
Carolina Valadares

A Multiagent Based Context-Aware and
Self-Adaptive Model for Virtual Network

Provisioning

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em In-
formática of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC–Rio, as partial fullfilment of the requirements
for the degree of Mestre.

Advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
April 2014

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Carolina Valadares

A Multiagent Based Context-Aware and
Self-Adaptive Model for Virtual Network

Provisioning

Dissertation presented to the Programa de Pós–graduação em In-
formática of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC–Rio, as partial fullfilment of the requirements
for the degree of Mestre.

Prof. Carlos José Pereira de Lucena
Advisor

Departamento de Informática — PUC–Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática –PUC-Rio

Prof. Firmo Freire
Departamento de Informática –PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, April 09th, 2014

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

All rights reserved.

Carolina Valadares

Master’s Degree in Computer Science from the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio) and Bache-
lor’s Degree in Computer Science from the Federal University
of Viçosa (UFV).

Bibliographic data
Valadares, Carolina

A Multiagent Based Context-Aware and Self-Adaptive
Model for Virtual Network Provisioning / Carolina Valadares;
advisor: Carlos José Pereira de Lucena. — 2014.

93 f. : il. (color); 30 cm

1. Dissertação (mestrado) - Pontif́ıcia Universidade
Católica do Rio de Janeiro, Departamento de Informática,
2014.

Inclui bibliografia.

1. Informática – Teses. 2. Sistema Multiagente. 3. Auto-
Organização. 4. Conhecimento de Contexto. 5. Gerencia-
mento de Redes Virtuais. I. Lucena, Carlos José Pereira de.
II. Pontif́ıcia Universidade Católica do Rio de Janeiro. Depar-
tamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Acknowledgments

First, I give thanks to my mother, Maria José Valadares, for being my

deepest motivation besides offering the most intimate support. Thank you for

the unconditional effort in giving me a promising education. This achievement

is ours, mom. To my beloved family, my dear dad, Fernando, and brother,

Pedro Paulo, for the concern, support and the unconditional love. I love you

all so very much.

To my boyfriend, Hussin, who accompanied me with so much support

and understanding. Thank you for the affection and love. To Professor Carlos

Lucena, my advisor and biggest reference. Thanks for the support, and for

giving great suggestions on how to improve this thesis.

To all my friends and colleagues, specially Nathalia for supporting me.

To the LES research group in general for the friendship. To the professors

of the committee and staff of the Department of Informatics at PUC-Rio.

Finally, to CNPq and PUC-Rio, for funding it.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Abstract

Valadares, Carolina; Lucena, Carlos José Pereira de (Advisor).
A Multiagent Based Context-Aware and Self-Adaptive
Model for Virtual Network Provisioning. Rio de Janeiro,
2014. 93p. MSc. Dissertation — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Recent research in Network Virtualization has focused on the Internet

ossification problem (Anderson et al., 2005) whereby multiple independent

virtual networks (VN) (Anderson et al., 2005) that exhibit a high degree of

autonomy share physical resources and can provide services with varying de-

grees of quality. Thus, the Network field has taken evolutionary steps on re-

thinking the design and architectural principles of VN (Blumenthal e Clark,

2001) (Houidi et al., 2008). However, to the best of our knowledge, there has

been little investigation into the autonomic behavior of such architectures

(Prehofer e Bettstetter, 2005)(Movahedi et al., 2012). This paper describes

an attempt to use Multiagent System (MAS) principles to design an auto-

nomic and self-adaptive model for virtual network provisioning (VNP) that

fills a gap in the current Internet architecture. In addition, we provide an

analysis of the requirements of self-adaptive provisioning for designing a re-

liable autonomic model that is able to self-organize its own resources, with

no external control, in order to cope with environment changes. Such be-

havior will be required as the next generation Internet evolves. Through

our evaluation, we demonstrate that the model achieves its main purpose

of efficiently self-organizing the VN, since it is able to anticipate critical

scenarios and trigger corresponding adaptive plans.

Keywords
Multiagent System; Self-Organization; Context-Awareness; Virtual

Network Provisioning.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Resumo

Valadares, Carolina; Lucena, Carlos José Pereira de. Um Sistema
Multi Agente Auto-Adaptativo baseado em Conhecimento
de Contexto para Gerenciamento de Redes Virtuais. Rio de
Janeiro, 2014. 93p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Pesquisas recentes em Virtualização de Redes focaram no problema co-

nhecido como ossificação da Internet (Anderson et al., 2005) , onde múltiplas

redes virtuais (Virtual Networks - VN) independentes (Anderson et al.,

2005) que exibem um alto grau de autonomia compartilham recursos f́ısicos

e podem prover serviços com diferentes graus de qualidade. Nesse sentido,

pesquisas na área de Redes de Computadores e Sistemas Distribúıdos de-

ram passos evolutivos em repensar o projeto e os prinćıpios arquiteturais

de uma VN (Blumenthal e Clark, 2001) (Houidi et al., 2008). Entretanto,

até onde sabemos, houve pouca investigação sobre o comportamento au-

tonômico de tais arquiteturas (Prehofer e Bettstetter, 2005)(Movahedi et

al., 2012). Sendo assim, esta pesquisa descreve uma tentativa de aplicar

prinćıpios de Sistemas Multi-Agentes (Multiagent Systems - MAS) para

projetar um modelo autonômico e auto-adaptativo para o gerenciamento de

redes virtuais (Virtual Networking Provisioning - VNP). Modelo esse que

preenche uma lacuna na atual arquitetura da Internet. Além disso, forne-

cemos uma análise dos requisitos de um gerenciador auto-adaptativo para

projetar um modelo autonômico confiável que é capaz de auto-organizar

seus próprios recursos, sem controle externo, para lidar com mudanças no

ambiente. Tal comportamento adaptativo será necessário tendo em vista

que a próxima geração da Internet está em evolução. Através da nossa

avaliação, demonstramos que o modelo atinge seu propósito principal de

auto-organizar uma VN eficientemente, dado que ele é capaz de antecipar

cenários cŕıticos e executar planos adaptativos correspondentes.

Palavras–chave
Sistema Multiagente; Auto-Organização; Conhecimento de Contexto;

Gerenciamento de Redes Virtuais.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Table of Contents

1 Introduction 11
1.1 Problem Statement 13
1.2 Objectives 15
1.3 Contribution 15
1.4 Master’s Thesis Organization 16

2 Background 17
2.1 Network Virtualization 17
2.2 Multiagent System 20
2.3 Self-Organization, Self-* properties & Self-Awareness 21
2.4 Norms & Reputation 24
2.5 XEN: A Virtualization Tool 26

3 Related Work 30
3.1 Virtual Network 30
3.2 Dynamic VN Management 31
3.3 Autonomic Computing & Networking 33
3.4 Self-* & Normative models 33

4 Context-Aware Self-Organizing Model 35
4.1 Critical Scenarios 36
4.2 Enabling Self-Adaptation 38
4.3 Autonomic Control Loop 40

5 Towards Context-Awareness 44
5.1 Agent Communication 45
5.2 From Monitoring to Decision Making 46
5.3 Knowledge Process 47
5.4 Knowledge Acquiring 49

6 Towards Normative Self-tuning 54
6.1 Approaching Self-tuning 54
6.2 Exteding the Autonomic Control Loop 55
6.3 Enabling Self-tuning 60

7 Evaluation 65
7.1 Experimental Setup 65
7.2 Evaluation Results 67

8 Conclusion and Future Work 84
8.1 Conclusion 84
8.2 Future Work 85

9 Bibliography 86

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

A Details of XEN: The virtualizing tool 91
A.1 Creating Virtual Machines 91
A.2 Performing Live VM Migration 92

B Experimental Environment Details 93

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

List of figures

1.1 Virtual Network Architecture and the agent autonomic control loop
overview 13

2.1 Virtual Network Architecture 18
2.2 Autonomic Control Loop (ACL) 23
2.3 Physical machine (Dom0), Virtual machines (Dom1 and Dom2)

and XEN Networking routed. 27
2.4 Xen’s bridged network internals (Egi et al., 2007) 28
2.5 Xen’s routed network internals (Egi et al., 2007) 28

6.1 Normative Autonomic Control Loop 56
6.2 Replace Virtual Router Norm 59
6.3 Network Topology Impact 60
6.4 Self-Adaptive Agent Notation 61
6.5 Norm Notation 62
6.6 Normative Autonomic Control Loop Notation 62
6.7 Self-tuning Parameters Notation 63
6.8 Support Cooperation Norm 63
6.9 Link Boundary Norm 64

7.1 Experiment setup 66
7.2 Virtual Network setup and possible topologies 68
7.3 Stable VN: Message exchange Analysis 68
7.4 Topology impact on Message exchanging 69
7.5 Functions Rate Boundary Norm 70
7.6 Migrate VR One Cluster: Message Exchange Analysis 74
7.7 Virtual Network with Multiple Clusters 75
7.8 Migrate VR 3 Clusters: Message Exchange Analysis 75
7.9 A knowledge and scalability Analysis 76
7.10 Resource Usage Boundary Norm 79
7.11 Replace VR: A Message Exchange Analysis 80
7.12 Unbalanced Virtual Link Experiment setup 81
7.13 Reassign VL: A Message Exchange Analysis 82

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

List of tables

5.1 Knowledge Representation 50

7.1 Comparison between Self-oganizing model with and without self-
tuning (ST) feature. 71

7.2 Consecutive Adaptive Plans (AP) and its pre candidates selection 77

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

1
Introduction

The current Internet is a complex, large-scale network which carries a

wide range of different services, technologies and applications. Because of its

complexity and large scale, trivial management approaches become costly and

flawed, as they usually involve human interference when it comes to network

update, deployment and simple management tasks (Samaan e Karmouch,

2009). Indeed, there is a consensus that the current Network architecture does

not meet current and future requirements. Thus, in order to provide a flexible

infrastructure that supports innovations and dynamism in the network, the

concept of the Future Internet has been proposed (Fernandes et al., 2011).

Network Virtualization (NV) has recently received substantial attention

from the academic community. Because of NV’s characteristics, such as the

ability to share a single resource among multiple virtual networks (VNs)

and the capability of self-management in the face of network degradation,

NV’s proponents have presented NV as a promising approach to reducing

the complexity of managing networks and virtual resources (Blumenthal e

Clark, 2001) (Houidi et al., 2008). Beyond the immediate sharing advantage,

virtual networks are also very flexible, given that it exhibits and enables

different aspects that isolate components through virtualization, which favor,

for instance, a self-organization performance. Indeed, different studies in both

the Networking and Multiagent areas address the autonomic and cognitive

behavior of the Virtual Networks as a promising strategy to reduce the

complexity of managing networks and virtual resources.

Thus, it appears that NV represents a key concept in tackling current

Internet structural problems, mainly owing to the fact that NV supports the

creation of multiple and flexible VNs using a single physical infrastructure.

In such a system, there is no interference when running multiple concurrent

VNs and each VN is capable of managing itself and its own resources in

the face of interference from the surrounding environment. In other words,

VN is a new architectural concept in which each VN runs its own protocols,

services and technologies (Marquezan et al., 2010), and responds to users’

requests just as any traditional network architecture. In addition, VN also

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 1. Introduction 12

supports autonomic self-management through adaptation plans which allows

the efficient distribution of physical resources among VN’s virtual devices.

Many studies in the Network field (Marquezan et al., 2010) have applied

Multiagent (MAS) and Self-* approaches to support solutions to Network

Virtualization management. This research, however, discusses management

issues that arise in a VN infrastructure from a MAS perspective. In this

sense, the virtual network provisioning or adaptive maintenance system aims at

dealing with dynamic changes caused by variations in the physical and virtual

networks with a view to producing efficient use of physical resources and a

high level of service. These changes are related to failures, mobility, migration

and maintenance needs.

We intend to deal with the additional complexity of this new VN concept

by enabling autonomic and self-management behavior through Multiagent

and Self-* paradigms. Thus, the main goal of this research is to fill in the

gap that virtualization studies exhibit by covering design principles, from the

autonomic computing perspective (Tesauro et al., 2004), in terms of autonomic

distribution, means of communication, degree of intelligence and autonomy.

We aim to explore self-organization with VN by combining it with Network

research to enable proper management of such systems beyond offering a higher

degree of autonomy and intelligence.

The focus of this Master’s Thesis is strictly managerial in terms of

resource usage and network stability. In order to achieve a high degree of

independence and exhibition of local property, in which local solutions lead

to local consequences, our proposed management model comprises of several

agents spread all over te networks. Thus, the virtual and physical nodes

embed autonomous and intelligent agents, which will exchange messages

and cooperate with each other to carry out distributed VN management.

Depending on the Network condition (link health/resource availability), the

proposed model anticipates a future critical scenario and triggers specific

adaptive plans to keep the VN running based on predefined requirements.

Critical scenarios refer to link/router degradation and the adaptive plans refer

to management solutions for routers and links.

Accordingly, our main motivation is to increase the degree of autonomy,

decrease the impact of self-adaptation, while reducing the need of message

exchanges to resolve any critical event. Moreover, we rely on the notions

of agents, organizations, cooperation and their decentralized and pro-active

nature to ensure distributed negotiation and synchronization between the

substrate nodes and virtual resources. This, in turn, enables a large-scale

autonomic self-* environment. We observe, however, that one of the major

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 1. Introduction 13

challenges in this domain is the union of the variety aspects of the same

research domain and the lack of studies in the self-* features and autonomic

management for a given Virtual Environment.

As our proof-of-concept, we implemented and validated, through testbed

experiments, a Virtual Network Provisioning System (VNPS) wherein the

VNPS acts upon a critical scenario by re-organizing itself. First, analyze

and clarify the autonomic network management concepts that lead to self-

organization as well as how the choice of the right communication approach

in a fully decentralized environment better supports the efficient emergence

of self-adaptive events. Then, we showed that, in the case of environment

degradation, our model is able to anticipate a possible future failure. Such a

failure because of the lack of physical resources, triggers an adaptive event

and executes the adaptive plan in a matter of seconds. We also show that for

larger networks with increased complexity, our model is still efficient, executing

adaptive plans by exchanging a small number of messages, which increases in a

linear fashion. Finally, we show, through the VNPS validation, a scalable and

robust way to evaluate the effectiveness of the self-organizing system, as well

as to self-configure its virtual resources in critical scenarios.

Note that, we believe that the union of this proposed model with recent

advances and trends in the Network field is a great step to enable autonomic

Virtual Networks, as the Future Internet requires (Egi et al., 2007).

Figure 1.1: Virtual Network Architecture and the agent autonomic control loop
overview

1.1
Problem Statement

A strong candidate for the Future Internet architecture, design and

principles is the Networking Virtualization. In order to fill the gap the current

Internet architecture exhibits, Virtual Networks (VN) have been the main

key to providing a more autonomic and dynamic Internet architecture which

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 1. Introduction 14

exhibits self-properties. A VN represents the virtualization of an entire network

architecture and its associated applications and services on the top of a single

physical infrastructure. Moreover, VN also enables the deployment of multiple

independent virtual networks that run simultaneously and completely isolated

from each other. Furthermore, an administrator can ensure complete utilization

of one available virtual network to run its own services, applications and

management solutions.

Existing work on VN focus on different branches of the same domain.

They are as follows:

– Virtualization technologies, techniques and mechanisms of virtualization

(Fernandes et al., 2011) (Pisa et al., 2010); in which they show advantages

and limitations of the virtualization technologies and tools for creating

multiples virtual environments.

– Virtual Network Mapping (Cheng et al., 2011) (Houidi et al., 2008);

which is responsible for mapping virtual routers and links into the

physical resources.

– Live virtual migration of virtual machines (Houidi et al., 2008); which

optimizes the live migration of virtual machines across the physical

infrastructure;

– Autonomic resource management of the physical and virtual networks

and their components (Ruth et al., 2006) (Marquezan et al., 2010) ;

which is responsible for managing the efficient use of physical resource

on network virtualization.

Assuming the existence of as established virtual network and disregarding

the impact of virtualization tools and techniques, we are specifically interested

in the autonomic treatment of physical and virtual resources while managing

the efficient use and distribution of physical resources among virtual devices. As

a result, the ideal virtual network provisioning model has to face environment

changes such as high network flow variations and unbalanced usage of physical

resources, in order to maintain a stable network load and a high degree of

quality of services while self-managing resource assignments and reassignments.

Hence, enabling self-organizing mechanisms is the biggest concern of this

master’s thesis while dealing with the management of such an architecture.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 1. Introduction 15

1.2
Objectives

Our objective in this Master’s thesis is to propose a feasible solution

for improving self-organizing behavior of the virtual network management

model. We also aim to distribute the management responsibilities among

autonomic agents spread through the physical and virtual networks. Our

solution aims at improving the performance of adaptive behaviors while at the

same time keeping the incurred number of messages exchange, and, therefore,

its overhead, to minimum. To this end, our approach consists in:

– Differentiating the critical scenarios so the degree and type of criticalness

of resource availability can be mapped into adaptive plans;

– Providing mechanisms to autonomically reassign physical resources

among virtual devices to face environment changes.

It is also our objective to take advantage of previous VN management

proposals and autonomic network progress regarding self-organization, self-

awareness and normative rules.

1.3
Contribution

Our main contributions are as follows:

1. We analyze and present intrinsic properties of the VN domain that favour

self-organizing behavior.

2. We propose adaptive plans to be automatically triggered in the case of

three different critical scenarios: (i) Virtual Router overload, (ii) Virtual

Link overload and (iii) Physical Router overload.

3. Our approach improves the rate of programmability of the autonomic

control loop through enabling the self-tuning feature. Such a feature

improves the degree of autonomy while decreasing the need for embedded

knowledge and setting parameters in each autonomic agent.

4. Our mechanisms can be incorporated in existing self-organizing systems

that use the concept of autonomic control loop as the main tool to enable

self-adaptive behavior.

5. We evaluate our approach through real test-bed experiments. We also

evaluate it from a simulation based on real behaviors to show the

effectiveness of our techniques in terms of (a) efficiency in triggering

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 1. Introduction 16

different adaptive plans depending on different environment changes and

(b) performance gain in terms of number of message exchanges, and

therefore overhead.

1.4
Master’s Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 describes the state of the art on the following topics that are

addressed on this master’s thesis: network virtualization, autonomic network

management, autonomic computing, self-* properties and norm-based models.

In addition, the relationship among these topics is also analyzed regarding

the domain of virtual network management that comprises self-* properties.

It also gives a detailed description of XEN, the virtualization tool used for the

development and validation of the proposed model.

Chapter 3 provides a literature survey as related work. Three topics are

addressed in this chapter. First, the conditions made in Network virtualization

are presented. Second, it is presented a description of the virtual network

management solutions. Finally, terms and concepts used in context-awareness,

multiagent systems, self-organization and norms are defined.

Our proposal from a self-organizing perspective is discussed in Chapter

4, in which we describe the main self-organizing properties present on the

VN domain. Chapter 5 gives a detailed discussion on how self-awareness is

coupled to this proposal, while, in Chapter 6, we present the autonomic control

loop extension by the use of the normative concept. Both self-awareness and

normative autonomic control loop concepts enrich the proposed model by

enabling a more flexible, programmable and autonomic system.

Chapter 7, in turn, is dedicated to the experiment setup and results.

In this section, we summarize the main differences regarding the efficiency

between our solution and centralized solution. Finally, we conclude the thesis

and present some limitations of our work as well as possible future work in

Chapter 8.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

2
Background

Recent research studies have pointed out that providing a distributed self-

organizing approach for the management of virtual networks is a viable solution

to deal with the increase of complexity that network virtualization has brought.

We strongly believe that this complexity could be handled by autonomic

computing together with the concept of Multiagent System (MAS), Norms,

and Self-* properties (which includes self-adaptation and self-awareness).

In this chapter, we first provide an introduction of Network Virtual-

ization, which is the domain of this research project. Next, we define some

concepts involved in our proposed solution. In particular, we briefly describe

some definitions and advantages of (i) Multiagent System (MAS), (ii) Self-

organization, (iii) Self-Awareness for MAS, and (iv) Normative models and

Reputation. In the end, we provide some preliminaries from mechanisms used

by virtualization tools, specially XEN, which is the virtualizing tool used for

the design, development and experiments setup of this project.

2.1
Network Virtualization

Network virtualization has been taken as a promising technique to deploy

future networks that meet current and future users requirements (Blumenthal

e Clark, 2001) (Clark et al., 2004) (Fernandes et al., 2011). The main idea

behind network virtualization is of slicing (sharing) physical resources to create

multiple virtual networks capable of running its own protocols, services and

management solutions. Hence, its main concept relies on the fact that it adjusts

the network flow and routes, in an autonomic way, dismissing any kind of

external control. It aims to maintain the quality of service (QoS) defined in

the SLA by controlling the agent’s behaviors and adapt itself in order face

environmental changes.

The main components of the architecture for virtualization are (i) virtual

routers (virtual nodes), and (ii) physical routers (physical/substrate nodes).

In this sense, a virtual network represents a collection of virtual routers

connected together by a set of virtual links to form a virtual topology. Thus,

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 18

the virtual network is essentially a subset of virtual nodes mapped on the top

of the underlying physical network. The virtual node is hosted in a particular

substrate node, which means it is a virtual slice of the physical host, comprising

CPU, memory RAM, storage capacity, operating system, and so on. On the

other hand, the substrate node is composed of real physical resources (CPU,

memory RAM, storage, etc.) and holds virtual nodes and virtual links, as

depicted in Figure 2.1. The physical network consists, for instance, of devices

such as routers, access points or physical links, and is able to embed many

virtual devices. Further details regarding virtual network architecture can

be found in projects like 4WARD (Architecture and Design for the Future

Internet, 4WARD FP7 project).

Figure 2.1: Virtual Network Architecture

In the case of an autonomic management solution fo virtual networks,

each virtual and physical router might hold a resource manager, the physical

and virtual network management component.

2.1.1
Virtual Network Model

Physical Network

To formalize, a physical network might be denoted by PN = (PR , PL),

where PR is the set of real routers and associated with each node, PR , in this

set is some routers attributes, such as CPU capacity and Memory RAM, among

others. The set PL, in turn, is a set of real links and each link, PL, has an

associated bandwidth capacity, the delay of that link and other link attributes.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 19

Virtual Network

A virtual network consists of a desired topology in which a set of virtual

routers is mapped into a set of physical routers. In this master’s thesis, we

denote the virtual network as the graph VN = (VR , VL), where VR is a set

of virtual routers and associated with each virtual node is a set of parameters

that the embedding manager should satisfy. These parameters are related to

the required CPU capacity, Memory RAM, bandwidth capacity associated to

each network device, etc. Similarly, VL is a set of virtual links and associated

with each virtual link is a set of parameters related to the link setup. The

embedded manager should satisfy these parameters in which, for instance, can

be required bandwidth capacity, maximum delay, maximum loss rate etc.

Router & Link Stress

Router and link stress are important factors in quantifying the resource

utilization. The Network research community has used the concept of resource

stress in previous literature (Zhu e Ammar, 2006) (Yu et al., 2008). Router

stress is defined as the fraction of all the CPU capacity of the substrate node

that is mapped to some virtual node. Similarly, the link stress is defined as

the fraction of all the bandwidth capacity of a substrate link that is mapped

to some virtual link.

We define the capacity of a link or a router in terms of its stress. For a

router, for instance, the stress is defined as the total CPU capacity minus its

router stress while for a link its the total bandwidth capacity minus its link

stress.

2.1.2
Autonomic (Virtual) Network Management

Many current Networking system are still managed by human operators.

Most Network architectures show as a major limitation the high dependence

on external control. For instance, simple operations, such as the introduction

of a new network device, require the overhead of taking the system down

and manually introducing changes such as reconfiguring its relation to other

variables and monitoring programs. Consequently, the performance of these

managed networks is strongly constrained by the expertise of human operators.

Because of the increase of complexity and scale of these architectures, the

design of an efficient and scalable mechanism to function management taks

is needed in order to alleviate the responsibilities of such human operators.

To this end, technologies such as mobile agents (Magedanz e Karmouch,

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 20

2000), active networks (Boutaba e Polyrakis, 2002) and policy languages

(Calo e Sloman, 2003) were proposed to automate the deployment of different

management strategies for performing the necessary management operations.

However, the interference of human operators to perform management

functions is still highlty demanded. Even though the Network may exhibit

a degree of autonomy, the operators still have to precisely describe and

program their desired behavior, enable necessary policies and, to continuously

modify this behavior in response to changes in the environment. Another main

limitation of these automated-management approaches was the inability to

evolve and adapt with changes in either supplied business objectives or users’

requirements.

Thus, to overcome this current Network impasse, also known as the Inter-

net ossification problem, and proceed with an autonomic network management

diversification proposal, the Network Virtualization concept has gained the

confidence of a wider research community. In this sense, Autonomic Network

virtualization management involves autonomic operations such as instantiat-

ing, deleting, monitoring, migrating virtual network elements and setting its

resource allocation parameters, all in a completely independent manner. Such

functionalities are what make the management system a suitable model for

creating and managing multiple virtual networks and, as a consequence, sup-

porting the pluralist approach for the Future Internet. This is evidenced by its

ability to create multiple customized virtual networks at the same time it ex-

hibits a flexible management and a real-time control (Fernandes et al., 2011).

An important challenge on network virtualization is the efficient allocation of

the physical resources at virtual network mapping and adaptive provisioning

stage. To accomplish such efficient use, the management of the physical re-

sources should be frequently executed at runtime in order to deal with the

variation on the load requests of different users.

2.2
Multiagent System

An agent is a virtual entity situated in an environment that changes over

time. Through its sensors, the agent is capable of perceiving its environment,

and through its effectors, it is capable of performing actions that affect the

environment. Agents group together and form multiagent systems, also known

as societies of agents, where they work together to solve problems that are

beyond their individual capabilities (O’Hare e Jennings, 1996). On the basis of

its own knowledge, an agent may decide to regularly act upon an environment,

without the user having explicitly controlled that (Serugendo et al., 2004). In

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 21

order to build a partial representation of its environment, which constitutes

its knowledge, agents interact with each other, and with their environment.

(Serugendo et al., 2004) also state that the interaction dynamics between

an agent and its environment lead to emergent functionality, even though no

component is responsible for producing a global goal.

Thus, multiagent system is characterized as a virtual system composed

of multiple interacting autonomic entities within an environment. The agents

may carry a degree of intelligence or may be completely reactive. Multiagent

systems are often used to solve problems that require distributed autonomous

actions among cooperating entities, features that are usually difficult to enable

in an individual agent or monolithic system. The MAS field contains many

branches of research studies. In this research, we are especially interested in

the concept of self-organizing systems, where each agent is governed by a set

of constraints or norms, so-called self-properties.

We propose a virtual network architecture applying the MAS paradigm

as a modeling foundation. We have chosen such a paradigm mostly because

it seems to be particularly suitable to build autonomic systems, due to

properties of agents, such as autonomy, proactivity, adaptability, cooperating,

and mobility. Moreover, the notions of agents and organizations and their

decentralized and pro-active nature match well the requirements of large-scale

autonomic computing environments.

Accordingly, this project provides the design and evaluation of a dis-

tributed system based on MAS to take advantage on the distributed negoti-

ation and synchronization between the substrate nodes and virtual resources

through their agents. This enables the virtual and physical nodes to be able

to handle autonomous and intelligent agents, which exchange messages and

cooperate to each other to carry out the distributed virtual network manage-

ment. Hence, we apply such concepts to enable communication between the

substrate and virtual agents to improve the performance and scalability of the

distributed and autonomic virtual network manager, in order to tackle the

virtual network adaptive provisioning challenge.

2.3
Self-Organization, Self-* properties & Self-Awareness

(Serugendo et al., 2004) states that self-organization essentially refers

to a spontaneous, dynamically produced (re-)organization. A self-organizing

system functions without any central control, and through contextual local

interactions, the autonomous agents perceive its local environment to draw

conclusions about it to act accordingly. Individual components achieve a

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 22

simple task individually, but a complex collective behavior emerges from their

mutual interactions. Thus, self-organizing systems are able to modify their

structure and functionality to adapt to changes to the requirements and to the

environment based on previous experience.

The paradigm of self-organizing systems in the field of multiagent systems

is an organization where the agents operate with a high degree of autonomy

without central control, and function based on local interactions and views

(Serugendo et al., 2006). Self-organization takes advantage of the intrinsic

characteristics that multiagents offer, such as a high degree of distribution,

unsynchronized interactions and cooperative behavior among agents. These

properties enable spontaneous re-organization of agents and resources in case

of a change in the environment. The re-organization is an intrinsic feature of

a self-organizing system and results from internal constraints or mechanisms,

triggered by local interactions between its components (Camazine et al., 2001).

In summary, self-organization can be defined as the emergence of system-

wide adaptive structure and functionality from simple local interactions be-

tween individual entities. And, regarding the proposed model, it brings the

ability to self-manage its own resources to cope environment changes in order

to meet polices and user’s requirements.

Self-awareness

Self-* properties and autonomic behavior arise from the capability of

the system to internally and autonomically identify any environment changes

without human administrator interference. Self-awareness, in turn, requires

sensing capabilities and triggers reasoning and acting behaviors. Self-aware

systems are currently modeled with autonomic monitoring, planning and plan

execution capabilities at the level of the autonomic managers. Awareness

is enabled in self-organizing systems through the ability of sensing their

environment in different ways, and take decisions accordingly. The capability

of sensing the environment is given through the process of knowledge acquiring

and knowledge sharing.

2.3.1
An Abstract Self-Organizing Model

When it comes to Self-organizing systems, to the best of our knowl-

edge, the most common and most widely cited self-organizing reference model

is the autonomic control loop (ACL) proposed by IBM and called MAPE-K

model (Horn, 2001) (IBM, 2005), as shown in Figure 2.2. Based on notions

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 23

of (M)onitoring, (A)nalyzing, (P)lanning (also Decision Making), (E)xecuting

decision and a (K)nowledge base, MAPE-K has become a base model from

which it is possible to extend more advanced and sophisticated self-organizing

systems. From these components, we can conclude that the autonomic man-

ager achieves a higher degree of autonomy and self-organization through the

autonomic monitoring and decision-making process. The management tasks

involved in the MAPE-K model are related to: (i) monitoring of the managed

components by capturing necessary unstructured measurement of the envi-

ronment which are of significance to the self-properties of the environment;

(ii) analyzing the collected data, translating and aggregating the unstructured

and brute data into local knowledge, which is then stored in a knowledge base;

(iii) planning adaptation actions depending on the environment variation; and

(iv) executing the decided plans upon the environment. We highlight that the

adaptive plans executed by the model may or not depend on collaboration with

other agents, even though it is completely autonomic and does not require any

external administrator intervention.

An adaptation is normally triggered in response to changes or high vari-

ations of the environment. However, it may also be triggered periodically or

in response to external events. Hence, the presented self-organizing model is

flexible enough and, depending on the system’ design, it exhibits a specific

adaptation behavior. In fact, some factors impact the adaptation rate, sensi-

bility and autonomy of the model. Thus, the more dynamic and flexible the

environment is, more stable and less reactive the adaptive model should be,

and yet, the more autonomic less dependent on external and internal support

and control.

Figure 2.2: Autonomic Control Loop (ACL)

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 24

2.4
Norms & Reputation

Norms constitute a coordination mechanism among heterogeneous

agents. One of the challenges regarding norms in multiagent systems is the

design and implementation of distributed environment in which coordination

must be achieved among self-interested agents. Norms can be used for this pur-

pose as a means to regulate the observable behavior of agents as they interact

in pursuit of their goals (Axelrod, 1997) (Dignum, 1999).

In this sense, recent research efforts have used the concept of social

norms as a mechanism to regulate and control virtual societies, especially

those composed of heterogeneous environments using different types of agents.

In terms of multiagent systems, the notion of a normative system with each

agent being regulated by its own behavior or norm supports distributed virtual

environments especially in situations where having a central authority is not

feasible. Having a central entity responsible for preventing a given undesirable

behavior by constraining the architecture does not scale well. Thus, in highly

distributed environments, the responsibility of enforcing behavior through

societal norms is distributed over the members of the society of agents.

A normative multiagent system is the union of the concepts of multiagent

and norms. We are dealing with a distributed community of heterogeneous

agents together with a normative system to control the autonomic behaviors

exhibited by the model while preventing the system from malfunctioning. Each

agent can decide to follow a set of related norms or face the consequences of

declining them. Most research work in norm-based systems for a heterogeneous

agent environment (Boella e Torre, 2004) (Boella e Torre, 2005) identify norms

as having obligations, prohibitions and permissions. These three properties

determine how an agent makes decisions when they are subject to norms.

Such normalization has been widely used (López et al., 2002) (Lopez et al.,

2004) to deal with coordination and security issues arising from multiagent

systems.

In this thesis, we join the concepts of multiagents and norms to enrich

the self-organizing model. We apply the concepts of norms to self-tune the

model’s constraints and thresholds in order to control better the adaptive

behaviors of the self-organizing model based on the local environment. The

main idea is to enable different sets of norms depending on the context and

variations of the surrounding environment. Through norms, we are able to

use a self-organizing core capable of self-configuring and self-adapting its own

parameters and thresholds based on current needs.

Note that, in what follows, we could use the Z language (Spivey, 1989)

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 25

throughout the thesis to specify a formal model of the normative autonomic

control loop, the main concept behind norms to support a more autonomic self-

adaptive behavior. Z is based on set-theory and first order logic, with details

available in (Spivey, 1989). However, we have chosen to show few examples of

the predetermined attributes in Z with the remainder of the norms descriptions

in natural language so as to make them easier to read.

2.4.1
An Abstract Normative Model

We deal with the normative concept to enable self-tuning in self-

organizing models. In a dynamic and highly distributed environment, agents

are normally required to collaborate in order to achieve the desired common

goal. Because of the heterogeneity of the surrounding environment, some inter-

ests of different agents may exhibit conflicts (Zambonelli et al., 2011). Thus,

in order to avoid conflicts that may appear among these autonomous agents

we enable the concept of norms.

The concept of norms also presents a particular relevance when it comes

to controlling and ensuring the proper functioning and adaptation of a complex

environment composed of autonomous components. To this end, norms are

applied to collectively regulate all activities and behaviors of the managed

components (Tinnemeier et al., 2009) (Garćıa-Camino et al., 2009), and,

depending on the system’ design, specific components are responsible for

enacting and controlling the prescribed norms. Moreover, the definition of

proper internal or external components and mechanisms to control and limit

the system behavior and prevent malfunctions is flexible and depend mostly

of the system design.

There are some questions raised on research studies related to norms

and its incorporation in multiagent systems. Thus, since norms are explicitly

represented and are interpreted as a special set of constraints of the domain,

where all agents of the same environment may tie to, norms can be designed,

represented and controlled depending on the domain in which they occur.

Therefore, how norms are represented, how the modeled system monitors the

modeled agents behavior, enforcing sanctions and rewards, in case of violations

and good behavior respectively, and how norms evolve are open questions that

tend to be answered depending on the domain study.

As for the case of the self-organizing model studied in this research, we

tend to express the normative rules to drive the behavior of the managed

elements and their adaptation constraints depending on the environment

variation. Indeed, these normative rules enable the building of a set of self-

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 26

adaptive patterns that are well supported in various scenarios and environment

condition.

2.5
XEN: A Virtualization Tool

To validate the virtualized architecture we have to choose an operating

system virtualization to perform the roles of multiple independent virtual

nodes on a shared substrate. Research studies on the network virtualization

field (Egi et al., 2007) (Pisa et al., 2010) have pointed out XEN networking

tool as an enabling technology that has reached a certain maturity over its

competitors. It is a Virtual Machine Monitor that makes the simultaneous

running of multiple operating systems on a single system in a complete and

decentralized way. This represents a considerable advantage for the context of

our self-organizing model. XEN may be considered complete as it supports full

virtualization by allowing unmodified operating systems being hosted under

the physical machine, and it may be considered decentralized as there is no

central entity responsible for controlling and managing the virtual machines

and its services. In other words, the virtual machines hosted by XEN are

independent and do not influence each other.

The XEN Platform consists of:

1. XEN Hypervisor

It is a virtual machine monitor, which is responsible for providing

services to allow multiple computers operating system to run on the same

physical machine concurrently. It is located above the physical hardware

and coordinates the low-level interaction between virtual machines and

physical hardware.

2. Domain0

It is the virtual machine host environment, also referred to as controlling

domain, which is a special domain that provides the management envi-

ronment. Thus, it manages the virtual machine host components and its

virtual machines.

3. Virtual Machines

Also known as Guest Domains, User Domain or simple Dom U. It holds

a virtual disk that contains a bootable operating system, a Virtual ma-

chine configuration information, which can be modified through Virtual

Machine Manager and a number of network devices, connected to the

virtual network provided by the controlling domain.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 27

Figure 2.3: Physical machine (Dom0), Virtual machines (Dom1 and Dom2)
and XEN Networking routed.

As shown in Figure 2.3, the XEN hypervisor represents an intermediate

layer between the physical machine’s hardware and the guest domains. It

intermediates the guest domain access to the physical machine’s hardware

through the Domain 0, a driver domain responsible for the communication

itself. Domain 0 differs from the other guest domains in that it has special

privileges and total access to the hardware of the physical machine, providing,

this way, a reliable and efficient hardware support (Egi et al., 2007). The guest

domain, as a consequence, is capable of running privileged instructions as it

were real machine through the Domain 0.

Virtual machines (DomUs) are separated and isolated from each other,

so that the execution of one does not affect the performance of the others.

There is no way but through a private network to establish communication

between them, even among those who share the same physical substrate.

2.5.1
XEN Networking

XEN provides mainly two well-known packet forwarding mechanisms:

Bridging and Routing. Both refer to the technique to move packets between

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 28

the real interface and the guest domains. In (Egi et al., 2007), authors have

evaluated and compared the performance of these two routes forwarding plans

inside the XEN virtual machine monitor environment, Bridging and Routing,

aiming to identify design issues in Virtual Routers. Moreover, the authors have

shown that the bridged scheme used in XEN for interdomain packet transfer

has way more significant costs for Dom0’s forwarding performance.

For instance, (Egi et al., 2007) outlines that with Bridging mechanism

all the Guest Domains are able to share the same network, which may offer

an increased complexity of the driver domain. Because it uses software bridges

within the driver domain, dom0, to transfer the data packets between the

real interfaces, residing in Dom0, and the virtual interfaces associated to the

DomUs. While in Routing mechanism, data packets forwarded from one to

another physical interface in Dom0 will transverse the same path as it would

in native Linux. In other words, it eliminates, from dom0 forwarding path,

the channels through the hypervisor as well as the bridges attached to each

physical interface. Figures 2.5 and 2.4 depict this difference.

Figure 2.4: Xen’s bridged network internals (Egi et al., 2007)

Figure 2.5: Xen’s routed network internals (Egi et al., 2007)

Being aware of the test scenarios evaluated in (Egi et al., 2007), we have

implemented our autonomic architecture using XEN Routed Networking, as

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 2. Background 29

shown in Figure 2.3. We created a virtual network consisting of two main

private networks: External and Internal, in which the guest domains (Dom1

and Dom2) are hosted in a different internal private LAN, and their traffic

data are routed to the external private network, outside of Dom0, the driver

domain.

For further details regarding Xen creation and live migration of virtual

machines, refer to Appendix A.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

3
Related Work

In this chapter, we present an overview of the existing research studies

addressing the VN provisioning problem and that are related to this domain.

We first categorize previous proposals of relevant projects on the domain of

network virtualization that have an impact on and are of interest of this

Master’s project. Next, we describe some advances in autonomic computing,

where we explain the assumptions made by those studies regarding self-*

properties for VN domain and their respective impact. Finally, from a MAS

and Self-* perspective, we explore some state-or-art research on paradigms and

applications for self-organizing and norm-based systems.

3.1
Virtual Network

The problems involving the concept of Virtual Network are widely

addressed in various areas of research. Academic and industry studies aim

to resolve different aspects of Virtual Network Provisioning and Management

problem from several perspectives from either the Network or the Multiagent

fields.

There are studies related to VN deployment, concerning the resolution

to virtualize a Network and its components, by comparing several virtualiza-

tion tools, and virtualization approaches. The authors of (Fernandes et al.,

2011), for instance, define functionalities needed to build a virtual network ar-

chitecture and identify the overhead incurred by some virtualization tools by

comparing them with native Linux. Similarly, (Egi et al., 2007) evaluate the

performance of the router forwarding plane inside the XEN environment with

a view to identifying design issues in Virtual Routers while (Pisa et al., 2010)

compare virtualizing tools such as XEN and OpenFlow in terms of migra-

tion models. In particular, in terms of architecture and structure, which cov-

ers, for instance, the capability of a single infrastructure in deploying Virtual

networks, some research studies attempt to answer such problems regarding

physical and virtual networks, mainly involving concepts such as tolerance and

limits. The concept of situation/context awareness is also presented in projects

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 3. Related Work 31

such as 4WARD (Architecture and Design for the Future Internet, 4WARD

FP7 project), in which the contextual view provides the basis to make a proper

decision, based on the local and global state of the network. Further details re-

garding virtual network architecture, self-organizing and self-awareness, from

a mixed perspective of Network and Multiagent areas can be found on the

4WARD project (Architecture and Design for the Future Internet, 4WARD

FP7 project).

We also find research on the VN domain in a higher level. For instance,

some are related to the provisioning of the virtual network itself. In this sense,

an important branch of this problem is related to the mapping of virtual nodes

into physical substrate at the moment a virtual network is requested. Upon a

request, the mapping problem attempts to best fit a virtual topology over the

physical infrastructure (an attempt to approach an optimal solution), being

then responsible for providing a Virtual Network upon a VN request. This

problem presents a high complexity in finding an optimal mapping, as it is

known as an NP-problem. Therefore, this area has been widely addressed in a

varied range of studies, such as (Cheng et al., 2011) (Houidi et al., 2008).

In both research, the authors tackle the problem of mapping virtual

resources in the physical infrastructure, concerned about the efficient resource

mapping while dealing with the simultaneous optimization of the placement of

virtual nodes and links on a substrate network. The difference, however, relies

on the fact that (Cheng et al., 2011) proposes a central approach to solving

the mapping problem, though network topology awareness, and (Houidi et

al., 2008) comes up with a self-organizing solution, in which it embeds agents

inside every physical node in order to distribute the responsibility to solve the

mapping problem. The authors of (Houidi et al., 2008) states that a distributed

solution is necessary since a centralized solution suffers from scalability.

3.2
Dynamic VN Management

Assuming that the virtual network has been provided, the adaptive

maintenance itself comes into play in order to deal with dynamic changes

from the variations in the substrates and virtual networks. Such changes

are related to failures, mobility, migration and maintenance needs. The idea

behind the adaptive provisioning is to maintain the original topology and

service levels agreements during the virtual network lifetime. The virtual

network provisioning involves virtual routers and links management, such as

live migration of routers, and virtual router reallocation.

Although there are in the literature substantial amount of work dealing

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 3. Related Work 32

with Virtual Network Mapping, from the Network perspective, to the best of

our knowledge, there are a few studies on adaptive provisioning of instantiated

virtual networks to cope with dynamic changes in service demands and resource

availability, mainly from the MAS perspective. In order to solve the virtual

network provisioning problem, few approaches have been suggested, dealing

mostly with (i) virtual node live migration to a distinct host and (ii) virtual

link reassignment and setup to preserve the virtual network topology.

Thus, there are research studies addressing the feasibility and efficiency

of enabling online updates on the Virtual Network environment. From a man-

agement perspective, research such as (Kamamura et al., 2011) (Miyamura

et al., 2011) propose models to deal with the autonomic and self-organizing

behavior of the environment provided by virtual networks. We highlight that

some are concerned in finding the right balance between autonomy and Self-

adaptation, while others are concerned in exploiting some of the varied range

of adaptation behaviors. In addition, (Houidi et al., 2011) addresses the pro-

visioning of virtual resources in future networks relying on the Infrastructure

as a service principle.

Moreover, the authors of (Ruth et al., 2006) proposed an autonomic

system called Violin, which manages a virtual environment, composed of vir-

tual nodes capable of live migration across a multi-domain physical infrastruc-

ture. It addresses the live migration problem considering different topologies

and even distinct physical networks. Similarly, (Houidi et al., 2008) also deal

with the distributed management issues involved with live migration of vir-

tual routers. This management concept involves, for instance, applying some

multiagent techniques in which distributed agents take over the management

activity itself. Furthermore, (Marquezan et al., 2010) proposes a distributed

self-organizing model to manage the substrate network resources. The authors

of (Senna Daniel M. Batista e Madeira, 2011), on the other hand, deal with

virtual link reassignment in the case of unbalanced use of links in a virtual

network, where it changes the mapping of virtual links if the load of specific

physical links increases more than a certain threshold.

Furthermore, the authors of (Houidi et al., 2010) propose a distributed

self-organizing model based on MAS properties to manage the substrate net-

work resources in the case of failures and link degradation. In the proposed

solution, they apply the concept of agents spread all over the physical infras-

tructure, in which each agent is in charge of controlling the physical router

and also all virtual routers that this physical entity may embed. This paper

highlights Self-* properties and briefly describes how the autonomic entities

communicate and cooperate to maintain the virtual network stability and high

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 3. Related Work 33

levels of functionality.

Although all these proposals provide specific solutions for the virtual

network provisioning and control problems, most of them do not take into

consideration the management activity from a fully distributed perspective.

Therefore, we note that these approaches have treated the virtual network

management from a semi-decentralized way, in which the autonomic entities

are spread only over substrate nodes. Differently from those highlighted

research, the self-organizing model proposed in this project addresses the

management of substrate and virtual resources by taking advantage of the total

distribution of the autonomic entities spread all over the network, including

virtual networks rather than only substrate nodes.

3.3
Autonomic Computing & Networking

In the Autonomic Networking field, we came across research that deal

with Self-* paradigms applied on autonomic networks, such as the works of

(Prehofer e Bettstetter, 2005) and (Samaan e Karmouch, 2009). The authors

of (Prehofer e Bettstetter, 2005) propose four self-organizing paradigms to be

applied in autonomic networks, while the authors of (Samaan e Karmouch,

2009) describe a survey covering all possible self-organizing and self-aware

properties that a VN may exhibit; they also cover an overview of knowledge

retrieving and sharing.

The authors of (Prehofer e Bettstetter, 2005) propose design paradigms

for developing a self-organized network function. To this end, they come up

with four paradigms and then show how they are reflected in current protocols.

The proposed paradigms are (i) design local interactions that achieve global

properties, (ii) exploit implicit coordination, (iii) minimize the maintained

state, and (iv) design protocols that adapt to changes.

Accordingly, (Samaan e Karmouch, 2009) presents a more holistic view

of the literature in the Autonomic Network management area. Thus, they an-

alyze the requirements and the main contributions for building any autonomic

network management system (ANMS). Moreover, they describe a coherent

classification methodology to compare existing ANMS architectures and high-

light some open challenges and describe new research opportunities.

3.4
Self-* & Normative models

A significant amount of work have dedicated efforts to self-organization

and norm-based models principles and characteristics separately. However, to

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 3. Related Work 34

the best of our knowledge, few studies yield relevant progress in correlating

both concepts. We believe that one of the major challenges is the disjunction

of research in the self-organizing and normative models areas. In the following

paragraphs, we provide the current state of the art carrying out on both

perspective: self-organizing and norm- based model. In addition, as a strong

motivation, we highlight the work of (Samaan e Karmouch, 2009), which is a

research study that emphasize the significance of having more dynamics and

programmable self-organizing systems in the field of autonomic network.

In (Serugendo et al., 2004), a review of natural and complex systems

that exhibit emergent behavior through self-organization is presented. The

authors classified the major self-organizing mechanisms used in natural and

software systems to achieve self-organization besides demonstrating examples

of emergence and self-organizing applications. They also briefly describe the

importance of having self-organization in Network problems. As for a MAS

perspective, (Serugendo et al., 2006) defines the concepts of self-organization

and provides a state of the art survey about the different classes of self-adaptive

mechanisms applied in the multiagent systems domain.

On the other hand, for a Norm-based prospect, Norms in multiagent

systems are treated as constraints on behaviour, as goals to be achieved or as

obligations (Conte e Castelfranchi, 1995). Thus, the author of (Tuomela, 1995)

has categorized norms into four categories: rule norms, social norms, moral

norms and prudential norms. He also states that Rule norms are imposed

by an authority based on an agreement between the members of a society.

Moreover, in (López e Luck, 2003), a general model of norms is proposed.

They emphasize aspects that autonomous agents might consider before taking

decisions regarding the applied norms, while representing the most common

kinds of norms and its effectiveness to design a norm-based systems.

Joining both concepts, (Zambonelli et al., 2011) describes schemes that

facilitate components to exhibit self-adaptive behaviors and mechanisms to

enable components to express the most suitable adaptation scheme. To this

end, they consider normative multiagent systems to collectively regulate the

autonomic activities of the modeled components. Furthermore, at individual

self-adaptation level, they express normative rules to drive the behavior of

ensembles and their adaptation constraints.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

4
Context-Aware Self-Organizing Model

The Virtual Network Provisioning model itself involves operations such

as instantiating, deleting, monitoring, and migrating virtual network elements

(routers and links), and setting resource-allocation parameters, in a totally

independent and decentralized way, in order to cope with dynamic changes in

service demands and resource availability. Such functions make the proposed

solution a suitable model for creating and managing multiple VNs and, as a

consequence, for supporting the pluralist approach of the Future Internet (Egi

et al., 2007). This solution is capable of creating multiple customized VNs and

at the same time it exhibits flexible management and real-time control.

Our context-aware and self-organizing model is based on a distributed

algorithm, which embeds an autonomic agent composed of an autonomic

control loop inside every virtual and physical node throughout the substrate

and virtual network. Such agents are responsible for monitoring the local

environment, capturing local information, reasoning about measured data, and

cooperating with each other in order to exchange their local knowledge and

feedback. Thus, each agent represents an autonomic entity capable of inferring

the local and global network state and, therefore, supports the core of the self-

adaptive model. This core model triggers adaptation plans depending on the

surrounding environment.

The adaptive agent leads to the Virtual Network (VN) emerging as a self-

organizing entity. The agent is in charge of handling local behavior to enable

proper local control and management of the virtual network, its components

and the network flows. Thus, this control and management maintain the effi-

cient use of physical resources for network virtualization. Assuming that the

VN has already been provided, the proposed adaptive model relies on the fol-

lowing features: (i) self-adaptive behavior; (ii) resource and context-awareness;

(iii) knowledge acquisition/sharing; and (iv) autonomic normative monitoring.

As a consequence of these features acting in combination, distributed auto-

nomic decision-making occurs and this triggers different adaptive plans to

eliminate VN degradation as well as coping with scarce physical resources.

Next, we briefly discuss such inherent features.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 36

Our approach differs from previous works in the way we select potential

VNs intrinsic properties of VNs that favor self-organizing behaviors along

with describing a model for efficient autonomic management. In the following

sections, we present our techniques to incorporate self-organizing, context-

awareness and normative self-tuning on VN provisioning.

4.1
Critical Scenarios

The virtual network provisioning model is responsible for the adaptive

maintenance of the system. It aims to deal with dynamic changes from the

variations in the physical and virtual networks, also related to overloads,

mobility, migration and maintenance needs to ensure an efficient use of physical

resource and a high level of quality of service. Therefore, its main idea is to

maintain the original topology and service levels agreements during the virtual

network lifetime, even when facing either network degradation or the execution

of adaptive plans for virtual routers and virtual links management.

Accordingly, depending on the Network condition (link health/resource

availability), the proposed model anticipates a critical scenario and as a conse-

quence, triggers specific adaptive plans. These adaptive events are triggered to

get rid of such undesired scenario and maintain the virtual network running in

accordance with predefined requirements. To this end, we first need to specify a

set of critical scenarios to be addressed by our model. This set of environment

conditions represents a mapping between specific scenarios of either virtual

link or resource degradation and their correspondent adaptive plan. Once the

critical network conditions are identified adaptive plans are pre-coded inside

every management agent, so they are capable of triggering self-adaptive events

to face these specified environment variations.

The critical scenarios are as follow:

Virtual Router Overload

The replacement of virtual router is an adaptive plan that is triggered

when a virtual router suffers from anomalies and failures such as lack of

resource (high CPU, Memory RAM, etc. usage), link overload (high bandwidth

usage) or whenever it gets unresponsive. This particular environment condition

is described as an overcome of some specified threshold, based on network

metrics related to link/CPU/Memory RAM usage. The model has a set of

thresholds that determines whether a virtual router is overload. We highlight

that the main goal of the proposed model is to prevent such events by

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 37

anticipating them, as a virtual router overload would affect the quality of

service, the network stability and, therefore, the main model goal.

Note that, if an autonomic management solution is not provided, the

virtual network crash in the case of virtual router overload. The overload

caused by lack of resources such as memory RAM or CPU leads to an

unresponsive behavior that, therefore, breaks the virtual network. This same

consequence happens for the following critical scenarios.

Unbalanced Virtual Link Usage

When the virtual network is attending to different users request, i.e.,

having multiple package flows coming and arriving from/at different virtual

routers, the link usage can present an unbalanced state. Hence, the scenario of

unbalanced link is characterized by having packages passing through the same

link when there are different alternatives. Having multiple services passing

through the same path might lead to a link overload, which is an undesired

scenario.

This way, if a virtual router is holding different services, its agent has

to first analyze all the possibilities to balance the network load at this point.

Thus, this particular scenario might trigger distinct adaptive plans depending

on the environment possibilities:

1. Virtual Links reassigning; in the case the virtual network has an virtual

router available to receive the link reassignment

2. Creating Virtual router to reassign virtual links; otherwise.

Physical Router Overload

During the lifetime of the VN, because of the dynamism of the surround-

ing environment, a physical router, Pi , may host multiple virtual routers,

Vij. Pai and Vaij are the agents assigned to the physical router and its vir-

tual router respectively. As we are not able to control such an arrangement of

the resultant VN, when a physical node, Pi for instance, becomes overloaded

or exhibits a poor quality of service (affected node), its agent Pai, the agents

from the neighborhood (cluster), and the virtual agents, Vaij, of virtual routers

hosted in the physical router Pi, are able to detect such a critical event. In this

sense, a physical router overload is given whenever the physical machine, which

may host one or mode virtual routers, gets overloaded. By overload, in this

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 38

particular scenario, we mean high usage of real resource such as CPU, Memory

RAM, etc.

The main issue in dealing with physical router overload relies on the

fact that the physical routers share real resources among multiple virtual

routers. Thus, in the case of physical router overload, we have to enable the

live migration of virtual routers among different physical machines.

4.2
Enabling Self-Adaptation

Network management is autonomic when the network system can make

decisions on its own using high-level policies. A VNPS is considered to be

autonomic when it exhibits Self-* proprieties such as self-organizing, self-

awareness and self-configurability. Thus, it is necessary to identify some

intrinsic characteristics of the system that favor self-adaptive behavior, such

as means of communication and degree of autonomy. After such properties are

identified, the VNPS is designed by applying self-adaptive mechanisms and

paradigms.

In this section, we address the following key questions related to a

networks self-adaptive properties:

1. What principles do self-adaptive systems and autonomic VN provisioning

have in common?

2. What are the design paradigms needed to build a generic self-adaptive

system that can be applied in VNMS?

For complex network management, we need to design rules and apply

models, bearing these questions in mind so as to facilitate interactions be-

tween virtual and physical devices. The first question forms the basis of most

self-organizing systems, in that we must distribute the responsibility of man-

agement among all the individual devices spread over the network such that

each agent contributes to collective emergent behavior, instead of having a sin-

gle entity in charge of the overall organization. To this end, we have designed

local rules and assigned local properties that, in conjunction, automatically

lead to the emergence of a global goal: network stability. Therefore, we have

reduced the global goal to corresponding distributed local goals, in which enti-

ties have their own goals as well as interacting locally with their neighbors to

build local views of the environment and make small local adaptation actions.

Another advantage to such an approach is that by distributing responsi-

bilities among entities spread over the network we enable local monitoring and

local organization, which leads, as a consequence, to local consequences. This

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 39

distribution certainly made our model more stable and robust with respect

to changes in the environment. Local changes represent local consequences at

single points of the network and local failures are not reflected in the whole

system and can be handled locally. An application of this concept in our model

is illustrated in the rules (Norms) applied to each autonomic agent. Examples

of norms are:

1. Maintain the usage of the link at most at a determined threshold

2. Maintain a balanced link usage

3. Keep local knowledge current

The second property that we highlight, which relates our problem to

self-organization (Prehofer e Bettstetter, 2005), is the exploitation of implicit

coordination. In explicit coordination, direct message exchanges are used to

coordinate resources, which is a typical characteristic of centralized systems. In

contrast, our model uses implicit coordination, in which self-organization event,

context and global status are inferred from the observation of local environment

and from relations with neighbors. In this case, each autonomic agent observes

the neighborhood and based on such observations, draws conclusions about the

state of the network and reacts accordingly. To implement this concept, our

model provides a message exchange schema only within the cluster to which it

belongs. Specifically this means that an agent only exchanges messages in its

own neighborhood. All knowledge beyond the cluster is acquired by inferring

from such locally exchanged messages or from further messages exchanged

through different clusters.

An example where we applied implicit coordination is in the detection

of adaptation event functionality. Basically, each agent frequently exchanges

messages with its neighbors in order to update its local knowledge. However,

if a physical or virtual router decides to enter into a self-adaptation state, it

stops exchanging update request messages in order to save resources. As each

agent expects at least a keep-alive message from all its neighbors, if a message

is missed the neighbors conclude the router in question might be involved in

an adaptive event. Neighbors first check whether the router is up and running,

by checking if the link is up; then they infer whether the router is involved in

an adaptation task or is no longer responding.

The third self-* property applied to our autonomic model is related to

obtaining and keeping local network state information. The author of (Prehofer

e Bettstetter, 2005) believes that to achieve a higher level of self-organization,

it is necessary to minimize the amount of long-lived state information, in

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 40

which long-lived state means any necessary information about the network

state, either global or local. At run time, the VN and its devices (virtual and

physical) need to store information about the network itself. For instance,

each autonomic agent needs to store information about the physical and

virtual topology, as well as the current IP tables and its direct neighbors.

We applied the concept of localized interactions, and implicit coordination

and as a consequence we also promoted less state information maintenance. By

uniting these approaches, we can take advantage of minimizing long-lived state

information. We primarily use the knowledge discovery mechanism concept, in

which each agent is able to exchange messages to request an update. If a

requested piece of information is not available at the neighborhood level, the

request is then recursively passed on to subsequent neighbors.

Finally, as the fourth property, we present the autonomic monitoring and

analyzing. Virtual Network monitoring is concerned with the collecting and

analyzing of the specific measurements to determine the underlying virtual

and physical network status, as well as the possibility of network critical

scenarios. In general, traditional monitoring mechanisms rely mainly on the

systematic collection of measurements of predetermined parameters collected

by the autonomic control loop. Differently from this approach, our model holds

an autonomic monitoring mechanism to continuously adjust their operations,

parameters and constraint in order to reach an equilibrium between the need of

accurate view of the network status and the processing overhead. To this end,

autonomy implies the ability to adjust, at runtime, which network components

to be monitored, at which level of detail, how to adjust monitoring parameters,

when to execute monitoring functionalities and for how long.

4.3
Autonomic Control Loop

The ability of the autonomic agents to react to changes in the network is

provided by the adaptation of the Autonomic Control Loop concept, defined

by IBM for autonomic computing (Computing et al., 2006) and already

discussed on Section 2.3. This concept is comprised of an autonomic manager

responsible for managing one or more elements. As our solution is fully

decentralized, and there are no centralized entities to handle notification of

environmental changes, each autonomic agent has to monitor and analyze its

local environment continuously and act based on local variations. To achieve

a high degree of autonomy, the core of our self-organizing model supports

five main functions: (1) monitor the physical/virtual router; (2) analyze the

router performance; (3) plan and make decisions; (4) check norms, to verify

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 41

that they are applied; and (5) execute a set of appropriate adaptive plans.

Such tasks comprise a machine state, where distinct transitions exist between

the functions depending on the state of the autonomic agent. Together with a

knowledge base, which maintains the necessary information about the entities,

its operations and the environment, these functions are referred to as a control

loop.

4.3.1
Monitoring

The monitoring function relates to the collection of information including

supervising, monitoring and storing the necessary measurements from network

links and the physical and virtual resources that are of significance to the self-

properties of the underlying network. Because of characteristics enabled in

our model, the use of a systematic collection of predetermined parameters has

been avoided. Instead, we applied a dynamic approach that relies on continuous

adjustment of such operations in order to balance the need for monitoring the

view of the network state and the related overhead. To this end, we enable the

ability to decide, during the lifetime of the VN, which network components

shall be monitored, how to tune monitor parameters, how often to execute

monitoring tasks and how long to collect such data.

The monitoring function can be characterized as dynamic since it acts

differently depending on the network state; i.e., it receives measurement data

from a list of collectors residing in the virtual/physical router, as well as

obtaining measurements by directly sending explicit messages to its neighbors.

The periodicity of the each monitors run and how long they execute their

monitoring tasks are also dynamically determined by the network condition.

This approach decreases additional traffic overhead when the network has high

resource usage, and enables deeper monitoring when a router has available

resources. In this sense, the monitoring tasks are self-tuned and depend

essentially on the state of the network in every cluster. We describe how we

treat self-tuning in the following topics.

4.3.2
Analyzing

Another component of the control loop is autonomic analysis. It trans-

lates the acquired data into local knowledge in order to determine the descrip-

tion of the performance of the underlying network and to check whether the

network state is in agreement with the quality of service and required policies.

In addition, it also anticipates future critical scenarios and detects events, such

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 42

as either virtual link overload or physical resource scarcity. In other words, au-

tonomic analysis is the key to activating decision-making in case adaptation

is required. In this research, the analysis relies on a set of specific concepts:

(i) History-based prediction, in which we define a time window to take into

account the history of each autonomic agent rather than only its current state;

and (ii) online anticipation. This latter concept is related to the fact that our

environment presents a highly dynamic behavior, in which it is not expected

to exhibit periodicity over the VN life-time. Thus, we need to provide a way

of continuously predicting system behavior using up-to-date knowledge.

In order to maintain efficient use of the physical resources, in which the

VN provisioning maximizes the balanced distribution of physical resources

among virtual devices, we have introduced a metric to categorize link usage.

This metric on resource usage can differ depending on how the resource has

been requested. For instance, a link with high and stable usage might trigger

a different scenario of a link with medium usage but with increasingly more

requests.

4.3.3
Decision-Making

When it is anticipated that critical scenarios may occur, the decision-

making function plans for and might trigger the execution of system solutions.

Such solutions refer to adaptive operations to re-configure the virtual network

topology as well as the balancing of physical resource usage among virtual

devices. The core of our self-organizing model makes decisions based on the

knowledge retrieved by the Monitor and computed by the Analyzer, as well

as from the knowledge exchanged between neighboring nodes. Such decisions

depend essentially on the virtual network state, the local knowledge and

the prescribed norms, and are based on the choice of previously designed

adaptation plans. These plans could include: (i) activating the creation or

the deletion of a virtual node; (ii) fine-tuning the amount of virtual resources

allocated to a specific virtual node; (iii) migrating a virtual node to a different

physical node; and (iv) balancing virtual links.

The key concept behind the decision-making function is that it enables

self-organization of its own resources according to the variation of both the

substrate (physical) or virtual network. The self-organization occurs through

an examination of internal knowledge to decide when, where and how to

perform an adaptive plan. To achieve such a degree of autonomy and execute

different adaptive plans upon different network scenarios, decision-making

functions continuously monitor, analyze and fine-tune the physical/virtual

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 4. Context-Aware Self-Organizing Model 43

components and lead the system into a more stable and reliable network.

The decision-making function was designed to trigger adaptive plans in

response to either external or internal events. The former represents, conditions

such as virtual router overload as well as link degradation, while the latter,

is related to events in the substrate node, such as lack of physical resources.

Such mechanisms are the reverse of what we see when we compare it with

traditional approaches where the goals of planned adaptations are related to

enhancing the performance of the system, typically for non-critical scenarios.

4.3.4
Norm Checking

The last function of the control loop beside the executor itself is the

checking of pre-specified norms. Norm checking refers to the task of verifying

whether the conditions of the network and the virtual and physical routers

match the set of norms designed for the system. Such norm sets are related

to the ability to provide the virtual devices with controlled autonomy, by

restricting their behavior to prevent malfunctions and undesirable behavior

as well as a way to maintain a dynamic control loop. In this case, the control

loop components and behavioral parameters can be tuned, at run time, over

the VN’s lifetime. Refer to Section 6 for further details on Norms and how

they are checked.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

5
Towards Context-Awareness

In order to build a virtual Network provisioning model that satisfies self-

organizing paradigms, we need to distribute the responsibility of the virtual

network provisioning among all physical and virtual devices spread all over

the network instead of having a single central agent responsible for the overall

organization. Such self-* concepts refer to local monitoring, local reasoning,

cooperation among neighbors while making and executing decisions that

lead to local consequences. Indeed, the design of distributed rules with local

interactions in conjunction with these self-* properties lead to the emergence of

the global goal, which is to maintain the virtual network running in accordance

with hight quality of services and users requirements. Bearing in mind such a

distribution of responsibilities, it turns out that the agent’s knowledge process

and communication means are the main keys to ensuring that this distribution

will handle updated knowledge across all agents. Another advantage the model

takes by having such distributed architecture is the efficiency in terms of

message exchange to request and inform actions and current status.

As the proposed model presents an agent hosted in every physical

and virtual device, when a re-scale of the virtual network is needed, the

amount of management agents will also increase linearly with the number of

network devices. If we consider a central approach, that handles all knowledge

and communication among the virtual and physical devices, it leads to a

considerable increase of overhead because of the number of messages exchanged

needed. Because of the intrinsic characterizes of the network setup (routed

network), the monitoring entity, in a centralized approach, needs to access

every virtual and physical router to monitor and analyze their status according

to metrics related to resource and links usage. Therefore, the centralized

approach seems to be unlikely to work in this specific domain, since, in high

usage scenarios, where there is already an overload of links at some points of

the network, this will worsen even more the bandwidth usage and the overhead

associated.

In order to avoid the use of explicit message exchange and to cope

with this inefficiency in the agents’ communication, the model’s coordination

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 45

information is done through the implicit exchanging of messages. Thus, the

local network status, the event triggering, the adaptive plans requests are

represented as knowledge inferred from the local environment observations

and relations among neighbors of the same cluster. To achieve such an implicit

coordination, each autonomic agent observes the neighborhood and listen to

keep-alive messages and, based on local observations, draws conclusions about

the state of the network to react accordingly.

To meet the implicit coordination requirements while satisfying the self-*

properties, the model provides a communication scheme only within the cluster

to which it belongs. All knowledge beyond the cluster is acquired by inferring

from any common agent that belongs to a different neighborhood. Moreover,

the self-organizing model provides a dynamic autonomic control loop, which

dynamically collects information regarding the network status. The use of self-

awareness shows up as an important feature to enable autonomy and self-*

behavior.

5.1
Agent Communication

The means of communication of the proposed Self-Organizing Model con-

sists an important feature that supports the exhibition of better self-organizing

behaviors and actions. It supports describing a proper self-organizing model

for the context of autonomic virtual network management, mainly because

of its high distribution and localized view. We believe that enabling a local-

ized communication promotes other self-* characteristics, which leads to local

management, local collaboration and local consequences. These properties to-

gether favor the robustness and scalability of the model. The local property

explains the robustness and scalability due to some intrinsic characteristics of

the domain in which the autonomic monitoring process should ensure mini-

mum extra overhead while maintaining the updated network status. Indeed,

the local property, in which only agents from the same neighborhood (cluster)

are allowed to exchange information, leads to a model that has local manage-

ment, local adaptation that in conjunction leads to local consequences, which

explains the robustness.

Some research studies regarding autonomic networks and managemen-

t/mapping of virtual networks have a semi-distributed model, in which the

agents are embedded on physical resources, rather than on physical and virtual

routers. Thus, the agent that controls the physical resource is also responsi-

ble for controlling all virtual nodes that it hosts. On one hand, considering a

semi-distributed scenario, the agent concentrate different knowledge about the

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 46

network at this location, as it controls both the physical and the virtual activ-

ities. This fact is what characterizes the semi-centralized model, in which each

agent manage its own physical resources, links usage and also manage every

virtual router that it may embed, and, therefore, their management activities.

On the other hand, however, this same agent has to access each one of the

virtual routers it has deployed, in order to run basic management operations.

This may cause a overhead while processing each one of the virtual routers

deployed in the virtual network.

It is important to note that unlike the choice of the communication

methodology itself, the use of the multiagents to represent this model is

essential since it makes use of the autonomic communication among agents

of different substrate nodes to gain advantages over traditional approaches to

manage virtual networks.

The first goal of this research is to distribute the VN and physical

resources’ control and management across the substrate nodes. Thus, in order

to reach a model capable of self-adaptation, each virtual and physical router

has a dedicated embedded agent responsible for the local monitoring and

control. The self-* properties, for instance, lead to local consequences, and,

therefore, to a solid communication means, as any self-organizing system

(Prehofer e Bettstetter, 2005) (Serugendo et al., 2004) (Serugendo et al., 2006).

Maintaining updated information about the environment in a centralized

way do not scale well. It also exhibits high overhead and delays in the decision-

making process. This happens especially when the underlying domain is highly

dynamic and happens to present high variance. In our model, each agent

processes and exchanges knowledge through messages and cooperate, in a

structured way, to endure decentralized decision-making for the VN. Hence,

the proposed autonomic monitoring approach relies on a local view. This local

view consists in agent-based local observations of the environment obtained

through a passive observation of the internal relations among neighbors and

local state retrieved from the knowledge acquiring process.

5.2
From Monitoring to Decision Making

Collecting and maintaining a global view of the network is expensive in

terms of resource usage. As a result, our monitoring approach relies on local

view, in which each agent makes local observations of its own environment

and draws conclusions accordingly. However, to enable a holistic view of the

network, in which the agent infers the network-wide view (global view), the

agent monitors numerous samples of local views from various agents within the

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 47

network (Winter e Schiller, 2005). From the keep-alive messages received from

the neighbors, the agents build an estimated global view to evaluating its own

relative status (Winter et al., 2006). Such monitored knowledge is used for the

decision-making process, to trigger proper adaptive plans related to network

load balancing, and self-management properties.

An example in which the knowledge process supports a better triggering

of specific adaptive plans is when an agent decides to balance the virtual link

usage, in the case of link overload. Once the agent anticipates a link overload,

it can re-organize its own links in order to rebalance the links usage. Through

the awareness of the global state of the network and of the individual routers

statuses, the agent is able to steer the selection of virtual candidates based on

concrete realization.

5.3
Knowledge Process

The authors of (Samaan e Karmouch, 2009) stated that to achieve an

autonomic management thought a precise model of management system, the

key concept relies on a built-in reasoning mechanism that leads to knowledge

process to acquire and share the knowledge. We also believe that having an

autonomic process to acquire and share knowledge lead to an architecture

independent on central entities with global information. Bearing in mind

that the proposed solution has local reasoning mechanisms which support the

decision making to trigger adaptive plans that involve agents from the same

neighborhood, there is no need to have a central entity responsible for holding

all knowledge of the network. Thus, our model relies on local reasoning to lead

to local consequences.

Thus, we enabled self-awareness through:

1. knowledge representation, which can be characterized as behavioral,

structural and adaptive, all represented by ontologies;

2. knowledge acquiring/sharing, in accordance with self-organizing

paradigms, in which each entity is able to infer local conditions through

observations and message exchanges in the neighborhood.

We highlight that limited resources is another property inherited from

the domain. As the problem is characterized as highly dynamic and prone to

high variations, where frequent local overloads can occur, at any point of the

network, the solution is to come up with a model to self-adapt itself and its

resources in order to get rid of such an overload scenario. In this sense, the

agent’s communication has to ensure minimum extra overhead.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 48

Following this belief and aiming to enable cooperation among neighbors

in terms of knowledge acquiring/sharing, we propose the use of context-

awareness, knowledge discovery and knowledge sharing process in an attempt

to increase our system’s degree of intelligence and enrich the self-organization

model. Like (Samaan e Karmouch, 2009), we also believe that the ability the

autonomic entities have to infer the local and global state certainly increases

the effectiveness of the decision-making process, as it also is highly related to

some paradigms applied to our model, such as minimizing state information

and implicit coordination.

To enable the capability of autonomic adaptation, three types of knowl-

edge have been mapped: Structural, behavioral and Adaptive plans. This

knowledge is used by the group of agents to collaborate in order to make an

individual decision or collectively support an adaptive plan. The autonomic

adaptations are related to: (i) creating new router, (ii) migrating an affect vir-

tual router from one host to another, (iii) adjusting setup configuration of the

physical and virtual devices, and (iv) facilitating the communication regarding

decision making.

The types of knowledge representation are described in the following

sections.

5.3.1
Structural knowledge

The Structural Knowledge refers to the domain knowledge, which pro-

vides a view and conceptualization of the virtual and physical domains. It

represents information about the devices of the modeled domain, such as vir-

tual routers, physical routers, and links, their properties, their relations, and

additional information about the architecture of the domain. Hence, technical

description of how a virtual machine may be set up is an example of struc-

ture knowledge. It also involves technical information regarding Memory RAM,

CPU, Bandwidth set up, etc. The physical and Virtual topologies are also ex-

amples of structural knowledge. Refer to REVIEW: table 1 for further details

on Structural Knowledge.

5.3.2
Behavioral knowledge

The Behavioral Knowledge, in turn, represents all different behaviors of

the modeled domain, not only the ones that lead to a self-adaptation. It is

also considered a domain knowledge and describes all different behaviors the

model may exhibit, their properties, the environment condition in which they

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 49

may occur and their relations. Moreover, it describes the mapping between the

environment condition and variations in terms of Memory RAM, CPU, Link

usage, package delay or package loss and all possible behaviors that may be

addressed to each specific scenario.

We can exemplify a behavioral knowledge through the full description of

each component of the self-organizing model, such as the Analyzing function,

which is responsible for translating brute data into structured information.

This description involves the behavior properties, what data types it analyzes,

how long it behave, how often it is executed, and some dynamic possible

parameters to manage its own setup. It also describes all components of the

network, such as Monitoring, Decision-Making, etc. There is also exist the

correlations among different component of the model.

5.3.3
Adaptive knowledge

On the other hand, Adaptive Knowledge is used to describe all adaptive

plans. It represents the different ways to manage and control the modeled

system in the case of environment change. It includes, for instance, a set of

domain related variations and their corresponding applied adaptive solutions.

Adaptive Knowledge differs from Behavioral Knowledge in the sense that now

it describes, beyond the conditions in which each adaptive plan occurs, the

consequences of such adaptation and the expected final environment condition.

It also describes how an agent must behave when it faces an execution of an

adaptive plan in the neighborhood, like decreasing the number of request sent

to the affected node, for instance.

Thus, from an autonomic virtual network perspective, self-awareness is

easier achieved when we can express the different components of the modeled

system REVIEW: though – through a knowledge base. Refer to Table 5.1 for

further details on knowledge representation.

5.4
Knowledge Acquiring

With the aim of decreasing the dependency of pre-embedding knowledge

and the constant need for synchronization among distributed agents, the

model uses the concept of implicit coordination rather than having an explicit

knowledge base. As already discussed, the main characteristic of the proposed

self-organizing model is the local activity, which leads to local consequences.

Having an implicit coordination to gather and share information is also an

approach to enriching the properties already highlight in this thesis.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 50

Structural Behavioral Adaptational
Physical/Virtual Topology Behavior of components

(e.g., Monitoring, Analyz-
ing)

Critical scenarios descrip-
tion

Possibles CPU size Bandwidth variation (e.g.,
metrics)

Environment conditions
that leads to adaptation

Possibles Memory RAM
size

Execution time of Compo-
nents

Management actions

Possibles Link Bandwidth Interval between Compo-
nents execution

Adjusting agent configura-
tion

Current configuration Adaptation plans in re-
sponse to environment vari-
ations

Neighbors addresses

Table 5.1: Knowledge Representation

Inferring current virtual and physical network topology

A classical example of knowledge inferring, also present in (Prehofer e

Bettstetter, 2005) (Kanellopoulos, 2011), is the discovering how the network

topology is provided. In this project, we assume that both the physical

network and virtual networks are provided when the self-organizing model

starts running inside every device. Note that research studies in the Network

filed, as already discussed in Section 3, provide solutions for the problem known

as Virtual Network Mapping, which provides a virtual network upon a VN

request.

Thus, once both physical and virtual networks are provided, each router

is built with the description of its own resources, its network setup, and a list

of its direct neighbors. However, during the life-time of the virtual network,

if an agent had to come up with a decision regarding any adaptive plan, we

believe that, knowing the virtual topology will support the agent to make a

proper decision regarding the self-organization. For instance, in the case of

Live Virtual Router Migration, in which a virtual router is migrated from one

affected node to one node that is nearby and available, it is crucial to know the

link length between the affected node and any possible destination candidate.

Hence, a candidate that is two links path away from the affected node

is preferable rather than one that is three links path away. Therefore, during

the VN life-time, the model exhibits a need of having further knowledge about

the structure of the entire environment and a global view of the environment

itself.

Accordingly, once the virtual network is provided, an adaptive algorithm

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 51

runs inside every physical and virtual device, in order to infer the physical

and virtual topology. To this end, an agent sends a message to its neighbors

requesting the topology information - i.e., the neighbors of its neighbors. Each

agent that received this request sends further messages to their respective

neighbors. Next, once they get the responses, they send a message back to the

first agent informing about their neighbors. At the final stage, when the original

message is responded to the very first agent that requested the topology

information, all nodes from the network have inferred how the topology of

the current network is provided.

As we are proposing a model for management purpose, we deal with

the high variance of the environment to enable autonomic self-adaptation.

However, we have not addressed to changes in the topology yet. Thus, once

the virtual network is provided, no node can be deleted from the network.

Only insertion of a virtual router can be performed, which does not affect the

current topology, as no link will be deleted from the topology. The topology

discovery happens in both ways, in the virtual and physical environment.

Inferring adaptive plan execution

Similar to the inferring network topology, inferring adaptive plan is a way

to avoid extra message exchanges during the execution of an adaptive plan.

Thus, the execution of an adaptive plan is also inferred through the exchange

of message or the absence of it. When a local adaptive plan is occurring at some

point of the network, the model’s main goal is to have only local consequences.

REVIEW: Therefore As the adaptative actions do not require the involvement

of any other agent besides the ones from the same neighborhood, no direct

message is require to inform them that an adaptation is occurring. So, the

approach of letting the other agents know that an adaptation is being triggered

through inference is a desired behavior. Note that, during the adaptation event,

the agents of the affected cluster are committed with the accomplishment of

this particular adaptation plan.

For instance, in the case of replacement of a virtual router, which is

triggered from an overload scenario, the affected node does not require any

support from the neighborhood. However, as there is frequently keep alive

message exchanged among all nodes of the same neighborhood, whenever a

router faces a replacement adaptive plan, it sends an alert message to all

nodes of its cluster. Being aware of such an event, these nodes stop sending

any message, request or inform message to the affected node until further

informative message from the affected agent. Once the adaptation is achieved,

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 52

the affected not returns sending keep-alive messages with the description of its

status after the adaptive plan.

Similarly, the event responsible for balancing virtual links follows the

same idea of inferring context. When an agent detects an unbalanced usage of

the virtual links, it triggers adaptive plan without any explicit support of the

adjacent agents. Once it creates a new router or simple re-assigns an existent

link to another virtual router, it sends an update message to all agents from its

neighborhood. Next, once these messages are received, each agent is in charge

of updating its own routing table, in the case of need.

The third event that might happen during the life-time of the virtual

network is related to the live migration of virtual routers. This is the most

complex behavior that our model might exhibit. Since it is an adaptive plan

that occurs because of an overload of the physical machine, it requires the

support of all nodes of the affected node cluster. In this case, it is needed

to minimize the message exchange among the agents that participates of the

adaptive plan and interrupt, for a certain amount of time, the extra messages

exchange between two different clusters. As the model is a proposed solution

to minimize the impact of links overload, the unnecessary message exchange

worsens the overload scenario. Bearing this in mind, when an agent gets

involved with this adaptive plan, it stops sending keep alive message to its

neighbors from the other clusters, so that the other agents are able to infer the

occurring of this adaptive plan from the absence of the keep-alive messages.

Implicit coordination

Implict coordination is the base of the model’s knowledge acquiring. As

stated before, we distributed the management responsibility among agents

spread all over the physical and virtual devices to ensure the local property

exhibition. Thus, having a network domain, on which characterizing an over-

load scenario is still an unpredicted event, even in the Network field, forces the

proposed solution rely on minimizing state information and explicit/directly

message exchange. The local behaviors and consequences in conjunction with

self-* concepts facilitate the use of implicit coordination. Thus, depending on

the environment condition, only keep alive messages are allowed in the model.

Such messages carriers, besides the information of being alive in the environ-

ment, the local status of each router and some extra information, depending

on the current situation. From all the messages received during its life-time,

a node can draw conclusions about its own environment and also about the

global status of the network. To this end, the network and routers statuses are

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 5. Towards Context-Awareness 53

modeled as behavioral knowledge (metric-based), and are stored in a timeline

fashion inside of the knowledge base of every agent.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

6
Towards Normative Self-tuning

A self-organizing system is defined as a system that can adjust its own

behavior and function in real-time without any external support in response

to its perceptions of the environment it inhabits. To this end, a self-organizing

system continuously monitors environmental variation and reacts accordingly.

Hence, an abstract self-organizing model has a set of characteristics to be

monitored and a set of pre-defined adaptive actions. These actions represent

possible constrained adaptations to overcome any critical condition perceived

in the environment.

The major advantage of a self-organizing system is its ability to evolve

and enhance continuously the applied adaptation strategies, by learning from

previous experiences. Thus, to enrich the proposed self-organizing model we

aim, throughout this section, show how to enable self-tuning in the core of the

self-organizing model, through the concept of norms.

6.1
Approaching Self-tuning

The self-tuning concept is a feature of norms and how they are used

by the model in order to enrich the autonomic adaptation of the managed

components. Thus, self-tuning refers to the model’s ability to modify a set of

its own parameters, thresholds and constraints dynamically at run-time during

its lifetime. This modification supports minor adaptation operations.

The main principle behind self-tuning is the capability of enabling minor

autonomic adaptations within the core of the self-organizing model, so that

the model can learn and adapt itself when it perceives new environmental

conditions and needs. For instance, it can dynamically adapt the control loop’s

running rate, or even monitor the environment for longer than the default

period. Moreover, it is in charge of executing small changes in local parameters

to discover a better setup for the autonomic agent with respect to the state of

the local environment.

Furthermore, the norm concept applied to self-organization provides

managed entities with a controlled autonomy. It can restrict the activities

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 55

of the model’s components while preventing malfunctions and undesirable be-

havior. Indeed, by enabling controlled autonomic events and internal adaptive

behaviors, the model also gains a higher degree of autonomy, dynamism and

programmability, since it fine-tunes its local parameters, thresholds and con-

straints according to current local environmental conditions (Localized control

and management are intrinsic in self-organizing models). Thus, we believe that

norms and self-tuning are together responsible for a more dynamic behavior,

more independent of pre-embedded configuration, knowledge and setup. The

core of the self-organizing model, i.e., the autonomic control loop, is also able

to self-adapt, by fine tuning some of its local parameters to adapt to environ-

mental needs better.

In order to enable a normative behavior in self-organizing models, we

propose the use of an extension of the autonomic control loop, MAPE-K,

discussed earlier, by adding a new component, the norm checker. This new

component is responsible for controlling the different sets of norms, depending

on the context in time and space, regulating when and how a specific norm

is valid, enforcing sanctions and rewards, in case of violations and good

behavior respectively. More precisely, the norm checker manages how a norm

evolves from experience and interactions with the local environment. Thus,

the norm checker component is responsible for a higher degree of autonomy

and programmability, since it is now able to fine-tune itself depending on

experiences with the environment.

6.2
Exteding the Autonomic Control Loop

As stated earlier, the autonomic control loop is composed of a norm

checker component as well as components for monitoring, analyzing, planning,

and execution. The norm checker is responsible for checking a set of pre-

determined norms, depending on the context, and applying their respective

actions whenever they are accepted. In this sense, the autonomic control loop

itself is also in charge of controlling the acceptance and refusal of a specific

norm, besides its own default behaviors, such as monitoring and analyzing, as

depicted in Figure 6.1.

Ideally, once a set of pre-determined norms is captured via the norm

checker component, the norms should be directly executed by the norm

checker. This is the way an agent interacts with the local environment and the

autonomic control loop, and dynamically fine-tunes itself. Thus, we say that a

set of norms are applicable when the current state of the environment, internal

and external (i.e., inside the autonomic control loop and in the local agent

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 56

Figure 6.1: Normative Autonomic Control Loop

environment) complies with a set of conditions. The set of pre-determined

norms that are checked at every execution of the autonomic control loop

depends on the local contextual environment.

We join the concept of norms with the autonomic control loop as a

mechanism to govern the self-adaptive behavior of the agents, especially in

those cases when an agent is dealing with a self-adaptive plan that might affect

the environment and other agents. In this research, the norms are characterized

by their prescriptiveness (López e Luck, 2003) , in which each norm describes

how an agent must behave in pre-determined situations, which drives the

overall behavior of the self-organizing model. Thus, norms specify behavioral

patterns for the self-organizing agents, which are represented as actions to

be performed in order to change the state of the environment and behavioral

restrictions depending on the context of the adaptive agent.

Depending on the context and the domain itself, a different set of norms

may be applied, since the norms are applied only in particular circumstances

or within a specific situation. Furthermore, the norms are designed to include

rewards when they are satisfied by an addressed agent, or punishments when

they are not. In this thesis, the rewards are given as an execution of actions

followed by an increase of the agent’s reputation and fine-tuning of its own

parameters. For punishments, a decrease in reputation is given, and its own

parameters are fine-tuned. In both circumstances, self-tuning is executed in

order to give the autonomic control loop the right balance. Nevertheless, the

use of reputation is a way to classify the agents that have a central goal of

maintaining a high reputation.

As the VN provisioning solution is fully decentralized, and there is

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 57

no centralized controller to handle notification of environmental changes,

each autonomic agent has to monitor and analyze its own local environment

continuously and act according to local variations. Thus, the core of the self-

organizing model is tasked, as discussed earlier, with five main functions:

Monitoring

the physical/virtual resources

This function frequently monitors a set of local parameters related to

virtual/physical link resource health. In the case of a normative autonomic

control loop, the set of monitored parameters may vary depending on the

context of each agent. Thus, a set of local parameters is defined as a subset

of one or more elements of the set (link: (bandwidth, package loss, package

delay, errors, packages out of order, etc.), resource: (CPU, memory RAM,

IO, etc.)). This set of local parameters to be monitored depends on the set

up of the autonomic control loop, which in turn is defined depending on the

acceptance rules of a norm and their respective self-tuning functions.

Hence, in order to avoid the systematic collection of predetermined

parameters, the autonomic control loop uses a dynamic approach that relies

on continuous adjustment of its own operations in order to balance the

need for monitoring the view of the network state and the related overhead.

Thus, the running time, the periodicity and the set of parameters to be

monitored are examples of parameters that may be fine-tuned by the normative

autonomic control loop. Indeed, this dynamic set of parameters responsible for

the monitoring function may be fine-tuned, at run time, depending on the

environment conditions and on the manner in which the agent fulfills a set of

specific norms.

An advantage of using a self-tuning mechanism to control the behavior

of monitoring functions relies on the fact that the periodicity on which each

monitor runs and how long they execute their monitoring tasks are dynamically

determined by network health. Thus, the ACL decreases additional traffic

overhead when the network presents high resource usage and enables deeper

monitoring when a router has available resources.

Analyzing

performance

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 58

This function is responsible for translating the monitored data into local

knowledge that can describe the performance of the underlying network at

this specific location. In this normative autonomic control loop component,

the self-tuning can fine-tune parameters such as (i) the running time, (ii) the

analyzer type used to translate data and (iii) the periodicity in which the

analyzer perform its actions.

As already stated, an analyzer function contains different analyzer types

which are executed depending on the environmental conditions and current

needs. As the monitoring tasks, the analyzer type is used to translate data

into local knowledge that is dynamically determined depending on network

health.

Planning

and making decisions

Decision making anticipates critical scenarios, and might trigger the

execution of adaptive operations to re-configure the virtual network topology

as well as the balance of physical resource usage among virtual devices. The

adaptive actions depend primarily on the virtual network state, the local

knowledge and the prescribed norms, and are based on the choice of previously

designed adaptation plans.

The main idea behind the normative autonomic control loop is that,

through a decision-making function, it enables self-organization of its own

resources according to variations in the environment.

In order to control the model’s autonomic behaviors and adaptive actions

based upon environmental variations, the decision-making process uses a

specific set of adaptive norms, which describes the network conditions and the

respective actions to be executed in case of need. Thus, we enable a built-in

normative system to control all adaptation functions of the normative control

loop. An example of such adaptive norms is the triggering of the replacement

of a virtual router in a virtual network, depicted in Figure 7.11.

If an agent autonomously decides to fulfill this required norm and does

not comply then an adaptive plan is triggered that is responsible for replacing

the affected virtual router with a new virtual router capable of handling the

current network needs. In order to increase the local knowledge base, the agent

saves how often it triggers adaptive plans so as to support decision making in

later analyzes. Furthermore, in this norm, resource usage may address such

measurements as CPU or Memory usage.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 59

Norm Goal: Maintain the resource usage limited by an specific threshold

Addressees: Virtual Agents
Context: Stable environment condition
Reward: Enable a minor Self tunning, by increasing the monitor and analyzer
components
Punishment: Execute the Replacement of virtual router adaptive plan and
increase the number of adaptive plan executed

Norm 1: Replace Virtual Router Plan

Figure 6.2: Replace Virtual Router Norm

If resource usage has been stable over the life-time of the virtual network

then there is compliance with the norm. Compliance means that, self-tuning

is executed for minor internal organization such as adjusting the autonomic

control loop components.

We highlight that each agent’s normative goals and the network’s goals

are the same. Each agent and the network wish to maintain stable link usage

and a high level of quality of service. Thus, this system does not have conflicts

between its main goal and the normative goals.

Norm Checking

Checking norms is the responsibility of the default autonomic control

loop and also the components that give the proposed model the normative

functionality. The loop is in charge of regulating which set of pre-specified

norms may be applied as a consequence of the current state of the environment,

and also verifying whether the agent is consistent with the norms. Hence, norm

checking refers to the task of verifying whether the conditions of the network

and the virtual and physical routers match the set of norms designed for the

system.

Such norms sets are related to the ability to maintain a dynamic control

loop. In this case, the control loop components and behavioral parameters can

be tuned, at run time, over the VN’s lifetime.

These tasks become a machine state, where there exist distinct transitions

between the functions depending on the internal state of the autonomic agent.

With the support of the knowledge base, in which each agent stores its own

conclusions about the environment and also all translated data from its internal

state (collected by the monitors and analyzed by the analyzer), these functions

are called a normative autonomic control loop.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 60

6.3
Enabling Self-tuning

Self-tuning is enabled from the correlations among how different sets of

norms are applied and fulfilled in the model. Thus, self-tuning mechanisms

based on the normative concept aim at achieving controlled external adap-

tive behaviors and minor internal parameter adaptation. This occurs while

exhibiting a high degree of programmability and integration with environmen-

tal conditions resulting in indirect interactions between agents and agents and

the environment. The main adaptive behavior leads towards the desired global

environmental condition, which is a stable network flow.

Thus, self-tuning also occurs whenever an agent disobeys a specific

norm, as Norm 2 shows (Fig. 6.8). The agent’s goal is to enable fine-tuning

of its parameters relevant to the autonomic control loop function in order

to self-adapt based on its local environment and current needs. Because

of the distributed nature of the environment, in which we have different

clusters (neighborhoods), with different environmental conditions and needs,

each router, and therefore, its agent, requires a different setup. For instance,

considering Figure 6.3, a border agent tends to have a smaller request rate in

comparison with a central router. In this case, the red router has connectivity

equals to five while the green router has connectivity equals to one, which

means the red nodes tend to receive more messages and requests. Since a central

controller that sets up and monitors every router on the network, at run-time,

suffers from scalability, we aim, through self-tuning to enable autonomic fine-

tuning of each agent based on variations in its local environment.

Figure 6.3: Network Topology Impact

0Note: This figure shows the impact of having two routers with different connectivities
(neighbors). The red router has connectivity equals to five, while the green ones has
connectivity equals to one.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 61

The key efficiency concept behind our model is in the self-tuning by

triggering adaptive plans. This idea increases the flexibility of the control loop

roles in either selecting a better match to support the adaptation task or by

analyzing the current network state differently.

To define the formal design by which the organizational norms are

specified we show a set of all components that the autonomic control loop can

adjust along its life-time. The self-adaptive agent is shown in Figure 6.4, the

norms and normative autonomic control loop components are in Figure 6.6 and

Figure 6.5, respectively. Finally, the self-tuning parameters are in Figure 6.7.

Self − AdaptiveAgent
NormativeAutonomicControlLoop
goals : PGoals
knowledge : PAttribute
adaptivePlans : PNorms

NormativeAutonomicControlLoop 6= ∅
goals 6= ∅
adaptivePlans 6= ∅

Figure 6.4: Self-Adaptive Agent Notation

The self-adaptive agents (Fig. 6.4), Self-AdaptiveAgent, contain a set of

all pre-determined adaptation actions, adaptivePlans, and the normative auto-

nomic control loop, NormativeAutonomicControlLoop, depicted in Figure 6.6,

as well as a knowledge base, knowledge. For sake of simplicity, we highlight

that the Goals, Attribute and Actions are given notation. Note that the nor-

mative autonomic control loop has a fixed set of tasks which runs frequently.

The frequency and the running time of these behaviors are all flexible and

tunable through the self-tuning feature. The knowledge base is also flexible

in the sense that it enables a window size, in which the normative autonomic

control loop (NACL) gathers information from a specific time period to run

its own analysis.

A Norm (Fig. 6.5) contains a goal, a list of addresses, that represents the

group of agent which may be tied to this norm, a context, to represent the

condition in which a particular norm is activated and a pair of reward and

punishment, which represent the actions that the agents may take in the case

of good or bad behavior, respectively. The set of pre-determined norms are

addressed to any Self-AdaptiveAgent. In this thesis, a Self-AdaptiveAgent can

be a PhysicalAdaptiveAgent or a VirtualAdaptiveAgent.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 62

Norm
goal : PGoal
addressees : P Self − AdaptiveAgent
context : PAttribute
reward , punishment : PActions

addressees 6= ∅
context 6= ∅
reward ∪ punishment 6= ∅

Figure 6.5: Norm Notation

NormativeAutonomicControlLoop
collector : PMonitor
analyzer : PAnalyzer
planner : PBehavior
normChecker : PNormTunner
executer : PContext ↔ AdaptivePlan

Monitors ::= OSMonitor | LinkMonitor | MetricMonitor | DefaultMonitor
analyzer ::= DefaultAnalyzer | OSAnalyzer | MetricAnalyzer | LinkAnalyzer
NormTunner ::= NormMatcher | VirtualAdaptivePlans | PhysicalAdaptivePlans
executer ::=
[[VirtualRouterOverload 7→ ReplaceVirtualRouter ,
VirtualLinkOverload 7→ BalanceVirtualLink ,
PhysicalRouterOverload 7→ LiveMigrateVirtualRouter]]

Figure 6.6: Normative Autonomic Control Loop Notation

The normative ACL (Fig. 6.6), NormativeAutonomicControlLoop, con-

tains a set of possible statuses for each of its own components. For instance,

the collector component may contain a list of one or more monitors. Depend-

ing on the local environmental conditions and current needs, the normative

ACL acts in a different manner. Therefore, the elements that compose each

autonomic control loop are dynamic over time and depend on the environment

condition. Note that, there are other dynamic parameters that define the ACL

besides only the list of components for each of its elements.

Thus, to self-tune each agent of the system, the norm checker component

counts on a set of tunable parameters, the Self-TuningParameters, as depicted

in (Figure 6.7). Moreover, based on the self-tuning function triggered by the

fulfilment of a specific norm, different parameters are adjusted. As self-tuning

enables a dynamic changing of the tuning of each agent and its respective

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 63

Self − TuningParameters
monitor : OSMonitor | LinkMonitor | MetricMonitor | DefaultMonitor
analyzer : DefaultAnalyzer | OSAnalyzer | MetricAnalyzer | LinkAnalyzer
monitorFrequency , analyzerFrequency : PAttribute
monitorRunningtime, analyzerRunningTime : PAttribute
analyzerWindowSize, kbWindowSize : PAttribute
ACLFrequency , kbVariationRange : PAttribute
linkThreshold , osThreshold : PAttribute
boundaryMaxFreq , boundaryMaxRuntime :: PAttribute

Figure 6.7: Self-tuning Parameters Notation

functions, the norm checker contains a list of thresholds that define boundaries

for the self-tuning actions to ensure that tuning will lead to an efficient

setup. These thresholds, unlikely the ACT parameters, are fixed, defined by

an external administrator, and embedded in each agent.

As an illustrative example, Norm 2 and Norm 3, Figure 6.8 and Figure 6.9

respectively, show real norms applied to the domain of the self-organizing

model for virtual network management already explained.

Norm Goal: If support is requested, respond whitin a threshold time

Addressees: Virtual Agents; Physical Agents
Context: Pre-adaptive plan environment condition
Reward: Increase the number of request responded
Punishment: Enable a minor Self tuning, by drecreasing the time of manage-
ment functions: monitor and analyzer components.

Norm 2: Cooperation

Figure 6.8: Support Cooperation Norm

In Norm 2 (Fig. 6.8), which describes a cooperation norm, the norm

goal is to maintain a high rate of request response. Thus, the norm states

that the execution of an adaptive event must be as fast as possible when

responding to a supportive request. In the case of adaptation, an agent may

request support from other agents to execute or finish an adaptive action.

Because of the complexity of the domain, in a case such as link overload if the

agent does not complete a self-adaption on time, the virtual network might

crash and stop responding. If an agent takes a long time to respond to a

supportive request, which would delay the adaptation itself, it has to trigger a

minor self-adaptation (self-tuning) in order to program its autonomic control

loop better and respond faster to the next request. The main idea behind this

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 6. Towards Normative Self-tuning 64

norm is to decrease the overall running time of the control loop, so that it is

available to respond to requests in further requests.

Norm Goal: Keep all virtual links usage rate limited by a specifc threshold

Addressees: Virtual Agents;
Context: Pre-adaptive plan environment condition
Reward: Increase the stability metric
Punishment: Increase link stress and executes the self-tuning in order to
enabling a deeper Analysis function.

Norm 3: Link Boundary

Figure 6.9: Link Boundary Norm

From the virtual network perspective, the link boundary norm (Fig. 6.9),

Norm 3, describes the threshold of the desired condition for all virtual links

of the environment. In the case of link overload, or high link usage, which

is not in compliance with this norm, the norm checker enables self-tuning of

the analyzer component, letting it execute a deeper analysis of this specific

link. As depicted in Figure 6.7, the analyzer is composed of a list of different

translators. In this example, self-tuning evaluates the analyzer behavior within

the LinkAnalyzer and MetricAnalyzer components instead of having a default

Analyzer.

The model uses different organizations, which can be controlled and dy-

namically tuned through norms. As the scope of this research is to demonstrate

the feasibility of having a self-organizing core with the support of normative

systems, we only demonstrate a few examples of the union of these two con-

cepts.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

7
Evaluation

Our evaluation focuses primarily on quantifying the effectiveness of

our model when applied to a highly dynamic VN environment in respect

to overhead and effectiveness in executing adaptations without any external

intervention.

We consider the following work in our evaluation: adaptive virtual

network maintenance in (Houidi et al., 2010), which presents results by

comparing the number of message exchanges while running adaptive events.

Hence, we use the following as the main evaluation tools: (i) the comparison

among the number of messages needed to cope with stable and critical

scenarios; and (ii) comparison of self-organizing model with self-tuning features

and self-organizing model with fixed monitoring mechanisms.

7.1
Experimental Setup

In this section, we provide the environment details as well as the initial

experimental results to evaluate the efficiency of the proposed model and its

adaptive plans.

To the best of our knowledge, few studies in the literature have gone fur-

ther in this direction, by exploring Self-* capabilities of such VN management.

Because of some similarity to our research, we use (Houidi et al., 2010) as a

baseline for our performance analysis. As the authors evaluated their solution

by measuring the number of message exchanges that may occur in the system,

by varying the number of substrate nodes of the network, we also evaluated

our proposed model in the same manner. To validate the model’s feasibility

and scalability, we attempted to test it in a real environment, using a real

small physical network composed of five machines. For further details, refer to

Appendix B. After observing the behavior of such a model on this real net-

work, we validate it by running simulations for larger networks. We highlight

that this project focuses on the appropriate choice of an autonomic plan to

manage virtual routers and physical resources efficiently by allowing them to

re-organize regularly, rather than only in a migration mode.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 66

To this end, we initially set up a VN infrastructure, as depicted in

Figure 7.1, on the top of a physical topology. To take advantage of customized

virtual machines with different setups, we have used XEN as a virtualized

operating system provider to perform the roles of multiple independent virtual

machines on a shared substrate.

Figure 7.1: Experiment setup

Through these initial experiments, we were able to answer key research

questions that serve two purposes namely to: (i) state if the solution is efficient

and what contributes to this efficiency; and, (ii) determine if the proposed

solution is scalable.

First, we assessed the efficiency of the model, measuring the delay of

communication together with the total amount of time incurred to adapt

the VN when a virtual or physical device performs poorly or is overloaded.

Next, we evaluated the performance of the model by tracking the total number

of messages exchanged among embedded agents during the execution of the

adaptive plan.

To address the first question, because of a lack of physical equipment

to validate our model in a larger network, we simulated a larger virtual

environment. The simulation is composed of the same environment setup

as the initial experiment, by applying the behavior pattern of the proposed

model to get an initial estimate of how the proposed model would behave

in larger and more realistic networks. This simulation sought to answer the

same question as (i) but for larger environments. We were able to validate

all the different modules and aspects of our approach, such as self-organizing

paradigms, knowledge sharing and self-tuning, covering every concept of our

solution separately. Then, we extended our validation by evaluating the model,

considering all features together, simulating a larger network and running

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 67

the same scenarios once we validated the model, considering the individual

components.

7.2
Evaluation Results

An important factor that impact the evaluation of the effectiveness of

our model is the cost (in terms of number of messages exchanged) incurred by

the network topology complexity and the router’s degree of connectivity. In

what follows, we present some possibilities of physical and virtual topologies

and determine, for each case, the average number of messages needed to carry

the network management.

Before analyzing the critical scenarios themselves, we first analyze how

the network behaves. We analyze behaviors in terms of messages exchanged

and fine tuning operations, when we enable our management solution. Hence,

we show that for a stable environment, in which the network loads are balanced

over the network links, the number of messages needed to maintain the

management tasks running remains constant over time, during the lifetime

of the virtual network. We also show how the self-tuning enables a dynamic

fine adjustment of the autonomic control loop in a stable environment.

7.2.1
A Stable Network Load Analysis

A message exchange analysis

In order to measure the number of messages needed to maintain a virtual

network running in accordance with the proposed model, we have set up

different virtual networks varying the number of virtual components and the

physical and virtual topology.

First, consider the Figure 7.2 and Figure 7.3 to analyze how the model

acts, in term of messages exchange, while maintaining the network manage-

ment mechanism running accordingly. In the case of a stable load over the

physical and virtual links, we highlight that the average number of messages

needed are heavily dependent on how complex and how connected the networks

are.

Figure 7.2 (a) depicts the environment setup for the test-bed experiments

while figure 7.2 (b) shows how complex and connected a topology might be. In

this figure, we have Ra and Rb as border routers, where j means the number

of routers between Ra and Rb and i the number of distinct paths that connect

Ra and Rb. Of course, there are many topology possibilities, in which each

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 68

(a)

(b)

Figure 7.2: Virtual Network setup and possible topologies

router has its own connectivity, but through this picture we aim to clarify

how the connectivity impacts our model. Indeed, a dense network carries out

a larger amount of messages in comparison with a sparse network. In the case

of adaptation, however, what really matters in this analysis is the length of

the paths between two border routers - between Ra and Rb, for instance.

3 4 5 6 7 8 9

20

40

60

80

100

j = 3

j = 5

j = 7

Number of routers i (Rij Fig. 7.2)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
d

Figure 7.3: Stable VN: Message exchange Analysis

In Figure 7.3, we have plotted the average of messages needed for different

sizes and complexity of Virtual Networks considering a stable environment.

By stable environment we mean that the model achieves stability regarding

network loads and, therefore, presents a stable rate of messages exchanges-

that represents the ordinary messages for the maintenance of the VN. In this

chart, then, we vary the values of i and j represented in Figure 7.2 (b). As our

model relies on the property of locality, the agents only exchange messages on

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 69

the same cluster they belong. Hence, the number of messages is proportional

to the degree of the connectivity of the routers of the network. For example,

the virtual network depicted in Figure 7.2 (a) exchange around 4 messages per

cycle, while the physical one exchange 12 messages in an average per cycle.

In what follows, we also show that, in the case of adaptation that requires

supportive messages exchange to perform the repair action, inside the affected

cluster the number of messages needed to execute the respective adaptive plan

depends on the number of routers existent between two border routers. By

border routers, we mean the first common router of the topology that is able

to support the execution of the adaptation. In Figure 7.2 (a), for example, we

have Pa and Pc as border routers, and the number of routers between Pa and

Pc determines the number of extra messages nedeed for the case of adaptation

support. Indeed, depending on the adaptation plan, the border routers support

is necessary while executing this particular adaptation event. Bearing this in

mind, considering the Figure 7.4, we vary the axis i and j in order to measure

the number of messages needed to maintain the virtual environment in the

case of live migration of virtual router scenario. Further details regarding this

analysis are on the following sections.

(a) (b) (c)

Figure 7.4: Topology impact on Message exchanging

A Self-tuning Analysis

In the case of a stable environment, in which the links and, therefore, the

agents spread all over the network do not suffer high variation, the normative

autonomic control loop enables a specific set of norms to be fulfilled. Note that

these norms for a stable environment are only enabled for those agents whose

meet the network stability requirement at their location.

As an illustrated example, as depicted in Norm 4 (Fig. 7.5), once the

virtual network is provided, agents start running their tasks in every virtual

and physical device of the network. As they are completely decentralized, and

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 70

Norm Goal: Keep Functions rate (# messages/ ACL running time) bellow a
specific threshold

Addressees: Virtual Agents; Physical Agents
Context: Stable environment condition
Reward: Increase the stability metric
Punishment: Executes the self-tuning in order to regulate the ACL running
time.

Norm 4: Functions Rate Boundary

Figure 7.5: Functions Rate Boundary Norm

different points of the network require different behaviors, each agent tends to

achieve a different ACL set up. In this case, for instance, a border agent tends

to receive less request and messages if we compare with a central agent; thus

they present different levels of popularity. In Figure 7.2 (a), we see the virtual

routers, Va and Vb, in which Va is a central router and Vb a border router.

From the moment the environment is provided until they get a balanced setup,

each agent, including Vaa and Vab, constantly fine tune their own parameters

in order to fulfill the Norm 4 (among others), which states to maintain the

agent tasks rate bellow a specific threshold. The task rate is defined as a

rate between the number of messages received by the executing time of the

autonomic control loop. In this scenario, for instance, note that the central

router Va receives six messages per cycle in average while a border routers as

Vb, receives three, in average. Thus, depending on the network topology, the

request rate presents a high variation regarding borders and centrals routers.

Indeed, the agent Vaa, which is a central agent, tends to receive more

messages than the agent Vab - a border router. Thus, in order enable Vaa and

Vab to prompt respond to other agents requests and taking this disadvantage

out, the executing time of their ACL tasks has to be setup according to their

availability. Therefore, in this scenario, the Vaa’s ACL runs faster if we compare

with the ACL tasks of the agent Vab.

In this experiment we run a stable virtual network, in which every agent

has started with the same ACL set up: pre-determined ACL running time an

frequency. As the central routers tend to receive more messages and request, the

self-tuning keeps running inside every agent in order to balance their function

rate. Therefore, in this stable scenario, in which no adaptive events occurs, all

agents achieve, after three periods max, a stable and different ACL setup. In

the case of adaptation, if such dynamic adaptation is not enabled and as every

agent has the same pre-determined set of parameters, a border agent is more

likely to not respond to request in time.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 71

Context Router,period #0 period#1 period#2
Stable Va,2 (1, 1, 2.5) (1.3, 1.3, 3.0) (1.3, 1.3, 3.0)

Vb,5 (1, 1, 2.5) (0.7, 0.7, 2.0) (0.5, 0.5, 1.5)
(no ST) Va,2 (1, 1, 2.5) (1, 1, 2.5) (1, 1, 2.5)

Vb,5 (1, 1, 2.5) (1, 1, 2.5) (1, 1, 2.5)
Adaptation Va,3 (2.5, 2.5, 5.0) TO, (2.0, 2.0, 4.0) RD (1.5, 1.5, 3.3)

Vb,3 (2.5, 2.5, 5.0) TO, (2.5, 2.5, 5.0) TO, (2.5, 2.5, 5.0)

Note: This table shows two different context scenarios, where Va,2 means virtual router
named a with connectivity equals to 2 (number of neighbors) and (Mt, At, Ot) means
Monitoring running time, Analyzer running time and ACL Overall running time. TO, in
the Adaptation scenario, means time out and RD means the agent responded to a support
request.

Table 7.1: Comparison between Self-oganizing model with and without self-
tuning (ST) feature.

In Table 7.1, we show how self-tuning affects the model. As already

stated, once the virtual network is provided, every router embeds a set of

predetermined ACL parameters. If self-tuning is a disabled feature, the agents

will remain with the same ACL setup during the virtual network life-time, even

though they present different needs. On the other hand, however, if the self-

tuning is enabled, each router achieves a different balanced setup, according to

their environment conditions. In addition, depending on the initial ACL setup,

in the case in which the self-tuning is disabled, some agent would not be able

to respond to a support request and neither to fine-tune its tasks, as shown in

the time out (TO) event in Table 7.1.

7.2.2
Migration scenario

During the lifetime of the VN, because of the dynamism of the surround-

ing environment, a physical router, Pi, may host multiple virtual routers, Vij.

Pai and Vaij are the agents assigned to the physical router and its virtual

router respectively. As we are not able to control such an arrangement of the

resultant VN, when a physical node, Pi, becomes overloaded or exhibits a poor

quality of service (affected node), its agent Pai, the agents from the neighbor-

hood (cluster), and the virtual agents, Vaij, of virtual routers hosted in the

physical router Pi, are able to detect such a critical event through regular mes-

sage exchanges. From the moment Pai triggers an adaptive plan, adaptation

algorithms run inside each agent from the same cluster in order to execute the

adaptive plan collaboratively. Only agents from the same cluster are allowed to

collaborate in order to determine alternative hosts to which the virtual routers,

their agents and their services will be migrated. Basically, each neighbor of the

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 72

affected router selects pre-candidates, and then the agent of the affected node

determines the final candidate host. Algorithm 1 describes how such steps are

taken from the moment a physical machine is affected until the adaptation

plan is completed.

Algorithm 1 Adaptive VN live migration

Precondition: physical machine P i has detected an overload though its agent
Pa i

1: P i triggers an adaptation plan: Live migration
2: P i sends a pre candidates list request to its neighbors
3: for all neighbors of P i : N i do
4: N i stops its extra behaviors, i.e., control loop.
5: N i selects all pre candidates that satisfy the criteria of having a

substitute path, taking into account the pre candidate distance and link
stress

6: N i sends a message to the pre candidate selected, C ij, letting it know
it is a pre candidate.

7: for all pre candidates : C ij do
8: C ij stops its extra behaviors, i.e., control loop.
9: C ij actives the live migration Listener

10: N i sends a message to the affected router, P i, informing the pre
candidate list

11: P i receives a pre candidates list from its neighbors
12: P i selects the best match
13: for all virtual machines hosted in P i : V i do
14: Live migrates V i to the destination host.

To evaluate this scenario, we first set up a virtual environment, as

depicted in Figure 7.2 (a), with a user’s data flow coming from Va, passing

through Vb and arriving at Vc. In addition, in order to force a link degradation,

we set up a traffic generator, which sends a large amount of traffic to the Pb, the

physical host of Vb. We expect that after a short period the agent responsible

for the affected machine, Pab, through its adaptive functionality would trigger

the Adaptive Live Migration plan, as it needs to guarantee that the user’s

request would not experience a request degradation.

Assuming the experiment topology, right after the Pab decides to migrate

its guest Vb, along with its agents, links and services, Pab would have two

choices for a destination host, either Pd or Pe. It was such a decision that was

evaluated in this first scenario. In this first scenario the nature of the network

topology seems to be simple, and since the adaptive live migration plans count

on two possible destination hosts, they enable us to test each aspect of our

proposed model (Self-organizing, Self-tuning and Knowledge Process). Our aim

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 73

was to separate each aspect and test this scenario by changing the environment

and the local setup conditions to evaluate each feature individually.

A Message Exchange Analysis

Even before an adaptive plan is triggered, all agents from a cluster

exchange messages in order to update and share knowledge among such agents.

We strongly believe that this process enables the provisioning itself to be a

lower cost method of message exchange. When the network appears stable,

messages are exchanged frequently to update the knowledge of all devices.

Once a critical scenario has been detected, the agents of the cluster in which

the affected node belongs halt all other secondary activities, including update

requests. Then, they collaborate with each other to select a best match as

a destination host. At this moment, since the network might be unstable and

vulnerable because of some overloaded links, the message exchange should cost

as little in link capacity as possible. Being aware of this special case, we have

evaluated the adaptive live migration plan, at first with no differences among

agents, in which each agent has the same set up and tuning. As result, to

migrate the Vb from Pb to either Pd or Pe, takes less than seven seconds after

detection of the critical scenario until the virtual router is fully migrated and

the total number of messages exchanged is eight.

Since the live migration module exhibits a certain pattern while executing

the adaptive plan, we strongly believe this pattern provides a good template

to be applied in simulations of larger networks. In order to measure an initial

estimate of the number of message exchanges in our approach for larger

environments, we simulated the same behavior of the real experiment in a

virtual environment to determine the number of messages that are exchanged,

while our approach executes the adaptation itself. The results are depicted

in Figure 7.3, in which live migration is triggered from a link coming from

Ra to Rb. Assuming a link from Ra to Rb, and with Rcentral as the affected

node, we have to consider: (a) a one router radius, (from Rcentral to either Ra

or Rb), where eight messages were exchanged; (b) a two router radius, where

fourteen messages were exchanged; and (c) a three router radius, where twenty

messages were needed. We highlight that, in example (a), for instance, if the

topology contained more routers beyond the path Ra to Rb, i.e, more possible

paths from Ra to Rb, Figure 7.2 (b), the number of messages would remain

the same. This result shows that our proposed solution, even if the network

becomes larger, still presents a constant or linear increase depending on the

topology.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 74

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12 Physical

Virtual

Time (Seconds)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
s

Figure 7.6: Migrate VR One Cluster: Message Exchange Analysis

In Figure 7.6, we plot the number of message exchange needed in the

case of physical router overload. Considering a virtual/physical topology as

depicted in Figure 7.3 (a), the number of messages needed in a stable scenario

is about four for the virtual network, and twelve for the physical one. When

the affected agent, Pab anticipates a physical router overload, it stops sending

keep-alive messages to its neighbors. As a consequence, its neighbors infer

the occurring of adaptation and stop sending messages to the affected node

as well. Thus, during the execution of the adaptive plan, the agents from

the affected cluster stop sending keep-alive messages and start exchanging

supportive messages. Therefore, in this situation, the messages of the physical

routers drop from twelve to eight, while the messages of the virtual clusters

drop to zero, considering the topology depicted in Figure 7.3.

If we scale up our experiment, consider a topology comprising 3 clusters,

in which the physical network contains thirteen physical routers and the virtual

topology, also comprising of 3 clusters, with seven virtual routers, as depicted in

Figure 7.7. This scenario is the same as the Figure 7.6. The difference, however,

relies on the number of needed messages, as depicted in Figure 7.8. In this

topology, the number of messages to carry on a stable network is thirty six for

the physical network and twelve for the virtual one. When the affected agent

detects a physical router overload; the physical network drops the number of

messages to thirty two, while the virtual network drops its messages to eight.

Note that, the number of messages in both cases are different while facing

an adaptive event. This difference is justified because of the local property. In

Figure 7.8 we have three different clusters for both networks. When one cluster

detects a critical scenario, it stops sending keep-alive messages to its members.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 75

Figure 7.7: Virtual Network with Multiple Clusters

0 2 4 6 8 10 12 14

10

15

20

25

30

35
Physical

Virtual

Time (Seconds)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
s

Figure 7.8: Migrate VR 3 Clusters: Message Exchange Analysis

The other two clusters, however, keep running their own management tasks

(keep-alive messages).

A knowledge acquiring analysis

The authors of (Samaan e Karmouch, 2009) have raised an issue related

to the challenge involved in developing architectures that can host autonomic

solutions and coordinate the distributed interactions. In order to decrease the

difficulty of maintaining a fully distributed VN, since we believe that the

distributed approach has advantages over traditional centralized solutions, we

have aggregated the concept of knowledge acquisition /sharing. This approach

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 76

is also an attempt to decrease the need for exchanging messages to update

knowledge at the precise moment the knowledge is required, but rather upon

the execution or participation of an adaptive plan.

To understand better the role of knowledge acquisition/sharing in our

approach, we have addressed three different experiments with the same adap-

tive live migration scenario. The main idea behind this set of experiments is to

vary the degree of knowledge discovery so as to determine the impact of such

a feature at the global level of the proposed model. The following variations

have been covered: (i) knowledge inferring through environmental observations

with knowledge sharing; (ii) individual knowledge inferring without knowledge

sharing; and (iii) no knowledge inferring/sharing with a centralized approach.

Like the first evaluation, we have also simulated the same experiment for larger

networks. Considering the topology of Figure 7.3 (b) (Rij), the results are de-

picted in Figure 7.9.

0 2 4 6 8 10 12 14 16
0

50

100

150

(i)j > 1
(ii)j = 3

(ii)j = 7

(iii)j = 3

Number of i routers (Rij Fig. 7.3)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
d

Figure 7.9: A knowledge and scalability Analysis

A Self-tuning/Norms analysis

Self-tuning is a function highly related to how Norms are applied to the

model. Self-tuning occurs whenever an agent disobeys a specific norm, and

the agents goal is to enable fine-tuning of its own parameters in order to

self-adapt based on its local environment. Because of the distributed nature

of the environment, there are different clusters, with different environmental

conditions and needs and, as a consequence, a different setup would be

required. As we are not able to control every single router on the network,

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 77

we aim, through self-tuning, to tune each agent according to variations in its

local environment.

An important function of our model with respect to efficiency is auto-

nomic planning and execution. Since every agent frequently requires the opera-

tion of the Monitor and Analyzer functions to support an efficient triggering of

adaptive plans better, we have added the Self-tuning concept. Through Self-

tuning, we aim to increase the flexibility of the control loop roles in either

selecting a better match to support the adaptation task or by analyzing the

current network state differently. This concept is an important feature if we

take into account that a unique agent has several functions running concur-

rently, and its main purpose is to be able to express the time and the frequency

of each task run in terms of the need for such functionality. Therefore, the ques-

tion that remains is: if we are dynamically changing the tuning of each agent

and its respective tasks, how can we safely guarantee that the tuning will lead

to an efficient setup?

If we can clearly recognize a good application of Self-tuning, in which

an agent can improve its task allocations, we still need to validate the

consequences that would emerge from these experimental scenarios upon

applying this concept. In order to address this question, we have evaluated the

previous scenario, varying some local aspects of the individual virtual/physical

agent, mainly regarding the initial control loop tuning. We started by running

two tests: (a) all adaptive agents of the environment have the same initial

tuning; and (b) the physical router Pd runs its control loop twice slower than

the router Pe, even though all other specifications remain the same, which

leads to an initial timeout for the request response. Refer to the Table 7.2 for

results.

Case AP#1 AP#2 AP#3 AP#4

a Pa Pb Pa Pa

b time out time out Pb Pb

Table 7.2: Consecutive Adaptive Plans (AP) and its pre candidates selection

Scalability Analysis

In order to address the scalability question, we evaluated the scalability

of the distributed live virtual router migration module in our real network

and also by simulating that router in a larger network. Since the adaptation

plan follows a certain pattern, we used this pattern as a template in a

virtual scenario, in which we applied the steps of our candidate discovery and

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 78

live migration plan in order to measure the number of messages exchanged.

This measurement was used to (a) confirm knowledge update, (b) select a

good candidate and (c) realize the migration itself. Assuming that the VN’s

knowledge is always updated, we transferred the experiment to a virtual plan,

in order to estimate the metrics for larger networks. In the virtual simulation,

we set up a full mesh of substrate topologies with different sizes, from 10 to

60 virtual nodes. Refer to Figure 7.9 for results.

7.2.3
Replace Virtual Router scenario

The replacement of virtual router adaptive plan is triggered in a specific

scenario where a virtual router suffers from anomalies and failures such as lack

of resource, link overload or whenever it gets unresponsive. To be triggered,

the environment condition has to overcome some specified threshold, based on

network metrics related to link/CPU/Memory RAM usage.

Once the agent has detected an environment condition that leads to a

replacement of virtual routers, it triggers the adaptive plan responsible for

replacing the affected virtual router for a new one, capable of handling the

current network demand. At this stage, the agent creates a new virtual router,

with higher technical specifications, capable of handling the current demand

and users requests. Hence, once the new virtual router is created, the agent

autonomically swaps the affected virtual router by the created one before the

link service exhibit any anomaly to the end users. Furthermore, at this stage,

when the virtual router takes place of the affected node, all services, flows and

management system are kept running inside the new virtual router.

Thus, in terms of management, to trigger the replacement of the virtual

router, the affected agent has to first (i) anticipates a critical scenario, (ii)

stops sending keep alive message to its neighbors, (iii) sends a request message

to the agent of its physical host, (iv) waits for the update to send an inform

message to its neighbors. The adaptation plan is completed when the affected

agent goes through all steps, and restart sending a keep alive to its neighbors.

From this step on, all keep alive messages are normally exchanged among the

virtual routers.

A Self-tuning/Norms analysis

When an agent is anticipating a critical scenario, the set of active norms

are the pre-adaptation plans. An example of anticipating an event is the

advancing of virtual router overload. This pre-adaptation set contains all norms

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 79

to be fulfilled for the context of anticipating an adaptation event, in which the

agent has to detect the problem source and propose all possible solutions.

Thus, as for an illustrated example, consider a virtual network, as depicted

in Figure 7.3, where the virtual router Vc, anticipates a scenario of router

overload.

Norm Goal: Keep CPU and Link usage variation bellow specific thresholds

Addressees: Virtual Agents;
Context: Anticipating adaptation condition
Reward: Increase the stability metric
Punishment: Executes the self-tuning in order to enable a deeper resource usage
analysis.

Norm 5: Resource Usage Boundary Boundary

Figure 7.10: Resource Usage Boundary Norm

In order to better understand the current needs of the network flow at this

specific point, the agent of the affect virtual router has to analyze the different

aspects of the router and its local environment. Indeed, if the network usage

exhibits a high variation at some specific point, the agent’s autonomic control

loop tends to try to understand why the variation has increased and why it has

been occurring. To this end, the norm checker executes the self-tune feature in

order to enable a richer analyzer, which will, in turn, analyze different aspects

of the network, such as different parameters for CPU, Memory Ram, I/O and

Link usage.

Depending on the environment condition while anticipating a critical sce-

nario, the normative control loop enable different monitors to collect different

data and different translators to analyze the collected data. Such a dynamism

at the ACL level is given through the dynamic adjustment of its own param-

eters. To this end, this normative autonomic control loop programmability is

pre-coded as a set of distributed monitoring norms embedded in the agents.

For the virtual router overload scenario, through the right analysis, the

Decision-Making can specify the right tech specification for the new virtual

router to be created in order to replace the affected one. It might detect,

through the set of specific monitors and analyzers, whether it is a CPU,

Memory RAM or a Swap size issue that are changing the current network

needs.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 80

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Physical

Virtual

Time (Seconds)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
s

Figure 7.11: Replace VR: A Message Exchange Analysis

A Message exchange analysis

Similarly to Figure 7.6, we plot, in Figure 7.11, the number of message

exchange needed in the case of Virtual router overload. Considering a virtu-

al/physical topology as depicted in Figure 7.3 (a), the number of messages

needed in a stable scenario is about four for the virtual network, and twelve

for the physical one. When the affected agent, Vac anticipates a virtual router

overload, it stops sending keep-alive messages to its neighbors. Thus, during

the execution of this adaptive plan, the agents from the affected cluster stop

sending keep-alive messages. Unlikely the physical router overload, in the case

of virtual overload, there is no need for supportive messages while executing

an adaptive plan. Hence, in this scenario, the messages of the physical routers

remains twelve, in average, while the messages of the virtual clusters drop to

zero, considering the topology depicted in Figure 7.3. The messages of the

virtual networks drop to zero, because of the simplicity of the topology used.

7.2.4
Balance Virtual Link scenario

When the virtual network is attending to different users request, i.e.,

having multiples package paths coming and arriving at different virtual routers,

the virtual links usage can present an unbalanced behavior. Such unbalanced

performance is characterized by having packages passing through the same

links, when there are different alternatives. Having multiple services passing

by the same path, might lead to a link overload, and this adaptive plan is

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 81

responsible for balancing links before it really happens.

In the case a virtual router is having multiple services, it first analyze

all the possibilities to balance the network at this point. It first checks (i) the

existence of available virtual router which is also capable of handling the user

streaming, and (ii) the feasibility of creating a new virtual router, on the same

neighborhood, so that it could reassignment one of the streaming path to the

new virtual router.

Thus, this adaptive event occurs from the happening of a specific sce-

nario, and might have two different final behaviors: (i) Assign one link routing

to another available virtual router; or (ii) create a new virtual router and

reassigning the routing load to the new router.

Figure 7.12: Unbalanced Virtual Link Experiment setup

Figure 7.12 shows the experiment setup for the unbalanced virtual links

scenario. In this picture, we have multiple links passing through Vc, coming

from Va and arriving at Vb. For this particular experiment, Vd does not carry

any package flow. Thus, after Vac detects this specific situation, it triggers the

adaptive avent in order to reassign one of the links from Vc to Vd.

Virtual Links reassigning

At the moment the agents make the decision to balance the virtual

network, it sends messages to its neighbors in order to find if there is any

candidate to receive one of the service links. To request such an information,

the agent sends a request message, checking whether the neighbors are more

suitable to be a candidate. To decide the destination in which the link will

be reassigned, the agent takes into account, the distance between the starting

point and final point of the link service, the availability, the link stress and the

request rate of each candidate.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 82

Once the agent decides the final destination, it reassigns the link by

changing the link routing. As it is a local behavior with local consequences,

only the agents involved in this adaptation plan requires an instant update.

The adding of a new virtual router isn’t something that impacts the network

as a whole, mainly because we are dealing with preconceived virtual networks

and services. During the life-time of the network, thought keep-alive messages,

the agent involved in this event sends extra information about the new virtual

router in the network.

Creating a new Virtual Router

If a virtual router tends to present an overload scenario and the agents

detect an unbalanced usage of its links; it first tries to reassign one of the links

to another virtual router from the same neighborhood. However, they may not

be available for receiving new links connections. In this case, the affected agent

will create a new virtual router to be hosted in another physical machine, or

on the same physical machine, depending on the network configuration.

Once the new virtual router is up and running, the agent responsible for

the affected router, set up a network between the new router and the rest of

the nodes, and one of the links is then reassigned to the new router. Just like

the Virtual Links reassigning.

A Message exchange analysis

0 2 4 6 8 10 12 14

4

6

8

10

12 Physical

Virtual

Time (Seconds)

N
u
m

b
er

of
m

es
sa

ge
ex

ch
an

ge
s

Figure 7.13: Reassign VL: A Message Exchange Analysis

For both scenarios, resigning the affected virtual link by either creating a

virtual router or using an existent path, the number of message exchange is, in

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 7. Evaluation 83

average, the same as the Replace Virtual router adaptive plan. The difference,

however, relies in the fact that, in the situation in which the model has to

create a new virtual router and place it on top of the virtual topology, it

requires a confirmation message that has to be sent from the affected router

to its neighbors. As this confirmation message is not forwarded through the

clusters, this adaptive action needs a constant number of message more than

the other (where this constant number is equal to the number of neighbors).

We plot, in Figure 7.13, the number of message exchange needed in the

case of unbalance virtual links usage. Unlike the previously approximated

analysis, this experiment uses a virtual/physical topology, as depicted in

Figure 7.12, in which we have a four-virtual routers network. In this topology,

the number of messages needed in a stable environment is about eight for

the virtual network, and twelve for the physical one. Note, therefore, that the

number of virtual routers deployed on top of the substrate node does not affect

the number of messages needed on the physical network.

In this case, when the affected agent, Vac aticipates a virtual link overload

(unbalacing link usage), it stops sending keep-alive messages to its neighbors:

Vaa and Vab. Next, during the execution of the adaptive event, the agents from

the affected cluster stop sending keep-alive messages to the affected router, Vac.

At this stage, the number of messages on the virtual network drops to four.

Hence, the messages needed for the physical routers maintenance remains

twelve, in average, while the messages of the virtual clusters drop to four, con-

sidering the topology depicted in Figure 7.12. The messages of the virtual

network drops to four because the agents Vaa, Vab and Vad keeps communi-

cating with each other. Afterwards, when the adaptation plan is fully executed

and, consequently, the affected link is reassigned from Va/Vb/Vc to Va/Vd/Vc,

the number of messages on the virtual network get back to eight.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

8
Conclusion and Future Work

In this Master’s thesis, we have described the design and validation of an

autonomic model for VN provisioning from the MAS perspective. We analyzed

the impact and the effectiveness of the self-organizing behavior that emerged

from our proposed model, in which it is able to control and manage virtual

resources. The experimental results showed that the model satisfies its main

goals of (i) automatically reconfiguring itself to meet quality requirements, and

(ii) improving the network performance whenever it is exposed to a critical

scenario.

8.1
Conclusion

Through our system, we show that it is possible to design an autonomic

VN manager by applying an MAS approach together with Self-* capabilities

in order to distribute the responsibility to maintain the VN operating in

accordance with its policies and requirements. Although our current work

focused on the adaptive design, modeling and agent communication, we

believe that this general model will certainly support the development of more

complex and realistic network structures, which will be able to use adaptive

plans according to the environment state. Besides the simple nature of our

experimental setup, we evaluated every component applied to our model,

showing that they added gains to the infrastructure as a whole, which leads to

a linear solution with respect to message exchanges.

We have presented the self-awareness and context-awareness concepts as

an important key to enable self-adaptation while enriching Virtual Network

management systems. Using context-awareness as a built-in mechanism to

facilitate self-adaptation, we ensure that virtual components are able to self-

organize themselves. Furthermore, we showed that the ability that autonomic

entities have to infer about local and global conditions have increased the

effectiveness of the decision making process, in which the agents can better

analyze its own condition in terms of network usage and also distinguish

in which direction there is a higher overflow. Moreover, we highlight that

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 8. Conclusion and Future Work 85

the triggers of any self-organizing action are the local measurement of the

surrounding environment and neighbors information, which brings benefits in

terms of reduction of traffic loads and overhead in the case of high variance.

8.2
Future Work

As for short-term future research, besides the evaluation of the proposed

model in larger networks we intend to address better the limitations of such an

approach, the addition, from an MAS perspective, of the Reputation concept to

support the self-tuning and norms checking functionalities. Furthermore, based

on a network analysis, we highlight the need to specify proper boundaries

to control the decision about the network state. In addition, we recently

performed an evaluation of other adaptive plans besides the adaptive live

migration router, which will be used to enrich the analysis of all aggregated

paradigms of our model. As for adaptive plans, we highlight the balancing of

virtual links by deploying new virtual routers to the virtual topology as well

as balancing links by using existing virtual routers and replacement of virtual

routers.

Finally, for the Normative autonomic control loop proposed in this thesis,

we aim to generalize the normative autonomic control loop to cope with

arbitrary plans and behaviors, as this would allow us to address more complex

and self-adaptive applications. We would also like to extend the concept of

the normative autonomic control loop in the sense of having adaptive norms,

besides having a normative system to support self-adaptation behavior, with

dynamic thresholds and constraints dependent on the environmental context.

In this case, each member of the set of available norms is able to self-adapt and

evolve during the life-time of the system. We also want to formalize the concept

of normative autonomic control loop and investigate the verification of norms

in a self-adaptive system by detecting obligations that cannot be fulfilled,

and prohibitions that will prevent adaptive events such as inconsistencies and

conflicts.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

9
Bibliography

ANDERSON, T. et al. Overcoming the internet impasse through virtualization.

Computer, v. 38, n. 4, p. 34–41, 2005. ISSN 0018-9162.

ARCHITECTURE and Design for the Future Internet, 4WARD FP7 project.

Dispońıvel em: <http://www.4ward- project.eu/>.

AXELROD, R. M. The complexity of cooperation: Agent-based models of

competition and collaboration. Princeton, NJ: Princeton University Press, 1997.

xiv, 232 p p.

BLUMENTHAL, M. S.; CLARK, D. D. Rethinking the design of the internet: The

end-to-end arguments vs. the brave new world. ACM Trans. Internet Technol.,

ACM, New York, NY, USA, v. 1, n. 1, p. 70–109, ago. 2001. ISSN 1533-5399.

Dispońıvel em: <http://doi.acm.org/10.1145/383034.383037>.

BOELLA, G.; TORRE, L. van der. From the theory of mind to the construction

of social reality. In: Procs. of Annual Conference on the Cognitive Science

Society. Mahwah (NJ): Lawrence Erlbaum, 2005. p. 298–303. Dispońıvel em:

<http://icr.uni.lu/leonvandertorre/papers/cogsci05.pdf>.

BOELLA, G.; TORRE, L. W. N. van der. Regulative and constitutive norms in

normative multiagent systems. In: KR. [s.n.], 2004. p. 255–266. Dispońıvel em:

<http://icr.uni.lu/leonvandertorre/papers/kr04.pdf>.

BOUTABA, R.; POLYRAKIS, A. Projecting advanced enterprise network and

service management to active networks. IEEE Netw, v. 16, n. 1, p. 28–33, 02

2002.

CALO, S.; SLOMAN, M. Guest editorial: Policy-based management of networks

and services. Journal of Network and Systems Management, Kluwer Aca-

demic Publishers-Plenum Publishers, v. 11, n. 3, p. 249–252, 2003. ISSN 1064-

7570.

CAMAZINE, S. et al. Self-Organization in Biological Systems. Princeton, NJ,

USA: Princeton University Press, 2001. ISBN 0691012113.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 9. Bibliography 87

CHENG, X. et al. Virtual network embedding through topology-aware node

ranking. SIGCOMM Comput. Commun. Rev., ACM, New York, NY,

USA, v. 41, n. 2, p. 38–47, abr. 2011. ISSN 0146-4833. Dispońıvel em:

<http://doi.acm.org/10.1145/1971162.1971168>.

CLARK, D. et al. New Arch: Future Genera-

tion Internet Architecture. [S.l.], 2004. Dispońıvel em:

<http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf>.

COMPUTING, A. et al. An architectural blueprint for autonomic computing. IBM

White Paper, 2006.

CONTE, R.; CASTELFRANCHI, C. Cognitive and Social Action. [S.l.]: Rout-

ledge, 1995. ISBN 1857281861.

DIGNUM, F. Autonomous agents with norms. Artificial Intelligence and Law,

Kluwer Academic Publishers, v. 7, n. 1, p. 69–79, 1999. ISSN 0924-8463.

EGI, N. et al. Evaluating xen for router virtualization. In: ICCCN. [S.l.]: IEEE,

2007. p. 1256–1261. ISBN 978-1-4244-1251-8.

EGI, N. et al. Evaluating xen for router virtualization. In: Computer Commu-

nications and Networks. ICCCN 2007. Proceedings of 16th International

Conference on. [S.l.: s.n.], 2007. p. 1256–1261. ISSN 1095-2055.

FERNANDES, N. C. et al. Virtual networks: isolation, performance, and trends.

Annales des Télécommunications, v. 66, n. 5-6, p. 339–355, 2011.

GARĆıA-CAMINO, A. et al. Constraint rule-based programming of norms for

electronic institutions. Autonomous Agents and Multi-Agent Systems,

Springer US, v. 18, n. 1, p. 186–217, 2009. ISSN 1387-2532. Dispońıvel em:

<http://dx.doi.org/10.1007/s10458-008-9059-4>.

HORN, P. Autonomic Computing: IBM’s Perspective on the State of

Information Technology. [S.l.], 2001.

HOUIDI, I. et al. Virtual network provisioning across multiple substrate networks.

Computer Networks, v. 55, n. 4, p. 1011 – 1023, 2011. ISSN 1389-1286.

Special Issue on Architectures and Protocols for the Future Internet. Dispońıvel

em: <http://www.sciencedirect.com/science/article/pii/S1389128610003786>.

HOUIDI, I.; LOUATI, W.; ZEGHLACHE, D. A distributed and autonomic virtual

network mapping framework. In: Autonomic and Autonomous Systems, ICAS

2008. Fourth International Conference on. [S.l.: s.n.], 2008. p. 241–247.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 9. Bibliography 88

HOUIDI, I.; LOUATI, W.; ZEGHLACHE, D. A distributed and autonomic virtual

network mapping framework. In: Proceedings of the Fourth International

Conference on Autonomic and Autonomous Systems. Washington, DC,

USA: IEEE Computer Society, 2008. (ICAS ’08), p. 241–247. ISBN 978-0-7695-

3093-2. Dispońıvel em: <http://dx.doi.org/10.1109/ICAS.2008.40>.

HOUIDI, I. et al. Adaptive virtual network provisioning. In: Proceedings of the

second ACM SIGCOMM workshop on Virtualized infrastructure systems

and architectures. ACM, 2010. (VISA ’10), p. 41–48. ISBN 978-1-4503-0199-2.

Dispońıvel em: <http://doi.acm.org/10.1145/1851399.1851407>.

IBM (Ed.). An Architectural Blueprint for Autonomic Computing. [S.l.], jun.

2005.

KAMAMURA, S. et al. Control and visualization system for managed self-

organization network. In: Network and Service Management (CNSM), 2011

7th International Conference on. [S.l.: s.n.], 2011. p. 1–4.

KANELLOPOULOS, D. N. Ontology-driven knowledge management for cognitive

networks. International Journal of Enterprise Network Management, v. 4,

n. 3, p. 229–246, Jan 2011.

LóPEZ, F. L. y; LUCK, M. Modelling norms for autonomous agents. In: ENC.

[S.l.]: IEEE Computer Society, 2003. p. 238–245. ISBN 0-7695-1915-6.

LóPEZ, F. L. y; LUCK, M.; D’INVERNO, M. Constraining autonomy through

norms. In: Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems: Part 2. New York, NY, USA:

ACM, 2002. (AAMAS ’02), p. 674–681. ISBN 1-58113-480-0. Dispońıvel em:

<http://doi.acm.org/10.1145/544862.544905>.

LOPEZ, F. Lopez y; LUCK, M.; D’INVERNO, M. Normative agent reasoning in

dynamic societies. In: Proceedings of the Third International Joint Confer-

ence on Autonomous Agents and Multiagent Systems - Volume 2. Wash-

ington, DC, USA: IEEE Computer Society, 2004. (AAMAS ’04), p. 732–739. ISBN

1-58113-864-4. Dispońıvel em: <http://dx.doi.org/10.1109/AAMAS.2004.197>.

MAGEDANZ, T.; KARMOUCH, A. Mobile software agents for telecommunication

applications. Computer Communications, v. 23, n. 8, p. 705–707, 2000.

MARQUEZAN, C. et al. Distributed autonomic resource management for net-

work virtualization. In: Network Operations and Management Symposium

(NOMS), 2010 IEEE. [S.l.: s.n.], 2010. p. 463–470. ISSN 1542-1201.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 9. Bibliography 89

MIYAMURA, T. et al. Dynamic resource allocation mechanism for managed

self-organization. In: Network Operations and Management Symposium

(APNOMS), 2011 13th Asia-Pacific. [S.l.: s.n.], 2011. p. 1–4.

MOVAHEDI, Z. et al. A survey of autonomic network architectures and evaluation

criteria. Communications Surveys Tutorials, IEEE, v. 14, n. 2, p. 464–490,

2012. ISSN 1553-877X.

O’HARE, G. M. P.; JENNINGS, N. R. Foundations of distributed artificial

intelligence. [S.l.]: Wiley, 1996. I-XIV, 1-576 p. (Sixth-generation computer

technology series). ISBN 978-0-471-00675-6.

OLSSON, R. pktgen the linux packet generator. In: Proceedings of the 2005

Ottawa Linux Symposium. [S.l.: s.n.], 2005. v. 2.

PISA, P. et al. Openflow and xen-based virtual network migration. In: PONT, A.;

PUJOLLE, G.; RAGHAVAN, S. (Ed.). Communications: Wireless in Develop-

ing Countries and Networks of the Future. [S.l.]: Springer Berlin Heidelberg,

2010, (IFIP Advances in Information and Communication Technology, v. 327). p.

170–181. ISBN 978-3-642-15475-1.

PREHOFER, C.; BETTSTETTER, C. Self-organization in communication net-

works: principles and design paradigms. Communications Magazine, IEEE,

v. 43, n. 7, p. 78–85, 2005. ISSN 0163-6804.

RUTH, P. et al. Autonomic live adaptation of virtual computational environments

in a multi-domain infrastructure. In: Autonomic Computing, 2006. ICAC ’06.

IEEE International Conference on. [S.l.: s.n.], 2006. p. 5–14.

SAMAAN, N.; KARMOUCH, A. Towards autonomic network management: an

analysis of current and future research directions. Communications Surveys

Tutorials, IEEE, v. 11, n. 3, p. 22–36, 2009. ISSN 1553-877X.

SENNA DANIEL M. BATISTA, M. A. S. J. C. R.; MADEIRA, E. R. M. Ex-

periments with a self-management system for virtual networks. In: Anais /

II Workshop de Pesquisa Experimental da Internet do Futuro. Campo

Grande, MS, Brazil: [s.n.], 2011. p. 7–10. ISBN 2177-496X. Dispońıvel em:

<http://sbrc2011.facom.ufms.br/files/workshops/wpeif/wpeif.pdf>.

SERUGENDO, G. D. M.; GLEIZES, M. P.; KARAGEORGOS, A. Self-organisation

and emergence in mas: An overview. Informatica (Slovenia), v. 30, n. 1, p.

45–54, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Chapter 9. Bibliography 90

SERUGENDO, G. M. et al. Self-organisation: Paradigms and applications. In:

SERUGENDO, G. M. et al. (Ed.). Engineering Self-Organising Systems. [S.l.]:

Springer Berlin Heidelberg, 2004, (Lecture Notes in Computer Science, v. 2977).

p. 1–19. ISBN 978-3-540-21201-0.

SPIVEY, J. M. The Z Notation: A Reference Manual. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1989. ISBN 0-13-983768-X.

TESAURO, G. et al. A multi-agent systems approach to autonomic computing. In:

Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. [S.l.:

s.n.], 2004. p. 464–471.

TINNEMEIER, N.; DASTANI, M.; MEYER, J.-J. Roles and norms for program-

ming agent organizations. In: Proceedings of The 8th International Con-

ference on Autonomous Agents and Multiagent Systems - Volume 1.

Richland, SC: International Foundation for Autonomous Agents and Multiagent

Systems, 2009. (AAMAS ’09), p. 121–128. ISBN 978-0-9817381-6-1. Dispońıvel

em: <http://dl.acm.org/citation.cfm?id=1558013.1558029>.

TUOMELA, R. The Importance of Us: A Philosophical Study of Basic Social

Notions. [S.l.]: Stanford University Press, 1995.

WINTER, R.; SCHILLER, J. Crosstalk: A data dissemination-based crosslayer

architecture for mobile ad-hoc networks. In: in Proceedings of ASWN. [S.l.:

s.n.], 2005.

WINTER, R. et al. Crosstalk: cross-layer decision support based on global knowl-

edge. Communications Magazine, IEEE, v. 44, n. 1, p. 93–99, Jan 2006. ISSN

0163-6804.

YU, M. et al. Rethinking virtual network embedding: Substrate support for path

splitting and migration. SIGCOMM Comput. Commun. Rev., ACM, New York,

NY, USA, v. 38, n. 2, p. 17–29, mar. 2008. ISSN 0146-4833. Dispońıvel em:

<http://doi.acm.org/10.1145/1355734.1355737>.

ZAMBONELLI, F. et al. On self-adaptation, self-expression, and self-awareness

in autonomic service component ensembles. In: Proceedings of the

2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing

Systems Workshops. Washington, DC, USA: IEEE Computer Society,

2011. (SASOW ’11), p. 108–113. ISBN 978-0-7695-4545-5. Dispońıvel em:

<http://dx.doi.org/10.1109/SASOW.2011.24>.

ZHU, Y.; AMMAR, M. H. Algorithms for assigning substrate network resources to

virtual network components. In: INFOCOM. [S.l.]: IEEE, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

A
Details of XEN: The virtualizing tool

Xen is open source industry software for machine virtualization. It offers

an efficient, strong and secure feature set for virtualization. The OS supported

by Xen are Windows and Linux, which makes it neutral. Being independent,

Xen allows Domain 0 to be the unique VM and it has control over all the other

VMs.

Xen is a virtualizing tool that provides as built-in features, (i) creation

of virtual machines and (ii) live virtual machine migration. The creation of

virtual machine is straightforward. To perform live VM migration, however,

certain requirements must be fulfilled.

A.1
Creating Virtual Machines

The autonomic creation and instantiation of a new virtual machine on the

top of a physical network is an important feature of this work. Thus, whenever

an agent makes a decision regarding adaptive plans, the creation of a new

virtual machine may be involved. For instance, the adaptive plan responsible

for replacing an affected virtual router triggers the creation of a new virtual

router to replace the affected one. To this end, we use the instantiation of a

virtual machine mechanism offered by XEN capabilities.

XEN standard offers several different ways to create a new guest domain

on the top of a physical machine. Even not being the purpose of this master’s

thesis cover Xen functions, for the sake of optimization, however, we have had

to evaluate different ways of doing so, in order to achieve a significant virtual

speed-up at instantiation phase of the virtual machine creation task.

Creating a new virtual machine from a previous installation takes two

minutes to complete. On the other hand, if we simple copy a virtual machine

from a cache repository, it takes less than two seconds to complete. Note that,

to validate the creation of a virtual machine, we use Ubuntu 12.4 (without

GUI) as the OS. To start a virtual machine, therefore, XEN takes less than

one second to starts up a virtual Ubuntu OS.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

Appendix A. Details of XEN: The virtualizing tool 92

A.2
Performing Live VM Migration

To perform live VM migration, there are certain requirements to follow.

Templates of the virtual machine have to be stored on both hosts. The live

VM migration is done easily, when we have OS images stored on the physical

machines. Thus, XEN is responsible for copying the current state and all

running services of the affected virtual machine to the destination host. On

the physical network we provide (Appendix B), the total time of executing a

Live VM migration is about 6 seconds.

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

B
Experimental Environment Details

In order to validade our proposed model, we built a real physical network

composed of five machines, specified as follow:

–16GB RAM

–Intel(R) Core(TM) i7- 2600 CPU @ 3.40GHz

–2 terabyte of Hard Drive

–Intel Gigabit ET Dual Port Server Adapter PCI Express

–Ubuntu 12.4

–Xen 4.2 as the virtualization tool. Refer to section XX, for further details.

As already stated, the autonomic monitoring function described on this

thesis collects and analyzes different data regarding link and resource usage.

They are:

–Link health:

Capacity, Propagation delay, error rate, transmission delay, Packet loss,

Packet out of order.

–Operational System resource heath:

CPU, Memory RAM, Fowarding delay, Fowarding capacity, processing

delay.

Finally, to evaluate different adaptive cases, we needed to force some

network degradation events. To this end, we used a linux testing tool named

Pktgen1 (Olsson, 2005), which is included in the Linux kernel. Pktgen is used

to generate ordinary packets to test network experiments. It specially involves

testing of routers or bridges which often also use the Linux network stack.

Because Pktgen is a “in-kernel” tool it can generate high bandwith and very

high packet rates to load routers, bridges, and other network devices.

1http://people.kth.se/ danieltt/pktgen/

DBD
PUC-Rio - Certificação Digital Nº 1212364/CB

	A Multiagent Based Context-Aware and Self-Adaptive Model for Virtual Network Provisioning
	Resumo
	Table of Contents
	Introduction
	Problem Statement
	Objectives
	Contribution
	Master's Thesis Organization

	Background
	Network Virtualization
	Multiagent System
	Self-Organization, Self-* properties & Self-Awareness
	Norms & Reputation
	XEN: A Virtualization Tool

	Related Work
	Virtual Network
	Dynamic VN Management
	Autonomic Computing & Networking
	Self-* & Normative models

	Context-Aware Self-Organizing Model
	Critical Scenarios
	Enabling Self-Adaptation
	Autonomic Control Loop

	Towards Context-Awareness
	Agent Communication
	From Monitoring to Decision Making
	Knowledge Process
	Knowledge Acquiring

	Towards Normative Self-tuning
	Approaching Self-tuning
	Exteding the Autonomic Control Loop
	Enabling Self-tuning

	Evaluation
	Experimental Setup
	Evaluation Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Details of XEN: The virtualizing tool
	Creating Virtual Machines
	Performing Live VM Migration

	Experimental Environment Details

