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Rio de Janeiro
February 2018

DBD
PUC-Rio - Certificação Digital Nº 1212404/CA



Mayra Carvalho Albuquerque

Matheuristics for Variants of the Dominating
Set Problem

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em
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Abstract

Albuquerque, Mayra Carvalho; Vidal, Thibaut Victor Gaston
(Advisor). Matheuristics for Variants of the Dominating
Set Problem. Rio de Janeiro, 2018. 87p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

This thesis addresses the Dominating Set Problem, an NP-

hard problem with great relevance in applications related to wireless

network design, data mining, coding theory, among others. The minimum

dominating set in a graph is a minimal set of vertices so that each vertex

of the graph belongs to it or is adjacent to a vertex of this set. We study

three variants of the problem: first, in the presence of weights on vertices,

searching for a dominating set with smallest total weight; second, a variant

where the subgraph induced by the dominating set needs to be connected,

and, finally, the variant that encompasses these two characteristics. To

solve these three problems, we propose a hybrid algorithm based on tabu

search with additional mathematical-programming components, leading to a

method sometimes called “matheuristic”. Several additional techniques and

large neighborhoods are also employed to reach promising regions in the

search space. Our experimental analyses show the good contribution of all

these individual components. Finally, the algorithm is tested on the covering

code problem, which can be viewed as a special case of the minimum

dominating set problem. The codes are studied for the Hamming metric

and the Rosenbloom-Tsfasman metric. For this last case, several shorter

codes were found.

Keywords
Dominating Set; Covering Code; Tabu Search; Matheuristics; Large

Neighborhood Search.
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Resumo

Albuquerque, Mayra Carvalho; Vidal, Thibaut Victor Gaston. Ma-
teuŕısticas para Variantes do Problema do Conjunto Do-
minante. Rio de Janeiro, 2018. 87p. Tese de Doutorado — Depar-
tamento de Informática, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Esta tese faz um estudo do problema do Conjunto Dominante, um

problema NP-dif́ıcil de grande relevância em aplicações relacionadas ao pro-

jeto de rede sem fio, mineração de dados, teoria de códigos, dentre outras. O

conjunto dominante mı́nimo em um grafo é um conjunto mı́nimo de vértices

de modo que cada vértice do grafo pertence a este conjunto ou é adjacente a

um vértice que pertence a ele. Três variantes do problema foram estudadas;

primeiro, uma variante na qual considera pesos nos vértices, buscando um

conjunto dominante com menor peso total; segundo, uma variante onde o

subgrafo induzido pelo conjunto dominante está conectado; e, finalmente, a

variante que engloba essas duas caracteŕısticas. Para resolver esses três pro-

blemas, propõe-se um algoritmo h́ıbrido baseado na meta-heuŕıstica busca

tabu com componentes adicionais de programação matemática, resultando

em um método por vezes chamado de “mateuŕıstica”, (matheuristic, em

inglês). Diversas técnicas adicionais e vizinhanças largas foram propostas

afim de alcançar regiões promissoras no espaço de busca. Análises experi-

mentais demonstram a contribuição individual de todos esses componen-

tes. Finalmente, o algoritmo é testado no problema do código de cobertura

mı́nima, que pode ser visto como um caso especial do problema do conjunto

dominante. Os códigos são estudados na métrica Hamming e na métrica

Rosenbloom-Tsfasman. Neste último, diversos códigos menores foram en-

contrados.

Palavras–chave
Conjunto Dominante; Código de Cobertura; Busca Tabu; Ma-

teuŕısticas; Busca em Vizinhança Larga.
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1
Introduction

New technologies for wireless data communication devices have been

gaining tremendous rise in popularity among researchers and practitioners.

A common application of these technologies comes from in wireless ad hoc

networks, in which a collection of mobile devices/nodes dynamically composes

a temporary network without any centralized administration. The nodes in

the network act as routers when exchanges of messages occurs between two

nodes. A dominating node is the one that can send a message to another node

by forwarding the message through its neighbor’s dominating node, within

the transmission range. Figure 1.1 illustrates an ad hoc network topology.

The circles show the coverage area of different mobile/fixed devices (nodes),

representing the ability of nodes to communicate.

Figure 1.1: Example of an ad hoc network topology

Dominating sets are a highly relevant subject of study in the context of

wireless networks. A dominating set for a graph is a subset of vertices that has

the following property: each vertex either belongs to the subset or is adjacent to

a vertex in the subset. The minimum dominating set (MDS) problem consists

of determining a dominating set of minimum cardinality.

For example, Figure 1.2 illustrates a dominating set for the ad hoc

network presented in Figure 1.1. The devices/nodes d1, d6 and d8 guarantee

that all nodes’ devices receive a message. Node d8 is in the dominating set,
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Chapter 1. Introduction 13

even though node d7 is already dominated by the node d6; node d8 must be

included in the dominating set so it can be dominated, in this case, by itself.

Figure 1.2: Example of a dominating set in an ad hoc network.

Dominating set problems are linked to a rich set of applications, for

example, the design of wireless sensor networks (Yu et al., 2013), the study

of social networks and influence propagation (Wang et al., 2011), protein

interaction networks (Wuchty, 2014; Nacher & Akutsu, 2016) and covering

codes (Österg̊ard, 1997), among others.

There are many variants of the DS problem proposed in the literature.

Here we focus on the three most studied ones. In a variant of this problem,

called Minimum Weight Dominating Set problem (MWDS), a non-negative

weight is defined for each vertex, and the objective is to find a dominating

set of minimum total weight. In another variant, known as the Minimum

Connected Dominating Set (MCDS), the subgraph induced by the vertices

in the dominating set has to be connected with minimum cardinality. The

third and last variant includes the two previous characteristics: the Minimum-

Weight Connected Dominating Set Problem (MWCDS).

The Domination Set problems have been the subject of many studies in

graph theory, belonging to the family of covering problems. We reformulate

the covering code problem in terms of the dominating set problem. A covering

code is a set of elements, called codewords, in a space, with the property

that every element of the space is within a fixed distance of some codeword.

The covering code problem is to find the smallest subset of codewords which

covers the remaining codewords. The fixed distance of the classic covering

problem is determined by the Hamming-metric. This metric can be extended
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Chapter 1. Introduction 14

to the Rosenbloom–Tsfasman (RT) metric, arising the RT-covering problem

(Rosenbloom & Tsfasman, 1997).

Many studies have been dedicated to finding lower and upper bounds

for the smallest cardinality of the covering codes. In particular, Castoldi &

Carmelo (2015) examined the bounds for the codes in an RT-space. Since the

RT-covering problems are directly related to the dominating set problem, we

also deal with this problem. Therefore, a part of this study is dedicated to

improving upper bounds for the covering codes in an RT-space. Finally, a brief

study of the Hamming-covering codes is carried out.

1.1
Context and Challenges

Since the minimum dominating set is a problem of the NP-hard class

Garey & Johnson (1990), developing efficient algorithms in acceptable com-

putational time is a big challenge. Most combinatorial optimization problems

have been widely studied due to the lack of such efficient algorithms to solve

them accurately, in an acceptable processing time. In addition to the theoreti-

cal motivation, these problems appear frequently in many real-life applications

where the aim is to improve or to find a satisfactory and sufficiently good so-

lutions.

The MDS can be viewed as a special case of set covering (SC) problem,

in which each vertex corresponds to a possible set. Although the research

on exact methods has culminated in very efficient solution techniques for SC,

many instances of MDS variants present graphs with medium or high densities,

leading to SC instances with large sets (i.e., dense matrices), which can be

unusually challenging. For this reason, along with emerging applications in

machine learning and social networks analysis, a line of research specific to the

MDS has been growing in intensity in recent years.

Much effort has been spent on finding approximation algorithms for DS

problems. Among the most relevant works are Johnson (1974), Chen et al.

(2004), Zou et al. (2011), and Schaudt & Schrader (2012). Exact methods

and formulations have been proposed mainly for the MCDS problem. These

approaches are unable to solve most instances in a reasonable time (van Rooij

& Bodlaender, 2011; Lucena et al., 2010; Gendron et al., 2014).

Nonetheless, there has been not lot of advances in the development of

exact algorithms for dealing with the DS, particularly those based on math-

ematical programming techniques. Heuristics methods are the most common

procedure employed to solve combinatorial problems due to their ability of

obtaining solution quality in an acceptable time.
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Chapter 1. Introduction 15

A special attention must be given to metaheuristics, which are well-

known class of solution method for combinatorial optimization problems. These

methods are often used to find satisfactory solutions to large and complex

problems, both theoretical and practical. However, solution infeasibility and

set redundancy are some difficulties that arise when solving MDS problems

with metaheuristic approaches.

Although several authors have studied dominating set problems only

in recent years there has been increasing interest in this problem, from the

point of view of metaheuristic algorithms (see, e.g., Potluri & Singh, 2011;

Hedar & Ismail, 2012; Bouamama & Blum, 2016). This has led to three

publications last year: Dagdeviren et al. (2017), who studied the MWCDS

problem; Wu et al. (2017) and Wang et al. (2017) who investigated the MCDS

and MWDS problem, respectively. Most of these studies used population-based

methods, but these methods can produce a premature convergence, and their

computational time can increase quickly with the size of the problem. None

of these methods reliably finds the optimal solutions for all instances, and

their computational time tends to be high for large graphs. The identification

of fundamental design components for the heuristics is of primary interest to

progress toward more generalist and efficient algorithms for the DS problem.

1.2
Objectives and Contributions

To address these challenges, this thesis focuses on the study of the

variants of the MDS problem. First, we consider the MWDS problem where

the objective function is to minimize the total weight of the dominating set.

Second, we consider the MCDS problem, in which the subgraph induced

by the dominating vertex set should be connected. Finally, we consider the

combination of both problems, the MWCDS problem.

The main objective of this thesis is to study the dominating set prob-

lem and its variants in undirected graphs to find high-quality solutions using

algorithms based on the hybridization of metaheuristics and integer linear

programming (ILP) solvers. We intend to contribute to the area of matheuris-

tics and this problem class for many applications. The term “matheuristic” is

generally used to refer to hybrid metaheuristics built upon some mathemat-

ical programming components (Maniezzo et al., 2009). The key to achieve a

good performance for many problems is to choose an adequate combination

of these methods. In addition, we designed a periodic ramp-up strategy, which

integrates destruction and construction operators, moving the search to an

under-explored area of the search space.
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Essentially, much of this study has been concentrated on the MDS

problem. Few studies using metaheuristic techniques have been proposed to

solve this problem. There is a need to study hybrid algorithms for this problem,

using a method that combines metaheuristics and mathematical programing-

based methods.

Considering these observations and the general objective of this thesis,

the main contributions of the work are listed below:

– We conduct a study of many variants of dominating set problems. We

investigate the MWDS, MCDS and MWCDS as well as the related

Covering Code Problem. We describe some practical applications and

solution methods proposed in the literature for these variants.

– We propose a method that combines four successful strategies: an efficient

neighborhood search, an adaptive penalty scheme to explore intermediate

infeasible solutions, perturbation phases to promote exploration, and an

intensification mechanism in the form of an integer programming (IP)

solver, which is applied to solve partial problems in which a majority of

variables are fixed, keeping free those of the current best known solution

and those associated with promising vertices.

– We present an algorithm that encompasses several useful solution fea-

tures. We introduce a tabu search matheuristic for the DS problem, by

combining tabu search metaheuristic and mathematical programming.

We conduct extensive experiments and show that this hybrid algorithm

can solve large class of MDS problems. Finally, we improve the current

methods for the minimum dominating set problem, in terms of both

solution quality and execution time in most cases.

– Finally, we study the covering code problem in RT-metric and the classic

codes in the Hamming metric. We apply the hybrid algorithm to find new

upper bounds.

1.3
Thesis Outline

The thesis is organized as follows.

Chapter 2 addresses some the variants of the dominating set and its

main applications. Chapter 3 presents the matheuristic, an integrating a tabu

search metaheuristic in combination with integer programming, for the MWDS

problem. In Chapter 4, this matheuristic is adapted for the MWCDS and

MCDS problem. Chapter 5 describes the relation of the covering code problem

and the dominating set. In addition, some upper bounds for the covering
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codes in RT-metric and Hamming metric are improved with the proposed

algorithm. Finally, Chapter 6 concludes, summarizing the final considerations,

and suggests perspectives for future works.
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2
A Review of Dominating Set Problems

Many applications dealing with DS problems can be found in the

literature. However, different variants can have some specific characteris-

tics: weighted, connected, independent, capacitated and so on. This chapter

presents a literature review, taking a step back from the dominating set prob-

lem and aiming to better understand the content of this problem and its main

variants and applications.

Section 2.1 provides an introduction and some essential definitions for

an understanding of the DS problem, as well as, a mathematical formulation.

Section 2.2 reviews the literature on variants of the DS problem and presents

state-of-art methods. Section 2.3 describes the covering code problem and its

relation to the DS problem. Section 2.4 presents some DS applications.

2.1
Problem Statement and Basic Concepts

DS problems constitute a fundamental class of combinatorial optimiza-

tion problems. Unsurprisingly, domination in graphs has been well studied in

graph theory (see, e.g., Ore, 1962; Hedetniemi et al., 1986). For a more thor-

ough review of different aspects of domination in graph, we recommend the

survey by Haynes et al. (1998).

Formally, given an undirected graph G = (V , E) with a set of vertices V
and a set of edges E , S of V is said to be a dominating set of G if, for every

vertex i ∈ V , either i is in S or there exists a vertex j ∈ S, such that (i, j) ∈ E .
A dominating set of smallest cardinality is known as a minimum dominating

set.

The vertices in S and V\S are called dominating and dominated (or

covered), respectively. A vertex i ∈ S of an undirected graph is redundant

if all adjacent vertices are either dominated or belong to a dominating set.

If a vertex j is not adjacent to at least one vertex of S, it is said to be a

non-dominated (or uncovered) vertex. The span of a vertex i is the number

of non-dominated vertices that are adjacent to i. We denote this set by ∆(i).

The distance between two vertices i and j of V is defined as the shortest path

from i to j in G. We assume that the graphs are simple and undirected.
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2.1.1
Mathematical formulation of the MDS problem

A simple mathematical formulation of the MDS is displayed in Equations

(2-1) - (2-3). In this formulation, the closed neighborhood N [i] represents all

vertices adjacent to i, including itself (i.e., N [i] = {i} ∪ {j | (i, j) ∈ E}). In
words, a vertex of G dominates itself and all its adjacent vertices. Each decision

variable xi is set to 1 if the vertex i is included in the dominating set, and 0

otherwise.

min
∑
i∈V

xi (2-1)

s.t.
∑

k∈N [i]

xk ≥ 1 ∀i ∈ V (2-2)

xi ∈ {0, 1} ∀i ∈ V (2-3)

The objective function (2-1) minimizes cardinality of the dominating set.

Constraints (2-2) ensure that each vertex j is dominated by at least one vertex

in the dominating set. These constraints are called cover inequalities and define

a dominating set solution. Finally, (2-3) defines the integrality constraints.

2.1.2
Related works

Dominating set problems are closely tied to the set covering (SC)

problem. Consider a universe U of elements and a collection S of subsets of U .
A set cover of S is a subset S ′ of S which covers U . The minimum set covering

(MSC) problem if to find a set covering with minimum cardinality.

Many instances of the variants MDS present graphs with medium or high

densities, leading to SC instances with large sets (i.e., dense matrices), which

can be unusually challenging. For this reason, along with emerging applications

in machine learning and social network analysis, a line of research specific to

MDS has been growing in intensity in recent years.

Several approximation algorithms have been considered to solve the DS

problem. This literature in the cases of solutions with approximation algo-

rithms is discussed in Grandoni (2006), who proposed an algorithm which

solves the MDS in O(1.9053n) time, where n is the number of vertices in

the graph. van Rooij & Bodlaender (2011) proposed an improvement via a

complexity for the dominating set regarding the exact algorithm. More specif-

ically, they demonstrated that an algorithm exists that solves the dominating

set problem in O(1.4969n) time and polynomial space.
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Many algorithmic methods have been studied for variations of the

dominating set problem in different classes of graphs. For example, Chleb́ık &

Chleb́ıková (2008) studied various kinds of domination problems (connected,

total, independent) in bounded degree graphs. Specifically, for degree bounded

approaching infinity, these bounds almost match the known upper bounds.

Exact algorithms to solve the MDS problem can found in Fomin et

al. (2005); Grandoni (2006); van Rooij & Bodlaender (2011). Particularly,

van Rooij & Bodlaender (2011) developed a branch-and-reduce method and

obtained good results for the DS problems and variants. Although these

algorithms find an optimal solution, they are time consuming in graphs with

a few hundreds of vertices. Therefore, these algorithms become impractical

for very large graphs. This drawback leads to considering metaheuristics to

design more efficient algorithms to solve the MWDS problem, as we detail in

the approaches for each variant in the next section.

2.2
Some Variants of the Dominating Set

2.2.1
Minimum-Weight Dominating Set Problem

The DS problem has many variants, the version that deals with a weight

on the vertices of the graph, called the MWDS problem. The objective function

seeks to minimize the total weight, without regard for the cardinality of the

dominating set.

Earlier studies of the MWDS were focused on approximation algorithms.

The first constant-factor approximation algorithm for this setting was proposed

by Ambühl et al. (2006), with an approximation ratio of 72 for the unit disk

graphs. Subsequently, this ratio has been improved, down to (6 + ϵ) in Huang

et al. (2009) using a “double-partition” strategy, followed by (5+ϵ) and (4+ϵ)

in Dai & Yu (2009) and Erlebach & Mihalák (2010).

The first polynomial time approximation scheme (PTAS) was introduced

by Zhu et al. (2012), with an approximation ratio of (1+ϵ) for the specific case

where the ratio of the weights of any two adjacent nodes is upper bounded by

a constant. Finally, Li & Jin (2015) introduced a PTAS for the general case

without restrictions on adjacent weights.

The research on metaheuristics for the MWDS has also grown recently.

An ant colony algorithm with a pheromone correction strategy (Raka-ACO)

was proposed in Jovanovic et al. (2010). Subsequently, Potluri & Singh (2013)

introduced a hybrid genetic algorithm (HGA) and two extensions of the ACO
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algorithm with a local search which consists of removing redundant vertices.

In the second algorithm, a pre-processing step is included immediately after

pheromone initialization, in order to reinforce the pheromone values associated

to 100 independent sets generated via a greedy algorithm.

An iterated greedy algorithm (R-PBIG) was introduced by Bouamama

& Blum (2016). The method maintains a population of solutions and applies

deconstruction and reconstruction steps for improvement. This approach was

then hybridized with an ILP solver for solution improvement.

Finally, Wang et al. (2017) introduced a local search with additional

mechanisms to prevent cycling. These above methods produce solutions having

good quality for classic sets of instances, but they sometimes suffer from pre-

mature convergence in some cases (such as the population-based algorithms),

or tend to be over-restrictive (cycling prevention), and require a significant

amount of CPU time for the largest instances.

2.2.2
Minimum Connected Dominating Set Problem

An important variation of the minimum dominating set problem is

its connected version. A CDS is a connected DS, that is, there is a path

between every pair of its vertices. The vast majority of research has focused

on applications of this problem for network sensors, surveyed in Blum et al.

(2005) and Resende & Pardalos (2008). Yu et al. (2013) also discussed various

network models and applications and presented a comprehensive survey on the

problem.

The MCDS problem is equivalent to finding a spanning tree with the

maximum number of leaves in the graph (Fernau et al., 2011). The Maximum

Leaf Spanning Tree (MLST) problem aims is to find a spanning tree with as

many leaves as possible. Therefore, the internal nodes of a spanning tree with k

leaves form a connected dominating set of size |V |−k and vice versa. Another

problem that is directly related to the CDS is the group Steiner problem. This

problem is a Steiner generalization where only a specified subset of vertices

has to be dominated by a connected dominating set (Elbassioni et al., 2012).

Due to its importance, many algorithms have also been proposed to solve

the CDS problem. Two approximation algorithms to construct a connected

dominating set in general graphs were first proposed by Guha & Khuller (1998).

Ruan et al. (2004) developed a greedy algorithm to solve the problem. Li et

al. (2005) then proposed another greedy algorithm with two phases that can

construct a CDS within a factor of (4.8 + ln 5) from the optimal solution. In

the first phase, a minimum independent set (MIS) is found, and in the second
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phase, a Steiner tree algorithm is used to connect the MIS.

Some exact approaches have been developed for the MCDS problem, such

as those of Fujie (2003), Lucena et al. (2010), Fernau et al. (2011), and Gendron

et al. (2014). In more details, Lucena et al. (2010) introduced two integer

programming formulations: the first one is based on a Steiner reformulation

of the problem, and the second considers the problem in a directed graph,

seeking later a spanning arborescence with as many leaves as possible. This

work was extended by Gendron et al. (2014), who investigated exact algorithms

based on two approaches: a Benders decomposition and a branch-and-cut

method for a class of instances of the MCDS problem. Moreover, the authors

proposed a hybrid algorithm considering an initial master problem at each

iteration, and adding valid inequalities from the spanning tree formulation in

both approaches. This algorithm achieved the optimal solution in almost all

instances, but with a high running time.

In contrast, the research on efficient metaheuristics has expanded fairly

recently for the MCDS problem. Jovanovic & Tuba (2013) proposed two

heuristics based on the ant colony algorithm, the first one is a Min-Max Ant

System, while the second one is an ACO with a pheromone correction strategy,

which was first proposed in Jovanovic et al. (2010) for the MWDS problem.

Wu et al. (2017) and Li et al. (2017) proposed, respectively, a restricted

swap-based neighborhood structure and a greedy randomized adaptive search

procedure (GRASP) based on a greedy function to solve the MCDS problem.

Both methods improve the solutions, by using strategies to forbid cycling in the

space search. These methods reach good solutions compared to the population-

based method and exact methods. Currently, the work of Wu et al. (2017) is

the state of the art for the MCDS. We study this problem and show the details

of our approach in Chapter 4.

2.2.3
Minimum-Weight Connected Dominating Set Problem

The MWCDS problem arises when the total weight of CDS is aimed to be

minimized. MWCDS can be applied in an ad hoc network, particularly in the

unit-disk graph (UDG). A UDG is a graph in which every vertex corresponds

to a sensor in the plane, and in which two vertices are connected by an edge if

their Euclidean distance in the plane is smaller than or equal to one. Figure 2.1

presents a UDG, where each notebook represents a vertex and the edge exists

if the Euclidean distance between any two netbooks is less than or equal to

one. In this example, three notebooks are enough to send a message to others.

Other application of MWCDS can be found in Wang et al. (2012),
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Figure 2.1: Example of the topology of a unit disk graph

focusing on the multi-document summarization, which compresses a given

collection of documents into a summary of much smaller size by extracting

either the main information or the information related to a query associated

with the collection. A framework to solve these two problems by generation of

pictorial and temporal storylines is proposed and the system is composed of the

following steps: construction of a multi-view object graph; selection of a set of

nodes using an approximation algorithm for the minimum-weight dominating

set problem; and creation of a storyline by the use of a directed Steiner tree

algorithm to connect them.

Zou et al. (2011) introduced an (5+ϵ)-approximation for the MWCDS

problem by using a node-weighted Steiner tree to interconnect all nodes of

the MWDS on UDG. Dagdeviren et al. (2017) applied two population-based

algorithms to the MWCDS problem: an hybrid genetic (HGA) algorithm and

a population-based iterated greedy (PBIG) algorithm. Both methods are the

first metaheuristics for the MWCDS problem in the literature, and were also

applied to the MWDS problem, i.e., without constraints on the connectivity

of the dominating set (Potluri & Singh, 2011; Bouamama et al., 2012).

A timeline is shown in Figure 2.2 in order to summarize the main

studies cited previously for the three variants: MWDS, MCDS and MWDS.

This timeline gathers papers encountered in the literature from of ear 2010

displaying the main method and authors. The proposed key method, marked

in boldface, are selected to serve as support to our study on matheuristics,

relatively to two main criteria: first, the resulting variants are the subject of

a significant literature, including exact and heuristic methods; and second,

benchmark instances are available for comparisons between methods. This

timeline shows an increasing interest in the MDS problem last years.
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Figure 2.2: Timeline of some works for MWDS, MCDS and MWCDS problems

2.2.4
Independent Dominating Set

A vertex subset S ⊆ V is a maximal independent set (MIS) if no two

vertices in S are adjacent, that is, the subgraph G[S] induced by S has

no edges. An independent dominating set (IDS) in a graph is a set that is

both dominating and independent and is maximal if no vertex can be added

without violating independence. Equivalently, an independent dominating set

is a maximal independent set.

Goddard & Henning (2013) presented a survey for the MIS problem

and established key relationships between the independent domination number

and others parameters, including the independence number and the chromatic

number. Potluri & Singh (2013) experimented by adding a pre-processing step

to the ACO algorithm to solve the MWDS problem. This pre-processing step

generates different maximal independent sets (MIS) in order to reduce the

computational time. Liu et al. (2015) show that the IDS problem is NP-

complete on cubic bipartite graphs and present a fixed-parameter tractable

(FFPT) algorithm for this problem.

2.2.5
Capacitated Dominating Set

The problem of finding a vertex subset of cardinality at most k that

dominates all remaining vertices in a graph is the capacitated dominating set

problem (CapMDS). CapMDS is a generalization of the MDS problem and

aims to find a dominating set of minimum cardinality with the additional
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constraint that the nodes dominated do not exceed the capacity of the

dominating node. Cygan et al. (2011) and Liedloff et al. (2014) showed that

this problem can be solved faster than O(n2) time.

Potluri & Singh (2012) presented a greedy heuristic and a couple of

its variants to solve the CapMDS problem for UDG with high degree of

connectivity and uniform capacity in general graphs.

2.3
Covering Codes

The covering code problem is a classic problem in coding theory. Carnielli

(1985) presented the first relation between the covering code in Hamming-space

and an optimization problem: the coloring problem. The use of metaheuris-

tics to find the upper bounds for covering codes in Hamming space can be

found in the works of Österg̊ard (1997) and Mendes et al. (2010). Compression

with distortion, data compression, decoding of errors and erasures (Koetter &

Kschischang, 2007), football game (Linderoth et al., 2009), cellular telecommu-

nications, among others, are areas in which covering codes have been applied.

The relation between covering codes and the dominating set problem,

as well as their multiple applications have motivated extensive research. One

remarkable feature is the wide use of links and tools from many fields of

mathematics, computer science, and information theory. In particular, the

covering problem in a Rosenbloom-Tsfasman (RT) space is the code induced

by the Rosenbloom- Tsfasman metric, called the RT-covering problem. This

problem is an extension of the classic covering problem in Hamming spaces.

From a theoretical point of view, Quistorff (2007) investigated the

packing problem in RT-spaces, extending the classic function associated with

the packing problem in Hamming spaces. Castoldi & Carmelo (2015) presented

new lower and upper bounds for the covering code problem with an RT-

metric, using a theoretical approaches. A study of the covering codes and

the demonstration of their relation to the dominating set problem is presented

in Chapter 5.

The classic covering code problem is based on the Hamming metric. The

lottery problem is a classical application, which became one of the most famous

problems in coding theory. The lottery problem is known also as football pool

problem because in many countries there is a form of lottery where speculators

must select the results of association football matches as being either a win for

the home team, a win for the away team or a draw. On a lottery ticket, the

bettor fill in n numbers, i.e., n numbers are drawn from a set of m numbers,

such that n < m. The problem is the following: what is the minimum number
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of tickets so that there is at least one ticket with at least p matching numbers?

The study of this code is a challenge, and no optimal bound has been proven

for this code. This is not only due to its combinatorial nature, but also to the

intrinsic symmetry (Jans & Degraeve, 2008).

2.4
Other Applications of the MDS Problem

The applications of the MDS problem relate to the design and analysis

of communication networks, bioinformatics, computational complexity, and

algorithm design.

2.4.1
Biological

Recently, several studies have considered the MDS problem in biology

(Wang et al., 2014; Wuchty, 2014; Vinayagam et al., 2016; Nacher & Akutsu,

2016). These studies seek the determination of a minimum set of driver

proteins that are important for the control of the underlying protein-protein

interaction (PPI) networks. Knowledge of the protein–protein interactions

facilitates understanding pathogenesis and disease, which has been critical to

advancements in vaccine research, therapeutic drug discovery and cell biology.

Figure 2.3 shows an example of a multiplex Human HIV-1 PPI network, where

the nodes represent proteins and edges, in the presence of a direct interaction

among them.

2.4.2
Social Networks

A social network is a social structure made up of individuals (or organiza-

tions) called ‘nodes’, which are connected by one or more types of relationships,

represented by ‘links’ (e.g., friendship, kinship, common interest, among oth-

ers). In other words, in social networks there is a tendency for the behavior of

connected users to match.

Wang et al. (2009) introduced the Positive Influence Dominating Set

(PIDS) problem and analyzed its effect on a real online social network data

set through simulations. This problem is defined as follows: given a graph

G = (V , E) and being d(i) the degree of vertex i, a PIDS is a subset D ∈ V
such that any vertex i ∈ V is dominated by at least

⌈
d(i)
2

⌉
vertices in D. In

other words, vertex i has at least
⌈
d(i)
2

⌉
neighbors. Therefore, every vertex

should have at least half of its neighbors in D.
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Figure 2.3: Example of protein-protein interaction network (reprinted from
Wikimedia (2017)).

Many works have been published since Wang et al. (2009). For example,

a greedy algorithm with an approximation ratio of the n-th harmonic number.

was proposed in Wang et al. (2011). Dinh et al. (2012) showed an approxima-

tion for this problem and Kim et al. (2013) proposed an approach to identify

effective leader groups of social networks based on the DS problem. Bonato

et al. (2014) studied the domination number of on-line social networks is in

random geometric graphs.

The existence of all these approaches shows that the development of new

machine learning applications and social network analysis has accelerated the

growth of the research on MDS in the recent years.
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3
A matheuristic for the Minimum Weight Dominating Set
Problem

In this Chapter, we introduce a tabu search matheuristic for the MWDS

problem. The term “matheuristic” is generally used to refer to hybrid meta-

heuristics built upon some mathematical programming components (Maniezzo

et al., 2009). The developed algorithm integrates a tabu search metaheuristic

and the ILP model for the MWDS. The motivation behind this hybridization

is to exploit the different optimization strategies in order to benefit from their

synergy.

The proposed method, called HTS-DS, combines four successful strate-

gies: an efficient neighborhood search, an adaptive penalty scheme to explore

intermediate infeasible solutions, perturbation phases to promote exploration,

and an intensification mechanism in the form of an integer programming (IP)

solver.

Section 3.1 presents the mathematical formulation for the MWDS. Sec-

tion 3.2 presents a study of constructive heuristics to build a greedy feasible

solution. Section 3.3 describes the tabu search matheuristic. The hybrid algo-

rithm can improve some solutions of the benchmark problem with up to 1000

vertices, and these results, as well as the sensitivity analysis of the procedures,

are presented in the Section 3.4.

3.1
Mathematical Formulation

Let W be the set of positive weights represented by {w1, w2, · · · , wn},
i.e., each wj corresponds to the weight to the vertex j ∈ V . Since N [i] is the

closed neighborhood, the MWDS can be formulated as:

min
∑
i∈V

wixi (3-1)

s.t.
∑
j∈N [i]

xj ≥ 1 ∀i ∈ V (3-2)

xi ∈ {0, 1} ∀i ∈ V (3-3)

The objective function (3-1) minimizes the total weight of the dominating
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set. The remaining Equations (3-2) and (3-3) are similar to the formulations

of the DS problem.

3.2
Greedy Constructive Heuristics

Greedy methods are algorithms that make a locally optimal choice at

every step. Because previous choices are never revised in these methods,

they are usually simple. They may not find the optimal solution, but may

return good solutions and obtain some insights about the characteristics of

the problem and instances. This can lead to a good quality solution in many

problems. While in some problems a greedy strategy does not find a feasible

solution, in the case of the DS problem, the constructive heuristics always

work well, by definition of the algorithm, at obtaining a feasible solution for

the problem.

Given S a subset of V , we say that S is a feasible solution if this

subset is a dominating set. In addition, the development of the procedures

of our algorithm considers that the vertex i dominates itself by satisfying

the condition of the closed neighborhood of the vertices. Even if a vertex is

dominated, it can still belong to the set S by potentially dominating some

vertices that still are not dominated.

We propose five constructive heuristics, which iteratively insert one

vertex at a time in a partial solution. These heuristics differ in regard to the

local greedy criterion to evaluate the cost of inserting a vertex in the solution.

For every vertex i ∈ V , we define Γ(i) as the set of non-dominated vertices

belonging to N(i) (adjacent to i, or i itself). Let W (i) =
∑

k∈Γ(i) wk and, as

defined above, ∆(i) = |Γ(i)|, that is, the span of the vertex i. The strategies

used to evaluate the cost of an insertion consist of the following cost value:

G1: The span of the vertices.

i ← argmaxj∈V\S∆(j) (3-4)

G2: The weight of the vertices.

i ← argmaxj∈V\S
1

wj

(3-5)

G3: Both the span and the weight of the vertex.

i ← argmaxj∈V\S
∆(j)

wj

(3-6)
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G4: The sum of the weight of the non dominated vertices adjacent to the

analyzed vertex.

i ← argmaxj∈V\S
W (j)

wj

(3-7)

G5: The three characteristics: the span and weight of the vertex, and the sum

of the weight of the adjacent vertices.

i ← argmaxj∈V\S
∆(j)×W (j)

wj

(3-8)

The five greedy heuristics G1,G2,G3,G4 and G5, presented by Algorithm

1, include iteratively a vertex i ∈ V \S with highest value of the greedy cost.

Starting with an empty set, at each step the algorithm adds that vertex to what

yields the largest argument in the graph until a feasible solution is found. Ties

(vertices with identical value) are broken randomly with uniform probability,

and the process is iterated until a feasible solution is found.

Algorithm 1: Greedy constructive heuristics

Input : Gk, k = 1, 2, 3, 4, 5
Output: Feasible solution S

1 begin
2 S ← ∅; // dominating set

3 Sdom ← ∅; // dominated vertices set

4 while |Sdom| < |V| do
5 Add the best vertex i ∈ V\S, according to the greedy cost

Gk, in the dominating set S;
6 Update the set Sdom adding the vertex i and its neighbors;

7 end

8 end

The experimental comparison of the proposed constructive heuristics are

presented in Section 3.4. We choose the best two and embedded them to

compose a procedure that is described in Section 3.3.3.

3.3
A Hybrid Tabu Search

This section presents the proposed hybrid algorithm that combines a tabu

search metaheuristic with an integer programming solver. Figure 3.1 provides

a general overview of the HTS-DS approach.

The algorithm starts from a random initial solution S0 (Phase 1 in

the figure). This solution is subsequently improved by a combination of tabu

DBD
PUC-Rio - Certificação Digital Nº 1212404/CA



Chapter 3. A matheuristic for the Minimum Weight Dominating Set Problem 31

Return  

Best Solution  
 

 

[if  

terminated] 

TABU SEARCH 
 

Find and apply the best move 

Update tabu list  

Update penalty factor 
 

REDUCED PROBLEM 

Update the NFIX value 

PERTURBATION 

[every IPERT iterations] 

INITIAL SOLUTION 

[NRESTART attained] 

BEGIN 

END 

Update Best 

Solution  

[if not terminated] 

[NRESTART not attained] 

PHASE 1 PHASE 2 

PHASE 3 

Figure 3.1: HTS-DS algorithm flowchart

search and perturbation mechanisms (Phase 2), and serves to define a reduced

problem which is solved using an integer programming solver (Phase 3). This

process is repeatedNrestart times, and the best overall solution is returned. The

methods into the (Phase 2) terminates when INI successive iterations have

been performed without improving the best solution, or when a iterations limit

Imax is reached.

It is noteworthy that some penalized infeasible solutions, in which some

vertices are not dominated, are possibly explored during the search. The

objective function therefore plays an important role in the algorithm.

3.3.1
Penalized Objective Function

As illustrated in several previous studies (see, e.g., Glover & Hao, 2011;

Vidal et al., 2015), an exploration of penalized infeasible solutions can help to

diversify the search and prevent the method from being trapped in low-quality

local optima. Therefore, HTS-DS relies on a penalized objective function that

allows evaluating infeasible solutions with some non-dominated vertices. The

cost of a solution S is calculated as:

f(S) = W (S) + α× wmax ×Nd(S), (3-9)
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where α is the penalty factor at the current iteration of the search, wmax is

the maximum weight of a vertex, and Nd(S) is the number of non-dominated

vertices in solution S, and W (S) is the total sum of weight of the dominating

set S. This way, the amount of penalty is directly proportional to the degree

of infeasibility in order to promote a return to the feasible solution space.

An adequate choice of α is important for the search efficiency. In our

preliminary experiments, a constant value was insufficient to help the transition

to different regions of the search space. We therefore designed a periodic ramp-

up strategy, in which α varies from a minimum level αmin to a maximum level

αmax by steps of αstep, and then resumes to its minimum value and grows again.

When α is small, the search will tend to remove vertices from the solution and

lead to more non-dominated vertices. These vertices are subsequently covered

again when the value of α increases. Due to this behavior, HTS-DS shares some

common characteristics with ruin-and-recreate methods. With this analogy in

mind, we set the parameter αstep to be inversely proportional to the number

of vertices of the graph,

αstep =
αmax − αmin

β|V|
(3-10)

where β is a parameter of the method which controls the number of steps

between αmin and αmax.

Figure 3.2 illustrates the behavior of the parameter α in a small instance.

Notice how the feasibility of the current solution directly depends on the value

of α. The discovery of new best solutions, depicted with green diamonds in

the graph, systematically occurs when α is a mid-range value. The incursion

in the infeasible solution space, at each phase, allows the transition towards

structurally different solutions.

3.3.2
Tabu Search

Now, we describe how to use a tabu search to solve a DS problem. The

whole procedure includes a constructive function which is used to construct

an initial solution. After that, a local search is called to improve the initial

solution. The tabu list, the aspiration criteria, and the perturbation operator

were used to complete our hybrid tabu search.

Initial Solution

The initial solution S0 is built by a random construction. Iteratively, the

algorithm selects with uniform probability a random vertex which covers at
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Figure 3.2: Evolution of the penalty parameter α during the search on a small
instance (class SMPI – problem 50 50 0). Discovery of feasible, infeasible, and
best known solutions.

least one non-dominated vertex, and inserts it in S0. The process stops when

a dominating set is obtained.

Neighborhoods

The initial solution is then improved by a tabu search. The neighborhood

of the solution S, denoted by N (S), is based on three classical families of

moves:

• ADD – adds a vertex i into the solution;

• DEL – removes a vertex j from the solution;

• SWAP – simultaneously adds a vertex i and remove a vertex j from the

solution.

The movements depend on the problem and the representation of candi-

date solutions. In this case, we consider a list of size |V| in order to represent

the solution. Each position is related to a vertex i and it will be active (one)

if the vertex i ∈ S, and otherwise zero.

Between the three possible movements, the algorithm chooses the one

with the best improvement in the current solution. The moves are evaluated

according to the objective function of Equation (3-9). At each iteration, the

best non-tabu move from the entire neighborhood is applied. Remark that,

depending on the status of the tabu memory, this move can be deteriorating,

thus allowing escape from local minima.
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These three neighborhoods differ in their size: ADD and DEL contain

O(|V|) moves while SWAP contains O(|V|2) moves. To better balance the

search effort and improve the speed of the method, we apply dynamic restric-

tions to the neighborhood SWAP. This restriction works by evaluating first

the ADD and DEL moves, ranking these moves relatively to their impact on

the solution value, and restricting the search of the SWAP neighborhoods to

the (i, j) pairs that belong to the top
√
|V| ADD and DEL moves. With this

restriction, only O(|V|) SWAP moves are evaluated.

To efficiently evaluate each move, we maintain for each vertex i a value

C(i) which represents how many times the vertex is dominated by another.

Therefore, if C(i) = 0 then i is non-dominated. This allows to evaluate each

move with a complexity proportional to the degree of the associated vertex (or

vertices).

Tabu List

The short-term memory (tabu list) is essential to avoid cycling. In HTS-

DS, this list has a fixed size of NTabu and contains two types of labels: those

that prohibit the insertion of a specific vertex, and those that prohibit the

removal of a specific vertex. The update of the list is subject to the following

rules:

• Whenever ADD(i) is applied, a label is added to prohibit the removal of

i;

• Whenever DEL(j) or SWAP(i, j) is applied, a label is added to prohibit

the insertion of j.

Remark that the tabu status associated to the SWAP move only prohibits

the (re-)insertion of the leaving vertex j. Indeed, in preliminary analyses, we

observed that symultaneausly prohibiting the removal of i overly constrains

the search and slows down the progress towards high-quality solutions.

The tabu list stores the last iteration where a movement was made tabu.

In this list, there is one element for each vertex of V . A movement M is tabu if

the difference between its value in the tabu list and the number of the current

iteration is larger than the tabu list size, usually referred as tabu tenure.

The tabu tenure is the number of iterations a certain elements is declared

as tabu. The size of the tabu tenure depends on the number of vertices of the

graph G. Our method uses a static tabu tenure which the value of tabu duration

is fixed throughout the search allowing the control of the search space.
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Aspiration Criteria

As usually done in most tabu searches, we use an aspiration criterion,

which revokes the tabu status of a move in the case where it leads to a new best

solution. In fact, the aspiration criterion occurs when the chosen neighborhood

leads to a good region of the solution space, i.e., it obtains the best solution

in value. So it is desirable to go back to a visited solution s despite the fact

that it is in tabu list T . This criterion is adopted in order to explore a new

region. Given z, the value of the best current solution S encountered so far

(i.e., z = f(S)) Therefore, when a solution S ′ of the neighborhood of the

current solution (S ′ ∈ N (S)) belongs to T and meets the aspiration criterion

(A(S ′) < z), its tabu status is canceled and S ′ becomes a candidate during the

selection of a best neighbor of S. Here, z represents the best current solution

S encountered so far.

Node Elimination

A solution S may contain redundant vertices. A vertex i ∈ S is redundant

if all adjacent vertices and itself are dominated by other vertices from S, i.e., a
redundant vertex is a vertex which can be removed from the solution without

increasing the number of non-dominated vertices.

After each move application, HTS-DS checks the possible existence of

redundant vertices in a feasible solution. When such a situation occurs, a

redundant vertex of maximum weight is removed. This process is iterated until

no redundant vertex exists. Again, we used the value C(j) to efficiently find

the redundant vertices, since this value represents how many times the vertex

is dominated by another. In this way, if C(j) > 1, for all vertex j /∈ S adjacent

to vertex i ∈ S, then i is redundant. It allows evaluating the redundant vertex

in the dominating set with a complexity proportional to its degree.

3.3.3
Perturbation Operator

After every Ipert iterations of the tabu search, a perturbation mechanism

is triggered in order to diversify the search further and reach different solutions.

The perturbation is also based on the ruin-and-recreate strategy (Schrimpf et

al., 2000). It works by removing ⌊ρ × |SBest|⌋ vertices from the current best

solution SBest of the tabu search, completing it with a greedy algorithm, and

finally applying the node elimination procedure. The resulting solution is taken

as new starting point for the search.

The greedy algorithm used for solution reconstruction works as follows.

It is based on two greedy heuristics, presented in the previous section, more
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specifically, the G3 and G4. heuristics. This algorithm will include, with 25%

chance each, a vertex i ∈ S with the value:

• Corresponding to the G3 heuristic – Equation (3-6)

1. highest value of ∆(i)/wi,

2. second-highest value of ∆(i)/wi

• Corresponding to the G4 heuristic – Equation (3-7)

3. highest value of W (i)/wi,

4. second-highest value of W (i)/wi.

Again, ties (vertices with identical value) are broken randomly with

uniform probability, and the process is iterated until a feasible solution is

found.

The diversification phase is a perturbation mechanism in the current

solution and aims to escape from a local optimum. It is applied once a fixed

number of not improved iterations Ipert is reached. From a general perspective,

the perturbation has two processes: the destruction and construction phase,

illustrated in Algorithm 2. First, the destruction phase removes some random

elements from the current solution, resulting in a partial solution, and second,

the construction phase applies a constructive heuristic to the partial solution

to obtain another feasible solution. Finally, the method invokes the Node

Elimination procedure, as described in Section 3.3.2.

Algorithm 2: Perturbation-DS

Input : SBest, ρ
Output: S

1 begin
2 SP ← RemoveVertex(SBest, ρ); // partial solution

3 S ← Reconstruct(SP) using G3 and G4 heuristics.
4 S ← NodeElimination(S)
5 end

Termination Criteria

The tabu search (Phase 2 – Figure 3.1) terminates as soon as either INI

consecutive iterations (moves) have been performed without improvement of

the best solution, or a total of Imax iterations have been performed.
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3.3.4
Resolution of a reduced integer problem

After the tabu search, an intensification mechanism is applied, in the

form of an integer programming (IP) solver, to solve partial problems in which

a majority of variables are fixed, keeping free those of the current best known

solution and those associated to promising vertices. As in the Construct,

Merge, Solve & Adapt (CMSA) approach described in Blum et al. (2016),

the set of promising vertices is selected based on the search history. Moreover,

the size of the subproblem is adapted to exploit the capabilities of the solver

as efficiently as possible.

The HTS-DS algorithm constructs in Phase 3 a reduced problem based on

the information of the best solutions and the past search history, and solves it

once with an integer programming solver using the formulation of Equations (2-

1) - (2-3) with the aim of finding a new best solution. In the reduced problem,

most of the decision variables are fixed, and only a smaller group of “free”

variables remain (possible choices of vertices for the dominating set).

The set size of “free” variables, Nfree in the model, correspond to the

|SBest| vertices used in the best solution of the tabu search, along with the

Nfrequent = max{0, |Nfree| − |SBest|} most frequent vertices in the incumbent

solution in the past search history. To identify the most frequent vertices,

HTS-DS counts the total number of iterations ITotal(i) for which each vertex i

belongs to the current solution. Such a counter can be efficiently implemented

by storing the index of the current iteration when i is included, and only

updating the counter with the adequate increment when i is removed.

The resulting formulation is solved by the integer programming solver

subject to a time limit Tmax. Initially, the size parameter Nfree is set to 50.

Subsequently, in order to fully exploit the capabilities of the IP solver, the

parameter Nfree is adapted from one general iteration of HTS-DS to the next.

At the end of the resolution, there are three possible outcomes for the IP solver.

– Case 1a) The solver finds an optimal solution, and Nfree = |V |. An
optimal solution has been found for the MWDS problem, HTS-DS

terminates.

– Case 1b) The solver finds an optimal solution of the reduced problem, and

Nfree < |V |. In this case, the IP solver may be able to address a larger

problem in the next iteration within the allowed time, and therefore the

parameter Nfree is increased to min{|V |, 2×Nfree}.

– Case 2) The solution is not proven optimal or no solution is produced. In

this case, the IP solver has been used beyond its capabilities, and Nfree
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is reduced to Nfree/2.

The best overall solution is stored to be returned at the end of HTS-DS.

3.4
Computational Experiments

In this section, we explain the calibration of the method’s parameter, and

then we compare our heuristic to state-of-the-art methods. Finally, we present

a sensitivity analyses of the procedures used in the hybrid algorithm.

Extensive computational experiments were conducted in order to eval-

uate the performance of the method relative to previous algorithms, and ex-

amine the relative contribution of each of its main components. HTS-DS was

implemented in C++ using CPLEX 12.7, in which was used for the resolution

of the integer linear program with their default parameter configurations. All

tests were conducted on a single thread of an I7-5820K 3.3GHz processor.

3.4.1
Problem Instances

We rely on a total of 1060 problem instances originally proposed in

Jovanovic et al. (2010). These instances are divided into two types (T1 and

T2) and two classes (SMPI and LPI). The SMPI class includes 320 small and

medium instances with 50 to 250 vertices and 50 to 5000 edges, and the LPI

class includes 210 larger instances counting between 300 and 1000 vertices,

with up to 20000 edges. In the instances of type T1, the vertices’ weights are

uniformly distributed in the interval [20, 70], while in the instances of type

T2, the weight of each vertex i is randomly chosen in [1, δ(i)2], where δ(i)

is the degree of i. Ten instances were generated for each problem dimension.

Therefore, in the subsequent sections, all results will be aggregated (averaged)

by group of ten instances with identical characteristics.

3.4.2
Parameters Calibration

Three main parameters of HTS-DS have a strong influence on the search:

the size of the tabu list Ntabu, the strength of the perturbation operator ρ, and

the control parameters for the penalty (αmin, αmax, αstep). These parameters

were calibrated through preliminary experiments by varying one parameter at

a time until reaching a “local optimum” in terms of parameter configuration.

Then, from the final parameter setting obtained, we performed a sensitivity

analysis to examine the effect of a variation of each parameter. This analysis
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will be reported in Section 3.4.5 along with other results measuring the

contribution of the main search components.

Finally, the parameters (Nrestart, Imax, Ini, Ipert, Tmax) control the num-

ber of iterations and search time of each component. Changing these param-

eters leads to different trade-offs between solution quality and computational

effort. Therefore, for a fair experimental analysis, their values were selected

to obtain solutions in a CPU time which is comparable or smaller to that of

previous algorithms. The final parameter values are presented in Table 3.1.

Table 3.1: Parameter configuration of HTS-DS

Parameter Symbol Value

Number of restarts Nrestart 10

Maximum number of iterations of TS Imax 20000

Maximum number of iterations without improvement of TS Ini 10000

Frequency of the perturbation Ipert 100

Perturbation strength ρ 0.2

Size of the tabu list Ntabu 12

Time limit for the IP solver Tmax 1 sec

Penalty factor

αmin 0.1

αmax 1.1

β 1.3

3.4.3
Results for the constructive heuristics

We tested the greedy constructive heuristics proposed in the Section 3.2.

Full results on the instances are displayed in Tables 3.2, 3.3, 3.4, and 3.5.

Columns |S| and Avg give, respectively, the average size and the average

total weight of the dominating set (over 10 runs).

It can be seen from the tables that G3 obtains the best results among

these greedy heuristics. The G4 and G5 heuristics performed similarly, but

for the Type 2 instances, G4 performed better. Thus, in order to compose

the constructive heuristics in our proposed algorithm, we used G3 and G4

heuristics, defined by the Equations (3-4) and (3-7), respectively, in the

perturbation operator.
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Table 3.2: Comparison of the greedy heuristics for small and medium Type I
instances

G1 G2 G3 G4 G5

|V| |E| |S| Avg |S| Avg |S| Avg |S| Avg |S| Avg
50 50 20.0 683.1 24.9 707.0 20.3 588.0 20.0 578.3 20.0 583.9

100 13.4 473.4 21.2 570.3 14.5 407.4 14.4 410.5 13.6 405.9
250 6.8 239.0 12.7 300.8 7.8 198.8 7.8 197.2 6.8 195.2
500 3.9 139.2 6.7 144.1 4.4 103.3 4.5 105.5 4.1 99.9
750 2.8 96.6 4.3 89.4 3.3 72.0 3.4 72.9 3.0 67.9
1000 2.0 71.5 3.1 63.5 2.3 47.9 2.3 48.1 2.1 44.8

100 100 39.7 1365.1 50.1 1445.6 40.9 1173.8 40.4 1168.0 40.2 1165.7
250 23.3 795.9 37.4 977.4 24.5 673.0 24.5 676.7 23.2 668.7
500 14.0 475.9 25.4 605.9 15.3 395.8 15.5 397.3 14.3 406.8
750 10.2 352.1 20.2 460.1 11.6 286.1 12.2 294.9 11.0 293.4
1000 8.1 269.0 16.2 358.1 9.7 234.1 9.9 235.1 8.7 230.2
2000 4.7 164.9 8.4 176.3 5.5 119.6 5.6 122.3 5.0 115.3

150 150 60.6 2065.0 75.1 2148.8 60.3 1730.1 59.9 1724.4 59.2 1714.7
250 44.5 1518.9 66.5 1818.6 47.5 1353.0 46.9 1340.5 44.4 1318.3
500 28.8 995.6 48.7 1221.7 31.1 830.8 31.0 830.4 29.7 846.7
750 20.8 705.1 40.4 970.4 23.5 617.5 23.6 611.4 21.7 609.8
1000 17.0 590.1 33.5 775.4 19.3 496.1 19.3 488.7 17.4 493.1
2000 10.0 338.1 20.3 440.1 11.2 266.5 11.6 271.5 10.8 276.6
3000 7.1 237.6 13.7 288.0 8.3 186.1 8.4 191.1 7.7 187.0

200 250 71.6 2449.6 96.2 2704.6 73.8 2111.9 73.1 2095.1 71.2 2109.0
500 45.9 1575.4 73.8 1925.5 50.9 1403.5 49.6 1380.8 47.1 1390.7
750 34.5 1191.7 60.7 1507.7 37.7 1019.1 38.1 1020.5 35.5 1039.4
1000 28.1 987.2 51.9 1244.1 31.5 813.4 31.0 809.6 28.5 819.8
2000 16.7 586.2 33.1 734.2 19.4 473.9 18.9 467.5 17.6 485.6
3000 12.3 434.5 24.1 517.2 14.2 331.8 14.3 334.8 13.1 334.9

250 250 101.6 3524.3 125.0 3565.3 102.6 2933.0 101.4 2906.0 100.4 2891.3
500 67.3 2339.7 103.7 2785.2 71.0 2011.9 72.6 2040.9 67.9 2012.1
750 52.4 1843.5 87.4 2240.2 56.4 1545.0 55.8 1533.8 51.9 1510.5
1000 41.7 1457.2 75.3 1857.6 45.8 1230.7 46.0 1238.8 42.4 1225.8
2000 24.6 858.2 49.6 1130.1 28.1 707.2 28.6 715.8 25.3 705.4
3000 17.9 613.5 37.7 829.4 20.8 499.8 20.9 500.4 19.4 521.1
5000 12.7 442.9 23.7 500.5 14.4 323.6 14.5 328.4 13.1 325.9

Avg 27.0 933.8 42.8 1097.0 29.0 787.0 28.9 785.5 27.4 784.2

Table 3.3: Comparison of the greedy heuristics for large Type I instances
G1 G2 G3 G4 G5

|V| |E| |S| Avg |S| Avg |S| Avg |S| Avg |S| Avg

300 300 120.2 4173.9 149.1 4262.8 122.5 3502.0 121.6 3481.5 120.5 3465.7

500 89.0 3065.8 131.1 3602.8 95.5 2716.1 94.7 2697.9 90.4 2707.3

750 69.1 2368.4 113.0 2965.2 75.6 2106.3 75.8 2105.4 70.6 2070.8

1000 57.4 1948.3 100.0 2531.9 61.1 1678.0 61.9 1688.0 57.8 1692.2

2000 33.6 1149.7 64.6 1503.6 37.0 950.8 37.9 965.6 35.4 988.2

3000 25.0 860.2 49.5 1104.8 28.3 693.7 28.7 701.0 26.2 707.3

5000 16.8 588.1 34.2 734.8 19.7 456.7 19.6 459.8 18.1 472.6

500 500 200.6 6914.0 249.3 7132.5 203.0 5835.5 202.9 5820.5 201.3 5798.1

1000 133.0 4623.3 206.6 5577.8 142.3 4037.4 142.7 4039.8 134.9 4032.6

2000 82.7 2846.4 149.1 3698.2 92.1 2468.3 92.3 2484.9 84.2 2452.2

5000 42.5 1453.5 83.9 1879.3 47.7 1171.1 47.8 1177.1 42.9 1193.5

10000 24.8 881.0 49.9 1060.9 28.4 656.1 29.0 670.5 26.3 666.3

800 1000 278.9 9661.7 380.2 10704.5 296.3 8518.9 294.4 8472.1 282.9 8402.6

2000 186.8 6461.9 303.1 7980.5 201.3 5620.0 201.6 5639.7 189.4 5602.4

5000 95.3 3338.2 186.6 4406.8 105.6 2735.5 106.4 2739.9 98.6 2796.8

10000 56.3 1954.2 115.5 2543.2 64.1 1553.0 65.8 1590.6 58.8 1593.5

1000 1000 399.7 13793.6 496.4 14147.2 410.1 11714.0 408.5 11666.3 405.8 11635.5

5000 141.4 4882.7 267.2 6469.6 157.9 4140.4 157.1 4168.5 145.8 4187.8

10000 84.5 2953.2 169.8 3811.4 96.2 2369.0 96.1 2379.8 88.4 2410.8

15000 60.6 2137.2 128.5 2792.9 71.0 1702.9 71.4 1704.0 65.1 1711.1

20000 49.4 1701.2 102.8 2189.9 56.4 1322.9 58.1 1351.3 52.7 1367.8

Avg 107.0 3702.7 168.1 4338.1 114.9 3140.4 115.0 3143.1 109.3 3140.7
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Table 3.4: Comparison of the greedy heuristics for small and medium Type II
instances

G1 G2 G3 G4 G5

|V| |E| |S| Avg |S| Avg |S| Avg |S| Avg |S| Avg
50 50 20.0 103.4 24.6 75.9 21.4 64.5 21.3 64.9 20.8 65.8

100 13.4 234.5 21.8 121.6 18.3 99.4 18.0 100.1 16.1 97.0
250 6.8 701.4 13.6 214.3 11.2 166.8 10.9 165.4 9.7 167.9
500 3.9 1358.5 7.7 261.8 6.3 201.1 6.3 205.5 5.6 205.0
750 2.8 1702.4 4.7 215.5 4.2 178.1 4.2 178.1 4.1 175.3
1000 2.0 2074.8 3.0 192.2 2.8 167.5 2.7 162.8 2.7 162.8

100 100 39.7 198.9 50.1 162.7 43.1 133.5 42.6 132.3 40.9 131.2
250 23.3 610.3 39.5 284.7 32.7 230.8 31.6 229.2 28.9 235.8
500 14.0 1251.5 27.8 443.2 22.0 343.2 21.4 340.8 18.6 355.8
750 10.2 1950.3 21.3 557.5 17.4 440.9 17.0 437.8 14.3 459.5
1000 8.1 2478.6 17.0 641.8 13.1 480.1 12.7 470.3 11.7 486.2
2000 4.7 5470.8 9.2 810.4 7.6 632.4 7.4 615.4 6.5 635.4

150 150 60.6 297.4 74.9 240.7 63.6 197.3 63.3 198.3 61.1 198.4
250 44.5 531.3 67.1 310.7 56.6 254.9 55.8 255.4 51.6 263.4
500 28.8 1212.0 52.8 504.7 41.0 378.9 40.7 376.8 36.2 388.2
750 20.8 1844.5 42.3 659.4 33.0 502.0 33.2 513.5 29.3 529.2
1000 17.0 2592.5 35.7 834.9 27.3 613.6 27.3 622.8 23.9 620.3
2000 10.0 5298.7 20.5 1064.3 16.1 804.1 16.4 833.4 14.6 776.8
3000 7.1 6799.7 14.4 1201.1 11.3 880.4 11.4 888.5 10.6 908.4

200 250 71.6 520.0 95.8 350.5 82.3 296.9 82.1 297.4 77.3 292.5
500 45.9 1224.0 77.1 524.3 64.2 427.0 63.4 427.0 58.6 435.2
750 34.5 1939.8 64.8 717.3 51.6 562.8 51.1 560.5 45.7 567.9
1000 28.1 2727.1 55.3 861.9 44.1 673.0 43.8 668.1 37.0 677.5
2000 16.7 5666.4 34.1 1254.0 27.8 961.8 28.5 1004.7 25.2 995.7
3000 12.3 8627.7 25.8 1526.3 20.5 1164.2 20.2 1140.8 18.2 1126.3

250 250 101.6 514.2 123.8 394.2 107.2 331.8 104.4 327.4 101.6 325.4
500 67.3 1218.8 107.0 602.8 88.4 482.2 87.1 485.7 79.2 495.3
750 52.4 1930.9 92.9 795.5 75.4 634.6 73.9 635.4 65.7 661.2
1000 41.7 2545.1 79.3 949.8 65.0 751.7 64.9 749.7 55.9 788.5
2000 24.6 5138.4 51.9 1490.0 41.2 1151.6 41.1 1154.3 35.7 1187.4
3000 17.9 7794.5 39.2 1916.2 30.7 1433.9 30.8 1438.8 27.0 1467.1
5000 12.7 14437.1 25.9 2365.0 19.4 1628.7 20.3 1741.1 17.9 1656.1

Avg 27.0 2843.6 44.4 704.5 36.5 539.7 36.1 544.4 32.9 548.1

Table 3.5: Comparison of the greedy heuristics for large Type II instances
G1 G2 G3 G4 G5

|V| |E| |S| Avg |S| Avg |S| Avg |S| Avg |S| Avg
300 300 120.2 612.8 149.5 481.5 129.1 403.1 126.1 398.0 122.1 393.4

500 89.0 1130.5 134.4 624.8 112.3 512.9 110.3 516.0 102.9 538.7
750 69.1 1786.8 118.2 848.2 96.5 674.4 96.3 680.1 86.4 697.6
1000 57.4 2437.1 106.3 1057.6 84.3 816.0 84.8 828.7 73.7 844.5
2000 33.6 5282.5 69.8 1627.7 54.0 1207.6 54.6 1240.6 48.8 1248.9
3000 25.0 7907.5 51.7 2050.8 40.1 1510.1 41.1 1555.3 35.8 1576.1
5000 16.8 14027.7 33.3 2448.3 26.9 1862.5 27.8 1941.1 25.1 1869.2

500 500 200.6 1003.3 249.5 805.6 215.4 678.5 210.9 668.5 203.5 658.4
1000 133.0 2362.9 217.0 1237.3 178.2 986.2 175.2 987.4 158.9 1012.1
2000 82.7 5024.8 159.8 1979.8 126.5 1525.0 124.5 1508.1 110.6 1554.1
5000 42.5 13505.1 89.1 3517.4 69.4 2656.9 70.0 2668.1 60.9 2729.9
10000 24.8 30543.8 52.4 4961.0 40.5 3630.6 41.2 3723.3 36.9 3704.0

800 1000 278.9 2166.0 385.4 1447.5 327.6 1200.1 323.0 1193.4 306.0 1198.6
2000 186.8 4904.6 319.7 2284.1 259.1 1807.2 257.3 1811.7 229.1 1853.5
5000 95.3 13295.6 196.3 4367.9 150.8 3226.7 153.1 3321.5 132.7 3343.2
10000 56.3 28192.7 118.5 6288.7 92.3 4657.0 92.5 4725.3 82.5 4810.9

1000 1000 399.7 2007.9 496.4 1590.4 431.2 1346.8 424.2 1336.9 411.0 1323.5
5000 141.4 12989.2 283.8 4675.0 221.6 3552.5 222.0 3596.4 194.0 3674.6
10000 84.5 27885.5 180.0 7279.9 139.9 5393.4 140.7 5432.6 121.9 5541.9
15000 60.6 43466.1 131.8 8836.4 105.0 6738.6 105.8 6857.0 90.8 7030.1
20000 49.4 57295.7 107.0 10297.0 83.9 7602.0 85.8 7785.6 74.4 7824.7

Avg 107.0 13229.9 173.8 3271.8 142.1 2475.6 141.3 2513.1 129.0 2544.2
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3.4.4
Performance of the proposed algorithm

HTS-DS was run ten times with different random seeds on each instance.

We will compare its results with that of the recent state-of-the-art algorithms

for the MWDS listed in Table 3.6. This table also indicates the CPU model

used by each study, along with the associated time scaling factor (based on

Passmark benchmark) representing the ratio between its speed and the speed

of our processor. In the remainder of this section, the time values reported

by previous studies will be multiplied by the associated factors, in order to

account for CPU differences and conduct a fair comparison.

Table 3.6: List of methods considered in the experiments, and CPU model
information

Acronym Description CPU Factor

RAKA Ant colony approach of Jovanovic et al. (2010) Not available –

HGA Hybrid genetic algorithm of Potluri & Singh (2013) Not available –

ACO-LS Hybrid ACO with local search of Potluri & Singh (2013) Not available –

ACO-PP-LS Hybrid ACO with pre-processing of Potluri & Singh (2013) Not available –

R-PBIG Iterated greedy algorithm of Bouamama & Blum (2016) Xeon 5670 2.93GHz 0.67

Hyb-R-PBIG Hybrid algorithm of Bouamama & Blum (2016) Xeon 5670 2.93GHz 0.67

CC2FS Configuration checking algorithm of Wang et al. (2017) I5-3470 3.2GHz 0.95

HTS-DS Hybrid tabu search I7-5820K 3.3GHz 1.00

Tables 3.7–3.10 now compare the results of all methods. Each table

corresponds to a different instance class (SMPI and LPI) and type (T1 and

T2), and each row corresponds to a group of ten instances with identical

characteristics. From left to right, the columns report the characteristics

of the instances, the average solution quality and CPU time of previous

algorithms, as well as the best, average solution quality and average CPU time

of HTS-DS. The two rightmost columns also report the gap of HTS-DS’ best

(GapB) and average (GapA) solutions, relative to the best known solutions

(BKS) in the literature. Let z be the solution value found by HTS-DS and

zbks be the best known solution value. The percentage gap is computed as

Gap(%) = 100 × (z − zbks)/zbks. Finally, the best method is highlighted in

boldface for each row, and the last line of the table presents some metrics

(time and solution quality) averaged over all instances.

For the benchmark instances of type T1 and class SMPI, the HTS-

DS retrieves all known optimal solution values (known for 17 instances in

total), and even finds new best known solutions for 16% of the instances. The

algorithm produces solutions of consistently high quality, with an average gap

from the previous BKS of −0.003%, meaning that the average solution quality

of HTS-DS is better than the best solution ever found in all prior studies in
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the literature (issued from multiple algorithms, runs, and parameter settings).

Overall, the average solution for 29 instances groups out of 32 have been strictly

improved or matched during these experiments.

In a similar fashion, for the class LPI, the HTS-DS algorithm retrieves all

known optimal solutions (50 in total), and produces new best solutions for 52%

of the instances, with an average percentage gap of −0.096% relative to the

BKS from previous literature. HTS-DS is also faster than existing algorithms,

with an average CPU time of 3.6 and 10.1 seconds versus 47.5 and 434.3 seconds

for CC2FS method on the classes SMPI and LPI, respectively.

The same observations stand for the benchmark instances of type T2.

For this type, the instances of class SMPI are easier to solve, and most recent

method find the same solutions. In contrast, the class LPI allows to observe

more significant differences between methods. Again, for this benchmark, HTS-

DS retrieves very accurate solutions, with an average gap of 0.024% relative

to the BKS, in a time which is significantly smaller than previous approaches.

Finally, since the scalability of the algorithm is essential for large scale

applications, Figure 3.3 presents a more detailed analysis of the CPU time of

the two main phases of the method (Tabu search and IP) as a function of the

number of vertices |V |, for each instance type. To eliminate some instances

with few edges which tend to be easy to solve, we restricted this analysis to

the subset of instances such that |E| ≥ 3|V |.

Type1 Type2

0

10

20

30

50 100 150 200 250 300 500 800 1000 50 100 150 200 250 300 500 800 1000
|V|

T
(s

)

Component Tabu IP

Figure 3.3: Computational time of each component of HTS-DS as a function
of |V|
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From this figure, one can first observe that the average CPU time of

HTS-DS remains below two seconds on a majority of instances. There are

two situations where this computational time is exceeded. For the instances of

type T1, the total time dedicated to the resolution of the reduced problems

with the IP solver amounts to five to six seconds when |V | ≥ 150 due to the

increased difficulty of the mathematical models. For the instances of type T2,

the resolution of the subproblems is faster, and the CPU time of the method

only exceeds two seconds when |V | ≥ 500.

Note that the time spent solving the subproblems cannot exceed an upper

bound of 10 seconds overall, due to the time limit imposed on the IP solver

(1 second) and the limited number of subproblem resolutions (up to NRestart =

10). Therefore, the scalability of the approach essentially depend on the

efficiency of the tabu search phase, and more specifically, on the evaluation

of the neighborhoods. For each instance type, we fitted the CPU time spent

in the tabu search phase as a power law f(|V |) = x|V |y (by a least-squares

regression of an affine function on the log-log graph). This time appears to

grow as O(n1.81) on the instances of type 1, and O(n2.30) on the instances of

type 2.

3.4.5
Sensitivity analyses

Finally, we performed a sensitivity analysis in order to evaluate the

impact of each main component and parameter of the HTS-DS. Starting

with the standard configuration described in Section 3.4.2, we modified one

parameter and design choice at a time (OFAT approach) to evaluate its effect.

The following configurations were considered:

Standard. Standard configuration described in Section 3.4.2.

A. No Reduced Problem. The reduced problem and IP solver is

disabled.

B. No SWAP. The SWAP neighborhood is not used.

C. No Perturbation. No perturbation phase: ρ = 0.

D. ↑ Perturbation. Higher level of perturbation: ρ = 0.4.

E. ↓ Tabu. Shorter tabu tenure: Ntabu = 5.

F. ↑ Tabu. Longer tabu tenure: Ntabu = 20.

G. ↓ Beta. Shorter phases for penalty management: β = 1.0.

H. ↑ Beta. Longer phases for penalty management: β = 1.5.
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All configurations were run ten times on each instance. Table 3.11 presents the

gap of the best and average solutions over these runs, as well as the average

time of each method configuration.

Type T1 Type T2

GapB GapA T(s) GapB GapA T(s)

Standard -0.04 0.00 6.18 0.00 0.01 4.41

A. No Reduced Problem 0.06 0.13 2.74 0.09 0.12 3.56

B. No SWAP 0.07 0.14 5.10 0.01 0.02 3.36

C. No Perturbation 0.00 0.05 6.10 0.12 0.16 2.23

D. ↑ Perturbation -0.02 0.01 6.56 0.01 0.01 8.05

E. ↓ Tabu -0.01 0.02 6.13 0.01 0.02 4.94

F. ↑ Tabu 0.08 0.14 6.51 0.01 0.02 4.22

G. ↓ Beta 0.01 0.02 6.93 0.02 0.02 4.19

H. ↑ Beta 0.01 0.03 6.91 0.02 0.03 4.20

Table 3.11: Analysis of HTS-DS components

These experiments (configurations A–C) highlight the major contribution

of the mathematical programming solver used for the solution of the reduced

problems, the limited SWAP neighborhood as well as the perturbation oper-

ator. Without the subproblem solver, the average gap from the BKS rises up

to 0.13% for type T1 and 0.12% for type T2, while the CPU time decreases

by 55% seconds for type T1 and 19% for type T2. In a similar fashion, deac-

tivating the SWAP or the perturbation operator translates into a significant

decrease of solution quality for only moderate time gains.

The three main search parameters in charge of the perturbation rate, the

tabu tenure and the management of the penalty factors also play an important

role in the method. Increasing the perturbation rate to ρ = 0.4, for example,

allows to better diversify the search but leads to a loss of information from

the best solution, with a negative impact on the search (configuration D).

Similarly, increasing the size of the tabu list is over-restrictive and hinders

the progress towards high-quality solutions (configuration E), and decreasing

it may increase the cycling probability (configuration F). Finally, the value

of the parameter β has been chosen so as to find trade-off solutions at the

frontier of feasibility without spending too much time per phase. Increasing or

decreasing this parameter (configurations G and H) leads to solutions of lower

quality.
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3.5
Concluding Remarks

In this chapter, we proposed a matheuristic combining a tabu search with

integer programing for the MWDS problem. The method exploits an efficient

neighborhood search, an adaptive penalty scheme to explore intermediate in-

feasible solutions, perturbation mechanisms as well as additional intensification

phases in which a reduced problem is solved by means of an integer program-

ming solver. The size of this reduced problem is also adapted to fully exploit

the capabilities of the solver.

Through extensive computational experiments, we demonstrated the

good performance of HTS-DS, which outperformed previous algorithms on

the classical benchmark instances of Jovanovic et al. (2010) with up to 1000

vertices. The method remains simple and scalable, with an observed CPU time

growth in O(|V |1.81) and O(|V |2.30) as a function of the number of vertices for

the instances of types T1 and T2, respectively, therefore making it suitable

for large-scale applications. Finally, our sensitivity analyses demonstrated

the essential contribution of each components of the search: the subproblem

resolution, the proposed perturbation mechanisms, and the restricted SWAP

neighborhood which were proposed.
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4
Extension to solve the Weight Connected Dominating Set
Problem

This chapter presents the HTS-DS algorithm, which can deal with both

connected and weight variants of the DS problem. The algorithm consists of

an extension of the one proposed for the MWDS presented in the previous

chapter. We adapted the HTS-DS algorithm in order to impose the connectivity

constraints inherent to the CDS problem. Computational experiments were

carried out on instances with up to 1000 vertices and the best known solutions

were improved for many instances, as well be shown in the next sections.

Section 4.1 defines the MWCDS problem. Section 4.2 presents a branch-

and-cut algorithm for this problem. Section 4.3 describes the main simple

changes and the additional procedures performed to adjust the HTS-DS to

the MWCDS problem. Sections 4.4 and 4.5 show reports our computational

experiments and analyses for MWCDS and MCDS problem, respectively.

Finally, Section 4.6 concludes.

4.1
Problem Statement and Basic Concepts

The MWCDS problem involves finding a dominating set S of minimum

total weight such that G[S] is a connected subgraph. A dominating set is said to

be connected if it fulfills the property by which any vertex n ∈ S can reach any

other vertex m ∈ S by a path that stays entirely within S. That is, S induces

a connected subgraph of G. The MCDS is a special case of the MWCDS in

which all vertices have a weight of one. So, a minimum connected dominating

set is the one with the minimum number of vertices.

4.2
A Branch-and-Cut Approach

This section presents a branch-and-cut (B&C) algorithm that was em-

ployed as a component of the proposed matheuristic. For each edge (i, j) ∈ E ,
we define a binary variable yij, set to 1 if the edge is used to connect the sub-

graph G[S], i.e., the vertices i and j belong to the set S, and 0 otherwise. The

set E(S) contains the edges of the subgraph G[S]. The MWCDS can be stated

as follows.
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min
∑
i∈V

wixi (4-1)

s.t.
∑
j∈N [i]

xj ≥ 1 ∀i ∈ V (4-2)

∑
(i,j) ∈ E

yij =
∑
i∈V

xi − 1 (4-3)

∑
(i,j) ∈ E(S)

yij ≤ |S| − 1 ∀S ⊂ V (4-4)

yij ≤ xj ∀(i, j) ∈ E (4-5)

yij ≤ xi ∀(i, j) ∈ E (4-6)

yij ∈ {0, 1} ∀(i, j) ∈ E (4-7)

xi ∈ {0, 1} ∀i ∈ V (4-8)

The objective function (4-1) minimizes the size of the dominating set.

Constraint (4-3) ensures that the subset S forms a tree. Constraints (4-4)

are known as the subtour elimination constraints. Constraints (4-5) and (4-6)

impose the connectivity of the subgraph induced by yj. Constraints (4-7) and

(4-8) define the domain of the decision variables.

To solve this formulation, we use a B&C algorithm which identifies

violated subtour elimination constraints (4-4) as cutting planes. The separation

problem is solved by identifying connected components first and including the

associated violated cuts, and then using a max-flow algorithm within each

connected component to find other possible cuts.

4.3
Methodology

To investigate the contribution of the proposed strategies for the DS

problem, we derived an adaptation of the HTS-DS algorithm. The three major

changes are in:

1. the neighborhood structure (the candidate list of the move) to be

explored;

2. the rules (and associated memory structures) that define tabu status.

3. an additional mechanism of checking in order to find all the vertices

that are articulation points in the graph induced for the solution. These

mechanisms are described in the following
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4.3.1
Articulation Points Checking

An articulation point is vertex of G whose removal results in a discon-

nected graph. Let P (S) be the set of the articulation points of the graph

induced by the dominating set S of a graph G.
We can use a brute-force algorithm to find P (S), which involves one-

by-one removal of all vertices and checking if the removal of a vertex causes

the graph to disconnected. For every vertex i, the following steps are taken:

remove i from the graph; check if the graph remains connected by breath-first

or depth-first search; and if the graph is disconnected, add i to the P list

and i back to the graph. Nevertheless, the time complexity of this method is

O(|V| · (|V| + |E|)). To improve, an algorithm can be implemented in linear

time O(|V|+ |E|).
The algorithm involve a depth first search (DFS)-based approach as

proposed by Hopcroft & Tarjan (1973). The DFS-tree root is an articulation

point if and only if it has at least two children. In addition, a non-root vertex i

of a DFS-tree is an articulation point of G if and only if has a child j such

that there is no back edge from j or any descendant of i to a proper parent

of j. Note that the leaves of a DFS-tree are never articulation points. This

algorithm is invoked, at each iteration, to investigate the articulation points

of the incumbent solution.

4.3.2
Penalized objective function

HTS-DS relies on a penalized objective function that allows evaluating

infeasible solutions with some non-dominated vertices, but all the solutions

explored during the search should form a connected graph. This encourages

continuing to search for high-quality solutions even when the search is working

with an infeasible solution. We used for the MWCDS problem the function of

Equation (3-1). In this problem, we did not allow to violate the connectivity

constraint since the feasibility in relation the connectivity of the graph cannot

always be recovered efficiently.

If we consider all vertices have weight equal 1, then W (S) = |S| and
wmax = 1 regarding with the penalized function for the MWDS problem, in

this way, the function of Equation (3-1) works for both variants. The cost of a

solution S for the MCDS problem is calculated by:

f(S) = |S|+ α×Nd(S), (4-9)
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where α is the penalty factor, and Nd(S) is the number of non-dominated

vertices in solution S.
The behavior of the parameter α is the same as explained for the MWDS

problem. The penalty parameters are adapted during the search in order to

find a feasible solution. The further from feasibility the solution is with respect

to the constraint that defines a dominating set, the higher the penalty term is

for this violation the solution, and vice versa.

4.3.3
HTS-DS for the WCDS problem

The HTS-DS approach for the MWCDS maintains all the phases of the

algorithm indicated in the Figure 3.1 of the previous chapter, but several

components were adapted in order to improve the performance of the method.

Initial Solution

For the MWCDS problem, we consider as an initial solution the complete

solution, i.e., all vertices are in the dominating set. Although all vertices belong

to the dominating set, they are managed in a list randomly with uniform

probability. This guarantees a non-deterministic search in the next phases since

the explored moves follow the list order.

Neighborhoods

The initial solution is then improved in the tabu search. Three families

of moves are considered.

• ADD – adds one vertex i into the solution, namely the vertex i that is

adjacent to a vertex in the solution.

• DEL – removes a vertex j from the solution, if j is not an articulation

point.

• SWAP – simultaneously adds a vertex i and removes a vertex j from the

solution, with the above constraints for each move.

In the MWCDS problem, the tabu list keeps a fixed size of NTabu and

contains three types of labels: those that prohibit the insertion of a specific

vertex, those that prohibit the removal of a specific vertex that leaves at the

visited solution, and those that forbid the removal of articulation points in

the current solution. Whenever a solution is found, the method search for any

vertex i such that, i is an articulation point, and a label is added to prohibit

the removal of i.
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Therefore, our method guarantees the connectivity of all solutions. Note

that it is important to use an efficient algorithm to find articulation points in a

graph. As mentioned in the Section 4.3.1, this mechanism has the complexity

time of O(|V|+ |E|).

Perturbation Operator

Another adaptation of the method concerns the perturbation operator.

The removal of a vertex is only allowed if this vertex is not a articulation

point. Also, when we lead to the MCDS problem, we considered wi = 1, so

the Equations (3-4) and (3-7) return the same value the reconstruction of the

solution, includes, with 50% chances each, a vertex i with:

1. the highest value of ∆(i);

2. or the second-highest value of ∆(i)

Reduced Problem for the MWCDS

In Phase 3, the HTS-DS constructs a reduced problem, which exploits

the best solution found in Phase 2 on a much smaller model. We study its

properties depending on the choice of fixed variables. By guiding the resolution

using a particular model, we are able to find good results from the fixing

algorithm. The resolution of this sub-model is very flexible.

Besides the smaller group of “free” variables, which are the possible

choices of vertices for the dominating set, if there is any articulation point,

it will be fixed at 1. Because, obviously this vertex is a part of the solution, i.e.

belongs to the dominating set. We follow the same parameters and strategy,

presented in the Section 3.3.4, to fix and set ‘free’ the variables.

4.4
Computational Experiments

We implemented the HTS-DS algorithm in C++ for resolution of the

integer linear problems, we used CPLEX 12.7. In addition, we conducted

our experiments in a single thread of a computer with an I7-5820K 3.3GHz

processor.

The instances originally proposed in Shyu et al. (2004) were considered.

For these instances, two groups are defined, Type I and Type II instances,

with respect to their weights, and divided into three groups with respect to

node counts as small, moderate and large. Type I instances include vertices

having weights uniformly distributed in the interval [20, 120], while in the of

Type II instances, the weight of each vertex i is randomly chosen in [1, δ(i)2],
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where δ(i) is the degree of i. The sets of vertices in small, moderate and large

problem instances are {10, 15, 20, 25}, {50, 100, 150, 200, 250, 300} and {500,
800, 1000}, respectively. Ten instances are generated for each group, but some

of these instances produce disconnected graphs, the number of these graph will

be presented in the table of results.

Our proposed algorithm was also tested in the instances suggested in

Dagdeviren et al. (2017) with 10-1000 vertices, which are generated randomly.

The instances include the small, moderate and large, with [10, 25], [50-250],

and [250, 1000] vertices, respectively.

4.4.1
Parameters Calibration

The parameter values for the MWCDS problem were calibrated after

preliminary experiments. The final parameter are presented in Table 4.1.

Table 4.1: Parameter configuration of HTS-DS

Parameter Symbol Value

Number of restarts Nrestart 10

Maximum number of iterations of TS Imax 10000

Maximum number of iterations without improvement of TS Ini 5000

Frequency of the perturbation Ipert 100

Perturbation strength ρ 0.3

Size of the tabu list Ntabu 30

Time limit for the IP solver Tmax 1 sec

Penalty factor

αmin 0.1

αmax 1.1

β 2.0

4.4.2
Performance of the HTS-DS algorithm

Tables 4.2 - 4.6 computational results of ten runs of the HTS-DS algo-

rithm. Some graphs are disconnected and therefore led to infeasible problem

instances, so the ‘ #’ column is the number of connected graphs in the 10

instances group for each problem class. The last row of these tables indicates

the average for all the instances of the class that are evaluated, the average

computation time, as well as the average gap.

We compared our method with the two population-based approaches

proposed in Dagdeviren et al. (2017): a hybrid genetic algorithm (HGA)

and a population-based iterated greedy (PBIG) algorithm. The results are
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reported in the Tables 4.2 – 4.6 . The CPLEX column shows the results for

the MWCDS problem using the formulation presented by Equations (4-2) -

(4-8), along with Equation (3-1) as the objective function. The T(s) column

reports the execution time of the method. We limited the time of the ILP

solver to 3600 seconds. The value ‘TL’ in this column represents the instances

in which the solver reached this time. The Sol and GAP columns present the

solution and the gap returned by the ILP solver. The symbols ‘–’ in the GAP

column mean that the solver cannot return a solution in the limit time.

From left to right, the columns report the characteristics of the instances,

the average solution quality and CPU time of previous algorithms, the results

of the ILP solver, as well as the best, average solution quality and average

CPU time of HTS-DS. The two rightmost columns also report the gap of HTS-

DS’ best (GapB) and average (GapA) solutions, relative to the best known

solutions in the literature. Let z be the solution value found by HTS-DS and

zbks be the best known solution value. Then the percentage gap is computed

as Gap(%) = 100 × (z − zbks)/zbks. Finally, the best method is highlighted

in boldface for each row, and the last line of the table presents some metrics

(time and solution quality) averaged over all instances.

Table 4.2: Type-I, Small Class – Comparison of HTS-DS with recent state-of-
the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| # Avg T(s) Avg T(s) #S Sol T(s) GAP Best Avg T(s) GapB,A

10 10 2 341.0 0.1 341.0 0.05 2 341.0 0 0 341.0 341.0 0.40 0

20 10 157.2 0.1 157.2 0.03 10 157.2 0.01 0 157.2 157.2 0.36 0

30 10 85.9 0.1 85.9 0.01 10 85.9 0.01 0 85.9 85.9 0.24 0

40 10 45.0 0.1 45.0 0 10 45.0 0.01 0 45.0 45.0 0.14 0

15 20 3 409.7 0.2 409.7 0.05 3 409.7 0.03 0 409.7 409.7 0.57 0

40 10 163.0 0.2 163.0 0.19 10 163.0 0.04 0 163.0 163.0 0.41 0

60 10 104.3 0.2 104.3 0.06 10 104.3 0.02 0 104.3 104.3 0.33 0

80 10 67.6 0.2 67.6 0.02 10 67.6 0.02 0 67.6 67.6 0.27 0

100 10 25.7 0.2 25.7 0.01 10 25.7 0.01 0 25.7 25.7 0.21 0

20 20 – – – – – – – – – – – – –

40 9 300.4 0.3 300.4 0.36 9 300.4 0.08 0 300.4 300.4 0.96 0

60 10 213.7 0.3 213.7 0.34 10 213.7 0.10 0 213.7 213.7 0.74 0

80 10 135.8 0.3 135.8 0.23 10 135.8 0.03 0 135.8 135.8 0.62 0

100 10 111.4 0.3 111.4 0.21 10 111.4 0.03 0 111.4 111.4 0.50 0

120 10 92.1 0.3 92.1 0.15 10 92.1 0.05 0 92.1 92.1 0.45 0

25 40 4 508.3 0.5 508.3 0.42 4 508.3 0.12 0 508.3 508.3 1.20 0

80 10 228.0 0.4 228.0 0.52 10 228.0 0.14 0 228.0 228.0 0.89 0

100 10 193.4 0.4 193.4 0.53 10 193.4 0.15 0 193.4 193.4 0.79 0

150 10 120.0 0.4 120.0 0.44 10 120.0 0.09 0 120.0 120.0 0.58 0

200 10 80.3 0.4 80.3 0.10 10 80.3 0.04 0 80.3 80.3 0.46 0

Avg 178.0 0.2 178.0 0.19 178.0 0.05 0 178.0 178.0 0.53 0
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Table 4.3: Type-I, Moderate Class – Comparison of HTS-DS with recent state-
of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| # Avg T(s) Avg T(s) #S Sol T(s) GAP Best Avg T(s) GapB GapA

50 50 0 – – – – – – – – – – – – –

100 4 900.0 0.16 900.0 1.73 4 897.0 409.53 0 897.0 897.0 2.23 -0.33 -0.33

250 10 291.3 0.08 290.6 1.99 10 288.7 6.13 0 288.7 288.7 1.48 -0.65 -0.65

500 10 141.6 0.09 141.2 2.20 10 141.2 1.29 0 141.2 141.2 1.15 0 0

750 10 87.7 0.11 87.6 1.77 10 87.6 0.45 0 87.6 87.6 0.82 0 0

1000 10 51.4 0.13 51.4 0.18 10 51.4 0.12 0 51.4 51.4 0.70 0 0

100 100 0 – – – – – – – – – – – – –

250 2 1408 0.71 1362.5 8.08 2 1376.5 1934.32 4.3 1362.5 1362.7 4.50 0 0.01

500 10 687.4 0.48 641.9 9.35 10 641.5 1181.17 0 641.5 641.5 3.27 -0.06 -0.06

750 10 439.8 0.41 410.4 9.22 10 410.4 795.01 0 410.4 410.4 2.83 0 0

1000 10 336.9 0.46 308.6 9.76 10 308.2 379.98 0 308.2 308.2 2.67 -0.13 -0.13

2000 10 144.4 0.94 141.9 10.83 10 141.8 79.93 0 141.8 141.8 1.78 -0.07 -0.07

150 150 0 – – – – – – – – – – – – –

250 0 – – – – – – – – – – – – –

500 6 1752 2.20 1661.3 25.43 1 2032.0 TL 22.6 1647.2 1648.9 5.93 -0.85 -0.75

750 10 1070.2 1.54 1013.4 24.49 3 2109.3 TL 45.2 1001.1 1011.1 5.44 -1.21 -0.23

1000 10 761.4 1.30 701.6 21.17 8 711.8 TL 24.4 701.0 701.6 4.88 -0.09 0

2000 10 392.3 1.54 345 23.59 9 464.4 TL 23.8 342.7 343.5 3.65 -0.67 -0.43

3000 10 256.2 2.52 234.1 22.78 0 - - - 231.5 231.5 3.09 -1.11 -1.11

200 250 0 – – – – – – – – – – – – –

500 4 3056.75 5.85 2966.3 48.89 0 - - - 2931.8 2931.8 10.98 -1.16 -1.16

750 10 1917.5 4.88 1811.0 50.80 0 - - - 1793.0 1793.0 10.30 -0.99 -0.99

1000 9 1451.4 3.69 1345.6 47.17 0 - - - 1340.1 1340.1 8.50 -0.41 -0.41

2000 10 698 2.77 627.1 41.93 0 - - - 624.0 624.0 6.46 -0.49 -0.49

3000 10 478 3.61 417.7 40.76 0 - - - 416.8 416.8 5.86 -0.22 -0.22

250 250 0 – – – – – – – – – – – – –

500 0 – – – – – – – – – – – – –

750 7 3068.1 10.40 2850.3 95.07 0 - - - 2834.4 2834.4 24.15 -0.56 -0.56

1000 9 2227.8 8.49 2056.8 82.35 0 - - - 2038.0 2040.1 23.23 -0.91 -0.81

2000 10 1091.9 5.07 976.3 75.06 0 - - - 965.9 967.3 18.56 -1.07 -0.92

3000 10 752.2 5.28 656.9 71.77 1 896.0 TL 42.5 650.4 652.1 17.10 -0.99 -0.73

5000 10 439.7 8.74 394.9 71.07 9 515.3 TL 44.1 390.2 391.5 15.36 -1.19 -0.86

300 300 0 – – – – – – – – – – – – –

500 0 – – – – – – – – – – – – –

750 2 4449.5 18.85 4293.5 156.64 0 - - - 4273.0 4273.0 27.20 -0.48 -0.48

1000 9 3315.4 16.75 3111.0 156.31 0 - - - 3068.8 3068.9 26.53 -1.36 -1.35

2000 10 1639.4 10.33 1472.6 125.22 0 - - - 1440.3 1440.5 22.41 -2.19 -2.18

3000 10 1083.7 8.27 945.3 111.10 2 1219.0 TL 39.4 936.9 937.8 19.94 -0.89 -0.79

5000 10 646.0 11.36 564.2 109.02 2 829.5 TL 51.0 555.1 558.1 17.76 -1.61 -1.08

Avg 1167.9 4.57 1092.7 48.52 - - - 1083.7 1084.5 9.96 -0.66 -0.56
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Table 4.4: Type-I, Large Class – Comparison of HTS-DS with recent state-of-
the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| # Avg T(s) Avg T(s) #S Sol T(s) GAP Best Avg T(s) GapB GapA

500 500 0 – – – – – – – – – – – – –

1000 0 – – – – – – – – – – – – –

2000 1 4579 74.50 4239 1166.97 0 – – – 4201 4221 51.30 -0.90 -0.42

5000 1 1803 33.91 1576 452.28 0 – – – 1565 1569 42.40 -0.70 -0.44

10000 1 922 45.10 868 398.50 0 – – – 852 852 36.90 -1.84 -1.84

800 500 0 – – – – – – – – – – – – –

1000 0 – – – – – – – – – – – – –

2000 0 – – – – – – – – – – – – –

5000 1 4740 246.81 4334 1922.66 0 – – – 4215 4235 71.30 -2.75 -2.28

10000 1 2459 131.81 2081 1465.53 0 – – – 2080 2080 59.80 -0.05 -0.05

1000 1000 0 – – – – – – – – – – – – –

5000 1 7319 540.86 6762 4535.20 0 – – – 6709 6712 115.00 -0.78 -0.74

10000 1 3596 296.01 3013 3121.87 0 – – – 3053 3059 76.60 1.33 1.53

15000 1 2483 295.59 2178 2656.38 0 – – – 2188 2190 69.00 0.46 0.55

20000 1 1895 308.91 1658 2394.79 0 – – – 1617 1619 65.50 -2.47 -2.35

Avg 3310.7 219.28 2967.7 2012.69 – – – 2942.2 2948.6 65.31 -0.86 -0.67

Table 4.5: Type-II, Small Class – Comparison of HTS-DS with recent state-
of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| # Avg T(s) Avg T(s) #S Sol T(s) GAP Best Avg T(s) GapB GapA

10 10 3 26.7 0.18 26.7 0 3 26.7 0.01 0 26.7 26.7 0.50 0 0

20 10 21.3 0.10 21.4 0.03 10 21.3 0.01 0 21.3 21.3 0.33 0 0

30 10 25.5 0.10 25.6 0.01 10 25.5 0.01 0 25.5 25.5 0.22 0 0

40 10 21.1 0.09 21.2 0 10 21.1 0.01 0 21.1 21.1 0.16 0 0

15 20 6 33.8 0.19 33.8 0.13 6 33.8 0.01 0 33.8 33.8 0.70 0 0

40 10 48.3 0.16 49.2 0.27 10 48.3 0.02 0 48.3 48.3 0.47 0 0

60 10 45.1 0.18 45.1 0.11 10 45.1 0.01 0 45.1 45.1 0.30 0 0

80 10 37.9 0.16 37.9 0.01 10 37.9 0.01 0 37.9 37.9 0.27 0 0

100 10 17.0 0.16 17.0 0.01 10 17.0 0.01 0 17.0 17.0 0.20 0 0

20 20 0 – – – – – – – – – – – – –

40 7 63.6 0.31 64.3 0.32 7 63.6 0.07 0 63.6 63.6 0.93 0 0

60 10 54.1 0.26 54.1 0.37 10 54.1 0.09 0 54.1 54.1 0.67 0 0

80 10 60.2 0.24 60.2 0.39 10 60.2 0.01 0 60.2 60.2 0.54 0 0

100 10 64.8 0.25 64.8 0.30 10 64.8 0.04 0 64.8 64.8 0.49 0 0

120 10 50.1 0.24 50.1 0.10 10 50.1 0.03 0 50.1 50.1 0.34 0 0

25 40 4 82.5 0.48 82.5 0.40 4 82.5 0.11 0 82.5 82.5 1.35 0 0

80 10 80.0 0.38 80.0 0.55 10 80.0 0.13 0 80.0 80.0 0.90 0 0

100 10 78.8 0.35 78.8 0.56 10 78.8 0.15 0 78.8 78.8 0.72 0 0

150 10 84.2 0.36 84.2 0.50 10 84.2 0.11 0 84.2 84.2 0.54 0 0

200 10 105.0 0.40 105.0 0.16 10 105.0 0.08 0 105.0 105.0 0.43 0 0

Avg 52.63 0.24 52.73 0.22 52.63 0.05 0 52.63 52.63 0.53 0 0
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Table 4.6: Type-II, Moderate Class – Comparison of HTS-DS with recent
state-of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| # Avg T(s) Avg T(s) #S Sol T(s) GAP Best Avg T(s) GapB GapA

50 50 0 – – – – – – – – – – – – –

100 4 166.0 0.18 166.0 1.72 4 166.0 537.33 0.0 166.0 166.0 10.12 0.00 0.00

250 10 182.8 0.08 182.8 2.10 10 181.4 364.28 3.0 181.4 181.7 9.65 -0.77 -0.60

500 10 204.4 0.09 204.4 2.53 10 204.4 0.32 0.0 204.4 204.4 8.97 0.00 0.00

750 10 215.3 0.11 215.3 1.42 10 215.3 0.15 0.0 215.3 215.3 5.43 0.00 0.00

100 50 0 – – – – – – – – – – – – –

100 0 – – – – – – – – – – – – –

250 7 306.1 0.80 307.4 10.27 5 443.6 TL 41.9 301.3 301.4 18.24 -1.57 -1.54

500 10 364.4 0.51 348.9 10.00 10 429.5 2147.82 18.4 348.9 348.9 14.27 0.00 0.00

750 10 464.5 0.42 432.2 1.11 10 431.2 1336.42 2.5 431.3 431.7 13.31 -0.21 -0.12

150 50 0 – – – – – – – – – – – – –

100 0 – – – – – – – – – – – – –

250 0 – – – – – – – – – – – – –

500 9 490.0 2.36 479.1 26.26 1 818.0 TL 49.7 494.8 494.8 19.83 3.27 3.27

750 10 622.5 1.84 596.9 27.82 3 775.3 TL 33.4 595.0 595.6 17.99 -0.32 -0.22

200 50 0 – – – – – – – – – – – – –

100 0 – – – – – – – – – – – – –

250 0 – – – – – – – – – – – – –

500 3 678.7 6.68 664.0 53.55 0 662.7 663.2 31.40 -0.20 -0.12

750 10 733.2 5.45 709.0 54.61 0 735.3 735.8 28.30 3.71 3.78

250 250 0 – – – – – – – – – – – – –

500 0 – – – – – – – – – – – – –

750 6 924.7 12.07 896.5 107.57 0 920.8 922.9 33.73 2.71 2.94

1000 9 1014.6 10.66 967.8 105.83 0 976.6 977.4 30.57 0.90 0.99

2000 10 1272.9 5.35 1167.8 93.20 0 1190.5 1192.2 20.83 1.94 2.09

5000 10 1666.7 8.57 1471.9 85.99 9 1714.1 2915.01 14.7 1572.8 1572.8 15.10 6.86 6.86

300 250 0 – – – – – – – – – – – – –

500 0 – – – – – – – – – – – – –

750 1 999.0 22.29 981.0 183.42 0 1015.0 1019.9 42.40 3.47 3.97

1000 9 1092.6 20.36 1058.7 175.36 0 1082.0 1083.8 38.27 2.20 2.37

2000 10 1395.6 11.24 1294.7 158.44 0 1302.9 1304.2 29.62 0.63 0.73

5000 10 1934.2 11.47 1622.4 131.93 6 1822.3 2964.34 19.1 1744.8 1744.8 17.77 7.54 7.54

Avg 775.17 6.34 724.57 64.90 – – – 744.30 742.75 21.36 1.59 1.68
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HTS-DS was run ten times with different random seeds on each instance.

The recent state-of-the-art algorithms for the MWCDS problem have the as-

sociated time scaling factor 0.29 (based on Passmark benchmark). All average

time values compared in this section will be multiplied by the associated factor,

in order to account for CPU differences and conduct a fair comparison.

For all datasets of the small class, the HTS-DS retrieves all known optimal

solution values. In the Shyu’s Type I dataset, the algorithm produces solutions

of high quality, with an average gap from the previous BKS of −0.56% for the

moderate class, meaning that the average solution quality of HTS-DS is better

than the best solution ever found in all previous algorithms in the literature. In

a similar fashion, for the large class, the HTS-DS algorithm improved 7 of the

9 instance groups, i.e., it produces best solutions for 77.8% of the instances,

with an average percentage gap of −0.67% relative to the BKS from previous

literature. For both moderate and large classes, HTS-DS is also faster than

PBIG algorithm, with an average CPU time of 9.96 versus 14.07 seconds, and

65.31 versus 586.47 seconds for the moderate and large classes, respectively,

(time value adjusted with the factor 0.29). In turn, for Shuy’s Type II dataset,

the HTS-DS algorithm improves or matches 53% of the instance groups of

the moderate class. For the instances with |V| ≥ 250, the HTS-DS cannot

improved the solution.

The similar observations stand for the benchmark instances of Dagde-

viren’s dataset, the results are presented in the Tables 4.7 - 4.9.

Table 4.7: Dagdeviren’s dataset, small class comparison of HTS-DS with recent
state-of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| Avg T(s) Avg T(s) Sol GAP T(s) Best Avg T(s) GapB GapA

10 20 122.7 0.035 122.7 0.02 122.7 0 0.01 122.7 122.7 0.63 0 0

40 53.5 0.025 54.6 0 53.5 0 0 53.5 53.5 0.39 0 0

15 30 250.1 0.052 250.1 0.21 250.1 0 0.05 250.1 250.1 0.95 0 0

60 91.1 0.048 91.1 0.06 91.1 0 0.02 91.1 91.1 0.76 0 0

90 62.5 0.046 66.6 0.01 62.5 0 0.01 62.5 62.5 0.52 0 0

20 40 329.8 0.098 329.8 0.37 329.8 0 0.12 329.8 329.8 1.68 0 0

80 164.0 0.096 164.7 0.36 164.0 0 0.11 164.0 164.0 1.42 0 0

120 79.5 0.078 79.5 0.07 79.5 0 0.03 79.5 79.5 1.13 0 0

160 55.5 0.073 56.9 0.01 55.5 0 0.02 55.5 55.5 0.97 0 0

25 50 489.4 0.149 489.4 0.54 489.4 0 0.02 489.4 489.4 0.54 0 0

100 182.9 0.110 182.9 0.51 182.9 0 0.12 182.9 182.9 1.38 0 0

150 117.7 0.117 117.7 0.44 117.7 0 0.12 117.7 117.7 1.30 0 0

200 75.2 0.118 75.2 0.13 75.2 0 0.05 75.2 75.2 1.15 0 0

250 60.8 0.110 60.8 0.03 60.7 0 0.03 60.7 60.7 0.87 0 0

Avg 152.5 0.083 153.0 0.20 152.5 0 0.05 152.5 152.5 0.98 0 0
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Table 4.8: Dagdeviren’s Dataset, Moderate Class – Comparison of HTS-DS
with recent state-of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| Avg T(s) Avg T(s) Sol GAP T(s) Best Avg T(s) GapB GapA

50 100 908.1 0.11 905.0 1.87 902.7 0 90.11 902.7 902.8 12.27 -0.25 -0.24

200 412.8 0.08 407.5 1.88 407.5 0 11.67 407.5 407.5 12.42 0 0

300 263.5 0.07 257.1 2.02 257.1 0 6.98 257.1 257.1 12.07 0 0

400 186.0 0.08 183.0 2.14 183.0 0 1.92 183.0 183.0 8.84 0 0

500 148.5 0.10 147.4 2.16 147.3 0 1.28 147.3 147.4 7.75 -0.07 0

100 200 1856.5 0.68 1804.7 8.89 1806.3 0.02 122.10 1796.3 1797.9 21.44 -0.47 -0.38

400 873.2 0.52 845.9 8.78 – – – 843.9 844.0 18.73 -0.24 -0.22

600 599.2 0.43 559.8 8.58 – – – 559.3 559.4 17.49 -0.09 -0.07

800 450.0 0.40 412.7 8.59 412.8 0.01 661.30 412.7 412.7 16.00 0 0

1000 338.9 0.44 314.8 8.86 314.8 0 414.43 314.8 314.8 14.66 0 0

150 300 2927.6 2.17 2817.0 25.94 – – – 2786.4 2788.2 38.03 -1.09 -1.02

600 1300.7 1.57 1237.0 21.46 1501.7 0.27 TL 1222.1 1223.0 30.95 -1.20 -1.13

900 878.8 1.29 826.2 21.55 – – – 818.4 818.4 28.11 -0.94 -0.94

1200 694.3 1.18 623.1 21.73 773.5 0.27 TL 621.1 621.3 26.75 -0.32 -0.29

1500 508.5 1.21 460.4 21.46 470.8 0.06 2331.63 456.8 456.8 26.05 -0.78 -0.78

200 400 3884.6 4.98 3683.5 54.85 – – – 3650.9 3653.0 52.50 -0.89 -0.83

800 1797.2 3.90 1674.8 44.52 – – – 1654.9 1655.8 44.94 -1.19 -1.13

1200 1193.5 2.84 1115.5 42.15 – – – 1105.4 1107.3 46.77 -0.91 -0.74

1600 891.1 2.59 784.7 41.68 – – – 780.1 780.2 39.86 -0.59 -0.57

2000 694.7 2.62 614.6 38.89 – – – 614.4 615.1 34.15 -0.03 0.08

Avg 1040.4 1.36 983.7 19.40 – – – 976.76 977.29 25.49 -0.45 -0.41

Table 4.9: Dagdeviren’s Dataset, Large Class – Comparison of HTS-DS with
recent state-of-the-art algorithms

HGA PBIG CPLEX HTS-DS

|V| |E| Avg T(s) Avg T(s) Sol GAP T(s) Best Avg T(s) GapB GapA

250 500 4716.1 9.9 4585.0 110.7 – – – 4490.2 4495.0 37.46 -2.07 -1.96

1000 2481.8 9.1 2228.0 90.4 – – – 2220.3 2226.2 29.00 -0.35 -0.08

1500 1548.1 6.0 1384.0 72.1 – – – 1365.7 1365.7 25.70 -1.32 -1.32

2000 1104.9 4.9 1062.4 79.6 – – – 1020.3 1020.3 21.89 -3.96 -3.96

2500 960.3 4.9 822.2 62.3 – – – 822.1 822.1 20.74 -0.01 -0.01

500 1000 9444.3 85.9 8859.4 795.1 – – – 8747.7 8768.2 67.83 -1.26 -1.03

2000 4693.7 68.8 4393.7 621.3 – – – 4279.7 4283.7 62.86 -2.59 -2.50

3000 3256.9 49.5 2915.8 512.9 – – – 2871.2 2879.5 56.93 -1.53 -1.24

4000 2517.9 37.7 2164.3 467.7 – – – 2145.7 2149.8 51.80 -0.86 -0.67

5000 1766.5 34.3 1552.7 363.4 – – – 1531.6 1539.7 46.44 -1.36 -0.84

750 1500 15491.2 305.2 14298.5 2393.7 – – – 14139.3 14264.9 123.58 -1.11 -0.23

3000 6979.4 264.0 6250.9 1718.4 – – – 6173.5 6173.5 102.63 -1.24 -1.24

4500 4878.3 199.3 4383.5 1538.5 – – – 4383.1 4383.5 96.45 -0.01 0

6000 3602.2 143.8 3226.9 1524.5 – – – 3163.1 3165.8 83.69 -1.98 -1.89

7500 2823.6 119.0 2435.0 1452.0 – – – 2435.9 2436.1 76.32 0.04 0.05

1000 2000 19786.5 706.5 18235.3 6052.6 – – – 18187.5 18216.1 182.82 -0.26 -0.11

4000 9532 609.6 8475.9 4651.5 – – – 8375.1 8379.8 141.87 -1.19 -1.13

6000 5938.7 429.5 5341.9 3798.9 – – – 5348.5 5348.5 133.35 0.12 0.12

8000 4557 345.4 3983.5 3471.9 – – – 3988.9 3997.7 121.77 0.14 0.36

10000 3755.9 280.6 3188.9 3113.4 – – – 3143.5 3149.3 115.20 -1.42 -1.24

Avg 5491.77 185.69 4989.4 1644.5 – – – 4941.6 4953.5 79.9 -1.11 -0.94
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For the Dagdeviren’s instances, the HTS-DS algorithm performed better

than the HGA and PBIG algorithms in a average GAP. The HTS-DS algorithm

retrieves all solutions for the instances of moderate class, with an average gap

of −0.41% relative to the best knows solutions. Again, for this benchmark,

HTS-DS retrieves 17 solutions, with an average relative gap of −0.94%, in

a time which is significantly shorter than previous approaches: 79.90 versus

479.20 for the HTS-DS and PBIG algorithm, respectively.

We fitted the CPU time spent in the tabu search phase by a least-squares

regression of an affine function on the log-log graph, in order to analyze the

scalability method, for the Shyu’s Type II benchmark. The time appears to

grow as O(n1.41) on the instances of Shyu’s dataset for the Type 2, as shown

in Figure 4.1. It leads to conclude that our method is scalable.

 0.1

 1

 10

 100

 10  100  1000

f(n)=0.00777*n1.40890 

Figure 4.1: Computational time via a least-squares regression of an affine
function on the log-log graph |V| × T(s).

4.4.3
Sensitivity analyses

We identified that all components play an important role in the pro-

posed algorithm. With this established, we analyzed the behavior of HTS-DS

algorithm according to a change in its parameters for the MWCDS problem.

Starting with the standard configuration described in Section 4.4.1, we

modified the parameters related to the size tabu list and penalty factor. The

following configurations were considered: for the size of the tabu list, the rank

was [10, 40] and for the penalty factor, β = [0.5, 2.3]. For the MWCDS
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problem, we measure how the tabu tenure parameter and the penalty factor

influence the algorithm. For this, we ran the algorithm 10 times for the group

of Type I and Type II instances. We modified the parameter to evaluate its

effect.
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Figure 4.2: Solution quality of the HTS-DS algorithm as a function of the size
of tabu list.
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Figure 4.3: Solution quality of the HTS-DS algorithm as a function of the
penalty factor β.

Figure 4.2 shows that the tabu list size next to 30 is the best option.

The reason is that the search leads to unexplored area and mainly avoiding

cycling. However, if this value is less than 30, the search leads to solutions of

lower quality. In turn, Figure 4.3 show that similar behavior when the value of

the parameter β varies between 0.5 and 1.5. The best parameter value is 2.0.
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4.5
Experiments on the Connected Dominating Set

Since the methodological adaptations are the same, we applied to the

MCDS problem the main procedures of the HTS-DS algorithm. We considered

wi = 1 for each vertex i in this problem. This section discusses the design

computational experiments to test the efficiency of the HTS-DS algorithm

for solving the MCDS problem. Three benchmark sets are considered: LMS,

BPFTC and RGG graphs. The first benchmark originates from Lucena et al.

(2010) and contains 41 random graphs from the interval of vertices [30, 200],

including edge densities from the interval [5%, 70%]. For the next benchmark

for the MCDS problem, the instance has its name starting with the IEEE

and RTS. This benchmark, called BPFTC graph, is introduced from the

computational study in Fan & Watson (2012). Finally, RGG benchmark is the

same graphs presented by Jovanovic & Tuba (2013), with up to 400 vertices.

This benchmark contains 41 large graphs and is obtained by randomly placing

n vertices in a N × N square and connecting two vertices with an edge if

their distance is smaller than a given threshold R (radius). The algorithm was

executed 10 times for each instance.

4.5.1
Parameters Calibration

The final parameter values for the MCDS problem are presented in Table

4.10. These values are were calibrated after preliminary experiments.

Table 4.10: Parameter configuration of HTS-DS for the MCDS problem

Parameter Symbol Value

Number of restarts Nrestart 10

Maximum number of iterations of TS Imax 20000

Maximum number of iterations without improvement of TS Ini 10000

Frequency of the perturbation Ipert 100

Perturbation strength ρ 0.2

Size of the tabu list Ntabu 10

Time limit for the IP solver Tmax 1 sec

Penalty factor

αmin 0.1

αmax 1.1

β 0.7

For the class with few vertices, usually smaller than 50 vertices, we

consider the size of the tabu list in 10% of the number vertices (⌊0.1 ∗ |V|⌋)
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this will ensure that the algorithm is correct, for example, the instances IEEE-

14-Bus and IEEE-30-Bus.

4.5.2
Performance of the proposed algorithm for the CDS problem

Table 4.12 presents the results for the instances of the MCDS problem

in comparison to the computational results proposed by Gendron et al. (2014)

and Wu et al. (2017). The columns in this table present the results for

the following methods: branch-and-cut (columns SABC and IPBC); Benders

decomposition (columns SABE and IPBE) and hybrid algorithms (columns

SAHY and IPHY). The character “ - ” is used whenever an algorithm hits the

limit time of 3600 sec, without producing an optimality guarantee. In turn,

Table 4.13 presents the computational results obtained on RGG instances.

HTS-DS can reach the best known solution for all LMS instances. In

contrast, for the BPFTC instances, HTS-DS can found 98% of the best known

solutions in less time in comparison to the current exact methods.

Table 4.11 presents the recent state-of-the-art algorithms in which the

results will be compared with the HTS-DS algorithm. This table indicates

the CPU model used by each study, along with the associated time scaling

factor. The time values reported by previous studies will be multiplied by the

associated factors.

Table 4.11: List of methods considered in the experiments, and CPU model
information

Acronym Description CPU Factor

ACO-MMAS Max-min ant system ant colony approach of Jovanovic
& Tuba (2013)

Not available –

ACO-PCS Ant colony algorithm with a pheromone correction strat-
egy of Jovanovic & Tuba (2013)

Not available –

GRASP Greedy randomized adaptive search procedure Li et al.
(2017)

Xeon E7-48302.13 GHz 0.25

RSN Restricted swap neighborhood search of Wu et al. (2017) i3 3.0Ghz 0.38

HTS-DS Hybrid tabu search of this paper i7-3960K 3.3GHz 1.00
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Chapter 4. Extension to solve the Weight Connected Dominating Set Problem 69

In particular, HTS-DS obtained solutions that are at least as good as the

best solutions in the literature for 24 out of 41 test instances, that is, HTS-DS

retrieves 59% of the solutions. In addition, HTS-DS improved the best-known

solutions in the literature for 3 instances.

In terms of computation time, our algorithm clearly outperforms other

heuristics, except when is compared with the RSN algorithm, which obtains

better or comparable solutions.

4.6
Concluding Remarks

In this chapter, we described the adapted HTS-DS algorithm for the

MWCDS problem. This algorithm is based on a neighborhood defined by

insertions and eliminations of the vertices that are not an articulation points of

the graph. We use neighborhoods structures and efficient checking mechanism

to find articulation point leading to a very fast and accurate algorithm.

Computational experiments on benchmark problems are reported, comparing

the behavior of the proposed algorithm with that of other heuristics from

the literature. The method seems suitable for large-scale applications as

observed by the CPU time growth in O(|V |1.41) in function of the number of

vertices for the instances of the MWCDS problem. HTS-DS is compared with

other heuristics, obtaining better or comparable solutions, and contributes to

significant improvements in execution time.

We investigated the HTS-DS algorithm for the MWCDS problem. For

this, we compared to the two population-based optimization algorithms for

the MWCDS problem known in the literature. Comprehensive computational

experiments and comparisons with state-of-the-art methods showed that the

proposed algorithm outperforms the current state-of-the-art methods in terms

of both solution quality and computational efficiency for many dataset. The

HTS-DS algorithm can improve many new best known solutions from the

literature.
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5
Experiments on the Covering Code Problems

A covering problem consists in minimizing the number of vertices to

cover a graph while satisfying some side constraints. A famous application of

the problem is the lottery game (Li & van Rees, 2002), which can be reduced to

the MDS problem. We will therefore consider classical benchmark instances of

this problem, and attempt to generate better upper bounds with the HTS-DS

algorithm.

This chapter addresses the covering code problem in Hamming space,

as well as in the RT space. Section 5.1 introduces and defines some concepts

of the problem. Section 5.2 describes the relation between the covering code

problem and the dominating set problem. Section 5.3 presents the new upper

bounds for the covering codes obtained with the HTS-DS algorithm. Finally,

Section 5.4 concludes.

5.1
Preliminaries

A code for a message set S is a mapping from each message to a bit

string. Here, each bit string is called a codeword. In addition, a code is distinct

if each codeword is distinguishable from every other, i.e., the mapping from

source messages to codewords is one-to-one.

5.1.1
Covering codes in Hamming-space

A code C is a subset of the set of binary n-strings. The Hamming distance

d(s, t) between two strings s and t is the number of coordinates at which they

differ. A covering code of radius R is a code C such that, for any binary n-string

s, d(s, c) ≤ R for some element c in C. R should always be as small as possible.

5.1.2
Covering codes in RT-space

The covering code problem in RT space is an extension of the Hamming

covering problem, called RT-covering problem and formalized in Castoldi &

Carmelo (2015). Basic notations on the Rosenbloom-Tsfasman metric are

presented as follows.
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Chapter 5. Experiments on the Covering Code Problems 71

For s ≥ 1 and q ≥ 2, let Zs
q be the set of all vectors z = (z1, . . . , zs)

of length s, with zi ∈ Zq for any 1 ≤ i ≤ s. Given z = (z1, . . . , zs) and

w = (w1, . . . , ws), let

ds(z, w) =

{
0

max{i : zi ̸= wi}
if z = w

if z ̸= w.

A closer look shows that ds is a metric in Zs
q. For m ≥ 1, let (Zs

q)
m

be the set of all vectors x = (x1, . . . , xms) with xi ∈ Zq. An arbitrary vector

x = (x1, t . . . , xms) in (Zs
q)

m can be represented by x = (x1, . . . , xm), formed

by the symbols xi = (x(i−1)s+1, . . . , xis), where 1 ≤ i ≤ m. Sometimes a vector

x = (x1, . . . , xms) is simply denoted by x = x1 . . . xms.

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) in (Zs
q)

m. The application

dRT (x, y) =
m∑
i=1

ds(x
i, yi)

induces the RT metric in (Zs
q)

m. The space (Zs
q)

m endowed with the RT metric

is called the Rosenbloom-Tsfasman space or RT space for short. The particular

case s = 1 corresponds to the well-known Hamming metric.

As usual, in a metric space, the RT-ball centered in x of radius R is the

set

BRT (x,R) = {y ∈ (Zs
q)

m : dRT (x, y) ≤ R},

and its cardinality is denoted by V RT
q (m, s,R).

Given a subset C of (Zs
q)

m, we say that C is an R-covering of the RT

space (Zs
q)

m when ∪
c∈C

BRT (c, R) = (Zs
q)

m.

The minimum cardinality of an R-covering of the RT-space (Zs
q)

m is denoted

by KRT
q (m, s,R). The case KRT

q (m, 1, R) corresponds to the classic number

Kq(m,R).

Two propositions were demonstrated by Castoldi & Carmelo (2015), as

follows. For every r < s and R ≤ mr:

Proposição 5.1 KRT
q (m, s,R) ≤ qm(s−R)KRT

q (m, r,R)

Proposição 5.2 KRT
q (m, s,R) ≤ KRT

q (m, s− r,R−mr)
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5.2
Covering Codes and the Dominating Set Problem

The covering code problem in RT space can be reformulated as a

dominating set problem in graphs. This is demonstrated by the following

theorem.

Teorema 5.3 [Österg̊ard (1997)] The minimum covering code problem in RT

spaces corresponds to a class of the minimum dominating set problems.

Proof. Given an RT space (Zs
q)

m and 0 ≤ R ≤ ms, we construct the following

graph G(q,m, s, R) = (V , E). We associate the vector u in (Zs
q)

m with the

vertex u in V . The edge e = {u, v} is in E if and only if 0 < dRT (u, v) ≤ R.

Note that, dominating sets in G(q,m, s, R) are in one-to-one correspondence

with the R-covering codes of the R-space (Zs
q)

m. A minimum R-covering code

of the RT-space (Zs
q)

m can be found by solving the minimum dominating set

problem in G(q,m, s, R). □

The graph G(2, 2, 2, 2) is illustrated in Figure 5.1. A dominating set in the

graph G(2, 2, 2, 2) is {0000, 0101, 1111}. By Theorem 5.3, this set is a 2-covering

of the RT space (Z2
2)

2.

Figure 5.1: Graph G(2, 2, 2, 2).

A dominating set in the graph G(q,m, 1, R) is equivalent to an R-covering

code in the Hamming-space Zm
q .
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5.3
Computational Experiments

We conducted computational experiments to find new bounds for these

covering codes. HTS-DS algorithm as presented for the MWDS problem was

used. The weight of each vertex was set to one. HTS-DS was implemented

in C++, and CPLEX 12.62 was used for the resolution of the integer linear

programs. All tests were conducted in a single thread of an i7-3960K 3.3GHz

processor.

The computational tests were performed for 48 RT-covering codes con-

sidering only the codes with q = 2. The study about the covering codes in

Hamming space had about 5 codes for this class. We considered the codes for

which lower and upper bounds are known to compare with our results.

5.3.1
Parameters Calibration

Table 5.1 shows the values of the parameters used by the HTS-DS

algorithm, which were calibrated after preliminary experiments. In the codes

where the number of vertices is smaller than 16, we used a tabu list of 10% of

the number of the vertices |V|.

Table 5.1: Parameter configuration of HTS-DS

Parameter Symbol Value

Number of restarts Nrestart 5

Maximum number of iterations of TS Imax 20000

Maximum number of iterations without improvement of TS Ini 10000

Frequency of the perturbation Ipert 1000

Perturbation strength ρ 0.2

Size of the tabu list Ntabu 20

Time limit for the IP solver Tmax 1 sec

Penalty factor

αmin 0.1

αmax 1.1

β 1.0

We performed sensitivity analysis from the final parameter setting ob-

tained. This analysis will be reported in Section 5.3.3.

5.3.2
Performance of the HTS-DS algorithm for the covering codes

Tables 5.2 and 5.3 present the results for the covering code problem in

RT space and Hamming space, respectively. In this table, K(m, s, r) denotes
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the code of the test-problem, |V| is the number of vertices, |E| is the number of

edges, and BKB represents the best known bound reported in the literature.

More specifically, the LB and UB columns show the best lower and upper

bounds. These bounds were found proved using theoretical results in Castoldi

& Carmelo (2015). In turn, the bounds for the Hamming-covering codes are

available in Kéri (2018) and in the book by Cohen et al. (1997).

The formulation presented by the Equations (3-1) - (3-3) (in Chapter

3) are used by the ILP solver. These results are presented in the CPLEX

columns. T(s) column presents the execution time of the method. We limited

the time of the ILP solver to 3600 seconds. The value ‘TL’ in this column

represents the codes in which the solver reached this time. The Sol and GAP

columns present the solution and the gap returned by CPLEX. The values ‘-’ in

the column GAP means that the algorithm did not find any feasible solution.

Best,Avg and T(s) indicate, respectively, the best solution, the average

solution and the average computational time in seconds associated with the

HTS-DS algorithm. We indicate in boldface the best upper bound among the

approaches for each code. If an upper bound is better than the known bound

or it is an optimum for the code, it is underlined.

The results of the ILP solver shows the difficulty of solving this problem.

The optimality of 29 codes out off 48 was proved by CPLEX, but it took a

long computational time. HTS-DS appears to be more efficient in terms of

computational time, being able to improve the quality of the solution of 32

codes. In particular, HTS-DS significantly improved the codes K(3, 4, R) and

K(4, 3, R), where 2 ≤ R ≤ 8.

The propositions presented in Section 5.1.2 reveal that some codes in RT-

space can be improved, using the new bound found by the HTS-DS algorithm.

i) KRT
2 (2, 6, 4) ≤ 160.

The HTS-DS algorithm produces KRT
2 (2, 6, 4) ≤ 172. When con-

sidering r = 5, it follows by Proposition 5.1 that: KRT
2 (2, 6, 4) ≤

22(6−5)KRT
2 (2, 5, 4) ≤ 4 · 40 = 160, which significantly improves the pre-

vious bound.

ii) KRT
2 (2, 6, 5) ≤ 80

Like the code identified above, this code improves the bound from 82 to:

KRT
2 (2, 6, 5) ≤ 22(6−5)KRT

2 (2, 5, 5) ≤ 4 · 20 = 80. Therefore, the covering

code KRT
2 (2, 6, 5) has upper bound equal to 80.

iii) KRT
2 (3, 4, 6) ≤ 16.
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Table 5.2: Results for covering codes KRT
2 (m, s,R) : Graph G(m, s, 2, R)

BKB CPLEX HTS-DS
K(m,s,R) |V| |E| LB UB Sol GAP T(S) Best Avg T(s)
K(2,2,1) 16 16 6 8 8 0.0% 0.0 8 8.0 0.1
K(2,3,1) 16 64 22 32 32 0.0% 0.0 32 32.0 0.3
K(2,3,2) 64 224 8 12 12 0.0% 0.4 12 12.0 0.3
K(2,3,3) 64 608 4 8 6 0.0% 0.2 6 6.0 0.3
K(2,4,1) 256 256 86 128 128 0.0% 0.1 128 128.0 1.0
K(2,4,2) 256 896 32 48 48 0.0% 1.9 48 48.0 1.0
K(2,4,3) 256 2432 13 32 24 0.0% 1.0 24 24.0 1.1
K(2,4,4) 256 6016 6 12 10 0.0% 0.7 10 10.0 1.4
K(2,4,5) 256 10112 4 8 6 0.0% 0.2 6 6.0 1.0
K(2,5,1) 1024 1024 342 512 512 0.0% 0.3 512 512.0 6.5
K(2,5,2) 1024 3584 128 192 192 0.0% 8.9 192 192.0 4.4
K(2,5,3) 1024 9728 52 128 96 0.0% 18.6 96 96.0 4.8
K(2,5,4) 1024 24064 22 48 40 31.0% TL 40 42.0 5.7
K(2,5,5) 1024 56832 10 32 20 27.0% TL 20 20.0 6.4
K(2,5,6) 1024 97792 6 12 10 0.0% 2.5 10 10.7 6.5
K(2,5,7) 1024 163328 4 8 6 0.0% 0.2 6 6.0 10.3
K(2,6,2) 4096 14336 512 768 768 0.0% 2.1 768 768.0 65.4
K(2,6,3) 4096 38912 205 512 - - TL 384 384.0 32.5
K(2,6,4) 4096 96256 86 192 - - TL 174 174.0 28.8
K(2,6,5) 4096 227328 37 128 82 53.0% TL 82 82.4 38.7
K(2,6,6) 4096 522240 16 48 40 52.0% TL 39 39.0 45.4
K(2,6,7) 4096 915456 10 32 20 38.0% TL 21 21.3 54.8
K(2,6,8) 4096 1570816 6 12 10 0.0% 6.8 10 11.0 98.9
K(3,3,1) 512 768 - - 128 0.0% 0.1 128 128.0 2.2
K(3,3,2) 512 3072 40 96 64 0.0% 0.9 64 64.0 2.1
K(3,3,3) 512 9472 14 65 16 0.0% 5.7 16 16.0 1.6
K(3,3,4) 512 20224 7 16 12 0.0% 453.3 12 12.0 3.4
K(3,3,5) 512 38656 4 12 6 0.0% 5.3 6 6.0 3.7
K(3,3,6) 512 65280 2 8 4 0.0% 1.2 4 4.0 4.6
K(3,4,2) 4096 24576 316 768 528 34.0% TL 512 512.0 36.4
K(3,4,3) 4096 75776 108 512 267 73.0% TL 128 128.0 20.0
K(3,4,4) 4096 210944 40 128 200 80.0% TL 64 69.3 38.1
K(3,4,5) 4096 456704 19 96 61 69.0% TL 36 36.8 58.2
K(3,4,6) 4096 915456 10 48 25 59.0% TL 21 21.0 74.4
K(3,4,7) 4096 1701888 5 16 12 43.0% TL 12 12.0 111.2
K(3,4,8) 4096 2881536 3 12 6 0.0% 568.2 7 7.0 191.9
K(4,2,1) 256 512 52 64 64 0.0% 0.0 64 64.0 1.0
K(4,2,2) 256 2304 14 48 16 0.0% 1.8 16 16.0 0.9
K(4,2,3) 256 5888 6 16 8 0.0% 0.8 8 8.0 1.3
K(4,2,4) 256 12160 3 8 4 0.0% 1.2 4 4.0 1.7
K(4,3,1) 4096 8192 820 1024 1024 0.0% 0.8 1024 1024.0 84.4
K(4,3,2) 4096 36864 216 768 386 68.0% TL 256 256.0 26.5
K(4,3,3) 4096 126976 66 256 235 72.0% TL 124 124.5 31.0
K(4,3,4) 4096 325632 26 128 185 86.0% TL 54 54.0 49.5
K(4,3,5) 4096 735232 12 48 102 89.0% TL 26 26.0 90.3
K(4,3,6) 4096 1472512 6 32 30 81.0% TL 14 14.0 158.2
K(4,3,7) 4096 2521088 4 16 12 72.0% TL 8 8.0 208.0
K(4,3,8) 4096 3930112 3 12 4 0.0% 957.2 4 4.0 234.3

Avg 72.6 151.3 118.9 - - 109.2 109.4 38.6
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The HTS-DS algorithm produces KRT
2 (3, 4, 6) ≤ 21. An application of

Proposition 5.2 when r = 1 results in: KRT
2 (3, 4, 6) ≤ KRT

2 (3, 3, 3) ≤ 16.

Table 5.3: Results for covering Kq(n,R) : Graph G(n, q, R)
BKB CPLEX HTS-DS

K(n, q, R) |V| |E| LB UB Sol GAP(%) T(s) Best Avg T(s)
K(6,3,1) 729 9477 71 73 81 29.0% TL 73 73 16.6
K(10,1,1) 1024 5120 107 120 136 71.0% TL 127 127 19.4
K(10,1,2) 1024 28160 24 30 34 46.0% TL 30 30 21.5
K(11,1,2) 2048 67584 37 44 90 66.0% TL 44 44 37.6
K(11,1,3) 2048 236544 15 16 28 68.0% TL 16 16 78.7

Avg 50.8 56.6 73.8 - - 58 58 34.76

The results for the covering code problem in Hamming space are pre-

sented in Table 5.3. With the exception of K(10, 1, 1), the searches had no

difficulty in reaching the known upper bound, indicating the quality of the

approach using the HTS algorithm.

Figure 5.2(a) contains the graph for the code K3(6, 1). Although it is

not possible to see all the edges (black part) and nodes (blue dots) due to the

graph’s dimension, it is possible to note its interesting topology as well as the

intrinsic symmetry and characteristics. Figure 5.2(b) shows the solution found

by our algorithm. The edges between non-dominated vertices were omitted.

Figure 5.2: Representation of the code K3(6, 1).

5.2(a): Original graph 5.2(b): Solution’s graph
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5.3.3
Sensitivity analyses

As in previous chapter, we conducted a sensitivity analysis and on

the impact of the method parameters. Starting from the same standard

configuration as described in the Section 5.3.1, we modified one parameter and

design choice at a time (OFAT approach) to evaluate its effect. The following

configurations were considered:

Standard. Standard configuration described in Section 5.3.1.

A. No Reduced Problem. The reduced problem and IP solver is

disabled.

B. TMAX. longer time limit for the reduced problem: TMAX = 5sec.

C. ↓ Perturbation. Lower level of perturbation: ρ = 0.1.

D. ↑ Perturbation. Higher level of perturbation: ρ = 0.3.

E. ↓ Tabu. Shorter tabu tenure: Ntabu = 10.

F. ↑ Tabu. Longer tabu tenure: Ntabu = 40.

All configurations were run ten times for each code in RT space. Table

5.4 presents the final average for the best and average solution, (AvgB) and

(AvgA) respectively, as well as the average time of each configuration.

AvgB AvgA T(s)

Standard 109.2 109.4 38.6

A. No Reduced Problem 111.3 1114.4 22.7

B. ↑ Tmax 109.2 109.4 97.3

C. ↓ Tabu 111.8 111.8 33.6

D. ↑ Tabu 111.7 111.8 35.9

E. ↓ Perturbation 109.5 109.8 32.3

F. ↑ Perturbation 109.3 109.4 35.5

Table 5.4: Analysis of HTS-DS components for the covering code problem

These experiments highlight the contribution of the reduced problem.

They also should that the algorithm is sensitive to the adjustment of the tabu

tenure.

Due to the major contributions of the mathematical programming solver

in the reduced problem, we tried to increase Tmax for this mechanism (config-

urations A and B). However, the solutions remained the same, except for code

KRT
2 (2, 6, 7), which improved from 21 to 20 with this new time limit. Thus, we

maintained the configurations standard, and found that configuration A leads

to a higher computational time with the same solution quality.
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The impact of the tabu tenure in this problem is greater than the other

settings, suggesting that the changes in this parameters influence the search,

improving or worsening the quality of the solution, drastically.

5.4
Concluding Remarks

In this chapter, we applied the HTS-DS to solve covering code problems,

with the main objective of finding upper bounds for the codes in RT and

Hamming spaces. The solutions of the ILP solver require a high computational

effort. Due to the inherent symmetry, many alternative optimal solutions exist,

and it is typically a challenge to solve these codes, as reported in the work of

Jans & Degraeve (2008) leading to an impact on the solution times using the

ILP solver. By applying our method, the HTS-DS can produce new bounds

for important codes.

Improving the upper bound of R-covering in Hamming spaces and RT

spaces is usually a difficult task. Evidence for this is that for many codes

KRT
q (m, s,R), the exact value is not yet known. Thus, these results show the

importance of a computational approach, such as the one used in this work,

since the algorithm was able to improve the upper bound for 32 out of the 48

codes. Several lower and upper bounds established for the smallest cardinality

of covering code in an RT-space in the work of Castoldi & Carmelo (2015)

were improved.

Our hybrid method creates a reduced problem of fixing a specific variable

set. This can partly break the symmetry and decrease the solution times. Fixing

one variable allows the branch-and-bound method to prune a node that leads

to any of the multiple optimal solutions and without needs to evaluate all

them. Still, symmetry issues should be investigated further in the future.

Finally, we showed how the hybrid algorithms for the dominating set

perform in this special case and whether the problem of symmetry can be

tackled within these algorithms.
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6
Conclusions and Future Works

Combinatorial optimization is a branch of applied mathematics and

computer science dealing with problems in which the minimum (or maximum)

of functions defined over a discrete domain are sought. Some of these problems

have received special attention from researchers because of their ability to

model a large number of phenomena in practical applications. This thesis

focused on an important problem class in combinatorial optimization: the

dominating set problem and its variants, as well as the covering code problem.

This research topic, the DS problem, has received a good deal of attention

in recent years due to its enormous potential, along with emerging applications

in machine learning and social network analysis. First of all, we exploited the

past search history and the frequency of some vertices in the dominating set

to fix variables in the sub-problem. This strategy is closely related to the

Construct, Merge, Solve & Adapt (CMSA) approach described in Blum et

al. (2016). Moreover, other instance and solution metrics (e.g., ratio between

weight and degree) may be used to further guide the search. Second, the

relations between heuristic search and mathematical programming techniques

can certainly be better exploited, by possibly sharing information or forming

other types of subproblems.

Our experimental analyses show that considering a new neighborhood

based on the swap of two vertices enhances the search performance and allows

to obtain solutions of better quality. In addition, our periodic ramp-up strategy

allows a better diversification of the search. The MIP-based approach of fixing

variables allows the method to focus further on high-quality solutions to find

a good trade-off between solution quality and computational effort. Therefore,

the proposed matheuristic helps to obtain solutions in an acceptable time

frame. Our method is competitive with those found in the literature. We

showed that this hybrid approach is, in general, more effective in terms of

solution quality and/or running time since they benefit from synergy.

New hybridizations between exact and heuristic approaches can be at-

tempted to exploit the capabilities of both methods. Alternative forms of per-

turbation can be investigated for the connected version. The procedures con-

tained in the proposed hybrid algorithm could also be extended to successfully

solve similar problem to the dominating set problem and other variants.

Further contributions of our work include the improvement of some
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bounds for the covering code problems. These problems need a method which

more efficiently tackles the symmetries that are inherent to the problem.

Finally, the current machine learning literature, and especially the study

of graphs arising from social networks, opens the way to very large scale

problems, with possibly millions of vertices. These deserve careful study.

Solution methods for such problems need to be carefully crafted to retain

only essential search components working in linear or log-linear complexity.

Overall, these are all important research avenues that can be explored in the

near future.
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