
2. 
Background

This chapter provides an overview of the main concepts related to this

dissertation. Section 2.1 introduces the main concepts, elements and the current

state of the Semantic Web. Section 2.2 presents an overview of the field of natural

language processing, including state of art techniques we applied in this work.

Finally, Section 2.3 presents the theory of the Logistic Regression and how we

apply it to classification problems.

2.1. The Semantic Web

2.1.1. An Architecture for the Semantic Web

The idea behind the Semantic Web was first presented by Berners-Lee et. al.

(2011) which described the evolution of a Web of documents published for human

consumption to one that included extra data for computers to manipulate. That

extra data should be conceived through a semantic theory such that the

information contained in the documents could be interpreted.

The main problem that the Semantic Web aims to solve is the

interoperability between systems. The semantic theory provides a set of

interpretable symbols such that it offers logical connections between data sources.

The architecture proposed for the Semantic Web in (Berners-Lee, T. et. al.

2011) is depicted in Figure 1. The Coding layer provides character encoding

(Unicode) and referencing (URI) mechanism. The Structure layer defines XML as

the standard for document exchange and RDF for data representation. The

Inference layer adapts resources available on the Web to the definitions stated on

the Structure Layer.

!
!

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 16

!

Figure 1: An architecture for the Semantic Web (Available at: http://www.w3.org/2000/Talks/
1206-xml2k-tbl/Overview.html)

We discuss in details each layer and the components of the Semantic Web,

along with the Linked Data Principles which state rules to achieve the

interoperability between systems and data sources. Finally, we overview the

Linked Open Data Project, which covers existing datasets available under open

licenses in the Semantic Web.

2.1.2.The Coding Layer

The Coding Layer sets standards for character encoding in the Semantic

Web and defines a referencing pattern for uniquely identify resources. The

Unicode Standard is the universal character encoding standard for written

characters and text. It is maintained by the Unicode Consortium and their mission

is to create a specification consistent enough to provide ways of encoding

multilingual text such that it can be exchange internationally creating a foundation

for global software (Allen et al. 2012). As default encoding of HTML and XML,

the Unicode Standard is a natural choice for the Semantic Web since the Structure

Layer of its architecture is based on XML.

The referencing mechanism defined in the Coding Layer is based on

Uniform Resource Identifiers (URI). As they identify resources they are an

http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 17

essential part of the Semantic Web. (Berners-Lee et al. 2005). URIs are

independent regarding the context of interpretation, therefore, by theory they have

a global scope. Then, once a resource is referenced by an URI, anyone can

retrieve a representation of such resource and link to it. Figure 2 illustrates the use

of an URI to identify a resource and a possible representation when retrieving the

same resource using the URI.

!

Figure 2: An example of the referencing mechanism using URI (Ian Jacobs 2004).

Considering the Semantic Web aims, URIs provide groundings for both

object and relations referencing. When processing data, applications of the

Semantic Web process at the bottom layer only URIs.

2.1.3.The Structure Layer

The Structure layer introduces XML as the standard for document exchange

and RDF for data representation.

2.1.3.1. XML + XML Schema + XML Namespaces

The Extensible Markup Language (XML) is a general purpose markup

language that is known for its simplicity to parse, to use and to specify specific

purpose markup languages (Bray, T. et al. 2008). XML was developed by a

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 18

special working group from the World Wide Web Consortium (W3C). The current

W3C Recommendation dates February 2013.

An example of application of XML is showed in Figure 3. In that, the

definition of a markup language for defining books is applied. In that case, books

are uniquely represented by the key ‘ISBN’ and contains two attributes ‘title’ and

‘author’.

!

Figure 3: An example of XML for representing books.

Any markup language can be defined using XML. One important markup

language is the XML Schema that is defined by a set of well-defined constraints

on XML. The main ones are Document Type Definitions (DTDs), Relax-NG,

Schematron and W3C XSD (XML Schema Definitions). W3C defined DTDs and

XSD as its primary schemas languages.

XML Schema can be used for applying a vocabulary of elements and

attributes to a document, for associating types such as integers, float, strings, etc

to values in the document, to constrain where elements can appear in the

document, to provide documentation for the document giving a formal

description, etc. The term validation in XML Schema context refers to the process

of validating a given document to one XML Schema. This step is an important

process of quality assurance.

In order to give an example of one application of XML Schema, we shall

discuss the concept of XML Namespaces. In the exchange of XML documents,

name conflicts may occur. In general, when trying to use different XML

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 19

documents in a same application, the semantics behind names defined by the

creator of the document can be ambiguous. Consider the example in the Figure 4

containing an example of an XML representing two documents: the first one at the

top is a part of an HTML file describing an HTML table element and the second

one at the bottom is an XML describing attributes about one table, a furniture.

!
!
!
!
!
!
!

 Figure 4: Two stretches of XML files. At the top an HTML table and at the bottom
values about a table (furniture)

If the two stretches of XML files in Figure 4 were used by the same

application, a conflict with the name ‘table’ would happen since the word ‘table’

is being interchangeably used across different semantic contexts. XML

Namespaces are sets of names defined, generally, in a same context.

XML Namespaces are implemented using prefixes before the name stated

for elements in a XML document. Namespaces are defined using the xmls

attribute. In the example of Figure 4, namespaces would solve the conflict

problem. Its implementation is showed in Figure 5.

Figure 5 describes the application of two namespaces h and f, for HTML

tags and for furniture respectively. Each namespace is declared at the begging of

the file linking for a resource on the Web were that namespace is defined formally

giving semantics for all elements that it defines. The purpose is to give a unique

name for each XML Schema.

!
!
!

<table>
 <tr>
 <td>First cell</td>
 <td>Second cell</td>
 </tr>
</table> !!
<table>
 <name>African Coffee Table</name>
 <width>80</width>
 <length>120</length>
</table>

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 20

We are now able to give a complete example of a XML Schema application.

Figure 6 shows an example of XML document representing the overview of one

shipping order. According to the document, one shipping order is consisted by an

order ID represented by the key attribute orderid, the name of the person who

created the order represented by the element orderperson, the name of the

costumer represented by the element shipto, containing a name, address, city and

country, and a sequence of items represented by the element item. Every item is

defined by the elements title, note, quantity and price.

Figure 5: Use of namespaces in an XML document with name conflicts

In order to be valid for a given application, the document in Figure 6 must

be valid against a schema. In that example, the schema is defined in the file

shiporder.xsd, which comprises a file containing an XML Schema. A complete

and valid XML Schema for the XML document in Figure 6 is showed in Figure 7.

The XML Schema in Figure 7 document is defined by the declaration of the

element xs:schema, defined by the namespace formalized by the W3C. Every

XML Schema file must reference the same namespace to be considered a valid

XML Schema.

An XML Schema can be interpreted as a tree where every node is

constituted of attributes and children nodes with the same definition. In Figure 7,

the root element shiporder is declared with only one attribute named orderid and

type xs:string. Its children are defined by a sequence of elements inside a complex

<root xmlns:h="http://www.w3.org/TR/html4/"
xmlns:f="http://www.w3schools.com/furniture"> !
<h:table>
 <h:tr>
 <h:td>First Cell</h:td>
 <h:td>Second Cell</h:td>
 </h:tr>
</h:table> !
<f:table>
 <f:name>African Coffee Table</f:name>
 <f:width>80</f:width>
 <f:length>120</f:length>
</f:table> !
</root>

http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture
http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 21

type element declaration. Note that the same tree hierarchy presented in Figure 6

is declared in the tree fashion in Figure 7.

Special declarations such as number of occurrences of children are also

available in the XML Schema specification. In Figure 7, for example, the element

named by item is explicitly declared to have no limit of occurrence. The default

value for limit of occurrences is 1.

Figure 6: Example of an XML document representing a shipping order

!

<?xml version="1.0" encoding="UTF-8"?> !
<shiporder orderid="889923"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="shiporder.xsd">
 <orderperson>John Smith</orderperson>
 <shipto>
 <name>Ola Nordmann</name>
 <address>Langgt 23</address>
 <city>4000 Stavanger</city>
 <country>Norway</country>
 </shipto>
 <item>
 <title>Empire Burlesque</title>
 <note>Special Edition</note>
 <quantity>1</quantity>
 <price>10.90</price>
 </item>
 <item>
 <title>Hide your heart</title>
 <quantity>1</quantity>
 <price>9.90</price>
 </item>
</shiporder>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 22

Figure 7: Example of an XML Schema that is valid for the XML Document in Figure 6

2.1.3.2. RDF + RDF Schema

The Resource Description Format (RDF) is a standard data model defined

by W3C. The basic idea behind the RDF is that a resource is described using

statements in the form subject-predicate-object expressions. In this context, such

statements are known as triples. A subject is the current resource being described,

predicates are defined by an URI referencing its formal definition and an object

can be a value or an URI referencing other resource.

A triple can be classified by the type of its object. Two classes are defined:

datatype property or object property. A datatype property is a triple that its object

is a basic value such as integer numbers, strings, float point numbers, etc. An

object property is a triple that its object is a URI referencing another resource.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> !
<xs:element name="shiporder">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="orderperson" type="xs:string"/>
 <xs:element name="shipto">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="item" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="note" type="xs:string"/>
 <xs:element name="quantity"
type="xs:positiveInteger"/>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="orderid" type="xs:string" use="required"/
>
 </xs:complexType>
</xs:element> !
</xs:schema>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 23

There are several standards to write out an RDF. Those standards are called

format serialization syntaxes for RDF. The two most common standards are the

Notation 3 (N3) standard and the RDF/XML standard.

In Figure 8, an RDF about a resource describing a resource is serialized in

N3 format. In this example there are three triples. The first two ones give

geolocation information about a resource identified by URI <http://www.puc-

rio.br>. The third triple states a title for another URI <http://www.inf.puc-rio.br>.

The last triple states that the two objects relate to each other by the predicate

edu:hasDept, which indicates that the subject has a department referenced by the

object. The last triple is an object property and the first three triples are datatype

properties.

Figure 8: Example of an RDF resource in N3 format

The same example in Figure 8 is given in Figure 9 in the RDF/XML format.

They describe the same resources with the same number of triples. In the RDF/

XML format triples are grouped by object.

Figure 9: Example of an RDF resource in RDF/XML format

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix edu: <http://www.example.org/> . !
<http://www.puc-rio.br> geo:lat "22.97S" ; geo:long "43.23W" .
<http://www.inf.puc-rio.br> dc:title "Departamento de
Informática" .
<http://www.puc-rio.br> edu:hasDept <http://www.inf.puc-rio.br> .

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:geo="http://www. w3.org/2003/01/geo/wgs84_pos#"
 xmlns:edu="http://www.example.org/"> !
 <rdf:Description rdf:about="http://www.puc-rio.br">
 <geo:lat>22.97S</geo:lat>
 <geo:long>43.23W</geo:long>
 <edu:hasDept rdf:resource="http://www.inf.puc-rio.br"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.inf.puc-rio.br">
 <dc:title>Departamento de Informática</dc:title>
 </rdf:Description>
</rdf:RDF>

http://www.puc-rio.br
http://www.inf.puc-rio.br
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www
http://www.example.org
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.cs.princeton.edu
http://purl.org/dc/elements/1.1/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.example.org/
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www
http://www.example.org
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.cs.princeton.edu
http://purl.org/dc/elements/1.1/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.example.org/
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.princeton.edu
http://www.cs.princeton.edu
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 24

In Figure 8 and 9, a graph model is serialized. This graph is depicted in

Figure 10.

!
Figure 10: The graph model described in the RDF examples of Figure 8 and 9

!
In order to structure RDF resources, a set of classes with certain properties

which are not specific for any application were published by the W3C as a schema

called RDF Schema or RDFS. It provides a framework for describing application-

specific classes and properties. The entire definition of RDF Schema is given by

Brickley, et al. (2014). The following list gives examples of main constructs from

RDFS:

• rdfs:Class declares a class for one given resource

• rdf:Property defines classes of properties for resources

• rdfs:domain declares the class of subjects

• rdfs:range declares the class which a object of a triple must belong to

• rdf:type states that a resource is an instance of a given class

• rdfs:subClassOf defines hierarchy of classes

An example of the use of constructs of RDF Schema is given in Figure 11.

In that example, a class animal is defined and a subclass horse of animal is also

declared. The use of RDFS is made defining an XML Namespace rdfs.

!

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 25

Figure 11: Example of the use of constructs of RDF Schema to define a class hierarchy

2.1.4.The Inference Layer

The Inference Layer in the Semantic Web architecture uses RDF and RDF

Schema as mechanisms to describe resources on the Web in a form of ontology

descriptions. More semantics can also be achieved with the use of expressive rule

languages. Rules are of the form of an implication between an antecedent and

consequent. The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent

must also hold.

2.1.4.1. Ontology Description Languages

The term ontology was defined in philosophy to distinguish the study of

“being” from the study of various kinds of beings in natural sciences (Breitman et

al. 2006).

In the Semantic Web literature, the most quoted definition for ontology is

the one presented by Gruber (1993) which states that “an ontology is a formal,

explicit specification of a shared conceptualization”. In our context, this means

that an ontology must describe an abstract model which is clearly well defined

and is stated in a machine processable format.

The W3C Consortium has a more succinct definition stating that: “Ontology

is a term borrowed from philosophy that refers to the science of describing the

kinds of entities in the world and how they are related” (McGuinness et al. 2004).

<?xml version="1.0"?> !
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.animals.fake/animals#"> !
<rdfs:Class rdf:ID="animal" /> !
<rdfs:Class rdf:ID="horse">
 <rdfs:subClassOf rdf:resource="#animal"/>
</rdfs:Class> !
</rdf:RDF>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.animals.fake/animals#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.animals.fake/animals#
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 26

Their stated propose suggests that ontologies should provide descriptions for the

following elements:

• Classes (or “Things”) in the various domains of interest;

• Relationships among “Things”;

• Properties (or attributes) that “Things” possess.

In this work we also assume that an ontology defines a concept hierarchy or

taxonomy. In the context of computer science, a taxonomy is defined as “the

classification of information entities in the form of a hierarchy, according to the

presumed relationships of the real-world entities that they represent” (DaConta et

al. 2003). A taxonomy classifies terms hierarchically using only the father-son

relationship.

Formally, we assume that an ontology defines a set T ⊆ C x C, for the set of

classes C, where T(C1, C2) indicates that C1 is a subconcept of C2. Figure 12

depicts an example of taxonomy for the kingdoms of life defined in biology. In

order to formally describe an ontology, several ontology description languages

were defined based on RDF and RDF Schema: SHOE, DAML, Oil, DAML+Oil

and OWL.

!

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 27

Figure 12: An example of taxonomy of the kingdoms of life

!
The first ontology description language was proposed at the University of

Maryland and it was called Simple HTML Ontology Extension (SHOE). Its basic

principle were to use an extension of the HTML language with new tags to

semantically annotate Web pages.

Later, released in August 2000, the language DARPA Agent Markup

Language (DAML) was published. Sponsored by the Defense Advanced Research

Projects Agency (DARPA), the DAML was an extension of RDF and RDF

Schema in alignment of the concepts of the Semantic Web.

Meanwhile, the European Community proposed an ontology description

language based on description logic. As a result of the On-To-Knowledge Project

the language was named Ontology Inference Layer (Oil). This language motivated

the development of inference mechanisms to verify the consistency of an

specification written in Oil.

In early 2001, DAML and Oil were combined into one description language

named DAML+Oil. The effort in joining those two languages was submitted to

W3C to be evaluated as a candidate for the ontology description language for the

Semantic Web. The committee responsible for defining the standard language was

the Web Ontology Working Group (WebOnt).

In February 2004, the WebOnt group finally published the language for

describing ontologies in the Semantic Web, the Web Ontology Language (OWL).

The OWL language provides additional vocabulary based on description logic to

XML and RDF + RDF Schema.

The OWL language has three sublanguages: OWL Lite, OWL DL and OWL

Full. The OWL Lite is designed for a primary use consisting of implementations

of classification hierarchy and simple constraints. The main purpose of this

language is to provide a quick and simple migration from thesauri and other

taxonomies to the Semantic Web ontology description language. The OWL DL

supports applications that require a maximum of expressiveness while

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 28

guaranteeing completeness and decidability. For that reason, the constructs in

OWL DL which are all defined by OWL can only be used under logical

restrictions. On the other hand, the OWL Full language guarantees the maximum

expressiveness of OWL in addition of RDF constructs but there is no guarantee of

computability (completeness and decidability). In that sense, an ontology for

example can augment the definition of pre-defined vocabulary of RDF or OWL.

Figure 13 gives an example of an OWL file. This example defines an

ontology for transport. In this ontology a top class called “Transport” is defined

and two sub-classes of “Transport” are declared: “AirTransport” and

“LandTransport”. As sub-classes of “LandTransport” the classes “Bus” and “Car”

are defined. Note that OWL are just an extension of RDF and RDF Schema.

2.1.4.2. Rule Inference

The main purpose of rule inference in the Semantic Web is to find new

relationships. All the data presented in the Semantic Web are basically constituted

by resources and relationships among them. An inference in this context is the

capability of automatic algorithms to generate new relationships among the

existent resources based on the data or additional information in the form of

vocabulary, e.g. a set of rules.

Inference approaches rely on knowledge representation techniques. In fact,

such representations must be expressed in rules that define a general mechanism

on discovering and generating new relationships based on the existing ones using

for example logic programming. W3C recommends the Rule Interchangeable

Format (RIF) for exchanging rules among systems.

The RIF Working Group has been created in 2005 and is focused in two

types of dialects: the logic based dialects and dialects for rules with actions. The

logic based dialects include languages to express first-order logic often restricted

to Horn logic or non-first-order logic being based on logic programming

languages. The rules with actions dialects consists basically on the production of

rule based system based on existing systems (e.g., Jess, Drools and JRules) and

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 29

for systems based on reactive rules of the format event-condition-rules (e.g.,

Reaction RuleML and XChange).

<?xml version="1.0" encoding="UTF-8"?> !
<!DOCTYPE rdf:RDF [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
 <!ENTITY ns_transport "file://www.ibm.com/WSRR/Transport#">
]> !
<rdf:RDF
 xmlns:xsd="&xsd;"
 xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;"
 xmlns:owl="&owl;"
 xmlns:ns_transport="&ns_transport;"
>
 <owl:Ontology rdf:about="&ns_transport;TransportOntology">
 <rdfs:label>A transport classification system.</rdfs:label>
 <rdfs:comment>Cars and buses and some superclasses.</
rdfs:comment>
 </owl:Ontology> !
 <owl:Class rdf:about="&ns_transport;Transport">
 <rdfs:label>Transport</rdfs:label>
 <rdfs:comment>Top-level root class for transport.</
rdfs:comment>
 </owl:Class> !
 <owl:Class rdf:about="&ns_transport;LandTransport">
 <rdfs:subClassOf rdf:resource="&ns_transport;Transport"/>
 <rdfs:label>Land Transport.</rdfs:label>
 <rdfs:comment>Middle-level land transport class.</
rdfs:comment>
 </owl:Class> !
 <owl:Class rdf:about="&ns_transport;AirTransport">
 <rdfs:subClassOf rdf:resource="&ns_transport;Transport"/>
 <rdfs:label>Air Transport.</rdfs:label>
 <rdfs:comment>Middle-level air transport class.</
rdfs:comment>
 </owl:Class> !
 <owl:Class rdf:about="&ns_transport;Bus">
 <rdfs:subClassOf rdf:resource="&ns_transport;LandTransport"/>
 <rdfs:label>Bus.</rdfs:label>
 <rdfs:comment>Bottom-level bus class.</rdfs:comment>
 </owl:Class> !
 <owl:Class rdf:about="&ns_transport;Car">
 <rdfs:subClassOf rdf:resource="&ns_transport;LandTransport"/>
 <rdfs:label>Car.</rdfs:label>
 <rdfs:comment>Bottom-level car class.</rdfs:comment>
 </owl:Class> !
</rdf:RDF>

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.ibm.com/WSRR/Transport#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.ibm.com/WSRR/Transport#
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 30

Figure 13: An example of OWL file describing an transport ontology

2.1.5.The Linked Data Principles

One main concern that is not covered by the architecture of the Semantic

Web is on how data is published on the Web. The main principle of the Semantic

Web is that resources are linked through the definition of well-known

relationships. The principles for publishing data are proposed as a Web

architecture note by Berners-Lee et. al. (2007). They are called The Linked Data

Principles:

!
1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, it provides useful information, using the

standards (RDF, SPARQL).

4. Include links to other URIs, so they can discover more resources.

!
The first principle states that any resource in the Web, either the

identification of an object or concept, must be referenced by URIs. In this fashion,

URIs must reference conceptualizations such as people, places or even abstract

ideas as types of relationship, e.g., “knowing somebody”.

The second principle guarantees the proper identification of resources

referenced by URIs. It states that an URI can be dereferenced over the HTTP

protocol into a description of a resource it makes reference to. In the classical Web

HTTP URIs are simply used as a simple retrieval mechanism.

The third principle applies standards over the content format retrieved by

the dereferencing mechanism. It enables different applications to process Web

content. This principle recommends the use of RDF as a standard representation

(Heath et al. 2011).

The last principle states that resources must be connected to each other if a

semantic link is applicable by one known relationship. In fact, connected

resources participate in a same context. For example, if there are resources

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 31

describing a country and its capital isolated, they must be connected by the

relationship of “is capital of”. Therefore, the hyperlinks in Linked Data, known as

RDF hyperlinks, connect not only documents, but any type of thing on the Web as

well (Heath et al. 2011).

Following the Linked Data Principles, the process of publishing data

guarantees machine readability, the explicit meaning of the data, and the

possibility to link such data to external datasets (Heath et al. 2011). The set of data

published following those principles become part of a single global data space

called the Web of Data (Heath, 2009).

2.1.6.The Linked Open Data Project

In February 2007, the W3C Linking Open Data Project started under the 1

leadership of Chris Bizer and Richard Cyganiak with the aim of identifying

existing datasets available under open licenses and to publish them following the

Linked Data Principles (Heath et al. 2011). This project has the participation of

universities such as FU Berlin, MIT, KMi/The Open University, Universities of

Pennsylvania, Leipzig, London, Hannover, Galway, among others and companies

such as OpenLink Software, Talis, Zitgist and BBC (Heath, 2008).

The state of such efforts in September 2011 is depicted in Figure 14. The

metadata collected is curated by the Data Hub members. In Figure 14, each node 2

represents a dataset published following the Linked Data Principles and each

vertex represents links between resources of datasets. The thickness of every

vertex represents the number of links between resources. This set of datasets was

named the Linked Open Data Cloud (LOD Cloud).

Currently, the LOD Cloud comprehends 884 datasets and is maintained by 3

the LOD within the Comprehensive Knowledge Archive Network (CKAN), a 4

generic catalog that lists open-license datasets.

 http://linkeddata.org/1

 http://datahub.io/2

 http://datahub.io/dataset?tags=lod3

 http://ckan.org/4

http://ckan.org
DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 32

!

Figure 14: The LOD Cloud Diagram at September 2011 5

2.2. Natural Language Processing

Natural Language Processing (NLP) is a research field that studies and

develops algorithms able to understand and manipulate natural language text or

speech for a plethora of applications. The foundations of NLP lie in a wide range

of disciplines such as computer and information sciences, linguistics,

mathematics, electrical and electronic engineering, artificial intelligence and

robotics, psychology, etc. (Chowdhury 2003). In the context of this work, we use

two natural language processing techniques: sentence boundary disambiguation

and part-of-speech tagging.

2.2.1. Sentence Boundary Disambiguation

The Sentence Boundary Disambiguation (SBD) is a problem associated

with the disambiguation of sentence boundary markers in natural text. As a result,

from a given text, a list of sentences can be extracted for further processing.

 http://lod-cloud.net/5

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 33

A sentence is a fundamental and well-known unit in theoretical and

computational linguistics. Other sub-units in linguistics are constrained by the

abstract concept of sentence, which they are confined by sentence boundaries. The

conceptualization of such boundaries makes possible the processing and

understanding of sentences. Although they serve well for this purpose, boundary

graphemes, which are the smallest semantically distinguish unit in a written

language, occur more often for more than one single purpose. One example of

sentence boundary, the period, can be used for abbreviations, initials, numbers and

ellipses (Nunberg, 1990) for a linguistic discussion of punctuation and the

ambiguity of the period). Those examples can occur at the same time inside a

sentence, for example, what makes sentence detection a disambiguation problem.

Consider the following sentence extracted from an article in Wikipedia : 6

“On December 6, 2013, Apple Inc. launched iBeacon technology across its

254 U.S. retail stores.”

Although we can notice four uses of a period in the above sentence, only the

final period is a sentence boundary marker. This is an example of how complex

the sentence boundary disambiguation task can be.

The main strategy used by all the approaches on SBD is detecting

abbreviations, initials, numbers and ellipses and, by exclusion, the remaining

occurrences of periods are sentence boundaries. Surveys on SBD systems use an

standard English dataset: sections 3-6 of the Wall Street Journal (WSJ) corpus

(Marcus et al., 1993) containing around 27,000 examples.

Most of the approaches are based on lists of hand-crafted regular

expressions and abbreviations. The Alembic system (Aberdeen et al., 1995), using

this approach, achieves an error of 0.9%. Even though the error rate is very low,

this approach is very dependent on the language and genre.

Supervised Machine Learning (SML) methods were also proposed to solve

this problem. Palmer and Hearst (1997) presented Satz which is based on part-of-

speech features as input to a neural net classifier using held-out training on the

 http://en.wikipedia.org/wiki/Apple_Inc.6

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 34

WSJ dataset. Their features were generated using a 5000-word lexicon and a list

of 206 abbreviations. They achieved an error rate of 1.0%.

Also using SML, another classifier was proposed by Reynar, J. et al. (1997)

using a maximum entropy method. Named mxTerminator, it was trained on nearly

1 million words of additional WSJ extracting simple lexical features of words to

the left and right of the candidate period. It achieved an error rate of 1.2%.

Unsupervised systems were also adopted to solve the SBD problem. Two

systems are notable. The first one, Plunkt (Kiss et al., 2006), uses a log-likelihood

based heuristics to infer abbreviations and common sentence starters from a large

corpus. Although it presents an error rate of 1.65% on the WJS dataset, Plunkt is

easily adaptable but requires a large unlabeled corpus of the domain of discussion.

Plunkt is the system presented in the NLTK library (Loper et al., 2002) for Python

systems.

The second system, presented by Mikheev (2002), is based on heuristics to

decide whether words correspond to abbreviations and names or not. The original

proposal achieves an error rate of 1.41% but it can be improved by the addition of

extra tuned lists from other news groups achieving rates of 0.45% and in

combination with POS-based supervised systems give the best error rate of 0.31%

until 2009.

Gillick (2009) based his work on a supervised machine learning method. He

used Support Vector Machine with linear kernel to generate a classifier using

features based on words at the left and right of the period candidate. After a study

of combinations of features proposed by previous systems, they found that

popular features, such as lists of abbreviations, increase the error rate and should

not be considered. Their classifier, named Splitta, use eight features and achieved

an error rate of 0.25% on the WSJ corpus. Although this system achieved the best

accuracy, tests were only made with the English language.

2.2.2. Part-of-Speech Tagging

Part-of-Speech (POS) tagging consists of assigning grammatical classes to

each word in natural language sentences. This is one of the most well studied

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 35

problems in Natural Language Processing. In fact, state-of-the-art POS tagging

accuracies in a large range of languages are near 95%, English being 97.50%

(Sogaard et al., 2011).

For the English language, the most commonly used tag set is the Penn

Treebank (Mitchel et al., 1994) containing 36 tags of variations of verbs, nouns,

adjectives, adverbs, pronouns, interrogatives, etc. For example, consider the

following sentence:

“They refuse to permit us to obtain the refuse permit”

A POS tagging for the given sentence follows bellow.

('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN') !
In this example, PRP stands for personal pronoun, VBP for verb in the 3rd

person in the singular present, TO for the word to, VB for verb in the base form,

DT for determiner and NN for noun in singular form. Notice that the word refuse

in the example above illustrates a case of ambiguity. The ability to handle

ambiguity is the main aspect that defines the accuracy of a POS tagger system.

The majority of taggers applies machine learning algorithms on the Penn

Treebank WSJ corpus, that contains over one million annotated words from a

1989 Wall Street Journal material. All taggers in the literature use lexical

information as features for their classifiers.

For the English language, POS taggers have been developed using several

supervised machine learning techniques, most of which uses Hidden Markov

Models (HMM) (Brants 2000), maximum entropy models (Ratnaparkhi 1996;

Toutanova et al., 2000; Toutanova et al., 2003), conditional random fields

(Lafferty et al. 2001), perceptron learning (Collins, 2002) and bidirectional

sequence classification (Shen et al., 2007). The state-of-the-art, however, applies a

semi-supervised method based on a condensed nearest neighbor classification

(Sogaard et al., 2011).

The three POS tagger systems with best accuracy in the literature are the

SCNN (Sogaard et al., 2011) with 97.50% of token accuracy, LTAG-spinal (Shen

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 36

et al., 2007) with 97.33% and the Stanford Tagger 2.0 (Manning, 2001) with

97.32%.

2.3. Classification Methods

2.3.1. Overview

Classification is the problem of identifying to which category from a set of

categories a new observation belongs on the basis of a training set of data

containing observations whose category is known. In the machine learning

context, an observation is called instance and category is called class.

 Classifiers are separated into two categories: binary classifiers and multi-

class classifiers. This categorization considers the number of classes or set of

categories a problem has. If the set of classes contains only two classes, for

example, a spam or not a spam, sick or not, etc. A classifier is considered a binary

classifier. If the set of classes contains more than two classes, a classifier is

considered a multi-class classifier.

Every instance is interpreted by classifiers as a feature vector representing

measurable properties of the instance. Every property is called a feature, also

known as explanatory variable in the statistics context. The vector space

associated with feature vectors is called the feature space.

There are many classification algorithms (Kotsiantis 2007). The simplest

one is the nearest neighbor. Its derivative, k-nearest neighbors, is more popular.

They are examples of memory-based or instance-based classification methods

which basically compare new observations with previous instances seen in the

training set, instead of performing explicit generalization. Non-memory-based

methods, which create an explicit generalization model, include neural networks,

decision-trees , Bayes classifier, SVM’s etc.

In this work, we use a non-memory-based method called Logistic

Regression. We apply its multi-class variation, called Multinomial Logistic

Regression. x(i)

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 37

2.3.2. Logistic Regression

To establish a notation, consider a training set with m classified examples of

data. Associated with each example i we have its feature vector denoted by and

its class by . An instance is a pair and, hence, we have a set of instances

 representing our training set.

We denote the feature space by and the space of classes by . The learning

process is represented by a function 0 ≤ hθ (x(i)) ≤ 1, called the hypothesis, defined

by the logistic function or sigmoid function as:

where

and is a vector such that, , called parameter of the model.

Figure 15 depicts a plot of the sigmoid function. The learning process constitutes

an iterative model to find the optimal that best satisfies .

!

 Figure 15: An example of sigmoid function

Assume that our model generates a binary classifier, i.e., .Then, if

hθ (x(i)) < 0.5, predict y = 0 and if hθ (x(i)) ≥ 0.5, predict y = 1. Also, assume that:

hθ (x
(i)) = g(θ T x(i)) = 1

1+ e−θ
T x(i)

g(z) = 1
1+ e− z

θ

θ

χ γ

h(x(i)) = y(i), 1≤ i ≤ m

dim(θ) = dim(χ) = n

hθ (x
(i)) = y(i)

x(i) θ

y(i)

γ = {0,1}

{(x(i), y(i)) |1≤ i ≤ m}

(x(i), y(i))y(i)

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 38

where P represents the probability that a class is 1 or 0, conditionally to the

features and parameters .

Note that the statements above can be written as:

for a given instance .

Considering all instances from the training set, let us

define a feature matrix by where each line represents a feature vector of

dimension n. Also, let us define a class vector , where each dimension is

represented by .

So, given , we want to calculate as a function that describes the

total probability that a model defined by fits the instances of our training set.

This function can be written as:

We assume that instances are independent from each other. Hence, we can write:

Here we apply the principle of maximal likelihood to choose that maximizes

.

In fact, instead of maximizing , we can maximize any strictly increasing

function of . In order to simplify derivations, we choose to maximize the log

likelihood function , defined as:

P(y(i) = 1| x(i);θ) = hθ (x
(i))

P(y(i) = 0 | x(i);θ) = 1− hθ (x
(i))

P(y(i) | x(i);θ) = (hθ (x
(i)))y

(i)

(1− hθ (x
(i)))1−y

(i)

L(θ) = L(θ;X, y) = P(y | X;θ)

L(θ) = P(y(i) | x(i);θ)
i=1

m

∏

= (hθ (x
(i)))y

(i)

(1− hθ (x
(i))

i=1

m

∏)1−y
(i)

l(θ) = log(L(θ))

= y(i) log
i=1

m

∑ hθ (x
(i))+ (1− y(i))log(1− hθ (x

(i)))

(x(i), y(i))

{(x(i), y(i)) |1≤ i ≤ m}

X(m, n) x(i)

y

y(i)

θ P(y | X;θ)

θ

θ

L(θ)

L(θ)

L(θ)

l(θ)

l(θ)
θ

l(θ)

α

θ

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 39

In order that find that maximizes , we will use the gradient ascent

algorithm, which starts with an initial guess for and, at every iteration, changes

so that increases until convergence is reached. The update at every iteration is

given by:

In the equation above, is the learning rate. Taking derivatives, we write the

update rule as:

Iterations occur until convergence is reached, i.e., successive values of

vary by a very small number.

At the end of the process, we have a binary regressor that maximizes

.

2.3.3. Multi-class Perceptron

A multi-class perceptron can be computed using a binary regressor based

on Logistic Regression. The classifier is calculated using a one-vs-all strategy.

Using the same definitions described for the binary class Logistic Regression,

calculate:

for each class j. Therefore, in this case:

On a new observation x, we apply the one-vs-all strategy choosing the class j such

that returns the biggest value of hypothesis function:

θ

θ j+1 = θ j +α∇θ j
l(θ)

θ j+1 = θ j +α (y
(i) − hθ (x

(i)))x j
(i)

hθ
(j)(x(i)) = P(y = j | x(i);θ)

P(y(i) = j | x(i);θ) = hθ
(j)(x(i))

P(y(i) ≠ j | x(i);θ) = 1− hθ
(j)(x(i))

j = argmax
j

hθ
(j)(x)

l(θ)

hθ
P(y | X;θ)

hθ

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

! 40

2.4. Summary

This chapter presented the main concepts related to the solution proposed

in the dissertation. Section 2.1 presented the architecture of the Semantic Web.

Section 2.2 gave an overview of the principles and related work to two problems

in the Natural Language Processing field: sentence boundary detection and part-

of-speech tagging. Section 2.3 introduced classification methods and described

the Logistic Regression methods for the binary and multi-class classifiers.  

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA

