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Coordinator of the Centro Técnico Cient́ıfico da PUC–Rio

Rio de Janeiro, September 2nd, 2015

DBD
PUC-Rio - Certificação Digital Nº 1121802/CA



All rights reserved.

Bruno Barbieri de Pontes Cafeo

Bruno Cafeo joined PUC-Rio as a Ph.D. student on Software
Engineering in the Informatics Department in 2011. He
visited the University of Lancaster – UK in 2014 to work
with Prof. Jaejoon Lee’s team. In addition, he worked with
the research group headed by Prof. Sven Apel at University
of Passau – Germany in 2014. Bruno was also a collaborator
in under-graduation courses at PUC-Rio. In addition, he
has also been a collaborator and has participated in the
writing of a number of research projects. Bruno began his
history in Informatics in 2000, when he started his technical
school in Informatics at the São Paulo State University
(UNESP). After that, he received a B.Sc. degree in Computer
Science in 2009 and a M.Sc. degree in Computer Science
and Mathematical Computing in 2011 from the University of
São Paulo (USP). His main research interests are in the area
of software testing, aspect-oriented software development,
feature-oriented programming, software product lines,
software maintenance, and adaptive systems.

Bibliographic data

Cafeo, Bruno Barbieri de Pontes

On the Relationship between Feature Dependencies
and Change Propagation / Bruno Barbieri de Pontes
Cafeo; advisor: Alessandro Fabricio Garcia. — 2015.

167 f.; 30 cm

Tese (doutorado) - Pontif́ıcia Universidade Católica do
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Abstract

Cafeo, Bruno Barbieri de Pontes; Garcia, Alessandro Fabricio (advisor).
On the Relationship between Feature Dependencies and
Change Propagation. Rio de Janeiro, 2015. 167p. DSc Thesis —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Features are the key abstraction to develop and maintain software

product lines. A challenge faced in the maintenance of product lines is the

understanding of the dependencies that exist between features. In the source

code, a feature dependency occurs whenever program elements within the

boundaries of a feature’s implementation depend on elements external to that

feature. Examples are either attributes or methods defined in the realisation

of a feature, but used in the code realising other features. As developers

modify the source code associated with a feature, they must ensure that other

features are consistently updated with the new changes – the so-called change

propagation. However, appropriate change propagation is far from being trivial

as features are often not modularised in the source code. In this way, given a

change in a certain feature, it is challenging to reveal which (part of) other

features should also change. Change propagation becomes, therefore, a central

and non-trivial aspect of software product-line maintenance. Developers may

overlook important parts of the code that should be revised or changed, thus

not fully propagating changes. Conversely, they may also unnecessarily analyse

parts that are not relevant to the feature-maintenance task at hand, thereby

increasing the maintenance effort or even mis-propagating changes. The

creation of a good mental model based on the structure of feature dependencies

becomes essential for gaining insight into the intricate relationship between

features in order to properly propagate changes. Unfortunately, there is no

understanding in the state of the art about structural properties of feature

dependencies that affect change propagation. This understanding is not yet

possible as: (i) there is no conceptual characterisation and quantification means

for structural properties of feature dependency, and (ii) there is no empirical

investigation on the influence of these properties on change propagation.

In this context, this thesis presents three contributions to overcome the

aforementioned problems. First, we develop a study to understand change

propagation in presence of feature dependencies in several industry-strength

product lines. Second, we propose a measurement framework intended to

quantify structural properties of feature dependencies. We also develop a

study revealing that conventional metrics typically used in previous research,
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such as coupling metrics, are not effective indicators of change propagation

in software product lines. Our proposed metrics consistently outperformed

conventional metrics. Third, we also propose a method to support change

propagation by facing the organisation of feature dependency information as

a clustering problem. We evaluate if our proposed organisation has potential

to help developers to propagate changes in software product lines.

Keywords

Feature Dependency; Change Propagation; Software Product Lines;

Maintenance; Feature Interface.
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Resumo

Cafeo, Bruno Barbieri de Pontes; Garcia, Alessandro Fabricio.
Investigando o Relacionamento entre Dependência de
Caracteŕısticas e Propagação de Mudanças. Rio de Janeiro,
2015. 167p. Tese de Doutorado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Caracteŕısticas são abstrações-chave para o desenvolvimento e

manutenção de linhas de produto de software. Um desafio encarado na

manutenção de linhas de produto de software é o entendimento das

dependências que existem entre caracteŕısticas. No código-fonte, uma

dependência entre caracteŕısticas ocorre sempre que um elemento de programa

dentro dos limites de implementação de uma caracteŕıstica depende de

elementos externos a esta caracteŕıstica. Exemplos são atributos ou métodos

definidos na implementação de uma caracteŕıstica, mas utilizados no código

responsável pela implementação de outra caracteŕıstica. A medida que

desenvolvedores modificam o código-fonte associado com uma caracteŕıstica,

eles devem garantir que outras caracteŕısticas são consistentemente atualizadas

com as novas mudanças – as chamadas propagações de mudanças. No

entanto, a apropriada propagação de mudanças não é uma tarefa trivial,

pois caracteŕısticas geralmente não são modularizadas no código-fonte.

Dessa forma, dado uma mudança em uma determinada caracteŕıstica, é

desafiador revelar quais (partes de) outras caracteŕısticas também devem

ser alteradas. Propagação de mudanças se torna, portanto, um aspecto

central e não-trivial da manutenção de linhas de produto de software.

Desenvolvedores podem negligenciar partes importantes de código que

deveriam ser revisadas ou alteradas, portanto não propagando mudanças

de forma completa. Por outro lado, desenvolvedores também podem analisar

de forma desnecessária partes de código que não são relevantes para a

tarefa de manutenção de caracteŕısticas, portanto aumentando o esforço de

manutenção ou até propagando mudanças de forma indevida. A criação de

um bom modelo mental da estrutura das dependências de caracteŕısticas se

torna essencial para ganhar compreensão sobre o complexo relacionamento de

caracteŕısticas com o objetivo de propagar mudanças de forma apropriada.

Infelizmente, não existe entendimento no estado-da-arte sobre propriedades

estruturais de dependências de caracteŕısticas que afetam a propagação

de mudanças. Este entendimento ainda não é posśıvel, pois: (i) não existe

meios de caracterização e quantificação para propriedades estruturais de

dependências de caracteŕısticas, e (ii) não existem investigações emṕıricas
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sobre a influência dessas propriedades na propagação de mudanças. Nesse

contexto, esta tese apresenta três contribuições para superar os problemas

acima mencionados. Primeiro, foi desenvolvido um estudo para entender a

propagação de mudanças na presença de dependência de caracteŕısticas em

várias linhas de produto industriais. Segundo, é proposto um arcabouço

de medidas com o propósito de quantificar propriedades estruturais de

dependências de caracteŕısticas. Nesse contexto, também foi desenvolvido

um estudo revelando que métricas convencionais tipicamente aplicadas em

trabalhos de linha de produto, tais como a métrica de acoplamento, não

são indicadores efetivos da propagação de mudanças em linhas de produto

de software. As métricas propostas nesta tese superaram consistentemente

as métricas convencionais estudadas. Terceiro, esta tese propõe um método

para auxiliar a propagação de mudanças encarando informações sobre a

organização de dependência de caracteŕısticas encarando-as como um problema

de agrupamento. Foi avaliado se a organização de informações proposta nesta

tese tem potencial para auxiliar desenvolvedores a propagar mudanças em

linhas de produto de software.

Palavras-Chave

Dependência de Caracteŕısticas; Propagação de Mudanças; Linha de

Produto de Software; Manutenção de Software; Interface de Caracteŕısticas.
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1

Introduction

Software product lines have gained considerable attention in recent years

both in industry and in academia. Product-line software engineering empowers

high-level software reuse by exploiting commonality and variability among

the member products of a product line [YE and LIU 2005]. To achieve these

goals, product-line approaches decompose software into units of functionality

called features. Features are cohesive units of behaviour in a software, and

serve to express commonalities and variabilities in product lines [POHL et al.

2005, APEL et al. 2013]. For example, in a mobile operating system, individual

products share a common set of features (e.g. phone call and text message),

but differ in other features (e.g. screen resolution or media management).

Software maintenance is an inevitable activity in the lifecycle of all types

of software systems, including software product lines. All successful software

projects stimulate user-generated requests for change [DAM et al. 2006]. As in

any type of software, a continual change effort is also needed in product-line’s

life cycle. In particular, an important concern in product-line maintenance

is to preserve consistency between features by propagating changes in their

implementation [THAO 2012]. As developers modify the source code associated

with a feature, such as methods or attributes, they must ensure that other

features are consistently updated with the new changes.

However, appropriate change propagation is far from being trivial as

features are often not modularised in the source code [APEL et al. 2013]. Given

a change in a certain feature, it is challenging to reveal which other features

should also change. As a single feature is often not localised in a single module

in the implementation [KÄSTNER et al. 2011], developers cannot simply resort

to module dependencies to infer to which features should be changed. Change

propagation becomes, therefore, a central and non-trivial aspect of software

product-line maintenance.

Several studies [ARNOLD and BOHNER 1993, PARNAS 1994,

BROOKS 1995, ARNOLD 1996, RAJLICH 1997, ZHIFENG and RAJLICH

2001, HASSAN and HOLT 2004] elaborate on the difficulties of propagating

changes in the presence of module dependencies in stand-alone programs

(i.e., non-product-line programs). To cite just a few, Arnold and Bohner
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Chapter 1. Introduction 16

present several models of change propagation that assist the propagation of

changes based on module dependencies and slicing techniques [ARNOLD and

BOHNER 1993]. Rajlich proposes a method to support the change process

by using inconsistent module dependencies, i.e. simulation of mistakenly

propagated changes [RAJLICH 1997]. Parnas tackled the issue of software

aging and warned about modifications performed in the source code by

developers, who are not sufficiently knowledgeable of the structure of the

program which involves, among others, module dependencies [PARNAS 1994].

Although valuable, these and other studies about change propagation in

stand-alone programs do not address the particularities of software product

lines. The units of decomposition in software product lines are features rather

than modules. As a single feature is often not localised in a single module,

approaches for propagating changes in stand-alone programs are not applicable

to software product lines.

In the context of software product lines, Ribeiro et al. identified that

not fully propagating changes across features may cause an increase in

the maintenance effort [RIBEIRO et al. 2011]. This study indicates a high

complexity in propagating changes in software product lines due to feature

dependencies. A feature dependency occurs in the source code of a product

line whenever one or more program elements (e.g. code blocks, methods or

attributes) within the boundaries of a feature depend on elements external to

that feature [RIBEIRO et al. 2011]. A simple example is an attribute defined

in one feature and used in another feature. In this way, a dependency between

two features, differently from a dependency between two modules, is scattered

through the source code of multiple modules of a program. Thus, exploring

the complexity of feature dependencies is essential to bridge the existing gap

between change propagation and software product lines.

In fact, feature dependency is not an unusual phenomenon in software

product lines. In an exploratory study (Chapter 3), we observed that a

widely-used product line (MobileRSS [MOBILE RSS 2015]) presented a total

of 235 feature dependencies distributed over the source code of 31 features.

The high number of feature dependencies (average of 7.5 dependencies per

feature) is not an exception amongst product lines commonly used in other

studies [KÄSTNER et al. 2008, KÄSTNER and APEL 2009, RIBEIRO et al.

2011]. In another study, Ribeiro et al. [RIBEIRO et al. 2011] showed that

almost 66% of code blocks related to features present code realising feature

dependency. So, it is reasonably common to find feature dependency along the

product-line code.
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As aforementioned, the boundaries of a feature often do not align with

the modules of the program (i.e., the features crosscut the program’s module

boundaries) [KÄSTNER et al. 2011]. Program elements establishing a single

feature dependency may be distributed all over the code of many modules.

As a consequence, these program elements tend to vanish from developer’s

eyes during a maintenance [RIBEIRO et al. 2014]. So, developers are likely

to ignore consciously (or not) feature dependencies while reasoning about

feature maintenance. Moreover, the implementation of feature dependencies

may involve several parts of code possibly affected by a change propagation.

The more complex is the structure of a feature dependency, the more influential

it might be in change propagation. So, the structural properties of feature

dependency implementation are likely to impact on the way changes propagate.

Structural properties of feature dependencies are characteristics related to the

way a feature dependency is implemented in the source code, such as number

of program elements involved in a feature dependency. In this way, exploring

possible reasons for change propagation, such as structural properties of feature

dependency may be primordial to support change propagation.

Recently, the research community began discussing the harmful impact

of feature dependency on product-line maintenance [FERBER et al. 2002, LEE

and KANG 2004, APEL and BEYER 2011, RIBEIRO et al. 2011, GARVIN

and COHEN 2011, CATALDO and HERBSLEB 2011]. A lot of effort spent

during code maintenance is devoted to comprehend dependencies and revisit

code of potentially affected features [RIBEIRO et al. 2011]. However, there is a

lack of studies exploring the relation between these two important phenomena

– i.e., change propagation and feature dependencies. It is challenging to fully

recognise the implementation of feature dependencies by simply analysing the

source code. In this case, developers may overlook important parts of the

code that should be revised or changed, thus not fully propagating changes.

Conversely, they may also analyse unnecessarily parts that are not relevant

to the feature-maintenance task at hand, thereby increasing the maintenance

effort or even mis-propagating changes [RIBEIRO et al. 2011]. Given all

the aforementioned reasons, there remains a need to explore (i) whether

feature dependencies are frequent propagators of changes, (ii) whether all

feature dependencies of a product-line are alike, (iii) which characteristics of

feature dependencies are more important regarding their impact on change

propagation, and (iv) what can be done to alleviate the effort of propagating

changes in software product lines.

The remainder of this chapter is organised as follows. Section 1.1 defines
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the problem tackled in this thesis based on a running example. Section 1.2

describes the goal, subgoals and research questions. Section 1.3 presents the

thesis contributions. Finally, Section 1.4 points out how this thesis is organised.

1.1 Problem Statement

In the following, we present a motivational example using an

annotative approach called conditional compilation (Chapter 2). Conditional

compilation is the most widely used mechanism to implement product-line

features [KÄSTNER and APEL 2009]. A feature is a set of program elements

surrounded by preprocessor directives. The preprocessor identifies the code

that should be compiled or not based on preprocessor directives (i.e. #ifdef

directives). The example presented here will serve to illustrate the problem

governing the relation of feature dependency and change propagation. Even

though in our example we use annotative approach, the problem statement

presented in this section is also found in compositional approaches, such as

aspect-oriented programming. However, these approaches are not widely used

as annotative approaches to implement software product lines.

Figure 1.1 illustrates a code snippet of how a feature is represented

in the program. In this source code (Figure 1.1), we show part of the

feature code WEIGHTED of a product line to tailor graph data structures,

including weighted edges and traversal algorithms. The selection of the feature

WEIGHTED in a product allows to associate weight with graph edges. In

this excerpt of code, we show the declaration of the attribute responsible for

representing the weight of an edge in a graph (lines 3–5), and the methods

responsible for getting and setting this weight (lines 7–18). It is worth to

notice that the method setWeight(int x) (lines 11–18) only assigns positive

values to weights. In addition, there is a method foo() (line 19) added only

for illustrative purpose.

As aforementioned, features relate to each other in a product line.

Whenever one or more program elements within the boundaries of a feature

depend on elements external to that feature, we consider this as a feature

dependency. So, in the source code, feature dependency implementation refers

to the program elements in the source code responsible for establishing

a relationship between features. Figure 1.2 illustrates an example of the

implementation of part of a feature dependency in the product line. The code

snippet in the figure illustrates part of the feature code DIJKSTRA. This
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01. public class Edge{

02. ...

03. #ifdef WEIGHTED

04. int weight;

05. #endif

06. ...

07. #ifdef WEIGHTED

08. public int getWeight(){

09. return weight;

10. }

11. public void setWeight(int w){

12. if (w==0)

13. weight = Integer.MAX_VALUE;

14. else if (w<0)

15. weight = -1 * w;

16. else

17. weight = w;

18. }

19. public void foo(){...}

20. #endif

21. }

Figure 1.1: Part of the feature code WEIGHTED of a product line of graph
libraries.

feature addresses the shortest path problem for a non-negative edge path of a

weighted directed graph [DIJKSTRA 1959]. Part of the feature dependency of

this example is established by the method call to getWeight() (italic and

underlined in line 05, Figure 1.2). The method getWeight() is a method

that belongs to feature WEIGHTED (lines 8–10, Figure 1.1). So, a part

of the DIJKSTRA feature code depends on elements of other feature, thus

establishing a dependency of feature DIJKSTRA on feature WEIGHTED.

The other method participating of the same dependency is the method call

to foo() (italic and underlined in line 04, Figure 1.2). One should notice

that only a part of the dependency was shown. The feature dependency of

DIJKSTRA on WEIGHTED may be realised by other elements in several

parts of the code comprising the DIJKSTRA feature. For instance, these

parts could contain other method calls and attribute access to members of

the WEIGHTED feature. All program elements contributing to the feature

dependency of DIJKSTRA on WEIGHTED are the considered as the feature

dependency implementation of DIJKSTRA on WEIGHTED1.

Now, let us suppose the addition of a new feature BELLMAN-FORD

(lines 9–13, Figure 1.3). This feature, similarly to feature DIJKSTRA,

implements an algorithm that computes the shortest path in a weighted

1 From hereafter, unless otherwise stated, feature dependency is used to refer to feature
dependency implementation
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01. public class Algorithm{

02. ...

03. #ifdef DIJKSTRA

04. obj.foo();

05. calculatePath(obj.getWeight());

06. ...

07. #endif

08. ...

09. }

Figure 1.2: Part of the feature code DIJKSTRA with the realisation of a feature
dependency.

directed graph. However, this feature is able to handle graphs with negative

weight edges [BELLMAN 1958]. Figure 1.3 illustrates the inclusion of part

of the BELLMAN-FORD feature code. It is important to notice that the

feature responsible for implementing the Bellman-Ford algorithm also depends

on feature WEIGHTED, similarly to feature DIJKSTRA. Part of the feature

dependency of BELLMAN-FORD on WEIGHTED is realised by means of the

method call to getWeight() (italic and underlined in line 11). It is important

to mention that this method call is one of many other relationships between

program elements in the source code that may comprise the feature dependency

of BELLMAN-FORD on WEIGHTED.

01. public class Algorithm{

02. ...

03. #ifdef DIJKSTRA

04. obj.foo();

05. calculatePath(obj.getWeight());

06. ...

07. #endif

08. ...

09. #ifdef BELLMAN-FORD

10. ...

11. calculatePath(obj.getWeight());

12. ...

13. #endif

14. ...

15. }

Figure 1.3: Partial code of the added feature BELLMAN-FORD emphasising
the realisation of part of the feature dependency.

Due to all capabilities of the Bellman-Ford algorithm, the developer needs

to allow the assignment of negative weight values to edges in the product line.

So, it is necessary to change the method setWeight(int x) in order to assign

negative weight values to edges. Figure 1.4 shows the method setWeight(int

x) of feature WEIGHTED after the change. Moreover, since the Dijkstra

algorithm is not able to handle negative weight values of edges, a change in

the DIJKSTRA feature code must also be made to handle negative values. In

our example, the developer decided to consider the weights as unsigned values.
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Figure 1.6 illustrates a possible change in the code of the feature DIJKSTRA

(lines 3–10) compared to the code of Figure 1.5.

01. ...

02. #ifdef WEIGHTED

03. ...

04. public void setWeight(int w){

05. if (w==0)

06. weight = Integer.MAX_VALUE;

07. else

08. weight = w;

09. }

10. #endif

11. ...

Figure 1.4: Change in the method setWeight(int x).

The change in feature DIJKSTRA happened because there was a change

propagation through the dependency during the maintenance of feature

WEIGHTED. In a general sense, change propagation is the set of changes

required to other entities of a software system to ensure the consistency

after a change in a particular entity [HASSAN and HOLT 2004]. In product

lines, change propagation happens when a change in the code associated with

a feature might imply changes on one or more dependent features. These

changes are necessary to preserve the consistency between related features.

In the context of our example, the change in feature WEIGHTED demanded

a change in the dependent feature DIJKSTRA to ensure the consistency of

the product-line. Moreover, as aforementioned, the feature dependencies could

involve several program elements possibly affected by a change propagation.

In this example, only a part of the source code of the feature dependency

01. public class Algorithm{

02. ...

03. #ifdef DIJKSTRA

04. obj.foo();

05. calculatePath(obj.getWeight());

06. ...

07. #endif

08. ...

09. #ifdef BELLMAN-FORD

10. ...

11. calculatePath(obj.getWeight());

12. ...

13. #endif

14. ...

15. }

Figure 1.5: Before the change in the
feature DIJKSTRA.

01. public class Algorithms{

02. ...

03. #ifdef DIJKSTRA

04. int w = obj.getWeight();

05. ...

06. if (w<0)

07. w = -1*w;

08. calculatePath(w);

09. ...

10. #endif

11. ...

12. #ifdef BELLMAN-FORD

13. ...

14. calculatePath(obj.getWeight());

15. ...

1�. #endif

17. ...

1�. }

Figure 1.6: After the change in the
feature DIJKSTRA.
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was shown. The implementation of this feature dependency may be more

complex. More program elements could be affected by the change propagation.

Structural properties are crucial in this case because, for instance, a feature

dependency involving many program elements may cause a severe change

propagation through many parts of the source code. In addition, one can notice

that certain structural properties of feature dependency may be related to the

complexity of the change propagation. For instance, if the feature dependency

of DIJKSTRA on WEIGHTED involves many elements, any change in

WEIGHTED code is likely to impact on DIJKSTRA code. In other words,

changes in feature WEIGHTED are more likely to be propagated to dependent

features participating of a dependency involving many elements. The likelihood

of the change propagation through the dependency of DIJKSTRA on

WEIGHTED may be higher than in the dependency of BELLMAN-FORD

on WEIGHTED. Put differently, it may happen a concentration of changes

propagated through the dependency of DIJKSTRA on WEIGHTED. Thus,

the change propagated through feature dependencies may be not all alike due

to certain structural properties of feature dependency. This case evidence the

importance of studying the relation between those structural properties of

feature dependencies and the complexity of change propagation.

In this example, it is important to highlight and understand the steps

followed during the maintenance. When a feature code is changed, the first step

is to identify and comprehend dependencies. The next step is to revisit code

of potentially affected features. Structural properties of feature dependency

make these steps challenging. Developers may not revise or change important

parts of the code. In addition, they may also unnecessarily analyse parts

that are not relevant to the maintenance task. Finally, it is important to

be aware about the differences of changes propagated by different feature

dependencies. Structural properties of feature dependency may impact on

change propagation by, for example, increasing the likelihood of propagation

in certain dependencies. Therefore, it becomes primordial to explore the

relation between feature dependencies and change propagation. This relation

must be analysed in terms of structural properties of feature dependencies.

As a consequence, measurement framework and solutions to support change

propagation can be proposed based on those structural properties.

Section 1.1.1 explains the need for studying feature dependency as change

propagators in software product line; Section 1.1.2 discusses the impact of

structural properties of feature dependencies on change propagation. Finally,

Section 1.1.3 addresses the need of a method for supporting change propagation
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based on those structural properties.

1.1.1 The Problem of Assessing the Relation between
Change Propagation and Feature Dependencies

Propagation of changes is a central aspect of software

development [HASSAN and HOLT 2004]. Since features usually relate to

each other, once a feature is changed, other features may need to be changed

as well in order to preserve consistency. The analysis of the motivating

example (Section 1.1) demonstrates the need for propagating changes. In

order to preserve consistency, the change of feature WEIGHTED demanded a

change in feature DIJKSTRA. Moreover, one can also notice that this change

was propagated due to the existence of a feature dependency. However, there

is little understanding about changes propagated in the presence of feature

dependencies.

To better understand the relation between feature dependencies and

change propagation one should know first whether feature dependency often

leads to change propagation – i.e. one should identify if feature dependency

is a main driver of change propagation. Moreover, changes may propagate

differently depending on the feature dependency. For instance, certain feature

dependencies may be involved more often in change propagation than other

feature dependencies along the evolution, the so-called concentration of

changes. The characteristics of those feature dependencies must also be

empirically analysed.

In the literature, feature dependencies are often assumed as one of

the main drivers of change propagation [FERBER et al. 2002, LEE and

KANG 2004, RIBEIRO et al. 2011]. However, there is a lack of studies about

changes propagated through feature dependencies. In other words, there is

no understanding about the frequency that changes are propagated through

feature dependencies, or even if there is a difference in change propagation

regarding certain feature dependencies. Therefore, empirically assessing the

relation between feature dependencies and change propagation is the starting

point to improve the task of propagating changes in product lines.

Thus, our first problem can be described as follows:

It is unclear the relation between feature dependencies and change

propagation.
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1.1.2 The Problem of Characterising Structural
Properties of Feature Dependency

Propagation of changes in the presence of feature dependencies is

a complex task [RIBEIRO et al. 2011]. Certain characteristics of feature

dependencies may impact on change propagation. The more complex is

the structure of a feature dependency, the more influential it might be

on change propagation. In other words, certain structural properties of

feature dependencies might imply they concentrate more changes along the

product-line evolution. The example presented in Section 1.1 illustrates how

structural properties of feature dependency can make change propagation quite

challenging. In the example, only one element establishing the dependency

of DIJKSTRA on WEIGHTED was shown (method getWeight()). The

implementation of the dependency of DIJKSTRA on WEIGHTED may

comprise, for instance, several program elements to establish a dependency.

Even worse, these program elements may be scattered through many modules

making the proper propagation of changes a difficult task to be accomplished.

In this context, it becomes primordial the need for defining and

evaluating indicators to capture various complexity characteristics of the

feature dependency structure. However, there is no characterisation of

structural properties of feature dependency in literature. As a consequence,

there is no knowledge about the relation between such structural properties

and change propagation as well as indicators of change propagation in product

lines.

Given the aforementioned issues, we consider that there is a need to

explore structural properties of feature dependency, since they might be

related to change propagation. To do so, firstly we need to characterise

structural properties of feature dependencies. This involves an identification

of recurrent structural properties of feature dependencies. After that, we need

to identify which structural properties exert impact on change propagation.

In other words, we need to identify which structural properties of feature

dependencies are often related to change propagation. Finally, we need to assess

the capability of structural properties indicate change propagation. Based on

our findings developers will be able to distinguish feature dependencies by using

structural properties. As a consequence, during product-line maintenance, it

will be possible to drive efforts to certain dependencies based on their structural

properties.

Therefore, our second problem can be stated as:
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There is no characterisation of structural properties of feature dependency

that may better indicate the occurrence of change propagation.

1.1.3 The Problem of Alleviating the Change
Propagation Effort

Creating a good mental model of the structure of a complex system

is one of many serious problems of software developers [MANCORIDIS et

al. 1998]. Frequently, this problem is exacerbated in the context of product

lines because a single feature dependency may be scattered and tangled in the

implementation of various program elements. Only using structural properties

of feature dependencies information (Section 1.1.2) do not support developers

to reason about program elements of feature dependencies as well as the

organisation of those dependencies.

In Section 1.1, we can note how complex can be to propagate a change

in the presence of feature dependencies. The methods getWeight() and

foo() are program elements involved in the dependency of DIJKSTRA on

WEIGHTED. Nevertheless, the same method getWeight() is involved in the

feature dependency of BELLMAN-FORD on WEIGHTED. So, we have two

program elements of the feature WEIGHTED being used by two different

features. One of the program elements (method getWeight()) is involved

in two feature dependencies. The other program element is only involved in

the feature dependency of DIJKSTRA on WEIGHTED. Therefore, reasoning

about the impact of changing elements establishing feature dependencies is

challenging. A change affecting the program element which is part of two

different feature dependencies (method getWeight()) might demand revisiting

the code of both dependent features. In this way, revisiting only one of

the two dependent features may introduce an inconsistency. In addition, a

change affecting the program elements used only by DIJSTRA (method foo())

is unlikely to affect both features (DIJKSTRA and BELLMAN-FORD). In

this case, revisiting the code of feature BELLMAN-FORD is not needed to

propagate a change.

Given the complexity of how features relate to each other [RIBEIRO et

al. 2011], the number of program elements involved in feature dependencies

is higher than in the given example. With no mechanism for gaining insight

into the organisation of feature dependencies, developers are often forced to

propagate changes to a dependent feature code without a thorough knowledge.
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In this way, as product lines tend to change over time, it is inevitable that

adopting an ad hoc approach to propagate changes will have a negative

effect on the maintenance. A lot of effort may be devoted to comprehend

dependencies and revisit code of potentially affected features.

In our attempt to alleviate the change propagation complexity in the

presence of feature dependencies, it is necessary a solution that support

developers to reason about the organisation of feature dependencies, mainly

the ones presenting structural properties highly correlated with change

propagation. To do so, we need to propose a technique to support developers

creating a model of the structure of feature dependencies. This technique

must consider characteristics of feature dependencies that are influential

on change propagation. In addition, we need to provide an automated

solution that proposes an organisation of feature dependencies information (i.e.

program elements realising a feature dependency). After that, we need explore

improvements in such representation in a way that our representation help

developers to understand the complex organisation of feature dependencies

and their possible impact on change propagation. Finally, we need to assess the

capability of our solution supports change propagation. Based on our findings,

less effort could be devoted to comprehend dependencies and revisit code of

potentially affected features.

Thus, our third problem can be described as follows:

It is not known how to organise information related to feature dependency

in order to support change propagation.

1.2 Goals and Research Questions

Given the problems described in the previous section, we are able to

formulate our research questions. Therefore, the following overall research

question (RQ) needs to be answered:

Research Question. How to support product-line maintainers to

propagate changes in the presence of feature dependencies?

Each of the problems described in Sections 1.1.1, 1.1.2 and 1.1.3 can

be translated to a specific research question. Therefore, our overall research
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question is decomposed in the following three research questions (RQ1, RQ2

and RQ3):

RQ1. What is the relation between feature dependencies and change

propagation?

The first research question (RQ1) aims at evaluating whether feature

dependencies are often related to change propagation. We also analyse how

change propagation behaves in the presence of feature dependencies. In order to

answer RQ1, a study of various product lines was conducted. Our results have

shown that (i) there was often a strong relation between feature dependency

and change propagation in those product lines, and (ii) changes propagate

differently depending on certain characteristics of feature dependencies (e.g.

concentration of changes in certain feature dependencies). The findings and

discussion derived from this study are represented in Chapter 3. In particular,

we observed that structural properties of feature dependencies could be good

indicators of change propagation, which lead us to RQ2.

RQ2. Are structural properties of feature dependency good indicators of

change propagation?

RQ2.1. Which structural properties of feature dependency are

omnipresent to different product-line implementation approaches?

RQ2.2. Which structural properties of feature dependency are good

indicators of change propagation?

The goal of RQ2 is to characterise structural properties of feature

dependency that are related to change propagation. To do so, this research

question is split in two sub research questions. The first one (RQ2.1)

characterises recurrent structural properties of feature dependency. In addition,

to completely answer RQ2, the second sub research question (RQ2.2) aims at

assessing the effectiveness of structural properties of feature dependency as

indicators of change propagation. However, only using structural properties

of feature dependencies do not support developers to reason about program

elements of feature dependencies as well as the organisation of those

dependencies. Creating a good mental model of the structure of feature

dependencies becomes primordial to propagate changes, thus leading us to

RQ3.
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RQ3. How to organise information of feature dependency implementation

to support change propagation?

In RQ3, we aim at proposing a solution that support developers to reason

about the organisation of feature dependencies, mainly the ones presenting

structural properties highly correlated with change propagation. In order to

answer RQ3, we proposed a way of organising the information of feature

dependencies. In addition, we presented a study to evaluate our proposed

organisation. Our results indicates that the proposed organisation has potential

to (i) reduce the overlooking of important parts of the source code when

changes must be propagated, (ii) alleviate problems related to mis-propagated

changes (i.e. changes wrongly propagated). In addition, we observed that it

may not demand a lot of effort from developers to become familiar with our

organised feature interfaces.

1.3 Contributions

This section briefly describes the contributions of this thesis, including:

(i) empirical findings revealing the relationship between feature dependencies

and change propagation, (ii) identification and characterisation of a

set of structural properties of feature dependency, rooted at empirical

studies, which exert impact on change propagation, and (iii) a method

for organising information of feature dependency implementation in order to

support developers on performing change propagation. An overview of each

contribution is presented in the following. We indicate in brackets the research

question associated with each contribution.

– Empirical findings on the relation between feature

dependencies and change propagation (RQ1). At first, by

means of empirical studies, we aimed at evaluating to what extent

feature dependencies are related to change propagation. We also

explored whether changes propagate in different ways through feature

dependencies. Our intent was to gather initial information about the

characteristics of feature dependencies that might be related to change

propagation. The study undertaken in this phase (Chapter 3) were

carried out using information of feature dependencies and changes

in twenty-one releases of five product lines. This study analyses
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both feature dependencies and change propagation through features

during product-line evolution. This analysis enables us to identify the

occurrence of change propagation through dependencies. The findings

of this study are the following: (i) feature dependency is indeed one of

the main drivers of change propagation, and (ii) it reveals that feature

dependencies are not alike regarding change propagation. Based on

these findings, developers could benefit, for instance, by differentiating

feature dependencies and focusing on some with certain characteristics

during product-line maintenance. The findings derived from this study

are presented in detail in Chapter 3.

– Feature dependency properties and metrics (RQ2). Since feature

dependencies are main drivers of change propagation in product lines,

the need of indicators for feature dependencies in the context of change

propagation becomes primordial. Moreover, since feature dependencies

are not alike regarding the propagation of a change, characterise feature

dependencies becomes essential for a proper change propagation. When

feature dependencies are established, certain structural properties of the

implementation of these dependencies may exert an impact on change

propagation. However, there is no understanding in the literature about

the relation between structural properties of feature dependency and

change propagation. The studies undertaken in this phase (Chapter 4)

of our research explore the role of structural properties of feature

dependency on change propagation. Therefore, we identified recurring

structural properties of feature dependency. We also explored the relation

between such properties with change propagation. In addition, we defined

metrics based on these properties. Finally, we identified the metrics

that presented high correlation with change propagation. These findings

are particularly important to developers as they can use the structural

properties of feature dependencies as indicators of change propagation.

– A method to organise information about feature dependency

implementation (RQ3). Understanding the intricate relationship that

exist between features can be an arduous task. With no mechanism

for gaining insight into feature dependencies organisation, developers

are often forced to propagate changes to a dependent feature code

without a thorough knowledge of the feature dependency organisation.

In our attempt to alleviate the change propagation complexity, we

propose an automated feature interface organisation in order to support

developers creating a model of the structure of feature dependencies
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(Chapter 5). The feature interface organisation is faced as a clustering

problem. We propose an underlying model to represent the relationship

between feature interface members. We also propose the use of a specific

clustering algorithm for graphs based on simulation of stochastic flow

in graphs (The Markov Clustering algorithm). The study undertaken in

this phase were carried out using 10 releases of a software product line

comprising almost 2,000,000 LOC in 6858 source code files. This study

aims at analysing how close the clusters proposed by the algorithm are

from the real simultaneous changes of feature interface members during

product-line evolution. This step is particularly important because it

provides empirical support to argue that feature interface should be

organised in order to support change propagation. This study is related

to RQ3. Based on this finding, developers may reduce the overall number

of program elements revisited during change propagation. The findings

derived from this study are presented in detail in Chapter 5.

1.4 Outline

The structure of the thesis is divided into seven different chapters.

Chapter 1 has presented the introduction of the thesis, defines the problems

tacked as well as the research questions, and the main contributions. In

Chapter 2, we review the essential concepts explored in this thesis as well as

some related work. Chapter 3 studies the relation between feature dependencies

and change propagation. In Chapter 4 we explore strucutural properties of

feature dependency on change propagation. Feature dependency properties are

identified and related to change propagation for further use in algorithms for

organising information about feature dependency implementation. Chapter 5

explore a method for organising information of feature dependencies. We define

an underlying model considering results achieved in Chapters 3 and 4. After

that, we present a solution to organise feature dependency information and

also an evaluation of the proposed organisation. Finally, Chapter 6 shows the

final considerations, research contributions, and directions for future research.
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Background and Related Work

To lay a foundation for this work, this chapter introduces the essential

concepts explored in our research. First, we review the concepts of software

product lines in Section 2.1. We also present and discuss in detail the concept of

features (Section 2.1.1), and feature dependency in product lines (Section 2.1.2)

which are main concerns of interest when maintaining product-line source code.

We also reviewed the different approaches for product-line implementation. In

particular, we explain how features and their dependencies are implemented in

these approaches (Section 2.2). Section 2.3 presents the concept of change

propagation. Section 2.4 presents related work about: (i) the impact of

feature dependency on program maintainability (Section 2.4.1), (ii) metrics

for modular programming important for the understanding of this thesis

(Section 2.4.2), and (iii) modularity of features (Section 2.4.3). Finally,

Section 2.5 summarises this chapter.

2.1 Software Product Lines

Nowadays, stand-alone systems are the target of most of the software

development approaches [RIBEIRO et al. 2011]. A stand-alone system

consists of a single monolithic software, which addresses all the stakeholder’s

requirements. However, the use of stand-alone systems is not convenient

for large scale software production [RIBEIRO et al. 2011]. Each group of

stakeholders may need different requirements. Therefore, specific stakeholder’s

needs for software systems demand a streamlined process for generating

customised products. To improve this process, instead of having only one

monolithic system with all functionalities, it is possible to define altogether

a set of systems as a customisable system. This set contains similar

systems differentiated by features [CLEMENTS and NORTHROP 2001]

(Section 2.1.1). This set of systems enables the treatment of specific customers’

needs more easily as each customer is interested only in a specific subset of

features.

The use of software product lines often achieves the aforementioned
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systematic construction of software systems with mass customisation. A

software product line is a set of software-intensive systems that share a

common set of features satisfying the specific needs of a particular market

segment or mission, and that are developed from a common set of core assets

in a prescribed way [CLEMENTS and NORTHROP 2001]. Thus, instead of

having one stand-alone software, customers choose their particular product

configuration. The reuse of the set of product-line’s core assets is responsible

for generating the products. This reuse brings significant improvements in the

development process, such as reduction of development costs, enhancement

of quality and reduction of time-to-market[CLEMENTS and NORTHROP

2001, POHL et al. 2005].

2.1.1 Feature

The software decomposition into features is essential to reap all of the

product-line benefits. Features are units by which different products within a

product line can be differentiated and defined [TRUJILLO et al. 2006], playing

a key role for mass customisation. According to Kästner and colleagues, there

are different views on the characterisation of what is a feature [KÄSTNER

et al. 2011]. In the literature of software product lines, a feature is often

characterised based on a syntactic perspective [APEL and KÄSTNER

2009]. In this perspective, features are characterised as cohesive units of

behaviour in the implementation. Other authors characterise features using

a semantic perspective, which is inspired by early work on telecommunication

systems [JACKSON and ZAVE 1998, HAY and ATLEE 2000, FISLER and

KRISHNAMURTHI 2008]. This perspective defines feature as semantic units

of software systems, which interact and give rise to the observable behaviour a

user is interested. In this perspective, the implementation of a feature is of less

interest; instead, it focuses on the meaning of features and their interactions

to its prospective users.

These two perspectives focus on different levels of abstraction, thereby

different characteristics of features. In this thesis, we adopt the syntactical

perspective since we are focusing on the implementation of features. In

particular, we adopt the definition given by Apel et al. and Pohl et al., which

state that a feature is a cohesive unit of behaviour of software systems [POHL

et al. 2005, APEL et al. 2008].
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2.1.2 Feature Dependency

A feature dependency defines how the implementation of a feature is

dependent on the implementation of other features. A feature dependency

occurs in the source code of a product line whenever one or more program

elements (e.g. code blocks, methods or attributes) within the boundaries of a

feature depend on elements external to that feature [RIBEIRO et al. 2011].

A simple example is an attribute defined in one feature and used in another

feature.

A dependency between two features, differently from a dependency

between two modules, may be scattered and tangled in the implementation

of various modules of a program. This misalignment happens because features

are often not modularised in the source code [APEL et al. 2013]. In other

words, the boundaries of a feature often do not align with the modules

of the program [KÄSTNER et al. 2011]. Program elements establishing a

single feature dependency may be distributed all over the code of many

modules. Section 2.2 illustrates how features and feature dependencies are

implemented using different implementation approaches. This misalignment

between features and modules also affects the implementation of feature

dependencies. Structural properties of feature dependencies are characteristics

related to the way a feature dependency is implemented in the source code.

Structural properties of feature dependencies are related to, for instance, the

number of program elements involved in a feature dependency, the number of

modules in which the feature dependency is found, and the like. We provide a

more systematic definition of feature dependency and its structural properties

in Chapter 4. In this chapter, we will provide a terminology that is required

in our measurement framework.

To the context of this thesis, it is also important to define the concept of

transitive feature dependency (a.k.a. indirect dependency). A transitive feature

dependency happens whenever a feature C depends on a feature B, and B is

in turn dependent on a feature A; then C depends on A by transitivity. In

addition, we can say there is a path of dependencies from C to A with two units

of distance. We provide a detailed example of the concept of transitive feature

dependency in Chapter 3. In this chapter, we will also consider transitive

feature dependencies in the presented study.
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2.2 Product-line Implementation Approaches

Existing approaches for product-line implementation can be categorised

either as a compositional or as an annotative approach [KÄSTNER et al. 2008].

Sections 2.2.1 and 2.2.2 summarise each of them, respectively. Section 2.2.3

shows an example of implementation of an illustrative product line in each

approach.

2.2.1 Compositional Approaches

The use of compositional approaches to implement product lines is

justified by the possibility of having the maximum of feature implementation

separated as distinct code units. To generate a product, code units

are determined and composed, often at compile-time. There are many

techniques that follow the compositional approaches, such as component

technologies [SZYPERSKI 2002], mixin layers [SMARAGDAKIS and

BATORY 1998], AHEAD [BATORY et al. 2003] and aspects [KICZALES et

al. 1997].

Compositional approaches have the advantage of improving the

modularity of features by trying to separate code implementing each feature.

Therefore, this approach can achieve a high degree of alignment between

each feature and a module. The code associated with one feature is often

not tangled with code realising other features. However, one of the biggest

problems of compositional approaches is that they are unable to implement

product lines at a fine level of granularity [KÄSTNER et al. 2008]. In a fine

level of granularity, developers are able to implement features by annotating

the code at the level of attributes, operations, code blocks, and declarations.

This limitation makes compositional approaches popular in academy, but

hardly used in industrial projects so far [KÄSTNER et al. 2011].

2.2.2 Annotative Approaches

Annotative approaches implement features by annotating the source

code. Preprocessor directives of conditional compilation is the most widely used

mechanism in industry to implement software product lines using annotative

approaches [KÄSTNER and APEL 2009]. The implementation of features

are characterised by the use of preprocessor directives, such as #ifdef and

#endif, to encompass the code associated with one or more features. Examples
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of tools for annotative approaches are pure::variants [BEUCHE et al. 2004],

Gears [KRUEGER 2001] and Frames/XVLC [JARZABEK et al. 2003].

In contrast to compositional approaches, annotative approaches support

the implementation of product-line features at fine level of granularity.

In other words, the annotation of feature code scales from entire files to

small code fragments. However, the code associated with a single feature

is often scattered across the code base and tangled with other features’

implementation. Therefore, annotative approaches lead to a lack of feature

modularity [KÄSTNER et al. 2008, GACEK and ANASTASOPOULES 2001,

ERNST et al. 2002]. Despite this well-known drawback, annotative approaches

are commonly used because they are easy to learn and they are less intrusive to

the development process [CLEMENTS and NORTHROP 2001]. In addition,

developers can flexibly define on demand the location of each feature after they

have already structured and implemented the modules of their programs.

2.2.3 Implementation of Product Lines

This section presents an example of the implementation of a software

product line. We illustrate the implementation of features and feature

dependencies. The example uses both implementation approaches presented

in Sections 2.2.1 and 2.2.2 to implement the same illustrative software product

line. We are considering Java with preprocessor directives as a representative

of the annotative approach, which is a well-known and industry-strength

technique for supporting feature implementation. Moreover, we are considering

AspectJ as a representative of the compositional approach. AspectJ was chosen

because it is a well-known language for aspect-oriented programming (AOP).

The implementation of product-line features using conditional

compilation relies on the use of pre-processors directives like #ifdef and

#endif. The annotated code fragments, enclosed by compilation directives,

are addressed or removed from the source code depending on the selection

of features. On the other hand, AspectJ supports the implementation of

separate modules, the so-called aspects. Aspects have the ability to improve

the modularity of crosscutting features that might spread their behaviours

throughout the base code. The advice is the mechanism often used to

implement features. Advices are programming units intended to implementing

crosscutting behaviours. AspectJ supports three kinds of advice: before,

around, and after. The kind of advice determines how it interacts with a

well-defined point in the execution flow of a program, the so-called join
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points. Figure 2.1 exemplifies the implementation of features and feature

dependencies.

In conditional compilation, the implementation of the features F6 and F7

are in the same file (f6.java, BOX #1). The implementation of feature F6 is

realised by the white lines, and the code associated with feature F7 is coloured

in grey. Blocks of #ifdef statements (BOX #1 – lines 07 and 11) associated

with feature F7 are enclosing the code associated with feature F6. This fact

indicates that there is a dependency between F6 and F7 due to the use of the

attribute a (BOX #1 – line 08), the method setX (BOX #1 – line 08) and the

method getX (BOX #1 – line 12).

Figure 2.1: Example of approaches for implementing product lines.
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In AspectJ, the implementation of feature F6 is in one file (f6.java, BOX

#2) whereas the implementation of feature F7 is in another file (f7.aj, BOX

#3). An advice (BOX #3 – lines 03 and 08) is responsible for realising the

dependency between F6 and F7. The definition of the value for the attribute

x is performed by an advice around (BOX #3 – line 03), which changes the

value of the argument of the method m1, and returns the control flow to m1.

Moreover, the value of x is printed after the execution of m1 through the advice

after (BOX #3 – line 08), which calls the method getX (BOX #3 – line 10)

from F6.

2.2.4 Comparison between Approaches

After introducing the two groups of approaches, we compare them

based on several characteristics highlighted by Kästner et al. [KÄSTNER

and APEL 2008]. However, it is important to mention that we focus on

annotative approaches in all studies of this thesis. Annotative approaches

are the most widely used approach in industry to implement product-line

features [KÄSTNER and APEL 2009]. Nevertheless, we also consider

compositional approaches in Chapter 4 in order to evaluate both approaches

in terms of feature dependency implementation and its impact on change

propagation.

Feature Traceability. Feature traceability is the ability to trace a feature

from the domain space to the solution space [CZARNECKI and EISENECKER

2000]. Traceability is important, for instance, when developers want to

maintain a specific feature, and thus need to find all the code related to this

feature. The compositional approaches directly support feature traceability as

the code implementing a feature can be often traced to a single code unit (e.g.,

aspect and class). In contrast, annotative approach does not provide direct

support for feature traceability as feature annotations can be scattered over

the entire source code.

Modularity. Compositional approaches provide a good modular

reasoning of features. For example, modularity is well supported in

components [SZYPERSKI 2002] and hypermodules [TARR et al. 1999].

However, compositional approaches like aspect-oriented languages or

AHEAD [BATORY et al. 2003] are based on source code transformations

and provide limited modularity. For instance, separate compilation is not

supported in AspectJ [KICZALES et al. 1997] or AHEAD. On the other hand,

modularity is not intended in annotative approaches. Some tools simulate
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the modularisation in annotative approaches to some degree. Tools like

CIDE [KÄSTNER 2015] offers view and navigation support. However, similar

to compositional approach, annotative approaches does not support separate

compilation.

Granularity. Coarse-grained approaches only assemble files in a directory or

modules, whereas fine-grained approaches scale from annotating entire files to

even small code fragments [KÄSTNER et al. 2008c]. Compositional approaches

only provide a coarse granularity. They usually compose components or

introduce methods in existing classes. On the other hand, annotative

approaches allow annotations at the level of attributes, operations and

declarations. Therefore, it is not possible, for instance, to manipulate

statements within a method in compositional approaches due to conceptual

limitations [KÄSTNER et al. 2008c].

Adoption. According to Kästner et al. [KÄSTNER and APEL 2008],

industry is very careful on adopting compositional approaches. These

approaches heavily affect the existing development process. At most, after

careful planning, frameworks or components are used [BASS et al. 2003]. In

contrast, the adoption of annotative approaches is much faster. Annotative

approaches often introduce only lightweight tools, which do not have

a severe impact on the source code structure or on the development

process [CLEMENTS 2002].

2.3 Change Propagation

We define change propagation as changes required to other entities of

the software system to ensure the consistency in a software system after

a particular entity is changed [LEHMAN and BELADY 1985, RAJLICH

1997, HASSAN and HOLT 2004, TSANTALIS et al. 2005]. As new features

are added, others are enhanced, and bugs are fixed, developers are faced with

the challenge of determining appropriate propagation of their changes through

the evolving code of their product lines. The goal of change propagation in

software product lines is to ensure the consistency between features.

For example, in Figure 2.1, let us suppose a change in the method

signature of getX() to getValueOfX(). The method getX() is part of feature

F6. Feature F7 depends on F6 and calls the method getX(). Therefore, a

change in the signature of the method getX() will also affect the dependent
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feature F7. In conditional compilation, a change in the call from this.getX()

to this.getValueOfX() (BOX #1 – line 12) must happen. In AspectJ, a

change in the call from myObject.getX() to my.ObjectgetValueOfX() (BOX

#3 – line 10) should happen to preserve consistency between related features.

In this example, it is important to highlight and understand the

simultaneous change that happened in the features F6 and F7. Simultaneous

change is an event where different features have changed together. The

rationale is that changes made simultaneously in different features means

that those features are related somehow. The change in the method signature

implementing the feature F6 caused a change in the feature F7. All references

made by the feature F7 to the method implementing the feature F6 (i.e. method

getX()) had to be changed to preserve the consistency between those features.

2.4 Limitations of Related Work

In this section, we present the limitations of the related work to this

thesis.

2.4.1 Impact of Feature Dependencies on Maintainability

The understanding of the impact of feature dependencies on product-line

maintenance is essential to support change propagation. There has been

considerable research effort to study the effects of feature dependencies in

product-line development. The related studies try to understand and minimise

negative effects of feature dependencies on product-line development.

Figueiredo and colleagues analysed the modularity and

changeability of evolving product lines implemented using aspect-oriented

programming [FIGUEIREDO et al. 2008]. They provided empirical evidence

of how feature dependency changed over many releases. One of the main

conclusions is how two different category of feature dependency (interlacing

and overlapping) affect the stability of the source code by propagating

changes in aspect-oriented systems. Similar to our work, Figueiredo and

colleagues have as main concern to analyse the impact of feature dependencies

on product-line maintenance. However, despite the similarities, their work

associates structural properties of the programming language used with

change propagation. In addition, the study of Figueiredo and colleagues

focuses only on aspect-oriented product lines. Our aim is to provide a broad
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analysis about the impact of feature dependency on change propagation.

The main concern is to identify structural properties of feature dependency

agnostic of programming technique that might affect change propagation.

Cataldo and Herbsleb have empirically studied feature-oriented

development in order to observe the impact that some attributes of this type of

development have on integration failures [CATALDO and HERBSLEB 2011].

They concluded that dependencies and cross-feature interactions are drivers

of integration failures. In another work related to failures, Garvin and Cohen

examined what constitutes faults related to feature interactions [GARVIN

and COHEN 2011]. They performed an exploratory study to conduct an

investigation of faults on two feature-oriented open source systems and

related them to feature interactions. The conclusion was that, using their

testing criteria, there are faults that can be misunderstood and associated

to feature interaction. In other words, the lack of information regarding

the relationship between features may affect the understanding of faults.

Both studies presented here concern the failures caused by the presence of

feature dependencies. Differently from these studies, we focus on change

propagation. Change propagation may be the root of several problems during

the maintenance, including failures.

Ribeiro et al. performed an empirical evaluation on preprocessor-based

software product lines focusing on the maintainability of feature dependency

code [RIBEIRO et al. 2011, RIBEIRO et al. 2014]. They proposed an approach

to reduce the effort of maintenance in product lines implemented using

preprocessor by focusing on feature dependencies. The conclusion was that

feature dependencies are reasonably common in preprocessor-based software

product lines. Moreover, they highlight the impact of feature relationships on

the maintenance by increasing the maintenance effort. Differently, our aim

is to provide a broad analysis about the impact of feature dependency on

change propagation. Our goal is to understand the relation between feature

dependencies and change propagation in different implementation approaches.

To do so, we need to empirically analyse such relation and identify structural

properties of feature dependency agnostic of implementation approaches that

might impact on change propagation.

These and other authors [FERBER et al. 2002, LEE and KANG 2004,

APEL and BEYER 2011], have been also highlighted the impact of feature

dependencies on several attributes of product lines. However, there is a

lack of studies exploring in-depth the relation between these two important

phenomena – i.e., change propagation and feature dependencies. Our aim is
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to identify feature dependency structural properties that may affect change

propagation. In a first step towards such broad analysis, we conduct a study

to examine the relation between feature dependency and change propagation

on the evolution of one academic- and four industrial- medium-sized product

lines (Chapter 3). In addition, we also identify and propose a measurement

framework and metrics based on structural properties of feature dependencies.

Two different implementation approaches are considered in the evaluation of

our measurement framework. The goal is to analyse the effectiveness of our

metrics suite in indicating change propagation in product lines implemented

using different implementation approaches.

2.4.2 Metrics for Modular Programming

The rationale for proposing measurement framework based on structural

properties has been identified to be related to the concept of cognitive

complexity [CANT et al. 1994, BRIAND et al. 2001]. Simon argued about

the limitations of human cognitive capabilities [SIMON 1978]. Developers can

lose track of what they are doing and make irrational decisions in a complex

context, the so-called cognitive complexity. Cognitive complexity is defined

as the mental burden of developers when performing relevant operations in a

specific context [BAGHERI and GASEVIC 2011]. So, the more complex is the

environment to perform change propagation, the higher its degree of cognitive

complexity will be. Therefore, high cognitive complexity of product lines can

affect change propagation.

In the state-of-the-art, developers and researchers assume that classical

modularity metrics can be used to analyse product-line attributes. However,

the focus of those conventional metrics is on measuring properties of the

structure of the language rather than properties of the product-line structure.

Consequently, it is questionable whether conventional metrics are good

indicators of change propagation. The metrics based on the structure of

modules of implementation approaches do not capture the cognitive complexity

of product lines. The vast majority of studies about metrics associate

conventional metrics with stand-alone software attributes. In addition, there

are studies proposing metrics for software product lines. However, there is a

lack of studies relating product-line-based metrics with maintenance attributes.

Therefore, we can divide the related work in (i) conventional metrics as

indicators of software maintenance attributes, and (ii) metrics for software

product line.
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Implementation-approach-based Metrics and Software Maintenance

Several metrics have been proposed in the context of the implementation

approaches studied in this thesis (Section 2.2). Software metrics have been

widely used in the object-oriented software development in order to improve

software maintainability [DANTAS et al. 2012]. Recently, some of these metrics

were adapted to the context of aspect-oriented programming [CHIDAMBER

and KEMERER 1994, HENDERSON-SELLERS 1995, ETZKORN and

DELUGACH 2000, SANT’ANNA et al. 2003, CECCATO and TONELLA

2004, BURROWS et al. 2010, DANTAS et al. 2012] and feature-oriented

programming [BARTOLOMEI et al. 2006, DANTAS et al. 2012].

To cite just a few in the context of compositional approaches,

Burrows et al. proposed a novel metric to specific dependencies in

aspect-oriented software systems that were not captured by conventional

metrics [BURROWS et al. 2010]. In addition, Dantas and colleagues proposed

some metrics and conducted an exploratory evaluation about the impact

of specific programming techniques on change propagation [DANTAS et

al. 2012]. They were particularly interested in analysing change propagation,

which are undesirable for the software maintenance in programming techniques

such as aspect-oriented programming and feature-oriented programming. The

metrics proposed in these studies consider the composition code produced

with different implementation approaches. However, these metrics focus on

the composition of program modules rather than product-line features. These

and other studies [SANT’ANNA et al. 2003, CECCATO and TONELLA

2004, BARTOLOMEI et al. 2006] propose metrics that do not consider

structural properties of features and their dependencies. Thus, the use of

such metrics might not be appropriate to product lines. In addition, there

is a lack of studies proposing specific metrics for product lines implemented

in compositional approaches. Our work aims at propose a suite of metrics

applicable for product lines implemented using compositional approaches.

In the context of annotative approaches, Liebig et al. proposed a set of

metrics to analyse the variability of forty preprocessor-based software product

lines [LIEBIG et al. 2010]. These metrics intend to measure product-line

properties in terms of comprehension and refactoring. Differently from

their work, we focus on change propagation instead of comprehension and

refactoring. In addition, they do not propose metrics related to feature

dependencies in order to draw their conclusions. Apel and Beyer adapted

conventional metrics that were originally proposed for procedural and

object-oriented systems to a set of cohesion metrics based on clustering layouts.
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Their goal is to provide a better understanding of cohesion in software product

lines [APEL and BEYER 2011]. Similar to our work, they propose metrics

agnostic to implementation approaches. However, the proposed metrics are

based on feature cohesion. Our work proposes a measurement framework

for structural properties of feature dependency. In addition, our metrics

are based on characteristics of the source code instead of being based on

visual observation of clusters. In addition, our main concern is with feature

dependencies, which may be a driver of change propagation.

Metrics for Software Product Lines

There is a body of work aiming at assessing and predicting the

quality of product lines, especially of product-line architectures. For instance,

van der Hoek et al. propose a number of measures to assess the variability

of a product-line architecture [VAN DER HOEK et al. 2003]. The suite of

metrics is based on the concepts of service dependency and tries to predict

volatility of the product line based on those service dependencies. However,

inferring the volatility based only on service dependency might result in a

distorted view of change prediction. According to Geipel and Schweitzer,

considering only the number of dependencies might not be a good indicator

of change propagation [GEIPEL and SCHWEITZER 2012]. In our work,

in contrast, we followed the conclusions of Geipel and Schweitzer and we

took advantage of change characteristics (e.g. concentration of changes) and

dependency structure.

Another interesting point to observe is that the work of van der

Hoek et al. [VAN DER HOEK et al. 2003] is based on metrics for software

product line architectures. Actually, most of the work proposing metrics

for evaluating attributes of maintenance in product lines focuses on the

architecture and feature model artefacts. Rahman proposes a metric suite

to measure product-line architectural quality attributes such as observability,

configurability and modularity [RAHMAN 2004]. Cheng propose several

measures based on architectural drivers [CHENG et al. 2006]. Her et al.

developed a framework for evaluating the reusability of a product line’s

core assets [HER et al. 2007]. Bagheri et al. propose a suite of metrics

for product-line feature models and validate them using valid measurement

theoretic principles [BAGHERI and GASEVIC 2011]. Torkamani also proposes

a suite of metrics for product-line architecture [TORKAMANI 2014]. His goal

is to use the metrics suite to evaluate the reusability power of evolving software

product lines. In spite of the large body of work, the focus is on architectural
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quality attributes instead of source-code attributes. In addition, they do not

focus on change propagation. At the end, change propagation can only be

reliably estimated based on source code analysis. Many of the links realising a

feature dependency are only presented in the source code. The implementation

approaches also influence the complexity and number of such links. Finally,

architecture and feature models are often too abstract and incomplete in

practice.

2.4.3 Modularity

[KÄSTNER et al. 2011] pinpoint two different notions of feature

modularity: one based on locality and cohesion, and another based on

information hiding and interfaces. In this work, we focus on the less explored

notion of modularity: information hiding and interfaces. As aforementioned, in

this thesis we focus on annotative approaches, which have a lack of modularity

regarding information hiding and interfaces [KÄSTNER et al. 2011]. In the

following, we present the most relevant studies regarding information hiding

and interfaces in product-line implementation approaches.

Information hiding

Some approaches were developed to provide separation of concerns by

hiding information in the source code. Conceptual Module [BANIASSAD and

MURPHY 1998] is one approach that supports developers on maintenance

tasks by setting lines of code to be part of a conceptual module. Moreover, it

captures other lines that should be part of such module by means of queries.

In addition, it computes dependencies between conceptual modules. This

approach abstracts details from developers, so that they concentrate on the

relationship among conceptual modules. Similar to our proposal, Conceptual

Module is also concerned with maintenance tasks and dependencies. However,

we aim to improve the comprehensibility of the source code by organising

information about feature dependencies based on structural properties instead

of abstract details from developers. Our goal with the organisation of feature

dependencies information is to alleviate the cognitive complexity of software

product line. Consequently, we may support developers to better understand

the complex dependencies between features and help with the task of change

propagation.

In another important work, Kästner and colleagues proposed the

Colored IDE (CIDE). CIDE is an Eclipse-based tool for decomposing
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legacy applications into features [KÄSTNER et al. 2008]. It relies on VSoC

approach [KÄSTNER and APEL 2009], which means that it is possible

to hide code of features not interesting to a current maintenance task.

Another approach that provides separation of concerns by hiding information

is Mylyn [KERSTEN and MURPHY 2006]. Mylyn aims to reduce information

overload by showing only relevant artefacts to a maintenance task. In this way,

Mylyn can improve productivity in such a way that developers do not spend

time searching for the artefacts needed to complete a task, and reducing the

information overload. Our main concern is not related to information hiding

like CIDE and Mylyn. Although, we also aim to provide information overload

reduction by organisation feature dependencies information. The organisation

of that information can guide developers to analyse only relevant parts of the

source code during change propagation.

Interfaces

To the best of our knowledge, the only compositional

approach that presents work on interfaces is aspect-oriented

programming. Kiczales and Mezini proposed the so-called aspect-aware

interfaces [KICZALES and MEZINI 2005]. This approach computes aspect’s

dependencies on a system’s join points (see Section 2.2.3). As a result, it

shows those dependences as annotations on explicit interfaces of advised

code. By revealing such dependencies, a programmer can see how join

points are being advised and avoid making changes that invalidate those

uses. Open Modules propose the use of interfaces for exposing join points

in classes, limiting the scope of advised code to the join points exposed

by the developer [ALDRICH 2005]. Griswold et al. proposed Crosscutting

Programming Interfaces (XPIs) [GRISWOLD et al. 2006]. XPIs consist of

abstract interfaces aiming at decoupling the aspects from details of classes

to provide better modularity during parallel evolution. Differently from these

studies, our thesis will focus on organise feature dependencies information in

feature interfaces. Specifically, we focus on product lines implemented with

conditional compilation. Finally, our focus is to support change propagation

by organising the feature dependencies information by means of feature

interfaces. A feature interface comprises the program elements in the source

code that are responsible for providing external access to other features. We

provide a more systematic definition of feature interface in Chapter 5.

Regarding annotative approaches, there is a lack of studies proposing

interfaces due to several challenges [KÄSTNER et al. 2011]. Recently,
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Ribeiro et al. proposed the pioneer work dealing with interface in product lines

implemented with annotative approaches [RIBEIRO et al. 2011, RIBEIRO et

al. 2014]. They propose the concept of emergent interfaces for product lines

implemented with conditional compilation. This approach aims to establish

interfaces between features on demand (emergent interfaces), to prevent

developers from breaking other features when performing a maintenance

task. Similar to our idea, Ribeiro et al. propose interfaces for product lines

implemented with conditional compilation. Such interfaces are created on

demand based on a maintenance task. Like our work, they aim to generate

feature interfaces in order to better support maintenance tasks. However, in

their approach, the maintainer need to know what parts of the source code must

be changed in order to generate the emergent interfaces. In our approach, we

aim to indicate, by means of an organised feature interface, which parts of the

code might be affected due to a maintenance task.

There is further work that concentrates on interfaces for product

lines or in variability-checking approaches supported by interfaces. For

example, Kästner and colleagues propose a variability-aware module system

for product lines [KÄSTNER et al. 2012]. This approach infers interfaces

for modules focusing on type checking of product-line configurations.

Li and colleagues propose a new methodology to verify cross-cutting features

as open systems by using a model of semantic interfaces that supports

automated, compositional, and feature-oriented model checking [LI et al.

2002, LI et al. 2002b]. Blundell et al. propose a parametrised interface for

verifying product-lines [BLUNDELL et al. 2004]. Such interface lifts properties

of individual features to composed features to verify temporal properties of

such features. However, none of these studies deal with interfaces specifically

for supporting maintenance tasks. Our approach aims at supporting developers

to propagate changes during maintenance by providing organised feature

dependencies information.

2.5 Summary

This chapter presented a review of the essential concepts explored in this

thesis. Section 2.1 presented the definition of software product line as well as

two important concepts for this thesis; the definition of feature (Section 2.1.1),

and the definition of feature dependency (Section 2.1.2). Section 2.2 presented

the implementation approaches addressed in this thesis as well as a brief
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comparison between them. We also presented in Section 2.3 the concept of

change propagation. In Section 2.4, we presented the limitations of related

work. Section 2.4.1 showed the studies focused on explore the impact of

feature dependencies on maintainability. Section 2.4.2 presented some studies

of software metrics important for the understanding of this thesis. Finally,

Section 2.4.3 reported related work aiming at improving the modularity of

features.
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3

Feature Dependency as Change
Propagators

Product-line features usually relate to each other in the source code by

means of feature dependencies [YE and LIU 2005, RIBEIRO et al. 2011].

During the code maintenance of product lines, features must eventually be

updated when changes occur in dependee features. Any change in the code

associated with a feature might imply changes on one or more dependent

features. Thus, a main concern in product-line maintenance is to preserve

consistency between related features by propagating changes. Over the last

fifteen years, the relevance of studying the impact of feature dependency on

product-line maintenance complexity has been recognised [FERBER et al.

2002, LEE and KANG 2004, RIBEIRO et al. 2011, RIBEIRO et al. 2014].

However, there is a lack of studies investigating the relation between these two

important phenomena – i.e., feature dependencies and change propagation in

more depth.

Comprehending dependencies and revisiting code of potentially affected

features make change propagation a time-consuming task [RIBEIRO et al.

2011]. We argue that feature dependencies may be an important driver

to change propagation in software product lines, thereby impacting on the

complexity of product-line maintenance. Understanding whether and how

feature dependencies lead to change propagation is important to reduce

the complexity of product-line maintenance. It is neither obvious nor well

understood to what extent and how feature dependencies affect change

propagation. This lack of knowledge may become a barrier for the longevity of

software product lines [CATALDO and HERBSLEB 2011]. Software engineers

need to understand the intricacies of maintaining inter-dependent features of

a software product line.

For instance, developers should be aware if feature dependencies act

frequently as change propagators. Certain feature dependencies may be

involved more often in change propagation than other feature dependencies

along the evolution. In this case, an identification of feature dependencies

that cause more change propagation would support developers during the

maintenance task. Developers can focus and analyse more carefully those
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feature dependencies in order to reason about changes that may propagate

to other features. In addition, another important point to be understood by

developers is whether and how changes propagate transitively through a path

of dependencies. A transitive feature dependency happens whenever a feature

C depends on a feature B, and B is in turn dependent on a feature A; then

C depends on A by transitivity (a.k.a. indirect dependency). In this case, it

may be a propagation of changes through the path of dependencies from C

to A with two units of distance. In other words, a change in feature A may

affect B and C – i.e. a change propagation extent of two features. Thus, it is

also important to understand the extent of the change propagation through

the path of feature dependencies, since programmers often inspect the code of

immediately-neighbour features at best.

This chapter presents an in-depth study to examine the relation between

feature dependency and change propagation. This study aims at answering

the first research question of this thesis (RQ1 in Section 1.2), which states:

What is the relation between feature dependencies and change propagation? In

particular, we want to understand whether feature dependencies are related

to change propagation. This is essential to show the importance of explore

feature dependencies as change propagators. In addition, it is interesting

to explore whether certain feature dependencies are involved more often

in change propagation than other feature dependencies, and the extent of

change propagation through paths of feature dependencies – i.e., transitive

dependencies (see Chapter 2). These two last analyses are essential to

reveal if there are certain characteristics of feature dependencies that may

better indicate change propagation. It is important to mention that, in this

chapter, feature dependency refers to either a direct dependency or transitive

dependency.

To achieve our goals, we conducted an exploratory study on the evolution

of one academic- and four industrial- medium-sized product lines implemented

with conditional compilation. The analysed product lines comprise a total

number of twenty-six releases1 (i.e., twenty-one distinct evolution scenarios

among them). Specifically, we analyse both feature dependencies and change

propagation. Similar to several work [HASSAN and HOLT 2004, CATALDO

et al. 2008, BIRD et al. 2011, JERMAKOVICS et al. 2011, GEIPEL and

SCHWEITZER 2012, JOBLIN et al. 2015], in this study we use simultaneous

changes (see Section 2.3) as indicators of change propagation. Simultaneous

1 Public distribution of a new upgraded version with improvements in functionality and
bug fixing.
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changes are events where different features are changed in the same evolution.

The rationale is that changes made simultaneously in different features during

a single evolution means that those features are related somehow.

Thus, we aim at identifying and exploring change propagation through

feature dependencies during additive changes (i.e., addition of a new feature)

of evolving product lines. An additive change is classified as a perfective

maintenance [GODFREY and GERMAN 2008]. Perfective maintenance is

the most common type of maintenance comprising more than 60% of the

maintenance tasks [SCHACH et al. 2003]. In summary, we make the following

contributions:

– There is a strong relation between feature dependency and change

propagation. In our study, this relation usually happens when there is a

change in fragments of the feature code that are responsible for realising

feature dependencies. So, a change in these fragments is more likely to

demand a change in dependent features.

– Our findings revealed an inequality in the distribution of change

propagation along feature dependencies. This counter-intuitive

result basically indicates that a general minimisation of feature

dependencies might not decrease the change propagation through

paths of dependencies.

– Our analysis also evidenced a linear decay in the probability of change

propagation in the path of feature dependencies. This means that the

extent of change propagation in product-line features might be more

severe than the extent in files of non-product-line systems (see [GEIPEL

and SCHWEITZER 2012]). Moreover, our data revealed that it is

common to find transitive feature dependencies (77% of the product line

releases). Thus, several sampling-based analysis techniques for product

line that disregard larger feature combinations might be tuned in order

to consider more features in these combinations.

The analysis of the study was carried out taking into consideration

the method presented in Section 3.1. The explanations for our findings are

presented in the results and analysis sections (Section 3.2 and 3.3). Threats to

validity are presented in Section 3.4. The results of our study are compared to

results of previous studies in Section 3.5. Our final considerations are presented

in Section 3.6. It should not be left unmentioned that the results of this chapter

are reported in a submitted paper to an international journal.
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3.1 Study Setting

This section presents the research aims and motivates the relevance of

this study (Section 3.1.1), followed by an explanation of the study design to

answer the research questions (Section 3.1.2). Section 3.1.3 presents the target

systems. The section concludes with a description of the evaluation procedures

(Section 3.1.4).

3.1.1 Research Aims

Maintenance of software product lines requires the effective propagation

of changes. In this case, to preserve consistency, changes are propagated

to dependent features during product-line evolution. Thus, it is important

to find whether there is a relation between feature dependency and change

propagation. In other words, we want to explore whether feature dependency

is a driver for change propagation. If so, it is also important to explore this

relation in terms of the extent of change propagation and the concentration of

change propagation in some dependencies.

In this context, one can hypothesise: if there are simultaneous changes

in dependent features during the evolution of one release to the next one, they

may be caused by a change propagation through the existing dependencies

between features. So, it should exist a relation between feature dependency and

change propagation. Thus, the first research question of this study addresses

whether this is the case: [RQ1.1] Are changes more likely to propagate due to

feature dependencies?

The second research question was inspired by the assumption

that all feature dependencies are assumed to equally propagate

changes [FIGUEIREDO et al. 2008, RIBEIRO et al. 2011]. In other

words, these studies assume that each dependency between features

incurs the same impact on change propagation, whatever be the feature

dependencies’ characteristics. The equal impact of feature dependencies on

change propagation has important ramifications. If the majority of feature

dependencies equally impact the effort of propagating changes, they should

be reduced. On the other hand, if only specific dependencies matter, ad hoc

reduction of dependencies in product line might not reduce the effort of

propagating changes. In this case, the identification of feature dependencies

that cause more change propagation would ameliorate this problem. Thus, the
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second research question of this study is concerned about the equality of the

impact of feature dependencies on change propagation: [RQ1.2] Are feature

dependencies equally involved on change propagation?

Finally, if there is a relation between feature dependency and change

propagation as hypothesised in research question RQ1.1, we can assume that

changes might be propagated along the path of feature dependencies. In other

words, a change in one feature may cause a change cascade along the path

of feature dependencies even to distant features. In this context, the more

features are affected by changes, the more costly it may be to maintain a

software product line. So, it is important to understand the extent of the change

propagation through the paths of feature dependencies, since programmers

often inspect the code of direct neighbour features at best. Thus, the third

research question is concerned about the relation between change propagation

and distance between features in the path of dependencies: [RQ1.3] Is there a

relation between probability of simultaneous change and the distance between

features in the path of dependencies?

3.1.2 Study Design

This section explains in detail how we modeled and extracted the data

to answer the research questions of the study.

Feature Dependency

Two mathematically equivalent notations are commonly used to

represent dependencies between elements: the graph notation and the

adjacency matrix notation [KAFURA and REDDY 1987, SULLIVAN et

al. 2001, SANGAL et al. 2011, MACCORMACK et al. 2006, GEIPEL

and SCHWEITZER 2012]. In this study, we chose the adjacency matrix

notation because it is the most widely used notation to represent software

dependencies [GEIPEL and SCHWEITZER 2012]. Moreover, it is very simple

and easy to understand, enabling us to make several relevant computations.

We refer to the feature dependency matrix as FD, where a feature

appears both in one row and in one column of the matrix. FDa,b ≥ 1 means that

the feature a (row) depends on the feature b (column). Therefore, FDa,b = 0

is interpreted as feature independence. There is a dependency of feature a

on feature b if: (i) a references an attribute of b, or (ii) a calls a method

of b. We set FDa,b = 1 if at least one of these cases happen. To add more

representative power to this approach, we also represent the distance d of
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transitive dependencies between features in the matrix entries, the so-called

path of feature dependencies.

For instance, let us suppose that a feature C depends on feature B, and

feature B depends on feature A. In this case, FDB,A = 1, FDC,B = 1 and

FDC,A = 2. Therefore, the value of FD represents the distance d between

two features. The values of distance between features in paths of feature

dependencies are calculated by using the Floyd-Warshal algorithm [FLOYD

1962]. The Floyd-Warshall algorithm aims at finding shortest paths between

all pairs of vertices in a weighted graph (with no negative cycles) [CORMEN

et al. 2009]. Moreover, it is worth to notice that FD is an asymmetric matrix

since we consider dependency as a directional relationship. The example of the

adjacent matrix of this example is presented in Figure 3.1.

Figure 3.1: Example of a adjacent matrix of feature dependencies.

To perform the extraction of the adjacent matrix of feature dependencies

automatically, we used the tool CIDE [KÄSTNER 2015] that supports

mapping of features in the source code. CIDE was also used to relate program

elements to features. The CIDE output was used by an extension of the tool

GenArch+ [CIRILO et al. 2008] in order to generate the matrix of feature

dependencies. GenArch+ uses an AST (Abstract Syntactic Tree), based on

the source code, decorated with information about features in its nodes in

order to extract feature dependencies. Each program element is represented

by a node in the tree, and it is associated with one or more features. Thus,

when one program element from one feature is used by a program element

from another feature directly, we consider this as a feature dependency. The

transitive dependencies of the feature dependency matrix were calculated by

a program implemented in Java for the purpose of this study [CAFEO et al.

2015]. The algorithm receives as input a list of feature dependencies generated

by the tool GenArch+, and generates an adjacent matrix with all feature

dependencies (including transitive dependencies) of a product line.
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Simultaneous Changes

Similarly to feature dependencies, we use a matrix structure notation

to represent the simultaneous change of features along the evolution of the

software product lines. Moreover, we model our matrix for simultaneous

changes by adapting the simultaneous change model presented in the work

of Geipel and Schweitzer [GEIPEL and SCHWEITZER 2012]. This matrix

represents the view of the product-line evolution based on simultaneous

changes. Its entries indicate the number of times the features have been

changed simultaneously. Let us refer to this matrix as C, and the event

of features being “changed at the same time” during an evolution as a

simultaneous change.

To construct C, we need (i) the set of features, and (ii) the changes

happened in the features along the evolution of a release to the next one. Let

us use n to denote the number of the feature and m to refer to the number

of evolution. An event in the product-line evolution can be expressed as a

n-dimensional vector ~e. Each entry shows in binary form whether a feature has

been modified or not. For instance, in a product line with three features, we

have changes in two of them along the first evolution. Therefore, the evolution

scenario ~e1 = (101)T indicates that features one and three were modified

simultaneously in evolution 1. Thus, each ~e corresponds to one product-line

evolution.

The evolution matrix of a product line can be written by considering

each ~e as a column of the evolution matrix E of size n×m:

E = (~e1~e2 . . . ~em) (1)

To have a matrix representing the whole evolution scenario of a software

product line, we need to multiply E with its transposed matrix ET , and thus

the simultaneous changes matrix C is derived:

C = EET (2)

The matrix C has dimension n × n and indicates how many times

each feature has been modified simultaneously with other feature. An entry

CB,A = 4, for instance, indicates that features A and B have been changed four

times together considering the entire product-line evolution. Note that C, in

contrast to FD, is a symmetric matrix. Figure 3.2 illustrates all simultaneous

changes of the product line comprising features A, B and C. Along the

evolutions features B and A changed simultaneously four times, while feature
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C and B twice, and features C and A only once.

Figure 3.2: Example of a adjacent matrix of simultaneous changes.

To perform this extraction automatically, we used an extension of the

tool GenArch+ [CIRILO et al. 2008] to analyse the evolution and extract the

changes in the features. The simultaneous changes matrix was calculated by

a program implemented in Java for the purpose of this study [CAFEO et al.

2015]. The program receives as input a list of changes in features per evolution,

and generates a matrix with the number of simultaneous changes for each pair

of features along all evolution of a product line.

3.1.3 Target Systems

As target systems, we selected five product lines available in open

repositories and managed by different developers. All of them have been

developed using an annotative approach: Java with conditional compilation.

We chose conditional compilation because, despite the controversial discussion

in the literature about its benefits, it is a well-known and industry-strength

technique [KÄSTNER and APEL 2009]. In addition, by large, it is the most

commonly used in practice. All the product lines in this study are based on

Java and conditional compilation. It is also worth noticing that, besides the

Graph Product Line (see below), all of them are non-academic product lines

and developed for different purposes. In the following we describe each target

system:

– Berkeley DB. It is an open source database engine that can

be embedded as a library into applications [BERKELEY DB 2015,

THÜM and BENDUHN 2015]. The core features represent basic data

management and transactional behaviour support whilst the variabilities

include logging and statistics, among others. The evolution comprise the

addition of optional features such as logging and file handle cache.

– Mobile RSS. It is a portable RSS reader for mobile phones on the

Java ME platform [MOBILE RSS 2015, THÜM and BENDUHN 2015].
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Mobile RSS basically provides features to parse, browse and read RSS

feeds. Moreover, for instance, there are features to deal with compatibility

issues of mobile phones and features for logging. The evolution comprise

the addition of optional features.

– Lampiro. It is a messaging client for mobile devices based on a protocol

called XMPP [LAMPIRO 2015, THÜM and BENDUHN 2015, XMPP

2015]. It is possible to connect with contacts of ICQ, Gtalk and Windows

Messenger. There are many features including compression, encryption

and languages supported. The evolution comprise the addition of

mandatory and optional features.

– Graph Product Line (GPL). It is a product line of graph libraries

that allows programmers to tailor graph data structures, including

weighted and directed edges as well different traversal strategies and

algorithms [LOPEZ-HERREJON and BATORY 2001]. The evolution

scenarios comprise the addition of alternative and optional features.

– Java Chat. It is a simple chat application with features such as GUI,

encryption and logging [THÜM and BENDUHN 2015]. The evolution

scenarios comprise the inclusion of optional features.

Table 3.1 shows general data about the target product lines, such as

lines of code (KLOC), number of preprocessor directives implementing features

found in the source code (# of IFDEFS), number of features (# of Features),

number of feature dependencies (# of Feature Dependencies), and number of

product-line releases (# of Releases).

Table 3.1: General information about the target software product lines

Projects KLOC
# of

IFDEFS

# of

Features

# of Feature

Dependencies

# of

Releases

Berkeley DB 39 4051 56 860 6
Mobile RSS 18 2990 31 235 6
Lampiro 31 164 18 112 6
GPL 1 582 26 119 4
Java Chat 0.6 105 9 60 4

mean 28 18 1579 277 5

In order to address our research question (Section 3.1.1), we focused on

the evolution with additive changes (e.g. addition of a new feature). An additive

change is classified as a perfective maintenance [GODFREY and GERMAN

2008]. A perfective maintenance comprises enhancements intended to make

the system better – i.e. mainly the addition of new features in the context

of software product lines [ALVES et al. 2005, FIGUEIREDO et al. 2008,
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SVAHNBERG and BOSCH 2000]. Evolution with perfective maintenance alter

the intended outward semantics of the system, thus justifying the creation of a

new product-line release. Moreover, more than 60% of the maintenance tasks

are associated with a perfective maintenance [SCHACH et al. 2003]. In other

words, it is the most common maintenance type in software evolution.

Based on the respective original systems from open repositories [KÄSTNER

2015, BERKELEY DB 2015, THÜM and BENDUHN 2015, MOBILE

RSS 2015, LAMPIRO 2015], we created representations of evolutions

scenarios comprising only addition of new features. The representation

of the evolution scenarios were created based on information of the

open repositories [KÄSTNER 2015, BERKELEY DB 2015, THÜM and

BENDUHN 2015, MOBILE RSS 2015, LAMPIRO 2015], source code analysis

and information about evolution scenarios extracted from studies about

product-line evolution [FIGUEIREDO et al. 2008, ALVES et al. 2005]. In this

way, each evolution of our target product lines comprises one or more type of

change, such as inclusion of optional features, inclusion of alternative features,

inclusion of mandatory features, and implementation of new product-line

constraints due to the inclusion of new features. For instance, the evolution of

BerkeleyDB involves the inclusion of optional features such as logging and file

handle cache. The average number of included features is 9 in each evolution.

One evolution scenario for this software product line was, for instance, the

addition of features realising the registration of the actions of the database in

a log file. These changes happened in the 4th and 5th releases. It is important

to notice that other features not related to logging were also added in 4th and

5th releases.

These evolutions scenarios were retrospectively implemented by

undergraduate and postgraduate students based on the latest release of each

product line. In other words, based on the representation of the evolutions

created by some authors of the papers, the students could isolate and simulate

in the source code evolutions considering only the addition of new features.

Good design principles and practices were used, enforced, and reviewed

throughout the creation of all the software product line releases. These

practices were applied to ensure that the purpose of each feature was achieved

as expected. In all the cases, the evolution scenarios were also reviewed by

experts in the field. The source code of all target product lines are available

in the website of the study [CAFEO et al. 2015].
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3.1.4 Procedures

This section describes the evaluation procedures to answer the research

questions presented in Section 3.1.1.

The Relation Between Feature Dependency and Change

Propagation (RQ1.1)

In order to understand the relation between feature dependency and

change propagation, we make a twofold comparison based on two point

of views. We are using probabilistic analysis because we want to analyse

chances of the occurrence of change propagation in the presence of feature

dependencies. Specifically, we are using conditional probability to analyse the

data and answer RQ1.1. A conditional probability measures the probability of

occurrence of an event given that (by assumption, presumption, assertion or

evidence) another event has occurred [BERTSEKAS and TSITSIKLIS 2008].

Simultaneous changes view. We express the fact that two features (a and

b) have been changed at least once simultaneously by Ca,b ≥ 1. Moreover, the

fact that there is a dependency between two features (a and b) is expressed

by FDa,b > 0. So, in our first comparison, to measure the impact of feature

dependencies on simultaneous change we use the conditional probability PFD =

P (Ca,b ≥ 1|FDa,b > 0) given a 6= b. In other words, the probability that two

different features have been changed at least once simultaneously, given that

there is a dependency between them. PFD is calculated as follows:

PFD =
|{FDa,b > 0 ∧ Ca,b ≥ 1}|

|{FDa,b > 0}|
(3)

This means that we divide the number of simultaneous changes in

features involved in dependencies by the total number of feature dependencies.

As a reference, we compute the conditional probability P¬FD = P (Ca,b ≥

1|FDa,b = 0) given a 6= b. This means that we are interested in calculating

the probability that two different features have been modified together at least

once given that they are independent. P¬FD is calculated as follows:

P¬FD =
|{FDa,b = 0 ∧ Ca,b ≥ 1}|

|{FDa,b = 0}|
(4)

This means that we divide the number of simultaneous changes in

features that are not involved in dependencies by the total number of features

with no dependencies.
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The comparison of PFD with P¬FD reveals the possible degree of

correlation between feature dependency and simultaneous change in terms of

dependency.

Feature dependency view. In our second comparison, we are interested in

analysing the other way: the probability of existing a feature dependency given

that there is a simultaneous change or not. As aforementioned, we express the

fact that there is a dependency between two features (a and b) by FDa,b > 0

and that two features (a and b) have been changed at least once simultaneously

by Ca,b ≥ 1. A measure for the relation between simultaneous change and

feature dependency is the conditional probability PC = P (FDa,b > 0|Ca,b ≥ 1)

given a 6= b. It means the probability that a feature dependency exists given

that two different features have been changed at least once simultaneously. PC

is calculated as follows:

PC =
|{Ca,b ≥ 1 ∧ FDa,b > 0}|

|{Ca,b ≥ 1}|
(5)

This means that we divide the number of simultaneous changes in

features involved in dependencies by the total number of simultaneous change.

As a reference, we compute the conditional probability P¬C = P (FDa,b >

0|Ca,b = 0) given a 6= b. This computation means that we are interested in

calculating the probability that a feature dependency exists in the absence of

a simultaneous change. P¬C is calculated as follows:

P¬C =
|{Ca,b = 0 ∧ FDa,b > 0}|

|{Ca,b = 0}|
(6)

This means that we divide the absence of simultaneous changes in

features involved in dependencies by the total number of simultaneous changes.

The comparison of PC with P¬C reveals the possible degree of correlation

between feature dependency and simultaneous change from the point of view

of dependencies.

Equality on the Impact of Change Propagation (RQ1.2)

Given the number of feature dependencies per release of product line

(e.g., 235 in the last release of MobileRSS), there are too many data points in

order to undertake a comparison of all feature dependencies individually. Thus,

to address our research question, we apply data aggregation [VASILESCU et

al. 2011] using concentration statistics. The idea is to analyse the equality

of the impact of feature dependencies on change propagation. This analysis
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allows us to make statements such as “10% of the feature dependencies are

responsible for over 70% of change propagation”.

As a statistic concentration, we adopt a method to analyse and visualise

income inequalities in a population of a country called Lorenz inequality or

Lorenz curve [LORENZ 1905, VASILESCU et al. 2011]. In this study, we use

this technique to analyse the concentration of change propagation in feature

dependencies. For a more in-depth description of Lorenz inequality, the reader

may refer to the original work of Lorenz [LORENZ 1905]. First, we need the

number of simultaneous changes for each feature dependency. Let us refer to

this set as Π:

Π = {Ca,b : FDa,b ≥ 1 ∧ Ca,b ≥ 1} (7)

The next step is to normalise Π, so that the entries of the result π sum

up to one:

πn = Πn/

|Π|∑
l=1

Πl (8)

After that, the entries of π must be rearranged in ascending order:

m < n ⇒ πm < πn (9)

Finally, the Lorenz curve L(x) with 0 ≤ x ≤ 1 is calculated by cumulating

the first x percent of the elements of π:

L(x) =

⌊x∗|π|⌋∑
n=0

πn (10)

L(x) is the percentage of simultaneous changes accumulated in the

x percent less active feature dependencies. An equal distribution leads to

L(x) = x. To compare the Lorenz concentration between the target product

lines we compress it to one number named Gini coefficient [GINI 1921]. The

Gini coefficient indicates the degree of distributional inequality of simultaneous

changes amongst the feature dependencies of a software product line. Let us

refer to the Gini coefficient as g:

g = 1− 2

∫
1

0

L(x) dx (11)

The Gini coefficient takes a value between 0 and 1, with g = 0 denoting

perfect equality meaning that x percent of the feature dependencies are
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responsible for x percent of the simultaneous changes. Conversely, g = 1

denotes perfect inequality with only one feature dependency responsible for

100 percent of the cumulative simultaneous changes. By using Gini coefficient

we are able to compare different concentrations since such coefficient represents

a concentration in a scalar value.

Feature Dependency Distance (RQ1.3)

Features might propagate changes along the path of feature dependencies.

In this context, one can assume that there is a decreasing probability of

simultaneous changes of features as the distance between features increases in

the path of feature dependencies. In this context, we extend the concept of PFD

to PFD(d), giving the probability that two features connected by a dependency

with distance d are changed together at least once. So, if changes propagate

along a path of dependencies, which function PFD in d would indicate the

probability of change propagation?

It is known that, when only one dependent variable is being modelled,

a scatterplot can suggest the form and strength of the relationship between

variables. In our study, the scatterplots of all target systems suggest that there

is a relationship between d and PFD, and this relationship can be approximated

as a linear function. Consequently, the most simple approximation for PFD(d)

is:

PFD(d) = −ad+ b (12)

We add a constant a with a minus sign to the equation because (i) we are

supposing that there is a decreasing probability of change propagation related

to distance, and (ii) as a rule, the constant term is always included in the set

of regressors, which in our case is d. Moreover, since P¬FD may be nonzero, we

also add an intercept b to the equation.

Having the possible equation that delineates PFD(d), we need to test the

goodness of fit of the statistical model proposed regarding our data. Measures

of goodness of fit typically summarise the discrepancy between observed values

and the values expected under the model in question. Since our statistical

model proposed is a linear function, we fit the observed data PFD(d) to

equation 12 with the ordinary least squares method. Ordinary least squares is

a method for estimating the unknown parameters in a linear regression model.

This method minimises the sum of squared vertical distances between the

observed responses in the dataset and the responses predicted by the linear

approximation. To check whether the model explains the patterns found in the
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data, the quality of the fit needs to be quantified. To measure the quality of

fit, we consider the adjusted coefficient of determination (adj.R2).

The coefficient of determination of a linear regression model is the

quotient of the variances of the fitted values and observed values of the

dependent variable. If we denote yi as the observed values of the dependent

variable, ȳ as its mean, and ŷi as the fitted value, then the coefficient of

determination is:

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

(13)

The adjusted coefficient of determination (adj.R2) of a linear regression

model is defined in terms of the coefficient of determination (equation 13).

R2 is adjusted to account for the residual degrees of freedom (number of

observations minus the number of fitted coefficients). If we denote n as the

number of observations in the dataset, and p as the number of independent

variables, the adjusted coefficient of determination is:

adj.R2 = 1− (1−R2)
n− 1

n− p− 1
(14)

The adjusted coefficient of determination (adj.R2) takes a value between

-1 and 1, with values of adj.R2 close to 1 denoting that the model fits the data

well. In other words, high values of adj.R2 provide evidence for the existence of

change propagation, and thus a relation between probability of simultaneous

change and distance along the paths of dependencies.

We are using the adjusted coefficient of determination to quantify the

quality of the fit because (i) it is bound between -1 and 1 making the

comparison between the target systems easier than unbound measures, and

(ii) it overcomes specific problems of the coefficient of determination (R2) in

order to provide additional information by which we can evaluate our regression

model’s explanatory power.

3.2 Results

This section presents the results of the analysis described in Section 3.1.4.

Section 3.2.1 describes the results of the probabilities extracted to answer

research question RQ1.1. To address the research question RQ1.2, Section 3.2.2

shows the results obtained regarding the concentration of change propagation

in certain feature dependencies. Finally, Section 3.2.3 checks whether the
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statistical model proposed represents the patterns found in our data in order

to answer to research question RQ1.3.

3.2.1 Feature Dependency and Change Propagation

As pointed out in Section 3.1.4, the probabilities PFD, P¬FD, PC and P¬C

can provide evidence of the relation between feature dependency and change

propagation. Table 3.2 shows the probability values for PFD and P¬FD for

the five software product lines. These values indicate the probability that two

features change simultaneously in the presence of feature dependency (PFD) or

in the absence of feature dependency (P¬FD). The comparison between these

values indicates the influence of a feature dependency in the occurrence of

a possible change propagation. It is important to notice that the amount of

feature dependencies or simultaneous changes affect the probability results,

but not the difference between such probabilities. A change in the amount of

these variables should affect both the conditional probability and its reference

probability. Since we are comparing a conditional probability with its reference,

the difference between them is supposed to be the same (or similar) when the

amount of one or both variables change.

Table 3.2: Summary of Probabilities.
Projects PFD P¬FD PC P¬C

BerkeleyDB 0.163 0.028 0.722 0.275
GPL 0.471 0.165 0.378 0.119
JavaChat 0.700 0.099 0.500 0.045
Lampiro 0.750 0.141 0.062 0.003
MobileRSS 0.366 0.117 0.524 0.202
mean 0.504 0.114 0.425 0.123

Looking at the values of PFD and P¬FD, we can notice that PFD ranges

between 0.16 and 0.75, and P¬FD is less than 0.16 for all software product lines.

This basically means that it is likely that change propagation happens when a

feature dependency exists. This superiority of PFD against P¬FD can be seen

in the mean of these values (PFD = 0.504 vs. P¬FD = 0.114). Moreover, this

behaviour can be observed in all product lines analysed as shown in Figure 3.3.

In Figure 3.3, we can notice that the probability of simultaneous changes

in dependent features (PFD) is much higher than the probability in independent

features (P¬FD). The smallest difference between PFD and P¬FD is observed in

GPL. In this case, the chances of simultaneous changes in dependent features is

almost three times higher than simultaneous changes in independent features

(PFD = 0.47 vs. P¬FD = 0.17). Additionally, the most significant difference
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is in JavaChat where the probability is seven times higher (PFD = 0.70 vs.

P¬FD = 0.10).
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Figure 3.3: Comparison between PFD and P¬FD.

Table 3.2 also shows the values of PC and P¬C . These values show the

probability that a feature dependency exists given that there is a simultaneous

change (PC) or not (P¬C) in features along product-line evolution. By

comparing these values it is possible to conclude whether the occurrence

of simultaneous changes is an indicative of the existence of a dependency

between features. PC ranges between 0.062 and 0.722 while P¬C ranges between

0.003 and 0.275. Except for Lampiro, all values of PC are greater than the

highest value of P¬C (0.275 for BerkeleyDB). The lowest value of PC is 0.378

if Lampiro is discarded. Lampiro present odd results due to the way some

dependencies between features are established. Our approach captures only

feature dependencies based on the source as defined in Sections 2.1.2 and 3.1.2.

However, there are some relationships between features in Lampiro that are not

being considered by our definition. In this way, we are counting simultaneous

changes between some of these features. Our approach does not consider these

cases as a dependency. Nevertheless, the mean values presented in Table 3.2

also show that there is a considerable difference between PC and P¬C . This

difference can be observed in each product line as shown in Figure 3.4.

As we can see in Figure 3.4, there is a clear difference between PC and

P¬C in terms of values in each product line. The lowest difference is presented

in GPL where PC is almost three times higher than P¬C (0.38 and 0.12,

respectively), while the most significant difference with almost thirteen times is
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Figure 3.4: Comparison between PC and P¬C .

encountered in JavaChat (PC = 0.50 vs. P¬C = 0.040), excluding the unusual

results of Lampiro.

In a nutshell, the results presented in this section shows a pronounced

difference between PFD and P¬FD. This difference provides evidence that

the existence of a dependency raises the chance of a change propagation

between features. In addition, the difference between PC and P¬C shows us that

simultaneous changes are more likely to happen in dependent features than in

independent features. A more in-depth analysis as well as the implications of

the results are presented in Section 3.3.1

3.2.2 Inequality in Change Propagation Distribution

Figure 3.5 shows in dashed grey the Lorenz curve for BerkeleyDB. As a

reference, the solid black line marks the line of equality. It can be seen that

the Lorenz curve is strongly bent and that less than 20% of the dependencies

concentrate 100% of the change propagation. This behaviour of inequality in

the distribution of simultaneous changes can be confirmed by the high value of

the Gini Coefficient g for BerkeleyDB (g = 0.862), which is not an exception

amongst the target systems. Table 3.3 lists the Gini Coefficients g for all

software product lines, and throughout the sample the concentration is very

high; on average of 0.535. It is worth to notice that the coefficients for JavaChat

and Lampiro are below of the mean. This happens because of the relative low

number of feature dependencies.
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Figure 3.5: Concentration of change propagation through paths of feature
dependencies in BerkeleyDB.

Table 3.3: Summary of Gini Coefficients.
Projects g
BerkeleyDB 0.862
GPL 0.595
JavaChat 0.375
Lampiro 0.250
MobileRSS 0.657
mean 0.535

The data obtained in this section shows an inequality in the distribution

of change propagation through the product-line dependencies. This result

means that few feature dependencies are involved in many occurrences of

change propagation. This is a counterintuitive finding that goes against

the common assumptions on the relationship between module dependencies

and change propagation. Some studies [TSANTALIS et al. 2005, SANGAL

et al. 2011], which evaluate non-product lines, implicitly assume an equal

distribution of change propagation amongst dependencies. In other words,

dependencies are considered indicators of software changes in these studies.

The analysis of the data and implications of the results are presented in

Section 3.3.2.
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3.2.3 Distance and Change Propagation

In Section 3.1.4, we observed that there is a decreasing probability of

change propagation as the distance between features increases in the path of

dependencies. In other words, if changes propagate along the paths of feature

dependencies, there is a relationship between d and PFD, and we assume that

this relationship can be approximated as a linear function. Figure 3.6 presents

a scatterplot of the relationship between d and PFD in BerkeleyDB (solid black

dots) and a reference graph with linear trend (grey dashed line). The linear

trend of the relationship between d and PFD in BerkeleyDB is not an exception

amongst the software product lines analysed – i.e., all product lines presented

the same linear trend between d and PFD.
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Figure 3.6: Relationship between d and PFD in BerkeleyDB.

As we propose a statistical linear model to delineate PFD(d), we test

the goodness of fit of the statistical model proposed regarding our data using

the adjusted coefficient of determination (adj.R2). As indicated by the high

values of adj.R2 in Table 3.4, the linear model proposed describes well PFD(d).

BerkeleyDB has an adj.R2 of 0.908. Moreover, all software product lines have

an adj.R2 larger than 0.7, evidencing the existence of change propagation, and

thus a relation between probability of simultaneous change and distance along

the paths of dependencies.

It is important to note that two product lines have values for adj.R2

equal to 1 because the maximum values of d for these product lines are two. In

other words, when d = 2 we obtain a linear relationship between d and PFD.

Analysing the collected data, we can conclude that there is a transitive

propagation of changes via a path of dependencies. Moreover, there is

a decreasing probability of change propagation as the distance between
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Table 3.4: Summary of the Adjusted Coefficient of Determination.
Projects Adj.R2

BerkeleyDB 0.908
GPL 0.799
JavaChat 1.000
Lampiro 1.000
MobileRSS 0.958
mean 0.933

dependent features increases in the path of dependencies. Finally, we can also

observe that this relationship can be approximated as a linear function. This

finding may have important implications. According to Geipel and Schweitzer,

the extent of propagation in non-product-line systems has an exponential

decay [GEIPEL and SCHWEITZER 2012]. Therefore, the extent of change

propagation in product-line features might be more severe than the extent in

files of non-product-line systems. The implications of this result is discussed

in Section 3.3.3.

3.3 Discussion

This section reports an analysis of the results presented in Section 3.2

to explain the relation between feature dependencies and change propagation.

Section 3.3.1 analyses the collected data for answering RQ1.1, i.e. the relation

between feature dependency and simultaneous change. In order to address

RQ1.2, Section 3.3.2 discusses the inequality of the distribution of change

propagation through paths of feature dependencies. Finally, Section 3.3.3

presents a discussion about the extent of change propagated through feature

dependencies and their implications in order to answer to RQ1.3.

3.3.1 The Relation between Feature Dependency and
Change Propagation

The pronounced difference between PFD and P¬FD provides evidence

that the existence of a dependency raises the chance of a change propagation

between features. In addition, the difference between PC and P¬C shows us

that simultaneous changes are more likely to happen in dependent features

than in independent features. We can conclude that the results support our

argument that dependencies are closely related to change propagation. In the

following, we present two complimentary views that explain the close relation
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between feature dependencies and change propagation. In addition, we also

explain the most recurring cases of simultaneous changes that are not related

to change propagation.

Structural properties of feature dependency

Program elements establishing a single feature dependency may be

distributed all over the code of many modules. Consequently, they tend to

vanish from developer’s eyes during a maintenance [RIBEIRO et al. 2014].

Thus, developers are likely to ignore consciously (or not) feature dependencies

while reasoning about feature maintenance. Moreover, the implementation of

feature dependencies may involve several parts of the code, possibly affected

by a change propagation. To understand why feature dependencies are likely to

propagate changes, we analysed the source code of the software product lines.

In our analysis, we noticed that some developers often change parts of the code

that affect program elements responsible for realising feature dependencies.

Consequently, these actions demand changes on dependent features.

For instance, in BerkeleyDB the feature TRANSACTIONS depends

on the feature ENVIRONMENT LOCKING. The idea of the dependency is

to lock the environment during a transaction. These two features changed

simultaneously once along the evolution of BerkeleyDB. There was a change

in the feature ENVIRONMENT LOCKING in the second release of the

BerkeleyDB. The change comprised the modification of a method responsible

for locking several attributes of the database. The problem is that in the

third release, both features changed simultaneously. The previous change did

not preserve the consistency of between the features TRANSACTIONS and

ENVIRONMENT LOCKING. The developer overlooked important parts of

the code of dependent features. The reason may be the number of program

elements involved in this dependency. The feature dependency comprises 10

program elements (e.g. attributes and methods) scattered in 5 files. As a

consequence, in order to preserve the consistency of the dependency, in the

next release the same method of the feature ENVIRONMENT LOCKING was

changed again as well as two methods of the feature TRANSACTIONS.

Another interesting example in BerkeleyDB happened in the context

of the feature dependency between TRANSACTIONS and CLEANER. The

purpose of the dependency is to clean several configuration parameters after a

transaction in the database. The implementation of the dependency between

these features involves 23 program elements distributed along 3 files. Along the
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evolution of BerkeleyDB, these two features changed simultaneously four times.

In the first time, a change in one method of the feature TRANSACTIONS was

propagated to three methods of the feature CLEANER. However, in the second

time, the change in one of the three methods of the feature CLEANER was

undone due to a mis-propagated change.

As aforementioned in Chapter 1, the more complex is the structure

of a feature dependency in the source code, the more influential it might

be in change propagation. In the examples above, the widely-scattered

implementation of a feature dependency was even related to two severe change

propagation problems: (i) the first was an omission case, i.e. the change was

not fully propagated, and (ii) the second was a mistake case, i.e. the change

was propagated to the wrong program element. Therefore, the structural

properties of feature dependency are likely to impact on change propagation.

Structural properties of feature dependencies are characteristics related to

the way a feature dependency is implemented in the source code, such as

number of program elements involved in a feature dependency. In this way,

exploring characteristics of the code structure related to change propagation,

such as structural properties of feature dependency, may be primordial to

support developers during software maintenance. Therefore, making structural

properties of feature dependencies explicit to developers might support the

change propagation in product lines. For instance, either computing or making

the program elements involved in feature dependencies explicit would indicate

the critical parts of the code that must be carefully changed due to a high

probability of change propagation.

Feature dependencies are not alike

A cross-reading of the calculated probabilities shows us that the values

of PFD and P¬FD are inversely proportional to PC and P¬C , respectively.

For instance, the lowest values of PFD and P¬FD from BerkeleyDB contrast

with its highest values of PC and P¬C . The low values of PFD and P¬FD

in BerkeleyDB are due to the high number of feature dependencies (860

dependencies) and due to the number of change propagation happening in

a few dependencies. These low values could lead us question the validity

of the close relation between feature dependency and change propagation

aforementioned. However, the high values of PC and P¬C confirm our statement

by showing that when there is a simultaneous change between features,

there is a high probability of having a dependency amongst these features.

Thus, this behaviour in BerkeleyDB, which is not an exception amongst
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the the product lines analysed, can be interpreted as an indication of

concentration of change propagation in certain feature dependencies. A few

number of feature dependencies seems to concentrate a high number of

recurrent changes, thus indicating that there are feature dependencies that

are more likely to propagate changes. For instance, the dependency between

features TRANSACTIONS and CLEANER were involved in 4 changes along

the evolution of the BerkeleyDB. As aforementioned, the implementation

of the dependency between these features involves 23 program elements

distributed along 3 files. On the other hand, the dependency between features

TRANSACTIONS and ENVIRONMENT LOCKING were involved once in

a change along the evolutions of the product line BerkeleyDB. This feature

dependency is realised by 10 program elements scattered in 5 files.

The reason for this and other several inequalities found in all product

lines analysed may be due to the complex structure of the feature dependency

implementation – i.e. structural properties of feature dependencies. We

can notice the differences of program elements and files involved in the

implementation of the feature dependencies. In this way, exploring possible

reasons that make change propagation more difficult – such as, structural

properties of feature dependency may be primordial to understand and better

support change propagation in product lines. In Section 3.3.2, we revisit in

more detail the issue related to the inequality of the distribution of changes

throughout dependencies (addressed by research question RQ1.2).

Non-dependent features

Another interesting point in our data is related to a specific case of

simultaneous changes that happen in non-dependent features (P¬FD). There

were many cases where non-dependent features changed simultaneously. The

nonexistence of a feature dependency does not mean full absence of any form

of relationship between features. Feature interactions [CALDER et al. 2003]

and alternative features are other types of relationships between features not

encompassed by our definition of feature dependency. To clarify the change

propagation in non-dependent features, we explain the case of alternative

features. Alternative features are features that are mutually exclusive in

a product generated by the software product line. The way this type of

constraint was implemented in our target product lines is not considered

as a dependency in our study (see Section 3.1.2). These constraints are

usually implemented by means of preprocessor directives. However, this

mutually exclusive relationship between these features may demand change
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propagation. Alternative features often depend on the same program elements

of a dependee feature. A change that affects these program elements will

probably affect all alternative features using the same program elements,

thus causing simultaneous changes in non-dependent features. Therefore, to

alleviate situations where non-dependent features demand change propagation,

we believe that making program elements realising feature dependencies

explicit to developers may help reasoning about possible changes considering

all types of relationships between features.

3.3.2 Consequences of the Inequality in the Distribution

The results presented in this study show a strong relation between feature

dependency and change propagation. Apart from this point, the data obtained

for answering RQ1.2 challenges the common assumptions on the relationship

between dependencies and change propagation. Some studies [TSANTALIS et

al. 2005, SANGAL et al. 2011], which evaluate non-product lines, implicitly

assume an equal distribution of change propagation amongst dependencies. In

other words, the dependency structure would be a measure for the software

change behaviour in these studies. However, our data show an inequality in the

distribution of change propagation through the product-line dependencies. So,

it might be problematic to simply adapting stand-alone software approaches

to analyse the change behaviour of a software product line. The inequality

in the distribution of change propagation indicates that we cannot treat all

dependencies alike. Few dependencies are related to most change propagation

of a product-line evolution history. Based on this, we can pinpoint two

important findings.

First, it is important to identify recurring characteristics in the code

structure (e.g., structural properties of feature dependencies) that are related

to the concentration of changes in certain feature dependencies. Certain

feature dependencies may be involved more often in change propagation than

other feature dependencies along the evolution, the so-called concentration

of changes. The characteristics of those feature dependencies must also be

explored. For instance, the realisation of some feature dependencies involve

many program elements. We observed that those feature dependencies are

frequently involved in change propagation. When a change affects one of

the many program elements establishing such dependency, changes may be

propagated to dependent features. Moreover, feature dependencies involving

more program elements are more likely to propagate changes. Therefore,

structural properties of feature dependencies (explored in Chapter 4) may be
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indicators that such dependencies are more likely to propagate changes – i.e.,

concentration of changes.

Second, as many dependencies are not involved in change propagation,

only reducing all the dependencies will not necessarily reduce the change

propagation effort in product lines. In fact, dependencies might indicate a

high reuse [GEIPEL and SCHWEITZER 2012]. A dependency indicates that

a functionality was not duplicated but reused. A highly connected feature

is not necessarily an indicator of flawed design, but it might indicate it is

a key feature in the product-line architecture. As a consequence, since these

features are highly connected, it is natural they present a large number of

program elements realising feature dependencies. In this case, it is very likely

that not all program elements are relevant in a maintenance task. Therefore,

we argue that, besides making these program elements explicit to developers

(Section 3.3.1), organising the information about these program elements in

an intuitive and helpful way would support developers to propagate changes

in the presence of feature dependencies and drive efforts to specific parts of

the source code. We will tame this problem in Chapter 5.

3.3.3 Extent of the Change Propagation

The results presented in the previous section (Section 3.3.1) indicate that

transitive feature dependency is related to change propagation. In our research

question RQ1.3, we were interested in discovering the extent of this propagation

through paths of dependencies. The results presented in Section 3.2.3 show us

the relation between probability of change propagation and distance between

transitively dependent features. Analysing the collected data, we found that

there is a decreasing probability of change propagation as the distance

between transitively dependent features increases in the path of dependencies.

Moreover, we observed that this relationship can be approximated as a linear

function. So, these results provide evidence for the transitive propagation of

changes via a path of dependencies.

This result about the relationship between distance and change

propagation may have important implications. A structural property that

characterises the distance of the dependency would indicate the possible

paths of change in a product line. Features involved in these paths of feature

dependencies are likely to suffer changes related to change propagation if the

maintenance affects one of these features. Thus, developers should be also

concerned with these distinct inter-related features during the product-line
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maintenance based on a property that indicates the distance between features.

Reasoning about this property might help decreasing the maintenance effort

of product lines along the evolutions.

In addition, the data show a linear decreasing relationship between

distance and probability of change propagation indicating that the extent of

change propagation in product-line features might be more severe than the

extent in files of non-product-line systems. For instance, Geipel and Schweitzer

found an exponential decay regarding the relation between probability of

changes and distance amongst classes [GEIPEL and SCHWEITZER 2012]. In

other words, it is more likely the extent of the change propagation in software

product lines reach more features than the change propagation in modules of

stand-alone programs. Therefore, change propagation in product lines can be

a more complex task to be executed than in stand-alone programs. Therefore,

the distance between features might help developers to concern about paths of

feature dependencies during the maintenance of a feature in order to support

the change propagation.

Another point in our data is related to the extent of change propagation

in software product lines. Most of the product-line releases (77%) presented

an distance higher than one. This information might be valuable to tune

and/or complement existing approaches, such as combinatorial interaction

testing. For instance, there are several sampling-based analysis techniques

in combinatorial interaction testing that aim at covering all pairs of feature

(i.e. distance of the dependency equals to 1), but disregard larger feature

combinations [MARIJAN et al. 2013, PERROUIN et al. 2012, LOCHAU

et al. 2012]. So, these approaches implicitly assume that a major fraction

of feature dependencies are not transitive. According to our results, this

assumption might have implications for the precision of those approaches. Since

dependencies can propagate changes, it is possible that these dependencies

can also propagate errors. In this case, approaches covering only a shallow

distance of dependencies might be missing information to reveal errors, change

propagation estimation, and the like.

3.4 Threats to Validity

This section discusses the study limitations based on the four categories

of validity threats described by Wohlin et al. [WOHLIN et al. 2000]. Each

category has a set of possible threats to the validity of an experiment. We
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identified these possible threats to our study within each category, which are

discussed in the following with the measures we took to reduce each risk.

Conclusion Validity. The major risk here is related to the random

heterogeneity of subjects: the chosen product lines came from different

application domains (Section 3.1.3). In other words, there is a risk that the

variation due to individual differences is larger than due to the treatment.

Although this risk is considered a threat to the conclusion validity, it also

helps to promote the external validity of the study by improving the ability to

generalise the results of our experiment.

Internal Validity. The detected risk is that we are considering the data

from multiple releases all together in our matrices of feature dependencies

and simultaneous change. In other words, we are not considering the effect

of time when analysing the concentration of change propagation on feature

dependencies. Despite of the aggregated data, we argue that this risk is

minimised due to the simulation of the evolution scenarios as well the number

of evolution. Although simulating the evolution scenarios does not mean

controlling the change propagation, we argue that we minimise the effect of

time due to the diversity of the evolution scenarios. In other words, we minimise

the chances of change propagations happen in feature dependencies that exist

since early evolution by controlling the evolution scenarios.

Construct Validity. We detect two possible threats related to the restricted

generalizability across constructs : (i) the use of conditional compilation as

the variability mechanism for implementing features in the source code

might increase the number of feature dependencies when compared to

other variability mechanisms. With conditional compilation, features may

be scattered in the source code. This means that a feature may present

low cohesion, and, as consequence, a high coupling with other features (i.e.

high number of feature dependencies), and (ii) we focus only in evolution

with perfective maintenance, i.e. mainly the addition of new features. In this

case, we might have other maintenance scenarios where the results are not

similar to the ones presented in this study. Risk (i) cannot be completely

avoided as all product lines analysed are implemented using the mechanism of

conditional compilation. However, we argue that conditional compilation is the

most widely used mechanism to implement product-line features [KÄSTNER

and APEL 2009]. Moreover, except for the Graph Product Line, all target

systems are non-academic projects. So, we believe these product lines were
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developed aiming for a good design, thus reducing the number of unnecessary

feature dependencies. Nevertheless, the Graph Product Line was continuously

improved over years by an academic community that uses it as a subject

of studies. Risk (ii) also cannot be avoided due to the design of the study.

However, we argue that more than 60% of the maintenance tasks are associated

to a perfective maintenance [SCHACH et al. 2003]. In other words, it is the

most common maintenance type in software evolution.

External Validity. We identified two risks in this category related to the

interaction of the setting and treatment: (i) the target product lines might not

be representative of the industrial practice, and (ii) the evolution scenarios

might not represent relevant scenarios of evolution. We also identified one

risk related to the interaction between selection and treatment: (iii) the

subject responsible for implementing the evolution scenarios might not be

representative of the population we want to generalise. In order to reduce

risk (i), we evaluated product lines that come from heterogeneous application

domains. In addition, all software product lines have been extensively used

and evaluated in previous research [LIEBIG et al. 2010, APEL and BEYER

2011, RIBEIRO et al. 2011]. We believe the characteristics of the selected

product lines, when contrasted with the state of practice in software product

lines, represent a first step towards the generalisation of the findings observed

in this study. Regarding risk (ii), we created product-line evolution scenarios

based on previous studies of software product line evolution [ALVES et

al. 2005, FIGUEIREDO et al. 2008, SVAHNBERG and BOSCH 2000]. We

observed in these previous studies what are the recurring types of changes in

product-line evolution. Moreover, we defined the procedures for the creation of

each software product line release. Good design practices were used, enforced,

and reviewed throughout the creation of evolution of all the product-line

releases. An example of good design practice was to ensure the coupling

of the dependent features was reduced to a minimum. In all the cases, the

evolution scenarios were also reviewed. The intent of all these procedures was

to guarantee that neither feature dependencies nor change propagation were

artificially created, thus impacting on our conclusions. Finally, although this

risk is considered a threat to the external validity, it also helps to promote the

construct validity of the study. Regarding risk (iii), similarly to risk (ii), we

argue that we defined clear procedures for the evolution, good design practices

were used, and the evolution scenarios were systematically reviewed by experts

in the field.
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3.5 Related Work

Software change and change propagation. Previous research work

have explored the understanding of software change and the impact of

those changes on specific software properties [HASSAN and HOLT 2004,

SANGAL et al. 2011, TSANTALIS et al. 2005, GEIPEL and SCHWEITZER

2012]. Most of these investigations, however, only concentrate on the

analysis of module dependencies in stand-alone systems. For instance,

Geipel and Schweitzer investigate the relationship between class dependency

and change propagation [GEIPEL and SCHWEITZER 2012]. The study

concludes a strong relationship between dependency and change propagation.

Moreover, they revealed that half of all dependencies are never involved in

change propagation. In a study about the impact of changes, Sangal et al.

propose an approach that uses dependency models in order to manage complex

software architecture [SANGAL et al. 2011]. Our work deals with two different

main aspects when compared to those related work. First, we focus our

research on feature change. Software product lines use features as the unit

of abstraction. Thus, we explore changes on product-line features instead

of the unit of abstraction of programming languages used to implement

product lines (e.g.: classes or aspects). Second, we consider only product

lines in our study. A software product line allows the generation of several

products by combining different product-line features. So, the extent of a

change propagation may affect from dozens to thousands different products

depending on the characteristics of the product line.

Feature relationships vs. product-line maintenance. There are also

investigations trying to understand and minimise negative effects of feature

dependencies on product-line development. Cataldo and Herbsleb have

empirically studied feature-oriented development in order to observe the

impact that some attributes of this type of development have on integration

failures [CATALDO and HERBSLEB 2011]. They concluded that dependencies

and cross-feature interactions are drivers of integration failures. In another

work related to feature dependencies, Ribeiro et al. performed an empirical

evaluation on forty preprocessor-based software product lines focusing on

the maintainability of feature dependency code [RIBEIRO et al. 2011].

They proposed an approach to reduce the effort of maintenance in product

lines implemented using preprocessor by focusing on feature dependencies.

The conclusion was that feature dependencies are reasonably common in
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preprocessor-based software product lines. Moreover, they highlight the impact

of feature relationships on the maintenance by increasing the maintenance

effort. These and other authors [FERBER et al. 2002, LEE and KANG

2004, GARVIN and COHEN 2011, APEL and BEYER 2011, CAFEO et

al. 2012, CAFEO et al. 2013], have been highlighted the impact of feature

dependencies on several attributes of product lines. In our work, we try to

understand the link between feature dependency and change propagation

because (i) our novel contribution is to empirically analyse the relation between

change propagation and feature dependency, and (ii) change propagation may

impact on several other software product lines attributes such as failures and

maintenance effort.

3.6 Summary

Understanding whether and how feature dependencies propagate changes

is important to reduce the maintenance complexity. First, maintainers need to

be better informed about possible drivers of change propagation complexity.

Feature dependency is a common type of relationship between features and it

may be a change propagator to dependent features. If so, exploring how changes

propagate through feature dependencies is essential. In this context, this

chapter reported a study assessing the relation between change propagation

and feature dependency as well as how propagated changes behave in presence

of feature dependencies. Our study confirms the close relation between feature

dependency and change propagation. In other words, feature dependencies are

important drivers of change propagation.

We have also observed a number of new interesting outcomes as

discussed along Section 3.3. For instance, according to our results, there is

a high probability of a feature dependency propagating changes (average

of ≈51%). Moreover, we identified the way feature dependencies are

implemented (structural properties of feature dependency) may impact on

change propagation. In addition, we also identified parts of the source code

that are possible causes of this strong relation – i.e., code associated with

feature dependency implementation. The results also revealed an inequality in

the distribution of change propagation through the feature dependencies of a

product line. This counterintuitive result indicates that (i) a general feature

dependency minimisation might not reduce change propagation effort; and

(ii) characterising structural properties of feature dependency is essential to
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distinguish feature dependencies, and thus help propagating changes. Finally,

our analysis provided evidence about the existence of change propagation

through paths of feature dependencies. Such analysis pointed to a linear

relation between depth of dependency and change propagation, which indicates

a more powerful change propagation in features than the exponential relation

between distance and classes [GEIPEL and SCHWEITZER 2012].

As a consequence of the results, it is evident the need for characterising

structural properties of feature dependency. The idea behind this investigation

is to identify structural properties and investigate their correlation with

change propagation (Chapter 4). As these structural properties may define

the behaviour of change propagation, there is also a demand for strategies to

explore such properties in order to support change propagation (Chapter 5).
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The Role of Feature Dependency
Properties on Change Propagation

Change propagation is a central aspect of product-line maintenance.

There is growing evidence that certain characteristics of feature dependency

impact on change propagation (Chapter 3). The more complex is the structure

of a feature dependency, the more influential it might be to change propagation.

Therefore, it becomes primordial defining and evaluating indicators to capture

various complexity characteristics of feature dependency structure. The

indicators should help developers to overcome the cognitive difficulties caused

by change propagation in the presence of feature dependencies.

In a seminal study, Simon has extensively argued about the limitations

of human cognitive capabilities [SIMON 1978]. Developers can lose track of

what they are doing and make irrational decisions in complex contexts, the

so-called cognitive complexity. Cognitive complexity is defined in this thesis

as the mental burden of developers when performing relevant operations in a

specific context [BAGHERI and GASEVIC 2011]. Hence, the more complex are

feature dependencies, the higher is the cognitive complexity of a product line.

Consequently, high cognitive complexity of maintaining software product lines

may be related to complex feature dependencies, which might affect change

propagation.

According to the causal chain model proposed by Briand et al., which

provides the basis for empirical research on software indicators, structural

properties are often the main reasons for the cognitive complexity [BRIAND

et al. 1999]. As illustrated in the causal chain model (Figure 4.1), structural

properties of the source code have impact on the cognitive complexity

of software [BRIAND et al. 1999, BRIAND et al. 1999b]. The cognitive

complexity of a program affect the difficulty of performing some tasks in the

source code, such as change propagation. By adapting the causal chain model

(Figure 4.1), we illustrate the findings of several authors stating that structural

properties of non-product lines (e.g. coupling) can be used as indicators of

change propagation [MANCORIDIS et al. 1998, SANGAL et al. 2011, GEIPEL

and SCHWEITZER 2012].
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Figure 4.1: Relationship between structural properties, cognitive complexity
and change propagation.

Some authors state that measurement frameworks are required to

characterise attributes affecting the cognitive complexity of a program [CANT

et al. 1994, BRIAND et al. 2001, FIGUEIREDO et al. 2008b]. Measurement

frameworks have been mainly proposed to instantiate measures for

software systems [FIGUEIREDO et al. 2008b]. A measurement framework

can externalise relevant software structural properties (e.g., module

coupling [CHIDAMBER and KEMERER 1994]) by means of a metrics suite.

This externalisation helps developers to overcome the cognitive complexity by

supporting quantitative analyses of structural properties. In addition, Briand

and colleagues state that cognitive complexity of systems lies in the way

modules collaborate [BRIAND et al. 1999]. In this case, it is reasonable to

analogously hypothesise that structural properties of feature dependencies

are related to cognitive complexity in software product lines. This hypothesis

is represented by the dashed box and dotted arrow in Figure 4.1. Those

structural properties of feature dependencies may affect change propagation

in software product lines. Thus, it is important to identify relevant structural

properties that are able to externalise the complexity of feature dependencies.

In the context of product lines, several studies make use of conventional

module-oriented metrics [VAN DER HOEK et al. 2003, FIGUEIREDO et

al. 2008, LIEBIG et al. 2010, DANTAS and GARCIA 2010, TIZZEI et
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al. 2011, APEL and BEYER 2011]. On the other hand, some authors

argue that structural properties cannot be straightforwardly detected with

conventional module-oriented metrics [VAN DER HOEK et al. 2003, APEL

and BEYER 2011], such as Chidamber and Kemerer metrics [CHIDAMBER

and KEMERER 1994]. The extension of existing measurement frameworks to

cope with software product line is not straightforward since they need to be

adapted in a number of ways. Consequently, they lack of standard terminology

and formalism, leading to definitions of measures, which are ambiguous

and/or difficult to understand. A growing number of studies have identified

structural properties of product lines [SOBERNIG et al. 2014, PASSOS et

al. 2015, QUEIROZ et al. 2015] and metrics for product-line [VAN DER

HOEK et al. 2003, LIEBIG et al. 2010, APEL and BEYER 2011] to overcome

the problems aforementioned. Their common goal is the association between:

(i) the quantification of characteristics governing either product lines or

programming techniques, and (ii) their impact on software maintainability.

However, none of these studies focus on structural properties of feature

dependency.

The area of product line measurement is still in its infancy. Particularly,

feature dependency measurement suffers from not having a unified

measurement framework. The terminology used is diverse and ambiguous.

Their definitions make it not clear the target level of abstraction. They

rely on terms of specific research groups and on specific implementation

approaches, thereby hampering: (i) the process of instantiating measures,

(ii) their adoption in academic and industry settings, and (iii) independent

interpretation of the measurement results. In summary, there is a need to

characterise and explore structural properties of feature dependency. Those

structural properties can be used to compound a measurement framework in

order to support developers on characterising and overcoming the cognitive

complexity of software product lines.

Therefore, this chapter aims at answering the second research question

(RQ2 in Section 1.2), which states: Are structural properties of feature

dependency good indicators of change propagation? To do so, we first

proposed a measurement framework to quantify structural properties of feature

dependencies. Section 4.1 presents the requirements of the measurement

framework. Section 4.2 reports the characterisation of structural properties

of feature dependency composing our measurement framework. Section 4.3

describes the metrics suite proposed for quantifying the structural properties.

Section 4.4 reports the evaluation of the framework through an empirical
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study. Section 4.5 presents data analysis and results of our study. Sections 4.6

and 4.7 present the threats to validity and related work, respectively. Finally,

Section 4.8 describes the summary of the chapter. The results of this chapter

were formally published in previous papers [CAFEO et al. 2012, CAFEO et

al. 2013].

4.1 Measurement Framework Requirements

The purpose of our measurement framework is to instantiate metrics

that are able to quantify structural properties of feature dependency.

The characterisation of those structural properties is a starting point for

promoting the quantification of metrics in order to indicate change propagation

(Section 4.3). In this way, developers might be able to better cope with change

propagation in the presence of feature dependencies. To reach these goals, five

important requirements must be guaranteed:

Generality. The proposed framework should be generic enough to be used in

different product-line implementation approaches. Software product line can be

implemented using different implementation approaches (Section 2.2). Defining

concepts based on programming techniques of a specific implementation

approach could limit the use of our measurement framework. Therefore, our

goal is to propose a measurement framework able to be employed in both

annotative and compositional implementation approaches. To satisfy this

requirement, the definition of structural properties of feature dependencies

as well as the definition of metrics should be independent of implementation

approaches.

Usage simplicity. Another important requirement of our measurement

framework is to be simple to use. Existing measures for software product lines

lack of standard terminology and formalism, leading to definitions of measures,

which are ambiguous and/or difficult to understand. We deployed effort in

representing all the framework elements through a few concepts, which are

relevant to understand structural properties of feature dependencies. These

concepts are associated with a basic terminology. Our aim is to avoid concepts

to be expressed in an ambiguous and difficult manner.

Empiricism. Our measurement framework should be inspired in findings

of empirical studies. However, there is no characterisation of structural

properties of feature dependency in the literature. Consequently, there is no
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understanding about the role of structural properties of feature dependency on

change propagation. To bridge this gap, we use previous studies to characterise

structural properties of feature dependencies in our framework. The main goal

is to ensure that our framework considers important structural properties

associated with change propagation in previous studies (e.g., [APEL and

BEYER 2011, RIBEIRO et al. 2011, CAFEO et al. 2012, CAFEO et al.

2013, RIBEIRO et al. 2014, PASSOS et al. 2015]). In addition, we also rely

on the findings of a study previously presented in this thesis (e.g., Chapter 3).

The findings of those studies must give hints that certain structural properties

of feature dependencies eventually may have impact on change propagation.

Direct Properties of Feature Dependencies. Another main requirement

of our measurement framework is that the characterisation of properties

must be of direct properties of product-line feature dependencies. A direct

property of feature dependency aims at defining attributes derived from the

code structure of each feature dependency. Therefore, we do not resort to

dependencies of enclosing modules to infer structural properties of inner feature

dependencies.

Extensibility. Our last requirement concerns the extensibility of our

measurement framework. The framework should expect extensions. In the

context of our framework, an extension comprises, for instance, the definition of

indirect structural properties of feature dependencies. For instance, composite

properties of feature dependencies may also exert an impact on change

propagation. Examples of composite properties comprise combinations of

structural properties or properties considering multiple feature dependencies.

Therefore, the idea is to allow developers to define such additional properties

to enhance the power of our framework. We take advantage of the ease of use

of our framework to satisfy this requirement. To provide evidence about the

extensibility of our framework, we define a composite property in Section 4.2.3

and a metric for quantifying this property (Section 4.3).

4.2 Characterising Structural Properties of

Feature Dependency

Our proposed measurement framework consists of basic concepts,

structural properties of feature dependencies and a metrics suite for feature

dependencies. Figure 4.2 illustrates a basic set of concepts related our
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measurement framework. This metamodel defines the relationship between

different concepts of a program (i.e., a software product line), such as module,

program elements, feature, feature dependencies, and the structural properties

of feature dependencies.

Figure 4.2: Meta model with basic concepts of the measurement framework.

Section 4.2.1 presents the basic terminology with a running example.

This example will help the understanding of all concepts of the framework.

Section 4.2.2 describes the direct properties of feature dependency, which

may have some impact on change propagation. Section 4.2.3 describes a

composite property created to show how our framework can be extended.

Section 4.3 presents the metrics suite based on the structural properties of

feature dependencies defined in the measurement framework.

4.2.1 Basic Terminology

To formalise our framework concepts, we have chosen set theory

as it has been widely applied to define measurement frameworks in the
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literature [BRIAND et al. 1999, BARTOLOMEI et al. 2006, FIGUEIREDO et

al. 2009, DANTAS et al. 2012]. In addition, set theory has an expressive power

that allows us to capture the essence of each structural property of feature

dependencies. The basic concepts of our framework are firstly introduced with

a running example.

Running Example. Figure 4.3 shows a class diagram representing a single

feature dependency in a product line. This feature dependency involves F1

and F2, which are enclosed by a subset of program modules. The set of

modules realising this dependency is formed by Class A, Class B, Class C,

Class D and Class E. Each module contains a set of program elements.

A program element is a sequence of statements. There exist three types

of program elements: attributes, operations and declarations. These three

program elements are generic enough to be mapped to specific elements

in different programming techniques. For instance, methods are classified

as operations in conditional compilation, whilst pointcut expressions and

intertype declarations are classified as declarations in programming techniques

like AspectJ [KICZALES et al. 1997].

Figure 4.3: Feature dependency in conditional compilation (Java).

In this example, we can notice that feature F1 consists of three classes

(Class A, Class B and Class C), whereas F2 is implemented by two classes

(Class D and Class E). We can also notice that Class D and Class E present
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a dependency relationship with Class A, Class B and Class C. In other words,

these references establish the feature dependency of F2 on F1. Figure 4.4

illustrates the implementation of the feature dependency F2 on F1 using the

annotative approach. The implementation of the feature dependency is based

on conditional compilation, the chosen representative technique for annotative

approaches in our example. The reader can refer to Section 2.2 for more details

about conditional compilation. It is also important to mention that, for clarity

and simplicity’s sake, we considered that each class is entirely dedicated to

implement a feature. However, the same reasoning applies to classes that

partially implement features.

Figure 4.4: Implementation of a feature dependency.

Figure 4.4 shows the partial implementation of classes Class D and

Class E. Both classes implement the feature F2. Therefore, theses classes are

surrounded by a preprocessor directive identifying them as part of feature F2.

In class Class D, there are two methods (d m2() and d m6()) calling three

methods from feature F1 (a m3(), a m5() and b m2()). In class Class E, there

are also two methods (e m1() and e m4()) calling three methods from feature

F1 (a m3(), b m2() and c m1()). The relationships formed by the method calls

are responsible for realising the feature dependency between F2 and F1.

The key concepts of our framework are formalised through the definitions

1 to 3 and illustrated using the running example presented above.

Definition 1 (Program, Module and Program Element). A Program

P consists of a set of modules M . A module M is composed by a set EM of
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program elements e located in the same physical file. A program element e can

be an attribute, an operation or any other form of declaration. Let AttM be the

set of attributes of M , OpM be the set of operations of M and DecM be the

set of declarations of M . The set EM of program elements of M is defined as

EM=AttM ∪OpM ∪DecM .

We define three useful components for further definitions: program,

module and program element. A program is a set of modules, which

consist of program elements. A program element can be an attribute, an

operation or any other form of declaration. For instance, in languages

supporting conditional compilation, methods are classified as operations.

In languages such as AspectJ, pointcut expressions and intertype

declarations are classified as declarations. In Figure 4.3, the modules of

the program P are M = {Class A, Class B, Class C, Class D, Class E}.

The program elements of these modules are their methods:

EClass A = {a m1(), a m2(), a m3(), a m4(), a m5()}, EClass B =

{b m1(), b m2(), b m3(), b m4()}, EClass C = {c m1(), c m2(), c m3()},

EClass D = {d m1(), d m2(), d m3(), d m4(), d m5(), d m6()}, and EClass E =

{e m1(), e m2(), e m3(), e m4()}. Therefore, EM = EClass A ∪ EClass B ∪

EClass C ∪ EClass D ∪ EClass E is the set of program elements of all modules.

Modular units and programming mechanisms of the most programming

techniques used to implement product lines were not designed with the

idea of feature as a modular abstraction. Therefore, it is common to find a

misalignment between the boundaries of feature implementation and modular

units of programming techniques. Therefore, program elements implementing

a feature in the source code are often spread over several modules’ boundaries.

Furthermore, a single module may contain intertwined program elements from

different features [RIBEIRO et al. 2011]. In this way, we define feature as

follows.

Definition 2 (Feature). A feature F consists of a set of program elements,

EF , so that EF ⊂ EM .

In our example (Figure 4.3), feature F1 is implemented by modules

Class A, Class B and Class C and their program elements; whereas feature F2

is implemented by modules Class D and Class E and their program elements.

In other words, a feature comprises all program elements that are related to

its implementation. Therefore, EF1 = {EClass A ∪ EClass B ∪ EClass C} and

EF2 = {EClass D ∪ EClass E}.

It is important to mention that features are defined as a set of program
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elements. Due to the misalignment between features and modules, program

elements of features might belong to different modules. In addition, different

modules may have program elements belonging to different features. Therefore,

despite our running example comprises entire modules implementing a single

feature, the same reasoning applies to modules partially implementing features.

Our definition of feature relies only on program elements instead of modules.

In other words, the definition of feature can be applied to program elements

of modules implemented more than a single feature.

Definition 3 (Feature Dependency). A feature dependency DFyFx of Fy

on Fx (i.e., Fy depends on Fx) can be defined as a set of at least one 4-tuple

(ej, ei, Fy, Fx), where ej, ei ∈ E and ej ∈ EFy
and ei ∈ EFx

and Fy 6= Fx.

In the source code, a feature dependency is materialised when at least

one program element inside the boundaries of a feature depends on a program

element outside the feature. We refer to each relationship between program

elements from different features (i.e., a 4-tuple from Definition 3) as a link

from the dependent feature to the dependee feature. In Figure 4.3, for

instance, there is a feature dependency between F2 and F1. Analysing the

implementation shown in Figure 4.4, we can notice the several links between

program elements from different features. All these links are part of the

feature dependency of F2 on F1. We can define the feature dependency

of F2 on F1 as the set of all links from F2 to F1, such as DF2F1 =

{(Class D.d m2, Class A.a m3, F2, F1), (Class D.d m2, Class A.a m5, F2, F1),

(Class D.d m6, Class B.b m2, F2, F1), (Class E.e m1, Class A.a m3, F2, F1),

(Class E.e m4, Class B.b m2, F2, F1), (Class E.e m4, Class C.c m1, F2, F1)}.

In our running example, entire modules implement only part of a single

feature. It might be the case that a single module implements more than

one feature. In this case, it is also possible to find feature dependencies being

realised within the same module. Once again, we highlight that our definition of

feature dependency relies only on links between program elements. Therefore,

feature dependencies established within inner program elements of a single

module are also considered in our definition.

4.2.2 Direct Properties of Feature Dependency

Feature dependency entails new dimensions of complexity in product

line. The understanding of feature dependencies relies on the understanding

of their structural properties. Consequently, structural properties may

impact on cognitive complexity, which in turn may impact on change
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propagation [BRIAND et al. 1999b, BAGHERI and GASEVIC 2011]. In the

following, we characterised two direct properties of feature dependencies. These

properties encompass the most important characteristics of the code structure

of feature dependency. These properties might be important to reason about

when propagating a change. The realisation of these properties on the source

code is explained using the example provided in Section 4.2.1.

Feature Dependency Scope

The property scope refers to the enclosing context of the feature

dependency implementation. The unit of measurement is still the feature

dependency, but we compute the set of program elements of both dependent

and dependee features involved in a feature dependency. This property

externalises the complexity of understanding the (several) program elements

realising a feature dependency.

The rationale behind this property is that developers should know the

program elements involved in a feature dependency. This knowledge becomes

primordial to understand the feature dependency in the source code and

to reason about change propagation. The program elements involved in a

feature dependency are the program elements that are likely to be changed.

Some empirical results in the literature (e.g. [RIBEIRO et al. 2011, DANTAS

et al. 2012]) and in our previous findings in Chapter 3 (Section 3.3.1 and

3.3.2) point towards this direction. Thus, developers can understand the whole

dependency context by knowing the program elements realising it. Moreover,

they must be aware of program elements more likely causing or suffering a

change propagation.

Taking into consideration the example illustrated in Section 4.2.1, the

feature dependency scope is characterised by the program elements involved

in the feature dependency implementation of F2 on F1. In other words, the

scope of the feature dependency of F2 on F1 involves the method callers and

method callees. A change in a callee may propagate to a caller. Therefore,

the program elements in the scope of the feature dependency implementation

between F2 and F1 are: a m3(), a m5(), b m2(), c m1(), d m2(), d m6(),

e m1() and e m4().
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Feature Dependency Connectivity

The property connectivity refers to the strength on the connection of

a dependent feature on a dependee feature. Thus, this property represents

the degree to which program elements of a feature depends on program

elements of other feature. A tight connectivity occurs whenever a feature

dependency has several links (see Definition 3). In this case, the likelihood

a change be propagated from the dependee feature to a dependent feature is

higher than a dependency with loose connectivity. Moreover, the number of

program elements to be inspected is higher when there is a tight connectivity

in the feature dependency. Consequently, a tight connectivity may represent an

increase in the change propagation effort, as shown in literature (e.g. [APEL

and BEYER 2011, DANTAS et al. 2012]) and in Chapter 3 (Section 3.3.2).

Considering the running example (Section 4.2.1), it is important to note

that there are six links (i.e., six method calls) from feature F2 to feature

F1, which comprises the 4-tuples of the set DF2F1: (D.d m2,A.a m3,F2,F1),

(D.d m2,A.a m5,F2,F1), (D.d m6,B.b m2,F2,F1), (E.e m1,A.a m3,F2,F1),

(E.e m4,B.b m2,F2,F1), (E.e m4,C.c m1,F2,F1). In other words, the dependency

between F2 and F1 can be described in terms of these six links between them.

4.2.3 Composite Properties of Feature Dependency

Direct properties of feature dependencies are the basic properties needed

to start understanding important characteristics of feature dependencies.

However, analysing only direct properties of feature dependencies may not

be enough to reason about change propagation in some specific situations. So,

we give an example of a property created using our framework. This property

explicitly shows how our framework satisfies two requirements: “Empiricism”

and “Extensibility” (Section 4.1). The property defined here is inspired in one

finding presented in Chapter 3. This finding pinpoints the importance of the

path of feature dependencies on change propagation. In addition, this property

extends our measurement framework regarding our direct properties of feature

dependencies previously defined in Section 4.2.2.

Feature Dependency Distance

This property refers to the path of dependencies between two features.

The property distance concerns the length of a shortest path from one feature

to another one. Thus, this property refers to transitive dependencies by
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considering the distance of the path of dependency for each program element

involved in a transitive feature dependency. A path of feature dependencies

is characterised when the same program element of a feature participates of

different feature dependencies, and such feature plays the role of dependent

and dependee feature in those different feature dependencies. It is important

to mention that a feature dependency is defined as a directed relationship. In

other words, the distance from feature F1 to F2 does not necessarily coincide

with the distance from feature F2 to F1.

Features might propagate changes along the path of feature dependencies.

In other words, a change in one feature may cause a change cascade along the

path of feature dependencies even to distant features. In this context, the

more features are affected by changes, the more costly it may be to maintain

a software product line. So, based on findings of Chapter 3 (more specifically

in Sections 3.1.4 and 3.3.3), we argue that it is important to understand the

extent of the change propagation through dependencies, since developers often

inspect the code of direct neighbour features at best.

Considering the running example (Section 4.2.1), let us suppose

there is a feature F3 depending on feature F2 (not represented

in the example), and this dependency is defined by DF3F2 =

{(G.g m1, D.d m6, F 3, F 2), (G.g m2, E.a m3, F 3, F2)}. We should notice

that feature F3 depends on feature F2, which depends on feature F1. So,

we can say that feature F3 depends on F1 by composing the information of

two feature dependencies (DF2F1 and DF3F2). In addition, the distance from

feature F3 to feature F1 is 2 while the distance from feature F1 to feature

F3 is zero. The dependency path is characterised by the link from feature F3

to F2 – (G.g m1,D.d m6,F3,F2) –, and by the link from feature F2 to F1 –

(D.d m6,B.b m2,F2,F1).

4.3 The Measurement Suite

This section presents a metrics suite that relies on the terminology

presented in Section 4.2.1. The metrics are intended to quantify the structural

properties of feature dependencies (Sections 4.2.2 and 4.2.3). The goal is also to

provide support for studying and assessing the impact of structural properties

of feature dependency on change propagation (Figure 4.1).

We defined four metrics based on structural properties of feature

dependencies, namely: Local Scope (LoS), Global Scope (GoS), Feature
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Dependency Connectivity (FDC), and Feature Dependency Distance (FDD).

An overview of these metrics is presented in Table 4.1. This table provides short

definitions of the metrics. In addition, Table 4.1 also illustrates the association

of the defined metrics with the structural properties they are intended to

measure. Each metric is described in terms of: (i) an informal definition

(Table 4.1), (ii) a formal definition based on the terminology presented in

Section 4.2.1, and (iii) an illustrative example.

The relationship between the structural properties (Sections 4.2.2 and

4.2.3) and the proposed metrics are illustrated in Table 4.1, column 2.

The metrics LoS and GoS are directly associated with the scope of the

feature dependency implementation. Therefore, they are used to quantify the

structural property of scope of a feature dependency. The density of the

dependency between two features is quantified by the FDC metric. In other

words, this metric quantifies how strong the connection between dependent

feature and dependee feature is. Finally, the distance from one feature to

another is quantified by the FDD metric associated with distance, a composite

property of feature dependency.

Table 4.1: Feature dependency metrics.

Metric Property Metric Definition

GoS Scope

Quantifies the feature dependency implementation
scope by counting all the program elements
participating of a feature dependency implemen-
tation over the number of program elements of two
features involved in the dependency.

LoS Scope
The ratio between the number of program elements
participating of a feature dependency in a module
over the total of program elements in a module.

FDC Connectivity

The ratio of the the number of links between
dependent and dependee feature over the number
of program elements in the dependent feature
participating of the dependency.

FDD Distance
The length of the shortest path between two
features considering each program element involved
in a feature dependency chain

For the formal definition of the metrics, let EFDy be a set of all ej that

take part of at least one 4-tuple of the set of the feature dependency DFyFx,

and EFDx be a set of all ei that take part of the same feature dependency

DFyFx. In addition, let SM be a set of modules of P , SF be a set of features

of P , and SD = DFyFx ∪DFxFy ∪ . . . , ∀Fy ∈ SF and Fx ∈ SF be a set of all

feature dependencies of P .
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Global Scope (GoS) metric. Given a program P , the GoS of DFyFx can be

defined as GoSDFyFx
= |EFDy ∪ EFDx|/|EFy ∪ EFx|. As a result, the GoS of a

program P can be defined as GoSP =
∑

GoSDFyFx
/|SD|, ∀DFyFx.

The value of this metric considers the number of program elements

involved in the implementation of a dependency between two features. For

the example illustrated in Section 4.2.1, there are eight different program

elements involved in the scope of the implementation of the feature dependency

of F2 on F1: a m3(), a m5(), b m2(), c m1(), d m2(), d m6(), e m1() and

e m4(). Moreover, both features are composed by twenty-two different program

elements (See Figure 4.3). Thus, the GoSDF2F1
value to the feature dependency

illustrated in Section 4.2.1 is the number of program elements involved in

the implementation of the feature dependency, divided by the total number

of program elements of both features. This relation is equal to 0.36 (36%).

This means that 36% of the program elements implementing both features

are involved in the implementation of a feature dependency. In other words,

developers tend to inspect 36% of the code of both features to comprehend

dependencies and revisit code of potentially affected program elements when

propagating a change. It is worth to notice that feature code may be scattered

through many different modules, thus making this inspection challenging.

Local Scope (LoS) metric. Given a program P , and a module M ∈ SM , the

LoS of DFyFx over M can be defined as LoSDFyFx,M = |EFDy ∪ EFDx|/|EM |,

such as EFDy ⊆ EM and EFDx ⊆ EM . As a result, the LoS of a program P

can be defined as LoSP =
∑

LoSDFyFx,M/|SM |, ∀DFyFx.

The value of this metric considers the number of program elements

involved in a feature dependency implementation within a specific module.

Considering the example illustrated in Section 4.2.1, Class E has two elements

out of four involved in the implementation of the feature dependency of F2

on F1. Thus, the LoSDF2F1,Class E value to the feature dependency illustrated

in Section 4.2.1 for Class E is the number of program elements involved in

the implementation of the feature dependency within Class E over the total

number of program elements of Class E. This relation is equal to 0.5. This

means that 50% of the program elements of Class E are involved in the feature

dependency implementation of F2 on F1. With this information, developers

can, for instance, be aware of modules that are can be heavily affected by a

change propagation as well as focus on specific modules to comprehend most

of the feature dependency implementation.

Feature Dependency Connectivity (FDC) metric. Given a program
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P , the FDC of DF2F1 can be defined as FDCDFyFx
= |DFyFx|/|EDFx|.

As a result, the FDC of a program P can be defined as FDCP =∑
FDCDFyFx

/|SD|, ∀DFyFx.

The value of this metric considers the number of links from one feature to

another to implement a dependency. In other words, this metric considers the

total number of 4-tuple in the set DFyFx comprising the implementation of the

whole feature dependency. Considering the example illustrated in Section 4.2.1,

the setDF2F1 has six 4-tuples, which are the six references of a program element

of the dependent feature to a program element of a dependee feature. Thus, the

FDCDF2F1
value to the feature dependency illustrated in Section 4.2.1 is the

number of links involved in the implementation of the feature dependency over

the total number of program elements of the dependee feature involved in the

feature dependency. This relation is equal to 1.5. This means that developers

should inspect an average of 1.5 program elements of the dependent feature

per program element changed in the dependee feature in order to comprehend

the feature dependency implementation as well as revisiting program elements

to propagate a change.

Feature Dependency Distance (FDD) metric. Given a program P , the

FDDFyFx from a feature Fy to a feature Fx can be defined as the length of

the shortest path from feature Fy to feature Fx, considering all possible links

in the feature dependency chain in P from feature Fy to feature Fx.

The value of this metric considers the lowest number of links from one

feature to another considering a feature dependency chain. To be considered

a feature dependency chain, the program element of a dependent feature in

the 4-tuple of feature dependency must be a program element of a dependee

feature in another feature dependency. Considering the example presented

in Section 4.2.3, we should notice that feature F3 depends on feature F2,

which depends on feature F1. So, we can say that feature F3 depends on

F1 by composing the information of two feature dependencies (DF2F1 and

DF3F2). The dependency chain is characterised by the link from feature F3

to F2 – (G.g m1,D.d m6,F3,F2) –, and by the link from feature F2 to F1 –

(D.d m6,B.b m2,F2,F1). Thus, the distance from feature F3 to feature F1 is

FDDF3F1 = 2.
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4.4 Settings of the Framework Evaluation

This section describes our study configuration in terms of its goal

(Section 4.4.1), the target systems used to evaluate the proposed framework

(Section 4.4.2), the conventional metrics used in our study (Section 4.4.3), and

the procedures followed to run the study (Section 4.4.4).

4.4.1 Research Goal

Classic metrics have been broadly used for a long time in stand-alone

programs and found to be effective indicators of changes in the source

code [FIGUEIREDO et al. 2008, TIZZEI et al. 2011]. So, on the one hand,

the use of such conventional metrics is expected to be effective in product lines

as well. This expectation emerges as the implementation of product lines is

often performed by using the same programming techniques already analysed

with these metrics. On the other hand, programming techniques often used

to implement software product lines and the modularisation mechanisms of

these techniques cannot often fully modularise product-line features. In other

words, conventional metrics might be missing important details of the structure

of the software product line. This problem might occur, for instance, when the

modular units of the programming technique and their dependencies do not

match the boundaries of product-line features and feature dependencies.

Therefore, it is questionable if conventional metrics are effective

indicators of change propagation in the source code. In fact, the use of

conventional metrics for product-line evaluation has suffered criticism in

recent studies [VAN DER HOEK et al. 2003, APEL and BEYER 2011].

Such metrics are criticised for not being sensitive to features, and thus not

taking into account structural properties of feature implementation. This

problem is amplified by the lack of empirical validation into the effectiveness

of metrics in indicating quality attributes in the context of software product

lines, which in turn creates uncertainty for developers when deciding on

measurement strategies. More specifically, the ability of metrics to indicate

change propagation in evolving product line still lacks evaluation.

Concerned with the aforementioned issues, the main goal of this

study is to evaluate the effectiveness of two suites of metrics as change

propagation indicators in evolving product lines. For the purposes of the

evaluation, we compare the effectiveness of conventional metrics (CK metric
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suite [CHIDAMBER and KEMERER 1994] – see Table 4.3), commonly used in

empirical studies of software product lines, against feature dependency metrics

based on our measurement framework (Table 4.1).

It is important to notice that our proposed framework and metrics

suite are supposed to be independent of implementation approach. Thus, this

study uses Java with conditional compilation and AspectJ as representative

programming techniques for annotative and compositional approaches,

respectively. The reader can refer to Section 2.2 for more details about

implementation approaches.

4.4.2 Target Systems

The three medium-sized product lines used in this study include two

board games and one embedded mobile application. The first one is actually

a family of two board games called GameUP and encompassing the games

called Shogi and Checkers [DANTAS and GARCIA 2010, GURGEL et al.

2011]. Each game is also a product line itself. The second product line is an

embedded mobile software called MobileMedia (MM) [FIGUEIREDO et al.

2008], which allows users to manipulate images, videos and music on different

mobile devices. In the following, we describe the target software product lines.

GameUP. It is a program family of three board games, which are by

themselves product lines. In this work we only analysed Shogi and Checkers

game releases. Shogi is a chess games whereas Checkers is an American checker

game. Both of them provide features to manage various functionalities for

customising the board (e.g. indicating moveable pieces) and the matches

between players (e.g. indicating player turns). The evolution scenarios comprise

the inclusion of optional and alternative features providing us a variety of

feature dependencies, which are fundamental to conduct the investigation of

this work.

MobileMedia. It is a software product line that provides support to manage

photo, music, and video on mobile devices. The core feature represents

basic media management actions such as create/delete media, label media

and view/play media. The alternative features are the types of media

supported such as photo, music and/or video. The optional features are

transfer photo via SMS, count and sort media, copy media and set favourites.

The evolution scenarios comprise different types of changes involving the

inclusion of mandatory, optional and alternative features, as well as changing

of one mandatory feature into two alternatives. Table 4.2 shows some general
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characteristics of the three target software product lines. For more information

about each of them, the reader may refer to the respective work [FIGUEIREDO

et al. 2008, DANTAS and GARCIA 2010, GURGEL et al. 2011].

It is important to mention that we are not using the same product lines

used in previous chapters on purpose. To achieve our research goal we needed

medium-sized product lines in order to deeply understand the implementation

of features and their dependencies. In addition, to satisfy the requirement

“Generality” of our framework, we needed the same product lines implemented

in different approaches. The purpose was to understand the recurring structural

properties of feature dependencies in different implementation approaches.

This would not be possible if we conduct a wider and more superficial study

using several and larger product lines, which were already contemplated in

the previous chapter. We also avoided the use of same software product lines

presented in Chapter 3 to avoid bias in our results. For instance, the structural

properties of feature dependencies were characterised based on evidence of

empirical results of studies presented in Chapter 3. In other words, there were

already evidence of the impact of the characterised structural properties on

change propagation in the previously analysed product lines. Thus, using the

same software product lines could be a significant threat to the results of our

study.

4.4.3 Target Metrics

Besides our metrics suite (Section 4.3), we select a representative set of six

metrics for analysis. These metrics were proposed by Chidamber and Kemerer

for object-oriented programs (CK metrics) and Ceccato and Tonella

adapted them in order to make them applicable to aspect-oriented

programs [CHIDAMBER and KEMERER 1994, CECCATO and TONELLA

2004]. Therefore, these metrics are useful benchmark for our study, because

for each conventional CK metric for object-oriented programming there is an

equivalent extension for aspect-oriented programming. This mapping between

Table 4.2: Characteristics of the target systems.

Shogi Checkers MobileMedia

Application type Board game Board game Mobile data
Prog. technique Java, AspectJ Java, AspectJ Java, AspectJ
Number of releases 4 4 7
Avg. # of features 9 8 25
Avg. KLOC 4 2 10
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metrics allows us to broaden our analysis and have results less dependent of

programming techniques.

Some of these metrics have already been used in studies focusing on

code change analysis of object-oriented and aspect-oriented systems, including

software product lines [FIGUEIREDO et al. 2008, TIZZEI et al. 2011]. To the

best of our knowledge, the correlation of such metrics with product-line change

propagation has neither been deeply investigated nor compared with feature

dependency metrics, despite their use in studies of software product lines.

The conventional metrics used in our study are presented in Table 4.3.

The first column shows the name of the conventional metric and the second

column presents a brief description of the metric based on the CK metric

suite [CHIDAMBER and KEMERER 1994]. It is important to mention that

the description of each metric was adapt to use our terminology. As a

consequence, the description of the CKmetrics used in our study can be applied

to program implemented both in Java and AspectJ.

Table 4.3: Conventional CK metrics.
Metric Definition

WMC It is the number of operations in a class or aspect. Methods, advice and
intertype declarations are counted as an operation.

DIT It is the length of the longest path from a given class or aspect to the
root class or aspect in the hierarchy.

NOC It is the number of immediate sub-classes and sub-aspects of a module.

CBO It is the number of classes, aspects or interfaces declaring methods or
attributes that are possibly called or accessed by other class or aspect.

RFC It is the number of methods and advices potentially executed in res-
ponse to a message received by a given class or aspect.

LCOM It is the number of pairs of operations working on different class or as-
pect fields minus pairs of operations working on common attributes.

4.4.4 Evaluation Procedures

The study was divided in four major phases: (1) the implementation

of product-line releases with all programming techniques analysed (Java and

AspectJ) as well as the alignment of product lines, (2) the assignment of

features to elements of the source code as well as the identification of feature

dependencies, (3) the quantification of change propagation and the target

metrics, and (4) the extraction of the correlation between the target metrics

and change propagation.

All phases were conducted by an independent group of three postgraduate

students using the implementation of the three target product lines in
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Java and AspectJ. Nevertheless, design practices were used, enforced, and

reviewed throughout the creation and evolution of all the product-line

releases [BUSCHMANN et al. 1996]. In all the cases, two experts in the

field of product lines also reviewed the implementation. Moreover, the Java

and AspectJ implementation and evolution scenarios of the MobileMedia were

based on a previous study conducted by Figueiredo et al. [FIGUEIREDO et al.

2008]. The scenarios of Checkers and Shogi and their AspectJ implementations

were based on a previous work of Dantas and Garcia [DANTAS and GARCIA

2010]. In the following, we detail the four major phases of our study.

Implementation of Aligned Product-line Releases

In the first phase, we implemented the conditional compilation version for

four releases of Checkers and Shogi. The AspectJ version for four releases were

made available from other studies [DANTAS and GARCIA 2010, GURGEL et

al. 2011]. All the other product-line implementations were reused from other

studies. This reuse procedure was important in order to ensure there was no

bias in terms of the research questions being addressed in this present study.

The AspectJ and Java with conditional compilation implementation for the

seven releases of MobileMedia were available in a study of Figueiredo and

colleagues [FIGUEIREDO et al. 2008]. All product-line releases were verified

according to a number of alignment rules to assure that the implemented

functionalities in different programming techniques were the same throughout

all versions. Furthermore, design practices to ensure high degree of modularity

and reusability were used throughout the creation of all the product-line

releases [KUHLEMANN et al. 2007]. Some minor refactoring and corrections

had to be performed when misalignments were observed. For instance, methods

of product lines implemented with conditional compilation had to be split to be

aligned with the implementation of advices of the AspectJ version crosscutting

the beginning or the end of a method.

Identification of Feature Assignments and Dependencies

In this phase, we mapped features in the source code, so that we

could perform the identification of feature dependencies. Each feature was

mapped following the principles suggested by Kästner et al. [KÄSTNER et

al. 2008, KÄSTNER et al. 2008c]. Their principles propose a virtual view of

features on the source code, depending on a selection of features. The basic

idea is to show code fragments with a background colour that represent an
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associated feature. Each feature has its own colour. Thus, we used background

colours to highlight pieces of code that were implementing features. We used

one-to-one mapping to ensure that each feature has one colour and every

block of code was mapped to one feature. Once all features were mapped,

we analysed the source code to identify the dependencies between features. A

feature dependency occurs when there is a dependency link between features

marked by different colours. We count dependencies by following our definition

of feature dependency presented in Chapter 3 (Section 3.1.2) and Section 4.2.1

of this chapter. The tool CIDE [KÄSTNER 2015] supported the identification

and counting of feature dependencies based on Definition 3 (Section 4.2.1).

Quantifying Change Propagation and the Target Metrics

To quantify change propagation, we counted every different program

element that was changed from one release to the next one. By doing this we

identified the change propagation between dependent features. The procedure

adopted to identify and quantify change propagation was the same as the one

presented in Chapter 3 (Section 3.1.2).

We also collected the measures of the target metrics. The collection

of the metrics was divided in two steps. The first step was the collection

of conventional metrics. Such metrics were collected aplying the CKJM

tool [CKJM 2015] to the product lines implemented with conditional

compilation. The AOPMetrics tool [AOPMETRICS 2015] was used to collect

the equivalent CK metrics in the product lines implemented in AspectJ. The

second step involved the collection of the feature dependency metrics. These

metrics were collected using a tool for extracting metrics from the feature

composition code [DANTAS et al. 2012]. This tool uses information of the

structure of the feature and also the dependencies between features to extract

the measures.

Correlating Metrics and Change Propagation

To analyse the effectiveness of each conventional and feature dependency

metric as indicator of change propagation, we conducted a Spearman’s rank

correlation test. This test is a non-parametric test that allows us to measure

the correlation between our independent variables (each evaluated metric) and

our dependent variable (change propagation). For this test, we used a tool

named R [R TOOL 2015]. We assumed the commonly used confidence level

of 95% (that is, p-value threshold = 0.05). For evaluating the results of the
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correlation tests, we adopted the Hopkins criteria to judge the goodness of a

correlation coefficient [HOPKINS 2015]: less than 0.1 means trivial correlation,

0.1–0.3 means minor correlation, 0.3–0.5 means moderate correlation, 0.5–0.7

means high correlation, 0.7–0.9 means very high correlation, and 0.9–1 means

almost perfect correlation.

4.5 Data Analysis and Results

Tables 4.4 and 4.5 show the Spearman’s rank correlation coefficients for

MobileMedia and GameUP product lines, respectively. It is worth to notice

that the metrics are sorted by crescent p-value. For each release of both

applications, the target metrics (Section 4.4.3) are applied in a way that we

can analyse the correlation of these metrics with change propagation. The

correlation analysis is carried out in terms of both programming techniques:

conditional compilation and aspect-oriented programming.

Table 4.4: Spearman’s rank for
MobileMedia.
Metric Coefficient p-value
GoS 0.7327273 0.0067
LoS 0.6546208 0.0209
FDC 0.5600000 0.0582
FDD 0.4690416 0.1240
DIT -0.1909091 0.5523
WMC -0.0820122 0.8000
LCOM -0.0535800 0.8686
RFC 0.0142630 0.9649
NOC 0.0109490 0.9731
CBO -0.0017860 0.9956

Table 4.5: Spearman’s rank for
GameUP.
Metric Coefficient p-value
FDC 0.8445441 0.0005
FDD 0.8095987 0.0014
GoS 0.6536422 0.0211
LoS 0.5354644 0.0728
NOC -0.4928913 0.1035
CBO -0.3986046 0.1993
DIT -0.3982357 0.1998
WMC -0.3668573 0.2408
LCOM -0.3633298 0.2457
RFC -0.3139452 0.3203

4.5.1 Feature Dependency Metrics Outperformed
Conventional Metrics

Looking at the data, we can draw an interesting observation: the suite

of feature dependency metrics better indicates change propagation than

the conventional metrics suite. Tables 4.4 and 4.5 reveal that the feature

dependency metrics presented a high correlation in both MobileMedia and

GameUP according to the Hopkins criteria [HOPKINS 2015]. The only

exception refers to the FDD metric for MobileMedia which presents a moderate

correlation with change propagation. Despite this observation, the FDD metric
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presented a much superior correlation than DIT, the first ranked conventional

coupling metric in MobileMedia, which was considered as having a minor

correlation to change propagation. The observations herein lead us to the

following conclusion: metrics that consider feature dependency structural

properties substantially improve the ability of indicating change propagation.

4.5.2 Adapting Conventional Metrics are not Enough

Based on the conclusion presented in Section 4.5.1, the reader may

wonder whether only adapting conventional metrics to use feature as modular

unit may be enough to have good indicators for change propagation. In other

words, if one considers features as the modular unit in the measurements

instead of programming techniques units (classes and aspects), is it enough

to improve the effectiveness of adapted conventional metrics? To answer

this question, it is interesting to analyse the product lines implemented

in AspectJ. Taking MobileMedia as a representative product-line, we can

observe that it evolves by means of the addition of features with crosscutting

behaviour. Crosscutting features are features that may affect many modules

of the product line [CONEJERO and HERNÁNDEZ 2008]. This means

that the modularisation in aspect-oriented programming is very close to the

modular abstraction of a feature in this case. Thus, it is expected that

conventional metrics would indicate more precisely the change propagation in

software product lines. Analysing the data for each programming techniques,

it is possible to observe that: the differences between correlations of

feature dependency metrics and conventional coupling metrics are smaller

when compared to conditional compilation, as expected. However, even

with a modularisation matching the feature boundaries in aspect-oriented

programming, the feature dependency metrics remains as better indicators

of change propagation than conventional metrics. A further discussion about

the comparison between programming techniques is presented in Section 4.5.5

This observation suggests an important insight: only adapting

conventional metrics to use feature as modular unit, such as in some studies

where changes were not the focus [VAN DER HOEK et al. 2003, APEL

and BEYER 2011], might not be enough to have good change propagation

indicators. In fact, Geipel and Schweitzer argue that is recommended to take

advantage of two points in the context of code change: change characteristics

and dependency structure [GEIPEL and SCHWEITZER 2012]. The feature

dependency metrics suite tries to use both properties during the measurement.

For instance, the metric FDC measures the number of program elements likely
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to be changed. Therefore, taking into account both change characteristics

and dependency structures might be an explanation for the superiority of our

metrics suite even when the modular unit of the programming technique is

similar to the abstraction of a feature.

4.5.3 Combining Feature Dependency Metrics

Focusing on the data presented in Tables 4.4 and 4.5, we can

notice an interesting behaviour regarding the feature dependency properties

(Section 4.2.2). The correlation of the scope measures was higher than the

connectivity measures in MobileMedia. However, we observe an opposite

behaviour in GameUP: the connectivity-based metric (FDC metric) was a

better indicator of change propagation than the scope-based metrics (GoS and

LoS metrics).

This situation can be mainly justified because of the nature of the

different evolution scenarios observed in these software product lines. The

evolution scenarios of the MobileMedia comprise additions and changes

of features. These addition and modifications often encompassed broad

modifications across several modules realising the features. As a consequence,

broad changes happened in the source code of other features, which are

within the scope of the dependencies of the “original” feature. By “original”

feature, we mean the feature that was the original target of the evolution

scenario. Therefore, the scope property of feature dependency was determinant

to capture the change propagation in MobileMedia evolution scenarios. On

the other hand, the evolution scenarios of the GameUP comprise integration

of features from other product lines. These integration scenarios require

additions of source code to realise a new feature dependency or a change of

existing feature dependencies. Therefore, these scenarios increase the degree

of connectivity of existing features.

Based on the aforementioned observations, we can conclude that our

direct properties of feature dependency are complementary indicators. They

serve to capture various situations of change propagation as stimulated by

different evolution scenarios. Therefore, we confirm that scope and connectivity

are useful, complementary properties to characterise changes across feature

dependencies. However, the analysis of each property in isolation may not

be enough to help developers to propagate changes. The scope property

characterises the extension of the feature dependency across the program,

whilst the connectivity property characterises the strength of this dependency.
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Thus, a feature dependency may present a tight connectivity with a low scope,

and another feature dependency may have a high scope and loose connectivity.

This is an important observation because the scope-connectivity ratio may

be considered as a good indicator of change propagation. Therefore, such

behaviour is an indication that the combination of both properties would create

a metric that could be high correlated with change propagation.

4.5.4 Conventional Metrics vs. Product-line Changes

Tables 4.4 and 4.5 presented the results of the metrics for all releases of

the product lines analysed. However, it is important to take a more careful look

at features individually instead of the whole product line in order to analyse

if the our results still hold in a more fine-grained analysis. So, taking into

consideration each feature, we checked the result of each metric and compare

it with the number of propagated changes in the feature. By doing this, we

could confirm, as expected, the superiority of the feature dependency metrics

for indicating change propagation in software product lines. For instance,

analysing the conditional compilation version of MobileMedia, the feature

CONTROLLER presents the highest GoS, which according to our conclusion,

presents a high correlation with change propagation. In fact, confirming

the metric indication, the feature CONTROLLER was the most changed

feature along the product-line evolution. Unlike feature dependency metrics,

conventional metrics were not good indicators of change propagation in product

lines. The feature with the highest DIT (best indicator of change propagation

among conventional metrics) in MobileMedia does not have the highest number

of changes among features of the product line. This observation reinforces

that conventional metrics are not effective indicators of change propagation in

product-line features.

This finding unexpectedly holds even if one considers the modifications of

the modular units of programming techniques (i.e., classes and aspects). For

instance, analysing the conditional compilation version of MobileMedia, the

class with highest CBO (widely used indicator of change propagation) does not

indicate the class with the highest number of changes. This problem happen

because of the expected misalignment between features and modular units

of programming techniques. Due to this misalignment, change propagation is

often not localised within a modular unit. Therefore, we can state that, even

if we want to use conventional metrics (i.e. metrics based on modular units)

to indicate changes in modular units (classes or aspects) of a product line

implementation, conventional metrics are not good indicators.

DBD
PUC-Rio - Certificação Digital Nº 1121802/CA



Chapter 4. The Role of Feature Dependency Properties on Change

Propagation 106

4.5.5 Feature Dependency Properties and Product-line
Implementation Approaches

Feature dependencies are realised in different ways depending on the

programming technique used to implement them. Therefore, it is important

to compare the impact of structural properties of feature dependencies

in different programming techniques by using a common ground – i.e. a

measurement framework agnostic of implementation approaches. Figures 4.5

and 4.6 present a representative case derived from Shogi game, where we can

observe the variation of both GoS and change propagation. We chose GoS as

a representative case of a structural property since this metric presented the

highest correlation with change propagation in our study.

Figure 4.5: Trends of GoS and change propagation in annotative approaches.

Figure 4.6: Trends of GoS and change propagation in compositional
approaches.
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As illustrated in the figure, the variation of GoS follows the variation of

change propagation regardless of the programming technique used (Figures 4.5

and 4.6). By analysing the numbers, it is possible to state that GoS operates

as an indicator of change propagation in evolving software product lines.

It is important to mention that all metrics presented the same trend when

compared with change propagation. This relationship between GoS and change

propagation as well as other structural properties is particularly important

to show that our measurement framework allows a fair comparison between

implementation approaches. In this way, it is possible even to compare the

implementation approaches to identify appropriate mechanisms to better

implement feature dependencies based on structural properties. Moreover,

our framework can be useful to early adopters who wish to use different

implementation techniques when moving towards the evolution of product

lines. As the existing relationship between structural properties of feature

dependency and change propagation takes places regardless of programming

technique, it is essential to understand how particular mechanisms of specific

programming techniques deal with the implementation of feature dependency

by analysing such structural properties of feature dependency.

It should not be left unmentioned that pointing out the best

implementation approach for implementing feature dependencies is out

of the scope of this thesis. One of the most important requirements

of our measurement framework is related to the “Generality” regarding

implementation approaches. However, the reader may refer to our published

work [CAFEO et al. 2012] for a comparison between implementation

approaches regarding feature dependency implementation and their impact

on change propagation.

4.6 Threats to Validity

This section discusses the threats to validity that may affect the study

presented in this chapter.

Conclusion validity. In this study, potential threats are related to the

identification of features and their relationships. To reduce the influence

of this threat, we identified features based on the feature models, which

were validated in previous studies [FIGUEIREDO et al. 2008, DANTAS and

GARCIA 2010, GURGEL et al. 2011]. In addition, the three postgraduate

students that participated of the study investigation have good knowledge on
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feature-oriented domain analysis. Moreover, they performed careful revisions

to check the alignment of each feature represented in the feature model with

the product-line code.

Internal validity. The threats to internal validity reside on alignment rules

used to identify feature dependencies in all programming techniques. To reduce

this threat, we performed a detailed analysis of the product-line code in order

to reduce the inconsistencies on the identification process. All product-line

releases were verified according to a number of alignment rules to assure that

the implemented functionalities in different programming techniques were the

same throughout all versions. Furthermore, design practices to ensure high

degree of modularity and reusability were used throughout the creation of all

the product-line releases [KUHLEMANN et al. 2007].

Construct validity. Potential threats rely on the procedures for quantifying

changes and feature dependencies in the software product lines (Section 4.4.4).

They can be directly associated with the developer’s style as this quantification

are code-based. In order to ameliorate this issue, the quantification of feature

dependency in each programming technique was widely discussed among

experienced Java and AspectJ developers.

External validity. Threats associated with external validity concern the

degree to which the findings can be generalised to the wider classes of subjects

from which the experimental work has drawn a sample [PRADITWONG et al.

2011]. To better generalise the results, we selected medium-sized applications

from different domains and developed by different programmers (Section 4.4.2).

Moreover, they embrace several feature dependencies, which allowed us to

investigate a wide range of feature dependency scenarios.

4.7 Related Work

Product-line structural properties. Passos et al. conducted a case

study of cross-cutting features in the Linux kernel focusing on driver

features [PASSOS et al. 2015]. They analysed the evolution of those features

by exploring the structural property of scattering, linking findings to the kernel

architectural decomposition, and studying how crosscutting features differ from

non-cross-cutting ones. One of the main findings was that crosscutting features

are harmful to the product-line evolution. However, differently from our work,

they do not explore which properties of these features hinder evolution. In

addition, they do not study the impact of feature dependencies on product-line
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evolution. Sobernig and colleagues quantified structural attributes of system

decomposition in 28 feature-oriented software product lines [SOBERNIG et al.

2014]. They analyse how the alternative decompositions of feature orientation

and object orientation compare to each other in terms of their association

with observable properties of system structure (i.e., coupling and cohesion).

In this study, it is important to notice they adapt conventional structural

properties of the source code as well as conventional metrics to compare the

feature-oriented and object-oriented decompositions of the same systems. In

our thesis, we identify direct properties of feature dependencies to draw our

conclusions. Finally, in a recent work, Queiroz et al. quantify three metrics

in twenty preprocessor-based systems and define thresholds to the context of

feature maintenance, specifically for ripple effects observed in the evolving

source code [QUEIROZ et al. 2015]. However, once again, this study adapts

metrics to the context of preprocessor-based systems and they neglect the

impact of dependencies on code maintenance and change propagation.

Metrics for compositional approach languages. Burrows et al. proposed

a novel metric to specific dependencies in aspect-oriented software systems

that were not captured by conventional metrics [BURROWS et al. 2010].

Dantas and colleagues developed a metrics suite intended to quantify the

composition code properties and support assessing the impact of composition

measures on quality attributes of evolving applications [DANTAS et al.

2012]. The metrics proposed in these studies consider the composition code

produced with different implementation approaches. However, these metrics

focus on the composition of program modules rather than product-line features.

Therefore, these metrics do not consider direct properties of features and

their dependencies. Thus, the use of such metrics might not be appropriate to

product lines. In addition, there is a lack of studies proposing specific metrics

for product lines implemented in compositional approaches. Our work advances

in the state of art showing (i) that product-line-specific metrics are better

indicators of change propagation than the ones based on modular units of

programming techniques, and (ii) a suite of metrics also applicable for product

lines implemented using compositional approaches.

Metrics for annotative approaches. Liebig et al. proposed a set of

metrics to analyse the variability of forty preprocessor-based software product

lines [LIEBIG et al. 2010]. These metrics are intended to measure product

line properties in terms of program comprehension and refactoring. Differently

from their work, we focus on change propagation and identify structural

properties as well as propose metrics. In addition, they do not propose metrics
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related to feature dependencies in order to draw their conclusions regarding the

variability of the product lines analysed. Apel and Beyer adapted conventional

metrics that were originally proposed for procedural and object-oriented

systems to a set of cohesion metrics based on clustering layouts. Their goal is

to provide a better understanding of the characteristics of cohesion in software

product lines [APEL and BEYER 2011]. The study was conducted on forty

proprocessor-based software product line. Similar to our work, they propose

metrics agnostic to implementation approaches. In addition, the proposed

metrics are mainly for drawing conclusions regarding feature cohesion in

product lines. Our work proposes a measurement framework for structural

properties of feature dependency. So, our metrics are based on characteristics of

the source code instead of enabling visual observation of clusters. In addition,

our main concern is with feature dependencies, which are one of the main

drivers of change propagation (Chapter 3).

Product-line maintenance metrics. van der Hoek et al. developed a class

of variability-aware coupling metrics to evaluate the structure defined by

product-line architectures [VAN DER HOEK et al. 2003]. The suite of metrics

is based on the concepts of service dependency and tries to predict volatility

of the product line based on those service dependency. However, inferring the

volatility based only on service dependency might result in a distorted view of

change prediction. As shown in Chapter 3 (Section 3.3.3), considering only the

number of dependencies might not be a good indicator of change propagation.

In our work, in contrast, we followed the conclusions of Geipel and Schweitzer

and we took advantage of change characteristics (e.g. concentration of changes)

and dependency structure [GEIPEL and SCHWEITZER 2012]. Moreover, the

work of van der Hoek et al. [VAN DER HOEK et al. 2003] is based on metrics

for software product line architectures. Actually, most of the work proposing

metrics for evaluating attributes of maintenance in product lines focuses on

the architecture and feature model artefacts. They do not focus on change

propagation. At the end, change propagation can only be reliably estimated

based on source code analysis. Many of the links realising a feature dependency

are only presented in the source code. The implementation approaches also

influence the complexity and number of such links. In addition, architecture

and feature models are often too abstract and incomplete in practice. Other

examples are the work of Bagheri et al. and Torkamani [BAGHERI and

GASEVIC 2011, TORKAMANI 2014]. Bagheri et al. propose a suite of metrics

for product-line feature models and validate them using valid measurement

theoretic principles [BAGHERI and GASEVIC 2011]. Torkamani also proposes

a suite of metrics for product-line architecture [TORKAMANI 2014]. His goal
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is to use the metrics suite to evaluate the reusability power of evolving software

product lines.

4.8 Summary

Structural properties of feature dependency are related to cognitive

complexity, which, in turn, affect change propagation. Dealing with these

properties is a key factor to comprehend feature dependencies and propagate

changes when maintaining a product line. In this context, this chapter has

presented a measurement framework for quantifying structural properties of

feature dependency related to change propagation. The structural properties

of our framework were defined using a few concepts to be simple to use

(Section 4.2.1). The structural properties of our measurement framework were

inspired in findings of empirical studies as shown in Sections 4.2.2 and 4.2.3.

These properties are based on direct properties of feature dependencies. In

other words, the properties are based on important attributes derived from

the structure of a single feature dependency. Our framework was instantiated

and evaluated in the context of two implementation approaches of software

product line: compositional and annotative approaches (Sections 4.3 and

4.5). This instantiation satisfies the requirement to be generic regarding

implementation approaches. The study involved three different product lines

(15 releases) implemented in both approaches using Java with conditional

compilation (annotative approach) and AspectJ (compositional approach).

We proposed metrics based on direct and composite properties of feature

dependencies (Sections 4.2.2 and 4.2.3) showing the power of extensibility

of our framework. Our analysis revealed that structural properties of feature

dependency, as supported by our metrics suite, were consistent indicators of

change propagation.

Based on our results, we believe that the use of our measurement

framework may help developers to better comprehend feature dependency

implementation, thus supporting change propagation. Developers can

concentrate their effort on feature dependencies that present higher values

of feature dependency metrics based on structural properties (e.g. GoS and

FDC). Using conventional metrics (e.g. CK metrics), developers do not have

even a metric directly associated with feature dependency, which is one

of the main drivers of change propagation (Chapter 3). In addition, our

results have shown a lower correlation between conventional metrics and
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change propagation. Nonetheless, it is important to mention that only the

use of the measurement framework does not allow developers to analyse

the actual organisation of those dependencies. The measurement framework

proposed in this chapter only provides indicators of which dependencies

(i) should be carefully analysed during change propagation, and (ii) have

structural properties of feature dependency that often exert impact on the

cognitive complexity of product-line implementation. Thus, our measurement

framework does not support developers to directly obtain and reflect upon each

program element realising feature dependencies as well as the organisation

of those dependencies. It is necessary a solution that supports developers to

truly reason about the organisation of feature dependencies, mainly the ones

presenting structural properties highly correlated with change propagation

(Chapter 5).
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5

Segregating Feature Interfaces to
Support Change Propagation

Understanding the intricate relationship that exist between features can

be an arduous task. Frequently, this problem is exacerbated because the

implementation of a single feature dependency may be scattered over the

source code of a product line. With no mechanism for gaining insight into the

organisation of feature dependencies, developers are often forced to propagate

changes to a dependent feature code without a thorough knowledge. In this

way, as product lines tend to change over time, it is inevitable that adopting

an ad hoc approach to propagate changes will have a negative effect on the

maintenance. A lot of effort may be devoted to comprehend dependencies and

revisit code of potentially affected features. Developers may overlook important

parts of the code that should be revised or changed. In addition, they may also

unnecessarily analyse parts that are not relevant to the feature-maintenance

task at hand [RIBEIRO et al. 2011].

For example, suppose a product-line example with a feature SCREEN

representing a device screen. Feature SCREEN has methods and attributes

that are accessed by other features. Examples of program elements

participating of feature dependencies are: usePreSetConfig, setBrightness,

setHPosition, setVPosition, showFrequency, and showResolution. These

program elements are responsible for giving external access to feature SCREEN

by providing information (e.g. showFrequency and showResolution), and

by setting configuration parameters for this feature (e.g. usePreSetConfig,

setBrightness, setHPosition and setVPosition). Put differently, these

elements appear in 4-tuples defining feature dependencies (see Section 4.2.1)

as elements of a dependee feature – i.e. these elements are more likely to

propagate changes to dependent features when modified (see Section 3.3.1).

The problem is that those elements may be scattered through the source

code. For instance, these elements may be distributed across different files

responsible for implementing the functionalities of feature SCREEN. So, it

is hard to fully recognise all these program elements in the source code of a

product line. As a consequence, the most harmful elements to be modified

vanish from developer’s eyes during a maintenance. Figure 5.1 shows how
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the elements of SCREEN accessed by other features are distributed across

multiple files. This example illustrates the difficulty of reasoning about the

full realisation of each feature dependency.

Figure 5.1: Methods of feature SCREEN involved in feature dependencies.

The difficulty in understanding the organisation of the elements that

configure feature dependencies is related primarily to the lack of the intended

modularity of features [KÄSTNER et al. 2011]. This is critical because, since

a feature dependency can be faced as the communication between different

feature “modules”, we can say that understanding of feature dependencies

relies on the understanding of the interface of a feature “module”. A

feature interface comprises the program elements in the source code that are

responsible for providing external access to other features. In this thesis we

focus on provided feature interfaces. A provided feature interface, similarly to

a module interface, comprises the program elements belonging to a feature and

used by another feature. So, from hereafter, unless otherwise stated, feature

interface is used to refer to provided feature interface. Thus, using the basic

terminology of our measurement framework presented in Section 4.2.1, the

interface of a dependee feature comprises all program elements of this feature

present in 4-tuples realising feature dependencies. In other words, in a 4-tuple

(ej, ei, Fy, Fx), the element ei would be one interface member of feature Fx.

Therefore, the entire interface of Fx is composed by all ei used in every

dependent feature of Fx.

Only identifying and making feature interface members explicit

to developers is insufficient for supporting the understanding of feature

dependencies organisation. It is known that developers cope with cognitive

complexity of large software systems by grouping (clustering) related elements

into cohesive groups [MARTIN 1996]. In object-oriented design, for instance,

interface members are segregated into more cohesive groups according to their

clients. In the same vein, we argue that feature interfaces can be organised

into identifiable clusters of program elements based on feature dependencies.

These program elements within a cluster of a interface collaborate to achieve
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part of the overall purpose of feature dependencies. So, if a change must be

made in a member of a cluster, we argue that the members within the same

cluster are the most relevant to be revised when propagating changes.

In our example (Figure 5.1), let us suppose the feature

CONTROLPANEL is responsible for controlling different devices, and

INFOPANEL is responsible for showing device information. Figure 5.2 shows

four program elements (usePreSetConf, setBrightness, setHPosition, and

setVPosition) that set values to variables of the feature SCREEN, used by

feature CONTROLPANEL – i.e. feature interface members of the feature

SCREEN. The other two feature interface members (showFrequency and

showResolution) just return information about SCREEN, and they are

used by the feature INFOPANEL. So, for instance, a maintenance task to

change the structure of SCREEN information is likely to involve only the

members showFrequency and showResolution. Moreover, a change to one of

these members will almost certainly affect the feature INFOPANEL, but it

is unlikely to affect feature CONTROLPANEL. So, by understanding feature

dependencies’ organisation, developers are able to identify the relevant feature

interface members to be revised during the maintenance task.

Figure 5.2: Features CONTROLPANEL and INFOPANEL accessing methods
of feature SCREEN.

Given the complexity of how features relate to each other, the number of

interface members involved in feature dependencies is higher than in the given

example. Moreover, it becomes even more complex to understand how groups

of interface members work together to participate of one or more dependencies.

Finally, it is challenging to understand the effects of a change on other features

when interface members involved in dependencies are changed. In this context,

organising the usually large and not cohesive feature interface should help

developers to understand the intricate relationship that exist between features.

This organisation must take into account structural properties of feature
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dependencies (Chapter 4). For instance, if we consider the feature dependency

scope (Section 4.2.2) to segregate members of a feature dependency, it may

help developers to understand the implementation of those dependency. As

a consequence, the overall number of program elements likely to be revisited

during a change propagation will be reduced, thus better supporting developers

on reasoning about change propagation.

This chapter, therefore, proposes a technique for automating the creation

of an organised view of feature interfaces. This technique aims at answering

the third research question of this thesis (RQ3 in Section 1.2), which states:

“How to organise information of feature dependency implementation to support

change propagation?”. Section 5.1 proposes a way of organising feature

interface information as a clustering problem. Section 5.2 describes a study

to evaluate our proposed organisation using a clustering algorithm. Related

work is presented in Section 5.3. Finally, Section 5.4 presents the summary of

the chapter.

5.1 Automated Interface Organisation

Creating a good mental model of the structure of a complex system is one

of many serious problems of software developers [MANCORIDIS et al. 1998].

In our attempt to alleviate the change propagation complexity, we propose a

technique for automating feature interface organisation in order to support

developers creating a model of the structure of feature dependencies. The

goal of our approach is to automatically partition1 the members of a feature

interface into clusters. By doing that, the resultant organisation maximises the

relationship between the interface members that are grouped together in the

same cluster by considering program elements affected in an eventual change

propagation. In other words, we want to externalise structural properties of

feature dependencies (Chapter 4) into our feature interfaces’ organisation. For

instance, we externalise the usually high and scattered scope of a feature

dependency by partitioning a feature interface into groups of related members

comprising part of the feature dependency scope. These members within the

same group are likely to propagate changes the same parts of the source

code. The clusters, once discovered, will represent a higher-level abstraction

of a feature interface based on feature dependencies’ structure. Each cluster

contains a set of interface members that cooperate to perform some high-level

1 We use the term partition in the traditional mathematical sense, that is, the
decomposition of a set of elements (e.g., nodes of a graph) into mutually disjoint clusters.
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function in part of one or more feature dependencies. The following sections

detail our approach to organise feature interfaces using clustering.

5.1.1 Interface Organisation as a Clustering Problem

Clustering is the task of grouping a set of elements in such a way that

elements in the same group (called a cluster) are more similar (in some sense

or another) to each other than to those in other groups (clusters) [EVERITT

et al. 2009]. Clustering objects into groups is a common task that arises in

many applications such as data mining, web analysis, computational biology,

machine learning, pattern recognition, and computer vision.

Cluster analysis itself is not a specific algorithm, but the general problem

to be solved. It can be achieved by various algorithms that differ significantly

in their notion of what constitutes a cluster and how to efficiently find

them. In a theoretical setting, the objects are usually viewed as points in

either a metric space (typically finite) or as vertices in a graph. Typical

objectives include, for instance, minimizing the maximum diameter of a cluster

(k-clustering) [HOCHBAUM and SHMOYS 1986], minimizing the average

distance between pairs of clustered points (k-clustering sum) [SCHULMAN

2000], and minimizing the average squared distance to an arbitrary centroid

point (k-means) [KANUGO et al. 2002]. These objectives interpret the distance

between points as a measure of their dissimilarity: the larger the distance, the

more dissimilar the objects. Another line of clustering algorithms interprets the

distance or weights between pairs of points as a measure of their similarity:

the larger the weight, the more similar the objects. In this case, the typical

objective is to find a k-clustering that minimizes the sum of weights between

pairs of objects in different clusters (minimum k-cut) [LEIGHTON and RAO

1999].

In the context of our problem, feature code often contain from dozens to

thousand lines of code that are associated into a large number of cooperating

features. Buried into these lines of codes, there are many feature interface

members being accessed by other features. Fortunately, we often find that

these feature interface members are organised into identifiable clusters that

collaborate to achieve a higher-level purpose of feature dependencies. As a

consequence, these members within the same cluster often propagate changes

to the same program elements. However, the structure of these implicit

relationships between interface members as well as affected program elements

are not obvious from the source code structure. Our research therefore proposes
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an automatic technique that creates organised feature interfaces. We use a

clustering algorithm to partition the members of a feature interface in a way

that it derives groups of feature interface members propagating changes to the

same parts of the source code. To do so, we propose a model that represent

structural properties of feature dependencies by means of relationships between

interface members. In the next section we define the underlying model used to

represent those relationships between feature interface members and used as

input for the clustering algorithm (Section 5.1.3).

5.1.2 Members Relationship Graph

In order to cluster the members of feature interfaces, the straightforward

representation of the underlying model to be clustered that fits to our

purpose is a graph. So, the first step of our organisation approach is to

parse the source code and extract the feature dependencies. Based on these

feature dependencies, we retrieve the feature interfaces. After that, we build

the so-called Members Relationship Graph (MRG). Formally, a members

relationship graph MRG = (M,R) consists of two components M and R

where:M is the set of members in a specific feature interface, andR ⊆ M×M is

a set of pairs of the form 〈u, v〉 which represents the members relationships that

exist within the set of members of a feature interface. A relationship between

two members is characterised when the same program element of a dependent

feature refers to both feature interface members. The rationale behind this

graph structure is that members referred by the same dependent program

element are likely to cooperate to perform part of the feature dependency.

As a consequence, they give together a more complete insight into the feature

dependency, thus supporting change propagation. In addition, each edge of the

graph has a weight. The weight of an edge represents the number of distinct

dependent program elements referring the pair of members.

The idea of the MRG is to model the relationship of feature interface

members that may affect the same program elements in case of a change

propagation. In this way, when feature interface members are used by the

same program element of a dependent feature, edges between these members

are created. In other words, these relationships between interface members are

established based on the feature dependency scope. In addition, each edge has

a weight. The weight represents how many times a pair of feature interface

members is being used by different program elements of dependent features.

In practical terms, the weights mean how strong is the collaboration between

the feature interface members towards the implementation of (part of) the
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purpose of one or more feature dependencies. The weight of an edge is how

we represent the feature dependency connectivity by means of the relationship

between interface members. So, the idea of applying clustering algorithm to this

underlying model is to identify close feature interface members as clusters in a

way that the overall number of program elements likely to be revisited during

change propagation will be reduced guided by the clusters of the organised

feature interface. In this way, the next section presents the algorithm chosen

to cluster the underlying model presented in this section.

5.1.3 The Markov Cluster Algorithm

The Markov Cluster (MCL) algorithm [DONGEN 2000] is a cluster

algorithm for graphs based on simulation of stochastic flow in graphs. The

MCL algorithm is based on the graph clustering paradigm, which postulates

that natural groups in graphs have the following property: “A random walk

in a graph that visits a dense cluster will likely not leave the cluster until

many of its vertices have been visited”. Natural groups (clusters) in a graph

are characterised by the presence of many edges (or more weighted edges)

between the members of that cluster. In particular, this number should be

high, relative to node pairs lying in different clusters. In other words, random

walks on the graph will infrequently go from one cluster to another.

The MCL algorithm finds cluster structure in graphs by a mathematical

bootstrapping procedure. The process deterministically computes (the

probabilities of) random walks through the graph, and uses two operators

transforming one set of probabilities into another. In this way, the algorithm

uses stochastic matrices (also called Markov matrices) which capture the

mathematical concept of random walks on a graph. The MCL algorithm

simulates random walks within a graph by alternation of two operators called

expansion and inflation. Expansion coincides with taking the power of a

stochastic matrix using the normal matrix product (i.e. matrix squaring).

Inflation corresponds with taking the Hadamard power of a matrix (a.k.a.

the Schur product) [DAVIS 1962], followed by a scaling step, such that the

resulting matrix is stochastic again, i.e. the matrix elements on the column

stochastic matrix correspond to probability values. A column stochastic matrix

is a non-negative matrix with the property that each of its columns sums

to 1. Thus, given such a matrix M and a real number r > 1, the column

stochastic matrix resulting from inflating each of the columns of M with

power coefficient r is written Γr(M), and Γr is called the inflation operator

with power coefficient r. The summation of all the entries in column j of M
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raised to the power r (sum after taking powers) is defined as
∑

r,j(M). Then

Γr(M) is defined in an entrywise manner as:

Γr(Mij) =
M r

ij∑
r,j(M)

(1)

Each column j of a stochastic matrix M corresponds with node j of the

stochastic graph associated with M . Row entry i in column j (i.e. the matrix

entry Mij) corresponds with the probability of going from node j to node

i. It is observed that for values of r > 1, inflation changes the probabilities

associated with the collection of random walks departing from one particular

node by favouring more probable walks over less probable walks.

Expansion corresponds to compute random walks of high length,

which means random walks with many steps. An expansion associates new

probabilities with all pairs of nodes, where one node is the point of departure

and the other is the destination. Since high length paths are more common

within clusters than between different clusters, the probabilities associated

with node pairs lying in the same cluster will be relatively large. Inflation

will have the effect of boosting the probabilities of intra-cluster walks and

will relegate inter-cluster walks. Eventually, iterating expansion and inflation

results in the separation of the graph into different segments. When there are

no longer any paths between segments, the collection of resulting segments is

simply interpreted as a clustering. With this, according to Dongen, the MCL

algorithm can be written as [DONGEN 2000]:

1. G is a graph

2. set Γ to some value # affects cluster granularity

3. set M1 to be the matrix of random walks on G

4.

5. while (change) {

6. M2 = M1 ∗M1 # expansion

7. M1 = Γ(M2) # inflation

8. change = difference(M1,M2)

9. }

10.

11. set CLUSTERING as the components of M1

Lines 1 and 2 correspond to the inputs of the algorithm which are: an

underlying model in a graph format (G), and a value for the parameter inflation

(Γ). The input graph (G) is considered as the initial clustering result (M1), i.e.
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the graph where the algorithm will perform random walks and improve it until

find the best clusterisation. Between lines 5 and 9 the algorithm alternates two

operations: expansion and inflation. First, it expands the clustering matrix

resultant of the iteration of both operations and saves it in another matrix

(M2). After that, it inflates matrix M2 and set the value to the new resultant

clustering matrix M1. These two steps are repeated until the matrix resultant

from a previous iteration is equal to the current iteration (M1 = M2). In this

case, matrix M1 is a stochastic matrix representing the clusters of nodes of the

input graph.

The instantiation of the MCL algorithm in our context considers the

input of the algorithm as the MRG (see Section 5.1.2) in adjacent matrix

format. The other input for the algorithm is the parameter inflation(Γ). The

value chosen for the parameter inflation is explained in Section 5.2.3. In a

nutshell, the idea of applying the MCL algorithm in our MRG is to remove

edges in order to find clusters of interface members that cooperate to each

other. After defining the initial parameters, our MRG is assigned to M1 as the

initial result of the clustering algorithm. The algorithm will perform operations

over M1 to find the best clusterisation. Matrix M1 stores a subgraph of MRG

corresponding to the clusters found in each iteration by removing edges from

pair of members that should not be in the same cluster. The iterative algorithm

is repeated until the matrix resultant from a previous iteration (M2) is equal

to the current iteration (M1). In other words, the refinement to find the best

clustering continues until the result does not change in two iterations. This

comparison is executed in line 8 by the function difference. In this case,

matrix M1 is the output representing the clusters of members based on the

MRG.

The MCL cluster algorithm was chosen to organise feature interfaces

because it is a simple algorithm that performs two simple algebraic operations

on matrices. There are no high-level procedural instructions for assembling,

joining, or splitting of groups. Cluster structure is bootstrapped via a flow

process that is inherently affected by any cluster structure present. In addition,

the differentials of MCL algorithm compared to other graph-based clustering

algorithms are that (i) by varying a single parameter, clusterings on different

scales of granularity can be found, and (ii) most importantly, the number of

clusters can not and need not be specified in advance.
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5.2 Exploratory Study

This section describes our study configuration in terms of its goal

(Section 5.2.1), the target system used to evaluate the organisation of feature

interfaces (Section 5.2.2), the evaluation procedures used to conduct the study

(Section 5.2.3), the results of the study (Section 5.2.4), a discussion about

the implications of our results (Section 5.2.5), and the threats to validity

(Section 5.2.6).

5.2.1 Research Goal

Developers often do not reason about feature dependencies to make

decisions regarding maintenance. The elements of feature interfaces, which

configure the feature dependencies, may be spread all over the code, thus

making feature interfaces large and difficult to understand. The grouping of

these elements also play different roles in the context of feature dependencies,

and these groups must be identified and understood in order to alleviate

change propagation complexity. So, based on the importance of this problem,

we claim that there is a need to organise feature dependency information.

More specifically, we believe that externalising structural properties of feature

dependencies into organising feature interfaces will help developers to decrease

the number of program elements revisited to propagate a change.

Concerned with the aforementioned issues, the main goal of this study is

to evaluate the effectiveness of organising feature interfaces. For the purposes

of the evaluation, we compare the effectiveness of a feature interface organised

using a clustering algorithm (see Section 5.1.3) against an unorganised feature

interface. The oracle used to compare both organised and unorganised feature

interfaces are the co-changes of program elements extracted from 10 evolutions

of a product line (Section 5.2.2). Our claim is that the organisation of feature

interfaces proposed in this chapter overcome limitations of unorganised feature

interfaces regarding the understanding of the intricate relationship that exist

between features. We expect that organised feature interfaces improves the

understanding of feature dependencies organisation, thus reducing the overall

number of program elements likely to be revisited during change propagation.
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5.2.2 Target System

We selected Busybox [BUSYBOX 2015] as a paradigmatic case,

representing many other product-line implementations based on conditional

compilation [KÄSTNER et al. 2012]. Busybox is a real-world resource-efficient

product line of UNIX utilities implemented in C language. It runs in a

variety of POSIX environments such as Linux, Android, FreeBSD, and

others [KÄSTNER et al. 2012]. Table 5.1 shows general data about the

10 releases analysed in this study, such as lines of code (KLOC), number

of features (# of Features), and number of feature dependencies (# of

Dependencies).

Table 5.1: General information about Busybox.
Release KLOC # of Features # of Dependencies
1.13 183 646 630
1.14 188 668 620
1.15 185 696 671
1.16 191 722 702
1.17 196 738 681
1.18 209 759 718
1.18.5 199 759 719
1.19 192 776 761
1.20 194 781 762
1.21 195 766 749
mean 193 731 701

Variability in Busybox uses both variability at the composition level,

automated by the build system, and variability at source-code level, encoded

with #ifdef directives inside modules [KÄSTNER et al. 2012]. In this study,

we focus on variability at the source-code level. For instance, taking the release

1.18.5 of Busybox as a representative release, all 522 source-code files contain

more than 260k lines of code implementing variability at source-code level.

Moreover, of 759 features, 471 (62%) control variability at source-code level

with #ifdef directives [KÄSTNER et al. 2012].

It is important to mention that we are not using the same product lines

used in previous chapters on purpose. To achieve our research goal we needed

a product line with a large number of features and feature dependencies.

In addition, fine-grained information about (a high number of) commits

of the product line analysed herein had to be directly available. In other

words, changes in methods associated with features should be available in

commits’ information. We also avoided the use of same software product

lines presented in previous chapters to avoid bias in our results. For instance,
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the structural properties of feature dependencies were characterised based on

previous empirical results in literature and on studies presented in this thesis

(see Section 4.1). So, applying the approach presented in this chapter, which

is based on structural properties, on previously used product lines could be a

significant threat to the results of our study. Finally, we aimed at conducting a

longitudinal study of one single product line. The idea was to carefully analyse

the feature interfaces proposed by our solution in order to discuss in-depth

the implications of our results and draw conclusions. To do so, we needed to

understand the semantics of the interface members as well as the semantics

of feature dependencies. This would not be possible if we conduct a wider

and more superficial study using several product lines, which were already

contemplated in previous chapters.

5.2.3 Evaluation Procedures

The study was divided in three major phases: (1) data extraction of

feature dependencies, feature interfaces, member relationship graphs (MRG),

and program elements co-changes, (2) clustering algorithm application, and

(3) clustering evaluation. In the following we detail the three major phases of

our study.

Data Extraction

The data used in this study have been retrieved from the Busybox

repository [BUSYBOX 2015]. The Busybox repository uses a publicly available

data set containing almost 2,000,000 LOC. From the repository, 10 releases of

the Busybox containing 6858 source code files were analysed. Each C file has

been scanned to mine feature dependencies (see Chapter 2) in the source code

using an extension of the TypeChef tool [KENNER et al. 2010].

Feature dependency and feature interface extraction. To extract

feature dependencies we analysed the control-flow graph of each entire release.

Each node of the control-flows graph, representing a program element, was

associated with a feature. The set of control flow going between nodes

associated to different feature were classified as the realisation of a feature

dependency. In other words, adjacent nodes belonging to different features were

considered as one link belonging to the set of links of a feature dependency (see

Section 4.2.1). Once we extracted all program nodes (i.e. program elements)

participating of feature dependencies, we grouped together nodes belonging

to the same feature. Nodes containing edges incident to it were classified as
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members of a feature interface. In other words, program elements from one

feature that are being used by another feature are members of a provided

feature interface.

Feature interface filtering. Once extracted all feature interfaces, we filter

only interfaces with more than one member. After that, we construct the MRG

(Section 5.1.2) using an extension of the TypeChef tool and R tool [R TOOL

2015]. The aim of the MRG is to related feature interface members. Weighted

dges between nodes represents the members relationships that exist within the

set of members of a feature interface. In this case, the topology of the graph

becomes informative regarding the complex structure of feature dependencies

and the possible extent of change propagation.

Co-change extraction. The last step of data extraction was to mine

changes in program elements from the Busybox repository using a tool

called Codeface [CODEFACE 2015]. The idea is to identify program elements

co-change (i.e. simultaneous change in distinct program elements) within in

a specific commit. Similar to several work [CATALDO et al. 2008, BIRD

et al. 2011, JERMAKOVICS et al. 2011, JOBLIN et al. 2015], we assume

that co-changes of distinct program elements in a single commit suggests the

execution of a complete maintenance task. In other words, within a commit

it is more likely to find program elements that cooperate to perform some

high-level function in part of one or more feature dependencies. After that, we

filtered out among several co-changes only co-changes involving members of

feature interface.

In total we extracted 2286 feature interfaces out of 7311 features stored

in the Busybox repository. After filtering feature interfaces with more than one

member in the interface, the resultant number of feature interfaces was 650.

The total number of feature interface members under analysis is 3154 while

the biggest feature interface among 650 features comprises 46 members. The

total number of feature dependencies analysed is 7013 while the maximum

number in a release is 762. Regarding the co-changes extracted from the

Busybox repository, we extracted a total of 3382 changes in program elements

comprising 2592 commits for 10 evolution of Busybox. Table 5.2 shows general

information of the releases regarding number of program elements changed (#

of elements changed) and number of commits (# of commits).
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Table 5.2: Change information about Busybox repository.
Release # of elements changed # of commits
1.13 626 384
1.14 535 272
1.15 775 438
1.16 646 422
1.17 485 356
1.18 30 5
1.18.5 48 49
1.19 283 229
1.20 197 166
1.21 257 271
mean 388 259

Clustering Algorithm Application

We chose to apply the MCL algorithm (Section 5.1.3) to our extracted

MRG. However, to calibrate the MCL algorithm regarding its only parameter

(i.e. inflation parameter), we used a tool called clm dist [MCL ALGORITHM

2015] implemented by the creator of the MCL algorithm. The tool computes

the distance between clusterings by using different metrics such as split/join

distance, variance of information measure, and Mirkin metric. This tool can

suggest the value of the parameter based on the number of members to

be clustered. For further details about the metrics used as well as the clm

dist tool the reader may refer to [MCL ALGORITHM 2015]. We followed

a procedure to test the MCL algorithm by generating clusters using the

inflation values recommended by the author of the algorithm, which are:

1.2, 2, 3, 4, and 6. After generating the clusters for all Busybox releases,

we compared the resultant clusterings with clm dist tool using all inflation

values aforementioned. The value 2 presented the best results among the values

tested in our cases. Hence, we decided to use this value to apply the MCL

algorithm on the MRG. The MCL algorithm was applied to the MRG using a

R tool library [R TOOL 2015]. The algorithm assigned to each feature interface

member a number related to a cluster. In this way, members with the same

number are considered members of the same cluster.

Clustering Evaluation

To validate the organisation of feature interfaces resultant of the

application of the MCL algorithm, we used the Jaccard distance. The Jaccard

distance is a statistic used for measuring the dissimilarity of sets. In this
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way, it measures dissimilarity between finite sample sets, and it is defined

by subtracting the size of the intersection by the size of the union and divided

it by the size of the union of the sample sets:

dJ(A,B) =
|A ∪B| − |A ∩ B|

|A ∪ B|
(2)

Value of Jaccard distance are bound between 0 and 1. Values closer to

1 means a higher dissimilarity between sets. Values closer to 0 means lower

dissimilarity between sets. By using Jaccard distance we are able to use the

results and make statements such as “70% of the feature interface members

(or interface members of a cluster) might have been unnecessarily analysed on

average considering the commits from one release to the next one”.

For each set of co-change of program elements we apply the Jaccard

distance with every cluster generated by the algorithm. After that, we identify

the cluster to be analysed by getting the lowest Jaccard distance. The Jaccard

distance of that cluster is used to calculate the average dissimilarity of clusters

within the commits from a release to the next one. After calculating the Jaccard

distance using the clusters of feature interface members, we calculate the

Jaccard distance using the co-change of the program elements and the whole

interface (non-clustered interface). For each commit we apply the Jaccard

distance and after analysing all commits we calculate the average Jaccard

distance of a specific release.

We use a measure of dissimilarity of sets in our study to evaluate

our approach. This is justified because our goal is to explore interface

members that are likely to be unnecessarily evaluated when changes may be

propagated. Those interface members increase the complexity of understanding

the organisation of feature dependencies (i.e. cognitve complexity – see

Chapter 4), thus increasing the complexity of change propagation. Therefore,

the more dissimilar is the set with the commit changes, the worse is a feature

interface organisation (clustered or non-clustered).

5.2.4 Results

To address our research goal we need to evaluate our clustering approach.

The idea is to explore the solution proposed to organise feature interface

members against a non-clustered feature interface. In this way, we apply

the Jaccard distance in order to explore the dissimilarity (i.e. the Jaccard

distance) between the sets of co-changes of program elements occurred during
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product-line evolution with both clustered and non-clustered feature interfaces.

Table 5.3 shows the results of the Jaccard distance for both types of feature

interfaces for each release analysed from Busybox. In addition, the box plot

presented in Figure 5.3 shows a visual comparison of how the values of Jaccard

distance are distributed for clustered and non-clustered interfaces.

Table 5.3: Comparison between Jaccard distance in Busybox releases.

Release Clustered Interface Non-clustered Interface
1.13 0.2263464 0.9015086
1.14 0.3745138 0.8869625
1.15 0.2767011 0.8712999
1.16 0.197385 0.8545383
1.17 0.2588888 0.9149021
1.18 0.2375843 0.9578755
1.18.5 0.3611111 0.900779
1.19 0.1918869 0.8614765
1.20 0.4325397 0.8878205
1.21 0.1071429 0.8289116
mean 0.26641 0.88660745

The rationale of the comparison between an organised and an

unorganised feature interface is to simulate how developers deal with feature

interfaces with no organisation. A high Jaccard distance value indicates the

percentage number of interface members that might have been inspected

unnecessarily based on commit changes.

Looking at the Jaccard distance (Table 5.3 and Figure 5.3) we can

notice that the value for clustered interfaces ranges between 0.1 and 0.4.

This behaviour means that, in the worst case, the number of feature members

included in a cluster and not changed together with other members within the

same cluster is at most 40% of the interface members. In other words, in the

worst case of a clustered interface, 40% of the members within a cluster were

not related to the commits retrieved from the Busybox repository. Moreover,

one can notice the pronounced difference between clustered and non-clustered

interface regarding the Jaccard distance by analysing the box plot in Figure 5.3.

The concentration of Jaccard distance distribution for non-clustered interface

close to 0.8 means that approximately 80% of the feature interface members

were not related to the commits (and probably unnecessarily revisited). In

addition, despite the higher variation in the Jaccard distance distribution for

clustered interfaces, the highest Jaccard distance for clustered interfaces is

much lower than the lower Jaccard distance of a non-clustered interface.

Table 5.3 and the box plot in Figure 5.3 already give insights into
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Figure 5.3: Box plots of Jaccard distance values for clustered and non-clustered
interfaces.

the capability of the clustered interfaces of reducing the number of interface

members likely to be unnecessarily analysed in commits – i.e. the difference

between the Jaccard distance distributions. To provide statistical evidence of

such capability, we use the same tests used by Romano and colleagues to

analyse the significance of the difference between distribution, which in their

cases were the difference between a metric before and after refactoring an

interface [ROMANO et al. 2014]. Therefore, we compute the difference between

the distribution of Jaccard distance for clustered and non-clustered interfaces

using the paired Mann-Whitney test [MANN and WHITNEY 1947] and the

paired Cliff’s Delta effect size [GRISSOM and KIM 2005]. It should not be left

unmentioned that the Mann-Whitney test and Cliff’s Delta effect size were

chosen because the Jaccard distances are not normally distributed.

First, we use the Mann-Whitney test to analyse whether there is a

significant difference between Jaccard distance of clustered and non-clustered

interfaces. The Mann-Whitney test is a nonparametric test that allows

two groups, conditions or treatments to be compared without making the

assumption that values are normally distributed. Significance differences are

indicated by Mann-Whitney p-values lower than 0.01. Then, we use the Cliff’s
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Delta effect size (d) to measure the magnitude of the difference between the

Jaccard distance between clustered and non-clustered interfaces. Cliff’s Delta

is bound between +1 and -1. Values close to +1 means that all selected

values from one group are higher than the selected values in the other group,

and values closes to -1 when the reverse is true. The value 0 expresses two

overlapping distributions. The effect size is considered negligible for d < 0.147,

small for 0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.47, and large for

d ≥ 0.47 [GRISSOM and KIM 2005].

The distribution of Jaccard distance measured on clustered interfaces

is statistically different from the non-clustered interfaces’ values. The M-W

p-value is <9E-5. In order words, the M-W p-value≤ 0.01 allows us to say the

difference between the distributions is statistically significant. The Cliff’s Delta

measured on both distributions is d = −1. This means that the effect size is

statistically large and the difference between both distributions is relevant.

5.2.5 Discussion of the Results

This section presents a discussion of the results of the study presented in

Section 5.2.4.

The benefits of using clustered interfaces

The results in the previous section (Table 5.3 and Figure 5.3) suggest

there is a strong evidence that clustered feature interfaces can support

developers to reason about change propagation in product lines. Both M-W

p-value and Cliff’s Delta effect size allow us to say the clustered interface

overcomes non-clustered interfaces in terms of Jaccard distance. We can

observe this fact by looking at the Jaccard distance for both types of feature

interfaces in all releases (Table 5.3). Clustered interfaces always present a

lower Jaccard distance when compared to non-clustered interfaces. We can also

observe a concentration of high Jaccard distance for non-clustered interface.

In addition, despite the higher standard deviation compared to non-clustered

interfaces, there is a concentration of low Jaccard distances for clustered

interfaces. So, since we are using the Jaccard distance in our study as a measure

of the number of elements likely to be unnecessarily revisited during a change

propagation, we can say the number of feature interface members revisited

to understand a dependency and propagate changes (i.e. members within a

cluster) is lower than in a non-clustered interface.
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The pronounced difference when comparing the Jaccard distance between

clustered and non-clustered interfaces indicates a significant reduction on

members to be considered when developers need to reason about change

propagation (≈ 62% of reduction on average) when we observe the average

of Jaccard distance for both types of feature interfaces (Table 5.3).

For instance, the commit number 2127 from release 1.17 of Busybox

involved only one interface member (the method expand vars to list)

of the feature CONFIG HUSH. It is worth to mention that the feature

CONFIG HUSH has a relative high scope and tight connectivity (Section 4.2.2)

of feature dependencies when compared to other Busybox features. Feature

CONFIG HUSH has 23 interface members in total. So, in a non-clustered

interface 22 out of 23 interface members could be revisited by the

developer to reason about change propagation caused by a simple change

in expand vars to list (i.e. ≈ 96%). In the clustered interface of feature

CONFIG HUSH, the cluster containing expand vars to list has only two

members. Thus, a developer could unnecessarily revisit only one member out

of 23 interface members of CONFIG HUSH (i.e. ≈ 4%) in case of a change on

expand vars to list.

It is important to mention that some interface members that were not

changed must be analysed in order to fully propagate a change. Even though

those members were not changed in a commit, the developer would still need

to reason about them to understand the impact of the change. Interface

members “unnecessarily” analysed in one commit may be important in changes

that might happen in other commits. The analysis of a set of cooperative

interface members is important (i) to understand the organisation of feature

dependencies, and (ii) to certify that there is no other changes to be made.

In this context, we argue that our underlying model (MRG) makes explicit

structural properties of feature dependencies. This is important because the

MRG can capture the cooperative members amongst a set of interface members

in part of a feature dependency (see Section 5.1.2). By capturing cooperative

interface members and clustering them, we are able to (i) reduce the number

of program elements revisited during a maintenance task that involves code

change, and (ii) better indicate related interface members that should be

inspected or changed; i.e. interface members that may propagate changes to

the same parts of the source code.

Therefore, we argue that our approach can alleviate problems related

to change propagation such as mis-propagated changes. For instance, in the

previous example, a cluster with only two members minimises the change
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of a misunderstanding about feature dependencies organisation compared

to a non-clustered interface with 23 members. The cognitive complexity of

understanding the feature dependencies organisation as well as the impact

of the changes is reduced. In this way, a misunderstanding of the context of

the change propagation is unlikely to happen. As a consequence, we believe

that mis-propageted changes are also unlikely to happen. In addition, our

approach also reduce the chances of parts of the code being overlooked during

a maintenance. By grouping only members that cooperate to each other to

realise feature dependencies, the interface indicates which members are likely

to be relevant to a be understood to propagate a change. Interface members

that cooperate to each other must be understood together because they may

propagate changes to the same parts of the source code. So, we also argue that

clustered interfaces reduce the overlooking of important parts of the source

code when changes must be propagated.

Stability of clustered interfaces

An important issue for the adoption of our approach is the stability

of the clustered interfaces. A stable interface is the one that does not have

significant changes in its members. A considerable change on our clustered

interfaces in each release (i.e. a severe instability in our interfaces) could be

impeditive for the adoption of our solution. Developers would need to become

familiar with a new organisation of interfaces. However, we argue that, since

there is no great changes in the structure of the product line, our clustered

interfaces also does not suffer many changes in their structure. This fact can

be observed in Table 5.4. We can notice that the number of feature members

( # of feature members), number of feature members (# of feature members),

and the average number of members in a cluster (Avg. # of members in a

cluster) do not vary widely during the evolution of Busybox. For instance,

there was a variation of 7 features from the first release (54 features) to the

last release (61 features) analysed. In addition, we noticed that the number

of feature members also remained stable (variation of 68 members). So, we

can consider that the evolution of Busybox did not suffer great changes. In

this case, we should expect that the average number of members in a cluster

presents a relative stability. In fact, the average number of members in a cluster

showed a very low variation along the evolution of Busybox. Based on this, we

argue that our approach reflects the behaviour of the evolution of the product

line. In other words, it is likely that features and their dependencies stabilise

during the evolution. As a consequence, it is also likely that our clustered
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interfaces also stabilise with time. In this context, we argue that the adoption

of our approach in evolving product lines does not demand a lot of effort from

developers to become familiar with our clustered interface in each release.

Table 5.4: Information about the number of feature interface members of
Busybox.

Release # of features
# of features

members

Expected avg.

# of feature

members

Avg. # of

members in

a cluster

1.13 54 263 4.87 3.81
1.14 57 309 5.42 3.96
1.15 59 315 5.34 3.89
1.16 60 314 5.23 3.83
1.17 55 304 5.53 4.11
1.18 58 325 5.60 4.11
1.18.5 59 326 5.53 4.07
1.19 62 334 5.39 4.07
1.20 61 333 5.46 4.06
1.21 61 331 5.43 4.04

mean 58.6 315.4 5.38 3.9

The role of structural properties of feature dependencies

Structural properties of feature dependency play a key role in our

approach. By analysing the interfaces of the features we could notice that

features involved in dependencies with high scope and tight connectivity

(see Chapter 4) presented good Jaccard distance values regarding their

interfaces. These cases were notable where the difference of the Jaccard

distance between clustered and non-clustered interfaces were greater than

the distance between the averages (e.g. releases 1.16, 1.19 and 1.21). Feature

dependencies with high scope are critical because they are likely to affect

many program elements in different parts of the source code when a change

must be propagated. In addition, the nature of feature dependencies with high

connectivity makes those changes are more likely to be propagated due to

the tight connectivity between features. The combination of both properties

makes change propagation in product line a complex task. Developers may be

not able to fully understand the intricate and complex relationship that exist

between features by looking at non-clustered interfaces.

Our approach captures these properties to group interface members that

collaborate to realise the feature dependency. For instance, the commit number

2118 from release 1.17 of Busybox involved changes in two interface members

of feature CONFIG HUSH (done command and new pipe). It is worth to cite
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that the interface members done command and new pipe are two methods

implemented in a class with more than 8 KLOC. These two members cooperate

to implement part of many dependencies involving feature CONFIG HUSH.

Several dependencies involving CONFIG HUSH are realised by many program

elements scattered in the source code (i.e. evidence of a high scope of a feature

dependency). In addition, these two members consistently appear together

(i.e. evidence of tight connectivity in this part of the dependency). In our

clustered interface, these two members (done command and new pipe) are

grouped together in one cluster indicating this cooperation between both. In

this way, we argue that our approach is able to capture key properties of feature

dependencies that are able to alleviate the change propagation task in software

product lines by clustering feature interfaces.

Complexity of feature dependencies

Not all feature dependencies are complex. Despite of the benefits of

relying our underlying model on structural properties of feature dependencies,

some feature dependencies present a low scope and/or loose connectivity. So,

the targeted properties to be represented by the underlying model may not help

clustering feature interface members. In these cases, our approach presented

the worst results (e.g. releases 1.14, 1.18.5 and 1.20). Features involved in

feature dependencies with low scope tend to present coarse-grained clusters

of interface members (i.e. many members within a cluster) with no relation.

In other words, not all members within a cluster collaborate to perform a

high-level function in a feature dependency.

For instance, the commit number 2142 from release 1.17 of Busybox

involved only one interface member of feature CONFIG ASH changed

(setvar). Feature CONFIG ASH has 41 interface members. The member

setvar is within a cluster with 28 more members. In addition, it is

important to mention that only the member setvar of the entire cluster was

changed considering all commits involved in this specific release of Busybox

(release 1.17). As a consequence, we can expect an increase in the Jaccard

distance value in situations as described above. On the other hand, features

participating of feature dependencies with loose connectivity tend to have

fine-grained clusters (i.e. few members within a cluster). An example is feature

CONFIG DC from release 1.17 with one member per cluster. The Jaccard

distance value for feature interfaces similar to CONFIG DC interface increase

depending on the characteristics of the commits (e.g. number members involved

in a commit).
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So, to sum up, we can say that an improvement in our underlying model

may be needed to improve our results in some specific cases. This can be

achieved by representing other important structural properties and/or tuning

(or even changing) the clustering algorithm used in our approach. Nevertheless,

it is important to mention that cases of feature dependencies with these

characteristics (i.e. low scope and/or loose connectivity) have not been often

found in our study. This fact can be observed in Table 5.4. One can see that the

average number of members in a cluster (Avg. # of members in a cluster) is

close to 3.9 while the expected number of a coarse-grained cluster (i.e. a number

close to the entire number of interface members) is more than 5 (Expected avg.

# of feature members). The difference of more than 25% of members between

the averages can be faced as an evidence that the cluster are not coarse-grained.

Nature of changes

Another important factor that may impact in our results are the commits

used to validate our approach. Depending on some characteristics of the

commit, the Jaccard distance value for some clustered interfaces tends to

be high when compared to the majority of the results. For instance, the

commit number 2121 involved changes in 20 interface members of 9 different

features. One can notice that many interface members were changed in one

single commit. These interface members changed in a commit may belong

to one or more features. In this specific commit we highlight the unusual

number of features being changed in a single commit. The reasons for a

coarse-grained commit like that are many. For example, intrinsic characteristics

of the maintenance task may demand changes in several interface members.

The problem is that the more members are changed in one single commit,

the lower is the chance that a cluster comprises all these elements. Developers

might have to analyse several interface clusters within a feature to comprise all

members that must be revisited. Even worse, when commits involve changes of

members from different features, it is impeditive to have a good result since we

are using commits as our ideal model of cluster. In the example presented here,

we can also notice that the number of members changed in a single commit is

higher than the average number of members within a cluster (see Table 5.4). As

a consequence, the Jaccard distance value measured in this commit is expected

to be high. Therefore, we can say that coarse-grained commits can compromise

the effectiveness of our solution.

It should not be left unmentioned that the majority of the commits

(including the ones analysed in our study) usually comprise changes in
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program elements that are somehow related (i.e. “atomic” maintenance task).

Table 5.5 shows some information regarding the number of commits (# of

commits), number of program elements changed from one release to the next

one (# of program elements changed), and average of program elements

changed per commit (Avg. # of program elements changed). One can observe

that, in general, releases with an average number of program elements per

commit greater than the total average number (i.e. 1.84 elements per commit)

presented the worst Jaccard distance values. In this case, we can argue that

only exceptional cases of commits may compromise our approach. Nevertheless,

the results are better than the obtained results for non-clustered interfaces.

Table 5.5: Information about the number of program elements changed per
commit.

Release # of commits
# of program

elements changed

Avg. # of program

elements changed

1.13 384 626 1.63
1.14 272 535 1.97
1.15 438 775 1.77
1.16 422 646 1.53
1.17 356 485 1.36
1.18 5 30 6.00
1.18.5 49 48 0.98
1.19 229 283 1.24
1.20 166 197 1.19
1.21 271 257 0.95

mean 259.2 388.2 1.86

Independence of both history and amount of changes

An important point to be mentioned is the independence of our approach

regarding the history of changes. Despite the influence of the nature of the

changes in our results, our approach does not take into account information

related to history of changes. Our approach relies only on the MRG to cluster

the interface. This is important to mention because our organised feature

interfaces can be adopted in early releases of software product lines. In this

way, another concern was to select early releases of Busybox to show the

effectiveness of our approach. For instance, our approach was applied in an

early release of the Busybox (1.13 – 4th release) and the Jaccard distance

indicates a low dissimilarity between proposed cluster interfaces and changes

in commits (see Table 5.3). Actually, the Jaccard distance of release 1.13 is

lower than further releases. In addition, our results for Jaccard distance also

achieved good results in later releases of Busybox. This finding means that even
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though our approach does not take into consideration the history of change

(e.g.“learning” about frequent changes), our approach can be applied to the

whole life cycle of a product line.

Finally, we also noticed an unexpected independence of our results

regarding the amount of changes. Since we are considering the commits as our

ideal model of clusters, it was expected that releases with few changes could

impact on our results. Indeed, release 1.18.5 presented a high Jaccard distance

when compared to other releases and with the average Jaccard distance of the

analysed releases. The release 1.18.5 of Busybox presented a Jaccard distance

of approximately 0.36 (Table 5.3). The number of commits for this release

was 49 (see Table 5.5), which is lower than the average number of commits.

However, we can notice that releases with several changes presented higher

Jaccard distance (e.g. 1.14 and 1.20) than the result associated to release 1.18.5

of Busybox. In addition, we can also notice that release 1.18 had a good Jaccard

distance (lower than the average Jaccard distance) even with only 5 commits

with this release. These facts reinforce that our approach for organising feature

interfaces is independent of the amount of changes to succeed. In fact, we could

achieve a good precision (based on the Jaccard distance) in cases with a low

number of commits depending on the nature of changes, as discussed before.

5.2.6 Threats to Validity

This section discusses the threats to validity that may affect the study

presented in the previous section.

Conclusion validity. It concerns the relationship between the treatment

and the outcome. In this study, potential threats come from the statistical

tests used to support our conclusions. To mitigate this threat we argue that

wherever possible, we used statistical tests observing the characteristics of

our data. In particular, we used non-parametric tests which do not make any

assumption on the underlying data distribution regarding variances and the

types of distributions.

Internal validity. It is the degree to which conclusions can be drawn about

the causal effect of independent variables on the dependent variables. In this

experiment, potential threats come from the tuning of the MCL algorithm

(Section 5.1.3) that may affect the results. Changing the only parameter of the

algorithm will affect the granularity of the cluster, thus affecting the Jaccard

distance (Section 5.2.3) used to compare the results. We mitigated this threat

by calibrating the algorithm using five values suggested by the author of the
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algorithm (Section 5.2.3).

Construct validity. It concerns the relationship between theory and

observation. In our study this threat can be due to the fact that we focus on

conditional compilation as the variability mechanism for implementing features

in the source code. With conditional compilation, features are often tangled

and scattered in the source code. This choice means that a feature may have (i)

many members in its interface, and (ii) many of them may not be cohesively

related to each other and, therefore, may not be relevant for each change

propagation. This situation could be different if we had decided to analyse

product lines implemented using compositional approach (e.g. aspect-oriented

programming). However, this situation cannot be completely avoided as all

product lines analysed are implemented using the mechanism of conditional

compilation. However, we argue that conditional compilation is the most widely

used mechanism to implement product-line features [KÄSTNER and APEL

2009]. Moreover, Busybox (Section 5.2.2) is an industrial project. So, we believe

the results extracted from this product line can be a first step towards the

generalisation of the results. In fact, Busybox contains categories of features

implemented in a wide range of different ways: from fully-modularized features

to highly-scattered and highly-tangled features.

External validity. Threats associated with external validity concerns the

degree to which the findings can be generalised to the wider classes of subjects

from which the experimental work has drawn a sample [PRADITWONG et al.

2011]. In our work, this is a particularly important threat to validity because

of the wide range of diverse product lines implemented using conditional

compilation. In the experiment reported upon here, this threat to validity

is somewhat mitigated by the fact that we selected Busybox (Section 5.2.2) to

conduct our study. Busybox can be considered as a paradigmatic case which

represents many other product-line implementations based on conditional

compilation due to, for example, its size, number of features and number

of valid configurations [KÄSTNER et al. 2012]. In addition, since we are

analysing different releases of the same product-line, there is no risk that the

variation due to individual differences of product lines is larger than due to

the treatment.
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5.3 Related Work

Feature modularity. Feature modularity has been a long-standing goal

of feature-oriented software development [APEL et al. 2013]. While some

researchers view features as modular unit of behavior and composition,

others pointed out that, at the source-code level, most implementation

mechanisms provide merely syntactic compositions, and thus lack proper

interface abstractions and modular reasoning. In this context, Kästner et al.

pinpoint two different notions of feature modularity: one based on locality and

cohesion, and another based on information hiding and interfaces [KÄSTNER

et al. 2011]. Modularity means locality and cohesion when a feature is viewed

as a unit of composition that has the goal of making itself explicit in design

and implementation [APEL et al. 2013]. Therefore, everything related to a

feature is placed into a separate structure called feature module [APEL et

al. 2008]. Another view of feature modularity is rooted in the concept of

information hiding and interfaces. The idea is to distinguish between an

internal and an external part of a feature module. The internal part is

hidden. The external part is called interface and controls the communication

between different feature modules [KÄSTNER et al. 2011]. Most of the work

on feature modularity has focused on locality and cohesion of features as

a criterion for system decomposition and assembly. Examples of approaches

for improving feature modularity include architecture-based product lines

(based on frameworks or components) [BASS et al. 2003], feature-oriented

programming [PREHOFER 1997, BATORY et al. 2003], aspectual feature

modules [APEL et al. 2008], feature cohesion [APEL and BEYER 2011], and

superimposition [APEL et al. 2013c]. Despite the improvement of feature

modularity in those cases, simple solutions like conditional compilation

prevail in practice [GACEK and ANASTASOPOULES 2001, ERNST et

al. 2002, KÄSTNER et al. 2008]. Nevertheless, there is a lack of studies

driving efforts towards feature interfaces in solutions based on (i) locality

and cohesion, and (ii) in widespread adopted solutions such as conditional

compilation. Our work propose a way of organising feature interface. This

organisation is based on structural properties of feature dependencies agnostic

of implementation approach. In this way, our work enhance feature modularity

by providing organised feature interfaces to support change propagation in

both compositional and annotative approaches.

Finally, there is substantial progress in solving problems that threat

modularity in features. The feature-interaction problem is considered a major
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threat to modularity in that the behavior of one feature may be affected by the

presence of another feature [APEL et al. 2013d]. So, developers must analyse

the consequences of all possible feature interactions to find the undesired

ones. In other words, the feature interaction problem also hinders independent

feature maintenance. Some studies deals with feature interaction and its

problems [APEL and BEYER 2011, BATORY et al. 2011, APEL et al. 2013d].

Despite the similar focus of these studies to our approach, none of them aims at

improving feature interfaces to support product-line maintenance. In addition,

our work focuses on feature dependencies that can be inferred via syntactical

relationships.

Feature interfaces. Ribeiro et al. proposed a solution for interfaces of

product-line features [RIBEIRO et al. 2011, RIBEIRO et al. 2014]. They

defined the concept of emergent interfaces for product lines implemented with

conditional compilation. This approach aims at establishing – based on source

code – interfaces between features on demand (emergent interfaces), with the

goal of preventing developers from breaking other features when performing a

maintenance task. Despite the generation of interfaces, this approach generates

only interfaces related to specific parts of the source code that are of interest,

and thus do not allow having a global view of the system. In other words,

emergent interfaces do not address the problem of large/monolithic interface

by segregating them. Our work deals with the complexity of the organisation of

feature dependencies by segregating feature interfaces. In this way, developers

are able to identify a complete part of the interface that is important to

understand in order to propagate changes.

There is further work that concentrates on interfaces in approaches used

to implement product lines or in variability-checking approaches supported by

interfaces. For example, Kästner and colleagues propose a variability-aware

module system for product lines [KÄSTNER et al. 2012]. This approach infers

interfaces for modules focusing on type checking of product-line configurations.

Kiczales and Mezini propose aspect-aware interfaces, computing an aspect’s

dependencies on a system’s join points and displaying these dependencies as

annotations on the explicit interfaces of advised code [KICZALES and MEZINI

2005]. Li and colleagues propose a new methodology to verify cross-cutting

features as open systems by using a model of semantic interfaces that supports

automated, compositional, and feature-oriented model checking [LI et al.

2002, LI et al. 2002b]. Blundell et al. propose a parametrised interface for

verifying product-lines [BLUNDELL et al. 2004]. Such interface lifts properties

of individual features to composed features to verify temporal properties of
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such features. However, none of these studies deal with interfaces specifically

for supporting maintenance tasks. Our approach aims at supporting developers

to propagate changes during maintenance by providing organised feature

interfaces.

Automatic Modularisation. The problem of automatic modularisation

(also referred to as automatic clustering) has been extensively researched

lately. The idea is to help developers creating a good mental model of

system’s organisation. The field was established by the seminal work of

Mancoridis et al. [MANCORIDIS et al. 1998]. In this work, the authors use

hill climbing algorithm as the primary search technique for automated software

module clustering. Several other meta-heuristic search techniques have been

applied, including genetic algorithms [HARMAN et al. 2002, MITCHELL and

MANCORIDIS 2002, MAHDAVI et al. 2003]. However, all these studies focus

on the most common application of clustering in automatic modularisation:

software module clustering. Differently, our work applies the idea of clustering

in order to enhance the modularity of features by organising feature interfaces.

Regarding the automatic modularisation of interfaces, after the introduction

of the idea of interface segregation principle [MARTIN 1996] some studies have

proposed ways of organising feature interfaces. For instance, in a recent work

Romano et al. propose a way of refactoring fat interfaces (i.e. interfaces whose

clients invoke different subsets of their members) of classes of object-oriented

programs using genetic algorithms [ROMANO et al. 2014]. However, our work

does not deal with refactoring ill-defined interfaces. In addition, identifying

the interfaces of classes in an object-oriented program is much easier than

in conditional-compilation-based programs since all the classes are already

modularised. Moreover, we are focused on organising interfaces of product-line

features instead of classes’ interfaces. Finally, our study was the first to

systematically investigate and compare the co-relation of clustered interfaces

and non-clustered interfaces with respect to change propagation.

5.4 Summary

Creating a good mental model of the structure of a complex system is one

of many serious problems of software developers [MANCORIDIS et al. 1998].

With no mechanism for gaining insight into feature dependencies organisation,

developers are often forced to propagate changes to a dependent feature code

without a thorough knowledge of the feature dependency structure. In our
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attempt to alleviate the change propagation complexity, this chapter has

presented an approach to organise feature dependency information. In this

chapter we focus specifically on feature interfaces. The goal of the proposed

approach is to automatically partition the members of a feature interface

into clusters so that the resultant organisation maximises the relationship

between the interface members that are grouped together in the same cluster

by considering program elements affected in an eventual change propagation.

Each cluster, therefore, contains a set of interface members that cooperate to

perform some high-level function in part of one or more feature dependencies.

The interface organisation was faced as a clustering problem. An

underlying model was proposed and a clustering algorithm was applied to

identify the cluster of members. We evaluate our approach in 10 releases of a

product line comprising approximately 2,000,000 LOC. Our analysis revealed

that organised feature interfaces may support developers when propagating

changes. With an organised interface, there is a decreased effort to comprehend

dependencies and revisit code of potentially affected features is decreased. The

pronounced difference was of approximately 62% considering the average of

Jaccard distances. In addition, we noticed that the good result of our approach

relies on the underlying model (MRG) based on structural properties of feature

dependencies. The MRG could capture the cooperation between interface

members based on structural properties of feature dependencies. The analysis

of a set of cooperative interface members is important (i) to understand the

organisation of feature dependencies, and (ii) to certify that there is no other

changes to be made. Therefore, we argue that our approach can alleviate

problems related to change propagation such as mis-propagated changes. The

cognitive complexity of understanding the feature dependencies organisation

as well as the impact of the changes is reduced when few interface members

are analysed. In addition, by grouping only members that cooperate to each

other to realise feature dependencies, the interface indicates which members

are likely to be relevant to a be understood to propagate a change. Interface

members that cooperate to each other must be understood together because

they may propagate changes to the same parts of the source code. So, we also

argue that clustered interfaces reduce the overlooking of important parts of

the source code when changes must be propagated. Finally, we observed that

our clustered interfaces stabilise with time. In this context, we argue that the

adoption of our approach in evolving product lines does not demand a lot of

effort from developers to become familiar with our clustered interface after

every change in a release.
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Final Considerations

Feature dependencies play an important role in the maintenance of

software product lines. As developers modify the source code associated

with a feature, such as methods or attributes, they must ensure that other

features are consistently updated with the new changes. However, appropriate

change propagation is far from being trivial as features are often not

modularised in the source code [APEL et al. 2013]. Given a change in a

certain feature, it is challenging to reveal which other features should also

change. As a single feature is often not localised in a single module in the

implementation [KÄSTNER et al. 2011], developers cannot simply resort to

module dependencies to infer to which features should be revisited or changed.

Studies about change propagation in stand-alone programs, although valuable,

do not address the particularities of software product lines. In other words,

as a single feature is often not localised in a single module, approaches for

propagating changes in stand-alone programs are not applicable to software

product lines. So, understanding the relationship between feature dependencies

and change propagation becomes, therefore, a central and non-trivial aspect

of software product-line maintenance.

In this context, our intention in this thesis was to explore the relation

between these two important phenomena – i.e., feature dependencies and

change propagation (Chapter 3). First, we presented a study with an in-depth

analysis about the relation of feature dependency and change propagation.

We explored the probabilities of changes be propagated in the presence of

feature dependency. We also analysed the extent of the propagation through

paths of feature dependencies. A concentration of change propagation in

few dependencies were also identified. This step (Chapter 3) is particularly

important because (i) it provides empirical support to argue that feature

dependency is one of the main drivers of change propagation in software

product lines, and (ii) it reveals behaviours of propagated changes in the

presence of feature dependencies, such as the extent of the propagation and

concentration of changes in some dependencies. By using these findings,

we could gather initial information about structural properties of feature

dependencies that might be related to change propagation. For instance,
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feature dependencies concentrating more changes were the candidates to be

analysed in order to identify those structural properties

The second step was to provide developers with support for characterising

and quantifying these structural properties (Chapter 4). There is a gap in

literature related to the characterisation of those structural properties of

feature dependencies. A number of conventional metrics have been used in

studies related to product-line maintenance. However, most of these metrics

are defined based only on the properties of modules realising the features.

This trend means that existing metrics might be missing important details

about the structure of the software product line. In turn, the understanding of

structural properties of feature dependencies is blurred because conventional

metrics are not able to quantify those structural properties. As a consequence,

developers and researchers cannot understand and study the impact of

structural properties of feature dependency on change propagation. In order to

support the understanding of this impact, a formalism on structural properties

of feature dependencies was provided. In other words, we systematically

defined a measurement framework based on structural properties of feature

dependencies. Based on this formalism, metrics were created to quantify

structural properties and we empirically compared them to conventional

metrics regarding their ability to indicate change propagation.

Finally, it is recognised the importance of fully understanding the

intricate relationship that exist between features in order to properly propagate

changes. Feature dependency metrics only provide partial support to this

understanding. Such full understanding of feature dependencies relies on the

understanding of the interface of a feature. However, feature interface as they

are supported in the state-of-the-art are insufficient. They do not support

developers in reasoning about the organization of feature interfaces. So, the

third step of our research was to propose an automated technique that creates

an organised view of a feature interface. The goal of our approach was to

automatically partition the members of a feature interface into clusters. We

aim at deriving a resulting organisation that cohesively groups the members

of an interface. The idea is to maximise the relationship between members

into separate interfaces regarding their likelihood of being affected together by

the same change. Therefore, we faced the interface organisation as a clustering

problem. The idea of using clusters is to bring together similar elements in the

same group. In our context, similarity means members that are likely to affect

the same parts of the source code in case of change propagation. We evaluated

the effectiveness of an organised feature interface against an unorganised
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feature interface regarding ripple changes across feature boundaries in the

source code.

6.1 Review of the Contributions

In this thesis we discussed the need of exploring the relationship between

feature dependencies and change propagation. Therefore, we claim that feature

dependencies are one of the main drivers for change propagation. In this

way, quantitative assessments of product-line change propagation should be

rooted not only at quantifying module properties. In fact, change propagation

must be guided by the understanding of the structural properties of feature

dependencies that exert impact on change propagation itself. Based on a set of

structural properties (Chapter 4), which were found to be harmful for change

propagation, this thesis defines a measurement framework to support the

quantification of structural properties of feature dependencies. Our framework

satisfies five important requirements (Section 4.1) and it also allows to define

both direct and composed properties of feature dependencies. In addition, we

evaluate the metrics suite comparing it with a conventional metrics suite.

Finally, we propose and evaluate a method for organising feature interfaces

in order to support change propagation. Our method was inspired in the

findings of our previous studies, reported in Chapters 4 and 5. Based on the

studies presented in this thesis, we advanced the body of knowledge about the

relation between feature dependencies and change propagation, which was a

subject hitherto little explored in the literature. Hence, we reinforce here the

contributions of this work, preliminary presented in Chapter 1:

– Empirical findings on the relation between feature

dependencies and change propagation (Chapter 3).

Comprehending dependencies and revisiting code of potentially

affected features make change propagation a time-consuming task

during product-line maintenance [RIBEIRO et al. 2011]. Therefore,

understanding whether and how feature dependencies lead to change

propagation is important to reduce the maintenance complexity.

We argued that feature dependencies could be an important driver

to change propagation in software product lines. To confirm our

statement, we carried out an empirical study to evaluate to what

extent feature dependencies are related to change propagation. The

study undertaken in this phase (Chapter 3) was carried out using
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information of feature dependencies and changes of twenty-one evolution

(or twenty-six releases) of five product lines. The results confirmed the

close relation between feature dependency and change propagation.

In other words, feature dependencies are important drivers of change

propagation. We have also observed a number of new interesting

outcomes. For instance, according to our results, there is a high

probability of a feature dependency propagating changes (average

of ≈51%). Moreover, we identified the way feature dependencies are

implemented (structural properties of feature dependency) may impact

on change propagation (Section 3.3.1). Developers could benefit from

this finding by differentiating feature dependencies using their structural

properties. This is an interesting finding since we also revealed an

inequality in the distribution of change propagation through the feature

dependencies of a product line. This counterintuitive result indicates

that a general feature dependency minimisation might not reduce change

propagation effort (Section 3.3.2). In addition, characterising structural

properties of feature dependency is essential to distinguish the impact

of feature dependencies on change propagation. The reasoning about

these properties help developers on the task of propagating changes

by driving efforts to “harmful” feature dependencies. Finally, our

analysis also reflected upon change propagation through the path

of dependencies. This analysis pointed to a linear relation between

the depth of dependency and change propagation, which indicates a

more extensive change propagation in features than the exponential

relation between distance and classes in stand-alone programs [GEIPEL

and SCHWEITZER 2012]. This information might be valuable to

tune and/or complement existing approaches, such as combinatorial

interaction testing (Section 3.3.3).

– Feature dependency properties and metrics (Chapter 4).

The more complex is the structure of a feature dependency, the

more influential it might be in change propagation. Therefore, it

becomes primordial the need of indicators for the complex structure

to those complex structure of feature dependencies. The indicators

should externalise relevant characteristics of feature dependencies aiming

at supporting developers to overcome the difficulties caused by the

complex context of propagating changes in the presence of feature

dependencies. Several authors [CANT et al. 1994, BRIAND et al. 2001]

state that quantitative models are related to the concept of cognitive

complexity. In this way, quantitative models can externalise relevant
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software structural properties (e.g. module coupling [CHIDAMBER and

KEMERER 1994]), thus helping developers to overcome the cognitive

complexity of code maintenance. In this context, we presented a

measurement framework for quantifying structural properties of feature

dependency. The purpose of the measurement framework is to make

possible to quantify structural properties of feature dependency that

impact on change propagation regardless of product-line implementation

approach employed. Our framework was instantiated and evaluated in

the context of two implementation approaches of software product line:

compositional and annotative approaches. The study involved three

different product lines (15 releases) implemented in both approaches

using Java with conditional compilation (annotative approach) and

AspectJ (compositional approach). Our goal was to evaluate the

effectiveness of two suites of metrics as change propagation indicators

in evolving product lines. For the purposes of the evaluation, we

compare the effectiveness of conventional metrics commonly used in

empirical studies of software product lines (CK metrics [CHIDAMBER

and KEMERER 1994]) against feature dependency metrics based

on our proposed framework. Our analysis revealed that structural

properties of feature dependency, as supported by our metrics suite,

were consistent indicators of change propagation. As main contributions,

we identified recurring structural properties of feature dependency in

different product-line implementation approaches, explored the relation

between such properties with change propagation, defined metrics based

on these properties, and identified the metrics that correlated the

most with change propagation. Developers can concentrate efforts,

for instance, on feature dependencies that present higher values of

metrics based on structural properties (e.g. GoS and FDC). We

also studied how such properties and metrics could be used to

compare structural properties of feature dependencies across different

programming techniques. Therefore, we believe that the use of our

measurement framework may help developers to better comprehend

feature dependency implementation, thus supporting change propagation

in a wide range of contexts.

– A method for segregating feature interfaces (Chapter 5).

Creating a good mental model of the structure of a complex system is one

of the key challenges for software developers. Therefore, understanding

the intricate relationship that exist between features can be an arduous
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task. With no mechanism for gaining insight into organisation of feature

dependencies, developers are often forced to propagate changes to the

code of dependent features without a thorough knowledge. A lot of

effort may be devoted to comprehend dependencies and revisit code

of potentially affected features. In this way, we proposed a technique

for automating the creation of an organised view of feature interfaces.

Our goal was to support the understanding of the relationship between

feature dependencies by organising feature interface members. We face

the problem of organising feature interface as a clustering problem. We

believe that externalising structural properties of feature dependencies

into organised feature interfaces will help developers to decrease the

number of program elements revisited to propagate a change. By doing

that, the resulting organisation maximised the relationship between the

interface members that were grouped together in the same cluster within

an interface by considering program elements affected in an eventual

change propagation. The clusters represent a higher-level abstraction

of a feature interface based on feature dependencies’ structure. Each

cluster contains a set of interface members that cooperate to perform

some high-level function in part of one or more feature dependencies.

To evaluate our claim, we conducted a study on our organised feature

interfaces. The study undertaken in this phase were carried out using 10

releases of a software product line comprising almost 2,000,000 LOC

in 6858 source code files. This study aimed at analysing how close

the clusters proposed by the algorithm are from the real simultaneous

changes of feature interface members during product-line evolution.

Our analysis revealed that organised feature interfaces may support

developers when propagating changes. With an organised interface, there

is a decreased effort to comprehend dependencies and revisit code of

potentially affected features is decreased. The pronounced difference was

of approximately 62% considering the average of Jaccard distances. In

addition, we noticed that the good result of our approach relies on

the underlying model (MRG) based on structural properties of feature

dependencies. The MRG could capture the cooperation between interface

members based on structural properties of feature dependencies. By

capturing cooperative interface members and clustering them within

interfaces, developers are able to (i) reduce the number of program

elements revisited during a maintenance task that involves code change,

and (ii) better indicate related interface members that should be

inspected or changed; i.e. interface members that may propagate changes
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to the same parts of the source code.

6.2 Future Work

In spite of various contributions of this thesis described in Section 6.1,

there are many other directions for future work, some of which are described

in the following paragraphs.

Additional Empirical Studies. The evaluation studies provided evidence

of the close correlation between feature dependencies and change propagation.

However, it is necessary to undertake additional studies. The behaviour

of change propagation in presence of feature dependencies in other types

of software maintenance tasks should be assessed. For instance, other

changes beyond the scope of perfective maintenance should be evaluated in

order to check whether our findings about the relationship between feature

dependencies and change propagation holds in other contexts. In addition, it

is important to assess the measurement framework in the context of other

emerging programming techniques. For instance, it would be interesting to

instantiate our framework in prominent programming techniques, such as

Delta-oriented programming [SCHAEFER et al. 2010]. It is also of great

importance to use and evaluate the usefulness of our framework in the

context of other software attributes, such as error-proneness. For instance, we

hypothesize that our feature dependency metrics may be also useful to indicate

or predict bugs in software product lines. Due to the complexity of reasoning

about feature dependencies, their structural properties might help to reveal

potential sources of bugs. In fact, we have conducted a study towards this

direction in partnership with the Federal University of Bahia. However, in this

study we identified the need of characterising structural properties of feature

dependencies in order to relate them to bugs and to the difficulty of localising

and correcting those bugs. Finally, it is required a controlled experiment to

assess the use of organised feature interfaces by developers when performing

maintenance tasks in product lines. This experiment could allow us to evaluate,

for instance, the effort of propagating changes with (and without) our organised

feature interfaces.

Measurement Framework Refinement. These additional studies would

enable us to reveal any extensions needed in our measurement framework.

These further extensions are particularly important to validate the generality

of our framework. In addition, these extensions can also contribute to the
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identification of additional structural properties that are harmful to change

propagation as well as other important maintenance tasks.

Alternative Approaches for Organising Feature Interface. We faced

the organisation of feature interfaces as a clustering problem. In this way,

undertaking additional studies using different algorithms for clustering the

interface members would enable us to reveal the best algorithm for clustering

feature interfaces. In additional, regarding the MCL algorithm used in our

proposed organisation, testing different parameters for inflation may be

important. Since different values for this parameter impacts on clustering

granularity, tuning the inflation may enable us to reach better organisation

of feature interfaces depending on the number of changes per commit.

Tool Support. At least two improvements are needed to make the extraction

of structural properties of feature dependency metrics usable in practice:

(i) creating a graphical interface for such extraction, and (ii) incorporating

strategies for identifying and/or mapping features and feature dependencies

in the source code. In addition, another important tool support would be

the representation of organised feature interfaces in a visual manner. Studies

should be conducted to define the best way of visually representing the feature

interfaces as well as the relationship between features. This tool could be

integrated into a popular IDE, such as Eclipse, in a way that developers become

aware of the structural properties of feature dependencies, feature interfaces

and the intricate relationships between features while developing their software

projects. Candidate tools for incorporating the aforementioned extensions are,

for instance, the tools CIDE [KÄSTNER 2015] or TypeChef [KENNER et al.

2010].

DBD
PUC-Rio - Certificação Digital Nº 1121802/CA



Bibliography

[AOPMETRICS 2015] AOPMetrics. Aopmetrics tool. http://

aopmetrics.tigris.org/, 2015. [Online; accessed 28-May-2015]. 4.4.4

[ALDRICH 2005] J. Aldrich. Open modules: modular reasoning

about advice. In Proceedings of the 19th European Conference on

Object-Oriented Programming, ECOOP’05, pages 144–168, Berlin, Heidelberg,

2005. Springer-Verlag. 2.4.3

[ALVES et al. 2005] V. Alves, P. Matos, L. Cole, P. Borba and G. Ramalho.

Extracting and evolving mobile games product lines. In 9th

International Conference on Software Product Lines, SPLC’05, pages 70–81.

Springer, 2005. 3.1.3, 3.4

[APEL et al. 2008] S. Apel, C. Lengauer, B. Möller and C. Kästner. An
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Language-independent and automated software composition: The

featurehouse experience. IEEE Transactions on Software Engineering,

39(1):63–79, 2013. 5.3

[APEL et al. 2013d] S. Apel, A. von Rhein, T. Thüm and C. Kästner.
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B. Regnell and A. Wesslén. Experimentation in software engineering:

An introduction. Kluwer Academic Publishers, 2000. 3.4

[XMPP 2015] XMPP Standards Foundation. Xmpp. http://xmpp.org/

xmpp-protocols/, 2015. [Online; accessed 13-April-2015]. 3.1.3

[YAU and COLLOFELLO 1985] S. S. Yau and J. S. Collofello. Design

stability measures for software maintenance. IEEE Transansaction on

Software Engineering, 11(9):849–856, September 1985.

DBD
PUC-Rio - Certificação Digital Nº 1121802/CA



Bibliography 167

[YE and LIU 2005] H. Ye and H. Liu. Approach to modelling feature

variability and dependencies in software product lines. IEE Software,

152(3):101–109, 2005. 1, 3

[ZHIFENG and RAJLICH 2001] Z. Yu and V. Rajlich. Hidden

dependencies in program comprehension and change propagation.

In 9th International Workshop on Program Comprehension, pages 293–299,

2001. 1

[BERKELEY DB 2015] Oracle. Berkeley DB. http://www.oracle.com/

technetwork/database/database-technologies/berkeleydb/downloads/

index.html, 2015. [Online; accessed 13-April-2015]. 3.1.3, 3.1.3

[BUSYBOX 2015] BusyBox. Busybox. http://git.busybox.net/busybox,

2015. [Online; accessed 09-June-2015]. 5.2.2, 5.2.3

[KÄSTNER 2015] C. Kästner. CIDE tool. http://wwwiti.cs.

uni-magdeburg.de/iti_db/research/cide/, 2015. [Online; accessed

13-April-2015]. 2.2.4, 3.1.2, 3.1.3, 4.4.4, 6.2

[CODEFACE 2015] Siemens. Codeface. http://siemens.github.io/

codeface/, 2015. [Online; accessed 09-June-2015]. 5.2.3

[CAFEO et al. 2015] B. B. P. Cafeo, E. Cirilo, A. Garcia, F. Dantas and

J. Lee. Feature dependencies as change propagators: An exploratory

study of software product lines. http://www.inf.puc-rio.br/~bcafeo/

supsite_ist2015.html, 2015. [Online; accessed 15-June-2015]. 3.1.2, 3.1.2,

3.1.3

[LAMPIRO 2015] Lampiro. Lampiro. https://code.google.com/p/

lampiro/, 2015. [Online; accessed 13-April-2015]. 3.1.3, 3.1.3

[MOBILE RSS 2015] Mobile RSS. Mobile rss. https://code.google.com/

p/mobile-rss/, 2015. [Online; accessed 13-April-2015]. 1, 3.1.3, 3.1.3
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