
2. 
Background 

This chapter provides an overview of the main concepts related to this 

dissertation. Section 2.1 introduces the main concepts, elements and the current 

state of the Semantic Web. Section 2.2 presents an overview of the field of natural 

language processing, including state of art techniques we applied in this work. 

Finally, Section 2.3 presents the theory of the Logistic Regression and how we 

apply it to classification problems. 

2.1. The Semantic Web 

2.1.1. An Architecture for the Semantic Web 

The idea behind the Semantic Web was first presented by Berners-Lee et. al. 

(2011) which described the evolution of a Web of documents published for human 

consumption to one that included extra data for computers to manipulate. That 

extra data should be conceived through a semantic theory such that the 

information contained in the documents could be interpreted. 

The main problem that the Semantic Web aims to solve is the 

interoperability between systems. The semantic theory provides a set of 

interpretable symbols such that it offers logical connections between data sources. 

The architecture proposed for the Semantic Web in (Berners-Lee, T. et. al. 

2011) is depicted in Figure 1. The Coding layer provides character encoding 

(Unicode) and referencing (URI) mechanism. The Structure layer defines XML as 

the standard for document exchange and RDF for data representation. The 

Inference layer  adapts resources available on the Web to the definitions stated on 

the Structure Layer.  

!
!
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!  

Figure 1:  An architecture for the Semantic Web (Available at: http://www.w3.org/2000/Talks/
1206-xml2k-tbl/Overview.html) 

We discuss in details each layer and the components of the Semantic Web, 

along with the Linked Data Principles which state rules to achieve the 

interoperability between systems and data sources. Finally, we overview the 

Linked Open Data Project, which covers existing datasets available under open 

licenses in the Semantic Web. 

2.1.2.The Coding Layer 

The Coding Layer sets standards for character encoding in the Semantic 

Web and defines a referencing pattern for uniquely identify resources. The 

Unicode Standard is the universal character encoding standard for written 

characters and text. It is maintained by the Unicode Consortium and their mission 

is to create a specification consistent enough to provide ways of encoding 

multilingual text such that it can be exchange internationally creating a foundation 

for global software (Allen et al. 2012). As default encoding of HTML and XML, 

the Unicode Standard is a natural choice for the Semantic Web since the Structure 

Layer of its architecture is based on XML.  

The referencing mechanism defined in the Coding Layer is based on 

Uniform Resource Identifiers (URI). As they identify resources they are an 

http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
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essential part of the Semantic Web. (Berners-Lee et al. 2005). URIs are 

independent regarding the context of interpretation, therefore, by theory they have 

a global scope. Then, once a resource is referenced by an URI, anyone can 

retrieve a representation of such resource and link to it. Figure 2 illustrates the use 

of an URI to identify a resource and a possible representation when retrieving the 

same resource using the URI. 

!  

Figure 2:  An example of the referencing mechanism using URI (Ian Jacobs 2004). 

Considering the Semantic Web aims, URIs provide groundings for both 

object and relations referencing. When processing data, applications of the 

Semantic Web process at the bottom layer only URIs. 

2.1.3.The Structure Layer 

The Structure layer introduces XML as the standard for document exchange 

and RDF for data representation. 

2.1.3.1. XML + XML Schema + XML Namespaces 

The Extensible Markup Language (XML) is a general purpose markup 

language that is known for its simplicity to parse, to use and to specify specific 

purpose markup languages (Bray, T. et al. 2008). XML was developed by a 
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special working group from the World Wide Web Consortium (W3C). The current 

W3C Recommendation dates February 2013.  

An example of application of XML is showed in Figure 3. In that, the 

definition of a markup language for defining books is applied. In that case, books 

are uniquely represented by the key ‘ISBN’ and contains two attributes ‘title’ and 

‘author’. 

!  

Figure 3:  An example of XML for representing books. 

Any markup language can be defined using XML. One important markup 

language is the XML Schema that is defined by a set of well-defined constraints 

on XML. The main ones are Document Type Definitions (DTDs), Relax-NG, 

Schematron and W3C XSD (XML Schema Definitions). W3C defined DTDs and 

XSD as its primary schemas languages. 

XML Schema can be used for applying a vocabulary of elements and 

attributes to a document, for associating types such as integers, float, strings, etc 

to values in the document, to constrain where elements can appear in the 

document, to provide documentation for the document giving a formal 

description, etc. The term validation in XML Schema context refers to the process 

of validating a given document to one XML Schema. This step is an important 

process of quality assurance. 

In order to give an example of one application of XML Schema, we shall 

discuss the concept of XML Namespaces. In the exchange of XML documents, 

name conflicts may occur. In general, when trying to use different XML 
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documents in a same application, the semantics behind names defined by the 

creator of the document can be ambiguous. Consider the example in the Figure 4 

containing an example of an XML representing two documents: the first one at the 

top is a part of an HTML file describing an HTML table element and the second 

one at the bottom is an XML describing attributes about one table, a furniture. 

 

!
!
!
!
!
!
!

               Figure 4:  Two stretches of XML files. At the top an HTML table and at the bottom 
values about a table (furniture) 

If the two stretches of XML files in Figure 4 were used by the same 

application, a conflict with the name ‘table’ would happen since the word ‘table’ 

is being interchangeably used across different semantic contexts. XML 

Namespaces are sets of names defined, generally, in a same context. 

XML Namespaces are implemented using prefixes before the name stated 

for elements in a XML document. Namespaces are defined using the xmls 

attribute. In the example of Figure 4, namespaces would solve the conflict 

problem. Its implementation is showed in Figure 5. 

Figure 5 describes the application of two namespaces h and f, for HTML 

tags and for furniture respectively. Each namespace is declared at the begging of 

the file linking for a resource on the Web were that namespace is defined formally 

giving semantics for all elements that it defines. The purpose is to give a unique 

name for each XML Schema. 

!
!
!

<table> 
  <tr> 
    <td>First cell</td> 
    <td>Second cell</td> 
  </tr> 
</table> !!
<table> 
  <name>African Coffee Table</name> 
  <width>80</width> 
  <length>120</length> 
</table> 
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We are now able to give a complete example of a XML Schema application. 

Figure 6 shows an example of XML document representing the overview of one 

shipping order. According to the document, one shipping order is consisted by an 

order ID represented by the key attribute orderid, the name of the person who 

created the order represented by the element orderperson, the name of the 

costumer represented by the element shipto, containing a name, address, city and 

country, and a sequence of items represented by the element item. Every item is 

defined by the elements title, note, quantity and price. 

Figure  5:  Use of namespaces in an XML document with name conflicts 

In order to be valid for a given application, the document in Figure 6 must 

be valid against a schema. In that example, the schema is defined in the file 

shiporder.xsd, which comprises a file containing an XML Schema. A complete 

and valid XML Schema for the XML document in Figure 6 is showed in Figure 7. 

The XML Schema in Figure 7 document is defined by the declaration of the 

element xs:schema, defined by the namespace formalized by the W3C. Every 

XML Schema file must reference the same namespace to be considered a valid  

XML Schema. 

An XML Schema can be interpreted as a tree where every node is 

constituted of attributes and children nodes with the same definition. In Figure 7, 

the root element shiporder is declared with only one attribute named orderid  and 

type xs:string. Its children are defined by a sequence of elements inside a complex 

<root xmlns:h="http://www.w3.org/TR/html4/" 
xmlns:f="http://www.w3schools.com/furniture"> !
<h:table> 
  <h:tr> 
    <h:td>First Cell</h:td> 
    <h:td>Second Cell</h:td> 
  </h:tr> 
</h:table> !
<f:table> 
  <f:name>African Coffee Table</f:name> 
  <f:width>80</f:width> 
  <f:length>120</f:length> 
</f:table> !
</root>

http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture
http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture
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type element declaration. Note that the same tree hierarchy presented in Figure 6 

is declared in the tree fashion in Figure 7. 

Special declarations such as number of occurrences of children are also 

available in the XML Schema specification. In Figure 7, for example, the element 

named by item is explicitly declared to have no limit of occurrence. The default 

value for limit of occurrences is 1. 

Figure  6:  Example of an XML document representing a shipping order 

!

<?xml version="1.0" encoding="UTF-8"?> !
<shiporder orderid="889923" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="shiporder.xsd"> 
  <orderperson>John Smith</orderperson> 
  <shipto> 
    <name>Ola Nordmann</name> 
    <address>Langgt 23</address> 
    <city>4000 Stavanger</city> 
    <country>Norway</country> 
  </shipto> 
  <item> 
    <title>Empire Burlesque</title> 
    <note>Special Edition</note> 
    <quantity>1</quantity> 
    <price>10.90</price> 
  </item> 
  <item> 
    <title>Hide your heart</title> 
    <quantity>1</quantity> 
    <price>9.90</price> 
  </item> 
</shiporder>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
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Figure  7:  Example of an XML Schema that is valid for the XML Document in Figure 6 

2.1.3.2. RDF + RDF Schema 

The Resource Description Format (RDF) is a standard data model defined 

by W3C. The basic idea behind the RDF is that a resource is described using 

statements in the form subject-predicate-object expressions. In this context, such 

statements are known as triples. A subject is the current resource being described, 

predicates are defined by an URI referencing its formal definition and an object 

can be a value or an URI referencing other resource. 

A triple can be classified by the type of its object. Two classes are defined: 

datatype property or object property. A datatype property is a triple that its object 

is a basic value such as integer numbers, strings, float point numbers, etc. An 

object property is a triple that its object is a URI referencing another resource. 

<?xml version="1.0" encoding="UTF-8" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> !
<xs:element name="shiporder"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="orderperson" type="xs:string"/> 
      <xs:element name="shipto"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="name" type="xs:string"/> 
            <xs:element name="address" type="xs:string"/> 
            <xs:element name="city" type="xs:string"/> 
            <xs:element name="country" type="xs:string"/> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
      <xs:element name="item" maxOccurs="unbounded"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="title" type="xs:string"/> 
            <xs:element name="note" type="xs:string"/> 
            <xs:element name="quantity" 
type="xs:positiveInteger"/> 
            <xs:element name="price" type="xs:decimal"/> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
    <xs:attribute name="orderid" type="xs:string" use="required"/
> 
  </xs:complexType> 
</xs:element> !
</xs:schema>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
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There are several standards to write out an RDF. Those standards are called 

format serialization syntaxes for RDF. The two most common standards are the 

Notation 3 (N3) standard and the RDF/XML standard. 

In Figure 8, an RDF about a resource describing a resource is serialized in 

N3 format. In this example there are three triples. The first two ones give 

geolocation information about a resource identified by URI <http://www.puc-

rio.br>. The third triple states a title for another URI <http://www.inf.puc-rio.br>. 

The last triple states that the two objects relate to each other by the predicate 

edu:hasDept, which indicates that the subject has a department referenced by the 

object. The last triple is an object property and the first three triples are datatype 

properties. 

Figure  8:  Example of an RDF resource in N3 format 

The same example in Figure 8 is given in Figure 9 in the RDF/XML format. 

They describe the same resources with the same number of triples. In the RDF/

XML format triples are grouped by object. 

Figure  9:  Example of an RDF resource in RDF/XML format 

@prefix dc: <http://purl.org/dc/elements/1.1/> . 
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
@prefix edu: <http://www.example.org/> . !
<http://www.puc-rio.br> geo:lat "22.97S" ; geo:long "43.23W" . 
<http://www.inf.puc-rio.br> dc:title "Departamento de 
Informática" . 
<http://www.puc-rio.br> edu:hasDept <http://www.inf.puc-rio.br> . 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:dc="http://purl.org/dc/elements/1.1/" 
    xmlns:geo="http://www. w3.org/2003/01/geo/wgs84_pos#" 
    xmlns:edu="http://www.example.org/"> !
    <rdf:Description rdf:about="http://www.puc-rio.br"> 
        <geo:lat>22.97S</geo:lat> 
        <geo:long>43.23W</geo:long> 
        <edu:hasDept rdf:resource="http://www.inf.puc-rio.br"/> 
    </rdf:Description> 
     
    <rdf:Description rdf:about="http://www.inf.puc-rio.br"> 
        <dc:title>Departamento de Informática</dc:title> 
    </rdf:Description> 
</rdf:RDF> 

http://www.puc-rio.br
http://www.inf.puc-rio.br
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www
http://www.example.org
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.cs.princeton.edu
http://purl.org/dc/elements/1.1/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.example.org/
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www
http://www.example.org
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.cs.princeton.edu
http://purl.org/dc/elements/1.1/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.example.org/
http://www.princeton.edu
http://www.cs.princeton.edu
http://www.princeton.edu
http://www.cs.princeton.edu
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In Figure 8 and 9, a graph model is serialized. This graph is depicted in 

Figure 10. 

!  
Figure  10:  The graph model described in the RDF examples of Figure 8 and 9 

!
In order to structure RDF resources, a set of classes with certain properties 

which are not specific for any application were published by the W3C as a schema 

called RDF Schema or RDFS. It provides a framework for describing application-

specific classes and properties. The entire definition of RDF Schema is given by 

Brickley, et al. (2014). The following list gives examples of main constructs from 

RDFS: 

•  rdfs:Class declares a class for one given resource 

•  rdf:Property defines classes of properties for resources 

•  rdfs:domain declares the class of subjects 

•  rdfs:range declares the class which a object of a triple must belong to 

•  rdf:type states that a resource is an instance of a given class 

•  rdfs:subClassOf defines hierarchy of classes 

An example of the use of constructs of RDF Schema is given in Figure 11. 

In that example, a class animal is defined and a subclass horse of animal is also 

declared. The use of RDFS is made defining an XML Namespace rdfs. 

!
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Figure  11:  Example of the use of constructs of RDF Schema to define a class hierarchy 

2.1.4.The Inference Layer 

The Inference Layer in the Semantic Web architecture uses RDF and RDF 

Schema as mechanisms to describe resources on the Web in a form of ontology 

descriptions. More semantics can also be achieved with the use of expressive rule 

languages. Rules are of the form of an implication between an antecedent and 

consequent. The intended meaning can be read as: whenever the conditions 

specified in the antecedent hold, then the conditions specified in the consequent 

must also hold. 

2.1.4.1. Ontology Description Languages 

The term ontology was defined in philosophy to distinguish the study of 

“being” from the study of various kinds of beings in natural sciences (Breitman et 

al. 2006). 

In the Semantic Web literature, the most quoted definition for ontology is 

the one presented by Gruber (1993) which states that “an ontology is a formal, 

explicit specification of a shared conceptualization”. In our context, this means 

that an ontology must describe an abstract model which is clearly well defined 

and is stated in a machine processable format. 

The W3C Consortium has a more succinct definition stating that: “Ontology 

is a term borrowed from philosophy that refers to the science of describing the 

kinds of entities in the world and how they are related” (McGuinness et al. 2004). 

<?xml version="1.0"?> !
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xml:base="http://www.animals.fake/animals#"> !
<rdfs:Class rdf:ID="animal" /> !
<rdfs:Class rdf:ID="horse"> 
  <rdfs:subClassOf rdf:resource="#animal"/> 
</rdfs:Class> !
</rdf:RDF>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.animals.fake/animals#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.animals.fake/animals#
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Their stated propose suggests that ontologies should provide descriptions for the 

following elements: 

• Classes (or “Things”) in the various domains of interest; 

• Relationships among “Things”; 

• Properties (or attributes) that “Things” possess. 

In this work we also assume that an ontology defines a concept hierarchy or 

taxonomy. In the context of computer science, a taxonomy is defined as “the 

classification of information entities in the form of a hierarchy, according to the 

presumed relationships of the real-world entities that they represent” (DaConta et 

al. 2003). A taxonomy classifies terms hierarchically using only the father-son 

relationship. 

Formally, we assume that an ontology defines a set  T ⊆ C x C, for the set of 

classes C, where T(C1, C2) indicates that C1 is a subconcept of C2. Figure 12 

depicts an example of taxonomy for the kingdoms of life defined in biology. In 

order to formally describe an ontology, several ontology description languages 

were defined based on RDF and RDF Schema: SHOE, DAML, Oil, DAML+Oil 

and OWL. 

!
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Figure 12:  An example of taxonomy of the kingdoms of life 

!
The first ontology description language was proposed at the University of 

Maryland and it was called Simple HTML Ontology Extension (SHOE). Its basic 

principle were to use an extension of the HTML language with new tags to 

semantically annotate Web pages. 

Later, released in August 2000, the language DARPA Agent Markup 

Language (DAML) was published. Sponsored by the Defense Advanced Research 

Projects Agency (DARPA), the DAML was an extension of RDF and RDF 

Schema in alignment of the concepts of the Semantic Web. 

Meanwhile, the European Community proposed an ontology description 

language based on description logic. As a result of the On-To-Knowledge Project 

the language was named Ontology Inference Layer (Oil). This language motivated 

the development of inference mechanisms to verify the consistency of an 

specification written in Oil. 

In early 2001, DAML and Oil were combined into one description language 

named DAML+Oil. The effort in joining those two languages was submitted to 

W3C to be evaluated as a candidate for the ontology description language for the 

Semantic Web. The committee responsible for defining the standard language was 

the Web Ontology Working Group (WebOnt). 

In February 2004, the WebOnt group finally published the language for 

describing ontologies in the Semantic Web, the Web Ontology Language (OWL). 

The OWL language provides additional vocabulary based on description logic to 

XML and RDF + RDF Schema. 

The OWL language has three sublanguages: OWL Lite, OWL DL and OWL 

Full. The OWL Lite is designed for a primary use consisting of implementations 

of classification hierarchy and simple constraints. The main purpose of this 

language is to provide a quick and simple migration from thesauri and other 

taxonomies to the Semantic Web ontology description language. The OWL DL 

supports applications that require a maximum of expressiveness while 
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guaranteeing completeness and decidability. For that reason, the constructs in 

OWL DL which are all defined by OWL can only be used under logical 

restrictions. On the other hand, the OWL Full language guarantees the maximum 

expressiveness of OWL in addition of RDF constructs but there is no guarantee of 

computability (completeness and decidability). In that sense, an ontology for 

example can augment the definition of pre-defined vocabulary of RDF or OWL. 

Figure 13 gives an example of an OWL file. This example defines an 

ontology for transport. In this ontology a top class called “Transport” is defined 

and two sub-classes of “Transport” are declared: “AirTransport” and 

“LandTransport”. As sub-classes of  “LandTransport” the classes “Bus” and “Car” 

are defined. Note that OWL are just an extension of RDF and RDF Schema. 

2.1.4.2. Rule Inference 

The main purpose of rule inference in the Semantic Web is to find new 

relationships. All the data presented in the Semantic Web are basically constituted 

by resources and relationships among them. An inference in this context is the 

capability of automatic algorithms to generate new relationships among the 

existent resources based on the data or additional information in the form of 

vocabulary, e.g. a set of rules. 

Inference approaches rely on knowledge representation techniques. In fact, 

such representations must be expressed in rules that define a general mechanism 

on discovering and generating new relationships based on the existing ones using 

for example logic programming. W3C recommends the Rule Interchangeable 

Format (RIF) for exchanging rules among systems. 

The RIF Working Group has been created in 2005 and is focused in two 

types of dialects: the logic based dialects and dialects for rules with actions. The 

logic based dialects include languages to express first-order logic often restricted 

to Horn logic or non-first-order logic being based on logic programming 

languages. The rules with actions dialects consists basically on the production of 

rule based system based on existing systems (e.g., Jess, Drools and JRules) and 
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for systems based on reactive rules of the format event-condition-rules (e.g., 

Reaction RuleML and XChange). 

<?xml version="1.0" encoding="UTF-8"?> !
<!DOCTYPE rdf:RDF [ 
  <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#"> 
  <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
  <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"> 
  <!ENTITY owl "http://www.w3.org/2002/07/owl#"> 
  <!ENTITY ns_transport "file://www.ibm.com/WSRR/Transport#"> 
]> !
<rdf:RDF 
  xmlns:xsd="&xsd;" 
  xmlns:rdf="&rdf;" 
  xmlns:rdfs="&rdfs;" 
  xmlns:owl="&owl;" 
  xmlns:ns_transport="&ns_transport;" 
> 
  <owl:Ontology rdf:about="&ns_transport;TransportOntology"> 
    <rdfs:label>A transport classification system.</rdfs:label> 
    <rdfs:comment>Cars and buses and some superclasses.</
rdfs:comment> 
  </owl:Ontology> !
  <owl:Class rdf:about="&ns_transport;Transport"> 
    <rdfs:label>Transport</rdfs:label> 
    <rdfs:comment>Top-level root class for transport.</
rdfs:comment> 
  </owl:Class> !
  <owl:Class rdf:about="&ns_transport;LandTransport"> 
    <rdfs:subClassOf rdf:resource="&ns_transport;Transport"/> 
    <rdfs:label>Land Transport.</rdfs:label> 
    <rdfs:comment>Middle-level land transport class.</
rdfs:comment> 
  </owl:Class> !
  <owl:Class rdf:about="&ns_transport;AirTransport"> 
    <rdfs:subClassOf rdf:resource="&ns_transport;Transport"/> 
    <rdfs:label>Air Transport.</rdfs:label> 
    <rdfs:comment>Middle-level air transport class.</
rdfs:comment> 
  </owl:Class> !
  <owl:Class rdf:about="&ns_transport;Bus"> 
    <rdfs:subClassOf rdf:resource="&ns_transport;LandTransport"/> 
    <rdfs:label>Bus.</rdfs:label> 
    <rdfs:comment>Bottom-level bus class.</rdfs:comment> 
  </owl:Class> !
  <owl:Class rdf:about="&ns_transport;Car"> 
    <rdfs:subClassOf rdf:resource="&ns_transport;LandTransport"/> 
    <rdfs:label>Car.</rdfs:label> 
    <rdfs:comment>Bottom-level car class.</rdfs:comment> 
  </owl:Class> !
</rdf:RDF> 

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.ibm.com/WSRR/Transport#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.ibm.com/WSRR/Transport#
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Figure 13:  An example of OWL file describing an transport ontology 

2.1.5.The Linked Data Principles 

One main concern that is not covered by the architecture of the Semantic 

Web is on how data is published on the Web. The main principle of the Semantic 

Web is that resources are linked through the definition of well-known 

relationships. The principles for publishing data are proposed as a Web 

architecture note by Berners-Lee et. al. (2007). They are called The Linked Data 

Principles: 

!
1. Use URIs as names for things. 

2. Use HTTP URIs so that people can look up those names. 

3. When someone looks up a URI, it provides useful information, using the 

standards (RDF, SPARQL). 

4. Include links to other URIs, so they can discover more resources. 

!
The first principle states that any resource in the Web, either the 

identification of an object or concept, must be referenced by URIs. In this fashion, 

URIs must reference conceptualizations such as people, places or even abstract 

ideas as types of relationship, e.g.,  “knowing somebody”.  

The second principle guarantees the proper identification of resources 

referenced by URIs. It states that an URI can be dereferenced over the HTTP 

protocol into a description of a resource it makes reference to. In the classical Web 

HTTP URIs are simply used as a simple retrieval mechanism. 

The third principle applies standards over the content format retrieved by 

the dereferencing mechanism. It enables different applications to process Web 

content. This principle recommends the use of RDF as a standard representation 

(Heath et al. 2011). 

The last principle states that resources must be connected to each other if a 

semantic link is applicable by one known relationship. In fact, connected 

resources participate in a same context. For example, if there are resources 
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describing a country and its capital isolated, they must be connected by the 

relationship of “is capital of”. Therefore, the hyperlinks in Linked Data, known as 

RDF hyperlinks, connect not only documents, but any type of thing on the Web as 

well (Heath et al. 2011).  

Following the Linked Data Principles, the process of publishing data 

guarantees machine readability, the explicit meaning of the data, and the 

possibility to link such data to external datasets (Heath et al. 2011). The set of data 

published following those principles become part of a single global data space 

called the Web of Data (Heath, 2009).   

2.1.6.The Linked Open Data Project 

In February 2007, the W3C Linking Open Data Project  started under the 1

leadership of Chris Bizer and Richard Cyganiak with the aim of identifying 

existing datasets available under open licenses and to publish them following the 

Linked Data Principles (Heath et al. 2011). This project has the participation of 

universities such as FU Berlin, MIT, KMi/The Open University, Universities of 

Pennsylvania, Leipzig, London, Hannover, Galway, among others  and companies 

such as OpenLink Software, Talis, Zitgist and BBC (Heath, 2008). 

The state of such efforts in September 2011 is depicted in Figure 14. The 

metadata collected is curated by the Data Hub  members. In Figure 14, each node 2

represents a dataset published following the Linked Data Principles and each 

vertex represents links between resources of datasets. The thickness of every 

vertex represents the number of links between resources. This set of datasets was 

named the Linked Open Data Cloud (LOD Cloud). 

Currently, the LOD Cloud comprehends 884 datasets  and is maintained by 3

the LOD within the Comprehensive Knowledge Archive Network (CKAN ), a 4

generic catalog that lists open-license datasets. 

 http://linkeddata.org/1

 http://datahub.io/2

 http://datahub.io/dataset?tags=lod3

 http://ckan.org/4

http://ckan.org
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!  

Figure 14:  The LOD Cloud Diagram at September 2011  5

2.2. Natural Language Processing 

Natural Language Processing (NLP) is a research field that studies and 

develops algorithms able to understand and manipulate natural language text or 

speech for a plethora of applications. The foundations of NLP lie in a wide range 

of disciplines such as computer and information sciences, linguistics, 

mathematics, electrical and electronic engineering, artificial intelligence and 

robotics, psychology, etc. (Chowdhury 2003). In the context of this work, we use 

two natural language processing techniques: sentence boundary disambiguation 

and part-of-speech tagging.   

2.2.1. Sentence Boundary Disambiguation 

The Sentence Boundary Disambiguation (SBD) is a problem associated 

with the disambiguation of sentence boundary markers in natural text. As a result, 

from a given text, a list of sentences can be extracted for further processing. 

 http://lod-cloud.net/5
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A sentence is a fundamental and well-known unit in theoretical and 

computational linguistics. Other sub-units in linguistics are constrained by the 

abstract concept of sentence, which they are confined by sentence boundaries. The 

conceptualization of such boundaries makes possible the processing and 

understanding of sentences. Although they serve well for this purpose, boundary 

graphemes, which are the smallest semantically distinguish unit in a written 

language, occur more often for more than one single purpose. One example of 

sentence boundary, the period, can be used for abbreviations, initials, numbers and 

ellipses (Nunberg, 1990) for a linguistic discussion of punctuation and the 

ambiguity of the period). Those examples can occur at the same time inside a 

sentence, for example, what makes sentence detection a disambiguation problem. 

Consider the following sentence extracted from an article in Wikipedia : 6

“On December 6, 2013, Apple Inc. launched iBeacon technology across its 

254 U.S. retail stores.” 

Although we can notice four uses of a period in the above sentence, only the 

final period is a sentence boundary marker. This is an example of how complex 

the sentence boundary disambiguation task can be. 

The main strategy used by all the approaches on SBD is detecting 

abbreviations, initials, numbers and ellipses and, by exclusion, the remaining 

occurrences of periods are sentence boundaries. Surveys on SBD systems use an 

standard English dataset: sections 3-6 of the Wall Street Journal (WSJ) corpus 

(Marcus et al., 1993) containing around 27,000 examples. 

Most of the approaches are based on lists of hand-crafted regular 

expressions and abbreviations. The Alembic system (Aberdeen et al., 1995), using 

this approach, achieves an error of 0.9%. Even though the error rate is very low, 

this approach is very dependent on the language and genre. 

Supervised Machine Learning (SML) methods were also proposed to solve 

this problem. Palmer and Hearst (1997) presented Satz which is based on part-of-

speech features as input to a neural net classifier using held-out training on the 

 http://en.wikipedia.org/wiki/Apple_Inc.6
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WSJ dataset. Their features were generated using a 5000-word lexicon and a list 

of 206 abbreviations. They achieved an error rate of 1.0%. 

Also using SML, another classifier was proposed by Reynar, J. et al. (1997) 

using a maximum entropy method. Named mxTerminator, it was trained on nearly 

1 million words of additional WSJ extracting simple lexical features of words to 

the left and right of the candidate period. It achieved an error rate of 1.2%. 

Unsupervised systems were also adopted to solve the SBD problem. Two 

systems are notable. The first one, Plunkt (Kiss et al., 2006), uses a log-likelihood 

based heuristics to infer abbreviations and common sentence starters from a large 

corpus. Although  it presents an error rate of 1.65% on the WJS dataset, Plunkt is 

easily adaptable but requires a large unlabeled corpus of the domain of discussion. 

Plunkt is the system presented in the NLTK library (Loper et al., 2002) for Python 

systems. 

The second system, presented by Mikheev (2002), is based on heuristics to 

decide whether words correspond to abbreviations and names or not. The original 

proposal achieves an error rate of 1.41% but it can be improved by the addition of 

extra tuned lists from other news groups achieving rates of 0.45% and in 

combination with POS-based supervised systems give the best error rate of 0.31% 

until 2009. 

Gillick (2009) based his work on a supervised machine learning method. He 

used Support Vector Machine with linear kernel to generate a classifier using 

features based on words at the left and right of the period candidate. After a study 

of combinations of features proposed by previous systems, they found that 

popular features, such as lists of abbreviations, increase the error rate and should 

not be considered. Their classifier, named Splitta, use eight features and achieved 

an error rate of 0.25% on the WSJ corpus.  Although this system achieved the best 

accuracy, tests were only made with the English language. 

2.2.2. Part-of-Speech Tagging 

Part-of-Speech (POS) tagging consists of assigning grammatical classes to 

each word in natural language sentences. This is one of the most well studied 

DBD
PUC-Rio - Certificação Digital Nº 1212384/CA



!  35

problems in Natural Language Processing. In fact, state-of-the-art POS tagging 

accuracies in a large range of languages are near 95%, English being 97.50% 

(Sogaard et al., 2011).  

For the English language, the most commonly used tag set is the Penn 

Treebank (Mitchel et al., 1994) containing 36 tags of variations of verbs, nouns, 

adjectives, adverbs, pronouns, interrogatives, etc. For example, consider the 

following sentence: 

“They refuse to permit us to obtain the refuse permit” 

A POS tagging for the given sentence follows bellow. 

('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'), 
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN') !
In this example, PRP stands for personal pronoun, VBP for verb in the 3rd 

person in the singular present, TO for the word to, VB for verb in the base form, 

DT for determiner and NN for noun in singular form. Notice that the word refuse 

in the example above illustrates a case of ambiguity. The ability to handle 

ambiguity is the main aspect that defines the accuracy of a POS tagger system. 

The majority of taggers applies machine learning algorithms on the Penn 

Treebank WSJ corpus, that contains over one million annotated words from a 

1989 Wall Street Journal material. All taggers in the literature use lexical 

information as features for their classifiers. 

For the English language, POS taggers have been developed using several 

supervised machine learning techniques, most of which uses Hidden Markov 

Models (HMM) (Brants 2000), maximum entropy models (Ratnaparkhi 1996; 

Toutanova et al., 2000;  Toutanova et al., 2003), conditional random fields 

(Lafferty et al. 2001), perceptron learning (Collins, 2002) and bidirectional 

sequence classification (Shen et al., 2007). The state-of-the-art, however, applies a 

semi-supervised method based on a condensed nearest neighbor classification 

(Sogaard et al., 2011). 

The three POS tagger systems with best accuracy in the literature are the 

SCNN (Sogaard et al., 2011) with 97.50% of token accuracy, LTAG-spinal (Shen 
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et al., 2007) with 97.33% and the Stanford Tagger 2.0 (Manning, 2001) with 

97.32%. 

2.3. Classification Methods 

2.3.1. Overview 

Classification is the problem of identifying to which category from a set of 

categories a new observation belongs on the basis of a training set of data 

containing observations whose category is known. In the machine learning 

context, an observation is called instance and category is called class. 

 Classifiers are separated into two categories: binary classifiers and multi-

class classifiers. This categorization considers the number of classes or set of 

categories a problem has. If the set of classes contains only two classes, for 

example, a spam or not a spam, sick or not, etc. A classifier is considered a binary 

classifier. If the set of classes contains more than two classes, a classifier is 

considered a multi-class classifier. 

Every instance is interpreted by classifiers as a feature vector representing  

measurable properties of the instance. Every property is called a feature, also 

known as explanatory variable in the statistics context. The vector space 

associated with feature vectors is called the feature space. 

There are many classification algorithms (Kotsiantis 2007). The simplest 

one is the nearest neighbor. Its derivative, k-nearest neighbors, is more popular. 

They are examples of memory-based or instance-based classification methods 

which basically compare new observations with previous instances seen in the 

training set, instead of performing explicit generalization. Non-memory-based 

methods, which create an explicit generalization model, include neural networks, 

decision-trees , Bayes classifier, SVM’s etc. 

In this work, we use a non-memory-based method called Logistic 

Regression. We apply its multi-class variation, called Multinomial Logistic 

Regression. x(i )
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2.3.2. Logistic Regression 

To establish a notation, consider a training set with m classified examples of 

data. Associated with each example i we have its feature vector denoted by      and 

its class by    . An instance is a pair               and, hence, we have a set of instances                                           

   representing our training set. 

We denote the feature space by    and the space of classes by   . The learning 

process is represented by a function 0 ≤ hθ (x(i)) ≤ 1, called the hypothesis, defined 

by the logistic function or sigmoid function as: 

 

where 

  

and  is a vector such that,                      , called parameter of the model. 

Figure 15 depicts a plot of the sigmoid function. The learning process constitutes 

an iterative model to find the optimal  that best satisfies                      . 

!  

                   Figure 15:  An example of sigmoid function 

Assume that our model generates a binary classifier, i.e.,               .Then, if 

hθ (x(i)) < 0.5, predict y = 0 and if hθ (x(i)) ≥ 0.5, predict y = 1. Also, assume that: 

hθ (x
(i ) ) = g(θ T x(i ) ) = 1

1+ e−θ
T x( i )

g(z) = 1
1+ e− z

θ

θ

χ γ

h(x(i ) ) = y(i ), 1≤ i ≤ m

dim(θ ) = dim(χ ) = n

hθ (x
(i ) ) = y(i )

x(i ) θ

y(i )

γ = {0,1}

{(x(i ), y(i ) ) |1≤ i ≤ m}

(x(i ), y(i ) )y(i )
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where P represents the probability that a class    is 1 or 0, conditionally to the 

features      and parameters    . 

Note that the statements above can be written as: 

 

for a given instance                . 

Considering all instances                             from the training set, let us 

define a feature matrix by        where each line represents a feature vector    of 

dimension n. Also, let us define a class vector  , where each dimension is 

represented by     . 

So, given   , we want to calculate               as a function that describes the 

total probability that a model defined by   fits the instances of our training set. 

This function can be written as: 

 

We assume that  instances are independent from each other. Hence, we can write: 

 

Here we apply the principle of maximal likelihood to choose  that maximizes         

. 

In fact, instead of maximizing        , we can maximize any strictly increasing 

function of       . In order to simplify derivations, we choose to maximize the log 

likelihood function        , defined as: 

 

P(y(i ) = 1| x(i );θ ) = hθ (x
(i ) )

P(y(i ) = 0 | x(i );θ ) = 1− hθ (x
(i ) )

P(y(i ) | x(i );θ ) = (hθ (x
(i ) ))y

( i )

(1− hθ (x
(i ) ))1−y

( i )

L(θ ) = L(θ;X, y) = P(y | X;θ )

L(θ ) = P(y(i ) | x(i );θ )
i=1

m

∏

= (hθ (x
(i ) ))y

( i )

(1− hθ (x
(i ) )

i=1

m

∏ )1−y
( i )

l(θ ) = log(L(θ ))

= y(i ) log
i=1

m

∑ hθ (x
(i ) )+ (1− y(i ) )log(1− hθ (x

(i ) ))

(x(i ), y(i ) )

{(x(i ), y(i ) ) |1≤ i ≤ m}

X(m, n) x(i )

y

y(i )

θ P(y | X;θ )

θ

θ

L(θ )

L(θ )

L(θ )

l(θ )

l(θ )
θ

l(θ )

α

θ
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In order that find that maximizes    , we will use the gradient ascent 

algorithm, which starts with an initial guess for    and, at every iteration, changes                     

so that       increases until convergence is reached. The update at every iteration is 

given by: 

 

In the equation above,   is the learning rate. Taking derivatives, we write the 

update rule as: 

 

Iterations occur until convergence is reached, i.e., successive values of          

vary by a very small number. 

At the end of the process, we have a binary regressor  that     maximizes                  

. 

2.3.3. Multi-class Perceptron 

A multi-class perceptron can be computed using a binary regressor    based 

on Logistic Regression. The classifier is calculated using a one-vs-all strategy. 

Using the same definitions described for the binary class Logistic Regression, 

calculate: 

 

for each class j. Therefore, in this case: 

                

On a new observation x, we apply the one-vs-all strategy choosing the class j such 

that returns the biggest value of hypothesis function: 

 

θ

θ j+1 = θ j +α∇θ j
l(θ )

θ j+1 = θ j +α (y
(i ) − hθ (x

(i ) ))x j
(i )

hθ
( j )(x(i ) ) = P(y = j | x(i );θ )

P(y(i ) = j | x(i );θ ) = hθ
( j )(x(i ) )

P(y(i ) ≠ j | x(i );θ ) = 1− hθ
( j )(x(i ) )

j = argmax
j

hθ
( j )(x)

l(θ )

hθ
P(y | X;θ )

hθ
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2.4. Summary 

This chapter presented the main concepts related to the solution proposed   

in the dissertation. Section 2.1 presented the architecture of the Semantic Web. 

Section 2.2 gave an overview of the principles and related work to two problems 

in the Natural Language Processing field: sentence boundary detection and part-

of-speech tagging. Section 2.3 introduced classification methods and described 

the Logistic Regression methods for the binary and multi-class classifiers.  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