Resultados e Aplicações

4

Neste Capítulo vamos apresentar alguns resultados que obtivemos com o nosso algoritmo de amostragem (Algoritmo 2) combinado com os Algoritmos 1 e 2. Estamos interessados, por ora, na qualidade visual dos resultados e portanto mostraremos o comportamento espacial da distribuição dos pontos.

Para gerar o conjunto de pontos O sobre a malha, de modo que $|O| = \delta N$, utilizamos o parâmetro de densidade de amostragem $\delta = 1000$. Este valor Né relativo à quantidade total de pontos estimada para o conjunto das classes e $N = \sum_{i=0}^{c-1} N_i$, cada N_i representa a quantidade de pontos estimada para a classe *i* e calculada pela Equação 3-3. O valor |O|, controlado pelo parâmetro δ , representa a quantidade de pontos aleatórios suficiente a ser gerada sobre a malha e armazenada em um vetor donde serão sorteados os candidatos para o conjunto S_i . Assim, $|O| = \sum_{i=0}^{c-1} |O_i| = \delta(\sum_{i=0}^{c-1} N_i)$ é uma quantidade de pontos suficiente para gerar todas as classes e o valor de δ utilizado é satisfatório, pois para se amostrar um ponto numa classe S_i teremos até 1000 possibilidades dentre os pontos aleatórios de O.

Para a solução da Equação 3-3 utilizamos $\rho = 0.67$ em todos os resultados gerados. Não é fácil estimar um bom parâmetro ρ para o caso do *dart throwing* em múltiplas classes, pois este parâmetro controla a fração do raio máximo usada como distância mínima entre os pontos no caso de única classe e é apontado por Lagae e Dutre (14) como um parâmetro importante para a distribuição espacial. Já no caso de múltiplas classes, além da distância mínima entre pares de pontos de uma mesma classe, temos que controlar a distância mínima entre pares de pontos de classes diferentes. Embora seja difícil estimar uma boa medida para ρ , o valor que utilizamos se mostrou suficiente para a amostragem sobre superfícies como será mostrado nas subseções seguintes.

Todos os resultados foram gerados com no máximo k = 30 tentativas por célula para a amostragem em cada classe dentre os pontos aleatórios armazenados nesta célula. Embora a qualidade da amostragem tenha uma pequena melhora, para k > 30, percebemos uma significativa elevação no tempo de processamento que não compensa já que k = 30 é suficiente para garantir uma amostragem com boa distribuição espacial por classe e no conjunto das classes.

As próximas Subseções exibem os resultados que geramos com o nosso algoritmo e com os parâmetros apresentados anteriormente.

4.1 Métrica Euclidiana

Inicialmente exibiremos os resultados das amostragens de pontos em múltiplas classes gerados com uma métrica euclidiana, onde a distância entre os pares de pontos $s_i, s_j \in M \subset \mathbb{R}^3$ é calculada pela norma usual $||s_i - s_j|| = \sqrt{\sum_{k=0}^2 (s_{i_k} - s_{j_k})^2}$ e M representa uma superfície triangulada. Deste modo, desejamos em todas as amostragens que $d(s_i, s_j) = ||s_i - s_j|| \ge r(i, j)$.

Os modelos utilizados para a amostragem foram o *Peixe*, a *Mão*, o *Max Planck*, o *Coelho*, a *Caneca* e a *Egea*.

Raios Uniformes

Nesta etapa, mostraremos os resultados produzidos com os raios uniformes e gerados com diversas classes.

Peixe

O nosso primeiro resultado consiste em uma amostragem em duas classes sobre o modelo do *Peixe* com 1827 pontos na classe 0 (4.1(a)) e 1826 pontos na classe 1 (4.1(b)), totalizando 3653 pontos no conjunto das classes (4.1(c)). Neste caso tivemos a seguinte matriz de raios:

r(0,0) = 0.1816	r(0,1) = 0.1284
r(1,0) = 0.1284	r(1,1) = 0.1816

Tabela 4.1: Matriz de raios no modelo do Peixe

A Figura 4.2 exibe uma amostragem por meio de bolas. Este método nos permite identificar visualmente a qualidade da amostragem dos pontos nas classes individuais e na sua união. Na Figura 4.2(a) as bolas centradas nos pontos da classe 0 contem no máximo um ponto. Além disso, na Figura 4.2(b) temos a distribuição das bolas centradas em todos os pontos do conjunto de ambas as classes e com o raio $r_{01} = r_{10}$.

Visualmente podemos notar que as distribuições em ambas as classes e na união preservam o espaçamento por discos de Poisson, amostrar as bolas apenas na classe 0 é suficiente pois a outra classe tem uma amostragem

Figura 4.1: Peixe

equivalente. É válido notar que a amostragem não preserva integralmente a cobertura maximal por bolas, mas ainda assim podemos notar visualmente pela distribuição das bolas que não acontece grandes lacunas entre os pontos de mesma classe.

4.2(b): Múltiplas classes

Figura 4.2: Bolas

Mão

A amostragem no modelo da $M\tilde{a}o$ foi gerada com menos pontos e em duas classes. Com 1079 pontos na classe 0 (4.3(a)) e na classe 1 com 1078 pontos (4.3(b)), totalizando 2152 pontos no conjunto das classes (4.3(c)). Nas Figuras 4.3(d) e 4.3(e) realizamos um *zoom* na classe 0 e na união das classes. A matriz dos raios segue abaixo:

r(0,0) = 0.0414	r(0,1) = 0.0293
r(1,0) = 0.0293	r(1,1) = 0.0414

Tabela 4.2: Matriz de raios no modelo da $M\tilde{a}o$

Figura 4.3: Mão

Max Planck

No modelo do *Max Plank* foi gerada uma amostragem em duas classes. Em cada classe contendo 9062 pontos (4.4(a) e 4.4(b)), totalizando 18124 pontos no conjunto das classes (4.3(c)). Na Figura 4.5 realizamos um *zoom* afim de destacar a qualidade da amostragem em cada classe e na união. A matriz dos raios segue abaixo. A matriz dos raios segue abaixo:

r(0,0) = 3.0578	r(0,1) = 2.1622
r(1,0) = 2.1622	r(1,1) = 3.0578

Tabela 4.3: Matriz de raios no modelo do Max Planck

4.4(c): Múltiplas classes

Figura 4.4: Max Planck

 $4.5(\mathrm{b}):$ Zoom em múltiplas classes

Figura 4.5: Zoom Max Planck

Coelho

No modelo do *Coelho* foi gerada uma amostragem em três classes. Em cada classe contendo 10000 pontos (4.6(a), 4.6(b) e 4.6(c)), totalizando 30000 pontos (4.6(d)) no conjunto das classes. Na Figura 4.7 realizamos um *zoom* afim de destacar a qualidade da amostragem em cada classe e na união. A matriz dos raios segue abaixo:

r(0,0) = 0.002	r(0,1) = 0.001	r(0,2) = 0.001
r(1,0) = 0.001	r(1,1) = 0.002	r(1,2) = 0.001
r(2,0) = 0.001	r(2,1) = 0.001	r(2,2) = 0.002

Tabela 4.4: Matriz de raios no modelo do Coelho

Figura 4.6: Coelho

Figura 4.7: Zoom Coelho

Caneca

No modelo da *Caneca* o número de classes foi aumentado para cinco classes. Cada classe com 790 pontos, totalizando 3950 pontos no conjunto das classes. Na Figura 4.9 realizamos um *zoom* afim de destacar a qualidade da amostragem em cada classe e na união. Neste caso tivemos a seguinte matriz de raios:

r(0,0) = 1.2341	r(0,1) = 0.5511	r(0,2) = 0.5511	r(0,3) = 0.5511	r(0,4) = 0.5511
r(1,0) = 0.5511	r(1,1) = 1.2341	r(1,2) = 0.5511	r(1,3) = 0.5511	r(1,4) = 0.5511
r(2,0) = 0.5511	r(2,1) = 0.5511	r(2,2) = 1.2341	r(2,3) = 0.5511	r(2,4) = 0.5511
r(3,0) = 0.5511	r(3,1) = 0.5511	r(3,2) = 0.5511	r(3,3) = 1.2341	r(3,4) = 0.5511
r(4,0) = 0.5511	r(4,1) = 0.5511	r(4,2) = 0.5511	r(4,3) = 0.5511	r(4,4) = 1.2341

Tabela 4.5: Matriz de raios no modelo da Caneca

4.9(a): Zoom na classe 0

4.9(b): Zoom em múltiplas classes

Figura 4.9: Zoom Caneca

Raios Não-Uniformes

Nesta etapa, mostraremos os resultados que foram gerados com raios não-uniformes e em duas classes sobre o modelo *Egea*. Na classe 0 contem 300 pontos (4.10(a)) e na classe 1 contem 500 pontos (4.10(b)), totalizando 800 pontos no conjunto das classes (4.10(c)). A matriz dos raios segue abaixo:

r(0,0) = 0.0064	r(0,1) = 0.0039
r(1,0) = 0.0039	r(1,1) = 0.0049

Tabela 4.6: Matriz de raios no modelo da Egea

4.10(c): Múltiplas classes

Figura 4.10: Egea

4.2 Métrica Geodésica

Na Subseção 4.1 utilizamos a norma euclidiana como distância entre os pares de pontos sobre a superfície M. Esta distância euclidiana é de fácil implementação e tem um baixo custo computacional. Quando a superfície tem zonas de altas curvaturas ou pequenos túneis a métrica euclidiana, que mede a menor distância, pode não ser consistente e influenciar na qualidade da distribuição.

Deste modo, utilizamos uma aproximação da métrica geodésica apresentada em Bowers *et al.* (2) que depende somente dos pontos $s_i, s_j \in M$. Sendo $\overrightarrow{n_{s_i}} \in \overrightarrow{n_{s_j}}$ os vetores normais nestes pontos sobre M e teremos como calcular o vetor normalizado $\overrightarrow{v} = \frac{(s_i - s_j)}{d_e}$, onde $d_e = ||s_i - s_j||$.

Assumindo uma curva suave entre $s_i \in s_j$, onde $\alpha_1 = \overrightarrow{n_{s_i}} \cdot \overrightarrow{v} \in \alpha_2 = \overrightarrow{n_{s_j}} \cdot \overrightarrow{v}$, como mostra a Figura 4.11.

Figura 4.11: Aproximação da métrica geodésica

A distância geodésica fica estimada como o comprimento desta curva,

$$d(s_i, s_j) = \frac{\arccos(\overrightarrow{n_{s_i}}, \overrightarrow{v}) - \arcsin(\overrightarrow{n_{s_j}}, \overrightarrow{v})}{\overrightarrow{n_{s_i}}, \overrightarrow{v} - \overrightarrow{n_{s_i}}, \overrightarrow{v}}.d_e$$

Deste modo, desejamos que todas as amostras $s_i \in s_j$ sejam distribuídas com o seguinte critério de distância mínima, $d(s_i, s_j) \ge r(i, j)$.

Esqueleto da Mão

Os resultados gerados na Figura 4.12 foram gerados com a métrica geodésica e raios uniformes no modelo $Esqueleto \ da \ M{ao}$ com regiões de alta curvatura. A matriz dos raios segue abaixo:

r(0,0) = 0.1399	r(0,1) = 0.0989
r(1,0) = 0.0989	r(1,1) = 0.1399

Tabela 4.7: Matriz de raios no modelo Esqueleto da Mão

Figura 4.12: Esqueleto da $M\tilde{a}o$

Na Figura 4.13 realizamos um *zoom* no modelo amostrado com distância geodésica (4.13(a) e 4.13(c)) e comparamos com a amostragem gerada pela distância euclidiana (4.13(b) e 4.13(d)). Podemos observar a presença de mais pontos.

4.13(c): Euclidiana: Múltiplas 4.13(d): Geodésica: Múltiplas classes classes

Figura 4.13: Zoom esqueleto da $M\tilde{a}o$

A amostragem realizada na métrica euclidiana contem 804 pontos em cada classe e totaliza 1608 pontos no conjunto das classes e foi gerada em 34,2 segundos. Já a amostragem realizada com métrica geodésica contem 897 pontos em cada classe e 1749 pontos no conjuntos das classes e foi gerada em 34,6 segundos. Houve um acréscimo de 93 pontos em cada classe, totalizando 196 pontos no conjunto das classes e o tempo de processamento se manteve equilibrado com ambas as métricas.

Dinossauro

Os resultados gerados na Figura 4.15 foram gerados com a métrica geodésica e raios uniformes no modelo *Dinossauro* com regiões de alta curvatura nas pontas das patas. A matriz dos raios segue abaixo:

r(0,0) = 1.8356	r(0,1) = 1.2979
r(1,0) = 1.2979	r(1,1) = 1.8356

Tabela 4.8: Matriz de raios no modelo do Dinossauro

4.14(c): Euclidiana: Múltiplas classes

 $4.14(\mathrm{d}):$ Geodésica: Múltiplas classes

Figura 4.14: Zoom Dinossauro

Na Figura 4.14 realizamos um *zoom* no modelo amostrado com distância geodésica (4.14(a) e 4.14(b)) e comparamos com a amostragem gerada pela distância euclidiana (4.14(c) e 4.14(d)). Podemos observar a presença de mais pontos localizados principalmente nas pontas das patas.

4.15(c): Múltiplas classes

Figura 4.15: Dinossauro

A amostragem realizada na métrica euclidiana contem 1668 pontos em cada classe e totaliza 3336 pontos no conjunto das classes e foi gerada em 29,7 segundos. Já a amostragem realizada com métrica geodésica contem 1771 pontos em cada classe e 3542 pontos no conjuntos das classes e foi gerada em 29,5 segundos. Houve um acréscimo de 103 pontos em cada classe, totalizando 206 pontos no conjunto das classes e o tempo de processamento se manteve equilibrado com ambas as métricas.

4.3 Distribuição de Objetos

A distribuição uniforme de objetos sobre um domínio espacial é bastante interessante do ponto de vista artístico, principalmente quando esta distribuição preserva o padrão de ruído azul garantindo que a amostragem dos objetos sejam visualmente agradáveis.

Apresentamos neste Capítulo uma aplicação da extensão do método para domínios não planares, onde a distribuição dos objetos preservam as características de ruído azul em ambas as classes individualmente, bem como na união das classes.

4.3.1 Objetos Texturizados

Atribuímos objetos texturizados sobre malhas triangulares de modelos tridimensionais M. Para isso é gerado com o nosso algoritmo uma amostragem de pontos por discos de Poisson em múltiplas classes sobre estes modelos. Em seguida, uma planificação dos modelos é obtida por meio de uma parametrização σ ,

$$\sigma: M \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longmapsto (u(x, y, z), v(x, y, z))$$

$$(4-1)$$

Cada ponto sobre a superfície pode ser identificado no plano e deste modo identificamos os pontos gerados em cada classe S_i . As texturas são mapeadas no plano tendo estes pontos como centro e sendo as texturas t_i distribuídas pela classe S_i . Por fim, as texturas são projetadas no modelo por meio de σ^{-1} .

A Figura 4.16 exibe uma distribuição com características de ruído azul da textura 0 (4.16(a)) e da textura 1 (4.16(b)) sobre o modelo do *sweater*. Esta distribuição foi realizada em duas classes com raios uniformes.

4.16(c): Múltiplas texturas

Figura 4.16: Sweater

A Figura 4.17 exibe uma distribuição com características de ruído azul da textura 0 (4.17(a)) e da textura 1 (4.17(b)) sobre o modelo do *Triceratops*. Esta distribuição foi realizada em duas classes com raios uniformes. Observe que não realizamos a amostragem na região da cabeça pois a projeção das texturas sobre o modelo sofreram distorções causadas pela não conformidade de σ .

Figura 4.17: Triceratops

4.3.2 Objetos Não-Texturizados

Objetos não-texturizados também podem ser usados para a criação de efeitos artísticos sobre uma superfície triangulada. Desta vez optamos por não utilizar texturas, mas sim ferramentas do próprio OpenGL¹ que permite a criação de pequenas esferas sob o efeito da iluminação. Os objetos em cada classe podem ter características específicas, como a coloração das esferas diferenciada por classe.

Figura 4.18: Vestido

 $^1{\rm O}$ OpenGL é uma interface de programação de aplicativos utilizada na Computação Gráfica