2 <do something>

3 i f z do

4 <do something>

5 i f w do

6 <do something>

7 end

8 end

9 end

At the end of the most inner block, the compiler generates a instruction to

jump to the end of the middle block, where the compiler also generates a

instruction to jump to the end of the outer block. In this case the most inner

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 24

block may have a instruction to jump directly to the end of the most outer

block.

VM-T architecture

The Terra virtual machine (VM-T) is composed by three modules as

shown in Figure 2.5. The interfaces between modules or sub-modules are

indicated by arrows.

Figure 2.5: VM-T modules

The VM module is the main module. It provides an interface for receiving

new application code from the Basic Services module (Code Upload interface)

and three interfaces for customized events and functions (outEvt, function,

and inEvt interfaces). The Engine submodule controls the execution of code

interpreted by the Decoder submodule and handles external events received

from the Event Queue submodule. As the VM-T is implemented using TinyOS,

each task runs to completion in a single-threaded model, guaranteeing race-free

conditions over application trails and embedded operations. The only exception

are the interrupt-handlers, which must be isolated in the low-level functions.

Terra uses a similar control for trail execution that Céu uses to maintain

execution guarantees. Basically the application program is broken in execution

trails, each trail has an address as entry point and an end opcode at the end.

For example, a simple block with a command await is broken in two trails.

The beginning of the block is the first entry point and the position after the

await command is the second entry point. The runtime maintains a set of slots

to execute entry points. When an event is received, the engine scans all slots

to execute, one by one, all trails that were awaiting this event. Appendix A.1

presents the Céu-T code and the assembler code for this example.

The Basic Services module controls the communication primitives to give

support to code dissemination (Code Upload interface) and to the custom com-

ponents module interface (Comm. interface). The Upload Control submodule

controls the dissemination protocol and loads code into VM program memory.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 25

The Custom Comm submodule has a generic interface to support new com-

munication protocols defined at the Custom Components module level. All

communication protocols implemented in Terra aim to be operational with no

intention of implementing the most optimized algorithms.

The Custom Components module implements specific flavors of Terra.

The developer of new customization needs only to implement the custom events

and functions inside this module and write the equivalent configuration file to

be used by a Céu-T script. It is possible to start from a very basic customization

of Terra to include the new events and functions.

Currently, an output event returns a void value. These events have

one argument of any type, including void, a basic type address, a register,

or a packet. Because this argument is passed to the VM-T interpreter as

an instruction parameter, constants and variables are passed by value and

registers and packets are passed by address. The custom component that

implements the output events must handle correctly each argument.

Custom functions may have none or many arguments. Arguments can

be basic types, basic type addresses, registers, or packets. All arguments are

passed via stack and the custom operation must pop from the stack exactly the

number of arguments defined in the configuration block. A custom function

must always return a basic type value by pushing it back to the stack. The use

of the stack for the returned value is important to enable the use of functions

inside expressions.

An input event may be defined to return a basic type value or an address.

In all cases, the returned data is copied directly to the memory location defined

in the assignment operation. In the case of an address value, the custom

operation must pass the internal buffer address that holds the data. Because

this operation does not use the stack, input events can not be used inside

expressions.

Bytecode dissemination algorithm

This Terra version disseminates the same bytecode to all nodes in

the network. We assume that bytecode dissemination starts on a computer

connected to a basestation node via wired interface. The VM-T runtime

includes a dissemination algorithm that floods code blocks into the network.

Each block goes as a wave. The basestation starts the code dissemination

process with a newProgramVersion message and next sends the bytecode

blocks. Each node forwards each incoming message to its neighbors (all nodes

at 1-hop radio range). All messages carry a version number and a sequence

number to allow individual nodes to identify when it is a new program version.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 26

A periodic timeout forces each node, if necessary, to request any missing block

from its neighbors.

2.3
Terra Customizations

The components included in a specific virtual machine define the interface

between the application script and the environment, and thus determine the

abstraction level at which the script programmer will work. Terra offers a

basic library of components that can be included (or not) in a specific virtual

machine. As far as possible, these components are parameterized for genericity.

New components can also be included by programmer-savvy users to create

abstractions for new programming patterns, but the goal of this basic library

is to offer a set of components that is sufficient for a range of common

applications. This is feasible because most applications for sensor networks

are variations of a basic monitoring and control pattern. Because processing

resources are limited, these variations typically involve only basic operations

for accessing sensors and actuators and coordination among motes.

In the next subsections we present three different flavors/customizations

of Terra. The first customization, called TerraNet, is a very light customization

using only simple radio communications and sensors operations. The second

customization, called TerraGrp, uses the basic library of components, which

includes the high-level abstractions for group management. The third cus-

tomization, called TerraVolcano, is a special customization for the Volcano

project (Tan et al., 2010; Tan et al., 2013) used in the evaluation of Terra.

2.3.1
TerraNet - Basic Operations

In the constrained-resources environment of WSN, it is often the case that

applications must code their own routing protocols, carrying the performance

onus only of the specific features needed for that application. TerraNet offers

only basic communication components to send and receive messages within

radio range. This allows the programmer to write Céu-T applications that uses

a specific communication protocol. This is useful, for instance, to allow specific

applications to decide how they will handle faults or even routing. The macro

system can be used to allow other parts of the application to use the high-level

protocol as if it were defined by components. This allows the programmer more

flexibility in experimenting an application with different communication and

fault-handling services, which may possibly later become VM components.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 27

To support this line of experimentation, we designed a basic Terra

configuration called TerraNet. This Terra customization mainly provides only

very basic “send” and “receive” events and local sensors readings.

Communication

The SEND() command is a basic send command where only the nodes

in the radio range may receive the message. If the field target is set to

BROADCAST value, all nodes in the range will receive the message. On the

other hand, if this field is set to a specific node identifier, only this node will

receive the message (if the node is in the radio range). A SEND DONE() event

indicates that the send request was processed by the radio. The RECEIVE event

returns a received message. A variation of the SEND() command is the SEND -

ACK() command that requests an acknowledgement from the target mote. In

this variation the SEND DONE ACK() event return a boolean value indicating

the acknowledgement. Additionally, TerraNet implements a simple message

queue to support message buffering needs.

Listing 2.3 presents a simple code example where the node 2 sends a

counter value to its neighbor nodes at one hop radio range. Lines 1–4 define

the message packet and creates the message variable. Lines 5–7 initialize the

default fields of radio message. In the lines 12–17, the node 2 sends the message.

In the line 20 the other nodes receive the message.

Listing 2.3: A simple TerraNet example.

1 pktype msg from radioMsg wi th

2 va r byte count ;

3 end

4 va r msg dataMsg ;

5 dataMsg . type=1;

6 dataMsg . s ou r c e=getNodeId ( ) ;

7 dataMsg . t a r g e t=BROADCAST;

8

9 dataMsg . count = 0 ;

10

11 i f getNodeId ( ) == 2 then

12 l oop do

13 awa i t 10 s ;

14 dataMsg . count = dataMsg . count +1;

15 emit SEND( dataMsg ) ;

16 awa i t SEND DONE;

17 end

18 e l s e

19 l oop do

20 dataMsg = awa i t RECEIVE ( ) ;

21 emit LEDS( dataMsg . count ) ;

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 28

22 end

23 end

Local Operations

This set of operations comprises operations to read sensors and residual

energy battery, define led’s configuration and access input and output devices

of the microcontroller. Terra encapsulates all these operations in a component

called Local Operations providing them as output events. Timers, on the

other hand, are handled directly by the Céu language with the await <time>

command. Our example (Listing 2.3) illustrated the use of leds and timers.

2.3.2
Terra Group - Basic Library

In order to determine the set of components that we should include in the

basic Terra library, we considered, on the one hand, proposals for facilitating

programming in WSNs with restricted resources (Newton et al., 2007; Newton

and Welsh, 2004; Kothari et al., 2007; Awan et al., 2007; Madden et al., 2005;

Cervantes et al., 2008; Bakshi et al., 2005) and, on the other hand, some typical

applications (Newton et al., 2007; Cervantes et al., 2008; Kothari et al., 2007).

As a result of this work (Branco, 2011), we organized the needed functionality

in four areas:

1. communication — support for radio communication among sensor nodes;

2. group management — support for group creation and other control

operations;

3. aggregation — support for information collection and synthesis inside a

group;

4. local operations – support for accessing sensors and actuators.

The next sections discuss the components in the three first areas. The

local operations are the same as defined for TerraNet in 2.3.1.

Communication

The Communication component provides the basic send/receive primi-

tives to exchange radio messages among sensor nodes. Furthermore, it provides

specific protocols for message routing from sensor nodes to a base station (the

WSN root node) and for dissemination of parameters or new applications from

a base station to sensor nodes.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 29

Two types of messages can be used by the application developer. The

first one allows exchanging messages among nodes in the same group by using

broadcast or unicast dissemination modes. The output event SEND GR can be

used to send a message either to all nodes in a group or to a specific node.

When a message is received by a node, it is signaled to the script code through

a new REC GR input event. In the implementation of the Communication

component, messages are routed only within the spatial limits of their group.

Unicast messages are typically used to reply to a request made by another

node of the same group. The second type of message is used for the specific

case in which a node needs to send a message directly to the base station. In

this case, the output event SEND BS script is signaled.

To provide delivery guarantees (no message loss or duplication) for uni-

cast messages, the Communication component implements a confirmation

mechanism. When the component is configured with this option, the appli-

cation does not need to deal explicitly with message retransmissions and du-

plications.

Grouping

Because WSN applications frequently involve large numbers of nodes,

organizing nodes into groups is one of the basic tasks in programming these

applications. The Group Management component allows for the simultaneous

existence of different network partitions, and is based on identifiers maintained

at each node. These identifiers may be initialized statically or dynamically.

Messages sent inside a group carry the group identifier and are sent using a

flooding protocol with a maximum of hops (which can also be configured). At

each node, such a message is delivered to the application only if the node is

currently in the destination group.

This component allows the program developer to implement several

alternative group structures. To have different alternatives, the grouping

component provides two identifiers that, when combined, define different

clusters of nodes (groups/subgroups). By definition the first identifier (group

level) may be used to associate a specific message data structure allowing

to have different type of messages for each group instantiated. The subgroup

parameter (second identifier) is used to define a kind of subgroup of nodes

for the same group type As an example, in order to broadcast a message one

can initialize all nodes with the same group identifier. In this case, the two

identifiers are set with same value for all nodes and the maximum of hops can

be used to define the reachable range of the group. Another example would

be the creation of dynamic groups: the group type parameter is defined with

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 30

same value to all nodes and the subgroup parameter can be defined by the

current node’ state, for instance based on the last value read from a sensor.

These two examples may coexist in the same application, simply by using two

different parameter values for group type.

The Group Management component also provides leader election. When

this option is selected (through a parameter), nodes in a group transparently

send queries to locate the current leader. In the case when a leader has

not yet been defined, a new election is started. The implementation of this

component always chooses the node with the largest remaining battery charge

in each group. The script running on each node can also define the node’s

behavior during the election process, for instance declining to participate in

the procedure.

Listing 2.4 presents an example program that uses grouping and com-

munication facilities. Line 2 invokes the system call groupInit() which allows

the current node to join a new group. In this simple case, all nodes will be

included in a single group. The second and third arguments of groupInit() de-

fine constant group identifiers respectively grId for group type and subgrId for

subgroup. The fourth argument defines the highest range in hops. The fifth

argument initializes the “active” flag as TRUE. The next arguments define the

“election off” (OFF) state with node zero as the leader (not used in this case).

Terra maintains all the configuration parameters of a group in a data

structure that can be accessed inside the application code. In Listing 2.4, the

gr1 variable (defined in line 1) is used for that. The script can modify these

values at any time.

Listing 2.4: Grouping and communication example in Terra.

1 va r g r oup t gr1 ;

2 g r o u p I n i t ( gr1 , 1 , 1 , 3 ,TRUE,OFF , 0 ) ;

3

4 pktype msg from msgGR t wi th

5 va r byte v a l ;

6 end ;

7 va r msg countMsg ;

8 countMsg . g r I d = gr1 . g r I d ;

9 countMsg . node = BROADCAST;

10 countMsg . msgId = 1 ;

11

12 i f getNodeId ( ) == 2 then

13 countMsg . v a l = 0 ;

14 emit LEDS ( 3 ) ;

15 l oop do

16 countMsg . v a l = countMsg . v a l + 1 ;

17 emit SEND GR( countMsg ) ;

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 31

18 awa i t 1 s ;

19 end

20 e l s e

21 l oop do

22 countMsg = awa i t REC GR ;

23 emit LEDS( countMsg . v a l ) ;

24 end

25 end

In the program of Listing 2.4, node 2 periodically sends a counter value

to its neighbors (lines 13–19). Each neighboring node shows the three less

significant bits of the received counter on its leds (lines 21–24). As discussed

before, the system call groupInit() (lines 1–2) makes each node join a group

described in the structure assigned to gr1. A message group package type —

msg— is defined in lines 4–6. In this case, we create a field value val to send the

counter value. The message variable counMsg is created in line 7 and its default

fields are initialized at lines 8–10. The countMsg.grId = gr1.grId associates this

message with the group identifier grId=1. The send output event in line 17

sends the countMsg message structure to all neighbors that has defined a group

with same grId=1. The await command in line 22 waits for a group message

and updates its countMsg structure with the received data.

Aggregation

The aggregation component provides abstractions for collection and syn-

thesis of data within a group of sensor nodes. Because data aggregation requires

the implementation of distributed algorithms for group communication and

processing of the values collected by different nodes, higher-level abstractions

for this pattern can simplify the development of applications for WSNs.

In the related work, we found different approaches to aggregation. Most

of them provide facilities to collect values (group communication algorithm)

but leave the task of coding the aggregation operation to the developer.

The Aggregation component provided by Terra takes as input the group

identifier, the physical quantity to be measured by each sensor node (e.g.,

temperature, photo) and the aggregation/reduction function to be used. The

implementation of this component provides the following built-in functions:

SUM (sum of values), AVG (average values), MAX (maximum) and MIN

(minimal value). In addition, each aggregation operation is also associated

with a relational operator (>,<,<=, >=,==, ! =) and a reference value.

Besides the end result, the aggregation operation also accumulates the number

of partial values that evaluated as true in this criterion. Aggregation operations

are performed by group of nodes, that is, one aggregate value is produced for

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 32

each group. The script starts an aggregation operation by emitting the output

event AGGREG with the specific aggregation identifier as parameter. When

the aggregation is completed, this is signaled by the AGGREG DONE event. As

in the Group Management component, Terra maintains all the configuration

parameters of aggregation in a data structure that can be modified at any

time.

The program in Listing 2.5 illustrates the use of the aggregation facilities.

In lines 1–2, a new group (gr1) is created. A single leader will be automatically

elected for that group. At each node, the id of the group’s leader will be stored

in gr1.leader.

In lines 3–4, a new agregation (agA) is created by invoking the system call

aggregInit(). This aggregation will be associated with the gr1 group (the second

argument). The third and fourth arguments to aggregInit() define the sensor to

be read (temperature in this case) and the aggregation operation to be applied

(average). The next arguments define a relational operator (GTE, for greater

then or equal) and the reference value (not used in this case). Line 11 uses

a predefined data structure type that will hold the result of the aggregation

operation. In lines 15–16, the leader node starts the aggregation operation by

triggering the AGGREG output event (emit AGGREG()). (Non-leader nodes

will transparently react to the messages triggered by the aggregation.) In line

17, the leader node waits for the end of the aggregation and assigns the result

to data. Next, it assigns this value to the data field in dataMsg and, in line 19,

sends the message to the base station, illustrating the use of the output event

SEND BS. The use of this event is similar to that of the SEND GR event, but

in this case msgBS t type does not have predefined field grId.

Listing 2.5: Aggregation and communication example in Terra.

1 va r g r oup t gr1 ;

2 g r o u p I n i t ( gr1 , 1 , 0 , 2 ,TRUE, eACTIVE , 0 ) ;

3 va r a gg r e g t agA ;

4 a g g r e g I n i t ( agA , gr1 , SID TEMP , fAVG , opGTE , 0 ) ;

5

6 pktype msg from msgBS t wi th

7 va r u long ave rage ;

8 end ;

9 va r msg dataMsg ;

10 dataMsg . msgId=1;

11 va r aggDone t data ;

12

13 l oop do

14 awa i t 10 s ;

15 i f ( getNodeId ( ) == gr1 . l e a d e r ) then

16 emit AGGREG(agA ) ;

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 33

17 data = awa i t AGGREG DONE;

18 dataMsg . ave rage = data . v a l u e ;

19 emit SEND BS( dataMsg ) ;

20 end

21 end

2.3.3
Terra Volcano - CPU Intensive Operation

Volcano is an application that uses WSN as a cheap alternative for tra-

ditional volcanic instrumentation. The application was built in nesC/TinyOS

and is detailed by Tan5 (Tan et al., 2010; Tan et al., 2013). The main idea is

to reduce raw data transmission doing some in-network signal processing. In

the laboratory version, that we had access, the application maintains real data

in the node flash memory and emulates a seismic sensor that reads these data

as streams.

In our TerraVolcano customization, we break the Volcano application

into five functions: Mean, Seismic Energy, Energy Scale, Copy Buffer, and

Detect. The Mean operation computes the intensity mean of valid values of

the raw data from seismic sensor. The Seismic Energy operation computes the

seismic energy considering the intensity mean. The Energy Scale operation

finds the scale of the energy computed. The Copy Buffer operation fills

a five stage buffer with data to be used in Detect operation. The Detect

operation includes the Fast Fourier Transform (FFT) and the seismic detection

algorithm. Additionally, this customization offers an interface to read seismic

data as a stream and a storage interface to load the Gaussian data model used

in the detection algorithm.

This kind of application needs a lot of memory to accommodate all data

vectors. The original work uses the TelosB mote with 10kB of RAM and 48kB

of ROM. In our case, combining the Terra Virtual Machine code with the

Volcano components overflows the available ROM space of the TelosB. Our

alternative was to exclude some basic functionalities from Terra to be able to

add Volcano operations. In the evaluation, in section 3.6, we present an use

case for Volcano application.

2.3.4
Terra memory usage

Traditional WSN platforms impose an architectural restriction where

the microcontroller has, at least, two types of memories. The equivalent to

5We thank the authors for making the source code available.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 34

the ROM (Read-Only Memory) where the machine code to be executed is

written and the RAM (Random Access Memory) where the program variables,

runtime controls, and the execution stack are stored. Using the virtual machine

approach, we have to load and execute the VM-T runtime in ROM space and

allocate part of the RAM memory to load the script bytecode and variables.

Besides the VM-T runtime needs some RAM space for its execution. As

we increase the embedded custom components, the use of ROM and RAM,

by VM-T, is also increased. Consequently, the memory space for the Céu-T

script decreases. Some hardware platforms have memory limitations that may

restrict the use of specific configurations. Table 2.1 presents the Terra memory

configuration for different hardware platforms.

Table 2.1: Terra memory usage
Customization Memory MicaZ Mica2 TelosB

TerraNet
ROM 40.0k 37.3k 35.0k
RAM 3.6k 3.5k 7.5k

TerraGrp
ROM 55.3k 52.4k 47.1k
RAM 3.6k 3.5k 7.8k

TerraVolcano
ROM — — 45.2k
RAM — — 8.4k

Units in bytes

The ROM utilization depends on the CPU type and the specific TinyOS

component implementations for each hardware. The RAM value represents

the memory used by variables in VM-T and in TinyOS, including the total

memory allocated for the Céu-T script. This is not the full RAM size because

we need to leave some memory for the C stack.

Table 2.2: Céu-T script memory size
Customization Platform Script max size

TerraNet
mica2/micaz 2,000

telos 7,500

TerraGrp
mica2/micaz 768

telosb 4,800
TerraVolcano telosb 2,668

Units in bytes

When writing a Céu-T program, it is important to verify the amount

of memory used. Table 2.2 shows how much of Céu-T script memory is left

to the application programmer in each of the customizations we explored.

For example, TerraNet on MicaZ has about 2,000 bytes for the Céu-T script

program, but TerraGrp has only 800 bytes on the same platform. This

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 2. Terra programming System 35

happens because the TerraGrp components use more RAM than the TerraNet

components, consequently leaving little memory to the user script.

Because the radio of MicaZ and TelosB are fully compatible, it is possible

to have a heterogeneous network using the same Terra customization. In this

case, because the Terra interface is the same for all nodes, it is possible to run

the same Céu-T script on all network nodes.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



3
Programming evaluation

In this part of the evaluation, we built and evaluated different types of

applications using different abstraction levels. For example, the script applica-

tion can use a specific component that offers a ready-to-use complex routing

protocol or can use another component that offers a set of basic communication

operations, leaving to the application programmer to implement his own rout-

ing protocol. Another example is the use of pre-defined calculation components

like a Fast Fourier Transform (FFT), instead of providing the programmer only

with basic math functions.

We next recall the list of programming issues defined in Section 1.2.1. In

the next section, we defined a set of metrics that were used to evaluate the

role of Terra in resolving these issues.

A. Programming complexity

A.1. Sequential and event-driven programming

A1.i. Learning curve

A1.ii. Split phase

A1.iii. Global variables

A.2. Local starvation

A.3. Invalid pointers

B. Networking complexity

B.1. Radio operations

B.2. Communication protocols

Our main evaluation procedure doesn’t cover three items from this

list: learning curve, local starvation, and invalid pointers. In the end of this

chapter we present our analysis and discussion for these three remaining items.

Although most of the cost evaluation is left to the next chapter, we took

the opportunity to measure the size of the codes used in the programming

evaluation to identify the code dissemination cost.

The next sections detail the evaluation process, presenting the execution

strategy, the experiment metrics, the test applications, and the execution of

the evaluation.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 37

3.1
Execution strategy and Metrics

In most of our tests, we built two versions of an application: a reactive

one, using Terra and the Céu-T programming language, and an event-driven

one, using TinyOS (Levis et al., 2004) and the nesC (Gay et al., 2003)

programming language. We compared the applications built for the two

environments and, in some cases, we compared different applications for

the same environment. Table 3.1 contains the metrics we selected for our

evaluation. This selection determined the data we gathered.

Table 3.1: Programming – evaluation metrics
Metric Description

Program lines Number of lines in a program.
Bytecode size Script bytecode in bytes.
Machine code size Machine code in bytes.
Code blocks Number of code blocks to be disseminated.

Global variables
Perception of explicit and implicit global states
variables.

Distributed system con-
cerns

Problems found during programming and de-
bugging.

Abstraction level
Positive and negative points using different ab-
straction levels.

The program lines is a traditional metric to measure program size and

complexity. Although this metric considers blank lines and comments, it is

important in counting the total effort to produce the code. The Céu-T script

bytecode size and the TinyOS machine code size indicate the program size to

be loaded. In our case, we are interested in the amount of code blocks that must

be disseminated on the network for remote installation. The global variables

are the use of global variables to maintain the program state. This is a key

feature used in event-driven programming because it is not possible maintain

the local state between two independent events. Protothreads (Dunkels et

al., 2006) and Céu (Sant’Anna et al., 2013) also used similar metrics in its

evaluation. In Protothreads, the authors focus on reducing the number of

explicit state machines and events. In Céu, the authors focus on reducing

the global variables. The distributed system concerns and the abstraction level

are qualitative metrics to identify significant points to our evaluation. These

points appear in our evaluation text as different items depending on each test

variation.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 38

3.2
Test applications

We define four test applications to analyze abstraction level and code

complexity. These applications were specially selected so as to exercise dif-

ferent system/network execution models. To maintain a certain degree of im-

partiality we used WSN applications from the literature in two of four test

applications. Also, all applications were tested on real motes. Table 3.2 shows

the environments considered in our tests and Table 3.3 describes the applica-

tion functionality for each test.

Table 3.2: Execution environments
Prog. model Environment Description

Event-driven TinyOS Low level code environment.

Reactive
TerraNet Environment with low level abstraction.
TerraGrp Environment with high-level abstraction.

TerraVolcano
Environment with an abstraction of inten-
sive use of CPU.

Table 3.3: Applications
# Application Description

1
Multi-Hop
monitoring &
alarm

A monitoring and alarm application with multi-hop net-
work topology. Requires routing protocol to send mes-
sages to base-station. (#1a. Using its own routing script
and #1b. using the TinyOS CTP routing component)

2
Complex
Grouping

A monitoring and alarm application for different spaces
and with multi-hop network topology. Requires routing
protocol to send messages to base-station and local
group communication protocol.

3
Topology
Control
protocol

A topology control support that actively varies the
radio transmission power to discover the lower energy
consumption path.

4
Volcano
Application

High processing application to monitor volcanos.

Application #1a, Multi-Hop monitoring & alarm, is a typical WSN

application in which the programmer needs to deal with a simple routing

protocol. It is a simple application, but exemplifies a network model very

commonly used in WSN application. As alternative test application (#1b) we

use the routing abstraction CTP (Gnawali et al., 2009) supplied by TinyOS.

In this test it is possible to compare the implementation and the execution of

a simple abstraction. Also it is possible to compare the same application using

different abstraction levels.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 39

Application #2, Complex Grouping, exercises a more complex program-

ming pattern where the programmer deals with network subgroups, coordina-

tor nodes, and also with a routing protocol. In this case, the grouping control

must be implemented from scratch in the low abstraction level environment of

TinyOS. This application is very important for understanding the impact of

using a high-level abstraction.

Application #3 is a topology builder based on radio transmission power

that was implemented by Auza in his master thesis (Auza, 2013; Auza et al.,

2014). This application allows us to evaluate the use of Terra for writing more

complex network protocols.

Application #4, Volcano, is a CPU-heavy application built in

nesC/TinyOS to support in-network collaborative signal processing algo-

rithms in the Volcano experiment as defined by Tan (Tan et al., 2010; Tan et

al., 2013). This is an application that stresses the limitations of Terra as to

program memory size and processing capacity. Also, it allows us to work at a

very high abstraction level and to experiment with scripts that uses higher or

lower-level constructs.

Table 3.4 shows each test application and the respective execution

environment.

Table 3.4: Applications X Execution environments (Abstraction level)
Application TinyOS Terra

Net
Terra
Grp

Terra
Volcano

Multi-Hop monit. & alarm 1a + 1b 1a 1b

Complex Grouping 2[∗] 2
Topology Control 3 3
Volcano 4 4

[∗] - only pseudocode for TinyOS version.

3.3
App #1 - Multi-Hop monitoring & alarm

We implemented two variations of application #1. The first one (#1a)

implements its own algorithm for message routing and the other one (#1b) uses

CTP (Gnawali et al., 2009), a message routing protocol already implemented

in the TinyOS. We compare these two applications using two programming

models: event-driven and reactive. For the event-driven model, we built #1a

and #1b applications using nesC/TinyOS. For the reactive model, we use two

flavors of Terra, TerraNet in application #1a and TerraGrp in application #1b.

While TerraNet doesn’t include any support for message routing, TerraGrp

includes the CTP routing abstraction. These applications allow us to examine

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 40

the use of different abstraction levels. At the end of this section we present the

results of the Terra version applications running in a network of 14 real nodes.

3.3.1
App #1a - programming the routing algorithm

In this application, each node periodically sends its temperature to the

central computer (via base-station node). Nodes also send an alarm message

when the temperature value exceeds a predefined value. The alarm check

period must be much smaller than the monitoring period, to allow a fast

reaction. Communicating with the central computer requires support for

message routing from any network node to the base-station node.

Our routing solution is based on a spanning tree in which the root node

may be the base-station node or any node in the radio range of the base-

station. The root node starts a flooding message that is repeated by all nodes

on a best-effort basis. A parent node is defined by the first message received,

and nodes must repeat only this first message. For simplicity, we are ignoring

failures. During the monitoring operation, after the tree construction process,

a node sends the reading or alarm messages to its parent node. All nodes

must redirect the received messages to their parent node. The root node must

redirect the received messages to the central computer via the base-station

node. To have a minimal guarantee of message delivery, the send and receive

operations must implement an acknowledgement protocol and avoid message

duplication. The send operation must implement an output buffer to avoid loss

of message caused by concurrency in the radio service.

Because this test is the first one in our text, we present some general

considerations about comparing an application built with an event-driven

model and with a reactive model. Listings 3.1 and 3.2 shows the pseudocodes

for a simplified version of our test application. The event-driven programming

model is represented here by the nesC language and the reactive programming

model is represented by the Céu-T language. These pseudocodes don’t contain

the code for message queues, message retries, and duplicated-message checks.

In the nesC program version, as in traditional event-driven programs, the

code is split into several nesC event procedures (callbacks or event handlers).

In nesC we use call to request a command and event to define an event

handler, while in Céu-T we use, respectively, emit and wait. To the nesC

application code it doesn’t matter where an event handler is positioned in

the text. The idea is that an event procedure is always ready to be called

and its execution condition is controlled by the user code, via global variables.

This kind of combination, considering global variables and event procedures,

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 41

amplifies possible valid and invalid control combinations that the programmer

must be aware of. This situation complicates program debugging and test

cases creation, and also creates an error-prone environment. On the other side,

Céu-T enables writing a more structured program in which the programmer

may combine sequential and parallel structures. This approach also allows

creating different operation stages. For example, it is possible to enable or

disable an event handler depending of program flow.

Listing 3.1 presents the nesC pseudocode version. Although we differen-

tiate the pseudocode in two parts, all events are defined for the same execution

context. The Céu-T version presented in the Listing 3.2 has two explicit exe-

cution contexts. The first stage is executed before the second stage. This kind

of separation avoids context mixing and is important to simplify the number

of possible control combinations. Also, using parallel structures to separate

concurrent contexts reduces possible conflicts in global variables.

Listing 3.1: The nesC pseudocode for the test application #1a.

1 hasParent = f a l s e

2 alarmMute = f a l s e

3

4 : f i r s t p a r t − Bu i l d ad−hoc t r e e

5 even t booted

6 s t a r t r a d i o

7 even t r a d i o s t a r t e d

8 i f r o o t node then

9 b roadca s t d i s c o v e r message

10 even t d i s c o v e r message

11 i f hasParent i s f a l s e then

12 hasParent = t r u e

13 b roadca s t d i s c o v e r message

14 s t a r t data p e r i o d i c t ime r

15 s t a r t a larm p e r i o d i c t ime r

16 s t a r t mon i t o r i ng p e r i o d i c t ime r

17

18 : second pa r t − mon i t o r i ng f u n c t i o n a l i t y

19 even t a larm t ime r

20 r ead s e n s o r

21 even t s e n s o r done

22 i f i s an a larm and alarmMute i s f a l s e

23 alarmMute=t r u e

24 s t a r t mute t ime r

25 send a larm message to pa r en t node

26 even t mute t ime r

27 alarmMute = f a l s e

28 even t data t ime r

29 send data message to pa r en t node

30 even t data message

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 42

31 send data message to pa r en t node

32

33 : empty e v en t s must be d e c l a r e d

34 even t d i s c o v e r message send done

35 even t data message send done

36 even t r a d i o s topped

Listing 3.2: The Céu-T pseudocode for the test application #1a.

1 : f i r s t s t a g e − Bu i l d ad−hoc t r e e

2 I f i s r o o t node then

3 b roadca s t d i s c o v e r message

4 e l s e

5 wa i t to r e c e i v e a d i s c o v e r message

6 b roadca s t d i s c o v e r message

7 end

8

9 : second s t ag e − mon i t o r i ng f u n c t i o n a l i t y

10 do −− i n p a r a l l e l

11 p e r i o d i c l oop

12 r ead s e n s o r

13 with

14 p e r i o d i c l oop

15 i f i s an a larm then

16 send a larm to pa r en t node

17 wa i t mute t ime

18 with

19 p e r i o d i c l oop

20 send s e n s o r to pa r en t node

21 with

22 l oop

23 wa i t s e n s o r o r a larm messages

24 send message to pa r en t node

25 end

Another point worth discussing is related to the idea of split-phase

operation. A split-phase operation is when we have an event reacting from

an action triggered by a command. For example, a sensor reading must be

requested and, when the sensor value is ready, an event is generated to the

user application. Further example are the timer command with its associated

fired event, and the send message command, with the sendDone event. In

environments like nesC/TinyOS, this kind of operation multiplies the number

of event handlers distributed in the application code. The full application #1a

written in nesC code has 16 event definitions and 24 calls to commands. In

the case of Céu-T, an action like sensor reading or send message uses an emit

command to trigger the action and the await command to register the event

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 43

handler. The await command is a local blocking operation that blocks only the

command trail. A typical sensor reading in Céu-T is written as:

. . .

emit REQ TEMP;

v a l = awa i t TEMP;

. . .

Timers are included explicitly in Céu-T, and do not require a split-phase

operation. An example of timer of five seconds written in Céu-T is:

. . .

awa i t 5 s ;

. . .

This Céu-T approach reduces the use of global variables because it

leaves the split-phase commands contained in a unique local context. This

simplification allows a reduced code and less complexity as presented in the

pseudocode of Listing 3.2. The full code of application #1a written in Céu-T

has 12 awaits and five pairs of emit/waits.

A third point is about commands and event interfaces. In nesC/TinyOS,

the component interfaces tend to be more complex than the component

interfaces of Terra. In Terra, we took care to encapsulate some complexities,

giving simple and clear interfaces to the application script. In general, in

nesC, the programmer needs to write more code than in Céu-T for the same

operation. Table 3.5 shows the results for the Terra and TinyOS applications.

We note that the total of lines for the nesC version is about 1.5 times the

total of Céu-T version. In this application, because it implements a low-level

algorithm with no need for any high-level component, the size of programs has

similar magnitude.

Table 3.5: Quantitative metrics - for app #1a
Metric Terra TinyOS

Program lines 199 307
Bytecode size (bytes) 650 –
Machine code size (bytes) 40,000 15,566
Code blocks 28 649
Global variables 4 5

As regards bytecode size, because Terra already embeds the core of

nesC/TinyOS and other several operations, the machine code size of the

TinyOS application is about 24 times the bytecode size of Terra. Although the

machine code of VM-T runtime is 3.13 times the size of the application written

for TinyOS, we assume that in the Terra the VM-T runtime was previously

loaded via wired interface and we need to disseminate by radio only the new

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 44

bytecode. (Specific details about Terra runtime memory usage is presented in

Section 2.3.4.) The bytecode size in the case of Terra or the machine code

size in the case of TinyOS defines the amount of data needed to disseminate

a program in the network. The necessary number of machine code blocks is

computed assuming that one single message can carry up to 24 bytes of code.

In the case of Terra a message can also carry up to 24 bytes. These blocks

are aligned with the Céu-T script memory and the program start may happen

in the middle of a block. Because of that, one or two additional blocks may

be needed to carry the complete bytecode. Assuming that the energy cost for

the radio is related to the number of transmitted messages, we can use the

number of blocks of codes to compare this cost. In this example, the cost of

dissemination of the TinyOS machine code is also about 24 times the cost

of Terra. This is not a new result, as similar comparison are described in

Maté (Levis and Culler, 2002)

Analyzing the global variables in both versions, we identified four com-

mon variables: the last sensor reading, the parent node Id, the message se-

quencer Id, and the neighbor table. The difference is an additional global vari-

able in the nesC version that avoids alarms occurring very close to each other.

In the Céu-T version we resort to a parallel structure for a solution that doesn’t

depend on a global variable. A similar solution might be also possible in nesC

code, but substituting a global timer for the global variable.

For this specific network algorithm, in the Céu-T version we identified

two patterns that facilitate this kind of implementation. One pattern is the

receive/send as found in the second block of:

i f nodeID==ROOT then

msg1 . t a r g e t = BROADCAST;

msg1 . type = FLOOD MSG;

emit SEND(msg1 ) ;

e l s e

msg2 = awa i t RECEIVE(FLOOD MSG) ;

parentNode = msg2 . s ou r c e ;

emit SEND(msg2 ) ;

end

This pattern is very useful to broadcast messages in an ad-hoc network

like a WSN. In this case, the root node starts the flooding process and any

other node broadcasts only the first received message. Each node saves as its

parent the message-source node for this first message. A variant of this pattern

is as follows:

par do

// Loca l data g e n e r a t i o n

l oop do

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 45

awa i t PERIOD s ;

msg1 . t a r g e t = parentNode ;

msg1 . type = ROOT MSG;

emit SEND(msg1 ) ;

end

wi th

// Rout ing mechanism

loop do

msg2 = awa i t RECEIVE(ROOT MSG) ;

msg1 . t a r g e t = parentNode ;

emit SEND(msg2 ) ;

end

end

This variant shows how to construct a simple routing mechanism. The first

parallel block generates and sends, periodically, some local data to its par-

ent node. The second block awaits new messages to forward them to its parent

node. The final result is that all data messages are routed to the root node. This

second pattern is a naive solution. A more robust solution must consider mes-

sage queues, message acknowledgements and retries, and duplicated-messages

check. When two or more points in the code try to send a radio message at

same time, this may corrupt the message data in the buffer of the radio. The

message queue is used to insert output messages. The messages are recovered

in only one point of code to be sent via radio avoiding conflicts. Acknowledge-

ments are used when communicating with a specific target node. In this case

the sender requests the confirmation from the target node. In case of absence of

the confirmation, the sender may try to resend the pending message. Because

the confirmation may be generated by the target node, but not received by the

sender, this retried message may be duplicated in the target node. To avoid

the processing of duplicated messages, the sender must stamp each message

with a unique identifier and the target node must verify duplicated received

identifiers.

3.3.2
App #1b - using TinyOS routing

Intentionally, this application has the same functionalities of the appli-

cation in section 3.3.1, but it uses a pre-built TinyOS component for message

routing called CTP (Gnawali et al., 2009).

Because we use a router component, it is not necessary to deal with

message acknowledgements, retries, and duplicated messages. The application

needs only activate sensor reading, alarm condition checking, and data sending

via the CTP interface. TerraGrp already implements an internal message

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 46

queue, but in the TinyOS version we need to program the queue.

Listing 3.3 presents the pseudocode for the nesC application. The nesC

code is very similar to code for the application without CTP, but it doesn’t

need the flooding process to build the routing tree. For the Terra version, as

the code size is small, we present, excluding the initial variable declarations,

the complete Céu-T code in Listing 3.4. In the Céu-T code, without flooding,

we got a very concise program with three infinite loops in parallel. In this

case, because all parallel blocks are infinite loops, the par statement doesn’t

need to be specified as an /or neither as an /and. The first loop (lines 5–9)

reads the temperature value, while the second loop (lines 11–21) checks the

conditions to send an alarm message. The third loop (lines 26–38) sends a

data message every 60 seconds. In this case, inside the infinite loop we have

a par/or statement showing how to implement the timeout pattern using the

await FOREVER command (line 36).

Listing 3.3: The nesC pseudocode for the application #1b.

1 : f i r s t p a r t − mon i t o r i ng f u n c t i o n a l i t y

2 even t booted

3 s t a r t r a d i o

4 even t r a d i o s t a r t e d

5 i f r o o t node

6 s e tRoot

7 e l s e

8 s t a r t data p e r i o d i c t ime r

9 s t a r t a larm p e r i o d i c t ime r

10 end

11 even t a larm t ime r s

12 r ead s e n s o r

13 even t s e n s o r done

14 i f i s an a larm and alarmMute==f a l s e

15 alarmMute=t r u e

16 s t a r t mute t ime r

17 send a larm message

18 even t mute t ime r

19 alarmMute = f a l s e

20 even t data t ime r

21 send data message to pa r en t node

22

23 : empty e v en t s must be d e c l a r e d

24 even t data message send done

25 even t r a d i o s topped

Listing 3.4: The Céu-T code for the application #1b.

1 par do

2 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 47

3 ∗ Mon i to r i ng t empe ra tu r e and a larm

4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
5 l oop do

6 emit REQ TEMP( ) ;

7 gblTemp = awa i t TEMP;

8 awa i t 500ms ;

9 end

10 with

11 l oop do

12 i f gblTemp > ALARM then

13 i n c msgAlarm . d8 [ 2 ] ;

14 msgAlarm . d16 [ 0 ] = gblTemp ;

15 emit SEND BS(msgAlarm ) ;

16 awa i t SENDBS DONE(ID ALARM ) ;

17 awa i t 30 s ;

18 e l s e

19 awa i t 500ms ;

20 end

21 end

22 with

23 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
24 ∗ Send tempe ra tu r e v a l u e

25 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
26 awa i t 500ms ; // Waits to read f i r s t s e n s o r v a l u e

27 l oop do

28 par / or do

29 awa i t 60 s ;

30 with

31 msgData . d16 [ 0 ] = gblTemp ;

32 i n c msgData . d8 [ 2 ] ;

33 awa i t ( node Id ∗500)ms ;

34 emit SEND BS(msgData ) ;

35 awa i t SENDBS DONE(ID DATA ) ;

36 awa i t FOREVER;

37 end

38 end

39 end

Tables 3.6 and 3.7 compare some values for the implementations with and

without CTP. In the example of section 3.3.1, without the CTP component,

the nesC code had about 1.5 times more lines than the Céu-T version. Now,

considering the CTP component as an abstraction in both sides, the nesC code

has about 4 times more lines than the Céu-T version.

If we compare the program size for the two Céu-T applications, we find

that the version that implements its own routing has 3.16 times more lines than

the version using CTP. We counted, excluding the initial variable declarations,

the number of lines of commands and of flow-control statements. The result

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 48

Table 3.6: Terra: No CTP X CTP
Metric no CTP CTP
Program lines 199 63
Bytecode size (bytes) 650 189
Machine code size (bytes) 40,000 55,300
Code blocks 28 9

Table 3.7: TinyOS: No CTP X CTP
Metric no CTP CTP
Program lines 307 224
Machine code size (bytes) 15,566 21,548
Code blocks 649 898

was, respectively, 75 and 46 lines for the version without CTP and 17 and

16 lines for the version with CTP. This means that, in Terra, using a high-

level abstraction not only reduces code size but also reduces the proportion of

number of commands to the number of flow control statements.

If we compare both nesC versions, we find that the number of lines doesn’t

change as much as in the Terra version. The nesC version without CTP has

about 1.4 times more lines than the version with CTP. This means that the

use of the CTP component in TinyOS had low impact when we look at the

full application code. On the other hand, the TinyOS implementation of the

CTP increases the machine code size for Terra and TinyOS. Thus, the ratio

between the machine code of the TinyOS version and the bytecode of the

Terra version jumps to 114. This was only 24 in the version without CTP. The

Terra version without CTP represents an increase of 3.4 times the bytecode

size when compared to the version with CTP. The TinyOS version without

CTP represents a decrease of 0.72 times the bytecode size when compared to

the version with CTP. This difference, comparing the two version in TinyOS,

is due to the fact that the TinyOS CTP implementation considers radio link

quality and message buffering to offer much more guarantees than our nesC

flooding algorithm and this reflects directly on bytecode size. Because the

CTP is already embedded in the Terra runtime, and is sent along with the

application in the case of TinyOS, this difference reflects in the dissemination

cost. In this case the TinyOS version spends 100 times more energy than the

Terra version.

The results for global variables are similar to those of the first test. As

expected, the main difference is that now the code uses fewer globals.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 49

3.3.3
Real motes experiment

This experiment uses a network of real motes to evaluate the execution

of the two Terra versions – applications #1a and #1b. To identify the routing

tree topology, we add in the data message of each application the parent of

the node considered in the routing tree. Our experimental test uses the Céu

na Terra1 testbed, a testbed for WSN experiments built with the support of

RNP.

We use a network with 14 MicaZ motes distributed under the desks of a

classroom. The nodes are identified from 4 to 17. The output of our experiment

is the topology tree formed for each application, #1a using its own routing tree

algorithm and #1b using the embedded CTP component. We also register, for

each node and cycle, the node messages received by the basestation during 5

minutes of test. Considering a data cycle of one minute, we can receive at least

five messages for each node.

Node 8 is configured as the Terra basestation and does not execute the

Céu-T script. This node is used only to interconnect the radio network with

the USB serial interface of our conventional computer. In application #1a we

defined, in the Céu-T script, node 9 as the root node and, in application #1b,

the CTP component also uses node 8 (basestation) as the root node.

Figures 3.1 and 3.2 present the routing tree topology formed for the

two applications. We colored in gray the nodes that were not discovered in the

routing tree building process.

Figure 3.1: Tree topology formed for the application #1a

Table 3.8 presents, for Apps.#1a and #1b, the parent node for each

node. We present only one data cycle because all cycles have the same values.

We have empty values for node 8 because this node works as basestation and

1Ceú na Terra Testbed – http://ceunaterra.voip.ufrj.br/

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 50

Figure 3.2: Tree topology formed for the application #1b

doesn’t run the application. In application #1a, nodes 11 and 17 were left

outside of the tree, probably because of the default radio transmission power

used in Terra. In the case of application #1b, the CTP component has a more

complex algorithm that considers the link quality to build the tree.

Table 3.8: Received parent node for each node – Apps.#1a and #1b
node Id App.#1a App.#1b

4 9 8
5 9 8
6 9 8
7 9 8
8
9 8 8
10 9 8
11 - 8
12 9 16
13 9 8
14 9 16
15 13 16
16 9 8
17 - 16

3.4
App #2 - Complex Grouping

We next present an example of application with complex group require-

ments. Application #2 monitors the average temperature value for each floor in

a building. A coordinator node must be elected for each floor. The criterion for

election is battery voltage and the greater identifier is used to break ties. The

coordinator node aggregates all values in its floor, computes the average value,

and sends this information to the base-station node. The implementations use

CTP for messaging routing.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 51

To simplify our implementation, we establish a link between the node

identifier and the floor number. We assume a maximum of 10 nodes in each

floor and also that the tens of the node identifier represent its floor number.

For example, nodes 21 and 25 are in the 2nd floor and nodes 42 and 47 are in

the 4th floor.

We again compare the code written for an event-driven model with that

of the Terra reactive model. Listing 3.5 presents the pseudocode for the nesC

version of the monitoring application. This nesC version is based on some

premises to simplify the implementation. We used a predefined leader for

each group and, considering the radio range, a connected graph is formed

by the nodes of same group. Also, the pseudocode for group messaging does

not include message queue management, message acknowledgements, message

retries, or checks for duplicated message.

Listing 3.5: nesC pseudocode for the application #2.

1 : f i r s t p a r t − mon i t o r i ng f u n c t i o n a l i t y

2 even t booted

3 s t a r t r a d i o

4 even t r a d i o s t a r t e d

5 i f r o o t node

6 s e tRoot

7 end

8 i f nodeID%10 == 0

9 s t a r t data p e r i o d i c t ime r

10 end

11 even t data t ime r

12 msg . group=nodeID /10

13 msg . hops=0

14 t o t a l=0

15 count=0

16 s t a r t t imeout t ime r

17 send r e q u e s t msg

18 r ead s e n s o r

19 even t r e q u e s t msg

20 i f msg . group == node Id /10 and msg . hops < MAX HOPS

21 pa r en t = msg . s ou r c e

22 r ead s e n s o r

23 even t s e n s o r done

24 i f nodeID%10 == 0

25 t o t a l = t o t a l + s v a l u e

26 count = count + 1

27 e l s e

28 msg . t a r g e t = pa r en t

29 msg . v a l u e = s v a l u e

30 send answer msg

31 end

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 52

32 even t r e c e i v e answer msg

33 i f nodeID%10 == 0

34 t o t a l = t o t a l + msg . v a l u e

35 count = count + 1

36 e l s e

37 msg . t a r g e t = pa r en t

38 send answer msg

39 end

40 even t t imeout t ime r

41 msg . v a l u e = t o t a l / count

42 msg . group=nodeID%10

43 send ave rage msg

Listing 3.6 presents the complete Céu-T code for the monitoring appli-

cation. Because TerraGrp provides a ready-made parametrized grouping algo-

rithm with support for aggregation, the Céu-T code is very concise. In this

case, programming is not the most important task: the user must understand

how the grouping mechanism works to be able to set all parameters correctly.

Variable floor, initialized in line 2, holds the floor of the node. This variable is

used as parameter to the groupInit() function (line 7) and identifies the node

group (subgroup parameter). The group type parameter has the same value

for all nodes and is represented by the constant GRID. As the leader election

algorithm is set as active by argument eACTIVE (line 7), the grouping com-

ponent elects one node as the leader. This leader node is stored in the leader

field of structure grFloor. An aggregation operation, using the created group,

is defined by function aggregInit() in line 11. During the periodic loop, only

leader nodes start the aggregation process (line 16). The emit AGGREG() com-

mand (line 19) starts the aggregation operation. The aggregation result, when

completed, is returned in await AGGREG DONE; in line 20. Then the node can

send the results via the emit SEND BS() command in line 24. Section 2.3.2

presented TerraGrp in details.

Listing 3.6: The Céu-T code for the application #2.

1 va r u sho r t node Id = getNodeId ( ) ;

2 va r ubyte f l o o r = ( node Id /10)+1;

3 va r ubyte seqData=0;

4

5 va r g r oup t g r F l o o r ;

6 // (RegName , g r type , subgr , nhops , s t a t u s , e l F l a g , l e a d e r )

7 g r o u p I n i t ( g rF l oo r , GRID , f l o o r , 5 , TRUE, eACTIVE , 0 ) ;

8

9 va r a gg r e g t agF l oo r ;

10 // (RegName , grName , s e n s o r I d , agOper , agComp , r e f V a l )

11 a g g r e g I n i t ( agF loor , g rF l oo r , SID TEMP , fAVG , opGT , 0 ) ;

12 va r aggDone t agRe su l t ;

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 53

13

14 l oop do

15 par /and do

16 i f node Id == g rF l o o r . l e a d e r then

17 awa i t ( f l o o r ∗500)ms ;

18 i n c seqData ;

19 emit AGGREG( agF l oo r ) ;

20 agRe su l t = awa i t AGGREG DONE;

21 msgData . d16 [ 0 ] = agRe su l t . v a l u e ;

22 msgData . d8 [ 2 ] = seqData ;

23 msgData . d8 [ 3 ] = agRe su l t . count ;

24 emit SEND BS(msgData ) ;

25 awa i t SENDBS DONE(ID DATA ) ;

26 end

27 with

28 awa i t 10 s ;

29 end

30 end

Table 3.9 presents the quantitative values observed for this test. This

table only shows the values for Terra, because we implemented the application

in TerraGrp and only wrote the pseudocode for the TinyOS version. We

considered this to be enough because the complexity of the nesC version is

similar to that of multi-hop monitoring application #1a. Additionally, here

we had to handle a bunch of parameters, like group identifier, leader node,

and aggregation result. Because TerraGrp defines high-level abstractions for

components of general use, the interface with these components are also rather

complex. The interface parameters must represent, in a way, the several allowed

operations modes. For example, a group definition needs parameters like group

type, group id, max hop range, activated flag, and election flag. In this case

we have to deal with the trade-off between the script size and the complexity

of parametrization. Implementing equivalent script directly in nesC and using

the TerraGrp components would also reduce the program lines in the nesC

version. But, in this case, the user does not take advantage of the guarantees

and facilities given by proposed model. Mainly the programming safeties and

the remote reconfiguration.

The bytecode size of the application in Terra shows that using an

embedded complex component, it is possible to have a relatively complex

application with small code size. This Céu-T script needs only 9 bytecode

blocks to have its full code disseminated. This is an example of bytecode that

starts in the end of the first block, thus adding one block to the dissemination

process. We included in Table 3.9 the total memory size used by the script. This

total size includes the memory for the bytecode, the variables, the operations

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 54

Table 3.9: Quantitative metrics - for app #2
Metric Terra

Program lines 43
Bytecode size (bytes) 174
Machine code size (bytes) 55,300
Code blocks 9
Total memory size (bytes) 316
Global variables 1

stack, and the runtime controls. In TerraGrp, we must take care with the

memory limit, in this case 316 bytes. As presented in Section 2.3.4, in the

worst case, TerraGrp in the MicaZ platform allows for only 800 bytes of script

memory.

This Terra application uses only one global variable, field leader of the

group control structure.

To exercise the reprogramming of applications we built a variant of

application #2 where only well-lighted sensors participate in the computation.

It was enough to set the field status of the group control structure. This field is

a boolean flag that indicates if the group is activated or not in the respective

node. This flag is computed from readings of luminosity sensor, as defined

in Listing 3.7. This additional code increased the application in 13 lines and

the number of radio messages to disseminate the application increased only in

one. We need to disseminate all the 10 messages to replace the old application

and to have the new version running in the network, using the same VM-T

previously installed in the nodes.

Listing 3.7: The additional Céu-T code for luminosity control.

1 par do

2 // p r e v i o u s c o n t r o l

3 with

4 l oop do

5 emit REQ PHOTO;

6 va r u sho r t photo = awa i t PHOTO( ) ;

7 i f photo > 10 then

8 g r F l o o r . s t a t u s=TRUE;

9 e l s e

10 g r F l o o r . s t a t u s=FALSE ;

11 end

12 awa i t 30 s ;

13 end

14 end

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 55

3.5
App #3 - Topology Control Protocol

Compared to application #1a, application #3 introduces a more ad-

vanced routing protocol. In this application, we evaluate the flexibility of Terra

to implement a complex network algorithm.

This is an application from the literature that implements a routing tree

algorithm with energy saving for WSN as implemented by Auza in his master

thesis (Auza, 2013; Auza et al., 2014). Auza’s implementation is based on the

theoretical algorithm defined by Chen and Rowe (Chen and Rowe, 2011). To

build a routing topology, the algorithm adjusts the radio transmission power

to the minimum that maintains the original network tree. The application

works in two phases. First, it executes the DTNBOR (Determine the minimal

Transmission power to reach each NeighBOR) where all nodes exchange radio

messages, gradually reducing the transmission power, to discover the minimal

value to reach all neighbors. After that, an application similar to #1a is

executed, using the chosen transmission power, to build the routing tree. Here

we evaluate the ability of the Céu-T to build network algorithms. In this case,

because we do not use ready-made protocols, we use TerraNet which contains

only low-level abstractions.

We begin focusing only on the implementation of the DTNBOR algo-

rithm without building the routing tree. The DTNBOR algorithm implemen-

tation defines different time execution windows for each node. In the beginning

of its execution window, a node sets its radio power to the maximum value

and broadcasts a HELLO message to its neighbor nodes. The HELLO message

includes the value of radio power in use. Each node, upon receiving a HELLO

message, sets its radio power at the received value and sends an answer to the

source node. This message exchange is repeated decreasing the radio power

settings until the minimal value. As the radio power is decreased, the commu-

nication may fail depending on the nodes distance. When it receives an answer,

the requester node updates a local table with the node identifier and the radio

power level. At the end of this process, all nodes will have a neighborhood

table with all neighbor nodes and the respective minimal radio power. The

selected radio power for each node is the minimal stored value that reaches

all neighbors. The implementation assumes that all nodes start together and

plays with different timers to synchronize the message exchanges without any

conflict. Because we use the node identifier to define the execution window,

the global execution time depends on the highest node identifier.

We used the TinyOS version implemented by Auza (Auza, 2013; Auza

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 56

et al., 2014)2. We do not present the pseudocode of this implementation.

Table 3.10 shows some quantitative data for the original code.

Figure 3.3 shows the block diagram for the Céu-T DTNBOR program.

Inside the main block, in the left side of the diagram, we have the DTNBOR

block in parallel with a time-out procedure. The time-out is configured to

cancel the DTNBOR execution, and considers the execution time for all nodes.

For its part, the DTNBOR block has two parallel blocks. One, in the role of

active node, sends a request a message to all neighbors. The other, in the role of

passive neighbor, answers any received requests. The request block is detailed

on the right side of the diagram. This block starts with a command that holds

the node in the passive role until the time windows (that is based on the node

identifier) elapses. After this, the node repeats, for each radio power step, a

broadcast command and a timed receive loop. The broadcast command sends

the HELLO message. The receive loop waits for any ANSWER message until a

time-out that breaks its loop to returns to the next radio power step loop.

Figure 3.3: DTNBOR block diagram

Listing 3.8 presents the complete Céu-T code for this application. Lines

2–50 contains the DTNBOR block and line 52 the DTNBOR time-out. Inside

the DTNBOR block, lines 3–36 contains the request block and lines 38–49 the

answer block. For the details of request block, after the delay in line 3, we

have the radio power step loop encompassing the broadcast HELLO message

at lines 7–14 and the timed received loop at lines 16–34. This radio power

step loop is repeated 8 times for different radio-transmission power levels and

each received ANSWER message updates the local neighbor table. The answer

block, that works in the passive mode, is represented by lines 39–49.

Listing 3.8: The Céu-T code for the application #3.

2We thank the author for making the source code available.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 57

1 par/ or do

2 par do

3 await ( ( ( nodeId−FIRST ID)∗T CYCLE) )ms ;

4 loop i , 8 do

5 var ubyte power = 7− i ;

6 // send He l lo

7 hel loMsg . type=HELLO ID ;

8 hel loMsg . source=nodeId ;

9 hel loMsg . t a r g e t=BROADCAST;

10 hel loMsg . power = power ;

11 hel loMsg . tp = 0 ;

12 setRFPower ( power ) ;

13 emit SEND( hel loMsg ) ;

14 await SEND DONE( ) ;

15 // r e c e i v e HelloAnswer

16 par/ or do

17 loop do

18 respMsg = await RECEIVE(ANSWER ID) ;

19 loop x , MAXNBORS do

20 i f nbor . id [ x]==respMsg . source then

21 nbor . power [ x ] = respMsg . power ;

22 nbor . s t a t [ x ] = 1 ;

23 break ;

24 e l s e / i f nbor . id [ x]==0 then

25 nbor . id [ x ] = respMsg . source ;

26 nbor . power [ x ] = respMsg . power ;

27 nbor . s t a t [ x ] = 1 ;

28 break ;

29 end

30 end

31 end

32 with

33 await T ANSWERS ms ;

34 end

35 end

36 await FOREVER;

37 with

38 // Receive He l lo and send answerHel lo

39 loop do

40 hel loMsg = await RECEIVE(HELLO ID ) ;

41 respMsg . type=ANSWER ID;

42 respMsg . t a r g e t=hel loMsg . source ;

43 respMsg . source=nodeId ;

44 respMsg . power = hel loMsg . power ;

45 await ( nodeId∗ANSWERDELAY)ms ;

46 setRFPower ( respMsg . power ) ;

47 emit SEND( respMsg ) ;

48 await SEND DONE( ) ;

49 end

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 58

50 end

51 with

52 await (T TOTALDTNBOR) ms ;

53 end

In WSNs network algorithms, in general, each node must implement the

active and passive roles. The active role initiates message exchanges with each

neighbor. In this case each neighbor remains passive. In the DTNBOR block

the Céu-T parallel structure supports very well this role separation. Lines 39–

49 contain a code example for this passive mode where a node answers any

received HELLO message. The request block is similar to the pattern already

identified in application #1a. Here the active node sends a request (line 13) and

waits for a while to receive the answers from its neighbors (loop at lines 17–30).

In WSNs, instead of waiting for answers from all nodes, we typically apply a

timeout to receive answers only from reachable nodes and then continue the

process. The main block also uses a timeout pattern to resume the execution.

Table 3.10 presents the quantitative data for the DTNBOR algorithm.

We don’t have the compiled result for TinyOS version because the DTNBOR

algorithm doesn’t compile without the main application for the routing tree.

Later on, we discuss the complete application considering the compiled full

application. The nesC version has about 3.7 times the number of lines of the

Céu-T version. In this case we had a significant difference in the use of global

variables. The Céu-T version has to maintain only the neighborhood table.

The nesC version, besides the neighborhood table, uses three more globals to

control the protocol flow.

Table 3.10: Quantitative metrics - for app #3 partial (Only DTNBOR)
Metric Terra TinyOS

Program lines 97 364
Bytecode size (bytes) 487 –
Machine code size (bytes) 40,000 –
Code blocks 21 –
Global variables 1 4

The implementations above do not include the code to build the routing

tree and the code to monitor the sensor. We used the code from application

#1a for these two missing operations. Table 3.11 presents the new values for

the complete application.

In the complete application, the nesC version has about 2.2 times the

number of lines compared to the Céu-T version. In the first test, the application

#1a using its own routing code, the number of lines of nesC was about 1.5 times

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 59

Table 3.11: Quantitative metrics - for app #3 complete
Metric Terra TinyOS

Program lines 261 364
Bytecode size (bytes) 1,113 –
Machine code size (bytes) 40,000 15,852
Code blocks 47 661

that of the Céu-T version. In these examples, the same increase in complexity

of the algorithm led to a greater increase in code size for nesC than to Céu-T.

On the other hand, the Terra bytecode also grows with the application, and

we must check whether it exceeds some memory limitation. From Table 2.1

in page 34, the minimum memory available for TerraNet is about 2,000 bytes.

Application #3 in TerraNet has bytecode size of 1,113 bytes, but we have to

check the total memory used by the application. This application uses 1,524

bytes, including bytecode, variables, Céu-T runtime controls, and operation

stack.

To stress the memory limitation, we complement this test with a Terra

implementation for the DTRNG (Determine transmission power using RNG-

relative neighborhood graph) (Chen and Rowe, 2011), also implemented by

Auza (Auza, 2013; Auza et al., 2014). Because this algorithm is more complex

and also includes the DTNBOR algorithm, we expect it to use more memory

than the first one. Like the DTNBOR implementation, our DTRNG imple-

mentation doesn’t include the routing tree or sensor monitoring. As DTRNG

assumes only direct node communication, we cannot use our basic routing

tree algorithm, because it uses broadcast messages. Table 3.12 presents the

quantitative data for the DTRNG implementation in Terra.

Table 3.12: Quantitative metrics - for DTRNG in Terra
Metric DTRNG

Program lines 229
Bytecode size (bytes) 1,470
Machine code size (bytes) 40,000
Code blocks 62
Total memory size 1,979
Variables and runtime control memory size 489

The two last lines of the table show the total memory used by the appli-

cation and the total memory reserved for the runtime control and variables. In

this case we have 1,979 bytes of total used memory for the DTRNG algorithm.

Yet we will need more memory for routing and sensor monitoring. The total

used memory will exceed the 2,000 bytes of the TerraNet version for MicaZ

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 60

and Mica2, but we can still use the TelosB version. From Table 2.1, TerraNet

for TelosB has about 7,500 bytes of memory available for the application.

Algorithm DTRNG may have problems to scale memory when the

network grows: it stores the neighborhood table of each neighbor locally. In

our case, we define that each node may have the maximum of 10 neighbors,

and the full neighborhood table in our implementation needs 100 registers. In

this case it uses about 25% of total used memory for flow control and variables.

If we consider 20 neighbors, the total memory size jumps to 2,625 bytes and

the total memory for runtime control and variables jumps to 43% of total used

memory.

3.6
App #4 - Volcano Application

In this test application, we evaluate Terra using a CPU-intensive appli-

cation with complex operations that tests the limit of CPU processing and

program memory. This test uses the TerraVolcano customization as defined in

Section 2.3.3.

The Volcano application3 (Tan et al., 2010; Tan et al., 2013) is based

on periodic reading of seismic data. The readings happens at 100Hz, i.e., 100

points per second. In a WSN, the network bandwidth is a bottleneck that

bars the transfer of all data to a conventional computer. The challenge is to

process these data against a complex computational model, using a WSN, in

less than one second. The solution proposed by the authors is to relay to a

conventional computer the heaviest computation and the decision about the

nodes which should execute more processing. In the first round, each sensor will

report an energy scale to the base station, which chooses a subset of sensors

dynamically to execute further advanced signal processing. The process starts

with the conventional computer, called Basestation, sending a START message

to synchronize all network nodes. Each node, within a 1 second period, first

reads the 100 points of data stream from seismic sensor, computes the energy

scale, sends this result – as a ENERGY SCALE message – to the Basestation,

and waits for a SELECT message or the timeout for the next period. Using

the received ENERGY SCALE message, the Basestation selects the nodes that

are to proceed with the computation, and sends them a SELECT message. On

receiving this message, a node starts the decision algorithm, a high-processing

computation based on Fast Fourier Transform (FFT), and sends the result, as

a DECISION message, to the Basestation. The Basestation them computes the

fusion algorithm to decide if it indicates a significant event.

3We thank the authors for making the source code available.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 61

Our evaluation focuses only on the role of WSN nodes. The application

includes two main algorithms, the Energy Scale and the Detection. The

Detection algorithm has the heaviest processing. Although the focus of the

Volcano work was the detailed measurement of performance, our goal is only

to check whether we manage to keep processing time under 1 second with our

approach.

The TerraVolcano customization, as defined in Section 2.3.3, embeds four

functions for the Energy Scale and one function for the Detection. To execute

our test we create a scenario where the SELECT message is always simulated,

in that way all cycles execute the Energy Scale and the Detection operations.

The difference are the seismic data of each cycle that determines different

execution conditions.

In our test we compare three different program versions. Two versions

were written for Terra, one using Céu-T only to glue all Volcano functions and

the other implementing in Céu-T the three first functions of Energy Scale. We

named them, respectively, Terra-A and Terra-B versions. The third version

is the original code written for TinyOS, with the modification to generate

internally the SELECT message. We included in the Céu-T versions the same

measurement points of execution time used in the original version.

Listing 3.9 presents the Céu-T pseudocode. The program has an outer

loop with cycles of at least 1 second (the real time depends of the total time to

execute the Volcano operations). The program starts by initializing the FFT

reserved memory (line 1) and reading the Gaussian model that was recorded

in the data storage memory (line 2). The core part of the program is divided

in the two main operations, the energy scale computation (lines 6–11) and the

detection algorithm (lines 14–21). The VM-T customized Volcano functions

are identified with (F1)–(F5) codes at the beginning of the respective lines.

Listing 3.9: Céu-T pseudocode for Volcano application

1 I n i t i a l i z e FFT r e s e r v e d memory

2 Read the Gaus s i an Model from data s t o r a g e memory .

3 l oop f o r each d e c i s i o n c y c l e

4 par /and

5 −−−−−−−−−−−−− Energy Sca l e −−−−−−−−−−−−−
6 Read next st ream o f s e i sm i c data

7 ( F1 ) Compute mean from raw data −− i n t e n s i t yMean ( )

8 ( F2 ) Compute s e i sm i c ene rgy −− s e i sm i cEn e r g y ( )

9 ( F3 ) Compute ene rgy s c a l e −− en e r g yS c a l e ( )

10 ( F4 ) Copy data to b u f f e r poo l −− copyBu f f e rPoo l ( )

11 Send ENERGY SCALE message

12

13 −−−−−−−−−−−−− Detect −−−−−−−−−−−−−−−−−−−

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 62

14 Wait s imu l a t i n g the SELECT message

15 l oop f o r 5 poo l data

16 i f i t has the min imal d e t e c t c o n d i t i o n s

17 ( F5 ) DECISION = c a l l d e t e c t ( )

18 break the l oop

19 end

20 end

21 Send DECISION message

22 with

23 t imeout 1 second

24 end

25 end

The Terra-A version follows exactly the defined pseudocode calling the

five Volcano functions. However, the Terra-B version replaces the calls to the

first three functions with Céu-T code. Listing 3.10 presents the Céu-T code

of the Terra-B version only for this part. The computation of the intensity

mean of raw data is based on a loop that sums the 100 values, discarding

invalid readings (lines 2–13). The seismic energy is computed (lines 16–27) by

taking the average of squared values. Finally, the energy scale is computed

(lines 30–37) as the integer value for the log(10) of the seismic energy.

Listing 3.10: Céu-T code for Terra-B – only the functions replacement part

1 ( F1 ) Compute mean from raw data −− i n t e n s i t yMean ( )

2 v a l i d c o u n t =0;

3 i n t e n s i t y me an = 0 ;

4 l oop i , count do

5 va r u long v a l = sData . v a l [ i ] ;

6 i f ( v a l != INVALID MEASUREMENT) then

7 i n t e n s i t y me an = i n t e n s i t y me a n + v a l ;

8 i n c v a l i d c o u n t ;

9 end

10 end

11 i f v a l i d c o u n t > 0 then

12 i n t e n s i t y me an = i n t e n s i t y me an / v a l i d c o u n t ;

13 end

14

15 ( F2 ) Compute s e i sm i c ene rgy −− s e i sm i cEn e r g y ( )

16 va r u long sum sq=0;

17 s e i sm i c e n e r g y = 0 ;

18 i f v a l i d c o u n t > 0 then

19 l oop i , count do

20 va r u long v a l = sData . v a l [ i ] ;

21 i f ( v a l != INVALID MEASUREMENT) then

22 va r l ong buf1 = ( v a l − i n t e n s i t y me a n ) ;

23 sum sq = sum sq + ( buf1 ∗ buf1 ) ;

24 end

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 63

25 end

26 s e i sm i c e n e r g y = sum sq / v a l i d c o u n t ;

27 end

28

29 ( F3 ) Compute ene rgy s c a l e −− en e r g yS c a l e ( )

30 va r u long base =10;

31 s c a l e =8;

32 l oop i S c a l e , 8 do

33 i f ( s e i sm i c e n e r g y < base ) then

34 s c a l e=i S c a l e ; b reak ;

35 end

36 base = base ∗ 10 ;

37 end

Table 3.13 presents the quantitative data for the three versions. Because

this experiment embeds high-complexity operations, the number of lines of

TinyOS version ranges from 6.8 to 8.5 times the size of the Terra versions. For

the TinyOS version, we counted only the lines of the core code for Volcano.

This does not consider the FFT code and the Seismic sensor code. Comparing

the A and B versions of Terra, the replacement of the 3 functions by Céu-T

code increased the number of lines by 26% and the bytecode size by 40%.

Table 3.13: Quantitative metrics - for app #4
Metric Terra-A Terra-B TinyOS Original

Program lines 129 162 1099
Bytecode size (bytes) 667 937 –
Machine code size (bytes) 45,200 45,200 35,504
Code blocks 29 40 1,479
Total script memory (bytes) 2344 2636 –

Memory allocation in the Terra Volcano version was a challenge. Apart

from the ROM, where we had to eliminate some basic sensors, such as

temperature and luminosity, to create space for the Volcano components, we

had to balance the amount of RAM memory used by the internal components

with the memory used by the script. The main difficulty was aligning the

byte stream from the seismic sensor to the Volcano functions as required for

the 16-bit microcontroller architecture. This was specially hard in respect to

some forced casting in the FFT data structure. This requires us to keep some

internal data structures in the functions, diminishing the opportunity to break

them into small pieces. This was the case of copyBufferPool() and detect()

functions. In table 3.13, the script memory size shows an example of how tight

it was to manage the RAM memory. We worked near the limit of 2,668 bytes

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 64

available for the Céu-T script in the Terra Volcano customization, as presented

in table 2.2 in section 2.3.4.

We also used the Volcano application to evaluate Terra in high-processing

condition. Similarly to the original work in Volcano for TinyOS, we measured,

for each version, the execution time for different code sections. These sections

are grouped as Mean, Energy+Scale, Copy Buffer, and Detect.

Figure 3.4 presents a graph with the values we obtained for the three

versions – Terra-B, Terra-A, and Original in TinyOS. The durations of the

four section are stacked and the three graphs have the same scale to facilitate

the comparison. The Y axis has the duration, in milliseconds, of the execution

time for the processing of each 1-second data stream in the X axis.

Although we ran the test during the first 300 seconds of data, we selected

a sampling from seconds 200–219. This sampling range contains three different

activity periods. The first period (seconds 200–208) is a full valid data stream

with no seismic events that activated the Mean, Energy + Scale, and Copy

Buffer operations. The second period (seconds 209–216) is a section combining

seismic events that activated all operations, including the Detect operation.

The third period (seconds 217–219) is a stream with small number of valid

data which does not require so much processing.

The Terra-B version, implementing some functions in Céu-T, spends

more time processing data than the other cases and almost reaches the one

second limit. As this measurements refer to only part of the code, and do not

cover the time needed to read the seismic sensor and to send messages, the total

time, may, in fact, exceed one second. This graph also shows that the time of

processing for the Terra-A version, that basically glues the embedded Volcano

functions together, has the same order of magnitude than the original TinyOS

version. The processing cost of the Detect operation is similar in the three

versions and is significant even in the TinyOS version. Breaking the full Volcano

application into different operations brings the possibility of configuring the

script, not only using different parameters when calling the operations, but

making it possible to replace or complement specific parts of the operation by

script code.

Figure 3.5 presents a magnified view of the graph comparing the Terra-

A version with the original TinyOS version. In this graph it is possible to

identify the additional cost incurred by the script interpretation, including the

flow control operations and the function calls. For example, it is possible to

see the constant difference for the CopyBuffer operation and the additional

processing for the Detect operation even outside the detection event.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 65

Figure 3.4: Comparative of execution time for the three versions – B, A, and
Original

3.7
Items outside the programming evaluation procedure

In our programming evaluation procedure we did not consider three

items: learning curve, local starvation, and invalid pointers. This section

presents our analysis and discussion for these three items. The learning curve is

evaluated based on our teaching experience in WSN programming. Terra solves

local starvations and invalid pointers imposing some restrictions at system

definition level.

3.7.1
Learning curve

We have been using Terra for teaching for at least three years. As part of

this experience, we proposed the use of WSN programming as support to teach

distributed system (Branco et al., 2013). Currently we use Terra in two courses

at PUC-Rio, one of them a graduate course on Distributed Systems, and the

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 66

Figure 3.5: Magnified view of Terra-A vs Original version

other an undergraduate course on Reactive Systems. We started by spending

about 10 hours (five classes) to introduce students to programming WSNs

with nesC and TinyOS, and including some extra time for the implementation

of RPC and of Probe/Echo (Andrews, 1991). After we started using Terra,

we spend about four hours (two classes) teaching approximately the same

material. The first class explores WSN basics, the Terra programming model,

its resources, and some simple exercises. In a second class, the students do some

exercises, including simple network routing. With that, most of the students

are able to build, in the extra time, a network protocol similar to application

#1. Besides the reduction in classroom time needed to achieve the same results,

we observe, informally, that students are more motivated and have a better

programming experience in Terra than they did before.

3.7.2
Local starvation

Generally, in WSN, starvation occurs with tight processing loops that

don’t leave the CPU free to react to other pending events. TinyOS, over which

VM-T is implemented, has a simple scheduler to execute tasks posted in a

queue. A task cannot be re-posted if it is pending in the queue. Because the

system is single threaded, each task is executed to completion before starting

the next task. Exceptions are the CPU interruptions that may execute during

the execution of a task. All interrupt handlers in TinyOS must be as short as

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 67

possible and post tasks that complete the necessary work. In the developer’s

point of view, almost everything runs as a task. The scheduler guarantees

starvation freedom only at task level, but a simple infinite loop inside a task

will block the system.

In the Terra environment we have to worry about possible infinite loops

at two programming levels. At one level are the Terra customized components

and, at the second level, the user script application. At the first level, in

nesC/TinyOS, we expect an experienced programmer to build and to test

exhaustively all components before making them available to the application

programmer. For the second level, we combine the guarantees in the original

Céu language with a specific detail of the Terra execution model. The Terra

implementation treats each Céu trail as a TinyOS task. (See Section 2.2.2 for

more details). The Céu and Céu-T compilers include in their static analysis

checks for infinite loops without await statements inside them. Thus, an infinite

loop in Céu-T code is necessarily composed of different tasks. This guarantees

that the scheduler will run all pending tasks.

3.7.3
Invalid pointers

Terra avoids invalid pointers in three different ways. First, Céu-T treats

all memory addresses statically, both for code and for variables. Second,

we implemented in Terra a simple type system that does not allow pointer

variables. (See Section 2.2.1 for more details.) Terra also offers guarantees

against out-of-bound array indexes. For constant indexes, the Terra compiler

gives an out of bound error for invalid values. For variable indexes, the assembler

opcode for array indexing carries the index max value and the Terra runtime

checks it in execution time. In case of error, the operation is not executed and

an ERROR event is generated with E IDXOVF value.

3.8
Analysis

In this section we consolidate our analysis with a general view.

Although the reduction of global variables is not explicit in all cases,

a Céu-T program tends to push globals to local procedures. This also tends

to reduce the number of possible combination of global variables and events,

keeping the reactive program logic clearer when compared to an equivalent

event-driven version. Even when we need to use global variables, in general,

these variables are strongly related to only few blocks of code.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 68

When compared to two separate operations in different position in the

code, the split phase operations using (emit+await) of Céu-T also reduce

program complexity, allowing a more concise code. Terra’s guarantees against

local starvation and invalid pointers contribute to safer code.

Handling a basic radio operation in TinyOS requires some special knowl-

edge and needs several lines of code in different parts of the nesC program.

Besides handling the message data structure and calling the send command,

the user must additionally configure some TinyOS components, define the used

interfaces, and call some functions to build the message buffer. Terra simpli-

fies this operation, because the user needs only to define the message data

structure and call the send command.

The reactive model of Céu-T has some patterns of construction that are

very useful for programming network protocols. These patterns, along with

the points identified above, allow a network algorithm written in Céu-T to be

very concise when compared to an equivalent one written in nesC/TinyOS.

The low-level abstractions of Terra for send and receive operations already

present an interface that is simpler to use than one provided by TinyOS. As

we get higher up in the abstractions levels, we may also have simpler interfaces.

But, in abstractions of general use like the grouping component, the interface

takes a number of different arguments to allow the configuration of different

operation modes. This variety of arguments make complex the use of the

component because it transposes the operation complexity to the arguments of

the interface. We have a trade-off between the program size simplification and

the component parametrization. Sometimes it may be better restrict some

internal configurations to reduce the parameterization degree and provide a

more simple interface.

As regards error checking, the VM-T implementation captures the array-

index overflow and generates a special ERROR input event to the user script.

Division by zero and stack overflow are handled similarly.

In general, the Terra system allows the VM-T expert programmer to

build customized components for use by the application developer in a specific

context. This opens the opportunity for high-level components with simple

interfaces, in contrast to the relatively complex interface of our generic group-

ing components. These interface simplifications, added to the Céu-T language

characteristics, allow a fast learning curve when compared to a programming

environment like nesC/TinyOS.

Using high-level abstraction we obtained drastic reductions in bytecode

size. A good side effect is the small amount of the messages necessary to

reprogram the application running on the network. In general, the energy cost

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 3. Programming evaluation 69

for the dissemination of this code is not significant compared to the energy

cost of a long running application. The remote reprogramming capacity, given

by the use of virtual machine, is an advantage over traditional systems like

TinyOS and Contiki. The developer easily reprograms the application and

the network nodes use much less energy than needed to disseminate the full

machine code via radio.

Although CPU-intensive processing is not common in WSN applications,

we experimented with a Terra system configuration using a specialized high-

processing application. When we embedded all high-processing functions in a

customized component, the execution time of the Terra version was compatible

with that of the original application written in TinyOS. On the other hand,

implementing high-processing operations in Céu-T may not be adequate for

some applications.

As expected, the code complexity decreases when we increase the ab-

straction level. Figure 3.6 shows the expected relation between complexity of

scripts, complexity of components, and the roles of Application programmer

versus Expert programmer. The border adjustment between code complex-

ity and abstraction level may create a simple development environment for

application programmers.

Figure 3.6: Behavior of abstraction complexity

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



4
Cost evaluation

In this chapter, we address the cost issues due the use of virtual machine

architecture, as defined in Section 1.2.2.

The next two sections present the execution strategy, the test metrics

and the test scenarios we used to measure CPU and memory overhead. The

following sections describe our observations regarding the overhead imposed

by VM-T and the time needed for code dissemination.

4.1
Execution strategy and Metrics

The test application was again compared in two different environments,

one using nesC/TinyOS and other using the specific TerraNet customization.

Table 4.1 describes all metrics we chose to help us understand and

compare resource usage in different test scenarios.

Table 4.1: Resource usage metrics
Metric Description

Cycles/Time Number of loop cycles in CPU/IO bound test.

CPU Active/Idle Cycles
Number of clock cycles in active and idle CPU
modes.

Radio/CPU Energy Amount of consumed energy.

Byte-code size
Program size in bytes/blocks to be disseminated
via radio.

To obtain values for the first three metrics we ran the tests using the

Avrora simulator (Titzer et al., 2005). Avrora can simulate a network with

MicaZ nodes. It acts at machine code level and also emulates radio-chip

operation.

4.2
Test scenarios

We chose three test scenarios to support our analysis. The first two sce-

narios are conditions of saturated execution and aim to make the VM overhead

explicit. The third scenario represents a simple and typical application. Table

4.2 shows the two environments considered in our tests.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 71

Table 4.2: Execution environments (Resource)
Environment Description

nesC/TinyOS Low level code environment.
TerraNet Low level abstraction environment.

Table 4.3 describes the application used for each test scenario. Applica-

tions #1 and #2, respectively CPU-Bound and IO-Bound, are used to stress

the system to reveal execution differences between nesC and Terra. These ap-

plications are used to identify performance impacts from the use of virtual

machine. Application #3 is a simple read sensor loop like a regular monitoring

application. We use this to show resource utilization in a normal operation con-

dition. For all tests we compared similar applications running in nesC/TinyOS

and in TerraNet.

Table 4.3: Applications
# Application Description

1 CPU-Bound An intensive CPU loop without I/O events.
2 IO-Boud An intensive I/O loop.

3
Normal oper-
ation

A simple monitoring application running in a normal
operation condition without intensive use of CPU or IO.

4.3
Results

In this section, we evaluate VM-T from two different points of view. In

Section 4.3.1, we try to estimate the overhead incurred by interpretation. To

this end, we compare computing-intensive code written in Terra and in the

native nesC programming language1. Next, in Section 4.3.2, we evaluate the

time for code dissemination and its scalability for network growth.

4.3.1
VM overhead benchmarking

We use three different tests to evaluate the overhead incurred by the

VM as compared with direct execution over TinyOS. In the first test, we

run a simple CPU-bound application: a loop that continuously increments

a value. This would be an extremely uncharacteristic pattern for sensor

network applications, which typically pass through relatively long intervals of

quiescence, followed by short periods of activity, triggered by external events.

1All program versions, including the Terra runtime, were compiled to MicaZ platform
using the same radio transmission power (CC2420 DEF RFPOWER=7).

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 72

The idea of this test is to stress the processing capacity of VM-T to the limit.

In the second test, we measure the overhead of the VM bounded by an IO

operation. In this case the application repeatedly reads data from a sensor in

a closed loop. In the third test, we measure the overhead of the VM in a more

typical scenario, in which the application repeatedly reads data from a sensor

in a periodic loop.

In each test, we run both variants of the application for five minutes.

Every ten seconds interval, all applications send the value of the loop counter

to the base station.

In both systems, programs are coded with event-based loops. In Terra,

because a tight loop is forbidden, we use a custom event to break the loop

with an await command. In the corresponding Terra custom component, the

return event is generated immediately from the request. In the nesC/TinyOS

version, each iteration posts a task representing the following iteration.

To compare the results, we use two metrics. The first one is the total

number of iterations executed along the five minutes that the applications are

left running. This number is the value of the counter sent to the base station

at time 300s. The goal of using this metric — which can be measured both

in real motes and in the simulator — is to have a rough idea of the relative

processing speeds of the two platforms. The second metric we use is the total

number of cycles in Active and Idle state2. The values for this metric were

obtained through the simulations on Avrora and help us to understand the

difference in the processing time.

Test scenario 1 - CPU-bound Application

Table 4.4 presents the results obtained with Avrora for our first scenario.

Listings 4.1 and 4.2 show the code we used for this experiment. In the nesC

version, the main loop is executed in a TinyOS task that contains only two

commands: the loop counter increment and the (re)post of the task itself. A

periodic timer sends the counter value to the basestation every 10 seconds.

The message data are copied to the radio message buffer (lines 16–20) and

the sending command (lines 21–23) is executed followed by a debug message

(lines 24–26) specific to the TOSSIM version. In Terra we have a “par” with

two sections. The first section controls the loop and increments the counter

variable (lines 3–7) and the second section sends the counter value to the

basestation every 10 seconds (lines 10–14). We use the CUSTOM event to act

as dummy event, as it forces a returned value via event interface (lines 4–5).

2TinyOS keeps the CPU in idle state when the task queue is empty. The CPU goes into
active state when it receives an interruption.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 73

Table 4.4: CPU-bound Test

Metric
Program Version

Terra(a) nesC(b) b/a

loop counter 597,511 11,735,607 19.64

active cycles 2,175,061,049 2,174,060,892 1.00

idle cycles 37,735,747 4,768 0.0

Listing 4.1: The code for CPU-bound experiment in TinyOS/nesC.

1 // CPU bound loop

2 t a s k vo i d incTask ( ){
3 coun t e r++;

4 pos t incTask ( ) ;

5 }
6

7 // Mon i to r i ng message

8 even t vo i d Rad i oCon t ro l . s t a r tDone ( e r r o r t e r r o r ){
9 c a l l sendTmr . s t a r t P e r i o d i c ( 10000 ) ;

10 pos t incTask ( ) ;

11 }
12 even t vo i d sendTmr . f i r e d ( ){
13 e r r o r t s t a t ;

14 Msg . d16 [0]++;

15 Msg . d32 [0]= coun t e r ;

16 memcpy( c a l l send . ge tPay load (

17 &sendBuf f ,

18 c a l l send . maxPayloadLength ( ) ) ,

19 &Msg ,

20 s i z e o f ( sendBS t ) ) ;

21 s t a t = c a l l send . send ( 0 x f f f f ,

22 &sendBuf f ,

23 s i z e o f ( sendBS t ) ) ;

24 i f ( s t a t != SUCCESS) {
25 dbg (APPNAME,”CM: : send ( ) : Send e r r o r \n ” ) ;
26 }
27 }

Listing 4.2: The code for CPU-bound experiment in Terra.

1 par do

2 // CPU bound loop

3 l oop do

4 emit REQ CUSTOM;

5 awa i t CUSTOM( ) ;

6 i n c msg1 . count ;

7 end

8 with

9 // Mon i to r i ng message

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 74

10 l oop do

11 awa i t 10 s ;

12 i n c msg1 . seq ;

13 emit SEND(msg1 ) ;

14 end

15 end

As expected in loops with no blocking operations, the CPU was kept busy

almost 100% of the execution time. The cost of interpretation becomes explicit

in the value of the loop counter obtained after 300 seconds. The TinyOS version

ran 19.64 times the iterations executed by the Terra version.

We also executed this same test directly on a MicaZ mote. The relation

between the values obtained for the loop counter were quite close to the ones

from the simulation. (Values were respectively 600,692 and 11,735,309.)

We now estimate the number of cycles per instruction in VM-T. The main

loop of our test script translates to six instructions in the virtual machine. We

can divide the total number of CPU cycles by the final value of the counter

(number of times that the loop was executed) to obtain the number of CPU

cycles per loop iteration, and then divide this result by 6 to estimate the

number of cycles per instruction. The result is 607 cycles, which is close to the

value of 550 cycles reported for DVM (section 4.1 §2 of (Balani et al., 2006))

and not so far from the 400-cycles value obtained in the micro-benchmark of

ASVM (section 4.5 §2 of (Levis et al., 2005)).

Test scenario 2 - IO-bound application

In this test, the application repeatedly reads the sensor and increments

the loop value when the sensor returns a value. Listings 4.3 and 4.4 shows

the code we used for this experiment. In the nesC version, the main loop is

a TinyOS event handler that again contains two commands: the loop counter

increment and the call sensor.read() call, which initiates a new sensor reading

(lines 2–5). At this point, TinyOS places the CPU in Idle state. When an

interruption occurs, TinyOS generates a new task to (re)execute the event

handler. The remainder lines of program, that send the data message, are

similar to the first scenario. In the Terra version, the loop is the main procedure

for the VM, and also contains two commands: the loop counter increment and

the instruction for requesting a value from the sensor (lines 3–7). After this

request, the VM becomes idle awaiting new events, and again TinyOS puts the

CPU in Idle state. When an interruption occurs, TinyOS generates a task to

execute the event handler for the sensor, and this in turn generates an event

for the VM. The VM then posts a task to (re)initiate the main procedure.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 75

Listing 4.3: The code for IO-bound experiment in TinyOS/nesC.

1 // I /O bound loop

2 even t vo i d s e n s o r . readDone ( e r r o r t e , u i n t 1 6 t v ){
3 coun t e r++;

4 c a l l s e n s o r . r ead ( ) ;

5 }
6

7 // Mon i to r i ng message

8 even t vo i d Rad i oCon t ro l . s t a r tDone ( e r r o r t e ){
9 c a l l sendTmr . s t a r t P e r i o d i c ( 10000 ) ;

10 c a l l s e n s o r . r ead ( ) ;

11 }
12 even t vo i d sendTmr . f i r e d ( ){
13 e r r o r t s t a t ;

14 Msg . d16 [0]++;

15 Msg . d32 [0]= coun t e r ;

16 memcpy( c a l l send . ge tPay load (

17 &sendBuf f ,

18 c a l l send . maxPayloadLength ( ) ) ,

19 &Msg ,

20 s i z e o f ( sendBS t ) ) ;

21 s t a t = c a l l send . send ( 0 x f f f f ,

22 &sendBuf f ,

23 s i z e o f ( sendBS t ) ) ;

24 i f ( s t a t != SUCCESS) {
25 dbg (APPNAME,”CM: : send ( ) : Send e r r o r \n ” ) ;
26 }
27 }

Listing 4.4: The code for IO-bound experiment in Terra.

1 par do

2 // I /O bound loop

3 l oop do

4 emit REQ PHOTO( ) ;

5 v a l u e=awa i t PHOTO;

6 i n c msg1 . count ;

7 end

8 with

9 // Mon i to r i ng message

10 l oop do

11 awa i t 10 s ;

12 i n c msg1 . seq ;

13 emit SEND(msg1 ) ;

14 end

15 end

Table 4.5 presents the results for this scenario.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 76

Table 4.5: IO-bound Test

Metric
Program Version

Terra(a) nesC(b) b/a

loop counter 27,269 29,999 1.10

active cycles 265,848,122 104,726,668 0.39

idle cycles 1,959,251,305 2,068,673,827 1.06

In this case, predictably, CPU active time was much less than in the first

test scenario. CPU was idle around 88%-95% of the time. The nesC variant

executed approximately 10% more iterations than the Terra variant. As regards

CPU cycles, however, the Terra version needed around 2.5 times the cycles

used by nesC. In Terra, CPU was active 11.95% of the time, while in nesC

only 4.82%.

Direct execution on the MicaZ mote again produced results close to the

simulator’s: the value of the counter was 27,270 for the Terra version and

29,999 for the nesC one.

In Terra, approximately 91 iterations were executed per second. In

ASVM, in a similar test using a mica mote (Hill and Culler, 2002), the ratio

of 312.5 iterations per second was obtained (5000 loops per 16.0 sec in section

4.5 §4 of (Levis et al., 2005)). The difference in values was apparently due

to the analog-digital conversion in sensor readings, as in our case the number

of iterations was the same order of magnitude of the direct execution over

nesC/TinyOS.

Test scenario 3 - IO-timer application

In this test, the application repeatedly reads the sensor every 10 seconds,

increments the loop value when the sensor returns a value, and sends this value

via radio. Listings 4.5 and 4.6 show the code we used for this experiment. In

the nesC version we have a periodic timer of 10 seconds to trigger the main

loop. This main loop is a TinyOS event handler that contains two commands:

the loop counter and the call sensor.read() call, which initiates a new sensor

reading (lines 6–9). At this point, TinyOS places the CPU in Idle state. When

the sensor interruption occurs, the program reads the sensor, sends the data

message, and waits for next timer event (again in Idle state) (lines 11-24). In

the Terra version, the loop is the main procedure for the VM, and contains

a few commands: the instruction to wait a timer, the loop counter, and the

instruction for requesting the sensor value (lines 3–5). After this request, the

VM becomes idle awaiting new events, and again TinyOS puts the CPU in

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 77

Idle state. When the sensor generates an interruption, TinyOS creates a task

to execute the event handler for the sensor, and this in turn generates an event

for the VM. After receiving the sensor event and sending the radio message

(lines 6–7), the VM posts a task to (re)initiate the main procedure.

Listing 4.5: The code for IO-timer experiment in TinyOS/nesC.

1 even t vo i d Rad i oCon t ro l . s t a r tDone ( e r r o r t e ){
2 c a l l sendTmr . s t a r t P e r i o d i c ( 10000 ) ;

3 c a l l s e n s o r . r ead ( ) ;

4 }
5

6 even t vo i d sendTmr . f i r e d ( ){
7 coun t e r++;

8 c a l l s e n s o r . r ead ( ) ;

9 }
10

11 even t vo i d s e n s o r . readDone ( e r r o r t r e s u l t , u i n t 1 6 t v a l ){
12 e r r o r t s t a t ;

13 Msg . coun t e r=coun t e r ;

14 memcpy( c a l l send . ge tPay load (

15 &sendBuf f ,

16 c a l l send . maxPayloadLength ( ) ) ,

17 &Msg ,

18 s i z e o f ( sendBS t ) ) ;

19 s t a t = c a l l send . send (0 x f f f f ,

20 &sendBuf f ,

21 s i z e o f ( sendBS t ) ) ;

22 i f ( s t a t != SUCCESS) {
23 dbg (APPNAME,”CM: : send ( ) : Send e r r o r \n ” ) ;
24 }
25 }

Listing 4.6: The code for IO-Timer experiment in Terra.

1 msg1 . count=0;

2 l oop do

3 awa i t 10 s ;

4 i n c msg1 . count ;

5 emit REQ PHOTO( ) ;

6 v a l u e=awa i t PHOTO;

7 emit SEND(msg1 ) ;

8 end

Table 4.6 presents the results for this test scenario.

In this case, as expected, CPU active time is much lesser than in the

two first scenarios. The CPU was idle around 99.6% of the time. The nesC

variant and the Terra variant executed exactly the same number of iterations.

As regards CPU cycles, however, the Terra version needed around 1.08 times

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 78

Table 4.6: IO-timer Test

Metric
Program Version

Terra(a) nesC(b) b/a

loop counter 30 30 1.00

active cycles 9,630,812 8,896,252 0.92

idle cycles 2,239,073,188 2,239,807,748 1.00

the cycles used by nesC. In Terra, the CPU was active 0.43% of the time, while

in nesC 0.41%.

Direct execution on the MicaZ mote again produced similar results to

the simulator’s: the value of the counter was 30 for the Terra version and 30

for the nesC one.

The results for this third test scenario give us an important insight about

the real costs incurred by interpretation. Although the execution of interpreted

code is more expensive than that of the native nesC code, this difference

practically disappears in a periodic timer pattern.

Energy consumption analysis

Table 4.7 shows the values of energy consumption that are reported at

the end of execution of all three test scenarios using the Avrora simulator. The

energy values are shown in Joules and represent total consumption in Terra

and in nesC. We analyse only the two major energy consumers, radio and

CPU. For the radio, we separate the energy consumption in the receive and

the transmit modes.

Table 4.7: Energy consumption results

Total CPU Energy (in Joules)

Cycles CPU Receive Transmit

CPU-bound
Terra 2,212,796,796 6.75 16.86 0.0018

nesC 2,173,038,370 6.69 16.56 0.0014

IO-bound
Terra 2,225,099,427 3.48 16.96 0.0019

nesC 2,172,629,320 3.14 16.56 0.0014

IO-timer
Terra 2,222,949,986 3.04 16.94 0.0018

nesC 2,185,740,922 2.99 16.66 0.0014

As expected, the radio energy for the receive mode is a constant value

of 0.0076 Joules per CPU Cycle. This means that energy spent in the receive

mode was the same in all tests and that the use of virtual machine doesn’t

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 79

impact this value. In general, applications must use some mechanism to reduce

the energy utilization of the radio in receive mode, like the LPL-Low Power

Listening (Polastre et al., 2004).

In the case of radio transmission energy, all three nesC executions

have used 0.0014 Joules to transmit the same 30 radio messages. In Terra,

considering the energy spent in the received mode and in the transmission, we

had a small energy overhead incurred by the code dissemination protocol, but

this is negligible in a long running application.

The difference in energy consumed by the CPU is due to the difference in

the periods of activity. In the documentation of the Atmel microcontroller (At-

mel, 2011), table DC Characteristics in pages 318/319 indicates that an active

cycle consumes roughly 2.5 times the energy consumed by an idle cycle. The

IO-bound test for Terra had 2.5 times the number of active cycles used by

nesC. However, because the total number of active cycles still remains small

in proportion to the number of idle cycles, energy consumption was only 11%

higher. In the IO-timer test, Terra had only 1.09 times the number of active

cycles used by nesC and the energy consumption was only 1.7% higher. This

overhead would typically diminish, possibly to negligible rates, in real applica-

tions, in most of which the active/idle ratio is very small. Part of this overhead

is due to the cost of code dissemination, and would also typically diminish in

long running applications.

4.3.2
Bytecode dissemination time and scalability

Although, optimal code dissemination is not part of our research goals,

we report in this Section some measurements of the dissemination time. To

avoid radio messages collisions during the flooding process, the dissemination

algorithm must include a delay after each packet is disseminated. But we would

naturally like the dissemination time to be short and to scale well. The full

upload process comprises the upload to the basestation via wired interface and

the dissemination over the network via radio messages. Here we are considering

only the time for radio dissemination. To obtain it, we need to get the start time

and the end time of the radio dissemination process. Because the process starts

with a message sent by the root node and ends at an arbitrary node (the last

one to receive the code), we need a global clock to synchronize the local clock in

each node. Our solution was to use the TinyOS simulator (TOSSIM) because

it provides a global simulated clock in all radio messages logs. Additionally,

TOSSIM uses a noise model to simulate message collisions and losses. Using

this facility, we forced the dissemination algorithm to spend some time in its

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 80

recovery stage, which would be a probable scenario in a real-world use.

We ran our test using a script for a real monitoring application that

includes routing to the basestation. The program bytecode has 24 message

blocks to be disseminated. Table 4.8 presents the dissemination times for three

scenarios. The first scenario is a very basic case with only one node. The second

scenario considers a grid with 9 nodes (3 x 3) and the third scenario considers

a grid with 49 nodes (7 x 7). In our grid network, each radio node reaches

up to 8 neighbor nodes. Only one node in the corner of the grid exchanges

messages with the basestation. This configuration forces the use of the flooding

mechanism. Figure 4.1 shows an example for the 7 x 7 grid with the radio

range highlighted for nodes 11, 32, and 44. We also measured, for each node,

the total time it took to load the program (local load time). Table 4.8 includes

the minimum, maximum, and average for local load times in each scenario. All

dissemination tests were done considering that all radios were switched on.

Figure 4.1: Simulated 7x7 grid - node 11, 32, and 44 with radio range
highlighted.

Table 4.8: Dissemination time
Scenario Total Total Avg local Min local Max local

Nodes Duration load time load time load time

#1 1 7.17 7.17 7.17 7.17
#2 9 7.25 6.76 6.70 7.17
#3 49 7.50 6.58 6.40 7.17

all durations in seconds

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 4. Cost evaluation 81

The dissemination for the single-hop scenario took 7.17 seconds for 24

messages, that is, approximately 300ms per message. The 300ms step delay

time is exactly the configuration parameter used in our algorithm. Using

one real node it is possible to measure a similar duration, but the reference

is a message sent back to the computer. In our real-node test we got 7.2

seconds. Although it is possible to use lower values for the step delay time to

reduce the total dissemination duration, we chose to be more conservative

to minimize radio collision in dense networks. The VM-T customizer may

choose different values for this parameter. This subject should be matter

of further investigation and depends on network topology. The differences

between minimum, maximum, and average local load times are of fractions

of seconds. Considering the nature of WSN applications, in general these

differences don’t affect system operation. The combination of the step delay

with the random send delay allows some nodes to receive more than one

message in the same dissemination step. When this happens, the local load

time drops to less than the standard 1.7ms.

Comparing results for the different scenarios we get the time for each

additional hop in the network. In general, as our dissemination algorithm floods

message by message in sequential waves, the total time doesn’t increase much

as the network grows. In our case this time varied from 40ms up to 55ms. These

values are consistent with our radio-send policy, where the sending message is

delayed randomly from 20ms up to 95ms. Based on the scenarios #2 and #3,

respectively with 9 and 49 nodes, the dissemination time has increased only

250ms (3.45%) for an increment of 40 nodes (444%). These results indicate

that the system scales well.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



5
Related work

Terra’s basic proposal is to combine the advantages of using application-

specific, or high-level, virtual machines with a scripting language that provides

a set of facilities and guarantees. In this section we report on works that are

related to each of these approaches and discuss how Terra relates to them.

To our knowledge, the first work proposing the use of virtual machines in

WSN is Maté (Levis and Culler, 2002). The Maté VM is built on TinyOS and

has a very simple instruction set. The code propagation and execution is broken

up into 24 instructions called capsules. A capsule fits into a single message

packet. Maté limits its context execution to only three concurrent paths, one

for sending messages, another one for receiving messages, and a third one for a

timer. Maté has up to 8 user-defined instructions that enable additional virtual

machine customization and its operand stack has a maximum depth of 16. To

address some of Maté’s limitations the Maté team built ASVM (Levis et al.,

2005). ASVM is an application-specific virtual machine. The authors proposed

a custom runtime machine to support different application-specific high-level

languages, but each language needs its own compiler. ASVM implements a

central concurrency manager to support the sequential execution on concurrent

handlers. This is an optional service to help user applications avoid race

conditions. This solution assumes that handlers are short-running routines

that do not hold on to resources for very long.

DAViM (Michiels et al., 2006) is very similar to ASVM but adds the

possibility of parallel execution. DVM (Balani et al., 2006) is based on

the application-specific VM concept from ASVM, but it uses SOS (Han et

al., 2005) as its operating system. SOS allows dynamic loading of system

modules. In DVM, it is possible to load different combinations of high-level

scripting languages and low-level runtime modules. DVM and DAViM also use

a concurrency manager like ASVM’s.

Several groups have worked on VMs for Java. VMStar (Koshy and

Pandey, 2005) uses the Java as high-level language for customized VMs.

The VMStar toolset helps to build a new VM runtime from the device

characteristics and the component library. VMStar uses a “select” concept

to register event-wait points in a sequential program. The select interface

executes event handlers sequentially to avoid race conditions, in a single-

thread implementation. VMStar inherits type-safety from Java, like the other

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 5. Related work 83

Java VMs. NanoVM (Harbaum, 2005), ParticleVM (Riedel et al., 2007),

TakaTuka (Aslam et al., 2008), and Darjeeling (Brouwers et al., 2009) also

use Java as their programming language. Inspired on TinyDB (Madden et al.,

2005), SwissQM (Mueller et al., 2007) has a query-specific instruction set and

a high-level language similar to SQL.

Cosmos and Regiment implement customizable VMs with high-level

languages that are specifically designed for WSNs. Cosmos (Awan et al., 2007)

uses mPL as high-level language and mOS as operating system. mPL supports

intra-network operation programming, that is, network-wide operations. A

Cosmos application is defined by a data-flow graph and some custom C

functions loaded within mOS. The mOS system executes the application graph

as a script. The scripting language is limited to the data flow control using

the custom mOS functions. Cosmos also allows dynamic loading of new C

functions. The graph approach also limits the application types. In Cosmos,

an event handler is represented as a Functional Component (FC). A FC uses

only local variables and its data are exchanged by input/output interface

queues. These characteristics avoid race conditions. Regiment (Newton and

Welsh, 2004; Newton et al., 2007) uses a reactive functional language with a

special semantic for intra-network operations. The runtime implements basic

operations and access to devices. A Regiment application is compiled to an

intermediate language called Token Machine(TM). A TM segment propagates

across the network and it is interpreted to execute local operations or intra-

network operations like group formation and aggregation. In Regiment, an

event handler task run to completion and cannot be blocked. This also avoids

race conditions.

Discussion

VM-T architecture combines small size with a model that is less restric-

tive than Maté’s. Because Terra implements the concurrency model of Céu, it

is possible to have several concurrent execution paths. Terra also enables up

to 255 identifiers for each group of input events, output events, and functions.

VM-T stack is defined at compile time and is limited only by memory space

shared with the application script.

Differently from DVM and Cosmos, Terra doesn’t allow low-level code

loading, but Terra natively supports remote parameterization of runtime com-

ponents. We believe Terra’s reactive programming model, similarly to Regi-

ment’s, is more suitable to event-driven application then the traditional pro-

gram models. In a Céu-T program it is possible to suspend the execution of

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 5. Related work 84

one program block and wait for an event without suspending all other program

blocks. Terra inherits the Céu execution control in which a trail (a Céu handler)

is serialized to execute to completion. Céu trails are similar to Protothreads

coroutines (Dunkels et al., 2006), because they both offer multiple sequential

lines of execution to handle concurrent activities. This execution mode mini-

mizes race conditions and doesn’t burden the user with synchronization mech-

anisms (centralized controls, interface queues, or semaphores and mutexes). It

still may get race conditions from multiples trails waiting for the same event

and writing the same memory address. However, the compiler offers an analysis

mode which find these race conditions. This analysis mode is similar to the safe

annotations from TinyOS but it is checked at compile time. Well tested built-

in components extend the safety guarantees to runtime. Céu-T avoids tight

loops which is not recommended but allowed by most of the related work. By

itself, Céu-T doesn’t give execution guarantees in intra-network operations. In

Terra, these guarantees may be given by built-in runtime intra-network op-

erations. Unlike Cosmos and Regiment, Terra doesn’t support network-wide

programming. The user must think about the application as a whole but write

the code that each node will run. However, the provision of components in-

spired by macro-programming alleviates this problem in some measure, by

abstracting some typical collective operations.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



6
Final remarks

Programming WSN system is a difficult task. The distributed system

nature and the resource limitation turn it into a complex activity and error

prone. Our research seeks how to simplify this programming activity and how

to reduce typical errors. We formulated the following as research question

for this thesis: To what extent can a programming environment based on the

combination of a reactive high-level scripting language with safety guarantees

with a virtual machine that encapsulates customized components facilitate the

task of programming WSNs, providing abstractions to simplify programming,

reducing the possibility of errors, and allowing reprogramming?

To investigate this idea we built Terra, a flexible system that uses a re-

active language combined with a virtual machine which allows to embed new

operations as components and facilitates remote distribution of scripts using

low energy consumption. In this work we described the Terra implementation

and its operation mode and evaluated Terra in different test scenarios. Our

evaluation for programming used different abstraction levels for the function-

alities available at the script level. Also we evaluate the Terra performance to

identify the resource overhead incurred from the use of virtual machine.

To meet our evaluation requirements we built three different customiza-

tions of Terra — TerraNet, TerraGrp, and TerraVolcano. TerraNet represents

our low-level abstraction environment. It includes only basic operations as sen-

sor readings and simple radio operations. The TerraGrp represents our version

with high-level abstractions. It implements a set of components for network

operations over groupings of nodes. TerraVolcano is a high-level abstraction

that uses a specialized implementation for the volcano experiment. This version

combines heavy use of CPU with large data memory.

We evaluated Terra comparing the reactive programming model of Terra

with the event-driven programming model of nesC/TinyOS. Applications in

the test experiments ranged from low-level network algorithms up to high-

level grouping operations or data processing. The evaluation produced a set of

listing and some metrics regards to programming issues in WSNs.

In the performance evaluation we collected some metrics from saturated

processing situation up to regular operation. Also we compared the Terra vir-

tual machine operation with the TinyOS operation for an equivalent program.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 6. Final remarks 86

6.1
Main findings

Our experiments showed that the Terra programming model, compared

to an event-driven programming model, simplifies the programming and gives

guarantees to a safer code.

An interesting discovery, in the programming evaluation, was related the

use of global variables. We started from the idea that a program in Terra

reduces the needs of global variables in the application. This reduction might

contribute to reduce the application complexity and subsequently reduce the

chance of programming errors. As well, we discovered that the structured

programming patterns of Céu-T allows a more clear context separation. In this

case, a global variable may be related to a few contexts in the programming,

diminishing the program complexity and subsequently reducing the chance of

programming errors.

Another point is the combination of the split phase operations using

(emit+await) of Céu-T and the simplification in the operation interfaces, this

also contribute to have a more concise code. Also, Terra’s guarantees for race-

free and against local starvation and invalid pointers contribute to safer code.

Considering the use of low-level abstractions in low-level networking

algorithms, the simplification came from the combination of Céu-T facilities,

in special the combination of some Céu-T programming patterns and global

variables, with the simplification in the interface of low-level components.

Programming low level networking algorithms has a small reduction in the

program lines, because these kind of algorithms, in general, has a transactional

model for message exchanges that hardly can be reduced. In our example of

full transactional algorithm the reduction was 35% and in the case of hybrid

algorithms the reductions reached 73%. In this test variant the major benefit

of Terra is the opportunity, if desired, to remotely changing the network

algorithm. This is useful in WSN systems in which the best network algorithm

may not be completely determined beforehand and may need modifications

during application life time.

Considering use of high-level abstractions for complex functionalities, we

show that when we embed complex components this will reduce drastically the

code size. An example of complex grouping operation compared to an example

of a simple low-level network algorithm had a reduction of 78% in the line

codes. But we also identify that creating general components may have more

complexity in the interface with functionality abstractions. In this case, the

script is more simple, but the use of component may be more complex and

may generate difficulties in the code implementation. In some cases it may be

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 6. Final remarks 87

better to offer more specialized components, with fixed internal parameters,

rather than generic components.

The performance issues evaluation shows that the virtual machine ap-

proach is viable for WSNs system. The additional costs are not so important

in a long run application. However we observed a significant trade-off between

the memory (RAM and ROM) requirement and the high-level abstraction cus-

tomizations. A complex component tends to use more ROM and RAM and

this limits, in special for small platforms, the available memory for the script

application and may also overflow the ROM. In general this has low impact

in the case of RAM, where the application script tends to be small, however

someone may write a more complex script and reach the memory limit. An-

other attention point is about high-processing operations. Our experiment with

Volcano shows that it is better to leave this operation embedded in a custom

component instead of try to execute by script.

Our experiments show that several benefits of Terra come from the

combination of two or three of the basic elements of the system: Céu-T

language, Embedded VM, and Built in components. The reduction in the

programming complexity came from the combination of the Céu-T reactive

language with the use of embedded components. The verifications from the

compiler combined with the VM implementation avoids local starvation and

invalid pointers in a Terra application. The use of the VM approach combined

with the high-level components allows very small bytecode size and low energy

cost to reprogramming an application.

In general, we are very satisfied with the demonstrated results. The

Terra approach showed that it is possible to simplify the WSN programming

while reducing the chances of typical errors. Currently we have used Terra in

undergraduate and graduate courses to teach concepts of WSN and distributed

systems. From our experience, we identified that Terra allowed to reduce the

learning curve compared to a low-level event-driven programming model.

Additionally, we exercise a bit more the reactive programming model of

Céu. Applying it in different applications brings more confidence in its use.

6.2
Future work and related improvements

The work on Terra was born from our interest in WSN macroprogram-

ming (network-wide programming) and from thinking that we needed node-

level support before moving to the network level. We might now be able to

investigate this issue using Terra as the base system for a new macropro-

gramming language. This new macroprogramming language may use Céu-T

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 6. Final remarks 88

as intermediate language or be compiled directly to the VM-T assembly code.

Another approach is to evaluate Terra’s model in the world of IoT

(Internet of Things). As WSN applications are one of the base of IoT, we

may take advantage of reconfigurable characteristic of Terra to make “things”

more adaptable. A more specific approach, also related to IoT, is to evaluate

the Terra model for use in embedded system for different kinds of appliances.

In this direction, we have already started to migrate the VM-T implementation

to the Arduino1 platform.

We believe that some future experiments and related improvements in

Terra may give a better support to the areas of macroprogramming and

IoT. One of them is to evaluate the Terra model to allow different roles

in a heterogeneous network. In this case Terra will work as a homogeneous

environment layer over heterogeneous devices, enabling the dissemination of

a specific code by node. This is important for IoT experiments that connect

different devices for specific applications like home automation, health-care

monitoring, and industrial automation.

Finally, another important evaluation is about security. This Terra

implementation relies on radio services from TinyOS, where messages are

exchanged without any security support. An intruder may capture data and

inject malicious data or scripts. A future experiment is to evaluate the

impact, in memory size and processing, of embedding some security in Terra’s

communication layer.

1www.arduino.cc

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



7
Bibliography

ANDREWS, G. R. Paradigms for process interaction in distributed pro-

grams. ACM Computing Surveys, ACM, New York, NY, USA, vol. 23,

no. 1, p. 49–90, mar. 1991. ISSN 0360-0300. Available from Internet:

<http://doi.acm.org/10.1145/103162.103164>. 3.7.1

ASLAM, F. et al. Introducing TakaTuka: a Java virtual machine for

motes. In Proceedings of the 6th ACM conference on Embed-

ded network sensor systems. New York, NY, USA: ACM, 2008. (Sen-

Sys ’08), p. 399–400. ISBN 978-1-59593-990-6. Available from Internet:

<http://doi.acm.org/10.1145/1460412.1460472>. 5

ATMEL. ATMEGA128. 2467x–avr–06/11. ed. San Jose, CA, USA, 2011. Avail-

able from Internet: <http://www.atmel.com/Images/doc2467.pdf [accesed in

june/2015]>. 4.3.1

AUZA, J. M. N. Análise de Desempenho de Algoritmos de Eficiência

Energética em RSSF. Master thesis — Pontif́ıcia Universidade Católica do Rio

de Janeiro, Departamento de Engenharia Elétrica, 2013. 94p Text in Portuguese.

3.2, 3.5, 3.5

AUZA, J. N.; BRANCO, A.; MARCA, J. Boisson de. Experimental evaluation of

energy efficient algorithms for WSN using variable transmission powers. In Sensors

(IBERSENSOR), 2014 IEEE 9th Ibero-American Congress on. Washington,

DC, USA: IEEE, 2014. p. 1–4. ISBN 978-1-4799-6835-0. 3.2, 3.5, 3.5

AWAN, A.; JAGANNATHAN, S.; GRAMA, A. Macroprogramming heterogeneous

sensor networks using Cosmos. In Proceedings of the 2nd ACM SIGOPS/Eu-

roSys European Conference on Computer Systems 2007. New York, NY,

USA: ACM, 2007. (EuroSys ’07), p. 159–172. ISBN 978-1-59593-636-3. Available

from Internet: <http://doi.acm.org/10.1145/1272996.1273014>. 1, 2.3.2, 5

BAKSHI, A. et al. The Abstract Task Graph: a methodology for architecture-

independent programming of networked sensor systems. In Proceedings

of the 2005 Workshop on End-to-End, Sense-and-Respond Sys-

tems, Applications and Services. Berkeley, CA, USA: USENIX Association,

2005. (EESR ’05), p. 19–24. ISBN 1-931971-32-3. Available from Internet:

<http://dl.acm.org/citation.cfm?id=1072530.1072535>. 2.3.2

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 7. Bibliography 90

BALANI, R. et al. Multi-level software reconfiguration for sensor net-

works. In Proceedings of the 6th ACM & IEEE International Con-

ference on Embedded Software. New York, NY, USA: ACM, 2006.

(EMSOFT ’06), p. 112–121. ISBN 1-59593-542-8. Available from Internet:

<http://doi.acm.org/10.1145/1176887.1176904>. 4.3.1, 5

BOUSSINOT, F.; SIMONE, R. de. The ESTEREL language. Proceedings of the

IEEE, vol. 79, no. 9, p. 1293 –1304, sep 1991. ISSN 0018-9219. 2.1.2

BRANCO, A. A WSN programming model with a dynamic reconfigu-

ration support. Master thesis — PONTIF́ICIA UNIVERSIDADE CATÓLICA

DO RIO DE JANEIRO - PUC-RIO, april 2011. Text in Portuguese.

Available from Internet: <http://www.maxwell.lambda.ele.puc-rio.br/Busca -

etds.php?strSecao=resultado&nrSeq=18309@2>. Cited jan 2015. 2.3.2

BRANCO, A. et al. Teaching concurrent and distributed computing – initiatives

in Rio de Janeiro. In Parallel and Distributed Processing Symposium Work-

shops PhD Forum (IPDPSW), 2013 IEEE 27th International. Washington,

DC, USA: IEEE, 2013. p. 1318–1323. 3.7.1

BRANCO, A. et al. Terra: Flexibility and safety in Wireless Sensor Networks.

ACM Transactions on Sensor Networks, ACM, New York, NY, USA, vol. 11,

no. 4, p. 59:1–59:27, sep. 2015. ISSN 1550-4859. Available from Internet:

<http://doi.acm.org/10.1145/2811267>. 2.2

BROUWERS, N.; LANGENDOEN, K.; CORKE, P. Darjeeling, a feature-rich VM

for the resource poor. In Proceedings of the 7th ACM Conference on

Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2009.

(SenSys ’09), p. 169–182. ISBN 978-1-60558-519-2. Available from Internet:

<http://doi.acm.org/10.1145/1644038.1644056>. 5

CERVANTES, H.; DONSEZ, D.; TOUSEAU, L. An architecture description lan-

guage for dynamic sensor-based applications. In Consumer Communications

and Networking Conference, 2008. CCNC 2008. 5th IEEE. Washington,

DC, USA: IEEE, 2008. p. 147–151. ISSN 0197-2618. 2.3.2

CHEN, X.; ROWE, N. Saving energy by adjusting transmission power in wireless

sensor networks. In Global Telecommunications Conference (GLOBECOM

2011), 2011 IEEE. Washington, DC, USA: IEE, 2011. p. 1–5. ISSN 1930-529X.

3.5, 3.5

DUNKELS, A.; GRONVALL, B.; VOIGT, T. Contiki - a lightweight and flexible

operating system for tiny networked sensors. In Local Computer Networks,

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 7. Bibliography 91

2004. 29th Annual IEEE International Conference on. Washington, DC,

USA: IE, 2004. p. 455–462. ISSN 0742-1303. 1.2, 2.1.1, 2.1.2

DUNKELS, A. et al. Protothreads: simplifying event-driven programming of

memory-constrained embedded systems. In SenSys ’06: Proceedings of the

4th international conference on Embedded networked sensor systems. New

York, NY, USA: ACM, 2006. p. 29–42. ISBN 1-59593-343-3. 3.1, 5

GAY, D. et al. The nesC language: A holistic approach to networked embedded

systems. ACM, New York, NY, USA, p. 1–11, 2003. 2.1, 2.1.1, 2.1.2, 3.1

GNAWALI, O. et al. Collection tree protocol. In Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems. New York, NY, USA:

ACM, 2009. (SenSys ’09), p. 1–14. ISBN 978-1-60558-519-2. Available from

Internet: <http://doi.acm.org/10.1145/1644038.1644040>. 3.2, 3.3, 3.3.2

GREGG, D. et al. The case for virtual register machines. Science of Computer

Programming, vol. 57, no. 3, p. 319 – 338, 2005. ISSN 0167-6423. Advances in

Interpreters, Virtual Machines and Emulators IVME’03. Available from Internet:

<http://www.sciencedirect.com/science/article/pii/S0167642305000389>. 2.2.2

HAN, C.-C. et al. A dynamic operating system for sensor nodes. In

Proceedings of the 3rd international Conference on Mobile Sys-

tems, Applications, and Services. New York, NY, USA: ACM, 2005.

(MobiSys ’05), p. 163–176. ISBN 1-931971-31-5. Available from Internet:

<http://doi.acm.org/10.1145/1067170.1067188>. 5

HARBAUM, T. The NanoVM - Java for the AVR. 2005. Available from

Internet: <http://www.harbaum.org/till/nanovm/index.shtml>. 5

HILL, J. L.; CULLER, D. E. Mica: A wireless platform for deeply embedded

networks. IEEE Micro, IEEE Computer Society Press, Los Alamitos, CA, USA,

vol. 22, no. 6, p. 12–24, nov. 2002. ISSN 0272-1732. Available from Internet:

<http://dx.doi.org/10.1109/MM.2002.1134340>. 4.3.1

IERUSALIMSCHY, R. A text pattern-matching tool based on parsing expression

grammars. Software – Practice & Experience, John Wiley & Sons, Inc., New

York, NY, USA, vol. 39, no. 3, p. 221–258, mar. 2009. ISSN 0038-0644. Available

from Internet: <http://dx.doi.org/10.1002/spe.v39:3>. 2.2.2

KOSHY, J.; PANDEY, R. VMSTAR: synthesizing scalable runtime environments

for sensor networks. In Proceedings of the 3rd international conference

on Embedded networked sensor systems. New York, NY, USA: ACM,

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 7. Bibliography 92

2005. (SenSys ’05), p. 243–254. ISBN 1-59593-054-X. Available from Internet:

<http://doi.acm.org/10.1145/1098918.1098945>. 5

KOTHARI, N. et al. Reliable and efficient programming abstractions for wireless

sensor networks. PLDI ’07: Proceedings of the 2007 ACM SIGPLAN

Conference on Programming Language Design and Implementation, ACM,

New York, NY, USA, p. 200–210, 2007. 1, 2.3.2

LEVIS, P. Experiences from a decade of TinyOS development. In Proceed-

ings of the 10th USENIX Conference on Operating Systems De-

sign and Implementation. Berkeley, CA, USA: USENIX Association, 2012.

(OSDI’12), p. 207–220. ISBN 978-1-931971-96-6. Available from Internet:

<http://dl.acm.org/citation.cfm?id=2387880.2387901>. 1.2.1

LEVIS, P.; CULLER, D. Maté: a tiny virtual machine for sensor networks. In

ASPLOS-X: Proceedings of the 10th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems.

New York, NY, USA: ACM, 2002. p. 85–95. ISBN 1-58113-574-2. 3.3.1, 5

LEVIS, P.; GAY, D.; CULLER, D. Active sensor networks. In Proceed-

ings of the 2nd Conference on Symposium on Networked Sys-

tems Design & Implementation - Volume 2. Berkeley, CA, USA:

USENIX Association, 2005. (NSDI’05), p. 343–356. Available from Internet:

<http://dl.acm.org/citation.cfm?id=1251203.1251228>. 4.3.1, 4.3.1, 5

LEVIS, P. et al. TOSSIM: accurate and scalable simulation of entire TinyOS

applications. In Proceedings of the 1st international conference on Em-

bedded networked sensor systems. New York, NY, USA: ACM, 2003.

(SenSys ’03), p. 126–137. ISBN 1-58113-707-9. Available from Internet:

<http://doi.acm.org/10.1145/958491.958506>. 2.1.1

LEVIS, P. et al. TinyOS: An operating system for sensor networks. In Ambient

Intelligence. [S.l.]: Springer Verlag, 2004. 1.2, 2.1, 2.1.1, 3.1

MADDEN, S. R. et al. TinyDB: an acquisitional query processing system for sensor

networks. ACM Transactions on Database Systems, ACM, New York, NY,

USA, vol. 30, no. 1, p. 122–173, 2005. ISSN 0362-5915. 2.3.2, 5

MICHIELS, S. et al. DAViM: a dynamically adaptable virtual machine for

sensor networks. In Proceedings of the international workshop on

Middleware for sensor networks. New York, NY, USA: ACM, 2006.

(MidSens ’06), p. 7–12. ISBN 1-59593-424-3. Available from Internet:

<http://doi.acm.org/10.1145/1176866.1176868>. 5

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 7. Bibliography 93

MOTTOLA, L.; PICCO, G. P. Programming wireless sensor networks: Fundamental

concepts and state of the art. ACM Computing Surveys, ACM, New York, NY,

USA, vol. 43, no. 3, p. 19:1–19:51, apr. 2011. ISSN 0360-0300. Available from

Internet: <http://doi.acm.org/10.1145/1922649.1922656>. 1

MUELLER, R.; ALONSO, G.; KOSSMANN, D. SwissQM: Next generation data

processing in sensor networks. In Third Biennial Conference on Innovative

Data Systems Research. [S.l.: s.n.], 2007. 5

NEWTON, R.; MORRISETT, G.; WELSH, M. The Regiment macroprogramming

system. In IPSN ’07: Proceedings of the 6th International Conference on

Information Processing in Sensor Networks. New York, NY, USA: ACM, 2007.

p. 489–498. ISBN 978-1-59593-638-X. 2.3.2, 5

NEWTON, R.; WELSH, M. Region streams: functional macroprogramming for

sensor networks. In DMSN ’04: Proceeedings of the 1st International

Workshop on Data Management for Sensor Networks. New York, NY, USA:

ACM, 2004. p. 78–87. 2.3.2, 5

OUSTERHOUT, J. Scripting: Higher-level programming for the 21st century. IEEE

Computer, vol. 31, no. 3, p. 23–30, 1998. 1.1

POLASTRE, J.; HILL, J.; CULLER, D. Versatile low power media access for

wireless sensor networks. In Proceedings of the 2Nd International Conference

on Embedded Networked Sensor Systems. New York, NY, USA: ACM,

2004. (SenSys ’04), p. 95–107. ISBN 1-58113-879-2. Available from Internet:

<http://doi.acm.org/10.1145/1031495.1031508>. 4.3.1

RIEDEL, T.; ARNOLD, A.; DECKER, C. Poster abstract: An OO approach to

sensor programming. In European conference on Wireless Sensor Networks

(EWSN). [S.l.: s.n.], 2007. 5

SANT’ANNA, F. et al. Safe system-level concurrency on resource-constrained

nodes. In Proceedings of the 11th ACM Conference on Embedded Net-

worked Sensor Systems. New York, NY, USA: ACM, 2013. (SenSys ’13), p.

11:1–11:14. ISBN 978-1-4503-2027-6. 1.1, 2.1, 2.1.2, 2.1.2, 4, 3.1

TAN, R. et al. Quality-driven volcanic earthquake detection using wireless sensor

networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st.

Washington, DC, USA: IEEE, 2010. p. 271–280. ISSN 1052-8725. 2.3, 2.3.3,

3.2, 3.6

TAN, R. et al. Fusion-based volcanic earthquake detection and timing in wireless

sensor networks. ACM Transactions on Sensor Networks, ACM, New York,

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Chapter 7. Bibliography 94

NY, USA, vol. 9, no. 2, p. 17:1–17:25, apr. 2013. ISSN 1550-4859. Available from

Internet: <http://doi.acm.org/10.1145/2422966.2422974>. 2.3, 2.3.3, 3.2, 3.6

TITZER, B. L.; LEE, D. K.; PALSBERG, J. Avrora: scalable sensor network

simulation with precise timing. In Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks. Piscataway, NJ,

USA: IEEE Press, 2005. (IPSN ’05). ISBN 0-7803-9202-7. Available from Internet:

<http://dl.acm.org/citation.cfm?id=1147685.1147768>. 4.1

WIKIPEDIA. List of wireless sensor nodes — Wikipedia, The

Free Encyclopedia. May 2015. [Online; accessed 1-July-2015]. Available

from Internet: <https://en.wikipedia.org/w/index.php?title=List_of_

wireless_sensor_nodes&oldid=662572493>. 2.1.1

https://en.wikipedia.org/w/index.php?title=List_of_wireless_sensor_nodes&oldid=662572493
https://en.wikipedia.org/w/index.php?title=List_of_wireless_sensor_nodes&oldid=662572493
DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



A
Terra – complementary informations

A.1
Execution model example

We build a very simple script to exemplify the Terra execution model.

This script creates two variables, sets a value to the first variable, waits two

seconds, and sets a value to the second variable. Listing A.1 presents the Céu-T

script and Listing A.2 presents a commented assembler code for the simple

example.

Listing A.1: A simple example in Céu-T of Terra execution control.

1 va r byte a , b ;

2 a=10;

3 awa i t 2000ms ;

4 b=20;

In Listing A.2, we can observe that the first eight bytes of memory was

allocated for timer control (lines 3–10). The next three bytes was allocated

for variables (lines 14–16). The execution starts in the first entry point and

executes, in the same TinyOS task, up to the end opcode (lines 20–30).

The opcode clken c sets the clock 0 with a timer of 2000 milliseconds and

the address 30 as entry point for the end of timer. At this point the execution

is suspended and it waits to the timer event. When the timer event identifies

occurs, the execution is restarted from the stored address. In this case it goes

to address 30 where starts the second entry point (line 34–37).

Listing A.2: A simple example in assembler code of Terra execution control.

1 −− Timer c o n t r o l space

2 Addr , Data addr

3 00008 0000 wClock 0

4 00009 0001

5 00010 0002

6 00011 0003

7 00012 0004

8 00013 0005

9 00014 0006

10 00015 0007

11

12 −− Vars space

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Appendix A. Terra – complementary informations 96

13 Addr , Data addr

14 00016 0008 $ r e t : | i n t e r n a l use v a r i a b l e

15 00017 0009 a : | va r by te a ;

16 00018 0010 b : | va r by te b ;

17

18 −− F i r s t e n t r y po i n t

19 Addr , bytecode , mnemonic | Ceu−T code

20 00019 c4 s e t c byte 9 10 | a = 10

21 00020 09

22 00021 0a

23 00022 29 c l k e n c 0 2000 30 | awa i t 2000ms ;

24 00023 03

25 00024 00

26 00025 07

27 00026 d0

28 00027 00

29 00028 05

30 00029 01 end | end

31

32 −− Second en t r y po i n t

33 Addr , bytecode , mnemonic | Ceu−T code

34 00030 c4 s e t c byte 10 20 | b = 20

35 00031 0a

36 00032 14

37 00033 01 end | end

A.2
Terra operation

After VM-T is loaded at all network nodes, the user can upload his script

to be disseminated via radio to the network nodes.

The VM is typically loaded over a wired interface for each node as for

any TinyOS program. It is also possible to run a simulated version of VM-T in

the TOSSIM TinyOS Simulator or in emulators like AVRORA and COOJA.

In a typical use of Terra, the programmer writes a Céu-T program, com-

piles it, and uploads its bytecode to the network. The compilation process

must include a specific Terra configuration file for the chosen virtual machine.

The Céu-T program can only use events and functions defined in the configu-

ration file. The generated bytecode must then be disseminated over the WSN

using Terra’s upload tool. This tool transfers the bytecode to the basestation

node connected to the computer via wired interface. The base station node

then starts the dissemination algorithm to send the bytecode program, which

is divided in blocks, to all nodes. This is a basic flooding algorithm where all

nodes forward each incoming message until all nodes are reached. Figure A.1

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Appendix A. Terra – complementary informations 97

presents the load interface of Terra Tool.

Figure A.1: Terra Tool - load bytecode interface

A.3
Integration between script and components

In Céu, the user program may indicate a list of external events and

functions (written in C) that will be called. In the virtual machine approach,

the script code should call only events and functions that have been previously

embedded in the virtual machine over which it will execute. We have thus

decided that, besides input and output events, the VM components would

also provide functions in order to allow some interactions to occur in a more

natural way. Typical examples of functions are getNodeId(), that returns the

node identifier, and groupInit(), that sets parameters for a node to participate

in a group of nodes.

System calls behave like normal function calls and are used to initialize

and configure the components (e.g. groupInit()). The invocation of a system

call is synchronous: control returns to the script when the system call finishes

execution. The developer writing new system calls should make sure their

implementation does not block (this restriction is compatible with the intended

use of system calls). Output events are used to request asynchronous operations

to components (e.g. emit REQ TEMP();). Signaling an output event is an

asynchronous operation, and returns immediately, without blocking the script.

Input events, in contrast, cross the VM boundary towards the script and guide

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Appendix A. Terra – complementary informations 98

its execution through successive reactions. An event occurrence starts a new

reaction in the script, awaking all trails awaiting that event (e.g, await TEMP).

The virtual machine developer must describe the custom data structures,

external events and functions that the VM provides using the Céu-T syntax

for configuration blocks. These descriptions and some definitions of constant

values must be written in a configuration file to be included in the user

application program. The customized virtual machine and the configuration

file must be distributed together in order to ensure the correct execution of

the user program. The Céu-T compiler can generate, without any modification,

the bytecode of any scripts compatible to the new configuration.

Listing A.3 shows an example of a configuration file. The header of

configuration block defines the name and the version of the customization. Also

defines, for each compatible platform, the amount, in bytes, of RAM memory

available to the application script. The body of configuration block defines the

events and functions available in the customization. In this example we define

two output events, one input event and two functions. Event definitions have

always two types in its definition, the first is the returned value and the second

is its argument. Function definitions have a first type that defines its returned

value and may have a list of types of its arguments. All definitions must have,

at the end of line, a unique number for each type of definition. This number

is used to identify the respective operation inside the VM-T.

Listing A.3: A simple configuration block example.

1 c o n f i g

2 name : TerraNet ,

3 code : 00 . 03 . 00 ,

4 {
5 t e l o s b : 5808 ,

6 micaz : 2016 ,

7 mica2 : 2016 ,

8 }
9 do

10 output vo i d REQ TEMP vo i d 1 ;

11 output vo i d SEND SENSOR radioMsg 2 ;

12

13 i n pu t u sho r t TEMP vo i d 1 ;

14

15 f u n c t i o n ubyte getNodeId ( ) 1 ;

16 f u n c t i o n ubyte queuePut ( rad ioMsg ) 2 ;

17 end

Figure A.4 list the definition file to be included into the VM custom

module implementation. This definition is related to same definitions for the

configuration presented in the Figure A.3.

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Appendix A. Terra – complementary informations 99

Listing A.4: A include file related to a configuration block.

1 t y p ed e f n x s t r u c t sensorMsg {
2 n x u i n t 8 t i d ;

3 n x u i n t 1 6 t v a l u e ;

4 } s en so rMsg t ;

5

6 enum {
7 O REQ TEMP = 1 ;

8 O SEND SENSOR = 2 ;

9

10 I TEMP = 1 ;

11

12 F GETNODEID = 1 ;

13 F QUEUEPUT = 2 ;

14 } ;

Figure A.5 presents a partial implementation for the elements introduced

in the Figure A.4. The two first functions are called from the VM decoder, the

fist function procOutevt() dispatch any defined output events and the function

callFunction() dispatch any defined customized functions. Lines 17–22 shows

an example of a custom function that returns a value via stack. Lines 24–27

has a example of an external event call. Lines 29–34 presents an example how

a input event is put in the queue of the VM engine.

Listing A.5: VM Customization – input/output events and functions.

1 // Output even t d i s p a t c h e r

2 command void VM. procOutEvt ( u i n t 8 t id , u in t 32 t value ){
3 switch ( id ){
4 case O REQ TEMP: proc req temp ( id , va lue ) ; break ;

5 case O SEND SENSOR: p ro c s end s en so r ( id , va lue ) ; break ;

6 }
7 }
8

9 // Function d i s p a t c h e r

10 command void VM. ca l lFunc t i on ( u i n t 8 t id ){
11 switch ( id ){
12 case F GETNODEID: func getNodeId ( id ) ; break ;

13 case FQUEUEPUT: func queuePut ( id ) ; break ;

14 }
15 }
16

17 // Pushing a va l u e to the s t a c k

18 void func getNodeId ( u in t 16 t id ){
19 u in t 16 t s t a t ;

20 s t a t = TOS NODE ID;

21 s i g n a l VM. push ( s t a t ) ;

22 }
23

24 // Ca l l i n g a ou tpu t even t

25 void proc req temp ( u in t 16 t id , u in t 32 t value ){

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA



Appendix A. Terra – complementary informations 100

26 c a l l S TEMP. read ( ) ;

27 }
28

29 // Queueing an inpu t even t + va l u e

30 u in t 16 t lastTemp ;

31 event void S TEMP. readDone ( e r r o r t r e su l t , u in t 16 t va l )

32 lastTemp = val ;

33 s i g n a l VM. queueEvt (I TEMP, 0 , &lastTemp ) ;

34 }

DBD
PUC-Rio - Certificação Digital Nº 1112677/CA


	Scripting customized components for Wireless Sensor Networks
	Contents
	Introduction
	Research Question
	Major problems in programming WSNs
	Contributions
	Document structure

	Terra programming System
	Terra basics
	Terra in details
	Terra Customizations

	Programming evaluation
	Execution strategy and Metrics
	Test applications
	App #1 - Multi-Hop monitoring & alarm
	App #2 - Complex Grouping
	App #3 - Topology Control Protocol
	App #4 - Volcano Application
	Items outside the programming evaluation procedure
	Analysis

	Cost evaluation
	Execution strategy and Metrics
	Test scenarios
	Results

	Related work
	Final remarks
	Main findings
	Future work and related improvements

	Bibliography
	Terra – complementary informations
	Execution model example
	Terra operation
	Integration between script and components




