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Abstract

Pérez Opazo, Sebastián Alejandro; Díaz Casado, Lorenzo Justini-
ano (Advisor). Cr-stabilisation of non-transverse heterodi-
mensional cycles. Rio de Janeiro, 2016. 146p. PhD Thesis – De-
partamento de Matemática, Pontifícia Universidade Católica do Rio
de Janeiro.

A diffeomorphism f has a heterodimensional cycle if there are (transi-
tive) hyperbolic sets with different indices (dimension of the unstable bun-
dle) whose invariant sets meet cyclically. The cycle of f is Cr-robust if every
small Cr-perturbation of f has a cycle associated to the continuations of
these hyperbolic sets. When the cycle of f is defined by a pair of hyperbolic
saddles we say that this can be Cr-stabilised if every Cr -neighbourhood
of f contains diffeomorphisms with a robust cycle associated to hyperbolic
sets containing the continuations of these saddles. In dimension three we
consider non-transverse heterodimensional cycles associated to saddles: the
saddles are involved in a heterodimensional cycle and their two dimensional
manifolds have some non-transverse intersection. For r ≥ 2, we study the
occurrence of Cr-robust cycles in this setting as well as the Cr-stabilisation
of the initial cycles. We prove that for every r ≥ 2 there exist a class
N r of three-dimensional diffeomorphisms having non-transverse cycles such
that any diffeomorphism in N r can be Cr-stabilised. A key ingredient of
our method is a renormalisation scheme at the heteroclinic quadratic inter-
section converging to a Hénon-like family of endomorphism with blender-
horseshoes. We also see that this type of bifurcation leads to Cr-intermingled
homoclinic classes (the homoclinic classes of two saddles with different in-
dices have non-empty intersection) which are non-dominated.

Keywords
Blender-horseshoe; Dominated Splitting; Hénon-like families;

Heterodimensional cycle; Homoclinic class; Renormalisation scheme;
Robust cycle; Stabilisation of a cycle;
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Resumo

Pérez Opazo, Sebastián Alejandro; Díaz Casado, Lorenzo Jus-
tiniano. Cr-estabilização de ciclos heterodimensionais não
transversais. Rio de Janeiro, 2016. 146p. Tese de Doutorado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

Um difeomorfismo f tem um ciclo heterodimensional se existem
conjuntos hiperbólicos (transitivos) com índices diferentes (dimensão do
fibrado instável) cujos conjuntos invariantes interseptam-se ciclicamente. O
ciclo de f é Cr-robusto se toda pequenha Cr-perturbação de f tem um ciclo
associado as continuações destes conjuntos hiperbólicos. Quando o ciclo de
f é defindo por um par de selas hiperbólicas se diz que este ciclo pode ser
Cr-estabilizado se toda Cr-vizinhança de f contém difeomorfismos com um
ciclo robusto entre conjuntos hiperbólicos que contém as continuações destas
selas. No caso tridimensional consideramos ciclos heterodimensionais não
transversais associado a selas: as selas definem um ciclo heterodimensional
onde as suas variedades dois dimensionais tem alguma intersecão não
transversal. Para r ≥ 2 estudamos a ocorrência de ciclos Cr-robustos
neste contexto assim como a Cr-estabilização destes ciclos. Provamos que
para cada r ≥ 2 existe uma classe N r de difeomorfismos tridimensionais
tendo ciclos não transversais tais que quaisquer difeomorfismo nesta classe
pode ser Cr-estabilizado. Um ingrediente chave do nosso método é um
esquema de renormalização definido sobre a tangência quadrática do ciclo
convergindo para uma família tipo Hénon que tem ferraduras-misturadoras.
Também vemos que este tipo de bifurcação leva ao misturamento de classes
homoclínicas (as classes homoclínicas de duas selas de índices diferentes tem
interseção não-vazia) as quais não suportam decomposições dominadas.

Palavras-chave
Ferradura-misturadora; Decomposição dominada; Famílias tipo

Hénon; Ciclos heterodimensionais; Classes homoclínicas; Esquemas
de renormalização; Ciclo robusto; Estabilização de um ciclo;
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1
Introduction

Heterodimensional cycles and homoclinic tangencies are two important
mechanisms that prevent hyperbolicity. Indeed, Palis density conjecture claims
that they are the main mechanisms for the absence of hyperbolicity: every non-
hyperbolic system can be approached by a system with either a homoclinic
tangency or a heterodimensional cycle1, see (37).

The simples heterodimensional cycle is obtained by the heteroclinic inter-
sections of the invariant manifolds of two saddles of different indices2 (this nec-
essarily implies that some intersection is non-transverse). In the case of a homo-
clinic tangency, the invariant manifolds of a saddle have some non-transverse
intersection. Kupka-Smale genericity theorem (47) states that generically (i.e.,
in a residual set) the invariant manifolds of hyperbolic periodic points meet
transversely. Thus, heterodimensional cycles and homoclinic tangencies are as-
sociated to saddles are fragile. One can define heterodimensional cycles and
homoclinic tangencies associated to hyperbolic sets as above. In this case
Kupka-Smale theorem cannot be applied and one may that “robust” heterodi-
mensional cycles and tangencies. In this work we study the robust inherent
phenomena to the unfolding of a heterodimensional cycle associated to saddes
whose configuration involves tangencies. In particular we are interested in the
generation of robust cycles and tangencies. We now discuss these notions in a
bit more precise way.

1.1
Robust cycles and Stabilisation of cycles

Recall that a hyperbolic set Λ of a diffeomorphism f has defined a
continuation Λg for every g close to f (in particular, Λ and Λg are conjugate).
Recall that a invariant set is transitive if it has a dense orbit. The index of
a hyperbolic transitive set Λ, ind(Λ), is the dimension of its unstable bundle
(transitivity implies that this number is well defined).

1This conjecture was proved for surface C1-diffeomorphisms in (43). Currently, the Cr-
case, r ≥ 2, seems to be beyond reach.

2dimension of the unstable bundle
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Chapter 1. Introduction 15

Definition 1.1.1 (Robust cycles and tangencies) Let f be a Cr-
diffeomorphism defined on a compact manifold.

– Robust heterodimensional cycles. f has a heterodimensional cycle asso-
ciated to the transitive hyperbolic sets Γ and Σ with different indices
if

W u(Γ) ∩W s(Σ) 6= ∅ and W s(Γ) ∩W u(Σ) 6= ∅.

The cycle above is Cr-robust if there is a Cr-neighbourhood U of f
such that every g ∈ U has a heterodimensional cycle associated to the
hyperbolic continuations Γg and Σg of Γ and Σ.

– Robust homoclinic tangencies. f has a homoclinic tangency associated to
a transitive hyperbolic set Γ if there exists a non-tranverse intersection
point between the invariant manifolds W u(Γ) and W s(Γ). We say that
the tangency is Cr-robust if there exists a Cr-neighbourhood U of f such
that for every g ∈ U the continuation Γg of Γ has a homoclinic tangency.

Note that heterodimensional cycles can only occur in manifolds of
dimension three or higher.

An important type of cycles are those associated to hyperbolic periodic
points. Observe that Kupka-Smale genericity theorem implies that robust
cycles and tangencies involve, necessarily, some non-trivial hyperbolic set
(containing infinitely many orbits). Thus a crucial point is to determine when
these cycles generate robust ones. Moreover, in the positive case, determine
the relation of the hyperbolic sets in the robust cycle with the (continuations)
of the saddles in the initial cycle. This leads to the following notion introduced
in (12):

Definition 1.1.2 (Stabilisation of cycles) Consider a Cr-diffeomorphism
f : M → M having a heterodimensional cycle associated to a pair of
saddles P and Q. This cycle can be Cr-stabilised if every Cr-neighbourhood
U of f contains a diffeomorphism g having a robust heterodimensional cycle
associated to hyperbolic basic sets Λg 3 Pg and Σg 3 Qg. Here Pg and Qg

denotes the respective continuations of the initial saddles P and Q. A cycle
that cannot be stabilized is called Cr-fragile.

Note that, mutatis mutandi, the previous definition can be formulated
for homoclinic tangencies. Hence, from (33, 39, 45) every homoclinic tangency
of a C2-diffeomorphism is always stabilised.

Let us observe the definition of stabilisation of a cycle was also motivated
by Bonnatti’s robustness conjecture below and the study of spectral decompo-
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Chapter 1. Introduction 16

sition of the dynamics into elementary pieces of dynamics in non-hyperbolic
settings.

1.2
Generation of robust cycles

In what follows, for simplicity, we restrict our attention to three dimen-
sional diffeomorphisms. In this case the indices of the hyperbolic sets in a
heterodimensional cycle are one and two. Let us summarise the main results
in this setting:

• Every diffeomorphism with a heterodimensional cycle (associated to a pair
of saddles) can be C1-approximated by diffeomorphisms with robust cycles,
(9). If one of the saddles of the cycle has a non-real multiplier (i.e. it is a
saddle focus) the the cycle can be C1-stabilised, (12). A key ingredient in
these constructions are the blenders and blender-horseshoes (very roughly a
horseshoe which is immersed in the space with special geometric superposition
properties, see the precise discussion in Section 3.4).

• For cycles associated to saddles with real eigenvalues the study is done con-
sidering three parameters using the symbols + and −. The two first parameters
involves the signal of the so-called central eigenvalues of the saddles in the cycle
and third parameter involves the central orientation of the transition along the
quasi-transverse heteroclinic orbit related to the intersection of the one dimen-
sional manifolds. This leads to eight configurations. In (12) it is shown that
seven of these configurations can be stabilised, however (11) provides examples
of cycles associated to the remaining configuration that cannot be stabilised.

• About robust tangencies we have the following results: (33) provides ex-
amples of C2-robust homoclinic tangencies of surface diffeomorphisms, (10)
provides examples of C1-robust homoclinic tangency (in dimension three or
higher), and (31) proved that surface diffeomorphisms cannot have C1-robust
tangencies. Note that in (33) the underlying mechanism for the generation of
robust tangencies are the so-called thick horseshoes while the mechanism in
(10, 9) for robust cycles are blenders. These two mechanisms have different
nature.

• In (22) was introduced the concept of a heterodimensional tangency. In some
cases, this type of tangencies can be thought as a “homoclinic tangency” be-
tween two dimensional invariant manifolds of a transitive partially hyperbolic
set: there are saddles of different indices in the set whose two dimensional in-
variant manifolds have a non-transverse intersection3. As was shown (22), the

3 The creation of this tangencies appear as a natural transition from partially hyperbolic
dynamics to non-dominated dynamics, see the examples in (22).
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Chapter 1. Introduction 17

C1-unfolding of a such tangency in the leads to C1-robustly non-dominated dy-
namics and in some cases to very intermingled dynamics related to universal
dynamics4. Examples of C2-robust heterodimensional tangencies are provided
in (26) using the thick horseshoes in (33). The authors also see how these ro-
bust tangencies can be associated to heterodimensional cycles using blenders.
Assuming large codimension of heterodimensional tangencies on manifolds of
dimension ≥ 7, in (2) the authors also exhibit C2-robust heterodimensional
tangencies. The above results motivate the problem of generation and stabili-
sation of cycles in the Cr-topology.

1.3
The setting: Palis and Bonatti’s conjectures

Motivated by the Palis density conjecture, Bonatti proposed in (3) to split
the space of C1-diffeomorphisms considering the following three dichotomies
(we postpone the precise definitions)

• tame (having robustly finitely many chain recurrence classes whose
number is locally constant) versus wild (having robustly infinitely many
chain recurrence classes) diffeomorphisms,

• diffeomorphisms far from heterodimensional cycles versus diffeomor-
phisms with robust heterodimensional cycles,

• diffeomorphisms far from homoclinic tangencies versus diffeomorphisms
with robust homoclinic tangencies.

Bonatti’s conjecture claims that in each case union of the two opens sets in-
volved in each dichotomy is a dense subset in the space of C1-diffeomorphisms.
Note that when two (transitive) hyperbolic sets of different indices are involved
in a robust cycle then they are in the same chain recurrence class. Thus the
occurrence of robust cycles has immediate consequences in the description of
the elementary pieces of dynamics of the diffeomorphisms.

Considering the above dichotomies Bonatti proposed the following types
of diffeomorphisms with increasing complexity5 of dynamics:

4 This phenomenon can be thought as a generalisation of the phenomenon of Newhouse:
sets with universal dynamics displays infinitely many pairwise disjoint exhibit non-trivial
homoclinic classes; infinitely many non-trivial hyperbolic and non-hyperbolic attractors,
and infinitely many non-trivial hyperbolic and non-hyperbolic repellors. In dimension three,
the construction of C1-universal dynamics involves the (robust) presence of saddles with
different indices and non-real eigenvalues in the same transitive set, see (7).

5In extremely rough terms and considering three dimensional systems, case (ii) corre-
sponds to dominated dynamics with three bundles, case (iii) corresponds to dominated dy-
namics with two bundles, and (iv) corresponds to non-dominated dynamics, see for instance
(49).
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Chapter 1. Introduction 18

(i) hyperbolic systems,

(ii) tame systems far from homoclinic tangencies (note that these diffeomor-
phisms may exhibit robust heterodimensional cycles),

(iii) tame systems with robust homoclinic tangencies (in the known examples
these systems also have robust heterodimensional cycles), and

(iv) wild diffeomorphisms.

We observe that there are some partial progress in the C1-topology to describe
the dynamics above and that very few is know in the case of wild dynamics
(besides some locally generic examples). The understanding of these dynamics
with higher regularity is a quite open problem.

1.4
Overview of our main results

The goal of this thesis is to present a semi-local scenario illustrating
the occurrence of Cr-robust cycles and other related dynamics. We introduce
explicit families of local diffeomorphisms (we are only concerned with some
local and semi-local aspects of the dynamics) displaying Cr-robust heterodi-
mensional cycles, r ≥ 2. More precisely, in the Cr-setting, we consider three
dimensional diffeomorphisms having a pair of saddle-focus fixed points, say
P and Q, having a heterodimensional cycle. We also assume that the two di-
mensional invariant manifolds have non-transverse intersection (we call these
cycles non-transverse heterodimensional cycles). In this way we have a pair of
non-transverse heteroclinic orbits, say X and Y , where the α-limit set of X is
Q and its ω-limit is P and the ω-limit set of Y is Q and its α-limit is P , see
Figure 1.1. In this case the point Y is called a heterodimensional tangency.

Figure 1.1: Non-transverse heterodimensional cycles

We study the semi-local dynamics of this cycle (i.e, the orbits which
remain in the future and in the past in a neighbourhood of the orbits of P,Q,X
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Chapter 1. Introduction 19

and Y ) and see how this configuration may lead to Cr-robust cycles and to
the stabilisation of the original cycle. This study has three main ingredients:

• A parametric Hénon-like family exhibiting (agree to the choice of param-
eters) blender-horseshoes (see Theorem 1) and a pair of fixed saddle-node
points related cyclically by the intersection of their invariant manifolds
(see Lemma 6.6.3).

• A renormalisation scheme associate to a non-transverse heterodimen-
sional cycle converging to maps of the Hénon-like family (see Theorem 2).

• Applications of the two items above to get robust cycles (Theorem 3)
and the stabilisation of the initial cycle (Theorem 4).

The study of the cyclic configuration depicted above is motivated by (21).
The configuration in (21) involves saddles P and Q having different indices (say
one and two, respectively) and real multipliers of a diffeomorphism f . The au-
thors introduce a renormalisation scheme associated to the heterodimensional
tangency converging the center unstable Hénon-like family

G̃(ξ,µ,κ,η)(x, y, z) = (ξ x+ y, µ+ y2 + κx2 + η x y, y), ξ > 1.

For every parameter (ξ, µ, κ, η) close enough to (1+,−9, 0, 0) these maps have
blenders (see Section 3.4). Indeed we accomplish the construction in (21)
proving that these blenders are indeed blender-horseshoes6. Following the ideas
in (21) we get a sequence of diffeomorphisms fn converging to f (in the Cr-
topology, r ≥ 2) having blender-horseshoes. These blender-horseshoes have
one dimensional stable manifolds. Using these blenders in (21) the authors
obtain some additional semi-global information of the diffeomorphisms fn:
small C1+α-perturbations of fn, α ∈ (0, 1/2), yield robust connections between
the manifolds one dimensional stable manifold of the blender and the one
dimensional unstable manifold of (the continuation of) Q.

This results are a partial step in the direction of the generation of Cr-
robust cycles. In (21) the authors are not able to get intersections between
the two dimensional stable manifold of the blender and the two dimensional
stable manifold of Q. Thus it is unknown if there is possible to get robust
cycles involving the blenders and Q. Finally, it is also unknown if the blender
is (homoclinically) related to the saddle P . Two important cons in the

6A blender is a hyperbolic set satisfying some superposition geometrical properties, its
structure as hyperbolic set is not important and it may fail to be locally maximal. Blender-
horseshoes are locally maximal and conjugate to the complete shift of two symbols. This
property guarantees a complete description of the local stable manifold of the blender-
horseshoes.
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constructions in (21) are that the systems are “slowly recurrent” after the
generation of the blender and the “size” of the blenders decrease exponentially
fast (this is a difficulty to “relate” the blender to the saddles in the cycle).
The naive idea in this paper to bypass these two difficulties is to add extra
recurrences to the system considering saddles with non-real multipliers (saddle
focus) this allows to get Cr-robust connections between the one unstable
manifolds. We also obtain an appropriate control of the size of the blender-
horseshoes that allows us we get the intersections between the stable manifold
of the blender and the stable manifold of Q.

Organisation of the thesis. This thesis is organised as follows. In Section 2
we give a rough description of the bifurcation setting that we consider. In
Section 3 we describe precisely the main ingredients involved in this thesis. In
Section 4 we state precisely our main results in this thesis and sketch the key
steps of the proofs. Theorem 1 about the existence of blender-horseshoes in
Hénon-like families is proved in Section 5. In Section 5.3 we prove Theorem 2
about the convergence of the renormalisation scheme. In Section 6 we construct
laminations of the parameter space corresponding to diffeomorphisms with
blender-horseshoes and prove the first part of Theorem 4 about stabilisation
of cycles. The second part of this theorem is given in Section 7. In Section 6.7
we prove Theorem 3. Finally, in Section 8.3 we apply our results to get non-
dominated homoclinic classes.
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2
The bifurcation context: Non-transverse heterodimensional
cycles

In this section we discuss our bifurcation setting. In a three dimensional
manifold, we study a bifurcation setting of a heterodimensional cycle associ-
ated a pair of hyperbolic saddles having non-real eigenvalues such that the
one-dimensional manifolds meets quasi-transversely and the two-dimensional
invariant manifolds also meet non-transversely. More precisely, let f : M →M

be a diffeomorphism having a pair of fixed saddles P and Q of indices (dimen-
sion of unstable bundle) two and one, respectively, such that

• P and Q are irrational saddle-focus: Df(P ) have a non-real expanding
eigenvalue and Df(Q) have a non-real contracting eigenvalue, having
both eigenvalues an irrational argument);

• The one-dimensional manifolds meets through a orbit of a quasi-
transverse intersection point X i.e., X ∈ W s(P, f) ∩W u(Q, f) and

TXW
s(P, f) + TXW

u(Q, f) = TXW
s(P, f)⊕ TXW u(Q, f);

• The two-dimensional manifolds meet through an orbit of a non-transverse
intersection point Y i.e., the orbit of Y is contained in the set

(
W u(P, f) ∩W s(Q, f)

)
\
(
W u(P, f) t W s(Q, f)

)
.

The study of such bifurcations depends on the geometrical constrains
(shape and relative positions of the invariant manifold close to the
heteroclinic orbits) as well of type of intersections (elliptic and hyperbolic
contact of the two-manifolds) in the cycle. The resulting dynamics is
determined by four maps:

– the local dynamics in (small) neighbourhoods UP and UQ of the
saddles P and Q,

– two transition maps TQ,P and TP,Q, where TQ,P follows the orbit of
the heteroclinic point X and goes from UQ to a UP and TP,Q follows
the orbit of the heteroclinic point Y and goes from UP to UQ.
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See Figure 2.1.

Figure 2.1: Non-transverse heterodimensional cycle satisfying conditions (H),
(Q), (T) and (L).

A key aspect of the dynamics of the bifurcation, using the terminology
in (13, Preface) and in very rough terms, heterodimensional cycles correspond
to the so-called non-critical dynamics and the homoclinic tangencies corre-
spond to the so-called critical dynamics. The dynamical configuration in this
paper involves the simultaneous occurrence of a heterodimensional cycle and
heterodimensional tangency, as a results aspects of critical and non-critical dy-
namics overlap and there is an interplay between the two types of dynamics.
In our setting TQ,P corresponds to a non-critical dynamics and TP,Q to the
critical one. Let us also observe that the transitions TP,Q and TQ,P determines
the (local) geometry of the invariant manifolds of the saddles in the cycle along
the heteroclinic orbits.

We postpone the discussion of these points and emphasise that our results
depend on appropriate choices for these configurations, see Section 4.2.
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3
Preliminaries

In this section we define and discuss the main objects in our results: non-
transverse heterodimensional cycles (Section 3.1), dominated splittings (Sec-
tion 3.2), homoclinic classes (Section 3.3), blender-horseshoes (Section 3.4),
and renormalisation schemes and Hénon-like families (Section 3.5). In what
follows, we denote by M a three-dimensional compact boundaryless manifold
and for r ≥ 1, we denote by Diffr(M) the metric space of Cr-diffeomorphisms
on M endowed with the uniform metric ‖ · ‖r.

3.1
Non-transverse heterodimensional cycles

For the next discussion recall the definition of a heterodimensional cycle,
see Definition 1.1.1. Consider a diffeomorphism f with a heterodimensional
cycle associated to hyperbolic sets Γ and Σ. Then by definition we can assume
that for every X ∈ W s(Γ) ∩W u(Σ) and every Y ∈ W u(Γ) ∩W s(Σ) it holds

dim
(
TXW

s(Γ)
)

+ dim
(
TXW

u(Σ)
)
< dim

(
TXM

)
,

dim
(
TYW

u(Γ)
)

+ dim
(
TYW

s(Σ)
)
> dim

(
TYM

)
.

Thus the last condition allows two types of intersections between W u(Γ) and
W s(Σ): transverse and non-transverse. The set of transverse intersection of
such manifolds is denoted by W u(Γ) t W s(Σ). This motivates the following
definition:

Definition 3.1.1 (Non-transverse heterodimensional cycles) Consider
a diffeomorphism f : M → M having a heterodimensional cycle associated
to saddles P and Q such that ind(P ) > ind(Q). A heteroclinic orbit of the
cycle in W u(P, f) ∩W s(Q, f) disjoint from W u(P, f) t W s(Q, f)) is called a
heterodimensional tangency. In such a case we say that cycle is non-transverse.
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3.2
Dominated Splittings

There are several notions extending the concept of uniform hyperbolicity.
Let us discuss briefly one of this generalisations.

In the context of the stability conjeture, Liao (27), Mañe (28), Pliss (41)
were led to the more general notion of hyperbolicity known as dominated
splitting. This systems support a invariant splitting shaped for two subbundles:
one of the bunddle is definitely more contracted (or less expanded) than the
other after a fixed time (uniform in whose invariant set) of iterated.

We now give the formal definition of this weaker form of hyperbolicity.

Definition 3.2.1 (Dominated splitting) An f -invariant set Λ has a domi-
nated splitting if the tangent bundle TΛM over Λ splits into two Df -invariant
bundles E and F , TΛM = E ⊕ F , whose fibers Ex and Fx have constant di-
mensions, and there exists constants 0 < λ < 1 and C > 0, and an integer
l ≥ 1 such that for every point x ∈ Λ it holds that

‖Df lx|Ex‖ <
1
2 ‖Df

−l
f l(x)|Ffl(x)

‖. (3.2.1)

In this case, we say that splitting is l-dominated and that F dominates E.

We now list some important properties of a dominated splitting (for
details see, for instance, (13)).

Remark 3.2.2

(i) Continuous dependence of the fibers. The fibers Ex and Fx of the
dominated splitting depend continuously on the point x ∈ Λ.

(ii) Bounded angle. The angle between the bundles Ex and Fx, x ∈ Λ, is
uniformly bounded away from below.

(iii) Extension to the closure. Suppose that E ⊕ F is a dominated splitting
defined on an (not necessarily closed) f -invariant set Λ. Then there is
a dominated splitting Ẽ ⊕ F̃ defined on the closure Λ of Λ such that
Ẽx = Ex and F̃x = Fx, for all x ∈ Λ.

In this paper we obtain three-dimensional Cr-diffeomophisms f , r ≥ 2,
such that every system sufficiently Cr-close to f has a transitive invariant
sets that does not support any splitting dominated. We will use the following
simple observation.

Remark 3.2.3 (Obstruction to domination) In dimension three, the si-
multaneous presence of two saddles-focus of different u-indices in a transitive
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set Λ prevents the existence of dominated splittings defined on the whole Λ.
Indeed, let P and Q be two saddle-focus in Λ such that P has a non-real
expanding eigenvalue and Q has a non-real contracting eigenvalue. Assume
that TΛM := E ⊕ F is a dominated splitting. Assume for instance that E
is one-dimensional (the case when F is one dimensional follows analogously
interchanging the roles of P and Q). Then EQ ∩ Es

Q is a one-dimensional
Df -invariant sub-bundle contained in Es

Q. This contradicts the fact that the
derivate of f at Q has two non-real (contractive) eigenvalues.

3.3
Homoclinic class

Homoclinic classes were introduced by Newhouse in (34) as an abstraction
of the basic sets of the Smale theory (see (48)). They are an essential ingredient
in the structure of the dynamics of diffeomorphisms and in many relevant cases
correspond to the elementary pieces of dynamics (see (13), Chapter 10.4]).

Definition 3.3.1 (Homoclinic class) Let f be a diffeomorphism and P a
periodic saddle of f . Denote by O(P ) the orbit of P . The homoclinic class of
P (or of the orbit of P ), denoted by H(P, f), is the closure of the transverse
intersections of the stable and unstable manifolds of O(P ). We say that a
homoclinic class is non-trivial if it contains at least two different orbits.

A homoclinic class can be also defined as the closure of the set of saddles
that are homoclinically related with P . Recall that a saddle Q is homoclinically
related with P if the invariant manifolds of the orbits of P andQmeet cyclically
and transversely. Note that homoclinically related saddles have the same index.

We observe that the saddles of H(P, f) having the same index as P form
a dense subset of the whole classH(P, f). Finally, any homoclinic classH(P, f)
is f -invariant and transitive. For these properties of homoclinic classes see, for
instance, (36).

We observe that a homoclinic class H(P, f) may fail to be uniformly
hyperbolic. Indeed, this, may contain in a robust way hyperbolic saddles having
indices different from the one of P (see, for instance, the constructions in (20)).

Denote by t (P, f) the dense subset of saddles in H(P, f) that are
homoclinically related to P . For each Q ∈t (P, f) we have the hyperbolic
splitting (Es ⊕ Eu)|O(Q) defined over the orbit O(Q) of Q. The dimensions of
the bundles in these splittings do not depend on Q. One aims to extend these
splittings to the whole closure of t (P, f) (i.e.,H(P, f)) to get a “nice” splitting
defined on H(P, f). Unfortunately, this is not always possible. First, the angles
between the bundles can be arbitrarily small (this prevents the extension, recall
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Remark 3.2.2). Second, if such an extension exists it may fail to be dominated.
In this work, we get, after unfolding of a non-tranverse heterodimensional
cycle, homoclinic classes that are Cr-robustly non-dominated for r ≥ 2. This
is obtained considering a homoclinic class containing a pair of saddle-focus
points with different indices. This motivates the following definition.

Definition 3.3.2 (Intermingled homoclinic classes) Let P and Q be
saddles of different indices of a diffeomorphism f . The homoclinic classes
H(P, f) and H(Q, f) are intermigled if they has non-empty intersection. This
intermingledness is Cr-robust if there exist a Cr-neighbourhood U of f such
that for every g ∈ U the continuations Pg and Qg of P and Q satisfies
H(Pg, g) ∩H(Qg, g) 6= ∅.

In the C1-topology, the persistence of intermingled homoclinic classes of dif-
ferent indices is a phenomenon inherent to the unfolding of heterodimensional
cycles. For details and precise statements see (24). On the other hand, by (1, 17)
there exist a residual set of C1-diffeomorphisms such that any two homoclinic
classes are either disjoint or coincide. In this work we get two homoclinic classes
of sadles with different indices that are intermingled Cr-robustly for r ≥ 2.

3.4
Blenders and Blender-horseshoes

We now discuss the definition of a three-dimensional blenders and
blender-horseshoes, for further details and generalisations see (5), (10), and (13,
Chapter 6). First, we give an axiomatic definition and thereafter sufficient
conditions for the existence of a special kind of cu-blender called blender-
horseshoe.

Definition 3.4.1 (cu-Blender, Definition 3.1 in (10)) Let f : M → M be a
three-dimensional diffeomorphism. A transitive hyperbolic compact set Λ of
index two of f is a cu-blender if there are a C1-neighbourhood U of f and a
C1-open set D of embeddings of one-discs D into M such that for every g ∈ U
and every disc D ∈ D the local stable manifold W s

loc(Λg) of the continuation
Λg intersects D. The set D is called the region of superposition of the blender.
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3.4.1
Blender-horseshoes

We begin with some preliminary constructions. In what follows we restrict
our attention to the three dimensional case. Since the construction is local we
assume that the ambient space is R3.

Consider a cube of the form

∆ = Ix × Iy × Iz ⊂ R3, where Ix, Iy, and Iz are closed intervals.

We divide the boundary ∂∆ of ∆ into three parts as follows:

∂ss∆ := ∂Ix × Iy × Iz, ∂uu∆ := Ix × ∂Iy × Iz, ∂u∆ := Ix × ∂(Iy × Iz).

Note that ∂uu∆ ⊂ ∂u∆ and ∂∆ = ∂s∆ ∪ ∂u∆.
Given θ > 1 for each p ∈ ∆ ⊂ R3 we consider the cone fields

Cu
θ (p) =

{
(u, v, w) ∈ Tp∆ : θ|u| <

√
v2 + w2

}
,

Cuu
θ (p) =

{
(u, v, w) ∈ Tp∆ : θ

√
u2 + w2 < |v|

}
,

Cs
θ(p) =

{
(u, v, w) ∈ Tp∆ : θ

√
v2 + w2 < |u|

}
.

(3.4.1)

Note that Cuu
θ (p) ⊂ Cu

θ (p).
Related to these cone fields we define vertical and horizontal curves and

vertical strips as follows:

• A regular curve L ⊂ ∆ is vertical (resp. horizontal) if for every point p
in L, it holds TpL ⊂ Cuu

θ (p) (resp. TpL ⊂ Cs
θ(p)) and the end-points of L

are contained in different connected components of ∂uu∆ (resp. ∂s∆). In
what follows the vertical curves will be called uu-disc.

• A surface S ⊂ ∆ is called a vertical strip in ∆ if TpS ⊂ Cu
θ (p) for every

p in S and there exists a C1-embedding E : Iy × J → ∆ (where J is a
subinterval of Iz) such that E(Iy × J) = S and L(z) := E(Iy × {z}) is a
vertical curve for every z ∈ J. The width of S, denoted by w(S), is the
infimum of the length of the curves in S which are transverse to Cuu

θ and
join the two components of L(∂J).

Note that every horizontal curve W in ∆ define two different (free)
homotopy classes of vertical segments through ∆ and disjoint from W . This
allows us to consider uu-discs to the left and to the right of W (corresponding
to two different homotopy classes). We will denote this classes by Hl

W and Hr
W .
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• The right class Hr
W (resp. left class H`

W ) consist of every vertical curve L
in ∆ such that L∩W = ∅ and L is (freely) homotopic to {x0}×Iy×{z+}
(resp. {x0}× Iy×{z−}) for some x0 ∈ Ix, where Iz = [z−, z+]. If L ∈ Hr

W

(resp. L ∈ H`
W ) we say that L is at the right (resp. at the left) of W .

Observe that if W1 and W2 are different horizontal curves in ∆, then
Hr
W1 ∩ H`

W2 6= ∅ or Hr
W2 ∩ H`

W1 6= ∅.

Similarly, a vertical strip S through ∆ is at the right (resp. at the left)
of W if it is foliated by vertical curves at the right (resp. at the left) of
W .

We now borrow the following definition from (10).

Definition 3.4.2 (Blender-Horseshoes) The maximal invariant ΛF :=
∩i∈ZF i(∆) of a local diffeomorphism F : ∆ → R3 is a blender-horseshoes
if F satisfies conditions (BH1)-(BH6) below:

(BH1) Vertical legs of the blender : The intersection F (∆)∩ (R× Iy×R) consists
of two connected components, denoted F (A) and F (B) satifiying

F (A) ∪ F (B) ⊂ int(Ix)× Iy × R and (A ∪ B) ∩ ∂uu∆ = ∅.

Here int(X) denote the interior of X.

(BH2) (i) Strict invariance of cone fields: There exist θ > 1 such that for
every p ∈ F (A) ∩ F (B) and q ∈ A ∩ B then

DF−1
p (Css

θ (p)) ⊂ Css
θ (F−1(p)), DFq(C∗θ (q)) ⊂ C∗θ (F (q)), ∗ = u, uu,

(ii) Expansion/Contraction the cone fields: The derivatives DF |Cu and
DF−1|Cs are uniformly expanding and contracting, respectively.

(BH3) Markov partition: Consider the connected components of F−1(∆) ∩∆:

A := F−1(F (A) ∩∆), B := F−1(F (B) ∩∆).

Then,

F (A) ∪ F (B) ⊂ int(Ix)× Iy × Iz, A ∪ B ⊂ Ix × int(Iy × Iz).

Conditions (BH2) and (BH3) imply the existence of two saddles P ∈ A and
Q ∈ B. We define the local stable manifolds of P and Q by

W s
loc(P ) := connected componet of W s(P ) ∩∆ containig P ,
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W s
loc(Q) := connected componet of W s(Q) ∩∆ containig Q.

These local manifolds are horizontal curves in ∆. Note that either Hr
W s

loc(P ) ∩
H`
W s

loc(Q) 6= ∅ or H`
W s

loc(P ) ∩ Hr
W s

loc(Q) 6= ∅ and assume that the first case holds.
We say that a vertical curve is in between W s

loc(P ) and W s
loc(Q) if it belongs

to Hr
W s

loc(P ) ∩ H`
W s

loc(Q). We use the notation

Hb := Hr
W s

loc(P ) ∩ H`
W s

loc(Q).

We say that he saddles P and Q are the reference saddles of ΛF , where P is
the left saddle and Q is the right saddle. The family of discs in Hb is called
superposition region of the blender-horseshoe.

(BH4) uu-discs through the local stable manifolds of P and Q: Let D and D′ be
uu-discs such that D ∩W s

loc(P ) 6= ∅ and D′ ∩W s
loc(Q) 6= ∅. Then

D ∩
(
∂u∆ \ ∂uu∆

)
= ∅, D′ ∩

(
∂u∆ \ ∂uu∆

)
= ∅

(BH5) Positions of images of uu-discs: Let D be a uu-disc in ∆ and write

DA := D ∩ A and DB := D ∩ B.

There are the following six cases:

(1) if D ∈ Hr
W s

loc(P ) then F (DA) ∈ Hr
W s

loc(P ),
(2) if D ∈ H`

W s
loc(P ) then F (DA) ∈ H`

W s
loc(P ),

(3) if D ∈ Hr
W s

loc(Q) then F (DB) ∈ Hr
W s

loc(Q),
(4) if D ∈ H`

W s
loc(Q) then F (DB) ∈ H`

W s
loc(Q),

(5) if D ∈ H`
W s

loc(P ) or D ∩W s
loc(P ) 6= ∅ then F (DB) ∈ H`

W s
loc(P ), and

(6) if D ∈ Hr
W s

loc(Q) or D ∩W s
loc(Q) 6= ∅ then F (DA) ∈ Hr

W s
loc(Q).

(BH6) Positions of images of uu-discs Hb: Let D ∈ Hb. Then either F (DA) or
F (DB) belongs to Hb.

Figure 3.1 illustrates a prototypical blender-horseshoes dynamics.

Remark 3.4.3 (Consequences of (BH1)-(BH6), Section 3.2.4 in (10))

• Condition (BH3) is equivalent to

(
F (A) ∪ F (B)

)
∩ ∂s∆ = ∅, and

(
A ∪ B

)
∩ ∂u∆ = ∅.
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• From (BH3), one gets that {A,B} is a Markov partition generating ΛF .
In particular, the set ΛF contains exactly two fixed points of F , P ∈ A
and Q ∈ B. Therefore, (BH2) and (BH3) imply that the dynamics of F
in ΛF is hyperbolic and conjugate to the full shift of two symbols.

• The conditions (BH1)-(BH6) are C1-open ones. Hence if ΛF is a blender-
horseshoe of F for every G close enough to F the continuation ΛG of ΛF

is a blender-horseshoe.

Figure 3.1: (a) The diffeomophism F satisfies conditions (BH1)-(BH6) in ∆.
(b) Projection of the region of superposition Hb between the reference saddles
P and Q of the blender-horseshoe ΛF . The curve ` is a uu-disc in Hb.

We consider the following local stable manifold of ΛF ,

W s
loc(ΛF ) :=

⋂
n∈N

F n(∆) ⊂ W s(ΛF ).

We borrow the following lemma (and its proof) from (4) stating the
distinctive property of a blender.

Lemma 3.4.4 (Lemma 3.13 in (4)) For every D ∈ Hb it holds D ∩
W s

loc(ΛF ) 6= ∅ for every D ∈ Hb.

Proof. Consider D = D0 ∈ Hb. By condition (BH6), F (D) contains a disc
D1 ∈ Hb. Write F−1(D1) = D′1 ⊂ D0. We now proceed inductively, assuming
defined Dn ∈ Hb with Dn ⊂ F (Dn−1) and F−n(Dn) = D′n ⊂ D0, we
define Dn+1 ∈ Hb contained in F (Dn) and let F−n−1(Dn) = D′n ⊂ D0. The
sequence D′n is nested and hence ∅ 6= ∩nD′n ⊂ D0. Note that by construction
∩nD′n ⊂ W s

loc(ΛF ). �
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We also the following refinement of the above lemma. First we say that
a vertical strip is in between W s

loc(P ) and W s
loc(Q) if it is foliated by curves in

Hb.

Lemma 3.4.5 Every vertical strip in between W s
loc(P ) and W s

loc(Q) intersects
transversely W s(P ).

Proof. Since ΛF is the maximal invariant set in ∆, then W s
loc(ΛF ) =

∩i∈NF−i(∆). Thus, it is sufficient to see that the stable manifold W s(P ∗, F ) of
P ∗ ∈ ΛF intersects transversally every vertical strip S through ∆ to the right
ofW s

0 (note that any vertical segment D through ∆ can be seen as an intersec-
tion of a nested sequence of vertical strip S throughout ∆). To see that, note
that the conditions (H1)–(H6) above imply that the width of vertical strips
in ∆ grows exponentially after iterations by F (i.e., the image F (S) contains
a strip S ′ such that w(S ′) > c′w(S) for some c′ > 1). This implies that the
stable manifold W s(P ∗, F ) of P ∗ intersects transversally every vertical strip S
through ∆ to the right of W s

0 . In particular, we have that W s
loc(ΛF ) ∩ S 6= ∅,

ending the proof of the lemma. �

3.4.2
Blender-horseshoes for endomorphisms

Now we reformulate the definition of a blender-horseshoe for endomor-
phisms:

Definition 3.4.6 (Blender-horseshoes for endomorphisms) The gener-
alised maximal invariant Λ̂G := ∩i∈Z

(
∆ ∩ Gi(∆)

)
of a local endomorphism

G : ∆→ R3 is a blender-horseshoes if G satisfies the conditions below:

(BH1’) Vertical legs of the blender : The intersection G(∆)∩ (R× Iy×R) consists
of two connected components, denoted G(A) and G(B) satifiying

G(A) ∪G(B) ⊂ int(Ix)× Iy × R and (A ∪ B) ∩ ∂uu∆ = ∅,

where A and B are connected subsets of ∆.

(BH2’) (i) Strict invariance of cone fields: There exist θ > 1 such that if
p ∈ A ∩ B then

Css
θ (G(p)) ⊂ DGp

(
Css
θ (p)

)
, DGq

(
C∗θ (p)

)
⊂ C∗θ (G(p)), ∗ = u, uu,

(ii) Expansion/Contraction the cone fields: The derivatives DG|Cu and
DG|Cs are uniformly expanding and contracting, respectively.
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(BH3’) Quasi Markov partition: Consider connected components of G−1(∆)∩∆:

A ⊂ G−1(G(A) ∩∆) ∩∆, B ⊂ G−1(G(B) ∩∆) ∩∆.

such that
G(A) = G(A) ∩∆, G(B) = G(B) ∩∆.

Then,

G(A) ∪G(B) ⊂ int(Ix)× Iy × Iz, A ∪ B ⊂ Ix × int(Iy × Iz).

Conditions (BH2’) and (BH3’) imply the existence of two (reference) saddles
P ∈ A and Q ∈ B. Thus, the local stable manifolds of W s

loc(P ) and W s
loc(Q)

are horizontal segments in ∆. We assume that Hr
W s

loc(P ) ∩ H`
W s

loc(Q) 6= ∅.

(BH4’) The uu-discs D and D′ in ∆ such that

D ∩W s
loc(P ) 6= ∅ and D′ ∩W s

loc(Q) 6= ∅.

satisfies the condition (BH4) in Definition 3.4.2.

(BH5’) Let D be a uu-disc in ∆ and denote DA := D ∩ A and DB := D ∩ B.
Then the discs G(DA) and G(DB) satifies the posibilities of (BH5) in
Definition 3.4.2.

(BH6’) Let D be a uu-disc in Hb. Then either G(DA) or G(DB) is in Hb.

We now reformulate the item about continuations of blender-horseshoes
for endomorphisms.

Remark 3.4.7 (Continuations of blender-horseshoes endomorphisms)
Suposse that the endomorphism G has a blender-horseshoe in ∆. Then every
diffeomorphism F such that F |∆ is sufficiently close to G|∆ has a blender-
horseshoe in ∆.

3.5
Renormalisation schemes and Hénon-like families

First, let us observe that renormalisation methods play an important role
in the study of homoclinic bifurcations (dynamics at homoclinic tangencies).
This method leads to the approximation of dynamics by quadratic families
(Hénon-like families) and allows to translate some properties of such families
(as existence of strange attractors and sinks, or thick hyperbolic sets) to the
renormalised diffeomorphisms, see for instance (38, Chapter 6.4).
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Analogously to the case of homoclinic bifurcations, in (21) is introduced
a renormalisation scheme for a three-dimensional Cr-diffeomorphism f , r ≥ 2,
having a non-transverse heterodimensional cycles between saddles P and Q (in
(21) both saddles in the cycle have real multipliers) of u-index two and one,
respectively, whose dynamic limit it the center unstable Hénon-like family

G̃(ξ,µ,κ,η)(x, y, z) = (ξ x+ y, µ+ y2 + κx2 + η x y, y), ξ > 1. (3.5.1)

This Hénon-like family exhibits, for an appropriate open set of parameters,
blender-horseshoes, see Theorem 1.

Recall our bifurcation setting in Section 2 of a diffeomorphism f ∈
Diffr(M) having a non-transverse heterodimensional tangency point Y and
a quasi-transverse heteroclinic point X. A renormalisation scheme to f at Y
is a 4-tuple

Rk(f) : =
(
{Ψk}k, {fk}k, {`(k)}k, R∞(f)

)
(3.5.2)

where

• Ψk : R3 →M is a sequence of local coordinates such that Ψk(K)→ {Y }
for every compact set K in R3;

• fk : M →M is a sequence of diffeomorphisms (obtained by an unfolding
of the cycle - both heteroclinic connections X and Y ) converging to f in
the Cr-topology;

• `(k) ∈ N is a sequence of return times of f to the heterodimensional
tangency; and

• R∞(f) : R3 → R3 is an endomorphism,

such that the renormalised sequence

Rk(f) : = Ψ−1
k ◦ f

`(k)
k ◦Ψk,

converges on compact sets to R∞(f) in the Cr-topology. The endomorphism
R∞(f) is called dynamic limit.
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4
Precise statements of the main results

4.1
Hénon-like families with blender-horseshoes

Next result is a version of (21, Theorem 1.1) where blenders are replaced
by blender-horseshoes.

Theorem 1 Consider the center unstable Hénon-like family of endomor-
phisms

G(ξ,µ,κ,η)(x, y, z) := (y, µ+ y2 + κ y z + η z2, ξ z + y), ξ > 1,

and the cube
∆ := [−4, 4]2 × [−40, 22].

Then there is ε > 0 such that for every

ν̄ = (ξ, µ, κ, η) ∈ O := (1.18, 1, 19)× (−10,−9)× (−ε, ε)2

the endomorphism Gν̄ has a blender-horseshoe in ∆.
As a consequence, every diffeomorphism sufficiently C1-close to Gν̄ has

a blender-horseshoe in ∆.

Remark 4.1.1 The endomorphism G̃(ξ,µ,κ,η) in (3.5.1) and G(ξ,µ,κ,η) are con-
jugated by the map Θ̃(x, y, z) = (z, y, x).

4.2
A bifurcation setting for Cr-robust cycles

Recall that M denotes a three-dimensional compact Riemannian mani-
fold. Consider a diffeomorphism f ∈ Diffr(M) having a pair of periodic saddles
P and Q of u-indice two and one, respectively, related by a heterodimensional
cycle satisfying the following conditions (L), (H), (Q) and (T):

(L) Linearising and Spectral conditions. Suppose that there exist Cr-linearising
local chart UP and UQ at the the saddles P and Q. We assume also, that the
saddles P and Q has non-real eigenvalues with spectrum are given by
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Spec
(
Df(P )

)
=
{
λP , σP e

±2πiϕP
}
, Spec

(
Df(Q)

)
=
{
σQ, λQ e

±2πiϕQ
}
,

where 0 < |λP |, |λQ| < 1 < |σP |, |σQ|, and ϕP , ϕQ ∈ Qc. We called to this
type of saddles irrational saddle-focus. We assume some technical conditions
(including non-resonance like ones) on the parameters

LocDyn(f) := (λP , σP , λQ, σQ) ∈ R4,

given by a open and non-empty set P (see Lemma 6.5.3). For simplicity,
we relegate the explicit formulation of these conditions to Section 5.3.1 (see
(5.3.2)).
(H) Heterodimensional tangency. The two dimensional manifolds W u(P, f)
and W s(Q, f) have a heterodimensional tangency Y ∈ W u(P, f) ∩W s(Q, f),
see Defintion 3.1.1.

Taking backward iterates of Y , if necessary, we can assume that Y ∈
W u

loc(P, f). Identify a linearising neighbourhood of P with a neighbourhood of
0 ∈ R3, we know, by the classification of quadratic surfaces in R3 that Y has
the form as illustrated in following Fig. 2.1.

(Q) Quasi-transverse intersections. The one-dimensional manifolds W s(P, f)
and W u(Q, f) meet quasi-transversely along the orbit of a heteroclinic point
X ∈ W s(P, f) ∩W u(Q, f) i.e., TXW s(P, f) + TXW

u(Q, f) = TXW
s(P, f) ⊕

TXW
u(Q, f).
Replacing the heteroclinic points X ∈ W s(P, f) ∩ W u(Q, f) and Y ∈

W u(P, f) ∩W s(Q, f) by some backward iterates we can assume that X ∈ UQ
and Y ∈ UP . Associated to these heteroclinic points we define a pair of
transition maps corresponding to suitable iterations of the diffeomorphism f

in small neighbourhoods of X and Y .

Definition 4.2.1 (The set Tquad of allowed quadratic transitions)
Denote by Tquad the space of polynomials of R3 fixing the origin of the
form

q


x

y

z

 =


a1x+ a2y + a3z

b1x+ b2y
2 + b3z

2 + b4yz

c1x+ c2y + c3z

 ,
such that

b1 c2 (a3 − a2) 6= 0, b2 + b3 + b4 6= 0, c2 = c3.

Note that q is a local diffeomorphism at the origin. We identify the map
q ∈ Tquad with the vector v = (a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ R9 and write
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q = qv. We denote Q ⊂ R9 the set of vectors v such that qv ∈ Tquad and

Π : Tquad → Q, Π(qv) = v. (4.2.1)

(T) Transition maps. There are natural numbers N1 and N2 (called transition
times) such that fN1(X) ∈ UP and fN2(Y ) ∈ UQ such that

• in a small neighbourhood of X, the transition map fN1 is Cr-close
to a translation: there are small neighbourhoods UX ⊂ UQ of X and
UfN1 (X) ⊂ UP and local coordinates in these neighbourhoods (where X
and fN1(X) are identified with the origin) such that

fN1 : UX → UfN1 (X), fN1(Z) = Z + H̃(Z),

where the map H̃ is a higher order term (of order at least two) satisfying
the flat conditions in (5.3.8) at Z = 0.

• in a small neighbourhood of Y , the transition map fN2 is a Cr-map
of quadratic type: there are small neighbourhoods UY ⊂ UP of Y and
UfN2 (Y ) ⊂ UQ and local coordinates in these neighbourhoods (where Y
and fN2(Y ) are identified with the origin) such that

fN2 : UY → UfN2 (Y ), fN2(Z) = Quad(f)Y,N2(Z) +H(Z),

where Quad(f)Y,N2 ∈ Tquad and H denotes the high order terms (of order
at least two) satisfying flat conditions in (5.3.11) and (??) at Z = 01

The map Quad(f)Y,N2 , called the quadratic transition of f , describes, up to a
Cr-error of order two, the tangential contact between W u(P, f) and W s(Q, f)
at Y .

Definition 4.2.2 For r ≥ 1, we define the subset N r
P,Q(Tquad) of Diffr(M)

consisting of diffeomorphisms f having a non-transverse heterodimensional
cycle associated to irrational saddle-focus Pf and Qf satisfying conditions (L),
(H), (Q), and (T). Given a subset T ⊂ Tquad we denote by N r

P,Q(T ) the subset
of N r

P,Q(Tquad) of diffeomorphisms f such that Quad(f) ∈ T .

1The flat conditions of H imply that there is no “interference” between Quad(f)Y,N2 and
H: the first and the third components of H have no linear terms, the second component of
H has no x, y2, z2, yz terms.
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4.3
The renormalisation scheme

Following the constructions in the proof of (21, Theorem 1.2), we
get a renormalisation scheme of diffeomorphisms having a non-transverse
heterodimensional cycle between irrational saddles-focus, converging to the
family of endomorphisms

E(ξ,µ,ς1,ς2,ς3,ς4,ς5)(x, y, z) = (ξ x+ ς1 y, µ+ ς2 y
2 + ς3 x

2 + ς4 x y, ς5 y). (4.3.1)

For an appropriate choice of parameters this family is C∞-conjugate to the
family Gξ,µ,κ,η in Theorem 1 (see Lemma 6.4.1).

Theorem 2 (Renormalisation scheme) Consider a diffeomorphism f in
the set N r

P,Q(Tquad), r ≥ 2 with quadratic transition Quad(f) = qv. Then there
is a unfolding family F = {fῡ}ῡ∈R8 in Diffr(M) bifurcating the non-transverse
heterodimensional cycle of f = f0̄ ∈ F satisfying the following property:

For every ξ > 0, there exist a renormalisation scheme R(ξ,F, f) consist-
ing of

• m,n ≥ 1 sequences of natural numbers;

• Ψm,n : R3 →M sequence of parameterisations of the manifold;

• ῡm,n : R3 → R8 sequence of functions parameterizing the bifurcating
family fῡ;

• Rm,n

(
fῡm,n

)
: M →M , sequence of rescaled diffeomorphisms defined by

Rm,n

(
fῡm,n

)
:=
(
fῡm,n

)N2+m+N1+n

• rational maps ςi : Dom(ςi) ⊂ R× R9 → R, i = 1, 2, 3, 4, 5;

satisfying the following conditions:

• for compact sets L,∆ in R3 we have the convergence:

ῡm,n(L)→ {0}, Ψm,n(∆)→ {Y }, when m,n→ +∞,

here Y is the point of heterodimensional tangency;

• for each (µ, α̃, α) ∈ R3 the corresponding renormalised sequence

Ψ−1
m,n ◦ Rm,n

(
fῡm,n

)
◦Ψm,n, where ῡm,n = ῡm,n(µ, α̃, α), (4.3.2)

converges in the Cr-topology and on compact sets of R3 to the endomor-
phism
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E(ξ,µ,ς̄(ξ,v))(x, y, z) = (ξ x+ ς1 y, µ+ ς2 y
2 + ς3 x

2 + ς4 x y, ς5 y), (4.3.3)

where ς̄ := (ς1, ς2, ς3, ς4, ς5) and ςi = ςi(ξ, v), i = 1, 2, 3, 4, 5.

4.4
Cr-robust cycles and Cr-stabilisation

We give a first result asserting that for every r ≥ 2 there is a class of
diffeomorphisms in N r

P,Q(Tquad) such that every diffeomorphism in this class
can be Cr-approximated by diffeomorphisms having Cr-robust (heterodimen-
sional) cycles.

Theorem 3 (Cr-robust cycles) Let r ≥ 2. There exist a seven-dimensional
sub-manifold T RC in Tquad such that every diffeomorphism in N r

P,Q(T RC) can
be Cr-approximated by diffeomorphisms having Cr-robust heterodimensional
cycles.

The previous theorem does not provide any relation between the hyper-
bolic sets involved in the robust cycle and the continuations of the saddles in
the initial cycle. This motivates the next result. Recall that a lamination is a
locally trivial partition of a set (contained in a manifold) into sub-manifolds.

Theorem 4 (Cr-stabilisation) Let 2 ≤ r < +∞. There are an open subset
B ⊂ R3 and a local lamination TB := (Tb̄)b̄∈B whose leaves are sub-manifolds
of Tquad of dimension seven satisfying the following properties:

(I) For every f ∈ N r
P,Q(Tb̄) there is a sequence of diffeomorphisms fk

converging to f in the Cr-topology such that every fk has a blender-
horseshoe Λfk (of index two) accumulating to the heterodimensional
tangency of f .

(II) There is a subset B′ ⊂ B such that for every b̄ ∈ B′ there exist a open
subset T0 of Tb̄ such that if f ∈ N r

P,Q(T0) then for every k large enough
it holds

(i) Λfk and the saddle Qfk form a robust cycle,
(ii) Λfk is a homoclinically related to the saddle Pfk , and
(iii) the homoclinic classes of Pfk and Qfk are Cr-robustly intermingled.

In particular, the initial cycle of every diffeomorphism in N r(T0) can be
Cr- stabilised by diffeomorphisms having homoclinic classes Cr-robustly
non-dominated.
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4.5
Strategy of the proofs of Theorems 3 and 4

We now sketch the main steps in the proofs.
• Renormalisation scheme. Bearing in mind Theorems 1 (specially equation
(4.3.2)) and 2 and recalling the conjugation Θ(ς1,ς2,ς5) in Lemma 6.4.1 between
the Hénon-like family in (3.5.1) and the quadratic family of endomorphisms in
(4.3.1),

Θ−1
(ς1,ς2,ς5) ◦ E(ξ,µ,ς̄) ◦Θ(ς1,ς2,ς5) = G(ξ,µ,κ,η),

we get the following convergence result. Recall the maps ς1 = ς1(ξ, v), ς2 =
ς2(ξ, v), and ς5 = ς5(ξ, v) in Theorem 2 and consider

κ(ξ, v) = ς1(ξ, v)2 ς2(ξ, v)−1 ς3(ξ, v), η(ξ, v) = ς1(ξ, v) ς2(ξ, v)−1 ς4(ξ, v).
(4.5.1)

Proposition 1 For appropriate choice of parameters ξ, µ, and v the following
Cr-convergence holds

Θ−1
(ς1,ς2,ς5) ◦Ψ−1

m,n ◦ Rm,n

(
fῡm,n

)
◦Ψm,n ◦Θ(ς1,ς2,ς5) → G(ξ,µ,κ,η).

Next step is know the dynamics of G(ξ,µ,κ,η).
• Blenders and saddle-node points in the renormalisation scheme: proof of
Theorem 3. To explain the proof of this theorem we begin by recalling some
ingredients in (9). To get robust cycles in (9) the authors first consider a series
of genuine C1-perturbations leading to a configuration called strong homoclinic
intersections of a saddle-node (roughly, the strong unstable and stable man-
ifolds of the saddle node meets quasi-transversely). This configuration yields
robust cycles after small C∞-perturbations. In our setting the existence of
strong homoclinic intersections of a saddle-node occurs naturally in Hénon-
like families, we now discuss this point.

For the family G(ξ,µ,κ,η) there are two important set of parameters:

– an open set where the maps have blender-horseshoes (Theorem 1) and

– parameters of the form (1, µ, 0, 0), with µ ∼ −9, where there are a pair
of saddle-nodes which are “homoclinically related” (the strong invari-
ant one-dimensional manifolds meet quasi-transversally and cyclically).
After small perturbations this configuration leads to strong homoclinic
intersections associated to saddle-nodes.

Here we use the Hénon-like families in the place of C1-perturbations to get the
strong homoclinic intersections.

Summarising, the main step of the proof of Theorem 3 is the following:
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Proposition 2 Let {Fk}k be a sequence in Diffr(R3) such that for every
compact set K ⊂ R3 it holds

lim
k→+∞

‖(Fk −G(1,µ,0,0))|K‖r = 0.

Then there exist εk → 0 and an εk-Cr-perturbation Gk of Fk such that Gk has
strong homoclinic intersection associated to a saddle-node for every large k.

• Laminations and admissible leaves in Theorems 3 and 4. The proof of the
stabilisation theorem involves a careful choice of an open subset B ⊂ R3 and
a local lamination TB := (Tb̄)b̄∈B whose leaves are sub-manifolds of Tquad. For
that recall the maps Π : Tquad → R9 in (4.2.1), and κ and η in (4.5.1). Consider
the family of maps

γξ : Π(Tquad)→ R2, γξ(v) = (κ(ξ, v), η(ξ, v)) ∈ R2 (ξ ∈ R).

For regular values (κ0, η0) of γξ (we denote such set by RV(γξ)) we consider
the sub-manifold γ−1

ξ (κ0, η0) of dimension seven in R9.
Recall the Hénon-like family G(ξ,µ,κ,η) and take the open subset O =

I × J × V ⊂ R × R × R2 of parameters providing blender-horseshoes for this
family in Theorem 1. Let B = I ×V , then we will see that for every ξ we have
that RV(γξ) ⊂ V and hence the leaves Tb̄ of the lamination TB are given by

Tb̄ : = Π−1
(
γ−1
ξ (w)

)
, b̄ : = (ξ, w) ∈ B.

We also note that the sub-manifold T RC of Tquad in Theorem 3 is
Π−1(γ−1

1 (0, 0)).

• Homoclinic and heteroclinic relations leading to Theorem 4. The stabilisation
of the initial cycle is related to the existence of additional heteroclinic inter-
sections between the saddles in the cycle. The existence of these heteroclinic
intersections depends on the initial configuration the cycle, this leads to split
Tquad according to geometrical constrains such as the type of tangency (elliptic
or hyperbolic contact) and the relative position of the invariant manifolds of
the saddles. The choice of the sub-regions of Tquad guarantees the following
properties:
? New quasi-transverse orbits. The new quasi-transverse orbits have a suitable
unfolding independent of the renormalisation scheme.

? Robust cycle between the blender-horseshoe and the saddle Q in the cy-
cle. Consider the sequence of diffeomorphisms fῡm,n and their corresponding
horseshoe-blender Λm,n in Theorem 4. Bifurcating a new quasi-transverse orbit
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(by a small Cr-perturbation) we obtain a uu-disc simultaneously contained in
the unstable manifold of Q and in superposition region of blender Λm,n. This
provides a robust intersection between the one-dimensional invariant manifolds
of the saddle and the blender.

To generate the robust cycle we need to get a transverse intersection
between the two-dimensional invariant manifolds of the saddle and the blender.
The key property guaranteeing this intersection is obtained analysing the
blender of the Hénon-like family. Let us give some additional details.

Consider G(ξ,µ,κ,η)|∆. The properties of this family implies that if D is
a uu-disc then G(ξ,µ,κ,η)|∆(D) contains a “uu-disc" of size close to |D|2 (this
claim is depicted in Figure 8.2). This assertion, in particular, holds for unstable
manifolds of the references saddles of the blender. With this in mind we can
take increasing domains ∆m,n ⊃ ∆ such that, restricted to the set ∆m,n and
in the Cr-topology we have the following: let

Φm,n = Ψm,n ◦Θ(ς1,ς2,ς5)

then
Φ−1
m,n ◦ Rm,n

(
fῡm,n

)
◦ Φm,n → G(ξ,µ,κ,η).

and
Φ−1
m,n

(
W s

loc(Q, fῡm,n)
)
t W u(P ∗, G(ξ,µ,κ,η)|∆m,n) 6= ∅.

This implies that

Φ−1
m,n

(
W s

loc(Q, fῡm,n)
)
t W u(P ∗ῡm,n ,Φ

−1
m,n ◦ Rm,n

(
fῡm,n

)
◦ Φm,n|∆m,n) 6= ∅,

where P ∗ῡm,n is the continuation of P ∗. This completes our sketch of the
generation of the robust cycle. To get the stabilisation of the cycle it remains
to connect the saddle P and the blender homoclinically.

? The blender-horseshoe and the saddle P are homoclinically related. The cycle
configuration implies that W u(P, fῡm,n) meets transversely W s

loc(Q, fῡm,n). The
irrational argument of the saddle Q and the one-dimensional intersection of
the robust cycle imply that W s(P ∗ῡm,n , fῡm,n) is dense in W s

loc(Q, fῡm,n). From
this we obtain that

W s(P ∗ῡm,n , fῡm,n) t W u(P, fῡm,n) 6= ∅.

To obtain the remaining transverse intersection, we note that after of genera-
tion of the robust cycle there is “surviving" quasi-transverse heteroclinic orbit.
Using this orbit and the irrational argument of saddle Q, we have that the
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stable manifold W s(P, fῡm,n) is dense in W s
loc(Q, fῡm,n). On the other hand,

using the transverse intersection of the robust cycle, we have W u(P ∗ῡm,n , fῡm,n)
meets transversely W s

loc(Q, fῡm,n). Thus, we get that

W u(P ∗ῡm,n , fῡm,n) t W s(P, fῡm,n) 6= ∅.

This completes the sketch of the construction.
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5
Blender-horseshoes in Hénon-like families: Proof of Theorem
1

In this section we prove Theorem 1. By the C1-robustness of properties
(BH1’)-(BH6’) in Definition 3.4.6 (recall Remark 3.4.3 and 3.4.7), it is sufficient
to show the following theorem.

Theorem 5.0.1 For every (ξ, µ) ∈ (1.18, 1, 19) × (−10,−9), the Hénon like
endomorphism

G(ξ,µ,0,0)(x, y, z) = (y, µ+ y2, ξ z + y)

has a blender-horseshoes in ∆ := [−4, 4]2 × [−40, 22].

To prove this theorem we first investigate some properties of the endo-
morphisms Gξ,µ := G(ξ,µ,0,0) on ∆ to the parameters (ξ, µ) ∈ (1.18, 1.19) ×
(−10,−9).

5.1
Properties of the Hénon like family

Let
P := (1.18, 1.19)× (−10,−9). (5.1.1)

Lemma 5.1.1 (Hyperbolic fixed points) For every (ξ, µ) ∈ P, the endo-
morphism Gξ,µ has two hyperbolic fixed saddles P±ξ,µ = (x±ξ,µ, y±ξ,µ, z∓ξ,µ) ∈ ∆
where

x±ξ,µ = y±ξ,µ = µ+ (y±ξ,µ)2 = (1− ξ) z∓ξ,µ,

y±ξ,µ = y±µ := 1± (1− 4µ)1/2

2 .
(5.1.2)

Proof. The condition µ ∈ (−10,−9) implies that −2.7 < y−µ < −2.5 and
3.5 < y+

µ < 3.71. Thus, for every (ξ, µ) ∈ P we get following estimates for z∓ξ,µ:

−20.6 < z−ξ,µ =
y+
µ

(1− ξ) < −18.4, 13 < z+
ξ,µ =

y−µ
(1− ξ) < 15.

Therefore, P±ξ,µ ∈ ∆.
It remains to check the hyperbolicity of these points. Note that λs = 0

and λc = ξ > 1 are the eigenvalues of DGξ,µ(P±ξ,µ) associated to eigenspaces
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spanned by the vectors (1, 0, 0) and (0, 0, 1), respectively. The (strong) expand-
ing eigenvalue of DGξ,µ(P±ξ,µ) is given by λuu(P±ξ,µ) = 2 y±µ that is associated to
the eigenvector (

2 y±µ − ξ, 2 y±µ (y±µ − ξ), 2 y±µ
)
.

Note that |λuu(P+
ξ,µ)| = 2| y+

µ | > 7 and |λuu(P−ξ,µ)| = 2| y−µ | > 5. This ends the
proof of lemma. �

Remark 5.1.2 (Invariant directions) Consider the straight lines
{

(y±µ , y±µ , z±ξ,µ + t) : t ∈ R
}
,

{
(y±µ + t, y±µ , z

∓
ξ,µ) : t ∈ R

}
.

These lines are are Gξ,µ-invariant, contains to P±ξ,µ in its interior, are tangent
to Ec(P±ξ,µ) := {0} × {0} × R and Es(P±ξ,µ) := R × {0} × {0} (respectively),
and

Gξ,µ(y±µ , y±µ , z±ξ,µ + t) = (y±µ , y±µ , z±ξ,µ + ξ t), t ∈ R,

Gξ,µ(y±µ + t, y±µ , z
∓
ξ,µ) = (y±µ , y±µ , z∓ξ,,µ), t ∈ R.

(5.1.3)

We put

W c,±
ξ,µ (∆) =

{
(y±µ , y±µ , z∓ξ,µ + t) : t ∈ R

}
∩∆,

W s,±
ξ,µ (∆) =

{
(y±µ + t, y±µ , z

∓
ξ,µ) : t ∈ R

}
∩∆.

(5.1.4)

Remark 5.1.3 (Invariant foliation) Consider gµ,ξ : R2 → R2 defined by

gξ,µ(y, z) := Π1 ◦Gξ,µ(x, y, z) = (µ+ y2, ξ z + y). (5.1.5)

Note that, for every (ξ, µ) ∈ P , the map Π1 ◦Gξ,µ(x, y, z) does not depend on
x. Note that also gξ,µ preserves the vertical foliation

{
{y} ×R : y ∈ R

}
of R2.

In particular, the lines

W c,±
ξ,µ := {(y±µ , z∓ξ,µ + t)} : t ∈ R,

are invariant and gξ,µ(y±µ , z∓ξ,µ + t) = (y±µ , z∓ξ,µ + ξ t).

5.2
Proof of Theorem 5.0.1

We now see that for every (ξ, µ) ∈ P the endomorphism Gξ,µ|∆ satisfies
the Definition 3.4.6. The proof of these properties is organised as follows.
Conditions (BH1’) and (BH3’) follow from Lemmas 5.2.1 and 5.2.5. Condition
(BH2’) is given in Lemma 5.2.7. Condition (BH5’) is given in Lemma 5.2.11
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and condition (BH6’) in Lemma 5.2.14. Finally, condition (BH4’) follows from
Remark 5.2.15.

Lemma 5.2.1 (Condition (BH1’)) For every (ξ, µ) ∈ P there is two con-
nected components Aξ,µ and Bξ,µ in ∆ such that Gξ,µ(Aξ,µ) and Gξ,µ(Bξ,µ) are
the connected component of the intersection Gξ,µ(∆) ∩ ∆. Moreover, it holds
that

Gξ,µ(Aξ,µ) ∪Gξ,µ(Bξ,µ) ⊂ (−4, 4)× [−4, 4]× R, (Aξ,µ ∪ Bξ,µ) ∩ ∂uu∆ = ∅.

Proof. Let Π3,Π1 : R3 → R2 be the projections

Π3(x, y, z) = (x, y), Π1(x, y, z) = (y, z).

Note that
Π3
(
Gξ,µ(∆)

)
:=
{

(y, µ+ y2) : |y| < 4
}
,

and that Π3
(
Gξ,µ(∆)

)
∩ [−4, 4]2 consists of the two curves

`+,µ :=
{

(y, µ+ y2) : y ∈ [y−+,µ, y+
+,µ]

}
,

`−,µ :=
{

(y, µ+ y2) : y ∈ [y−−,µ, y+
−,µ]

}
,

(5.2.1)

where

y−+,µ :=
√
−4− µ, y+

+,µ :=
√

4− µ,

y−−,µ := −
√

4− µ, y+
−,µ := −

√
−4− µ.

(5.2.2)

Thus, we get that

Gξ,µ(∆) ∩ [−4, 4]2 = (`+,µ ∪ `−,µ)× [−40, 22].

Condition µ ∈ (−10,−9) gives the following estimates to y±∓,µ:

−
√

14 < y−−,µ < −
√

13, −
√

6 < y+
−,µ < −

√
5,

√
5 < y−+,µ <

√
6,
√

13 < y+
+,µ <

√
14.

(5.2.3)

This imply that `+,µ ∪ `−,µ ⊂ (−4, 4)× [−4, 4].
We now consider the following subsets in ∆:

Aξ,µ = Aµ := [−4, 4]× [y−+,µ, y+
+,µ]× [−40, 22],

Bξ,µ = Bµ := [−4, 4]× [y−−,µ, y+
−,µ]× [−40, 22].
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Then, for every (ξ, µ) ∈ P we have that

Gξ,µ(Aµ) ∪Gξ,µ(Bµ) ⊂ (−4, 4)× [−4, 4]× R, (Aµ ∪ Bµ) ∩ ∂uu∆ = ∅.

This completes the lemma. �

Remark 5.2.2 Observe that for every µ ∈ (−10,−9), we have that y+
µ ∈

(y−+,µ, y+
+,µ) and y−µ ∈ (y−−,µ, y+

−,µ).

Scholium 5.2.3 We investigate a little bit thoroughly intersection Gξ,µ(∆)∩
∆. Roughly speaking, the next claim assert that for every (ξ, µ) ∈ P the
intersection ∆\

(
Gξ,µ(Aξ,µ)∪Gξ,µ(Bξ,µ)

)
consist of three connected components.

This will be used to obtain the condition (BH3’) to Gξ,µ.

Claim 5.2.4 (Covering property) Consider the sub sets

∆+ := ∆ ∩ {y > 0} and ∆− := ∆ ∩ {y < 0}.

Then, for every (ξ, µ) ∈ P it holds that

Π1
(
∆
)
⊂ Π1

(
Gξ,µ(∆+)

)
∩ Π1

(
Gξ,µ(∆−)

)
.

Proof.
Recall the definition of gξ,µ in (5.1.5). Note that Π1

(
∆
)

= [−4, 4] ×
[−40, 22]. We calculate

gξ,µ

(
∂([−4, 4]× [−40, 22])

)
.

Observe that gξ,µ maps the lines {0}×[−40, 22] and {4}×[−40, 22] respectively
in

{µ} × [−40 ξ, 22 ξ] and {µ+ 16} × [−40 ξ + 4, 22 ξ + 4].

Conditions (ξ, µ) ∈ P imply that

6 < µ+16 < 7, −40 ξ < −40, 22 < 22 ξ, −40 ξ+4 < −40, 22 < 22 ξ+4.

On the other hand, gξ,µ([0, 4] × {22}) and gξ,µ([0, 4] × {−40}) are contained
(respectively) in

[µ, µ+ 16]× [22 ξ, 22 ξ + 4], and [µ, µ+ 16]× [−40 ξ,−40 ξ + 4].
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This imply that Π1
(
∆
)
⊂ Π1

(
Gξ,µ(∆+)

)
. Let us now see that Π1

(
∆
)
⊂

Π1
(
Gξ,µ(∆−)

)
. Analogously to the previous case, we have that

gξ,µ
(
{−4} × [−40, 22]

)
= {µ+ 16} × [−40 ξ − 4, 22 ξ − 4]

and

gξ,µ
(
[−4, 0]× {22}

)
⊂ [µ, µ+ 16]× [22 ξ − 4, 22 ξ],

gξ,µ
(
[−4, 0]× {−40}

)
⊂ [µ, µ+ 16]× [−40 ξ − 4,−40 ξ].

Since ξ ∈ (1.18, 1.19) we have that 22 < 22 ξ − 4. This implies that Π1
(
∆
)
⊂

Π1
(
Gξ,µ(∆−)

)
, ending the proof of the claim. � Recall the definitions of `±,µ

in (5.2.1) and consider the sets

A′µ = `+,µ × [−40, 22] and B′µ = `−,µ × [−40, 22]. (5.2.4)

Then for every (ξ, µ) ∈ P it holds

Gξ,µ(∆) ∩∆ = Gξ,µ(Aξ,µ) ∪Gξ,µ(Bξ,µ) = A′µ ∪B′µ,

ending this completes the scholium.

Lemma 5.2.5 (Condition (BH3’)) Let Aξ,µ and Bξ,µ be as Lemma 5.2.5.
Then, for every (ξ, µ) ∈ P there exist parallelepipeds

Aξ,µ ⊂ G−1
ξ,µ

(
Gξ,µ(Aξ,µ) ∩∆

)
and Bξ,µ ⊂ G−1

ξ,µ

(
Gξ,µ(Bξ,µ) ∩∆

)
,

such that

Aξ,µ ⊂ Aξ,µ, Gξ,µ(Aξ,µ) = Gξ,µ(Aξ,µ) ∩∆,

Bξ,µ ⊂ Bξ,µ, Gξ,µ(Bξ,µ) = Gξ,µ(Bξ,µ) ∩∆

and (
Aξ,µ ∪ Bξ,µ

)
∩ ∂uu∆ = ∅.

Proof. Recall the terms y±∓,µ in (5.2.2). Consider the parallelepiped A′ξ,µ ⊂ R2

whose boundary consists in the following four curves:

`1
ξ,µ :=

{(
y, ξ−1 (22− y)

)
: y ∈ [y−+,µ, y+

+,µ]
}
,

`2
ξ,µ :=

{(
y, ξ−1 (−40− y)

)
: y ∈ [y−+,µ, y+

+,µ]
}
,

`3
ξ,µ :=

{
y−+,µ

}
× [ξ−1 (−40− y−+,µ), ξ−1 (22− y−+,µ)],

`4
ξ,µ :=

{
y+

+,µ} × [ξ−1 (−40− y+
+,µ), ξ−1 (22− y+

+,µ)].
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Thus, for every (ξ, µ) ∈ P we have that A′ξ,µ ⊂ (−4, 4)× (−40, 22) and

gξ,µ
(
`1
ξ,µ ∪ `2

ξ,µ ∪ `3
ξ,µ ∪ `4

ξ,µ

)
= ∂

(
[−4, 4]× [−40, 22]

)
.

Then, gξ,µ(A′ξ,µ) = [−4, 4] × [−40, 22]. Thus, recalling the set A′µ in (5.2.4)
we get that for every (µ, ξ) ∈ P the set Aξ,µ := [−4, 4] × A′ξ,µ defines a
parallelepiped in ∆ such that Gξ,µ(Aξ,µ) = A′µ.

Analogously, we consider the parallelepiped B′ξ,µ bounded by the curves

˜̀1
ξ,µ :=

{(
y, ξ−1 (22− y)

)
: y ∈ [y−−,µ, y+

−,µ]
}
,

˜̀2
ξ,µ :=

{(
y, ξ−1 (−40− y)

)
: y ∈ [y−−,µ, y+

−,µ]
}
,

˜̀3
ξ,µ := {y−−,µ} × [ξ−1 (−40− y+

−,µ), ξ−1 (22− y+
−,µ)],

˜̀4
ξ,µ := {y+

−,µ} × [ξ−1 (−40− y−−,µ), ξ−1 (22− y−−,µ)],

and recall the set B′µ in (5.2.4). Then for every (ξ, µ) ∈ P it holds

gξ,µ(B′ξ,µ) = [−4, 4]× [−40, 22], B′µ,ξ ⊂ (−4, 4)× (−40, 22)

and
Gξ,µ(Bξ,µ) = B′µ, Bξ,µ = [−4, 4]× B′ξ,µ.

This completes the proof of lemma. �

Remark 5.2.6 Note that ξ−1 (−40 − y−−,µ) < z−ξ,µ and z+
ξ,µ < ξ−1 (22 − y+

+,µ).
These conditions imply that the projection into the z-coordinate of the union
`4
ξ,µ ∪ ˜̀3

ξ,µ covers the interval [z−ξ,µ, z+
ξ,µ]. See Figure 5.1.

Figure 5.1: Projection of Markov partition of Gξ,µ|∆

Lemma 5.2.7 (Condition (BH2)) For every (ξ, µ) ∈ P the endomorphism
Gξ,µ satisfies the following properties:

(i) If p ∈ Aξ,µ ∪ Bξ,µ then Cs
2

(
Gξ,µ(p)

)
⊂ D(Gξ,µ)p

(
Cs

2(p)
)
.
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(ii) If p ∈ Aξ,µ ∪ Bξ,µ then D(Gξ,µ)p
(
Cu

2 (p)
)
⊂ Cu

2

(
Gξ,µ(p)

)
.

(iii) If p ∈ Aξ,µ ∪ Bξ,µ then D(Gξ,µ)p
(
Cuu

2 (p)
)
⊂ Cuu

2

(
Gξ,µ(p)

)
.

(iv) DF |Cs
2
is uniformly contracting and DF |Cu

2
is uniformly expanding.

Proof. For p = (x, y, z) ∈ Aξ,µ ∪ Bξ,µ we have that Gξ,µ(p) ∈ A′µ ∪ B′µ. We put
v = (u, v, w) ∈ Tp∆ and

(u1, v1, w1) := D(Gξ,µ)pv = (v, 2yv, v + ξ w).

Next claim asserts that the derivative D(Gξ,µ)p “opens” the cones Cs and
“closes” the cones Cu.

Claim 5.2.8 (Items (i)-(ii)) Let p = (x, y, z) ∈ Aξ,µ ∪ Bξ,µ and v =
(u, v, w) ∈ Tp∆ \ spanned{(1, 0, 0)} then D(Gξ,µ)pv ∈ Cu

(
Gξ,µ(p)

)
.

Proof. Note that if p = (x, y, z) ∈ Aξ,µ ∪ Bξ,µ then |y| >
√

5, see (5.2.3). Thus
√
v2

1 + w2
1 ≥ |v2

1| = 2|y||v| > 2
√

5|v| > 2|u1|,

proving the claim. �

Claim 5.2.9 (Item (iii)) Let p ∈ Aξ,µ ∪ Bξ,µ and v ∈ Cuu(p). Then
D(Gξ,µ)p(p)v ∈ Cuu

(
Gξ,µ(p)

)
.

Proof. We need to check that if v = (u, v, w) and D(Gξ,µ)p(p)v = (u1, v1, w1)
we have that √

u2 + w2 <
1
2 |v| ⇒

√
u2

1 + w2
1 <

1
2 |v1|

Note that
√
u2 + w2 < 1

2 |v| implies that |w| < 1
2 |v| and hence

u2
1 + w2

1 = v2 + (v + ξ w)2 ≤ 2 v2 + 2 ξ |v||w|+ ξ2 |w|2 ≤

2 + ξ +
(
ξ

2

)2
 v2.

Note that the condition ξ ∈ (1.18, 1.19) implies that
2 + ξ

2 +
(
ξ

2

)2
 < 4

and that p = (x, y, z) ∈ Aξ,µ ∪ Bξ,µ implies that |y| >
√

5. Thus

2
√
u2

1 + w2
1 < 4|v| < 2|y||v| = |v1|,

proving the claim. �
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Claim 5.2.10 (Item (iv)) DGξ,µ|Cs is uniformly contracting and DGξ,µ|Cs is
uniformly expanding.

Proof.
The uniform contraction of the cone field Cs follows from the fact that

D(Gξ,µ)p is an endomorphism whose eigenspace associated the eigenvalue 0 is
spanned by (1, 0, 0).

To study uniform expansion of D(Gξ,µ)v we consider the norm

|(u, v, w)|∗ := max
{
|u|,
√
v2 + w2

}
.

Take v = (u, v, w) ∈ Cu
2 (p) and write D(Gξ,µ)pv = (u1, v1, w1) = (v, 2yv, v +

ξw). We will check that if v ∈ Cu
2 (p) then |(D(Gξ,µ)pv|∗ > |v|∗. By compactness

this implies that |(D(Gξ,µ)pv|∗ > c0|v|∗, for some uniform c0 > 1. We divide
the proof into two cases: 6.5|v| ≥ |w| and 6.5|v| ≤ |w|.

Note that for v = (u, v, w) ∈ Cu
2 (p) we have |v|∗ =

√
v2 + w2 and

v2
1 + w2

1 = 4v2y2 + (v + ξ w)2 ≥ 4v2y2 + v2 − 2ξ|v||w|+ ξ2w2.

Then 6.5|v| ≥ |w| and using the conditions ξ ∈ (1.18, 1.19) and |y| >
√

5 we
get that

4v2y2 − 2ξ|v||w| > (20− 13ξ) v2 > 4v2 ≥ 0.

Therefore, |(D(Gξ,µ)pv|∗ > |v|∗, completing the first case.
Similarly, in the case 6.5|v| ≤ |w| we have

v2
1 + w2

1 ≥ 4y2v2 + ξ2w2 − 2 ξ |v||w|+ v2 > 4y2v2 + ξ2w2 − 2 ξ (6.5)−1w2 + v2.

The condition ξ ∈ (1.18, 1.19) implies that

ξ2 − 2 ξ (6.5)−1 > 1.

Hence, |(D(Gξ,µ)pv|∗ > |v|∗ ending the proof of the claim. � This completes
the proof of the lemma. �

Lemma 5.2.11 (Condition (BH5’)) Let ` be a uu-disc in ∆. For every
(ξ, µ) ∈ P consider the discs

`Aξ,µ := ` ∩ Aξ,µ and `Bξ,µ := ` ∩ Bξ,µ.

Then, for every (ξ, µ) ∈ P, the curves Gξ,µ

(
`Aξ,µ

)
and Gξ,µ

(
`Bξ,µ

)
are uu-discs

satisfying condition (BH5’).
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Proof.
We extend the cone field Cuu to the set ∆∞ := [−4, 4]2 × R by

Cuu(p) :=
{

(u, v, w) ∈ R3 :
√
u2 + w2 <

1
2 |v|

}
, p ∈ ∆∞.

We begin with the following claim.

Claim 5.2.12 Let ` be a uu-disc in ∆∞. Then Gξ,µ(`) contains two uu-discs
in ∆∞.

Proof. Define the subsets A∞,µ and B∞,µ of ∆∞ by

A∞,µ := [−4, 4]× [y−+,µ, y+
+,µ]× R, B∞,µ := [−4, 4]× [y−−,µ, y+

−,µ]× R.

Consider a parameterised C1-curve γ : [−4, 4] → ∆∞, γ(t) =
(
γ1(t), t, γ3(t)

)
,

contained in the cone field Cuu|∆∞ , thus√
γ′1(t)2 + γ′3(t)2 < 1/2.

Recalling that |y±∓,µ| >
√

5 in (5.2.3) and noting that for every ξ ∈ (1.18, 1.19)
it holds that √√√√1 +

(
1 + ξ

2

)2

<
√

5.

Thus, for every t in [y−+,µ, y+
+,µ] ∪ [y−−,µ, y+

−,µ], we have that

√√√√1 +
(

1 + ξ

2

)2

< |t|.

The claim follows from the following subclaim.

Sub-claim 5.2.13 The curves Gξ,µ

(
A∞,µ ∩ γ([−4, 4])

)
and Gξ,µ

(
B∞,µ ∩

γ([−4, 4])
)
are uu-disk in ∆∞.

Proof. Note that the curves Gξ,µ

(
A∞,µ∩γ([−4, 4])

)
and Gξ,µ

(
B∞,µ∩γ([−4, 4])

)
are respectively parameterised by

γAξ,µ : [y−+,µ, y+
+,µ]→ ∆∞, γA(t) := Gξ,µ ◦ γ(t) = (t, µ+ t2, ξγ3(t) + t),

γBξ,µ : [y−+,µ, y+
+,µ]→ ∆∞, γB(t) := Gξ,µ ◦ γ(t) = (t, µ+ t2, ξγ3(t) + t).

We now check that γAξ,µ([y−+,µ, y+
+,µ]) and γBξ,µ([y−−,µ, y+

−,µ]) are tangent to
Cuu|∆∞ . Note that

(Gξ,µ ◦ γ)′(t) = (1, 2 t, ξγ′3(t) + 1).
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Thus, for every t in [y−+,µ, y+
+,µ], we have that

γ′Aξ,µ(t) ∈ Cuu(γ(t)) if, and only if,
√

1 + (ξγ′3(t) + 1)2 < |t|.

Since γ′(t) ∈ Cuu(γ(t)) for every t ∈ [−4, 4], we have that

|γ′3(t)| ≤
√

(γ′1(t))2 + (γ′3(t))2 <
1
2 .

Therefore, for every ξ ∈ (1.18, 1, 19) and every t ∈ [y−+,µ, y+
+,µ] follows that

√
1 + (ξγ′3(t) + 1)2 <

√√√√1 +
(
ξ

2 + 1
)2

<
√

5 < |t|.

Therefore, γAξ,µ is a uu-disk. Note that the above also applies to the curve
γBξ,µ . This ends the proof of the sub-claim. � The proof of the claim is now
complete. �

To complete the proof of Lemma 5.2.11, it is enough to study the dy-
namics of Gξ,µ along the central directions of the saddles P±ξ,µ in Lemma 5.1.1.
We now focus on the sets contained in ∆.

From Remark 5.1.2 it follows that Gξ,µ restrict to these central directions
is given by the the multiplication by ξ > 1. Recall the definition of the sets
W c,±
ξ,µ in (5.1.4). We denote by φ±ξ,µ the restrictionsGξ,µ|W c,±

ξ,µ
. The corresponding

iterated function system {φ+
ξ,µ, φ

−
ξ,µ} in I = [−40, 22] is given by

φ+
ξ,µ(z) = ξ z + (1− ξ) z+

ξ,µ, φ−ξ,µ(z) = ξ z + (1− ξ) z−ξ,µ.

Consider the points

a+
ξ,µ = ξ−1(−40− (1− ξ)z+

µ,ξ), b+
µ,ξ = ξ−1(22− (1− ξ)z+

µ,ξ),

a−ξ,µ = ξ−1(−40− (1− ξ)z−µ,ξ), b−µ,ξ = ξ−1(22− (1− ξ)z−µ,ξ).

Note that the intervals

I+
ξ,µ := [a+

µ,ξ, b
+
µ,ξ] and I−ξ,µ := [a−µ,ξ, b−µ,ξ]

satisfy φ+
ξ,µ(I±ξ,µ) = I, see Figure 5.2.

Moreover, since

z∓ξ,µ(1− ξ) = y±µ , y+
µ ∈ (y−+,µ, y+

+,µ), y−µ ∈ (y−−,µ, y+
−,µ)
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Figure 5.2: Iterated function system

it follows from Remark 5.2.6 that

a+
ξ,µ = ξ−1(−40− (1− ξ)z+

ξ,µ) = ξ−1(−40− y+
µ ) < ξ−1(−40− y−−,µ) < z−ξ,µ,

z+
ξ,µ < ξ−1(22− y+

+,µ) < ξ−1(22− y+
µ ) = ξ−1(22− (1− ξ)z−ξ,µ) = b−ξ,µ.

Therefore, [z−ξ,µ, z+
ξ,µ] ⊂ I+

ξ,µ ∩ I−ξ,µ.
Using the iterated function system φ±ξ,µ it is easy to see that if ` is a

uu-disc in ∆ then the discs Gξ,µ(`Aξ,µ) and Gξ,µ(`Bξ,µ) satisfy the possibilities
in (BH5’). This completes the proof of the lemma. �

Recalling the definitions of the sets W s,±
ξ,µ (∆) in (5.1.4) the following

lemma implies condition (BH6’).

Lemma 5.2.14 (Region of superposition, (BH6’)) Consider ` a uu-disk
in between W s,+

ξ,µ (∆) and W s,−
ξ,µ (∆). Then either Gξ,µ(`Aξ,µ) or Gξ,µ(`Bξ,µ) is a

uu-disc in between W s,+
ξ,µ (∆) and W s,−

ξ,µ (∆).

Proof. This follows immediately from [z−ξ,µ, z+
ξ,µ] ⊂ I+

ξ,µ ∩ I−ξ,µ. �

Remark 5.2.15 (Condition (BH4’)) Let Hb
ξ,µ the region of superposition

associated to Gξ,µ|∆ in Lemma 5.2.14. Note that one has that

⋃
D∈Hb

ξ,µ

D ∩
(
∂u∆ \ ∂uu∆

)
= ∅.

This immediately implies condition (BH4’).

This completes the proof of Theorem 5.0.1.
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5.3
Renormalisation scheme: Proof of Theorem 2

In this section we describe the renormalisation scheme associated to our
bifurcation setting and prove Theorem 2. Sections 5.3.1 and 5.3.2 are dedicated
to the local (dynamics at the saddle points) and semi-local (transition maps)
aspects of the dynamics of the cycle. In Section 5.3.3 we describe the types of
unfolding of the cycle that we consider. Finally, in Section 5.3.4 we prove the
convergence of the renormalisation scheme ending the proof or the theorem.

5.3.1
Local dynamics at the saddle points

Without loss of generality, let us assume that P and Q are fixed points.

(L) We assume the existence of local Cr-linearised charts at the saddles P and
Q, UP ' [−3, 3]3 and UQ ' [−3, 3]3, (the saddles are identified with the
respective origins) such that the expression of f in these neighbourhoods
is of the form

f |UP =


λP 0 0
0 σP cos(2πϕP ) −σP sin(2πϕP )
0 σP sin(2πϕP ) σP cos(2πϕP )

 , and

f |UQ =


λQ cos(2πϕQ) 0 −λQ sin(2πϕQ)

0 σQ 0
λQ sin(2πϕQ) 0 λQ cos(2πϕQ)

 ,
(5.3.1)

where λP , λQ, σP , σQ ∈ R and ϕP , ϕQ ∈ (0, 1) are such that

0 < |λP |, |λQ| < 1 < |σP |, |σQ| and ϕP 6= ϕQ.

In this case, we say that local dynamic of f at UP and UQ (or shortly
local dynamic of f) is of type (λP , σP , ϕP , λQ, σQ, ϕQ) and we denote this
last 6-ple as LocDyn(f).

We assume the following condition on these multiplies:

0 <
∣∣∣∣((λP) 1

2 σP

)η
σQ

∣∣∣∣ < 1, where η =
log |λ−1

Q |
log |σP |

. (5.3.2)

We called to the equation (5.3.2) spectral condition of f .
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We define the local stable and unstable manifolds W s
loc(P, f) and

W u
loc(P, f) of P as the connected components ofW s(P, f)∩UP andW u(P, f)∩

UP containing P . We similarly define W s
loc(Q, f) and W u

loc(Q, f).

5.3.1.1
Range of the eigenvalues of Df(P ) and Df(Q)

We now discuss the spectral condition (5.3.2) on the eigenvalues of the
saddles P and Q in the cycle. The main role of this range of values is to
ensure the convergence of the renormalisation scheme in Theorem 2. Due to
the irrelevance of the arguments ϕP and ϕQ in the vector LocDyn(f) (see
Section 5.3.1) in the description of the spectral condition (5.3.4) also they will
be omitted and we write

LocDyn∗(f) = (λP , σP , λQ, σQ). (5.3.3)

Taking the square of f , if necessary, we can assume that the coordinates
of LocDyn∗(f) are all positives. Let P be the set of points (λ̃, σ̃, λ, σ) in R4

such that λ, λ̃ < 1 < σ̃, σ and

0 < (λ̃ 1
2 σ̃)ησ < 1, where η = log λ−1

log σ̃ . (5.3.4)

In the following proposition we prove that the condition 5.3.4 are non
degenerated. As consequence the set of diffeomorphisms f described in con-
dition (L), i.e., diffeomorphisms f such that LocDyn∗(f) satisfy the spectral
condition (5.3.4) is a non-empty set.

Proposition 5.3.1 The set P is non-empty and open in R4.

Proof. The condition in (5.3.4) is clearly open one. Thus it remains to show the
existence of numbers satisfying these inequalities. For this, consider the set

Z̃ :=
{

(λ̃, σ̃) ∈ (0, 1)× (1,+∞) : 0 < λ̃
1
2 σ̃ < 1

}
⊂ R2 (5.3.5)

the proof of proposition follows following lemma.

Lemma 5.3.2 For every point (λ̃, σ̃, λ) in Z̃ × (0, 1) there is a interval
I(λ,λ̃,σ̃) := (1, σ∗(λ,λ̃,σ̃)), such that every point (λ̃, σ̃, λ, σ) in Z̃ × (0, 1) × I(λ,λ̃,σ̃)

satisfying conditions (5.3.4).

Proof. Note that the inequality in (5.3.4) is equivalent to

log λ−1

log σ̃ log(λ̃ 1
2 σ̃) + log σ < 0.
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With this in mind, we observe that every every point (λ̃, σ̃, λ) in Z̃ × (0, 1)
satisfies

log λ−1

log σ̃ log(λ̃ 1
2 σ̃) < 0.

Thus, for every σ > 1 such that

log λ−1

log σ̃ log(λ̃ 1
2 σ̃) < − log σ. (5.3.6)

The interval I(λ,λ̃,σ̃) is given by (1, σ∗(λ,λ̃,σ̃)), where σ
∗
(λ,λ̃,σ̃) it is the supreme of

the σ > 1 satisfiying (5.3.6). This completes the lemma. � This completes
the proof of the proposition. �

5.3.2
Transitions along heteroclinic orbits

Consider X ∈ W s(P, f)∩W u(Q, f) a quasi-transverse intersection point
and consider Y ∈ W u(P, f)∩W s(Q, f) a tangency point. Let ud now to describe
the transitions from UQ to UP and from UP to UQ along the heteroclinic orbits
of X and Y , respectively. We consider first the transition from UQ to UP along
the orbit of X.

5.3.2.1
Transition along the quasi-transverse orbit

Recall that W u(Q) intersects W s(P ) quasi-transversally at a point X.
Replacing X by some backward iterate, if necessary, we can assume that
X ∈ W u

loc(Q, f). We can also assume that in the local coordinates X =
(0, 1, 0) ∈ UQ. Then, there exists a positive integer N1 (called transition time
from Q to P ) such that X̃ = fN1(X) ∈ W s

loc(P, f) ⊂ UP . We also can assume
X̃ = (1, 0, 0) ∈ UP .

We consider the transition from a small neighbourhood UX of X ∈ UQ
to a small neighbourhood U

X̃
of X̃ ∈ UP by the map fN1 ,

fN1 :


x

y + 1
z

→


1 + α1x+ α2y + α3z + H̃1(x, y, z)
β1x+ β2y + β3z + H̃2(x, y, z)
γ1x+ γ2y + γ3z + H̃3(x, y, z)

 , (5.3.7)

where αi, βi, γi, i = 1, 2, 3 are constants. In our construction, we assume that

α1 = β2 = γ3 = 1;

α2 = α3 = β1 = β3 = γ1 = γ2 = 0.

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 57

For each i = 1, 2, 3, H̃i is a term of order at last two satisfying the following
conditions:

H̃i(0) = ∂

∂x
H̃i(0) = ∂

∂y
H̃i(0) = ∂

∂z
H̃i(0) = 0. (5.3.8)

5.3.2.2
Transition along the heterodimensional tangency orbit

We now consider the transition from UP to UQ along the orbit of
heterodimensional tangency point Y . By replacing Y by some backward
iterate we can assume that Y ∈ W u

loc(P, f). There is a positive integer N2

(called transition time from P to Q) such that Ỹ = fN2(Y ) is contained in
W s

loc(Q, f). By some linear coordinate change in UP and in UQ, one may set
Y = (0, 1, 1) ∈ UP and fN2(Y ) = (1, 0, 1) ∈ UQ, respectively. Note that this
coordinate change can be done independently of the previous one involving X
and X̃.

We consider the transition from a small neighbourhood UY of Y ∈ UP to
a small neighbourhood of U

Ỹ
of Ỹ ∈ UQ by the map fN2 . We assume that

fN2 :


x

1 + y

1 + z

→


1 + a1x+ a2y + a3z +H1(x, y, z)
b1x+ b2y

2 + b3z
2 + b4yz +H2(x, y, z)

1 + c1x+ c2y + c3z +H3(x, y, z)

 , (5.3.9)

where ai, bi, ci, i = 1, 2, 3 are constants satisfying the conditions

b2 + b3 + b4 6= 0, c2 = c3, b1 c2 (a3 − a2) 6= 0. (5.3.10)

Remark 5.3.3 The first two conditions in the equation (5.3.10) are merely
techniques while the last follows from fact that f is a diffeomorphism. This
condition, imply in particular, that b1 6= 0, c2 6= 0 and a2 6= a3.

For each i = 1, 2, 3, Hi is a term of order at last two satisfying the following
conditions:

Hi(0) = ∂

∂x
Hi(0) = ∂

∂y
Hi(0) = ∂

∂z
Hi(0) = 0,

∂2

∂y2H2(0) = ∂2

∂z2H2(0) = ∂2

∂y ∂z
H2(0) = 0,

(5.3.11)

5.3.3
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The unfolding family

Here we describe the family F bifurcating the cycle of f . The cycle of f
has two parts with “independent” unfolding: the heterodimensional tangency
and the quasi-transverse heteroclinic point. This unfolding involves an eight-
parameter family {fῡ}ῡ in Diffr(M), r ≥ 2, such that f0̄ = f . The parameter
ῡ it is the form (µ̄, ν̄, α̃, α) ∈ [−ε, ε]8, ε > 0, where

• µ̄ ∈ R3 unfolds the heterodimensional tangency,

• ν̄ ∈ R3 the quasi-transverse intersection, and

• the pair (α̃, α) ∈ R×R controls the arguments of the non-real eigenvalues
of P and Q, respectively.

The family {fῡ}ῡ is obtained by local perturbations near the quasi-
transverse intersection X̃ and the heterodimensional tangency Ỹ and by
rescaling the arguments ϕP and ϕQ of the eigenvalues of the saddles P and Q.
We now go to the details of this construction.

Let U
X̃

and U
Ỹ

be 2ρ-neighbourhoods of X̃ = (1, 0, 0) ∈ UP and of
Ỹ = (1, 0, 1) ∈ UQ such that U

X̃
⊆ UP , P /∈ U

X̃
, and U

Ỹ
⊆ UQ, and Q /∈ U

Ỹ
.

Here U
X̃
, U

Ỹ
denotes the closure of U

X̃
, U

Ỹ
, respectively. The number ρ > 0

is taken small enough so that

f(U
X̃

) ∩ U
X̃

= ∅ and f(U
Ỹ

) ∩ U
Ỹ

= ∅.

To define the local perturbations, we use a bump Cr-function B : R3 → R

B(x, y, z) = b(x) b(y) b(z),

where b : R→ R is a Cr-function satisfying
b(x) = 0, if 2ρ ≥ |x|,

0 < b(x) < 1, if ρ < |x| < 2ρ,
b(x) = 1, if |x| ≤ ρ,

for some small ρ > 0.
We consider a family of Cr-maps

tµ̄,ν̄ : R3 → R3, µ̄ = (µ1, µ2, µ3), ν̄ = (ν1, ν2, ν3) ∈ R3, (5.3.12)

such that

• if (1 + x, y, 1 + z) ∈ U
Ỹ
then

tµ̄,ν̄(1 + x, y, 1 + z) = (1 + x, y, 1 + z) +B(x, y, z)(µ1, µ2, µ3),
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• if (1 + x, y, z) ∈ U
X̃

then

tµ̄,ν̄(1 + x, y, z) = (1 + x, y, z) +B(x, y, z)(ν1, ν2, ν3).

Note that, by construction, we can extend these maps to complement of
U
X̃
∪ U

Ỹ
as the identity. In this way we get a family of diffeomorphisms.

To rescale the arguments of the eigenvalues of the saddles P and Q we
argue as follows. For each α ∈ R we consider the following rotations in R3

Iα :=


1 0 0
0 cos(2πα) − sin(2πα)
0 sin(2πα) cos(2πα)

 and Jα :=


cos(2πα) 0 − sin(2πα)

0 1 0
sin(2πα) 0 cos(2πα)

 .

Observe that I0 = J0 = IdR3 .
We now consider a bump Cr-function w : R→ R satisfying

w(x) = 0, if 4 ≥ |x|,
0 < w(x) < 1, if 3 < |x| < 4,
w(x) = 1, if |x| ≤ 3.

(5.3.13)

Using these maps, we consider a family of Cr-maps

sα̃,α : R3 → R3, α̃, α ∈ R, (5.3.14)

defined as follows:

• if (x, y, z) ∈ UP , then

sα̃,α(x, y, z) = Iα̃ w(||(x,y,z)||)
( x
y
z

)
,

• if (x, y, z) ∈ UQ, then

sα̃,α(x, y, z) = Jαw(||(x,y,z)||)
( x
y
z

)
.

Note that, by construction, we can extend these maps to complement of UP∪UQ
as the identity. In this way we get a family of diffeomorphisms.

We are now ready to define the Cr-family of diffeomorphisms unfolding
the cycle

fῡ = tµ̄,ν̄ ◦ sα̃,α ◦ f, ῡ = (µ̄, ν̄, α̃, α) ∈ [−ε, ε]8. (5.3.15)
By construction, f0̄ = f , see Figure 5.4. In the next remark we list some
relevant properties satisfied by this family.
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Figure 5.3: The perturbation sα̃,α in a linear neighbourhood of Q.

Remark 5.3.4 (Properties of the unfolding family fῡ) The family fῡ

satisfies the following properties. Each map fῡ has saddle periodic points
Pῡ = P and Qῡ = Q.

1. The spectra of Pῡ = P and Qῡ = Q for fῡ are

spec
(
Df

per(P )
ῡ (P )

)
=
{
λP , σP e

2π(ϕP+α̃)i, σP e
−2π(ϕP+α̃)i

}
,

spec
(
Df

per(Q)
ῡ (Q)

)
=
{
σQ, λQ e

2π(ϕQ+α)i, λe−2π(ϕQ+α)i
}
.

2. For every (x, y, z) ∈ UP ∩ f−1
ῡ (UP ), it holds fῡ(x, y, z) = Iα̃ ◦ f(x, y, z).

3. For every (x, y, z) ∈ UQ ∩ f−1
ῡ (UQ), it holds fῡ(x, y, z) = Jα ◦ f(x, y, z).

4. For every (x, 1 + y, z) sufficiently close to X = (0, 1, 0),

fN1
ῡ (x, 1 + y, z) = fN1(x, 1 + y, z) + (ν1, ν2, ν3).

5. For every (x, 1 + y, 1 + z) sufficiently close to Y = (0, 1, 1),

fN2
ῡ (x, 1 + y, z) = fN2(x, 1 + y, z) + (µ1, µ2, µ3).

Hereinafter we adopt the following notation.

Notation 5.3.5 Since all the relevant dynamics in our construction is con-
tained in the neighborhoods [−2, 2]3 ⊂ UP and [−2, 2]3 ⊂ UQ, we identify
[−2, 2]3 with these neighborhoods UP and UQ, see (5.3.1). Note also that fῡ
depends only on α̃ in UP , on α in UQ, on ν̄ in UX , and on µ̄ on UY . Motivated
by this, we simply write
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Figure 5.4: The Unfolding F of the non-transverse heterodimensional cycle.

fῡ|UP = fP,ϕP+α̃, fῡ|UQ = fQ,ϕQ+α,

fN1
ῡ |UX = fN1

X,ν̄ , fN2
ῡ |UY = fN2

Y,µ̄.
(5.3.16)

5.3.4
Renormalisation scheme and convergence

We now describe the elements of the renormalisation scheme associated
to f in Theorem 2. This scheme involves compositions of the form

Fm,n
ῡ := fN2

ῡ ◦ fmῡ ◦ fN1
ῡ ◦ fnῡ , (5.3.17)

where N1 and N2 are the (fixed) transition times from Q to P and from P to Q
given by the condition (T) of the cycle (see Section 5.3.2) and the adequately
sojourn times m and n of the local dynamics of f in neighbourhoods UP and
UQ, respectively, to be defined below.

The construction of the renormalisation scheme involves three main part.
First, the choice of appropriate sojourn times m and n in Section 5.3.5.
Second, we introduce a suitable (m,n)-sequence of unfolding parameters ῡm,n
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converging to 0 ∈ R8 and a suitable (m,n)-sequence of parametrisations
Ψm,n : R3 → UQ converging to Ỹ on the compact sets, see Section 5.3.6.
The last part, consist in study the convergence of the renormalised sequence
Ψ−1
m,n ◦ F

m,n
ῡm,n ◦ Ψm,n on compact sets in R3. This convergence is obtained in

Section 5.3.8.

5.3.5
Adapted sojourn times

For selecting these sojourn times m,n, we use the following result.

Lemma 5.3.6 (Lemma 5.1 in (21)) Consider the set Z := (1,+∞) ×
(0, 1). There a residual subset R of Z consisting of points (α, β) ∈ Z satisfying
the following property:

For every ε > 0, N0 > 0, ω > 0 and ξ > 0 satisfying ω ξ−1 > 1, and
ε ξ−1 < 1, there exist integers m,n > N0 such that

|ωαmβn − ξ| < ε, |m− nη − η̃| < 1,

where η = log β−1/ logα and η̃ = log(ωξ−1)/ logα.
In particular, there exits a subsequence (mk, nk) ∈ N2 such that

ω αmk βnk → ξ, k → +∞.

The sojourn times are defined by the sequence (mk, nk) ∈ N2 obtained
by applying the previous lemma to:

• (σP , λQ) ∈ Z, where λQ, σP are as in the spectral conditions (5.3.4)1;

• ω = ω(a2, a3) = a3−a2√
2 > 0, where a2 and a3 are constants involved in the

definition of the transitions fN2 in (5.3.9),

– ξ > 0 is arbitrary but fixed2.

As a consequence,
σmkP λnkQ →

(
a3 − a2√

2

)−1
ξ. (5.3.18)

As in (21), the adapted sequence of sojourn times is used to guarantee
the convergence of the renomalisation schemes, see (5.3.8).

1Note that as the spectral conditions (5.3.4) are open ones, we can suposse that
(λ, σ̃) ∈ R.

2 The choice of this number will be important later, when we study the generation of
blenders.
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5.3.6
Elements of the renormalisation scheme

Consider λQ < 1 < σP satisfying the spectral condition in (5.3.4). Taking
the (σQ, λQ) ∈ Z and ξ > 0, we get from Lemma 5.3.6 a adapted sequence of
sojourn times (mk, nk). The renormalization scheme R(ξ,F) as consisting in

• mk, nk ≥ 0 sojourn times as above;

• Ψmk,nk : R3 →M a sequence of parameterizations on the manifold M ;

• ῡmk,nk : R3 → R8 a sequence of functions involved in the bifurcation
parameter of the family fῡ, defined by

ῡmk,nk(µ, α̃, α) = (µ̄mk,nk(µ), νmk,nk , ᾱmk,nk(α̃), , ᾱmk,nk(α))

• Rmk,nk(fῡmk,nk ) the sequence in Diffr(M) defined by

fN2
ῡmk,nk

◦ fmkῡmk,nk
◦ fN1

ῡmk,nk
◦ fnkῡmk,nk .

We will called to this composition renormalised sequence of f .

• ςi : R×R9 → R, i = 1, 2, 3, 4, 5 polynomial maps defining the coefficient
of the limit endomorphism obtained by the convergence of renormalised
sequence.

Remark 5.3.7 Recall the notations in (5.3.16), we get that the diffeomor-
phism fῡmk,nk is a Cr-perturbation of f defined by the local perturbations

fῡmk,nk (µ,α̃,α)|UP = fP,ϕP+ᾱmk,nk (α),

fῡmk,nk (µ,α̃,α)|UQ = fQ,ϕQ+ᾱmk,nk (α̃),

fN1
ῡmk,nk (µ,α̃,α)|UX = fN1

X,ν̄mk,nk
,

fN2
ῡmk,nk (µ,α̃,α)|UY = fN2

Y,µ̄mk,nk (µ).

(5.3.19)

Next, we give the definition of each object in the renormalization scheme.

• For every compact set K ⊂ R3 containing the origin there is a k0 = k0(K)
such that for every k ≥ k0 we have

Ψmk,nk : K → UQ, (5.3.20)

where

Ψmk,nk(x, y, z) := (1 + σ−mkP σ−nkQ x, σ−nkQ + σ−2mk
P σQ

−2nk y, 1 + σ−mkP σQ
−nk z).
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Note that Ψmk,nk(K) converges (in the Hausdorff distance) to the point
of heterodimensional tangency Ỹ = (1, 0, 1) ∈ UQ when k → +∞.
• The sequence of re-parameterizations µ̄mk,nk : R→ R3 is defined by

µ̄mk,nk(µ) = (−λmkP a1, σ
−nk
Q + σ−2nk

Q σ−2mk
P µ− λmkP b1,−λmkP c1), (5.3.21)

where a1, b1, c1 are given in (5.3.9).
Note that for every µ ∈ R fixed, µ̄mk,nk(µ)→ (0, 0, 0) as k → +∞.

• The sequence of re-parameterizations ᾱmk,nk,ϕP ,ϕQ : R→ R is defined by

ᾱmk,nkϕP ,ϕQ(α) = 1
2πmk

(
π

4 − 2πmkϕP + 2π[mkϕP ]
)
α− ϕQ
ϕP − ϕQ

+

+ 1
2πnk

(
π

2 − 2πnkϕQ + 2π[nkϕQ] + ln(nk)
nk

)
α− ϕP
ϕQ − ϕP

.

Note that for every α ∈ R, ᾱmk,nkϕP ,ϕQ(α)→ 0 as k → +∞.

Remark 5.3.8 For notational simplicity, in what follows we omit the sub-
scripts ϕP , ϕQ in ᾱmk,nkϕP ,ϕQ(·).

Remark 5.3.9 Since for every x ∈ R the sequence of rational numbers [nx]
n

converges to x and since for every n in N, log(n) is a irrational number3, we
get that

ϕQ + ᾱmk,nkϕP ,ϕQ(ϕQ) = [nkϕQ]
nk

+ 1
2π nk

(
π

2 + ln(nk)
nk

)
,

is a sequence of irrational numbers converging to ϕQ.

To define the sequence of parameters νmk,nk we need to introduce some
notation. Let

c̃k := cos
(
2πmk(ϕP + ᾱmk,nk(ϕP ))

)
,

s̃k := sin
(
2πmk(ϕP + ᾱmk,nk(ϕP ))

)
,

ck := cos
(
2πnk(ϕQ + ᾱmk,nk(ϕQ))),

sk := cos
(
2πnk(ϕQ + ᾱmk,nk(ϕQ)))

(5.3.22)

and
3This follow from Lindemann-Weierstrass theorem: ea is transcendental for all a algebraic

and non-zero. In particular if a is rational, ea cannot be rational. Hence, for every n ∈ N,
ln(n) is irrational.
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ρ̃2,k := 1
2
∂2

∂x2 H̃2(0)(ck − sk)2 + 1
2
∂2

∂z2 H̃2(0)(sk + ck)2;

ρ̃3,k := 1
2
∂2

∂x2 H̃3(0)(sk − ck)2 + 1
2
∂2

∂z2 H̃3(0)(sk + ck)2.

(5.3.23)

We note that for every k large enough fP,ϕP+ᾱmk,nk (ϕP ) is a Cr-
perturbation of fP,ϕP and the coefficients of the rotation

(
c̃k −s̃k
c̃k s̃k

)
of

fmkP,ϕP+ᾱmk,nk (ϕP ) associated to an expansion satisfies:

c̃k = cos
(
2πmk(ϕP + ᾱmk,nk(ϕP ))

)
= cos

(π
4 + 2π[mkϕP ]

)
= 1√

2
,

s̃k = sin
(
2πmk(ϕP + ᾱmk,nk(ϕP ))

)
= sin

(π
4 + 2π[mkϕP ]

)
= 1√

2
.

Arguing analogously we get that for every k large enough fQ,ϕQ+ᾱmk,nk (ϕQ)

is a Cr-perturbation of fQ,ϕQ and the coefficients of the rotation ( ck −sk
ck sk ) of

fnkQ,ϕQ+ᾱmk,nk (ϕQ) associated to a contraction satisfies:

ck = cos
(
2πnk(ϕQ + ᾱmk,nk(ϕQ))

)
= cos

(
π

2 + 2π[nkϕQ] + ln(nk)
nk

)
→ 0,

sk = sin
(
2πnk(ϕQ + ᾱmk,nk(ϕQ))

)
= sin

(
π

2 + 2π[nkϕQ] + ln(nk)
nk

)
→ 1.

In summary, we have the following observation.

Remark 5.3.10 It holds

c̃k = 1√
2
, s̃k = 1√

2
, ck → 0, sk → 1.

In particular, for every big k

ρ̃2,k →
1
2
∂2

∂x2 H̃2(0) + 1
2
∂2

∂z2 H̃2(0), ρ̃3,k →
1
2
∂2

∂x2 H̃3(0) + 1
2
∂2

∂z2 H̃3(0).

Now we continue with the description of element of renormalisation
scheme.
• The sequence of parameter values νmk,nk ∈ R3 is given by(
− λnkQ (ck − sk),

√
2σ−mkP − λQ2nk ρ̃2,k,−λnkQ (ck + sk)− λ2nk

Q ρ̃3,k
)
. (5.3.24)

Note that νmk,nk → (0, 0, 0) ∈ R3 as k → +∞.
• the renormalized sequence of maps

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,α̃,α)

)
◦Ψmk,nk : R3 → R3,
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is define as follows:
For X̄ ∈ K we let

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,α̃,α)

)
◦Ψmk,nk(X̄) =

= Ψ−1
mk,nk

◦ fN2
Y,µ̄mk,nk (µ) ◦ f

mk
Q,ϕQ+ᾱmk,nk (α̃) ◦ f

N1
X,νmk,nk

◦ fnkP,ϕP+ᾱmk,nk (ϕ) ◦Ψmk,nk(X̄).

• The rational maps ςi : Dom(ςi) ⊂ R× R9 → R, i = 1, 2, 3, 4, 5, are given by

ς1(x,X) = x2 + x3√
2

, ς2(x,X) = x5 + x6 + x7√
2

, ς3(x,X) = x2
(
x5 + x6 − x7

(x3 − x2)2

)

ς4(x,X) = x
√

2
(
x6 − x5

x3 − x2

)
, ς5(x,X) =

(
x8 + x9√

2

)
,

where
X = (x1, x2, x3, x4, x5, x6, x7, x8, x9).

This completes the description of the elements in the renomalisation
scheme.

Remark 5.3.11 We now list some observations.

(i) Note that for any fixed µ and b1 in R, the y-coordinate of µ̄mk,nk(µ) is
positive for every k ≥ 1 large enough. Indeed, by (5.3.43) we have that
λmkP σnkQ → 0 when k → +∞. Thus, it holds

1 + σ−nkQ σ−2mk
P µ− λmkP σnkQ b1 → 1, k → +∞.

This fact will be relevant to study the dynamical properties of the family
E(ξ,µ,ς̄) in (4.3.1), see Section 6.2.

(ii) For i = 1, 2, 5 it holds Dom(ςi) = R × R9, and for i = 3, 4, it holds
Dom(ςi) = R×

{
X ∈ R9 : x3 − x2 6= 0

}
.

5.3.7
The renormalised sequence of maps

We now provide step-by-step calculations to obtain entries of the return
maps

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk

)
◦Ψmk,nk : K → R3,

where ῡmk,nk = ῡmk,nk(µ, ϕP , ϕQ) and K is a compact subset of R3. Note
that the compact set K can be chosen arbitrarily large, for this it is enough
to take k sufficiently large. The parametrization Ψmk,nk maps the point
X̄ = (x, y, z) ∈ K to

X̄k := (1 + σ−mkP σQ
−nk x, σ−nkQ + σ−2mk

P σ−2nk
Q y, 1 + σ−mkP σQ

−nk z) ∈ UQ.
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By the compactness of the set K, X̄k → Ỹ = (1, 0, 1) ∈ UQ, as k → +∞.
After nk iterations by the linear map fQ,ϕQ+ᾱmk,nk (ϕQ), the point X̄k moves

to
(xnk , ynk + 1, znk) := fnkQ,ϕQ+ᾱmk,nk (ϕQ)(X̄k) ∈ UQ, (5.3.25)

where

xnk := σP
−mk λnkQ σ−nkQ (ck x− sk z) + λnkQ (ck − sk),

ynk := σ−2mk
P σQ

−nk y,

znk := σP
−mk λnkQ σ−nkQ (sk x+ ck z) + λnkQ (ck + sk).

Since K is a compact set, the spectral conditions (5.3.4) imply that

xnk = O(λnkQ ), ynk = O(σ−2mk
P σQ

−nk), znk = O(λnkQ ), (5.3.26)

where O(·) denotes the symbol of Landau.
This guarantees (xnk , ynk + 1, znk)→ X = (0, 1, 0) ∈ UQ, when k → +∞.

Thus, for k large enough, we can apply the transition fN1
νmk,nk

(see equation
(5.3.19)) to the point (xnk , ynk + 1, znk) in (5.3.25) obtaining

(1 + x̃mk , ỹmk , z̃mk) := fN1
X,νmk,nk

(xnk , ynk + 1, znk) ∈ UP , (5.3.27)

where

x̃mk := σP
−mk λnkQ σ−nkQ (ck x− sk z) + H̃1

(
xk
)
,

ỹmk := σP
−2mk σ−nkQ y +

√
2σP−mk + H̃2

(
xk
)
− λ2nk

Q ρ̃2,k,

z̃mk := σP
−mk λnkQ σ−nkQ (sk x+ ck z) + H̃3

(
xk
)
− λ2nk

Q ρ̃3,k,

and
xk := (xnk , ynk , znk). (5.3.28)

By simplicity, in what follows we write

Ĥi

(
xk
)

:= H̃i

(
xk
)
− λ2nk

Q ρ̃i,k, i = 2, 3. (5.3.29)

Next, we apply mk iterations by the linear map fP,ϕP+ᾱmk,nk (ϕP ). For k
large enough, the point (1 + x̃mk , ỹmk , z̃mk) ∈ UP it is mapped to

(x̂mk , 1 + ŷmk , 1 + ẑmk) := fmkP,ϕP+ᾱmk,nk (ϕP )(1 + x̃mk , ỹmk , z̃mk) ∈ UP , (5.3.30)

where
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x̂mk = λmkP + λmkP σP
−mkλnkQ σ−nkQ (ck x− sk z) + λP

mk H̃1
(
xk
)
,

ŷmk = σ−mkP σQ
−nk

√
2

y −
λnkQ σ−nkQ√

2
(sk x+ ck z)+

+ σmkP√
2

(
Ĥ2
(
xk
)
− Ĥ3

(
xk
))
,

ẑmk = σ−mkP σQ
−nk

√
2

y +
λnkQ σ−nkQ√

2
(sk x+ ck z)+

+ σP
mk

√
2

(
Ĥ2
(
xk
)

+ Ĥ3
(
xk
))
.

(5.3.31)

We now estimate the Landau’s symbols of x̂mk , ŷmk and ẑmk .
Informally speaking, the terms λ2nk

Q ρ̃i,k “correct" the quadratic terms of
H̃i

(
xk
)
that provide O(λ2nk

Q ) of the symbol of Landau of H̃i

(
xk
)
. This kind of

correction allows us to control the convergence of the renormalization scheme.

Lemma 5.3.12 x̂mk = O(λPmk) and ŷmk = ẑmk = O(σ−mkP σQ
−nk) +

O(λnkQ σ−nkQ ).

Proof. Clearly ŷmk and ẑmk have the same symbol of Landau.
From the Taylor expansion of the transition fN1 in (5.3.7), we have that

the higher order terms H̃i, i = 1, 2, 3 are are dominated by quadradic terms.
This implies that

H̃i

(
xk
)

= 1
2
∂2

∂x2 H̃i(0)x2
nk

+ ∂2

∂x∂y
H̃i(0)xnk ynk+

+ ∂2

∂x∂z
H̃i(0)xnk znk + 1

2
∂2

∂y2 H̃i(0) y2
nk

+

+ ∂2

∂y∂z
H̃i(0) ynk znk + 1

2
∂2

∂z2 H̃i(0) z2
nk

+ · · ·

(5.3.32)

i = 1, 2, 3.
Since xnk and znk have the same Landau symbol (see (5.3.26)), we have

H̃i

(
xk
)

= O(λ2nk
Q ) +O(σP−2mkλnkQ σ

−nk
Q ) +O(σP−4mk σ−2nk

Q ), i = 1, 2, 3.
(5.3.33)

Recalling that the set K is compact it follows that x̂mk = O(λPmk).
We now us estimate the symbol of ŷmk . For this, we need to estimate the

term σP
mk

(
Ĥ2
(
xk
)
− Ĥ3

(
xk
))

in the definition of ŷmk .
Using the Taylor formula in (5.3.32) and the definition of the coordinates

(5.3.25), we obtained from (5.3.26) that

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 69

H̃i

(
xk
)
− λ2nk

Q ρ̃i,k = O(σP−mk λ2nk
Q σ−nkQ ) +O(σP−2mk λnkQ σ−nkQ )+

+O(σ−4mk
P σQ

−2nk)

= O(σP−mk λ2nk
Q σ−nkQ ) +O(σ−4mk

P σQ
−2nk), i = 2, 3.

(5.3.34)

We observe that in this last equality we use the fact that σPmk λnkQ > 1 for
every k big sufficient. Thus, the definition of Ĥi

(
xk
)
in (5.3.29) and its symbol

of Landau given in (5.3.34), implies

σP
mkĤi

(
xk
)

= O(λ2nk
Q σ−nkQ ) +O(σ−3mk

P σQ
−2nk), i = 2, 3.

Then
ŷmk = O(σ−mkP σQ

−nk) +O(λnkQ σ−nkQ ).

This completes the prove of the lemma. �

Remark 5.3.13 It follows from the calculations above that the Landau’s
symbols of ŷmk and ẑmk are not modified by the absence/presence of higher
order terms σ̃mkĤi

(
xk
)
. In order of to have a more transparent calculations in

the sequel we assume that Ĥi

(
xk
)

= 0, for i = 2, 3 in (5.3.30). At the end of this
section we will recover these expressions and we will study the effect of these
terms in the convergence of the return map Ψ−1

mk,nk
◦Rmk,nk

(
fῡmk,nk

)
◦Ψmk,nk .

Lemma 5.3.12 guarantees the convergence of (x̂mk , 1 + ŷmk , 1 + ẑmk) → Y =
(0, 1, 1) ∈ UP as k → +∞. Thus, for k large enough, we can apply the transition
fN2
Y,µ̄mk,nk (µ) to the point (x̂mk , 1 + ŷmk , 1 + ẑmk) obtaining

(1 + x̄mk , ȳmk , 1 + z̄mk) := fN2
Y,µ̄mk,nk (µ),νmk,nk

(x̂mk , 1 + ŷmk , 1 + ẑmk) ∈ UQ

Bearing in mind the Remark 5.3.13, we can omit the higher order terms
in the vector

x̂k = (x̂mk , ŷmk , ẑmk). (5.3.35)
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In this way we obtain

x̄mk = a1 λP
mk σP

−mk λnkQ σ−nkQ (ck x− sk z) +
(
a2 + a3√

2

)
σ−mkP σQ

−nk y+

+ λnkQ σ−nkQ

(
a3 − a2√

2

)
(sk x+ ck z) + a1 λP

mkH̃1
(
xk
)

+H1
(
x̂k
)
,

ȳmk = σ−nkQ + σ−2mk
P σQ

−2nkµ+ b1 λP
mk σP

−mk λnkQ σ−nkQ (ck x− sk z)+

+ σ−2mk
P σQ

−2nk
(
b2 + b3 + b4

2

)
y2 + σ−mkP λnkQ σ−2nk

Q (b3 − b2
)

(sk x y + ck y z)+

+ λ2nk
Q σ−2nk

Q

(
b2 + b3 − b4

2

)
(sk x+ ck z)2 + b1 λP

mkH̃1
(
xk
)

+H2
(
x̂k
)
,

z̄mk = c1 λ
mk
P σP

−mk λnkQ σ−nkQ (ck x− sk z) +
(
c2 + c3√

2

)
σ−mkP σQ

−nk y+

+ λnkQ σ−nkQ

(
c3 − c2√

2

)
(sk x+ ck z) + c1 λP

mk H̃1
(
xk
)

+H3
(
x̂k
)
.

Recalling the map Ψmk,nk in (5.3.20), we have that the inverse map

Ψ−1
mk,nk

: UQ → R3 (5.3.36)

is given by

Ψ−1
mk,nk

(x̄, ȳ, z̄) = (σmkP σQ
nk(x̄− 1), σ2mk

P σQ
2nk(ȳ − σ−nkQ ), σmkP σQ

mk(z̄ − 1)).

Applying now Ψ−1
mk,nk

to the point (1 + x̄mk , ȳmk , 1 + z̄mk) we get the return
map

X̌k := Ψ−1
mk,nk

◦ Rmk,nk(fῡmk,nk ) ◦Ψmk,nk(X̄). (5.3.37)

Performing the corresponding substitutions, the coordinates (x̌k, y̌k, žk) ∈ R3

of X̌k are defined by

x̌k = a1 λ
mk
P λQ

nk (ck x− sk z) + ς1 y + σP
mk λnkQ

(
a3 − a2√

2

)
(sk x+ ck z) +

+ a1 λP
mk σmkP σQ

nk H̃1
(
xk
)

+ σmkP σQ
nkH1

(
x̂k
)
,

y̌k = µ+ b1 λ
mk
P σP

mk λQ
nk σnkQ (ck x− sk z) + ς2 y

2+

+ σP
mk λnkQ

(
b3 − b2

)
(sk x y + ck y z) + σP

2mk λ2nk
Q

(
b2 + b3 − b4

2

)
(sk x+ ck z)2+

+ b1 λP
mk σ2mk

P σQ
2nkH̃1

(
xk
)

+ σ2mk
P σQ

2nk H2
(
x̂k
)
,

žk = c1 λ
nk
P λQ

mk (ck x− sk z) + ς5 y + σmkP λnkQ

(
c3 − c2√

2

)
(sk x+ ck z)+

+ c1 λP
mk σmkP σQ

nkH̃1
(
xk
)

+ σmkP σQ
nk H3

(
x̂k
)
,
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where

ς1(ξ, v) :=
(
a2 + a3√

2

)
, ς2(ξ, v) :=

(
b2 + b3 + b4

2

)
, ς5(ξ, v) :=

(
c2 + c3√

2

)
,

and
v = (a1, a2, a3, b1, b2, b3, b4, c1, c2).

This completes the calculations of the return map

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk .

5.3.8
Convergence of the renormalised sequence

We now prove that as k → +∞ the sequence of maps Ψ−1
mk,nk

◦
Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦ Ψmk,nk converges in the Cr-topology to a family of

endomorphisms on any compact set of R3.
In order to make transparent our calculations, we recall below the con-

vergence of some leading terms in the definition of the coordinates (x̌k, y̌k, žk):

• From the neutral dynamic conditions in (5.3.18), we have the convergence
σP

mk λnkQ → ξ(a3−a2√
2 )−1.

• From Remark 5.3.10, we get the limits c̃k = s̃k = 1√
2 , ck → 0, and sk → 1.

Using these facts and recalling the spectral conditions in (5.3.4) and the
condition c2 = c3 in (5.3.10), we obtain the following convergence result: for
every compact set K in R3 and (x, y, z) ∈ K the coordinates

(x̌k, y̌k, žk) := Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk(x, y, z),

satisfy

x̌k − a1λP
mkσmkP σQ

nkH̃1
(
xk
)
− σmkP σQ

nkH1
(
x̂k
)
→ ξ x+ ς1 y,

y̌k − b1 λP
mkσ2mk

P σQ
2nkH̃1

(
xk
)
−

− σ2mk
P σQ

2nkH2
(
x̂k
)
→ µ+ ς2 y

2 + ς3 x
2 + ς4 x y,

žk − c1 λP
mkσmkP σQ

nkH̃1
(
xk
)
− σmkP σQ

nkH3
(
x̂k
)
→ ς5 y,

(5.3.38)

when k → +∞, where
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ς1(ξ, v) = a2 + a3√
2

, ς2(ξ, v) = b2 + b3 + b4

2 ,

ς3(ξ, v) = ξ2
(
b2 + b3 − b4

(a3 − a2)2

)
,

ς4(ξ, v) = ξ
√

2
(
b3 − b2

a3 − a2

)
, ς5(ξ, v) = c2 + c3√

2
,

(5.3.39)

and
v = (a1, a2, a3, b1, b2, b3, b4, c1, c2).

Let us denote the limit endomorphism in (5.3.38) by

E(ξ,µ,ς̄)(x, y, z) = (ξ x+ ς1 y, µ+ ς2 y
2 + ς3 x

2 + ς4 x y, ς5 y), (5.3.40)

where ς̄ = (ς1, ς2, ς3, ς4, ς5) is a vector of coordinates ςi = ςi(ξ, v) as in (5.3.39).
We observe this vector depend on both the constant ξ and the transition map
fN2 .

We will prove the following:

Lemma 5.3.14 When k → +∞ the sequence

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk

converges to E(ξ,µ,ς̄) in the Cr-topology on compact sets in R3.

The proof this lemma consist in to estimate the Landau’s symbols of the
high order terms of the difference

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk − E(ξ,µ,ς̄)

and we check the Cr-convergence to zero on compact set in R3. In this
difference, there are two types of high order terms associated to terms H̃i(·)
and Hi(·), i = 1, 2, 3, in the definition of the transitions maps, see (5.3.7) and
(5.3.9). We observe that from (5.3.38) the higher order terms of

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk − E(ξ,µ,ς̄)

containing the (higher order) terms Hi, i = 1, 2, 3, are

σmkP σQ
nkH1(x̂k), σ2mk

P σQ
2nkH2(x̂k), σmkP σQ

nkH3(x̂k). (5.3.41)
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On the other hand, to study the higher order terms in

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk − E(ξ,µ,ς̄)

associated to the terms H̃i, i = 1, 2, 3, we need to estimate the Landau’s
symbols in

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk

of those (higher order) term omitted in the coordinates (5.3.31), see Remark
5.3.13. This higher order term also converges to zero in the Cr-topology on
compact set in R3. This completes the proof of lemma.

Before going to the prove of lemma we point out the following.

Remark 5.3.15 We recall the sequences xk = (xnk , ynk , znk) and x̂k =
(x̂mk , ŷmk , ẑmk), whose coordinates are given in (5.3.25) and (5.3.31), respec-
tively.

We note that by definition:

– the higher order terms H̃i

(
xk
)
, i = 1, 2, 3, associates to the transition

from Q to P (see (5.3.7)), are dominated by the quadratic terms

x2
nk
, y2
nk
, z2

nk
, xnk ynk , xnk znk , ynk znk .

Recalling the expansions (5.3.32) and the symbols of Landau of xnk , ynk
and znk in (5.3.26) we have

H̃i

(
xk
)

= O(λ2nk
Q ) +O(σP−2mk λnkQ σ

−nk
Q ) +O(σ−4mk

P σQ
−2nk).

Note that xnk and znk have the same symbol of Landau.

– the higher order terms H1
(
x̂k
)
and H3

(
x̂k
)
, associates to the transition

from P to Q (see (5.3.9)), are dominated by quadratic terms

x̂2
mk
, ŷ2
mk
, ẑ2
mk
, x̂mk ŷmk , x̂mk ẑmk , ŷmk ẑmk ,

and the higher order term H2
(
x̂k
)
is are dominated by the quadratic

terms
x̂2
mk
, x̂mk ŷmk , x̂mk ẑmk .
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Recalling the symbols of Landau of x̂mk ,ŷmk and ẑmk given in (5.3.12),
we have

Hi

(
x̂k
)

= O(λP 2mk) +O(λPmkσ−mkP σQ
−nk) +O(λPmkλnkQ σ

−nk
Q )+

+O(σ−2mk
P σQ

−2nk) +O(σP−mk λnkQ σ
−2nk
Q ) +O(λ2nk

Q σ −Q−2nk), i = 1, 3;

and

H2
(
x̂k
)

= O(λP 2mk) +O(λPmkσ−mkP σQ
−nk) +O(λmkP λQ

nkσ−nkQ ).

Note that ŷmk and ẑmk have the same symbol of Landau.

In what follows we proceed to complete the proof of the lemma.
Proof.[Proof of Lemma 5.3.14] In the proof of the lemma we need to control in
a separated way to types of higher order terms (associated to Hi and H̃i).

Higher order terms containing H1, H2, H3. From the estimates in Re-
mark 5.3.15 and the expressions in (5.3.38) we have

σmkP σQ
nkHi

(
x̂k
)

= O(λP 2mkσmkP σQ
nk) +O(λPmk)+

+O(λPmkσPmkλnkQ ) +O(σ−mkP σQ
−nk)+

+O(λnkQ σ
−nk
Q ) +O(σPmkλ2nk

Q σ−nkQ ), i = 1, 3;

σ2mk
P σQ

2nkH2
(
x̂k
)

= O(λP 2mkσ2mk
P σQ

2nk) +O(λPmkσmkP σQ
nk)+

+O(λmkP σP
2mkλQ

nkσnkQ ).
(5.3.42)

By Lemma (5.3.6) there exist a constant C > 0 such that

λP
mkσ2mk

P σQ
2nk =

(
λP

mk
2 σP

mkσnkQ
)2
< C

((
(λP

1
2σP )ησQ

)nk)2
. (5.3.43)

The spectral conditions (5.3.4) implies that the right-hand term in this last
inequality tends to zero when k → +∞. Thus, we have that

λmkP σP
2mkλQ

nkσnkQ , λP
mkσmkP σQ

nk → 0

Moreover, it is easy to see also that the convergence of (5.3.42) it holds for the
derivatives of order 1 ≤ k ≤ r.

Higher order terms containing H̃1, H̃2, H̃3. Here we need to study the higher
order terms of H̃i, i = 1, 2, 3, in the coordinates (x̌k, y̌k, žk) which are explicit in
(5.3.38) as well as the omitted terms are higher order, see Remark 5.3.13. For
this last type of terms, we need to estimate the effect of Ψ−1

mk,nk
◦fN2

µ̄mk,nk (µ,ϕP ,ϕQ)

on the Landau’s symbols of higher order terms that were omitted in the
coordinates ŷmk and ẑmk in (5.3.31), see also Remark (5.3.13). We recall that
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the omitted terms are

Ĥi

(
xk
)

= H̃i

(
xk
)
− λ2nk

Q ρ̃i,k, i = 2, 3,

with corresponding symbols of Landau

Ĥi

(
xk
)

= O(σP−mkλ2nk
Q σ−nkQ ) +O(σ−4mk

P σQ
−2nk), i = 2, 3,

see (5.3.34).
We start by studying the coordinates x̌k and žk. It is easy to see that

these coordinates contains the following higher order terms

λP
mkσmkP σQ

nkH̃1
(
xk
)
, σ2mk

P σQ
nkĤ2

(
xk
)
, σ2mk

P σQ
nkĤ3

(
xk
)
. (5.3.44)

Using the estimates in Remark 5.3.15, we have

λP
mkσmkP σQ

nkH̃1
(
xk
)

= O(λmkP σP
mkλQ

2nkσnkQ ) +O(λPmkσP−mkλnkQ ) +

+O(λPmkσ−3mk
P σQ

−nk),

σ2mk
P σQ

nkĤi

(
xk
)

= O(σPmkλ2nk
Q ) +O(σ−2mk

P σQ
−nk), i = 2, 3.

The spectral conditions (5.3.4), the convergence in (5.3.18), and the previous
arguments imply the Cr-convergence to zero of (5.3.44) in compact sets of R3.

We now study the convergence of the coordinate y̌k in

Ψ−1
mk,nk

◦ Rmk,nk

(
fῡmk,nk (µ,ϕP ,ϕQ)

)
◦Ψmk,nk .

Keeping in mind Remark 5.3.13, is not hard to see that the higher order terms
in y̌k are

λP
mkσ2mk

P σQ
2nkH̃1

(
xk
)
,

σ2mk
P σQ

nkĤi

(
xk
)
, σP

2mkλnkQ σ
nk
Q Ĥi

(
xk
)
, i = 2, 3;

σ2mk
P σQ

2nk
(
σ̃mkĤi

(
xk
))2

, i = 2, 3;

σ4mk
P σQ

2nkĤ2
(
xk
)
Ĥ3
(
xk
)
.

(5.3.45)

Noting that the terms Ĥ2
(
xk
)
and Ĥ3

(
xk
)
have the same symbol of Lan-

dau (see Remark 5.3.15), and using the spectral conditions in (5.3.4), the
convergence in (5.3.45) can be reduced to the convergence of the terms
λP

mkσ2mk
P σQ

2nkH̃1
(
xk
)
and σ2mk

P σQ
nkĤi

(
xk
)
, i = 2, 3. Observe that these two

last expressions were estimated in the analysis of the coordinates x̌k and žk

above.
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Therefore it follows from the estimates in Remark 5.3.15 that

λP
mkσ2mk

P σQ
2nkH̃1

(
xk
)

= O(λPmkσP 2mkλQ
2nkσ2nk

Q ) +O(λPmkλQnkσQnk) +

+O(λPmkσP−2mk).

The only term whose convergence to zero is not obvious is λPmkσ2mk
P λ2nk

Q σQ
2nk .

Applying same arguments that in the study of the convergence of the
equations in (5.3.45) we conclude that if k → +∞ then

λP
mkσ2mk

P λ2nk
Q σQ

2nk → 0.

This completes the proof of Lemma 5.3.14. �
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6
Laminations of the parameter space corresponding to diffeo-
morphisms with blender-horseshoes: Proof of item (I) in The-
orem 4

Recall the definitions of the space Tquad in Definition 4.2.1, of the
set N r

P,Q(T ), with T ⊂ Tquad in Definition 4.2.2 and of the renormalised
sequence of diffeomorphisms Rmk,nk(fῡmk,nk (µ,ϕP ,ϕQ)) of a diffeomorphism f ∈
N r
P,Q(Tquad) in Theorem 2. In what follows, the arguments ϕP and ϕQ in

the notation fῡmk,nk (µ,ϕP ,ϕQ) are irrelevant, thus they will be omitted. Recall
also that RV(h) denotes the set of regular values of a map h ∈ Cr(M,N)
and that if y ∈ RV(h) then h−1(y) is a sub-manifold in M of dimension
dim(M)− dim(N) > 0.

The main goal in this section is the next theorem above. We observe that
this theorem implies item (I) in Theorem 4.

Theorem 6.0.1 Given r ≥ 2 there are:

• an open subset B := I × V ⊂ R× R2 and an open interval J ⊂ R,

• a family x ∈ R → γx : Dom(γx) ⊂ R9 → R2 of C∞-maps such that for
each x it holds RV(γx) = R2, and

• a projection Π : Tquad → R9

such that every sub-manifold of the family TB : =
{
Tb̄ : b̄ ∈ B

}
where

Tb̄ := Π−1
(
γ−1
ξ (w)

)
, b̄ := (ξ, w) ∈ B,

satisfying the following property: If f ∈ N r
P,Q(Tb̄) then for every µ ∈ J

the renormalised sequence Rmk,nk

(
fῡmk,nk (µ)

)
has a blender-horseshoe near the

heterodimensional tangency point of f .

The proof Theorem 6.0.1 it is divided three parts and it is organized as
follows.

In the first part, Section 6.1, we split the manifold Tquad into different
parts according algebraic and geometric properties.

In the second part, Section 6.2, we state Theorems 6.2.2 and 6.2.2,
that contains dynamics properties of the family E(ξ,µ,ς̄) in accordance with the
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choice of the parameters (ξ, µ, ς̄) (blender-horseshoe and strong homoclinic
intersection associated to saddle-node). In particular, Theorem 6.0.1 follows
from Theorem 6.2.2.

In Sections 6.3 and 6.6, we prove Theorems 6.2.2 and 6.2.4, respectively.

6.1
Splitting the space of quadratic transition maps

Recall the definition of the manifold Tquad in Definition 4.2.1. We split
this manifold into different parts according algebraic (polynomial form of
the transition) and geometric (relative positions and shape of the invariant
manifold at the tangency) conditions that we proceed to describe. This
partition will play a key in the proof of the second part of Theorem 4. The set
Tquad consists of the quadratic polynomials q = qv of the form

qv


x

y

z

 =


a1x+ a2y + a3z

b1x+ b2y
2 + b3z

2 + b4yz

c1x+ c2y + c3z

 , (6.1.1)

where v := (a1, a2, a3, b1, b2, b3, b4, c1, c2) belongs to the set

Q :=
{

(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ R9 : (a3 − a2) b1 (b2 + b3 + b4) c2 6= 0
}
.

Consider the diffeomorphism given by the projection

Π : Tquad → Q, Π(qv) = v. (6.1.2)

Remark 6.1.1 It is not hard to see that the set Q is a union of sixteen open
sets in R9 whose closure is whole R9. We detail breafly this last claim. Each
of the four conditions deferent of zero defining the set Q in R9 providing two
inequality. This splits Q in 24 open sets. We can describe these open sets
as follows. We splits R9 as R3 × R4 × R2 with coordinates (ā, b̄, c̄), where
ā = (a1, a2, a3), b̄ = (b1, b2, b3, b4) and c̄ = (c1, c2). Thus, the set of vectors
ā ∈ R3 satisfying a2−a3 6= 0 consist of whole R3 minus one plane. Analogously,
the set of vectors b̄ ∈ R4 satisfying b1 6= 0 and b2 + b3 + b3 6= 0 consist of whole
R4 minus the two hyperplanes (three-dimensional subspaces) {0} × R3 and
R× P where P is the plane in R3 generated by the condition b2 + b3 + b3 = 0.
Finally, the set of vectors c̄ ∈ R2 satisfying c2 6= 0 consist of whole R2 least
one line.
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6.1.1
The algebraic splitting

Consider the following subsets of Q,

Q+ :=
{

(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ Q : b2 + b3 + b4 > 0, c2(a2 − a3) 6= 0
}

;

Q− :=
{

(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ Q : b2 + b3 + b4 < 0, c2(a2 − a3) 6= 0
}

;

We consider the partition of Tquad in open regions:

Tquad = T +
quad ∪ T −quad T ∓quad := Π−1(Q∓). (6.1.3)

Remark 6.1.2 Note that any set Q±,∓ is a union of eight open set in R9. See
Remark 6.1.1.

Consider the following subsets of Q:

QI :=
{

(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ Q : a2 + a3 6= 0
}

;

QII :=
{

(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ Q : a2 + a3 = 0
}

;
(6.1.4)

We consider the partition of Tquad in open regions:

Tquad = T Iquad ∪ T IIquad, where T `quad := Π−1(Q`), ` = I, II. (6.1.5)

Remark 6.1.3 Note that the submanifold QII has dimension eight.

6.1.2
The geometrical splitting

This splitting depends on the behaviour of v ∈ Q → qv ∈ Tquad in a
neighbourhood of (0, 0, 0) ∈ R3. Consider the neighbourhood U0 = [−δ, δ]3 of
(0, 0, 0) for some small δ > 0 and write

U0 :=
⋃

x∈[−δ,δ]
Bx, where Bx = {x} × [−δ, δ]2.

Let
v = (a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ Q.

Note that for every x ∈ [−δ, δ] the leaf qv(Bx) is the translation of qv(B0) by
the vector xw̄v ∈ R3, where w̄v = (a1, b1, c1). Thus in what follows we restrict
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our analysis to the leave qv(B0) and translate this analysis to qv(Bx) using the
translation xw̄v.

Writing ϕ(y, z) = b2y
2 + b3z

2 + b4yz we have that

qv(0, y, z) = (a2 y + a3z, ϕ(y, z), c2 y + c2z) = (x̄, ϕ ◦ A−1
v (x̄, z̄), z̄), (6.1.6)

where

(x̄, z̄) = Av(y, z) and Av =
a2 a3

c2 c2

 .
Note that the definition of Tquad implies that detAv 6= 0 and hence A−1

v is well
defined. Thus qv(B0) is locally the graph of the function

(x̄, z̄)→ ϕAv(x̄, z̄), where ϕAv : = ϕ ◦ A−1
v ,

see Figure 6.1.

Figure 6.1: The linear map Av and the function ϕAv .

We observe that ϕAv(0, 0) = 0 and that (0, 0) is a critical point of ϕAv ,
i.e., DϕAv(0, 0) = (0, 0). We now study the type of this criticality.

• The Hessian matrix of ϕAv at the (0, 0). This matrix is given by

HϕAv(0, 0) =
 ∂2

∂x2ϕA(0, 0) ∂2

∂x∂z
ϕA(0, 0)

∂2

∂x∂z
ϕA(0, 0) ∂2

∂z2φA(0, 0)

 . (6.1.7)

The entries of HϕAv(0, 0) depend on the vector v ∈ Q. A straightforward
calculation gives

∂2

∂x2ϕAv(0, 0) = 2(b2 + b3 − b4)
(a2 − a3)2 : = c1(v),

∂2

∂z2ϕAv(0, 0) = 2(b2 a
2
3 + b3 a

2
2 − b4 a2 a3)

c2
2 (a2 − a3)2 : = c2(v),

∂2

∂x∂z
ϕAv(0, 0) = b4 (a2 − a3)− 2(b2 a3 + b3 a2)

c2 (a2 − a3)2 : = c3(v).

(6.1.8)
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Thus, if det
(
D2φA(0, 0)

)
> 0 then Ỹ is of elliptic type while if

det
(
D2φA(0, 0)

)
< 0 then Ỹ is of hyperbolic type. Thus,

H(v) : = det
(
HϕAv(0, 0)

)
= c1(v)c3(v)− c2(v)2.

There are the following possibilities for the critical point:

(i) If H(v) > 0 and c1(v) > 0 then (0, 0) is a local minimum,

(ii) If H(v) > 0 and c1(v) < 0 then (0, 0) is a local maximum,

(iii) If H(v) < 0 then (0, 0) is a saddle point,

(iv) If H(v) = 0 there is no information about the criticality.

In cases (i) and (ii) we say that (0, 0) is of elliptic type and the case (iii) we
say that (0, 0) is of hyperbolic type.

Remark 6.1.4 The parameters corresponding to a Hessian equal to zero (case
(iv) above) will be discarded. We note that the map v ∈ Q→ H(v) is smooth
one and dH(v) 6= 0 for every v ∈ Q (this last assertions follows from fact that
dH(v) = 0 iff b2 = b3 = b4 = 0). From here we get that for every c ∈ R, H−1(c)
is a eight-sub-manifold in Q, see (25, Theorem 3.2).

Under the condition H(v) > 0, the surface qv(B0) is a tangent to
C0 := [−δ, δ] × {0} × [−δ, δ] in (0, 0, 0) this follows from cases (i) and (ii).
When H(v) < 0, the set qv(B0) meet transversely to C0. This is the case
(iii) in that qv(B0) has horse-saddle shape. From the comment above the leaf
q−1
v (C0) satisfies identical properties in relation to B0, see Figure 6.2.

Figure 6.2: The parabolic configuration in (P1).

• Relative positions. We now to study the local relative position of the surfaces
qv(B0) and q−1

v (C0) at (0, 0, 0). The relative position of qv(B0) is determined by
conditions (i),(ii) and (iii), while the relative position of q−1

v (C0) is determined
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by the orientation of the linear maps (y, z)→ Av(y, z) = (x̄, z̄). More precisely,
consider the sets U (±,·)

0 and U (·,±)
0 given by

U
(+,·)
0 : = [0, δ]× [−δ, δ]2, U

(−,·)
0 : = [−δ, 0]× [−δ, δ]2,

U
(·,+)
0 : = [−δ, δ]× [0, δ]× [−δ, δ], U

(·,−)
0 : = [−δ, δ]× [−δ, 0]× [−δ, δ].

If qv(B0) and q−1
v (C0) are paraboloids (cases (i) and (ii) above) there are

the following configurations (P1)-(P4) and (H) given by:

(P1) if H(v) > 0, c1(v) > 0 and detAv > 0 then

qv(B0) ⊂ U
(·,+)
0 and q−1

v (C0) ⊂ U
(+,·)
0 ;

(P2) if H(v) > 0, c1(v) < 0 and detAv > 0

qv(B0) ⊂ U
(·,−)
0 and q−1

v (C0) ⊂ U
(−,·)
0 ;

(P3) if H(v) > 0, c1(v) > 0 and detAv < 0

qv(B0) ⊂ U
(·,+)
0 and q−1

v (C0) ⊂ U
(−,·)
0 ;

(P4) if H(v) > 0, c1(v) < 0 and detAv < 0

qv(B0) ⊂ U
(·,−)
0 and q−1

v (C0) ⊂ U
(+,·)
0 .

If qv(B0) and q−1
v (C0) are of horse-saddle type (i.e., H(v) < 0) it holds

that

(H) qv(B0) t C0 6= ∅.

This condition implies that q−1
v (C0) t B0 6= ∅ and

qv(B0) ∩ U
(·,±)
0 6= ∅ and q−1

v (B0) ∩ U (±,·)
0 6= ∅. (6.1.9)

6.1.3
The split

We are now ready to define the splitting of Tquad in terms of the conditions
above. Consider the sets

Qp :=
{
v ∈ Q : H(v) > 0

}
and Qh :=

{
v ∈ Q : H(v) < 0

}
(6.1.10)

and the subsets Qp,±,∓ of Qp defined by:
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Qp,+,+ :=
{
v ∈ Qp: v satisfying (P1)

}
, Qp,−,+ :=

{
v ∈ Qp: v satisfying (P2)

}
;

Qp,+,− :=
{
v ∈ Qp: v satisfying (P3)

}
, Qp,−,− :=

{
v ∈ Qp: v satisfying (P4)

}
.

Consider the corresponding subsets in Tquad given by

T hquad := Π−1(Qh) and T p,±,∓quad := Π−1(Qp,±,∓). (6.1.11)

Remark 6.1.5 We observe that Qp and Qh are open sets in Q such that
Qp ∪Qh = Q. Indeed, by Remark 6.1.4, Qp ∪ Qh is equal to Q minus a eight-
sub-manifolds (given by H−1(0)).

6.2
Dynamics of the quadratic family: Theorems 6.2.2 and 6.2.4

We study some dynamical properties of the quadratic family of endomor-
phisms

E(ξ,µ,ς̄)(x, y, z) = (ξ x+ ς1 y, µ+ ς2 y
2 + ς3 x

2 + ς4 x y, ς5 y), (6.2.1)

agree to parameters (ξ, µ, ς̄), where

ς̄ : R× R9 → R5, ς̄(ξ, v) =
(
ς1(ξ, v), . . . , ς5(ξ, v)

)
. (6.2.2)

Our main result state that there exist an open set B in R3, an open interval
J , a family of submanifolds

{
Qb̄ : b̄ ∈ B

}
in R9, and a submanifold Q′ in R9

satisfying the following properties:

(i) Let b̄ ∈ B. Then there exist a compact set K ⊂ R3 such that if
(ξ, µ, v) ∈ I × J ×Qb̄ then E(ξ,µ,ς̄(ξ,v))|K has horseshoes-blenders.

(ii) Let (µ, v) ∈ J × Q′. Then there are a compact set K ⊂ R3 such that
E(1,µ,ς̄(1,v))|K has a two partially hyperbolic saddle-node whose strong
invariant manifolds meets cyclically and quasi-transversely.

Properties above allows translate/generate some dynamical properties
to diffemorphisms nearby enough to such endomorphisms. A immediate con-
sequence from item (i) is that every (local) diffeomorphism F |K sufficiently
C1-close to E(ξ,µ,ς̄(ξ,v))|K has blender-horseshoe. This fact will be used in the
proof of item (I) of Theorem 4.

On the other hand, we will see later (Theorem 6.2.4) that the item (ii)
leads to the following assertion. If (µ, v) ∈ J × Q′ then every sequence in
Diffr(R3), Cr-converging to E(1,µ,ς̄(1,v)) on compact sets in R3, may be slightly
Cr-perturbed so that this new sequence display strong homoclinic intersections
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associated to a partially saddle-node (roughly, a saddle with a neutral direction
whose strong stable and unstable manifolds meets quasi-transversely). This
type of saddle-node are a key ingredient to generate robust (heterodimensional)
cycles, see (9). We now formulate in precise form our assertions.

Definition 6.2.1 (Saddle-nodes and strong homoclinic intersections)
Let S be a periodic point of period π(S) of a diffeomorphism f : M →M .

• We say that S is a partially hyperbolic saddle-node of f if the derivative
Dfπ(S)(S) has exactly one eigenvalue equal to 1 and all other eigenvalues
of Dfπ(S)(S), are all different from 1 in modulus.

• Consider the strong unstable (resp. stable) invariant direction Euu (resp.
Ess) corresponding to the eigenvalues κ of Dfπ(S)(S) with |κ| > 1 (resp.
|κ| < 1). The strong unstable manifold W uu(S, f) of S is the unique
f -invariant manifold tangent to Euu of the same dimension as Euu. The
strong stable manifoldW ss(S, f) of S is defined similarly considering Ess.

• We say that S has a strong homoclinic intersection at a point X 6= S if
X ∈ W ss(S, f) ∩W uu(S, f) and

dim
(
TXW

ss(S, f)⊕ TXW uu(S, f)
)

= dimM − 1.

To state the two main results of this section recall the definitions of the
Henón-like family G(ξ,µ,κ,η) ∈ C∞(R3,R3) in (3.5.1), the sub-manifolds QI and
QII in (6.1.4), and the map ς̄ in (6.2.2) with components ς1, . . . , ς5.

Theorem 6.2.2 (Blender-horseshoes for E(ξ,µ,ς̄)) There exist

• an open subset B = I × V in R× R2 and an open interval J ,

• a family of seven-sub-manifolds
(
Qw

)
w∈R3

⊂ QI ,

• a family of coordinate change Θw : R4 → R4, w ∈ R3, and

• rational maps κ : Dom(κ)→ R and η : Dom(η)→ R whose domains are
contained in R× R9

such that

(I) For every ξ, µ ∈ R and every v ∈ QI the endomorphisms (µ,E(ξ,µ,ς̄(ξ,v)))
and (µ,G(ξ,µ,κ(ξ,v),η(ξ,v)) are Θ(ς1(ξ,v),ς2(ξ,v),ς5(ξ,v))-conjugate.

(II) For every (ξ, µ, w) ∈ I × J × V and every v ∈ Q(ξ,w) the endomorphism
G(ξ,µ,κ(ξ,v),η(ξ,v)) has a blender-horseshoe.
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Remark 6.2.3 The proof of item (I) of Theorem 4 follows inmediatly from
Theorem 6.2.2. Indeed, this theorem jointly with Theorem 2 imply that
f ∈ N r

P,Q(Π−1
(
Qb̄

)
), b̄ ∈ B, then the sequence {fk}k of Cr-diffemorphisms

accumulating f obtained by its renomalisation display horseshoes-blenders for
every k large enough.

Theorem 6.2.4 (Strong homoclinic intersections for E(ξ,µ,ς̄)) There
is a seven-dimensional sub-manifold QRC ⊂ QII such that for every
(µ, v) ∈ J × QRC and every sequence of diffeomeorphisms (Fk)k in R3

converging on compact sets to G(1,µ,κ(1,v),η(1,v)) in the Cr-topology, there are
εk → 0+ and εk-Cr-perturbations Gk of Fk such that Gk has a strong homo-
clinic intersection associated to a partially hyperbolic saddle-node for every
large k.

6.3
Blender-horseshoes for quadratic family: Proof of Theorem 6.2.2

6.4
Proof of item (I)

Letw = (w1, w2, w3) ∈ R3, with w1w2w3 6= 0. Consider the linear change
of coordinates Θw : R4 → R4 given by

Θw(µ, x, y, z) : = (w−1
2 µ,w1w

−1
2 x,w−1

2 y, w3w
−1
2 z) (6.4.1)

and the rational maps

κ, η : R×D→ R, D ⊂ R9,

defined by

κ(x,X) = x2
(
x2 + x3

x3 − x2

)2 (x5 + x6 − x7

x5 + x6 + x7

)
,

η(x,X) = 2x
(
x2 + x3

x3 − x2

)(
x6 − x5

x5 + x6 + x7

)
,

(6.4.2)

where
X = (x1, x2, x3, x4, x5, x6, x7, x8, x9) ∈ R9

and
D :=

{
X ∈ R9 : (x6 − x5)(x5 + x6 + x7) 6= 0

}
Recall the definition of QI in (6.1.4). The first item of the theorem follows
immediately from the next lemma.
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Lemma 6.4.1 For every ξ, µ ∈ R and v ∈ QI , the endomorphisms(
µ,E(ξ,µ,ς̄(ξ,v))

)
and

(
µ,G(ξ,µ,κ(ξ,v),η(ξ,v))

)
are Θ(ς1(ξ,v),ς2(ξ,v),ς5(ξ,v))-conjugate.

Proof. Note that if v ∈ QI then for any ξ ∈ R it holds ς1(ξ, v) 6= 0,
ς2(ξ, v) 6= 0 and ς5(ξ, v) 6= 0, see (5.3.39). Thus the map Θ(ς1,ς2,ς5) : R4 →
R4, with ςi = ςi(ξ, v), is well defined. A straightforward calculation shows
that Θ(ς1(ξ,v),ς2(ξ,v),ς5(ξ,v))(µ, x, y, z) is a conjugation between the families of
endomorphisms

(
µ,E(ξ,µ,ς̄(ξ,v))(x, y, z)

)
and

(
µ,G(ξ,µ,κ(ξ,v),η(ξ,v))(x, y, z)

)
, where

κ and η are as in (6.4.2). This completes the proof of lemma. �

Remark 6.4.2 Note that for every (ξ, v) ∈ R×QI it holds

κ(ξ, v) = ς1(ξ, v)2 ς2(ξ, v)−1 ς3(ξ, v), η(ξ, v) = ς1(ξ, v) ς2(ξ, v)−1 ς4(ξ, v).

6.5
Proof of item (II)

To define the sub-manifolds
{

Qw
}

w∈R3
in QI we recall the following

result. If y ∈ N is a regular value of a Cr-map h : M → N then h−1(y)
is a sub-manifold of class Cr and dimension dim(M) − dim(N) > 0, see for
instance (25, Theorem 3.2).

We observe that domain R × D of the maps κ and η in (6.4.2) contain
the open set R×QI . We consider the restrictions of κ and η to this last open
set. For every ξ ∈ R we define the C∞-map

γξ : QI → R2, γξ(v) =
(
κ(ξ, v), η(ξ, v)

)
.

Putting v = (a1, a2, a3, b1, b2, b3, b4, c1, c2) we have that

κ(ξ, v) = ξ2
(
a2 + a3

a3 − a2

)2(b2 + b3 − b4

b2 + b3 + b4

)
;

η(ξ, v) := 2ξ
(
a2 + a3

a3 − a2

)(
b3 − b2

b2 + b3 + b4

)
.

(6.5.1)

Lemma 6.5.1 For every ξ ∈ R, it holds that RV(γξ) = R2. In particular,
{

Q(ξ,κ0,η0) := γ−1
ξ (κ0, η0) : (ξ, κ0, η0) ∈ R3

}
,

is a family of sub-manifold in QI .

Proof.[Proof of Lemma 6.5.1] We adopt the following notation

ā = (a1, a2, a3), b̄ = (b1, b2, b3, b4), and c̄ = (c1, c2).
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Given ξ ∈ R and (κ0, η0) ∈ R2 we consider the set

Q(ξ,κ0,η0) =
{

(ā, b̄, c̄) ∈ QI : κ(ξ, ā, b̄, c̄) = κ0, η(ξ, ā, b̄, c̄) = η0

}
. (6.5.2)

To see that (κ0, η0) ∈ RV(γξ) it is enough to see that if (ā, b̄, c̄) ∈ Q(ξ,κ0,η0) then
the vectors

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) and d(ā,b̄,c̄)η(ξ, ā, b̄, c̄),

(here d(ā,b̄,c̄)ϑ(v) stands for the differential of the map ϑ at (ā, b̄, c̄) applied to
the vector v) are linearly independent. For that we rewrite

κ(ξ, ā, b̄, c̄) = ξ2R1(ā)2R2(b̄), η(ξ, ā, b̄, c̄) = ξ R1(ā)R3(b̄),

where

R1(ā) = a2 + a3

a3 − a2
,

R2(b̄) = b2 + b3 − b4

b2 + b3 + b4
,

R3(b̄) = b3 − b2

b2 + b3 + b4
.

(6.5.3)

Thus,

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) =
(

2 ξ2 dāR1(ā)R1(ā)R2(b̄), ξ2R1(ā)2 db̄R2(b̄),0
)
,

d(ā,b̄,c̄)η(ξ, ā, b̄, c̄) =
(
ξ dāR1(ā)R3(b̄), ξ R1(ā) db̄R3(b̄),0

)
,

(6.5.4)

where 0 = (0, 0).
We note that if v = (ā, b̄, c̄) ∈ Q then R1(ā) 6= 0.
We the study the set Q(ξ,κ0,η0) in (6.5.2) to following four cases:

(i) Suppose κ0 6= 0, η0 6= 0. In this case R2(b̄) and R3(b̄) are different of zero
and the derivate in (6.5.4) are given by:

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) =
(

2κ0
dāR1(ā)
R1(ā) , κ0

db̄R2(b̄)
R2(b̄)

,0
)
,

d(ā,b̄,c̄)η(ξ, ā, b̄, c̄) =
(
η0
dāR1(ā)
R1(ā) , η0

db̄R3(b̄)
R3(b̄)

,0
)

;
(6.5.5)

Analogously,

(ii) If κ0 6= 0, η0 = 0, then R3(b̄) = 0 (i.e. b2 = b3) and

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) =
(

2κ0
dāR1(ā)
R1(ā) , κ0

db̄R2(b̄)
R2(b̄)

,0
)
,

d(ā,b̄,c̄)η(ξ, ā, b̄, c̄) =
(
0, ξ R1(ā)db̄R3(b̄),0

)
;

(6.5.6)
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(iii) If κ0 = 0, η0 6= 0 then R3(b̄) = 0 (i.e. b2 + b3 = b4) and

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) =
(
0, ξ2R1(ā)2db̄R2(b̄),0

)
,

d(ā,b̄,c̄)η(ξ, ā, b̄, c̄) =
(
η0
dāR1(ā)
R1(ā) , η0

db̄R3(b̄)
R3(b̄)

,0
)

;
(6.5.7)

(iv) If κ0 = η0 = 0 then R2(b̄) = R3(b̄) = 0 (i.e. b2 = b3 and b2 + b3 = b4) and

d(ā,b̄,c̄)κ(ξ, ā, b̄, c̄) =
(
0, ξ2R1(ā)2db̄R2(b̄),0

)
,

d(ā,b̄,c̄)η(ξ, ā, b̄, c̄) =
(
0, ξ R1(ā)db̄R3(b̄),0

)
.

(6.5.8)

We observe that

dāR1(ā) =
(

0, 2 a3

(a3 − a2)2 ,−
2 a2

(a3 − a2)2

)

db̄R2(b̄) =
(

0, 2 b4

(b2 + b3 + b4)2 ,
2 b4

(b2 + b3 + b4)2 ,−
2 (b2 + b3)

(b2 + b3 + b4)2

)

db̄R3(b̄) =
(

0, −2b3 − b4

(b2 + b3 + b4)2 ,
2 b2 + b4

(b2 + b3 + b4)2 ,
b2 − b3

(b2 + b3 + b4)2

)
.

(6.5.9)

Thus, in the case (i) the vectors (6.5.5) are linearly dependent if there exist
λ = λā,b̄ ∈ R \ {0} such that

κ0
db̄R2(b̄)
R2(b̄)

= λ η0
db̄R3(b̄)
R3(b̄)

.

However, the vectors db̄R2(b̄) and db̄R3(b̄) are linearly independent. This
follows from next claim.

Claim 6.5.2 The vectors

U(b̄) := (0, b4, b4,−2 b2 − 2 b3), and V (b̄) = (0,−2b3 − b4, 2 b2 + b4, b2 − b3),

are linearly independent.

Proof. Taking into account that b2 + b3 + b4 6= 0, the proof of this claim follows
easily studying separately the cases b4 = 0 and b4 6= 0. �

For case (ii) we note that dāR1(ā) and db̄R3(b̄) are not zero vector. This
imply that the vectors (6.5.6) are linearly independent. The same argument
shows that the vectors (6.5.7) in the case (iii) are linearly independent. For
the case (iv), the linear independence follows intermediately evaluating b2 = b3

and b2 + b3 = b4 in (6.5.8). This completes the proof of Lemma. �
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Lemma 6.5.3 For every (ξ, κ0, η0) ∈ R3 the sub-manifolds γ−1
ξ (κ0, η0) ⊂ R9

has dimension seven.

Proof. Observe that the maps γξ(v) depends only of the coordinates
a2, a3, b2,b3, b4 of v. Recall the description of Q in Remark 6.1.1 in term of
the coordinates v = (ā, b̄, c̄) ∈ R3 × R4 × R2. Let Π∗ : R3 × R4 × R2 → R5,
Π∗(ā, b̄, c̄) = (a2, a3, b2, b3, b4), and γ̃ξ : R5 → R2 defined by γ̃ξ ◦ Π∗ = γξ.
By the proof Lemma 6.5.1, for every (ξ, w) in R × R2 the set γ̃−1

ξ (w) is
a three-dimensional sub-manifold of R5 (see (25, Theorem 3.2)). Thus,
γ−1
ξ (w) = (Π∗)−1

(
γ̃−1
ξ (w)

)
⊂ R9 is a seven-sub-manifold diffeomorphic to

γ̃−1
ξ (w)× R4. This completes the lemma. �

We now proceed the proof of item (II) from Theorem 6.2.2.
Recall the family G(ξ,µ,κ,η) and the open set of parameters O =

(1.18, 1.19) × (−10,−9) × (−ε, ε)2 in Theorem 1. We observe that family
G(ξ,µ,κ,η) and the family G̃(ξ,µ,κ,η) in (3.5.1) are conjugated:

G(ξ,µ,κ,η)(x, y, z) = Θ̃−1 ◦ G̃(ξ,µ,κ,η) ◦ Θ̃(x, y, z), (x, y, z) ∈ R3, (6.5.10)

where Θ̃(x, y, z) = (z, y, x), see Remark 4.1.1. Consider the family of sub-
manifolds in Lemma 6.5.1 and the open set B : = I × V in R3 defined the
subsets

I := (1.18, 1.19) and V := (−ε, ε)2. (6.5.11)
By construction, the family of sub-manifolds

Qb̄ = γ−1
ξ (κ0, η0), b̄ = (ξ, κ0, η0) ∈ B (6.5.12)

satisfies item (II) of the theorem. This completes the proof of the theorem �.

6.6
Strong homoclinic intersections associated to saddle-node of quadratic
family: Proof of Theorem 6.2.4

We discusse some preliminaries facts.

6.6.1
Preliminaries

Recall the rational maps κ and η in (6.4.2). We observe the domains of
these maps contain to the sub-manifold R×QII . If v = (a1, a2, a3, b1, b2, b3, b4,

c1, c2) ∈ QII then a2 + a3 = 0. Thus, we have that

κ(ξ, v) = η(ξ, v) = 0, for every ξ ∈ R.

Consider the sub-manifold QRC of QII given by
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{
(a1, a2, a3, b1, b2, b3, b4, c1, c2) ∈ QII : b2 = b3, b2 + b3 − b4 = 0

}
. (6.6.1)

We observe that to the rational maps ςi, i = 1, . . . , 5, in (5.3.39), we get that
if v ∈ QRC then

ς1(ξ, v) = ς3(ξ, v) = ς4(ξ, v) = 0, ς2(ξ, v) 6= 0, and ς5(ξ, v) 6= 0, (6.6.2)

for every ξ ∈ R. This leads to the following fact:

Lemma 6.6.1 For every v ∈ QRC the endomorphisms

(
µ,E(1,µ,ς2(1,v),ς5(1,v))(x, y, z)

)
and

(
µ,G(1,µ,0,0)(x, y, z)

)
.

are conjugate by the map

Θ(ς2,ς5)(µ, x, y, z) = (ς−1
2 µ, ς−1

2 z, ς−1
2 y, ς5 ς

−1
2 x), ςi = ςi(1, v).

Remark 6.6.2 Using Remark 6.1.1 and the analysis of the proof of
Lemma 6.5.3 follows easily that QRC is a sub-manifold of dimension seven.

6.6.1.1
Strong homoclinic intersections

We study the invariant manifolds of the saddle-node in the family
G(1,µ,0,0).

Lemma 6.6.3 For every µ ∈ (−10,−9) and any z0 ∈ R fixed, the endomor-
phism G(1,µ,0,0) has two partially hyperbolic saddle-nodes P+

µ (z0) and P−µ (z0)
in the plane

{
z = z0

}
of R3 such that

– W ss
(
P+
µ (z0), G(1,µ,0,0)

)
meets quasi-transversely W uu

(
P−µ (z0), G(1,µ,0,0)

)
;

– W uu
(
P+
µ (z0), G(1,µ,0,0)

)
meets quasi-transversely W ss

(
P−µ (z0), G(1,µ,0,0)

)
.

Proof. Note that the fixed points ofG(1,µ,0,0)(x, y, z) = (y, µ+y2, z), are the from
(Pµ, z) where Pµ is a fixed point from endomorphisms gµ(x, y) := (y, µ + y2).
The map gµ, µ ∈ (−10,−9), has a two fixed points in [−4, 4]2 of the form
P±µ = (y±µ , y±µ ), where

y±µ = 1±
√

1− 4µ
2 .

As was observed in (5.1.2), the condition µ ∈ (−10,−9) imply that

−2.7 < y−µ < −2.5 and 3.5 < y+
µ < 3.71.
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We now to describe the invariant manifolds of P±µ in [−4, 4]2. Consider
the following local strong stable manifold of P±µ given by

W ss
loc(P±µ , gµ) =

{
(x, y±µ ) : |x| ≤ 4

}
⊂ [−4, 4]2.

The fact that this set is contained in the strong stable manifold follows from
gµ
(
W ss

loc(P±µ , gµ)
)

= {P±µ }.
Similarly, consider the following local strong unstable manifold of P±µ

given by

W uu
loc(P+

µ , gµ) :=
{

(y, µ+ y2) :
√
−4− µ ≤ y ≤

√
4− µ

}
⊂ [−4, 4]2;

W uu
loc(P−µ , gµ) :=

{
(y, µ+ y2) : −

√
4− µ ≤ y ≤ −

√
−4− µ

}
⊂ [−4, 4]2.

To see, for instance, that the first set is contained in the strong unstable
manifold of P+

µ consider the curve

`+
µ,1 :=

{
(y, µ+ y2) :

√
−µ+

√
−4− µ ≤ y ≤

√
−µ+

√
4− µ

}
.

It is easy to see that P+
µ ∈ `+

µ,1 and that gµ(`+
µ,1) = W uu

loc(P+
µ , gµ), see Figure 6.3.

Figure 6.3: (a) Fixed points P±µ of gµ. (b) Construction of the unstable manifold
of P+

µ .

Proceeding inductively we construct a nested sequence of discs
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`+
µ,n ⊂ W uu

loc(P+
µ , gµ) (6.6.3)

such that for every n ≥ 1 it holds P+
µ ∈ `+

µ,n and gµ(`+
µ,n+1) = `+

µ,n. This imply
that W uu

loc(P+
µ , gµ) is contained in the unstable manifold1 of P+

µ in [−4, 4]2.
Now the intersections below follow immediately

W uu
loc(P+

µ , gµ) t W ss
loc(P−µ , gµ) 6= ∅, W ss

loc(P+
µ , gµ) t W uu

loc(P−µ , gµ) 6= ∅.

The proof of lemma follows noting that:

W uu
loc

(
P±µ (z0), G(1,µ,0,0)

)
= W uu

loc(P±µ , gµ)× {z0},

W ss
loc

(
P±µ (z0), G(1,µ,0,0)

)
= W ss

loc(P±µ , gµ)× {z0}.
(6.6.4)

�

6.6.1.2
Proof of Theorem 6.2.4

The first step in the proof of this theorem is the following result.

Proposition 6.6.4 Let r ≥ 1. Consider {Fk}k a sequence of Cr-
diffeomorphisms in R3 converging on compact sets to G(1,µ,0,0) in the Cr-
topology. Then there are a sequence of positive numbers εk → 0 and a local
εk-Cr-perturbation Gk of Fk such that Gk has a strong homoclinic intersections
associated to a partially hyperbolic saddle-node fixed point for every k large
enough.

Proof. Let Fk : R3 → R3 be any sequence of diffeomorphisms converging to
G(1,µ,0,0) as above. We write

Fk(x, y, z) = (F 1
k (x, y, z), F 2

k (x, y, z), F 3
k (x, y, z)).

For every M > 0, consider the compact set ∆M := [−4, 4]2× [−M,M ]. We let

ε1k := ‖
(
F 1
k (x, y, z)− y

)
)|∆M
‖r,

ε2k := ‖
(
F 2
k (x, y, z)− µ+ y2)|∆M

‖r,

ε3k := ‖
(
F 3
k (x, y, z)− z)|∆M

‖r,

εk := ‖
(
Fk −G(1,µ,0,0)

)
|∆M
‖r.

(6.6.5)

Note that εik ≤ εk, i = 1, 2, 3, and by hypothesis εk → 0 as k → +∞.
1Recall that the unstable manifold of a hyperbolic fixed (periodic) point p of a endomor-

phism h in a neighbourhood U consists of those x0 for which there is a sequence (xn)n in U
with h(xn+1) = xn and xn → p, see for instance (46, Theorem 6.1).
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The shape of G(1,µ,0,0)|∆M
implies that for every z ∈ [−M,M ] and k large

enough there are y−k (z) < 0 < y+
k (z) , such that

F 1
k

(
y±k (z), y±k (z), z

)
= F 2

k

(
y±k (z), y±k (z), z

)
= y±k (z).

Lemma 6.6.5 For every z0 ∈ [−M,M ] there exist εk → 0 and a local Cr-εk-
perturbation F̃ z0

k of Fk such that every k sufficiently large it holds

F̃ z0
k

(
y±k (z0), y±k (z0), z0

)
=
(
y±k (z0), y±k (z0), z0

)
.

Proof. Without loss of generality we can assume that z0 = 0. Fix a small ρ > 0
and consider a Cr-function b = bρ : R→ R satisfying

b(x) = 0, if 2ρ ≥ |x|,
0 < b(x) < 1, if ρ < |x| < 2ρ,
b(x) = 1, if |x| ≤ ρ.

(6.6.6)

Consider the perturbation of the identity θ+
k supported in P+

k :=
Fk
(
y+
k (0), y+

k (0), 0
)
defined (in local coordinates around P+

k ) by

θ+
k

(
(x, y, z) +P+

k

)
= (x, y, z) +P+

k −
(
F 3
k (y+

k (0), y+
k (0), 0)

)
(0, 0, b(z)). (6.6.7)

Note that

‖
(
θ+
k − id

)
|∆M
‖r ≤ ‖

(
F 3
k (x, y, z)− z

)
|∆M
‖r ‖b‖r = ε3k‖b‖r → 0,

where the convergence follows from (6.6.5). Thus the diffeomorphism F̃+
k :=

θ+
k ◦ Fk is a Cr-perturbation of Fk of size ε3k‖b‖r satisfying

F̃k(y+
k (0), y+

k (0), 0) = θ+
k ◦ Fk(y+

k (0), y+
k (0), 0) = θ+

k (P+
k ) =

(
y+
k (0), y+

k (0), 0
)
.

See Figure 6.4. Changing “+” by “−” in the construction above, we get a
Cr-perturbation θ−k of the identity (of the same size as θ+

k ) supported in P−k
(and whose support is disjoint from supp(θ+

k )) such that the perturbation
F̃k := θ−k ◦ F̃+

k of Fk satisfies

F̃k(y±k (0), y±k (0), 0) =
(
y±k (0), y±k (0), 0

)
.

To complete the proof of the lemma it is enough to take F̃ 0
k = F̃k and

εk = ε3k‖b‖r. �
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Figure 6.4: (a) Images of the square [−4, 4]2 × {0} by G(1,µ,0,0) and Fk. (b)
Projection of the perturbations θ±k on Fk([−4, 4]2 × {0}).

Lemma 6.6.6 Let F̃k = F̃ 0
k be as in Lemma 6.6.5. There exist εk → 0 and a

εk-Cr-perturbation F̂k of F̃k such that F̂k has a two partially hyperbolic saddle-
node for every k large enough.

Proof. Given (x, y, z) ∈ R3 and k large enough we can write

DF̃k(x, y, z) :=


δk1,1 1 + δk1,2 δk1,3

δk2,1 2 y + δk2,2 δk2,3

δk3,1 δk3,2 1 + δk3,3

 , (6.6.8)

where the entries δki,j = δki,j(x, y, z) are functions of Cr−1-class converging to 0
on the compact sets.

Recall the fixed point P±k = (y±(0), y±(0), 0) of F̃k(x, y, z). Consider the
numbers γk,±i,j := δk,±i,j (P±k ). In what follows we consider perturbations at P+

k

(the perturbations at P−k are analogous and hence omitted). For simplicity we
simply write Pk = P+

k (where yk(0) = y+
k (0)) and γki,j := γk,+i,j .

Using the map b(z) in (6.6.6) we define the local perturbation of identity
at Pk given by

θ̂k

(
(x, y, z) + Pk

)
=
(
x, y,

z

1 + γk3,3

)
+ Pk − zb(z)w̄k,

where
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w̄k :=
(

γk1,3
1 + γk3,3

,
γk2,3

1 + γk3,3
, 0
)
. (6.6.9)

Note that w̄k → (0, 0, 0) and that ‖θ̂k − id‖r ≤ εk, where

εk : = M
(∣∣∣∣ 1

1 + γk3,3
− 1

∣∣∣∣+ ‖b‖r ||w̄k||)→ 0, k → +∞.

Let
F̂k(x, y, z) = θ̂k ◦ F̃k(x, y, z).

Then, for large k ≥ 1, it holds F̂k
(
Pk
)

= Pk and hence

DF̂k
(
Pk
)

= Dθ̂k
(
Pk
)
◦DF̃k

(
Pk
)
.

Noting that

Dθ̂k
(
Pk
)

=



1 0 −
γk1,3

1 + γk3,3

0 1 −
γk2,3

1 + γk3,3

0 0 1
1 + γk3,3


and recalling equation (6.6.8) we get that

DF̂k(Pk) =



γk1,1 −
γk1,3 γ

k
3,1

1 + γk3,3
1 + γk1,2 −

γk1,3 γ
k
3,2

1 + γk3,3
0

γk2,1 −
γk3,1 γ

k
2,3

1 + γk3,3
2 yk(0) + γk2,2 −

γk3,2 γ
k
2,3

1 + γk3,3
0

γk3,1
1 + γk3,3

γk3,1
1 + γk3,3

1


(6.6.10)

Therefore λk = 1 is eigenvalue of DF̂k(Pk), hence Pk is a saddle-node
fixed of F̂k for every k large enough 2. This complete the proof of lemma. �

We define the local strong stable manifold W ss
loc(P±k , F̂k) as the con-

nected component of W ss(P±k , F̂k) ∩ ∆M containing P±k . Similarly, we define
W uu

loc(P±k , F̂k).
The end of the proof of the proposition has two steps. We first obtain

a pair os saddle-node whose strong invariant manifolds meet cyclically and
quasi-transversely. In the second step consist in turn one of these saddle-node
in a saddle of index one. The λ-lemma leads to the existence of a strong
homoclinic intersection associated to remaininig saddle-node. Observe now
that as k → +∞ we get the following Cr-convergence

2The other two directions of Pk are hyperbolic (Spec
(
DF̂k(Pk)

)
\{λk} does not intersect

S1). This follows from DF̂k(Pk)→ DG(1,µ,0,0)(Pµ, 0), where Pµ is a fixed point of gµ, recall
Section 6.6.1.
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W ∗∗
loc(P±k , F̂k)→ W ∗∗

loc(P±µ (0), G(1,µ,0,0)), ∗ = s, u, (6.6.11)

where W ss
loc(P±µ (z0), G(1,µ,0,0)) and W uu

loc(P±µ (z0), G(1,µ,0,0)) are definied as in
(6.6.4).

Recall that the strong invariant manifolds of P+
µ (0) and P−µ (0) meets

cyclically and quasi-tranversely, see Lemma 6.6.3.

Lemma 6.6.7 There exist εk → 0 and a εk-Cr-perturbation G̃k of F̂k such that
G̃k has a pair of partially hyperbolic saddles whose strong invariant manifolds
meet cyclically and quasi-transversely

Proof. From convergence in (6.6.11) and Lemma 6.6.3 we can consider εk → 0
such that the distance between the manifolds W ss

loc(P−k , F̂k) and W uu
loc(P+

k , F̂k)
is εk. Consider X+

k ∈ W uu
loc(P+

k , F̂k) and w̄k,+ ∈ R3, with ||w̄k,+|| = 1, be such
that

X−k : = X+
k + εk wk,+ ∈ W ss

loc(P−k , F̂k).

Using the map b(x) in (6.6.6) we define a local perturbation of identity at X+
k

given by:

θk
(
(x, y, z) +X+

k

)
= (x, y, z) +X+

k + εk B(x, y, z) w̄k,+. (6.6.12)

Then, for every k large enough, the diffeomorphism G̃k : = θk ◦ F̂k is a εk-Cr-
perturbation of F̂k such that

X−k = G̃k(X+
k ) ∈ W ss

loc(P−k , G̃k) ∩W uu
loc(P+

k , G̃k).

See Figure 6.5. We can generate the same type of intersection between the
manifolds W uu

loc(P−k , G̃k) and W ss
loc(P+

k , G̃k) keeping the size εk||b||3r of the
Cr-perturbation. Therefore the diffeomorphism G̃k has a pair of partially
hyperbolic saddles P−k and P+

k whose strong invariant manifolds meet cyclically
and quasi-transversely. This completes the first step. �

Through a new local Cr-perturbation of G̃k supported in P−k , that we
denote Ĝk, we can turn the saddle-node P−k into a hyperbolic saddle of index
one3. Note that this perturbation we can be taking arbitrarily close to G̃k and
preserving the strong heteroclinic intersections obtained in Lemma 6.6.7.

Claim 6.6.8 There exist an arbitrarily small Cr-perturbation Gk of Ĝk such
that P+

k is a partially hyperbolic saddle-node with a strong homoclinic inter-
section.

3This is done by identifying W c
loc(P−

k , G̃k) with a small interval I centered in zero, and
perturbing Ĝk|W c

loc(P−
k
,G̃k) = idI by a linear map with slope 0 < λk < 1, such that λk → 1.
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Figure 6.5: Perturbation θk.

Proof. Consider `u a (small) segment of W uu
loc(P+

k , Ĝk) containing the inter-
section point W ss

loc(P−k , Ĝk) ∩ W uu
loc(P+

k , Ĝk). For every big sufficient n ≥ 1,
the segment Ĝn

k(`u) transversely intersects the two dimensional manifold
W s

loc(P−k , Ĝk). By the λ-lemma, for every n ≥ 1 large enough, there exist
`u
n ⊂ `u such that Ĝn

k(`u
n) is Cr-close toW uu

loc(P−k , Ĝk). SinceW uu
loc(P−k , Ĝk) meets

quasi-transversely to W ss
loc(P+

k , Ĝk), we can modify by a small Cr-perturbation
θ∗k (like θk in 6.6.12), the strong unstable manifold of P+

k so that Ĝn
k(`u

n) and
W ss

loc(P+
k , Ĝk) meets quasi-transversely, see Figure 6.6. We put Gk this last

Cr-diffeomorphism. This ends the proof of claim. �

The proof of Proposition 6.6.4 is now complete. �

6.7
Generation of Cr-robust cycles: Proof of Theorem 3

Theorem 3 is a consequence of Theorem 6.2.4. Recall the definitions of
the set QRC in (6.6.1) and of the projection Π in (6.1.2). Consider T RC :=
Π−1

(
QRC

)
. Theorem 3 follows immediately from the next proposition.

Proposition 6.7.1 Let r ≥ 2. Given any diffeomorphism f ∈ N r
P,Q(T RC)

there is sequence (gk)k of Cr-diffeomorphisms converging to f in the Cr-
topology such that every gk has a partially hyperbolic saddle-node Pk with a
strong homoclinic intersection.

Remark 6.7.2 In this paper we begin by considering a diffeomorphism f

with a heterodimensional cycle and a heterodimensional tangency associated

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 6. Laminations of the parameter space corresponding to
diffeomorphisms with blender-horseshoes: Proof of item (I) in Theorem 4 98

Figure 6.6: Perturbation θ∗k.

to a pair of saddles P and Q. Under appropriate conditions, we have that
f ∈ N r

P,Q(T RC). Theorem 3 gives diffeomorphisms arbitrarily Cr-close to f
having robust cycles. However, a priori, these robust cycles may not involve the
(continuations of) saddles in the initial cycle. This is related to the stabilisation
problem in Section 7.

Note that, by (9, Theorem 4.1), Proposition 6.7.1 guarantees the exis-
tence of diffeomorphisms exhibiting C1-robust cycles arbitrarily C1-close to
f ∈ N r

P,Q(T RC).
We will see in Proposition 6.7.3 that these approximations also hold in

the Cr-setting, for r > 1. Indeed the construction in (13) have two parts. The
first part, that is genuinely C1: heterodimensional cycles lead to the existence
of strong homoclinic intersections associated to partially hyperbolic saddle-
node. The second part consist in the passage from this saddle-node to robust
cycles. This is obtained by local Cr-perturbations, for r ≥ 1 (see for instance
the construction in (13) which provides C∞-families of diffeomorphisms having
blenders).
Proof.[Proof of Proposition 6.7.1] Consider the renormalisation scheme of
f ∈ N r

P,Q(T RC) in Theorem 2 associated to ξ = 1 (recall also the main
ingredients of this scheme). Since Quad(f) := qv ∈ T RC it holds

ς1(1, v) = ς3(1, v) = ς4(1, v) = 0, ς2(1, v) 6= 0, and ς5(1, v) 6= 0.

By Theorem 2 the corresponding renormalised sequence Rmk,nk(fk), (see
Section (5.3.6)), where fk denote the sequence (5.3.19), generates a sequence
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of global diffeomorphisms

Fk : R3 → R3, Fk := Ψ−1
mk,nk

◦ Rmk,nk(fk) ◦Ψmk,nk .

converging to E(1,µ,0,ς2,0,0,ς5) on compact sets of R3. Recall that E(1,µ,0,ς2,0,0,ς5) is
C∞-conjugate to G(1,µ,0,0), see Lemma 6.6.1.

Applying Proposition 6.6.4 to Fk|∆M
we obtain a small Cr-perturbation

Gk of Fk|∆M
such that Gk has a strong homoclinic intersection associated a

saddle-node fixed point. Let gk be now the Cr-perturbation of fk given by the
composition

Rmk,nk(gk) := Ψmk,nk ◦Gk ◦Ψ−1
mk,nk

∈ Diffr(M).

By construction, gk → f and gk has a strong homoclinic intersection associated
a saddle-node fixed point, completing the proof of the proposition. �

Proposition 6.7.3 (Cr-version of Theorem 4.1 in (9)) Let r ≥ 1 and
f : M → M be a Cr-diffeomorphism having a partially hyperbolic saddle-
node S with a strong homoclinic intersection. Then there is a diffeomorphism
h arbitrarily Cr-close to f with a robust heterodimensional cycle.

Proof. We follow closely and modify accordingly the construction in (12,
Proposition 3.4). For simplicity, let us assume that S has period one. After
a Cr-perturbation, we can suppose that for the resulting diffeomorphism g the
saddle-node S splits into two hyperbolic fixed points S−g (contracting in the
central direction) and S+

g (expanding in the central direction)4. The saddles S−g
and S+

g have different indices and the manifoldsW s(S−g , g) andW u(S+
g , g) have

a transverse intersection containing (the interior of) a central curve joining S−g
and S+

g . Note that this transverse intersection is Cr-robust. The next step
is to unfold the quasi-transverse strong homoclinic point between the strong
unstable manifold and the stable manifold of S+

g and S−g (exactly as in (13)).
In this way we have that

(i) Using S+
g and a strong homoclinic intersection we generate a partially

hyperbolic horseshoe of u-index two. A small Cr-perturbation of g, un-
folding the strong homoclinic intersection, produces a blender-horseshoe
Γg having S+

g reference fixed point.

(ii) A small Cr-perturbation of g, unfolding (some point of the orbit of)
the strong homoclinic intersection associated to saddle S−g , generates

4The diffeomorphism g is obtained identifying W c
loc with a small interval I centred at

zero and perturbing f |W c
loc(S) = idI to get a (locally) Morse-Smale diffeomorphism having

exactly a contracting and an expanding fixed points.
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a uu-disc ∆ in the superposition region D of the blender-horseshoe
Γg. Thus, by the definition of blender-horseshoe, W s(Γg, g) intersects
W u(S−g , g). Hence, as S+

g ∈ Γg and W s(S−g , g) t W u(S+
g , g) 6= ∅, there is

a heterodimensional cycle associated to Γg and S−g .

(iii) Finally, the following three properties are Cr-open ones: 1) the contin-
uation of the hyperbolic set Γg to be a blender (the elements in the
definition of a blender depend continuously on g, see Remark 3.2); 2)
W u(S−g , g) to contain a vertical disk in the superposition region D of the
blender; 3) W s(S−g , g) t W u(S+

g , g) 6= ∅.

Therefore, every diffeomorphism h that is Cr-close to g has a heterodimensional
cycle associated to S−h and Γh. Since g can be taken arbitrarily close to f this
concludes the proof of the proposition. �

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



7
Stabilisation of cycles: Proof of item II of Theorem 4

In this section we prove the second part of Theorem 4. This result follows
from the result below, where Tb̄ is a leaf and T ∗

b̄0
a suitable open subset of it

(for the precise definitions see Section 7.0.1). Here b̄0 belong to a subset B′ of
B.

Theorem 7.0.1 (Stabilisation of cycles) Let 2 ≤ r < ∞. Given f ∈
N r
P,Q(T ∗

b̄0
) there exists a sequence {gk}k of diffeomorphisms converging to f

in the Cr-topology such that every gk has a blender-horseshoe Λgk satisfying:

(i) Λgk is related to the saddle Qgk by a Cr-robust cycle and

(ii) Λgk is homoclinically related to the saddle Pgk .

Moreover, the homoclinic classes H(Pgk , gk) and H(Qgk , gk) are both non-trivial
and is intermingled Cr-persistently.

Note that the second item in the theorem implies that there is a transitive
hyperbolic set Σgk containing Λgk and {Pgk} and H(Pgk , gk) is non-trivial. This
also means that the initial cycle can be Cr-stabilised.

This Section is organised as follows. In Sub-section 7.0.1 We construct the
leaf Tb̄0 and the subset T ∗

b̄0
. We state some auxiliary results in Sub-section 7.0.2

and using these, we construct new heteroclinic orbits in Sub-section 7.0.3.
We study the transition maps associated to these new intersections in Sub-
section 7.0.4. Finally, with these ingredients in hand we start the proof
of Theorem 7.0.1 in Sub-section 8 with the definition of the sequence gk.
Concerning the robust cycles of these maps, the robust intersections between
the one dimensional invariant manifolds are obtained in Sub-section 8.1.
Transverse intersections between the two dimensional invariant manifolds are
obtained in Sub-section 8.2.
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7.0.1
Restrictions of the bifurcation setting

Recall the subsets B ⊂ R3 and the family of sub-manifolds
{

Qb̄ : b̄ ∈ B
}

in (6.5.12). Consider the family Tquad given by

Tb̄ := Π−1
(
Qb̄

)
, b̄ ∈ B. (7.0.1)

Recall the follows open subsets of Tquad: T ±quad := Π−1(Q±) in (6.1.3) and
T hquad := Π−1(Qh), T p,±,∓quad := Π−1(Qp,±,∓) in 6.1.11. The bifurcation setting it
is defined by the sets:

T ∗b̄0 := Tb̄0 ∩ (T −quad ∩ T hquad ∪ T
p,+,−

quad ), (7.0.2)

where b̄0 = (ξ, µ, 0, 0) ∈ B′ := P × {(0, 0)} with P := (1.18, 1.19)× (−10,−9).
Recall qv in (6.1.1) and κ(ξ, v), η(ξ, v) in (6.5.1). Note that if qv ∈ Tb̄0

then v ∈ Qb̄0 and thus κ(ξ, v) = η(ξ, v) = 0.
We now see that the family of open sets T ∗

b̄0
, with b̄0 ∈ B′, is not empty

in Tb̄0 .

Claim 7.0.2 For every b̄0 = (ξ, µ) ∈ P = (1.18, 1.19)× (−10,−9) the set T ∗
b̄0

is not empty in Tb̄0.

Proof. To see that is not empty, for instance, consider the roots of b± from
b2 − 4b2b− 3(b2)2 = 0 and consider the set

{
vh = (a1, a,−a, b1, b2,−b2, b, c1, c2) : a b1 b2 c2 6= 0, b ∈ (b−, b+)

}
⊂ R9,

is contained in the set Q− ∩Qh ∩Q(ξ,µ,0,0) and the set
{
vp = (a1, a,−a, b1,−2,−1,−2, c1, c2) : a b1 c2 6= 0, a c1 > 0

}
⊂ R9,

is contained in the set Q− ∩Qp,+,− ∩Q(ξ,µ,0,0), for every (ξ, µ) ∈ (1.18, 1.19)×
(−10,−9). This completes the proof. �

Let f ∈ N r
P,Q(Tquad) and consider the following sets associated to f :

Ps
f ⊂ UP be the connected components of W s(Q, f) containing Y , (7.0.3)

Pu
f ⊂ UQ be the connected components of W u(P, f) containing Ỹ . (7.0.4)

Consider the subsets of UP and UQ

U+
P = UP ∩

{
xP ≥ 0

}
, U−P = UP ∩

{
xP ≤ 0

}
;

U+
Q = UQ ∩

{
yQ ≥ 0

}
, U−Q = UQ ∩

{
yQ ≤ 0

}
.

(7.0.5)
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We observe that since Quad(f) ∈ T hquad ∪ T
p,+,−

quad it holds that

Ps
f ∩ U+

P 6= ∅ and Pu
f ∩ U−Q 6= ∅.

In the next remark we list some properties satisfied by the diffeomor-
phisms f in N r

P,Q(T ∗
b̄0

), that will be relevant in the remainder of this work.
Besides we give some aditional flat conditions on the higher order terms of the
transition map fN2 (see (5.3.9)).

Remark 7.0.3 Let b̄0 = (ξ, µ) ∈ P . Consider f ∈ N r
P,Q(T ∗

b̄0
), with Quad(f) =

qv and v = (a1, a2, a3, b1, b2, b3, b4, c1, c2). Then

(1) From qv ∈ T −quad, the parameter ς2(ξ, v) = b2+b3+b4
2 in (5.3.39) is negative.

(2) From qv ∈ Tb̄0 , the parameters κ(ξ, v) and η(ξ, v) (6.5.1) are zero (this
is equivalent to the conditions b2 + b3 − b4 = b3 − b2 = 0) and there
exist a sequence of diffeomorphisms {fk}k Cr-converging to f (obtained
in Theorem 2) such that the renormalised sequence of fk converge (in
suitable charts) to G(ξ,µ,0,0) and hence fk has a blender-horseshoe for
every big sufficient k.

(3) Recall the sets Ps
f and Pu

f in (7.0.3) and (7.0.4), respectively. From qv ∈
T hquad ∪ T

p,+,−
quad and from Remark 5.3.11, these sets and its continuations

Pu
fk
, Ps

fk
satisfies:

Ps
f ∩ U+

P 6= ∅, Pu
f ∩ U−Q 6= ∅, and Ps

fk
∩ U±P 6= ∅, Pu

fk
∩ U±Q 6= ∅.

The intersection associated to the continuations above it is equivalent to

Psfk t W
u(P, fk) 6= ∅, Pufk t W

s(Q, fk) 6= ∅.

Recall the higher order terms Hi(·), i = 1, 2, 3, in (5.3.11). We assume the
following conditions:

∂p+q

∂yp ∂zq
H1(0) = ∂p+q

∂yp ∂zq
H2(0) = ∂p+q

∂yp ∂zq
H3(0) = 0, 1 ≤ p+ q ≤ r. (7.0.6)

Before going to the proof of Theorem 7.0.1 we need some preliminary results.

7.0.2
Preliminary technical results

In this section we prove the auxiliary Lemmas 7.0.5 and 7.0.7 used
to generate new quasi-transverse intersections between the one dimensional
invariant manifolds of the saddles in the cycle. The first lemma provides
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perturbations that modify the arguments of the irrational eigenvalues ofDf(P )
and Df(Q). The second lemma asserts that in the inicial cycle the closure of
the one-dimensional manifold W s(P, f) contains W s

loc(Q, f) (the same density
holds for W u(Q, f) in W u

loc(P, f)).
Recall that M denote a compact manifold of dimension 3. Let P be a

saddle fixed of a Cr-diffeomorphism f : M →M . Suppose that the index of P
is two and the spectrum of Df(P ) is given by

Spec
(
Df(P )

)
=
{
λ, σ e±2πiϕ

}
, where 0 < λ < 1 < σ and ϕ ∈ Qc.

Suppose that there is a Cr-linearising chart UP ' [−3, 3]3 at P such that

f |UP =


λ 0 0
0 σ cos(2πϕ) −σ sin(2πϕ)
0 σ sin(2πϕ) σ cos(2πϕ)

 (7.0.7)

and

W s
loc(P, f) = [−3, 3]× {(0, 0)} ⊂ UP , W u

loc(P, f) = {0} × [−3, 3]2 ⊂ UP .

To emphasize the argument ϕ we write fϕ := f |UP . Consider the canonical
projections Π∗ : UP → W ∗

loc(P, fϕ), ∗ = s, u, induced by the decomposition
UP = W s

loc(P, fϕ)⊕W u
loc(P, fϕ). Consider the unitary circle

S1
P :=

{
(0, y, z) ∈ UP : y2 + z2 = 1

}
⊂ W u

loc(P, f)

and the radial projection

ΠP
rad : W u

loc(P, f)→ S1
P . (7.0.8)

Definition 7.0.4 Let S ⊂ M be a two-dimensional disc intersecting trans-
versely W u

loc(P, f). We say that S has positive radial projection on W u
loc(P, f)

if ΠP
rad(S t W u

loc(P, f)) contains some interval in S1
P .

In what follows, `0, `1 ⊂ UP are two one-dimensional C1-discs such
that `0 is quasi-transverse to W s

loc(P, fϕ) and `1 is transverse to W u
loc(P, fϕ)

and S ⊂ UP is a two-dimensional C1-disc with positive radial projection in
W u

loc(P, fϕ), see Figure 7.1

Lemma 7.0.5 (Accelerating perturbation) For every m0 ∈ N there are
an arbitrarily small local Cr-perturbation f̃ of f in UP and m > m0 such that
f̃−m(`1) and `0 meet quasi-transversely.
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Figure 7.1: `0 is quasi-transverse to W s
loc(P, fϕ), `1 is transverse to W u

loc(P, f)
and S has positive radial projection in W u

loc(P, f) .

Proof. Without loss of generality we can assume that

X = (1, 0, 0) ∈ `0 ∩ W s
loc(P, fϕ)

is a quasi-transverse intersection point. The λ-lemma (see (38, Theorem 2))
implies that for every ε > 0 there exists m0 = m0(ε) such that for every
m ≥ m0 there is a one-disc `m1 (strictly) contained in `1 such that f−mϕ (`m1 ) is
ε-Cr-close to W s

loc(P, fϕ).
For every m large enough, we consider an angle θ = θ(m) ∈ [0, 1] (mod-

ulus 2kπ) such that the rotation of the segment f−mϕ (`m1 ) (around W s
loc(P, fϕ))

by −θ, intersect quasi-transversely `0. The rotation of this segment is given by
R−θ(f−mϕ (`m1 )), where

Rθ =


1 0 0
0 cos(2πθ) − sin(2πθ)
0 sin(2πθ) cos(2πθ)

 .

Thus we have
R−θ(f−mϕ (`m1 )) ∩ `0 6= ∅. (7.0.9)

Recall now the Cr-perturbation sα,α̃ of identity (with α, α̃ small enough)
defined in (5.3.14). Let Sω := sω,0

The perturbation f̃ of f is defined by

f̃ = fm := S θ(m)
m

◦ fϕ.

Note if m is sufficiently big then f̃ = fm is a small Cr-perturbation of
fϕ. We now check that the f̃−m(`1) meets quasi-transversely `0. Indeed, as
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S θ(m)
m

◦ fϕ = f
ϕ+ θ(m)

m

in UP (see (5.3.14)), we have that

f̃−m(`m1 ) = f−m
ϕ+ θ(m)

m

(`m1 ) = R−θ
(
f−mϕ (`m1 )

)
.

In view of (7.0.9) this ends the proof of the lemma. �

Remark 7.0.6 Denoting by LocDynP (f |UP ) = (λ, σ, ϕ) the parameters defin-
ing the local dynamic of f in UP (see (7.0.7)) we have that LocDyn(f̃ |UP ) =
(λ, σ, ϕ+ θ(m)

m
) and say that f̃ |UP is obtained accelerating the argument of f |UP .

After an arbitrarily small perturbation of f−mϕ (`m1 ) if necessary, we can assume
that θ(m) is rational and hence ϕ + θ(m)

m
is a irrational number. Finally, tak-

ing m sufficiently large, we can assume that the quasi-transverse intersection{
Xm

}
= f̃−m(`m1 ) ∩ ` is arbitrarily close to X.

We now see that the closure of the
{
f iϕ(`) : i ∈ N

}
contains W u

loc(P, fϕ).
We consider a small sub-disc ˜̀ of ` containing X = (1, 0, 0) ∈ ˜̀ parameterised
as follows,

˜̀ :=
{(

1 + t v1 + ρ1(t), t v2 + ρ2(t), t v3 + ρ3(t)
)

: |t| < δ
}
, (7.0.10)

where v = (v1, v2, v3) is a unitary vector in TX` and ρi : R → R are C1-maps
satisfying

ρ′i(0) = ρ(0) = 0, i = 1, 2, 3.

Note that since ` is quasi-transverse to W s
loc(P, fϕ) we have that (v2, v3) 6=

(0, 0). Note also that (at the origin)

ρi(t) := O(t2). (7.0.11)

Finally, consider the segment tangent to ˜̀ at X

̂̀ :=
{(

1 + t v1, t v2+, t v3
)

: |t| < δ
}
.

Lemma 7.0.7 The closure of
{
fnϕ (˜̀) : n ∈ N

}
contains W u

loc(P, fϕ).

Proof. Fix any point Z ∈ W u
loc(P, fϕ) and any ε-ball Bε(Z) of Z, it is enough

to see that there is n such that fnϕ (˜̀) ∩Bε(Z) 6= ∅.
We need a preparatory step. First, the irrationality of ϕ straightforwardly

implies that the lemma holds for forward iterations of ̂̀. Indeed, as the
argument ϕ is irrational, there is a sequence (ij)j such that f ijϕ ( ̂̀)∩Bε(Z) 6= ∅
for every j. Consider sufficiently big j0 such that σ−ij

(
||Z||+ ε

)
< δ for every

j ≥ j0. For j ≥ j0, consider the segment ̂̀j ⊂ ̂̀ defined by

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 7. Stabilisation of cycles: Proof of item II of Theorem 4 107

̂̀
j :=

{(
1 + σ−ij t v1, σ

−ij t v2, σ
−ij t v3

)
, |t| ≤ t∗ := ||Z||+ ε′

||(v2, v3)||

}
; (7.0.12)

for some 0 < ε′ < ε. The extremes of f ijϕ ( ̂̀ij) are given by (with a slight abuse
of notation)

ē±j :=
(
λij ± λijσ−ij t∗v1,±t∗ Vj

)
(7.0.13)

with

Vj :=
cos(2πijϕ) − sin(2πijϕ)

sin(2πijϕ) cos(2πijϕ)

v2

v3

 .
Note that the arguments of the vectors Vj tend to the argument of the vector Z.
Thus, if j it is large enough, then λij ±λijσ−ij t∗v1 < ε and ||t∗ Vj|| = ||Z||+ ε′.
Then either ē+

j or ē−j belongs to Bε(Z), suppose that the first case holds.
We are now ready show that f ijϕ (˜̀) ∩Bε(Z) 6= ∅. Let

Ṽj(t) :=
cos(2πijϕ) − sin(2πijϕ)

sin(2πijϕ) cos(2πijϕ)

ρ2
(
σ−ij t

)
ρ3
(
σ−ij t

)
and consider the curve ˜̀

j ⊂ ` defined by

˜̀
j :=

{(
1 + σ−ij t v1 + ρ1(σ−ij t), t σ−ij Vj + Ṽj(t) : |t| ≤ t∗

}
.

We will see that one of the extremes of f ij(˜̀
j) is εj close to ē+

j where εj → 0
as j →∞. Therefore this extreme also belongs to Bε(Z) and the proof of the
lemma follows.

Consider the extreme ẽ+
j of the segment f

ij
ϕ (˜̀

j) given by ē+
j +(

λijρ1
(
σ−ij t∗

)
, Ṽj(t∗)

)
. Let

||ẽ+
j − ē+

j || = ‖
(
λijρ1

(
σ−ij t∗

)
, Ṽj

)
‖ = εj.

We claim that εj → 0. As |λ| < 1 it is enough to see that σijρk
(
σ−ij t∗

)
→ 0,

for k = 2, 3. Since the condition (7.0.11) implies that

ρk
(
σ−ij t∗

)
= O(σ−2ij), k = 1, 2, 3.

follows that
σijρk

(
σ−ij t∗

)
= O(σ−ij)→ 0, j → +∞.

Hence ||ẽ+
j − ē+

j || → 0, proving the lemma. �

An immediate consequence of Lemma 7.0.7 is the following result:
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Lemma 7.0.8 Let S ⊂ UP be a two-dimensional disc with positive radial
projection in W u

loc(P, fϕ). Then the forward fϕ-orbit of ˜̀ meets transversely
the disc S.

There is a similar statement for the case of a saddle-focus Q of index
one taken backwards iterates.

Supposse that f has a saddle Q of index one such that W u(Q, f)
and W s(P, f) meets quasi-transversely. Lemmas 7.0.7 and 7.0.8 imply the
properties:

(i) W u
loc(P, f) ⊂ W u(Q, f), and

(ii) W u(Q, f) intersects transversely every two-disc S with positive radial
projection in W u

loc(P, f).

Properties (i) and (ii) above will be crucial in the subsequent applications.
Note that these properties are not robust since the quasi-transverse intersec-
tions are not. In the following scholium we explain how using blenders these
properties can be turn robust. For that recall the terminology of blenders in
Section 3.4.

We observe that in similar way we define the same elements (replacing
stable by unstable directions and vice-versa) for a saddle Q of index one.

Scholium 7.0.9 (Mixing superposition directions) Suppose that f has
a blender-horseshoes Λ with reference P which is activated by an irrational
saddle-focus of Q of index one. Then every diffeomorphism g sufficiently Cr-
close to f the stable manifold W s(Pg, g) intersect transversely every two-disc
S with positive radial projection in W u

loc(Qg, g). In particular W s
loc(Qg, g) ⊂

W s(Pg, g).
Proof. Since Q activates the blender Λ, for every diffeomorphism g sufficiently
C1-close to f it holds that W s

loc(X, g) ∩W u(Qg, g) 6= ∅ for some X ∈ Λg. The
irrationality of the argument of the contrative eigenvalue of Dg(Qg) imply
that W s(X, g) ∩ S 6= ∅ (Lemma 7.0.8). Thus, there are N∗ in N such that
W s

loc(X, g) ∩ gN∗(S) 6= ∅. Consider P ∗g ∈ Λg homoclinically related to Pg and
sufficiently close to X such that W s

loc(P ∗g , g)∩ gN∗(S) 6= ∅. The λ-lemma imply
that W s

loc(Pg, g) ∩ gN∗(S) 6= ∅, ending the proof. �
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7.0.3
New quasi-transverse heteroclinic orbits

We show that there exist a Cr-dense subset Lr in N r
P,Q(T hquad ∪ T

p,+,−
quad )

such that every diffeomorphism in Lr has a non-transverse cycle and two quasi-
transverse heteroclinic orbits between the one-dimensional invariant manifolds.
We now formalize this statement.

Let f ∈ N r
P,Q(Tquad). Recall the Cr-linearising neighbourhoods

UPf , UQf ' [−3, 3]3 of the saddles Pf and Qf described in Section 5.3.1.
Note that in these coordinates we have

W s
loc(Pf , f) = [−3, 3]× {(0, 0)},

W u
loc(Pf , f) = {0} × [−3, 3]2

W s
loc(Qf , f) = [−3, 3]× {0} × [−3, 3],

W u
loc(Qf , f) = {0} × [−3, 3]× {0}.

(7.0.14)

Recall the choice of the heteroclinic points associated to the transitions
maps in the initial cycle:

– the quasi-transverse intersection points: X = Xf ∈ W s(Pf , f) ∩
W u(Qf , f) and X = X̃f ∈ Of (X) where

X = (0, 1, 0) ∈ W u
loc(Qf , f) and X̃ = (1, 0, 0) ∈ W s

loc(Pf , f),

– the non-transverse intersection points: Y = Yf ∈ W u(Pf , f)∩W s(Qf , f)
and Ỹ = Ỹf ∈ O(Y ) where

Y = (0, 1, 1) ∈ W u
loc(Pf , f) and Ỹ = (1, 0, 1) ∈ W s

loc(Qf , f).

Consider the canonical projection in the neighbourhood UP defined by

Π1,Π2,Π3 : UPf → [−3, 3] (7.0.15)

Π1(x, y, z) := x, Π2(x, y, z) := y, Π3(x, y, z) := z.

In similar way, we define the projections Π1,Π2,Π3 : UQf → [−3, 3].
Recall the definition of the sets in (7.0.3) and (7.0.4),

Ps = Ps
f ⊂ W s(Qf , f) ∩ UPf , Pu

f = Pu
f ⊂ W u(Qf , f) ∩ UQf ,

and the neighbourhoods U±Pf and U±Qf in (7.0.5).
By Remark 7.0.3 our bifurcation setting implies that

(i) Ps
f ∩ U+

P 6= ∅ and Pu
f ∩ U−P 6= ∅; and
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(ii) for any k large enough it holds

Ps
fk
t W u(P, fk) 6= ∅, Pu

fk
t W s(Q, fk) 6= ∅

where fk is the sequence converging to f obtained via its renomalisation.

Finally, recall the notation in (5.3.16)

f |UP := fP,ϕP and f |UQ := fQ,ϕQ .

In what follows, for notational simplicity, we omit the subscript f in the
dependence of the saddles Pf and Qf .

Lemma 7.0.10 Let r ≥ 2. There is a Cr-dense subset Mr of N r
P,Q(T hquad ∪

T p,+,−quad ) such that if f ∈Mr then

– H(Q, f) is non-trivial,

– there is Z close to X such that Z 6∈ Of (X) and such that the one-
dimensional manifolds W s(P, f) and W u(Q, f) meet quasi-transversely
along the orbit of Z.

Proof. Fix f ∈ N r
P,Q(T hquad ∪ T

p,+,−
quad ) and consider the quasi-transverse in-

tersection points X̃ = (1, 0, 0) ∈ UP and X = (0, 1, 0) ∈ UQ above. Let
`u

0 ⊂ W u(Q, f) be a small one-disc such that X̃ is in the interior of `u
0.

Using an accelerating (local) perturbation as in Lemma 7.0.5 (see also
Remark 7.0.6), we get diffeomorphism f̃ |UP , Cr-close to f |UP and large i ≥ 0
such that f̃ i(`u

0) intersects transversely Ps
f̃

= Psf .1 For simplicity, let us denote
the perturbed diffeomorphism f̃ also by f .

Fix i1 ≥ 1 such that f i+i1(`u
0) meets transversely to W s

loc(Q, f).
Consider a small segment `s

0 ⊂ W s(P, f) containing X in its interior
and contained in UQ. A new accelerating (local) perturbation gives a diffeo-
morphism f̃ |UQ , Cr-close to f |UQ , and large j ≥ 1 such that f̃ j

(
f i+i1(`u

0)
)

meets quasi-transversely `s
0 in a point Z = Zf̃ close to X. The lemma follows

observing that the orbits of Z and X are different. �

Remark 7.0.11 The perturbation f̃ of f ∈ N r
P,Q(T hquad ∪ T

p,+,−
quad ) in

Lemma 7.0.10 can be written as follows. Recall the parameters defining the
local dynamics of f in the neighbourhoods of P and Q (see Section 5.3.1)

LocDyn(f) = (λP , σP , ϕP , λQ, σQ, ϕQ),
1To be more precise, we consider a one-disc `1 transverse to W u

loc(P, f) in Y such that `1
is “interior” of Psf . Then, the aplication of Lemma 7.0.5 provides a such traverse intersection
between Psf and forward iterated of `u

0 .
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we have that f̃ it is the form fi,j, where fi,j satisfy the (local) conditions

LocDyn(fi,j) = (λP , σP , ϕ̃i, λQ, σQ, ϕ̂j),

where ϕ̃i → ϕP and ϕ̂j → ϕQ. Finally, we observe that by small Cr-
perturbations defined in a small neighbourhood of the (transverse and quasi-
transverse) intersections obtained in Lemma allowed us modify slightly the
intersection points so that we can consider the new arguments ϕ̃i and ϕ̂j as
irrational numbers.

Scholium 7.0.12 Let fi,j be the sequence converging to f in Remark 7.0.11.
By construction, there exists a segment `u

0 ⊂ W u(Q, fi,j) that intersects trans-
versely W s

loc(Q, fi,j) such that f ji,j(`u
0) meets quasi-transversely to W s(P, fi,j)

in a point Zj close to X. By the λ-lemma, there exists a sequence of one-discs
`u

0,j ⊂ `u
0 such that f ji,j(`u

0,j) Cr-converges to W u
loc(Q, fi,j) as j → +∞. Note

that f ji,j(`u
0) ∩W s(P, fi,j) = {Zj}.

The previous comment imply that the perturbations fi,j of f ∈
N r
P,Q(T hquad ∪ T

p,+,−
quad ) satisfy the following properties: Given any small one-

disc `u in W u
loc(Q, fi,j) containing X in its interior there exist a sequence of

sub-discs `u
∗,j of `u

0 such that:

– the one-disc f ji,j
(
`u
∗,j

)
meets quasi-transversely W s

loc(P, fi,j) in a point Zj
and Zj → X, when j → +∞, and

– f ji,j
(
`u
∗,j

)
→ `u as j → +∞ in the Cr-topology.

The next result state that small perturbations of diffeomorphisms inMr

generates a third quasi-transverse orbit between the one-dimensional invariant
manifolds of the initial saddles.

Lemma 7.0.13 Let f be a diffeomorphism inMr as in Lemma 7.0.10. Then
there is ε` → 0+ and a ε`-Cr-perturbation f` of f such that

– the orbits Of (X) and Of (Z) are preserved by f`, i.e., in a neighbourhood
of Of (X) ∪ Of (Z) , the diffeomorphisms f and f` coincides, and

– the one-dimensional manifolds W s(P, f`) and W u(Q, f`) meet quasi-
transversely at point Z∗` such that Z∗` 6∈ Of (X) ∪ Of (Z).

Proof. Fix f ∈ Mr. Consider a segment `s of W s(P, f), quasi-transverse to
W u

loc(P, f) in X. From Lemma 7.0.7, the closure of
{
f−i(`s) : i ∈ N

}
contain

the local manifoldW s
loc(Q, f). In particular, this closure contains the non-trivial

class H(Q, f). Then, given Z∗ ∈ W s
loc(Q, f) t W u(Q, f) there is a sequence
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{Z∗` }` in W s(P, f) such that Z∗` → Z∗ (this sequence is associated a sequence
of times n` such that fn`(`s) converge to the straight line in W s

loc(Q, f) that
contains to Q and Z∗). Thus, for every ` large enough we can modify, by a local
Cr-perturbation (like (6.6.12)), the local unstable manifoldW u

loc(Z∗, f), so that
for this perturbation f` of f it holds Z∗` ∈ W u

loc(Z∗, f`). We observe that the
size of this Cr-perturbation is ε`, where ε` is the distance between W u

loc(Z∗, f)
and Zs

` . Therefore, f` has a three quasi-transverse heteroclinic orbits. This
completes the proof of the lemma. �

Remark 7.0.14 In view of Lemmas 7.0.10 and 7.0.13 if f ∈ N r
P,Q(T hquad ∪

T p,+,−quad ) then there are a diffeomorphism fi,j,` arbitrarily Cr-close to f such
that:

(i) H(Q, fi,j,`) is not trivial,

(ii) fi,j,` preserves the cycle of f associated to heteroclinic points X ∈
W s(P, f) ∩W u(Q, f) and Y ∈ W u(P, f) ∩W s(Q, f).

(iii) fi,j,` has two quasi-transverse heteroclinic point Zj and Zs
` such that

Zj, Z
s
` → X when j, `→ +∞.

We denote Lr to such Cr-dense set in N r
P,Q(T hquad ∪ T

p,+,−
quad ).

7.0.4
Transition map associated to the new heteroclinic orbit

Let f ∈ N r
P,Q(T hquad∪T

p,+,−
quad ) and fi,j,` the Cr-perturbation of f belong to

Lr, see Remark 7.0.14. Recall the fi,j,` has three quasi-transverse intersection
points X, Zj and Zs

` such that Zj, Zs
` → X, as j, ` → +∞, where X is the

heteroclinic point associated to the initial cycle of f . By construction, the
diffeomorphisms in fi,j,` preserves the initial cycle of f (i.e., f and fi,j,` coincides
in a neighbourhood of cycle of f). In particular, preserves its corresponding
transitions maps (see (5.3.7) and (5.3.9)), that is,

fN1
i,j,`|UX = fN1 |UX and fN2

i,j,`|UY = fN2|UY .

Note that for every j large enough, we have that Zj ∈ UX . Let us now
describes the transition map associated to the points Zj and fN1(Zj). For
notational simplicity, in what follows, we will omit the subscripts i, ` in fi,j,`.
By construction, Zj = (xj, yj + 1, zj), where xj, yj, zj → 0 as j → +∞. Hence
Zj belongs to the domain UX of the transition map fN1 for every j large
we can take a pair of small and disjoint neighbourhoods UX and UZj of X
and Zj (respectively) and consider the transition maps fN1

j : UX → U
X̃

and
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fN1
j : UZj → U

Z̃j
, where fN1(Zj) = Z̃j is close to X̃. Note that f̃N1

j |UX = fN1 |UX
and f̃N1

j |UZj = fN1 |UZj .
Let Z̃j := (1 + x̃j, 0, 0) ∈ UP , with x̃j → 0 and x̃j 6= 0. We note that

Z̃j = fN1(Zj) = X̃ + Zj −X + H̃(Zj).

We now explicit the transition maps fN1|UZj around of Zj. Considering the
point Zj as the center of UZj and performing by an affine linear change of
coordinates around of X we can write

fN1|UZj :


xj + x

1 + yj + y

zj + z

→


1 + x̃j + x+ H̃j
1(x, y, z)

y + H̃j
2(x, y, z)

z + H̃j
3(x, y, z)

 , (7.0.16)

where

H̃j
k(x, y, z) := H̃k(xj + x, yj + y, zj + z)−

− H̃k(xj, yj, zj), k = 1, 2, 3.
(7.0.17)

The maps H̃k are defined in (5.3.7). Note that

H̃j
1(0) = H̃j

2(0) = H̃j
3(0) = 0.

Remark 7.0.15 The higher order terms H̃j
k(x, y, z) of the transition fN1|UZj

do not satisfy the “flat conditions" at the origin (i.e., for X = 0) satisfied by
the maps H̃k(x, y, z) of the transition fN1|UX , see (5.3.8). However these terms
satisfy the following convergence property:

∂

∂x
H̃j
k(0) = ∂

∂y
H̃j
k(0) = ∂

∂z
H̃j
k(0)→ 0, k = 1, 2, 3. (7.0.18)
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Proof of Theorem 7.0.4: construction of gk

We recall the properties in Remark 7.0.3 satisfied by a diffeomorphism f

inN r
P,Q(T ∗

b̄0
). The sequence {gk}k in Theorem 7.0.1 is constructed by arbitrarily

small local Cr-perturbations of f . We start recalling the following type of
perturbations: From Lemmas 7.0.10 and 7.0.13 (see also Remark 7.0.14). f
can be Cr-approximated by diffeomorphisms fi,j,` such that:

• fi,j,` and f coincides in a neighbourhood of the initial cycle whose
transitions maps are associated to a quasi-transverse intersection point
X ∈ W s(P, f) ∩ W u

loc(Q, f) and to a heterodimensional tangency Y ∈
W u

loc(P, f) ∩W s(Q, f).

• fi,j,` has two quasi-transverse intersection heteroclinic points Zj, Z
∗
`

converging to X as j, `→ +∞.

The next assert not involve the subscript i in fi,j,`. For notational
simplicity, their will be omitted.

• Consider fj,`,ῡk the renormalisation of fj,` given by Theorem 2 (see
equation (5.3.19)). We will see that there is k(j, `), with k(j, `)→ +∞ as
j, `→ +∞, such that for every k ≥ k(j, `), Zj and Z∗` are quasi-transverse
intersection heteroclinic points of fj,`,ῡk . Moreover we can unfold these
heteroclinic points unmodified the orbit of blender Λj,`,k of associated to
fj,`,ῡk .

We now explain how arbitrarily small local Cr-perturbations of fj,`,ῡk
generated a Cr-robust cycle between Λj,`,k and Q. This define our gk = gj,`,k.

F Robust intersection between W s(Λj,`,k, fj,`,ῡk) and W u(Q, fj,`,ῡk):
unfolding of the heteroclinic quasi-transverse orbits. Unfolding suitably
the quasi-transverse Zj we generates a uu-disc simultaneously contained
in W u(Q, fj,`,ῡk) and in the superposition region of the blender Λj,`,k (see
Proposition 8.1.4). From Lemma 3.4.5, the manifolds W s

loc(Λj,`,k, fj,`,ῡk)
and W u(Q, fj,`,ῡk) is meet Cr-robustly. We continue to denote by fj,`,ῡk
this last diffeomorphism. Zj (see Section 8.1).

F Transverse intersection between W u(Λj,`,k, fj,`,ῡk) and
W s(Q, fj,`,ῡk): growth of the size of the strong unstable leaves of the
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blender. We begin observing that the definition of G(ξ,µ,0,0)|∆ imply
that the unstable manifolds of its left reference P+

ξ,µ, growth along
of the uu-direction quadratically in relation to the height of the box
∆. This gives estimations on the growth of the unstable manifold of
the reference P+

j,`,k of Λj,`,k in the chart Φ−1
k of the renomalisations

scheme of f . Since Φk(∆) → {Ỹ }, then for every small neighbour-
hood W s ⊂ W s

loc(Q, fj,`,ῡk) of Ỹ it holds that Ψ−1
k (W s) moves away

from ∆. A careful choices of increasing domains ∆̃k ⊂ ∆ we guar-
antees that W u(P+

ξ,µ, G(ξ,µ,0,0)|∆̃k
) meet transversely to Ψ−1

k (W s) (see
Lemma 8.2.8) and that ‖(Φ−1

k ◦ Rk(fj,`,k) ◦ Φk − G(ξ,µ,0,0))|∆̃k
‖Cr → 0

(see Lemma 8.2.11). This imply that W u(P+
j,`,k,Φ−1

k ◦ Rk(fj,`,k|∆̃k
) and

Ψ−1
k (W s) it meets transversely (see Section 8.2).

F Homoclinic relations between Λj,`,k and P . These relations are
obtained from the heteroclinic relation in the cycle above. Our bifurcation
setting imply that W u(P, fj,`,ῡk) t W s

loc(Q, fj,`,ῡk) 6= ∅. On the other
hand, the stable manifold of P+

j,`,k is dense in W s
loc(Q, fj,`,ῡk) and thus

W u(P, fj,`,ῡk) t W s(P+
j,`,k, fj,`,ῡk) 6= ∅.

The irrationality of angular argument and the heteroclinic connections
associated to point Z∗` implies that the manifoldW s(P, fj,`,ῡk) is dense in
W s

loc(Q, fj,`,ῡk). Since W u(P ∗j,`,k, fj,`,ῡk) meet transversely the last mani-
folds obtaining

W s(P, fj,`,ῡk) t W u(P ∗j,`,k, fj,`,ῡk) 6= ∅.

Therefore, P and P ∗j,`,k are homclinically related (see Section 8.3.1).

We now go into the details of these constructions.

8.0.0.1
Unfolding of the heteroclinic quasi-transverse orbits

Let f ∈ NP,Q(T ∗
b̄0

). Consider the sequence of perturbations fi,j,` of f in
Remark 7.0.14. The next results, not involves the subscript i, for this reason
this will be omitted along of this section. Consider the renormalisation fj,`,ῡk
of fj,` given in Theorem 2. Note that for any large and fixed k, `, the points Zj
and Z∗` are heteroclinic points of fj,`,ῡk for every k large enough. Let us now
to unfold the point Zj of fj,`,ῡk . More precisely, we consider perturbations of
the form

θj,k ◦ fN1
j,`,ῡk
|UZj : UZj → U

Z̃j
, (8.0.1)
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where θj,k is a Cr-perturbation of identity supported in a small neighbourhood
of

Z̃j := fN1
j,`,ῡk

(Zj) ∈ W s
loc(P, fj,`,ῡk).

Note that by the comments above we have

θj,k ◦ fN1
j,`,ῡk
|UZj = θj,k ◦ fN1

j,` |UZj ,= θj,k ◦ fN1|UZj ,

for every k large enough. To build such perturbations of identity, we consider
the following preliminary ingredients:

– A Cr-bump function

b : R→ [0, 1],


b(x) = 0 for |x| ≥ 1

2 ,

0 < b(x) < 1 for 1
3 < |x| <

1
2 ,

b(x) = 1 for |x| ≤ 1
3 .

(8.0.2)

Let C = C(r) > 0 be the Cr-norm of b, i.e.,

C := max
1≤i≤r

sup
x∈[−1/2,1/2]

|b(i)(x)|, (8.0.3)

where b(i)(x) denote the ith-derivative of b in x.

– Fix 0 < λ < 1 such that λQ < λr. Recall the sojourn time nk

(see Subsection (5.3.5)) associated to the renormalisation fj,`,ῡk of fj,`.
Consider the sequence of neighbourhoods Uj,k ⊂ UP centered in Z̃j given
by

Uj,k :=
{

(x, y, z) + Z̃j : |x|, |y|, |z| < λnk

2

}
. (8.0.4)

– The sequence of Cr-bump functions Bk : R3 → R defined by

Bk(x, y, z) := λnkP B
(
x

λnk
,
y

λnk
,
z

λnk

)
, (8.0.5)

where
B(x, y, z) = b(x)b(y)b(z).

Remark 8.0.1 Note that the support of Bk is U j,k − {Z̃j} and

Bk(x, y, z) = λnkP if and only if |x|, |y|, |z| < λnk

3 .

.

Recall the convergence of the sequence σmkP λnkQ in (5.3.18). We are now
ready to define θj,k.

Definition 8.0.2 The map θj,k : M →M is defined by
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– if (x, y, z) + Z̃j ∈ Uj,k, then

θj,k
(
Z̃j + (x, y, z)

)
= Z̃j + (x, y, z) +Bk(x, y, z)

(
0,
√

2
σmkP λnkQ

, 0
)
. (8.0.6)

– otherwise the map is the identity.

Recalling that λQ < λr, the constant C > 0 in (8.0.3) and taking K > 0
such that |

√
2

σ
mk
P λ

nk
Q

| < K we have that the inequality it is easy to check that

‖θj,k − id‖r ≤ K C3
(
λQ
λr

)nk
→ 0. (8.0.7)

Let gj,`,k the local Cr-perturbation of fj,`,ῡk defined by the condition

gN1
j,`,k := θj,k ◦ fN1

j,`,ῡk
= θj,k ◦ fN1

j,`,ῡk
|UZj . (8.0.8)

Next lemma assert that for every large and fixed j, `, we can take k large
enough such that the perturbation θj,k does not modify the orbit of blender of
of fj,`,ῡk .

Lemma 8.0.3 For every large and fixed j and ` there exists k(j, `) ∈ N such
that for every k ≥ k(j, `) it holds:

(i) the restrictions of fj,`,ῡk and gj,`,k to the domain of definition of the
blender Λj,`,k coincide and

(ii) Z∗` is a heteroclinic orbit of gj,`,k.

Proof. We note that since gj,`,k is obtained from fj,`,ῡk by the bifurcation of
the point Z̃j = (1 + x̃j, 0, 0) it sufficient to verify that the renomalisations
scheme not does modified in the neighbourhood of X̃ = (1, 0, 0), that is, the
coordinates of (fi,j,ῡk)N1+nk ◦ Ψmk,nk(∆) is far of support of θj,k for every big
sufficient k. To this, we will exhibit a k(j, `) and a local Cr-perturbation of the
identity θ̃k, satisfying lim ‖θ̃k − id‖r = 0, and such that for every k ≥ k(j, `) it
holds:

– fN1
j,`,ῡk
|fnki,j,ῡk◦Ψmk,nk (∆) = θ̃k ◦ fN1

j,` |fnki,j,ῡk◦Ψmk,nk (∆) = θ̃k ◦ fN1|fnki,j,ῡk◦Ψmk,nk (∆),

and

– the sets supp(θ̃k) and U j,k are disjoint, and fj,`,ῡk(Z∗` ) /∈ supp(θ̃k)∪U j,k.

These two points above imply the items (i) and (ii) in the lemma. We now
proceed to construction of θ̃k.

Recalling that fN1
j,` (X) = fN1(X) = X̃ and the sojourn time nk involved

in ῡk = ῡmk,nk , consider the open sets
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UX,k :=
{

(x, y, z) + X̃ : |x|, |y|, |z| < λnk

2

}
, λQ < λr. (8.0.9)

We define the local perturbations of the identity supported in UX,k by

θ̃k : UX,k → UX,k, θ̃k
(
(x, y, z) + X̃

)
= (x, y, z) + X̃ +Bk(x, y, z) ω̃k,

where the map Bk is defined in (8.0.5) and the vector ω̃k is given by

ω̃k :=
(
sk − ck,

√
2

σPmkλ
nk
Q

− λnkQ ρ̃2,k,−(sk + ck)− λnkQ ρ̃3,k

)
,

where sk, ck, σPmkλnkQ , and ρ̃2,k, ρ̃3,k are the convergent sequences defined
in Remark 5.3.10, (5.3.18) and (5.3.23), respectively. In particular, sequence
of vectors ω̃k is convergent. This implies that θ̃k is a Cr-perturbation of the
identity whose support is UX,k for every k large enough. The lemma now follows
from the next claim.

Claim 8.0.4 For every big j, ` there exits k(j, `) ≥ 1 such that for every large
enough k ≥ k(j) it holds

(i) UX,k ∩ U j,k = ∅
(ii) fj,`,ῡk(Z∗` ) /∈ UX,k ∪ U j,k = ∅ and
(iii) f̃N1

j,`,ῡk
|UX = θ̃k ◦ f̃N1

j,` |UX = θ̃k ◦ fN1|UX .

Proof. For the first part recall that X̃ = (1, 0, 0) and Z̃j = (1 + x̃j, 0, 0), where
x̃j → 0. We let Z̃∗` := f̃j,`(Z∗` ) := (1 + x̃∗` , 0, 0). We choose k(j, `) ≥ 1 such that

λnk < min
{
|x̃j|, |x̃∗` |, |x̃j − x̃∗` |

}
for every k ≥ k(j, `).

This choice immediately implies that

UX,k ∩ U j,k = ∅, Z̃∗` /∈ UX,k ∪ U j,k for every k ≥ k(j, `).

For the second part, recall the coordinates in (5.3.25) and the equations
(5.3.26) and (5.3.7). The neutral condition (5.3.18) imply that each coor-
dinates from

fN1 |UX ◦ f
nk
Q,ϕ+α̃mk,nk (ϕ) ◦Ψk(∆)− X̃,

has a symbol of Landau equal to O(λnkQ ) (here ϕ̃ is the argument associated
to rotation fj,`|UP , ϕ is the argument associated to rotation fj,`|UQ and
α̃mk,nk,ϕ̃,ϕ(·) = α̃mk,nk,ϕ̃,ϕ(·)). This imply that the map Bk(x, y, z) restrict to
set

fN1 |UX ◦ f
nk
Q,ϕ+α̃mk,nk (ϕ) ◦Ψk(∆)− X̃,
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is equal to λnkQ for every k big sufficient (see Remark 8.0.1). We conclude the
proof observing that the vector νmk,nk in (5.3.24) satisfies λQnk ω̃k = νmk,nk . �
The proof of the lemma is now complete. �

In the next remark we white explicitly the definition of the perturbation
gj,`,k (including the omitted subscript i)

Remark 8.0.5 For f ∈ NP,Q(T ∗
b̄0

), we recall the sequence of Cr-perturbations
fi,j,` of f in Remark 7.0.14. Recall that the local dynamics of fi,j,` in Re-
mark 7.0.11 is given by

LocDyn(fi,j,`) = (λP , σP , ϕ̃i, λQ, σQ, ϕ̂j),

such that ϕ̃i → ϕP , and ϕ̂j → ϕQ. We observe that the subscript ` in fi,j,` is
associated to a local perturbation along of the unstable manifold of Q that not
modify the parameters above (see Lemma 7.0.13).

Finally, recalling the notation in (5.3.19) and taking k ≥ k(j, `) the
diffeomorphism gj,`,k = gi,j,`,k in (8.0.8) is defined by small Cr-perturbation of
fi,j,` given by the following equations

gj,`,k|UP = gi,j,`,k|UP := fP,ϕi+ᾱmk,nk (ϕi), ϕ̃i → ϕP ;

gj,`,k|UQ = gi,j,`,k|UQ = fQ,ϕ̂j+ᾱmk,nk (ϕ̂j), ϕ̂j → ϕQ;

gN1
j,`,k|UX := gN1

i,j,`,k|UX = (fi,j,`)N1
X,ν̄mk,nk

,

gN1
j,`,k|UZj := gN1

i,j,`,k|UZj = fN1
i,j,`,k|UZj = θj,mk ◦ f

N1
i,j,`|UZj ,

gN2
j,`,k|UY := gN2

i,j,`,k|UY = (fi,j,`)N2
Y,µ̄mk,nk (µ).

(8.0.10)

Remark 8.0.6 Recall the definition of ᾱmk,nk(·) in the renomalisation scheme,
see Section 5.3.6. In the equation (8.0.10), it holds that

ᾱmk,nk(·) = ᾱmk,nk,ϕi,ϕ̂j(·).

We observe that, by definition, ϕ̂j + ᾱmk,nk(ϕ̂j) is a irrational number for every
j, k.

8.1
One-dimensional connections

The main result in this section is the next proposition that provides the
one-dimensional connection between the stable manifold of blender Λi,j,`,k and
unstable manifold of the saddle Q of the diffeomorphism gi,j,`,k in (8.0.10).
More precisely,
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Proposition 8.1.1 For every i,j, ` and k large sufficient it holds

W s
(
Λi,j,`,k, gi,j,`,k

)
t W u

(
Q, gi,j,`,k

)
6= ∅

Cr-robustly.

The proof of this result not involve the sub-scrips i and `. For notational
simplicity along of this section them will be omitted from notation above.

To prove this proposition we need to recall some properties and defini-
tions. Recall the sequence of parameterisations Ψmk,nk : R3 → UQ in (5.3.20),
the coordinate changes Θ : R4 → R4 in (6.4.1) and Θ̃ : R3 → R3 in Re-
mark 4.1.1, associated to these maps we consider

Φmk,nk : R3 → UQ, Φmk,nk(X) = Ψmk,nk ◦Θ ◦ Θ̃(X). (8.1.1)

Remark 8.1.2 Notice that map Θ is a coordinate change in R4. The maps
Φmk,nk is defined in precise form extending naturally the maps Θ̃ and Ψmk,nk

to whole R4 as

(µ, x, y, z)→ (µ, Θ̃(x, y, z)), (µ, x, y, z)→ (µ,Ψmk,nk(x, y, z)).

However, by notational simplicity, in what follows we will preserve the abuse
of notation in the equation (8.1.1).

Recall also the renormalised sequences Rmk,nk(·) in Theorem 2 and that
the blender Λj,k of Rmk,nk(gj,k) is the maximal invariant in

∆k := Φmk,nk(∆), ∆ = [−4, 4]2 × [−40, 22] ⊂ R3, (8.1.2)

that is,
Λj,k =

⋂
`∈Z

(
Rmk,nk(gj,k)

)`
(∆k). (8.1.3)

Let G(ξ,µ,κ,η)|∆ be as in Theorem 2 and consider the curve ¯̀ :=
{

(0, y, 0) :

|y| < 4
}
. Then, ¯̀ is a uu-disc in the region of superposition of the blender of

G(ξ,µ,κ,η)|∆. For large k ≥ 1 we consider the curve

¯̀
k := Φmk,nk(¯̀) ⊂ ∆k. (8.1.4)

The Cr-convergence Φ−1
mk,nk

◦Rmk,nk(gj,k)◦Φmk,nk → G(ξ,µ,0,0) imply that,
for every sufficiently large k, the segment

Φ−1
mk,nk

◦ (gj,k)N2+m+N1+nk(¯̀
k),

contains a uu-disc in the region of superposition of blender Λj,k.
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Following the construction in (21, Proposition 6.3) we now see that
there is a disc contained in W u(Q, gj,k) whose return to the heterodimensional
tangency (considered in the chart Φ−1

mk,nk
) is arbitrarily Cr-close to Φ−1

mk,nk
◦

(gj,k)N2+m+N1+nk(¯̀
k). We now go to the details of this construction.

Recall the choice of the heteroclinic point Zj = (xj, 1 + yj, zj) in
Remark 7.0.14 and the transition map fN1

j : UZj → UZ̃j in (7.0.16), with
Z̃j = fj(Zj) = (1 + x̃j, 0, 0),

fN1
j


x+ xj

y + yj + 1
z + zj

 =


1 + x̃j + x+ H̃j

1(x, y, z)
y + H̃j

2(x, y, z)
z + H̃j

3(x, y, z)

 , (8.1.5)

where

H̃j
k(x, y, z) := H̃k(xj + x, yj + y, zj + z)− H̃k(xj, yj, zj), k = 1, 2, 3.

Note that for k = 1, 2, 3, it holds H̃j
k(0) = 0 and if j → +∞ then

∂

∂x
H̃j
k(0), ∂

∂y
H̃j
k(0), ∂

∂z
H̃j
k(0)→ 0, k = 1, 2, 3. (8.1.6)

Note that fN1
j |UZj = fN1|UZj . We write this transition map compactly as

fN1
j (Zj +W ) = Z̃j +W + H̃j(W ), Zj +W ∈ UZj .

Choosing small δ > 0 and an unitary vector Vj in TZjW u(Q, f̃j) we can
write (in local coordinates) the local unstable manifold of Zj contained in UZj
as

`u
j =

{
Zj + t Vj + ρ̄j(t) : |t| < δ

}
, (8.1.7)

where

Zj =
(
xj, 1 + yj, zj

)
, xj, yj, zj → 0;

Vj =
(
vj1, 1 + vj2, v

j
3

)
, ||Vj|| = 1, Vj → (0, 1, 0);

ρ̄j(t) =
(
ρj1(t), ρj2(t), ρj3(t)

)
,

d

dt
ρ̄j(0) = ρ̄j(0) = 0.

(8.1.8)

The λ-lemma (see (38, Theorem 2)) implies that ‖ρ̄j|[−δ,δ]‖r → 0, as j → +∞.
Recall gN1

j,k |UZj in (8.0.10). Consider the segment

˜̀u
j,k := gN1

j,k (`u
j ) = θj,k ◦ fjN1(`u

j ).
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From definition of θj,k in (8.0.6) we have that

˜̀u
j,k =

{
Z̃j + t Vj + ρ̄j(t) + H̃j(t Vj + ρ̄j(t))+

+Bk

(
t Vj + ρ̄j(t) + H̃j(t Vj + ρ̄j(t))

)(
0,
√

2
σmkP λnkQ

, 0
)

: |t| < δ
}
.

We rewrite the segment ˜̀u
j,k as follows

˜̀u
j,k =

{
Z̃j + tWj + ρ̃j(t)+

+Bk

(
tWj + ρ̃j(t)

)(
0,
√

2
σmkP λnkQ

, 0
)

: |t| < δ
}
,

(8.1.9)

where

Wj :=
(
id +DH̃j(0)

)
Vj, ρ̃j(t) := ρ̄j(t) + H̃j(t Vj + ρ̄j(t))− tDH̃j(0)Vj.

Note that d

dt
(ρ̃j)(0) = ρ̃j(0) = 0. (8.1.10)

We let Wj = (wj1, wj2, wj3). From (8.1.8) and (8.1.6) it holds
wj1

wj2

wj3

 =


(
1 + ∂

∂x
H̃j

1(0)
)
vj1 + ∂

∂y
H̃j

1(0)
(
1 + vj2

)
+ ∂

∂z
H̃j

1(0) vj3
∂
∂x
H̃j

2(0) vj1 +
(
1 + ∂

∂y
H̃j

2(0)
)(

1 + vj2
)

+ ∂
∂z
H̃j

2(0) vj3
∂
∂x
H̃j

3(0) vj1 + ∂
∂y
H̃j

3(0)
(
1 + vj2

)
+ (1 + ∂

∂z
H̃j

3(0)) vj3

 , (8.1.11)

where wj1, wj3 → 0 and wj2 → 1. For big j ≥ 1, consider

w̃j1 := wj1
wj2

and w̃j3 := wj3
wj2

where w̃j1, w̃
j
3 → 0. (8.1.12)

Thus, writing ρ̃j(t) =
(
ρ̃1
j(t), ρ̃2

j(t), ρ̃3
j(t)

)
, we can express the segment

˜̀u
j,k as

˜̀u
j,k :=

{(
1 + x̃j + x̃j,k(t), ỹj,k(t), z̃j,k(t)

)
: |t| < δ

}
,

where

x̃j,k(t) = t w̃j1 + ρ̃1
j

(
t

wj2

)
,

ỹj,k(t) = t+ ρ̃2
j

(
t

wj2

)
+

√
2

σmkP λnkQ
Bk

(
t

wj2
Wj + ρ̃j

(
t

wj2

))
,

z̃j,k(t) = t w̃j3 + ρ̃3
j

(
t

wj2

)
.

For sufficient large j, consider the sub-segment `j,k of ˜̀u
j,k (obtained
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rescaling the parameter t by the factor σ−2mk
P σQ

−nk ς2) given by

`j,k :=
{

(1 + x̃j + xj,k(t), yj,k(t), zj,k(t)) : |t| < δ
}
,

where

xj,k(t) := σ−2mk
P σQ

−nk w̃j1 ς2 t+ ρ̃1
j,k(t),

yj,k(t) := σ−2mk
P σQ

−nk ς2 t+ ρ̃2
j,k(t)+

+
√

2
σmkP λnkQ

Bk

(
σ−2mk
P σQ

−nk ς2

wj2
tWj+

+ ρ̃j

(
σ−2mk
P σQ

−nk ς2

wj2
t
))
,

zj,k(t) := σ−2mk
P σQ

−nk w̃j3 ς2 t+ ρ̃3
j,k(t),

(8.1.13)

and
ρ̃kj,k(t) = ρ̃kj

(
σ−2mk
P σQ

−nk ς2 t

wj2

)
, k = 1, 2, 3.

Claim 8.1.3 For every large sufficient k, it holds

Bk

(
σ−2mk
P σQ

−nk ς2

wj2
tWj + ρ̃j

(
σ−2mk
P σQ

−nk ς2

wj2
t

))
= λnkQ .

Proof.
We recall the constant 0 < λQ < λ < 1 involved in the definition of Bk(·)

in (8.0.5). From Remark 8.0.1 it is sufficient verify that every coordinate of

σ−2mk
P σQ

−nk ς2

wj2
tWj + ρ̃j

(
σ−2mk
P σQ

−nk ς2

wj2
t

)
(8.1.14)

is less than λnk
3 . To see this, we note that as |t| < δ, each coordinate of (8.1.14)

has a Landau symbol equal to σ−2mk
P σQ

−nk . Since σmkP λQ
nk convergence to a

number different of zero (see equation (5.3.18)) we have that

σ−2mk
P σQ

−nk =
σ−mkP σQ

−nkλnkQ
σmkP λnkQ

≤ λnkQ ,

for every big k. This imply that each coordinate in (8.1.14) is less than λmk
3 ,

for every k large enough. This completes the proof of claim. � Return to the
coordinates in (8.1.13), we get that yj,k(t) is given by

yj,k(t) = σ−2mk
P σQ

−nk ς2 t+ ρ̃2
j,k(t) +

√
2σ−mkP .

Recalling the definition of the curve ¯̀
k in (8.1.4) we state what following:
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Proposition 8.1.4 The Cr-distance between the segments Φ−1
mk,nk

◦
gN2+mk
j,k (`j,k) and Φ−1

mk,nk
◦ gN2+mk+N1+nk

j,k (¯̀
k) goes to zero as j, k → +∞.

Remark 8.1.5 As an immediate consequence of Proposition 8.1.4 we have
that the saddle Q activates the blender Λj,k, that is, the unstable manifold
of Q contains a uu-disc in the region of the superposition of the blender, see
Remark 3.4.3.

Proof.[Proof of Proposition 8.1.4] The proof follows considering calculations
similar to the ones in the proof of Theorem 2. Recall the definition of
Φmk,nk = Ψmk,nk ◦ Θ ◦ Θ̃ in (8.1.1). We will consider parameterizations γ̄k(t)
and γj,k(t) (with common domains) of the curves ¯̀

k and `j,k and estimate the
Cr-distance:

‖Φ−1
mk,nk

◦ gN2+mk+N1+nk
j,k (γ̄k(t))− Φ−1

mk,nk
◦ gN2+mk

j,k (γj,k(t))‖r ≤

‖Θ̃−1 ◦Θ−1‖r ‖Ψ−1
mk,nk

◦
(
gN2+mk+N1+nk
j,k (γ̄k(t))− gN2+mk

j,k (γj,k(t)
)
‖r.

(8.1.15)

Since the coordinate change Θ ◦ Θ̃ is bounded and independent of mk and nk,
it is sufficient to check that the last Cr-norm goes to zero as j, k → +∞.

We recall that our bifurcation setting (see Remark 7.0.3) imply that

b2 − b3 = b2 + b3 − b4 = 0.

• The segment Ψ−1
mk,nk

◦ gN2+mk+N1+nk
j,k (¯̀

k). Consider any point (0, t, 0) ∈
Φ−1
mk,nk

(¯̀
k) where |t| < 4, and we let

γ̄k(t) = (x̄k(t), ȳk(t), z̄k(t)) := Ψ−1
mk,nk

◦ gN2+mk+N1+nk
j,k ◦ Φmk,nk(0, t, 0).

Recalling coordinates (5.3.37) we have that

x̄k(t) = ς1 ς2 t+ a1 λP
mk σmkP σQ

nk H̃1
(
xk(t)

)
+ σmkP σQ

nkH1
(
x̂k(t)

)
,

ȳk(t) = µ+ ς3
2 t

2 + b1 λP
mk σ2mk

P σQ
2nkH̃1

(
xk(t)

)
+ σ2mk

P σQ
2nk H2

(
x̂k(t)

)
,

z̄k(t) = ς5 ς2 t+ c1 λP
mk σmkP σQ

nkH̃1
(
xk(t)

)
+ σmkP σQ

nk H3
(
x̂k(t)

)
,

where xk(t) and x̂k(t) in the higher order terms are given by

xk(t) = gnkj,k ◦ Φmk,nk(0, t, 0)− (0, 1, 0),

x̂k(t) = gmk+N1+nk
j,k ◦ Φmk,nk(0, t, 0)− (0, 1, 1).

(8.1.16)

• The segment Ψ−1
mk,nk

◦ gN2+mk
j,k (`j,k). Recall that

`j,k =
{(

1 + x̃j + xj,k(t), yj,k(t), zj,k(t)
)

: |t| < δ
}

(8.1.17)
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where the coordinates xj,k(t), yj,k(t), and zj,k(t) are given in (8.1.13). Write

γj,k(t) = (x̃j,k(t), ỹj,k(t), z̃j,k(t))

: = Ψ−1
mk,nk

◦ gN2+mk
j,k

(
x̃j + xj,k(t), yj,k(t), zj,k(t)

)
.

(8.1.18)

Applying fmkj,k = gmkj,k (recall (8.0.10)) to
(
1 + x̃j + xj,k(t), yj,k(t), zj,k(t)

)
we get

(x̂j,k(t), 1 + ŷj,k(t), 1 + ẑj,k(t)) := gmkj,k
(
1 + x̃j + xj,k(t), yj,k(t), zj,k(t)

)
. (8.1.19)

where

x̂j,k(t) = λP
mk (1 + x̃j) + λP

mkσ−2mk
P σQ

−nk w̃j1 ς2 t+ λP
mk ρ̃1

j,k(t),

ŷj,k(t) =
(

1− w̃j3√
2

)
σ−mkP σQ

−nk ς2 t+ σP
mk

(
ρ̃2
j,k(t)− ρ̃3

j,k(t)√
2

)
,

ẑj,k(t) =
(

1 + w̃j3√
2

)
σ−mkP σQ

−nk ς2 t+ σP
mk

(
ρ̃2
j,k(t) + ρ̃3

j,k(t)√
2

)
.

(8.1.20)

The definitions of ρ̃kj,k(t) in (8.1.13) and ρ̃j(t) in (8.1.9) imply that the
symbols

O
(
ρ̃2
j,k(t)

)
, O

(
ρ̃3
j,k(t)

)
, O

(
ρ̃2
j,k(t)± ρ̃3

j,k(t)
)
' O(σ−4m

P σQ
−2nk). (8.1.21)

Thus the symbols of Landau of x̂j,k(t), ŷj,k(t) and ẑj,k(t) are given by

x̂j,k(t) = O(λPmk),

ŷj,k(t) = ẑj,k(t) = O(σ−mkP σQ
−nk) +O(σ−3mk

P σQ
−2nk).

(8.1.22)

Finally, we apply Ψ−1
mk,nk

◦gN2
j,k to the point (x̂j,k(t), 1+ŷj,k(t), 1+ẑj,k(t)) in

(8.1.20) to get the coordinates (x̃j,k(t), ỹj,k(t), z̃j,k(t)) in (8.1.18). For notational
simplicity, let us introduce the following terms

uj,k(t) := ρ̃2
j,k(t)− ρ̃3

j,k(t); vj,k(t) := ρ̃2
j,k(t) + ρ̃3

j,k(t). (8.1.23)

Recalling the definitions of Ψ−1
mk,nk

in (5.3.36) and of gN2
j,k in (8.0.10) and that

gN2
j,k coincides with fN2

Y,µ̄mk,nk (µ) (see (5.3.19), Remark (5.3.4), and (5.3.9)), and
the definition of µ̄mk,nk(µ) in (5.3.21), we get
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x̃j,k(t) = a1 λP
mkσmkP σQ

nk (1 + x̃j)+

+
(
a1 λP

mkσP
−mkw̃j1 + a2

(
1− w̃j3√

2

)
+ a3

(
1 + w̃j3√

2

))
ς2 t+

+ a1 λP
mkσmkP σQ

nk ρ̃1
j,k(t) + a2 σ

2mk
P σQ

nkuj,k(t) + a3 σP
2mkσQ

nkvj,k(t)+

+ σmkP σQ
nkH1

(
x̂j,k(t)

)
;

ỹj,k(t) = µ+ b1 λP
mkσ2mk

P σQ
2nk (1 + x̃j)+

+ b1 λP
mkσ2mk

P σQ
2nk ρ̃1

j,k(t) + b1 λP
mkσnkQ w̃j1 ς2 t+

+
(
b2

(
(1− w̃j3)2

2

)
+ b3

(
(1 + w̃j3)2

2

)
+ b4

(
1− (w̃j3)2

2

))
ς2
2 t

2+

+ σ2mk
P σQ

2nk uj,k(t)
(

2 b2 σQ
−nk

(
1− w̃j3√

2

)
ς2 t+ b2 σP

2mkuj,k(t)
)

+

+ σ2mk
P σQ

2nk vj,k(t)
(

2 b3 σQ
−nk

(
1 + w̃j3√

2

)
ς2 t+ b3 σP

2mkvj,k(t)
)

+

+ b4 σ
2mk
P σQ

nk ς2 t

((
1 + w̃j3√

2

)
uj,k(t) +

(
1− w̃j3√

2

)
vj,k(t)

)
+

+ b4 σ
4mk
P σQ

2nkuj,k(t)vj,k(t) + σ2mk
P σQ

2nkH2
(
x̂j,k(t)

)
;

z̃j,k(t) = c1 λP
mkσmkP σQ

nk (1 + x̃j)+

+
(
c1 λP

mkσP
−mkw̃j1 + c2

(
1− w̃j3√

2

)
+ c3

(
1 + w̃j3√

2

))
ς2 t+

+ c1 λP
mkσmkP σQ

nk ρ̃1
j,k(t) + c2 σ

2mk
P σQ

nkuj,k(t) + c3 σ
2mk
P σQ

nkvj,k(t)+

+ σmkP σQ
nkH3

(
x̂j,k(t)

)
;

where

x̂j,k(t) := (x̂j,k(t), ŷj,k(t), ẑj,k(t)
)

= gmkj,k (xi,k(t), yj,k(t), zj,k(t)
)
− (0, 1, 1).

Recall this last terms in equation (8.1.20).
We are now ready to compare the coordinates of γj,k(t) and γ̄k(t). For

that first recall that

ς1 = a2 + a3√
2

, ς2 = b2 + b3 + b4

2 , ς5 = c2 + c3√
2

we have that
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x̃j,k(t)− x̄k(t) = a1 λP
mkσmkP σQ

nk x̃j +
(
a1 λP

mkσP
−mkw̃j1 + (a3 − a2)√

2
w̃j3

)
ς2 t+

+ a1 λP
mkσmkP σQ

nk ρ̃1
j,k(t) + a2 σ

2mk
P σQ

nkuj,k(t) + a3 σ
2mk
P σQ

nkvj,k(t)+

+ σmkP σQ
mkH1

(
x̂j,k(t)

)
− a1λP

mkσmkP σQ
nkH̃1

(
xk(t)

)
− σmkP σQ

nkH1
(
x̂k(t)

)
;

ỹj,k(t)− ȳk(t) = b1λP
mkσ2mk

P σQ
2nk x̃j + b1 λP

mkσ2mk
P σQ

2nk ρ̃1
j,k(t) + b1 λP

mkσnkQ w̃j1 t+

+
(
b2

(
−w̃j3 + (w̃j3)2

2

)
+ b3

(
−w̃j3 + (w̃j3)2

2

)
− b4

(w̃j3)2

2

)
ς2
2 t

2+

+ σ2mk
P σQ

2nk uj,k(t)
(

2 b2 σ
−nk
Q

(
1− w̃j3√

2

)
ς2 t+ b2 σP

2mkuj,k(t)
)

+

+ σ2mk
P σQ

2nk vj,k(t)
(

2 b3 σ
−nk
Q

(
1 + w̃j3√

2

)
ς2 t+ b3σP

2mkvj,k(t)
)

+

+ b4σ
2mk
P σQ

nk ς2 t

((
1 + w̃j3√

2

)
uj,k(t) +

(
1− w̃j3√

2

)
vj,k(t)

)
+

+ b4σ
4mk
P σQ

2nkuj,k(t) vj,k(t) + σ2mk
P σQ

2nkH2
(
x̂j,k(t)

)
−

− b1λP
mkσ2mk

P σQ
2nkH̃1

(
xk(t)

)
− σ2mk

P σQ
2nkH2

(
x̂k(t)

)
;

z̃j,k(t)− z̄k(t) = c1 λP
mkσmkP σQ

nk x̃j +
(
c1 λP

mkσP
−mkw̃j1 + (c3 − c2)√

2
w̃j3

)
ς2 t+

+ c1 λP
mkσmkP σQ

nk ρ̃1
j,k(t) + c2 σ

2mk
P σQ

nkuj,k(t) + c3 σ
2mk
P σQ

nkvj,k(t)+

+ σmkP σQ
nkH3

(
x̂j,k(t)

)
− c1 λP

mkσmkP σQ
nkH̃1

(
xk(t)

)
− σmkP σQ

nkH3
(
x̂k(t)

)
.

Landau symbols of the coordinates of x̂j,k(t) in (8.1.22), imply the convergence
to 0 of the following higher order terms

σmkP σQ
nkHl

(
x̂j,k(t)

)
, λP

mkσmkP σQ
nkH̃l

(
xk(t)

)
, σmkP σQ

nkHl

(
x̂k(t)

)
, l = 1, 3,

in the expresions x̃j,k(t)− x̄k(t) and z̃j,k(t)− z̄k(t).
On the other hand, the Cr-convergence to zero of the higher order terms

σ2mk
P σQ

2nkH2
(
x̂j,k(t)

)
, λP

mkσ2mk
P σQ

2nkH̃1
(
xk(t)

)
, σ2mk

P σQ
2nkH2

(
x̂k(t)

)
,

in ỹj,k(t)− ȳk(t) were already obtained in the proof of Theorem 2 (see (5.3.8)).
Now we analyze the convergence of the associated terms ρ̃1

j,k(t), uj,k(t)
and vj,k(t) contained in

(
x̃j,k(t)− x̄k(t), ỹj,k(t)− ȳk(t), z̃j,k(t)− z̄k(t)

)
.

The Landau symbols of ρ̃1
j,k(t), uj,k(t) and vj,k(t) in (8.1.21) imply that

λP
mkσmkP σQ

nk ρ̃1
j,k(t) = O(λPmkσ−3mk

P σQ
−nk),
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and
σ2mk
P σQ

2nkuj,k(t) = σ2mk
P σQ

2nkvj,k(t) = O(σP−2mk).

Thus, the terms λPmkσmkP σQ
nk ρ̃1

j,k(t), σ
2mk
P σQ

2nkuj,k(t) and σ2mk
P σQ

2nkvj,k(t) are
convergent to zero in the Cr-topology as k → +∞.

Therefore, it remains to study the convergence of the linear parts in
x̃j,k(t)− x̄k(t) and z̃j,k(t)− z̄k(t), and of the quadratic part of ỹj,k(t)− ȳk(t).

The linear part in x̃j,k(t)− x̄k(t) is given by

a1λP
mkσmkP σQ

nk x̃j +
(
a1 λP

mkσP
−mkw̃j1 + (a3 − a2)√

2
w̃j3

)
ς2 t. (8.1.24)

For that recall the spectral condition in (5.3.4), 0 < (λP
1
2σP )ησQ < 1, with

η = log λ−1
Q

log σP . By Lemma 5.3.6 there is a constant C > 0 such that

(
λP

1
2σP

)mk
σnkQ < C

(
(λP

1
2σP )ησQ)nk .

Thus, when k → +∞ we have that

λP
mkσ2mk

P σQ
2nk =

(
λP

mk
2 σP

mkσnkQ
)2
<
(
C(λP

1
2σP )ησQ)nk

)2
→ 0. (8.1.25)

This implies that the constant term in (8.1.24) goes to 0 as k → +∞.
Recalling that w̃j1, w̃j3 → 0 in (8.1.12), we get that factor that multiply t

in (8.1.24)

a1 λP
mkσP

−mkw̃j1 + (a3 − a2)√
2

w̃j3

tends to zero, when j, k → +∞. This last assertion jointly with the convergence
in (8.1.25), imply that the C1-norm (and therefore the Cr-norm) of linear part
(8.1.24) tend to zero when j and k tends to infinity. Therefore, |x̃j,k(t)− x̄k(t)|r
tend to zero when j and k tend to infinity. The same arguments apply to the
convergence of |z̃j,k(t)− z̄k(t)|r.

On the other hand, the quadratic part of ỹj,k(t)− ȳk(t) is given by

b1 λP
mkσ2mk

P σQ
2nk(x̃j − 1) + b1 λP

mkσnkQ w̃j1 t+

+
(
b2

(
−w̃j3 + (w̃j3)2

2

)
+ b3

(
−w̃j3 + (w̃j3)2

2

)
− b4

(w̃j3)2

2

)
ς2
2 t

2
(8.1.26)

The convergence w̃j3 → 0, imply that the C2-norm (and therefore the Cr-norm)
of the expression in (8.1.26) tend to zero when j and k goes to infinity. This
implies that |ỹ(t) − y(t)|r tends to zero when j and k tend to infinity. This
completes the proof of Proposition 8.1.4. �

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 8. Proof of Theorem 7.0.4: construction of gk 129

8.2
Two-dimensional connections

The main result in this section is the next proposition that provides the
two-dimensional connection between the unstable manifold of blender Λi,j,`,k

and stable manifold of the saddle Q to the diffeomorphism gi,j,`,k in (8.0.10).
More precisely, we have the following proposition.

Proposition 8.2.1 For every i, j, ` and k we have the following transverse
intersection

W u
(
Λi,j,`,k, gi,j,`,k

)
t W s

(
Q, gi,j,`,k

)
6= ∅.

The results of this section do not depend on the subscript i, j, ` thus, by
simplicity, the will be omitted and we will write gk and Λk in the places of
gi,j,`,k and Λi,j,`,k.

Before going to the details of the proof of the proposition let us ex-
plain briefly its main steps. Recall the renormalised sequence Rmk,nk(gk) in
Section 5.3.6. Recall that

Gk : R3 → R3, Gk(X) := Φmk,nk ◦ Rmk,nk(gk) ◦ Φ−1
mk,nk

(X)

is a sequence of diffeomorphisms defined in whole R3 that converges in the
Cr-topology to the endomorphism G(ξ,µ,0,0) ∈ C∞(R3,R3) on compact sets.
For k large sufficient we denote by Λ̃k := Φ−1

mk,nk
(Λk) the respective blender of

Gk.
Consider the left reference P+

ξ,µ = (x+
ξ,µ, y

+
ξ,µ, z

+
ξ,µ) of blender of G(ξ,µ,0,0)|∆.

For large k we denote by P+
k,ξ,µ the continuation of P+

ξ,µ for Gk.

8.2.1
Strategy of the proof of proposition

Note first that the domain of definition ∆k := Φmk,nk(∆), see (8.1.3),
of the blender of gk converges exponentially to Ỹ ∈ W s

loc(Q, gk) as k → +∞.
Thus, any (fixed) small neighbourhoodW s ⊂ W s

loc(Q, gk) of Ỹ measured in the
Φ−1
mk,nk

-charts, it moves exponentially fast away from ∆ ⊂ R3 as k → +∞. This
is illustrated in Figure 8.2. With this in mind, we define a suitable increasing
sequence of domains ∆̂k ⊂ R3, ∆ ⊂ ∆̂k ⊂ ∆̂k+1 , such that W u

(
P+
k,ξ,µ, Gk|∆̂k

)
meets transversely Φ−1

mk,nk
(W s). This intersection is obtained if we guarantee

the follwing two facts:

(1) ‖(G(ξ,µ,0,0) −Gk)|∆̂k
‖r → 0, when k → +∞, and
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(2) For every k ≥ 1 large enough it holds

W u(P+
ξ,µ, G(ξ,µ,0,0)|∆̂k

) t Φ−1
mk,nk

(W s) 6= ∅,

The first condition above implies that for every k large enough, the man-
ifolds W u(P+

k,ξ,µ, Gk|∆̂k
) and W u(P+

ξ,µ, G(ξ,µ,0,0)|∆̂k
) are Cr-close. The second

condition imply that W u(P+
k,ξ,µ, Gk|∆̂k

) and Φ−1
mk,nk

(W s) meet transversely. As
consequence we get that

W u(P̃+
k,ξ,µ, gk) t W s 6= ∅,

where P̃+
k,ξ,µ = Φmk,nk(P+

k,ξ,µ) denotes the reference of the blender of Rmk,nk(gk)
in ∆k.

We now we provide the precise proofs of the steps above.

8.2.1.1
The unstable manifold of the fixed saddles of the Hénon-like family

In this sections we study the growth (along of the unstable direction)
of the unstable manifold of the saddle P+

ξ,µ,κ of G(ξ,µ,κ,0) for parameters
(ξ, µ, η, 0) ∈ (1.18, 1.19) × (−10,−9) × (−ε, ε) as in Theorem 1. Figure 8.2
illustrates this growth.

Recall that from Lemma 5.1.1, for every (ξ, µ) ∈ P = (1.18, 1.19) ×
(−10,−9) the left reference P+

ξ,µ = (x+
µ , y

+
µ , z

+
ξ,µ) of the blender-horseshoe of

G(ξ,µ,0,0)|∆ is a partially hyperbolic point with two unstable directions (a strong
one and a weak one) satisfying the relations

x+
µ = y+

µ = µ+ (y+
µ )2 = (1− ξ) z−ξ,µ, y+

µ > 0. (8.2.1)

Lemma 8.2.2 Let ∆+ = [−4, 4]×[0, 4]×[−40, 22] ⊂ R3. Then, G(ξ,µ,0,0)(∆+)∩
∆ ⊂ W u(P+

ξ,µ, G(ξ,µ,0,0)).

Proof. Consider the projection Π12(x, y, z) = (x, y). Recall the nested sequence
of discs in (6.6.3):

`+
µ,0 = Π12

(
G(ξ,µ,0,0)(∆+) ∩∆

)
, (`+

µ,n)n ⊂ Π12

(
G(ξ,µ,0,0)(∆+) ∩∆

)
,

satisfying for every n ∈ N :

(x+
µ , y

+
µ ) ∈ `+

µ,n, gµ(`+
µ,n+1) = `+

µ,n, gµ(x, y) = (y, µ+ y2).
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For every n consider the two-disc :

Γ̃µ,n :=
{

(x, y, z+
µ + t) : (x, y) ∈ `+

µ,n, ξ
−n(−40− z+

µ ) ≤ t ≤ ξ−n(22− z+
µ )
}
.

Note that Γ̃µ,0 = `+
µ,0 × [−40, 22] = G(ξ,µ,0,0)(∆+) ∩∆.

By construction, the sequence (Γ̃µ,n)n satisfy

P+
ξ,µ ∈ Γ̃µ,n, Γ̃µ,n+1 ⊂ Γ̃µ,n, and G(ξ,µ,0,0)(Γ̃µ,n+1) = Γ̃µ,n (n ∈ N).

This completes the proof. �

We define the local unstable manifold of the saddle P+
ξ,µ of G(ξ,µ,0,0) as

W u
loc

(
P+
ξ,µ, G(ξ,µ,0,0)

)
= G(ξ,µ,0,0)(∆+) ∩∆. (8.2.2)

Remark 8.2.3 The continuity of the local unstable manifold implies that for
every small ε > 0 (fixed) and every (ξ, µ, κ, η) ∈ (1.18, 1.19) × (−10,−9) ×
(−ε, ε)2 it holds that

W u
loc

(
P+
ξ,µ,κ,η, G(ξ,µ,κ,η)

)
= G(ξ,µ,η,η)(∆+) ∩∆, (8.2.3)

where P+
ξ,µ,κ,η = (x+

ξ,µ,κ,η, y
+
ξ,µ,κ,η, z

−
ξ,µ,κ,η) it is the continuation of P+

ξ,µ satisfying

x+
ξ,µ,κ,η = y+

ξ,µ,κ,η, y+
ξ,µ,κ,η > 0;

y+
ξ,µ,κ,η = µ+ (y+

ξ,µ,κ,η)2 + κ (z+
ξ,µ,κ,η)2 + η (y+

ξ,µ,κ,η) (z+
ξ,µ,κ,η);

z−ξ,µ,κ,η = ξ z−ξ,µ,κ,η + y+
ξ,µ,κ,η.

(8.2.4)

Let us investigate the size and growth of the unstable manifold
W u

loc

(
P+
ξ,µ,κ, G(ξ,µ,κ,0)

)
. For this, we consider W uu

(
P+
ξ,µ,κ, G(ξ,µ,κ,0)

)
the strong

invariant manifold of P+
ξ,µ,κ and the following subsets of this

W uu,+
(
P+
ξ,µ,κ, G(ξ,µ,κ,0)

)
= W uu

(
P+
ξ,µ,κ, G(ξ,µ,κ,0)

)
∩
{
y ≥ y+

ξ,µ,κ

}
and

W uu,+
loc,ξ,µ,κ = W uu,+(P+

ξ,µ,κ, G(ξ,µ,κ,0)) ∩∆.

We write
W uu,+

loc,ξ,µ,κ :=
{
P+
ξ,µ,κ + ϕξ,µ,κ(t) : y+

ξ,µ,κ ≤ t ≤ 4
}
,

where ϕξ,µ,κ(t) :=
(
ϕ1,ξ,µ,κ(t), ϕ2,ξ,µ,κ(t), ϕ3,ξ,µ,κ(t)

)
is the (unique) invariant

curve tangent to Euu(P+
ξ,µ,κ) such that

ϕi,ξ,µ,κ(y+
ξ,µ,κ) = 0, (i = 1, 2, 3) and
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Consider the (family of) sequences of maps,

αn,ξ,µ(t) := Π2

(
Gn

(ξ,µ,0,0)

(
P+
ξ,µ + ϕξ,µ(t)

))
, n ≥ 0.

Lemma 8.2.4 For every (ξ, µ) ∈ P and every 0 < t < δ the sequence (αn(t))n
is strictly increasing and satisfies lim

n→+∞
αn(t) = +∞.

Proof. Let (ξ, µ) ∈ P . We claim that:

(i) For i = 1, 2 and every small t > 0, it holds ϕi,ξ,µ(t) > 0; and

(ii) for every small t > 0, it holds ϕ2,ξ,µ(t) = 2 y+
µ ϕ1,ξ,µ(t) + ϕ1,ξ,µ(t)2.

Indeed, by definition of W uu,+
loc,ξ,µ, we have that(

y+
µ +ϕ1,ξ,µ(t), y+

µ +ϕ2,ξ,µ(t)
)
∈
{

(x, y) : y = µ+x2, x ≥ y+
µ , y ≥ y+

µ

}
. (8.2.5)

Thus, t > 0 imply that ϕ1(t) > 0 and ϕ2(t) > 0. Moreover, recalling
µ+ (y+

µ )2 =, y+
µ in (5.1.2), we get

y+
µ + ϕ2,ξ,µ(t) = µ+ (y+

µ + ϕ1,ξ,µ(t))2

= µ+ (y+
µ )2 + 2 y+

µ ϕ1,ξ,µ(t) + ϕ1(t)2

= y+
µ + 2 y+

µ ϕ1,ξ,µ(t) + ϕ1,ξ,µ(t)2.

(8.2.6)

This completes the proof of our claim.
Note that α0,ξ,µ(t) = y+

µ + ϕ1,ξ,µ(t). Is easy to see that

αn,ξ,µ(t) = µ+ αn−1,ξ,µ(t)2. (8.2.7)

Claim 8.2.5 For every (ξ, µ) ∈ P and for every small t > 0, it holds
αn−1,ξ,µ(t) < αn,ξ,µ(t).

Proof. Let y−µ be the root of y2 − y + µ different from y+
µ . Then y−µ < y+

µ and

y2 − y + µ > 0 if, and only if, y 6∈ [y−µ , y+
µ ].

We claim that for every (ξ, µ) ∈ P , every small t > 0, and every n ≥ 1
we have that αn,ξ,µ(t) > y+

ξ,µ. To see why this is so note that α0,ξ,µ(t) > y+
ξ,µ for

every small t > 0. Thus, by (8.2.7)

α1,ξ,µ(t) = µ+ α0,ξ,µ(t)2 > µ+ (y+
µ )2 = y+

µ .
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Proceeding inductively we get that for every n > 1 and every small t > 0, it
holds αn,ξ,µ(t) > y+

µ . Therefore,

0 < αn,ξ,µ(t)2 − αn,ξ,µ(t) + µ = αn+1,ξ,µ(t)− αn,ξ,µ(t),

proving the claim. �

Easily it follows that for every (ξ, µ) ∈ P and every small t > 0, the
sequence (αn,ξ,µ(t))n≥1 is unbounded. This completes the proof of Lemma 8.2.4.
�

Remark 8.2.6 From Lemma 8.2.4 we have that

W uu,+(P+
ξ,µ, G(ξ,µ,0,0)) =

⋃
n≥1

Gn
(ξ,µ,0,0)

(
W uu,+

loc,ξ,µ

)

and that
Π2

(
W uu,+(P+

ξ,µ, G(ξ,µ,0,0))
)

= [y+
µ ,+∞).

Lemma 8.2.4 also implies that the size of Gn
(ξ,µ,0,0)

(
W uu,+

loc,ξ,µ

)
along to the

positive semi y-axis only depends on the y-coordinate of Gn−1
(ξ,µ,0,0)

(
W uu,+

loc,ξ,µ

)
and

the size |Π2
(
Gn

(ξ,µ,0,0)

(
W uu,+

loc,ξ,µ

))
| is approximately |Π2

(
Gn−1

(ξ,µ,0,0)

(
W uu,+

loc,ξ,µ

))
|2.

We observe also that the endomorphism G(ξ,µ,0,0) collapses the x-directions
(this direction is a eigenspace of DG(ξ,µ,0,0) with eigenvalue equal to zero, see
Lemma 5.1.1).

Let

W u,+(P+
ξ,µ, G(ξ,µ,0,0)) := W u(P+

ξ,µ, G(ξ,µ,0,0)) ∩
{
y ≥ y+

µ

}
(8.2.8)

and consider the projection

Π23(x, y, z) = (y, z).

Claim 8.2.7 For every (ξ, µ) ∈ P it holds that

W u,+(P+
ξ,µ, G(ξ,µ,0,0)) = G(ξ,µ,0,0)

(
R× [y+

µ ,+∞)× R
)

= G(ξ,µ,0,0)

(
{y+

µ } × [y+
µ ,+∞)× R

)
.

In particular,

Π23

(
W u,+(P+

ξ,µ, G̃(ξ,µ,0,0))
)

= [y+
µ ,+∞)× R.
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Proof. Consider the plane Lξ,µ parallel to the xz-plane through of P+
ξ,µ:

Lξ,µ = R×
{

(y+
µ , z

+
ξ,µ + t) : t ∈ R

}
.

Then, the definition of G(ξ,µ,0,0) imply that

G(ξ,µ,0,0)
(
Lξ,µ

)
=
{

(y+
µ , y

+
µ , z

+
ξ,µ + t) : t ∈ R

}
.

The claim now follows from Remark 8.2.6. �

8.2.2
Relative positions around of heterodimensional tangency.

We study the relative position of the blender-horseshoe associated to gk
as well the positions of the invariant manifolds (after of the unfolding) around
of Ỹ using the coordinates Φmk,nk : R3 → UQ. Recall that

Φmk,nk(x, y, z) = Ψmk,nk ◦Θ ◦ Θ̃(x, y, z),

where

Ψmk,nk(x, y, z) =
(
1 + σ−nkQ σP

−mk x, σ−nkQ + σ−2nk
P σP

−2mk y, 1 + σ−nkQ σP
−mk z

)
;

Θ(µ, x, y, z) = ς−1
2 (µ, ς1 x, y, ς5 z);

Θ̃(x, y, z) = (z, y, x).

We observe that when the heterodimensional tangencies of the cycle of
f ∈ N r

P,Q(T ∗
b̄0

) are of type elliptic, the condition ς2 < 0 (see Remark 7.0.3)
implies, that the blender-horseshoe Λk associated to gk is “encapsulated” by
the two-dimensional invariant manifolds of the saddles P and Q. Thus, in this
case we seek an intersection as illustrated in Figure 8.1.

Figure 8.1: “Encapsulated” blender-horseshoes.
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Fix small δ > 0 and consider the δ-ball W s
δ (Ỹ ) of Ỹ = (1, 0, 1) in

W s
loc(Q, gk) given by

W s
δ (Ỹ ) =

{
(1 + x, 0, 1 + z) : |x|, |z| ≤ δ

}
⊂ UQ.

Thus
Φ−1
mk,nk

(
W s
δ (Ỹ )

)
= I1

k,δ ×
{
− σnkQ σP 2mkς2

}
× I3

k,δ, (8.2.9)
where

I1
k,δ =

[
−|ς2|
|ς1|

δ σnkQ σP
mk ,
|ς2|
|ς1|

δ σnkQ σP
mk

]
, I3

k,δ =
[
−|ς2|
|ς5|

δ σnkQ σP
mk ,
|ς2|
|ς5|

δ σnkQ σP
mk

]
.

Recall also the sequence of (global) diffeomorphisms Gk : R3 → R3

Gk(X) := Φmk,nk ◦ Rmk,nk(gk) ◦ Φ−1
mk,nk

(X), X ∈ R3.

converging to G(ξ,µ,0,0) in the Cr-topology on compact sets (see Remark 7.0.3).
We now construct the sequence of domains of blenders ∆̂k ⊂ R3

mentioned in Section 8.2.1. For that consider the sequence ak = 1
nk
. Note

that
lim

k→+∞
ak = 0, and lim

k→+∞
a2
k σ

nk
Q = +∞. (8.2.10)

Consider the sequence of domains ∆̂k in R3 given by

∆̂k := [−4, 4]× [−4, ak σnkQ σP
mk ]× [−40, 22]. (8.2.11)

Recall that ∆ = [−4, 4]2 × [−40, 22] ⊂ R3, see (8.1.2) Hence ∆ ⊂ ∆̂k for
sufficiently large k. Let

∆̂k,µ := ∆̂k ∩
{
y ≥ y+

µ

}
.

Then, from Claim 8.2.7 we have that

G(ξ,µ,κ,0)
(
∆̂k,µ

)
⊂ W u

(
P+
ξ,µ, G(ξ,µ,0,0)

)
. (8.2.12)

Lemma 8.2.8 G(ξ,µ,0,0)
(
∆̂k,µ

)
t Φ−1

mk,nk

(
W s
δ (Ỹ )

)
6= ∅, for every large k ≥ 1.

Proof. Note that

Π1

(
G(ξ,µ,κ,0)

(
∆̂k,µ

))
= [y+

µ , ak σ
nk
Q σP

mk ],

Π2

(
G(ξ,µ,κ,0)

(
∆̂k,µ

))
= [y+

µ , µ+ a2
k σ

2nk
Q σP

2mk ],

Π3

(
G(ξ,µ,κ,0)

(
∆̂k,y+

µ

))
= [−40ξ − 4, ak σnkQ σP

mk ].

(8.2.13)
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The properties of (ak)k in (8.2.10) imply that for every big sufficient k ≥ 1 it
holds

ak σ
nk
Q σP

mk <
|ς2|
|ς1|

δ σnkQ σP
mk ,

− ς2σnkQ σP
2mk < µ+ a2

k σ
2nk
Q σP

2mk ,

ak σ
nk
Q σP

mk <
|ς2|
|ς5|

δ σnkQ σP
mk .

(8.2.14)

Bearing in mind (8.2.9), from (8.2.14) we get that for every k large enough it
holds

G(ξ,µ,0,0)
(
∆̂k,µ

)
t Φ−1

mk,nk

(
W s
δ (Ỹ )

)
6= ∅.

This completes the proof of the lemma. �

Remark 8.2.9 The transverse intersection G(ξ,µ,0,0)
(
∆̂k,µ

)
t Φ−1

mk,nk

(
W s
δ (Ỹ )

)
is given by the following straight line segment:

Lk :=
{(
yk,−ς2σnkQ σP

2mk , ξ z+yk
)

: yk :=
√
−ς2σnkQ σP 2mk − µ, −40 ≤ z ≤ 22

}
.

Let
∆̃k := Φmk,nk

(
∆̂k

)
⊂ UQ. (8.2.15)

We now to check that the renormalised sequence Rmk,nk(gk)|∆̃k
is well defined

and satisfies Gk|∆̂k
= Φmk,nk ◦ Rmk,nk(gk) ◦ Φ−1

mk,nk
|∆̂k

Lemma 8.2.10 The renormalised sequence Rmk,nk(gk)|∆̃k
is well defined.

Proof. We need to check that the following convergences hold:

∆̃k → Ỹ , gnkk
(
∆̃k

)
→ X, gmk+N1+nk

k

(
∆̃k

)
→ Y, k → +∞.

Thus the return map Rmk,nk(gk)|∆̃k
:= gN2+mk+N1+nk

k |∆̃k
is well defined.

We will estimate the Landau symbols of

∆̃k − Ỹ , gnkk
(
∆̃k

)
−X, gmk+N1+nk

k

(
∆̃k

)
− Y,

as in Theorem 2. Recalling the definition of Φmk,nk in (8.1.1), we have that
the coordinates (xk, yk, zk) of the points in ∆̂k − Ỹ satisfy

xk = zk = O(σ−nkQ σP
−mk) and yk = O(ak σ−nkQ σP

−mk).

Thus, ∆̃k → Ỹ as k → +∞.
Similarly, the coordinates (x̃k, ỹk, z̃k) of the points in gnk

(
∆̃k

)
−X satisfy
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x̃k = z̃k = O(λnkQ ) and ỹk = O(ak σP−mk). (8.2.16)
therefore gnk

(
∆̃k

)
→ X.

Finally, recalling the definitions of gN1
k and gmkk in (8.0.10) we get that

the the coordinates of the points (x̂k, ŷk, ẑk) of gmk+N1+nk
k

(
∆̃k

)
−X satisfy

x̂k = O(λPmk) and ŷk = ẑk = O(ak). (8.2.17)

therefore gmk+N1+nk
k

(
∆̃k

)
→ X. This completes the proof of the lemma. �

Recalling the coordinates in the equation (5.3.37) we have that the
sequence of diffeomorphisms Gk : R3 → R3 is given by

Gk(x, y, z) =
(
− c1 λ

mk
P λnkQ x+ y + h.o.t1

k(x, y, z),

µ− b1 λ
mk
P σmkP λnkQ σnkQ ς5 x+ y2 + h.o.t2

k(x, y, z),

− a1 λ
mk
P λnkQ ς5 ς

−1
1 x+ y + σmkP λnkQ

(
a3 − a2

2

)
z + h.o.t3

k(x, y, z)
)

where

h.o.t1
k(x, y, z) := ς2 ς

−1
5 c1 λ

mk
P σmkP σnkQ H̃1(x∗k) + ς2 ς

−1
5 σmkP σnkQ H3(x̂∗k),

h.o.t2
k(x, y, z) := ς2 b1 λ

mk
P σ2mk

P σQ
2nk H̃1(x∗k) + ς2 σ

2mk
P σQ

2nk H2(x̂∗k),

h.o.t3
k(x, y, z) := ς2 ς

−1
1 a1 λP

mk σmkP σQ
nk H̃1(x∗k) + ς2 ς

−1
1 σmkP σQ

nk H1(x̂∗k),

and

x∗k(x, y, z) := xk ◦Θ ◦ Θ̃(x, y, z), x̂∗k(x, y, z) := x̂k ◦Θ ◦ Θ̃(x, y, z),

where xk = xk(x, y, z) and x̂k = x̂k(x, y, z) are defined as in (5.3.28) and
(5.3.35), respectively.

Finally we estimate the Cr-distance between G(ξ,µ,0,0) and Gk in the set
∆̂k.

Lemma 8.2.11 limk ‖
(
G(ξ,µ,0,0) −Gk

)
|∆̂k
‖r = 0.

Proof. By the estimates of Gk above and the definition of G̃(ξ,µ,0,0) we have
that

Gk(x, y, z)−G(ξ,µ,0,0)(x, y, z) =
(
− c1 λ

mk
P λQ

nk x+ h.o.t1
k(x, y, z),

− b1 λ
mk
P σP

mk λnkQ σQ
nk ς5 x+ h.o.t2

k(x, y, z),

− a1 λ
mk
P λQ

nk ς5 ς
−1
1 x+

(
σP

mk λnkQ
(
a3−a2

2

)
− ξ

)
z+

+ h.o.t3
k(x, y, z)

)
.
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Recall that by equation (5.3.18)

σP
mk λnkQ

(
a3−a2

2

)
→ ξ.

As the first and third coordinates of the points in the ∆̂k are bounded, we only
we need to study the convergence to zero of the higher order terms h.o.tik|∆̂k

,
for i = 1, 2, 3. This covergence is covered in the next claim.

Claim 8.2.12

(1) limk H̃1(x∗k(x, y, z))|∆̂k
= 0.

(2) limk σ
mk
P σnkQ Hi(x̂∗k(x, y, z))|∆̂k

= 0, i = 1, 3

(3) limk σ
2mk
P σ2nk

Q H2(x̂∗k(x, y, z))|∆̂k
= 0.

Proof. We observe that the Landau symbols of the coordinates of the vector
x∗k(x, y, z)|∆̂k

are

O(λnkQ ), O(ak σ−mkP ), and O(λnkQ ),

respectively. This imply that H̃1(x∗k(x, y, z))|∆̂k
→ 0.

Since λPmk σmkP σQ
nk → 0, as k → +∞ (see (5.3.43)) it holds

λP
mk σmkP σQ

nk H̃1(x∗k)|∆̂k
→ 0.

In similar way, we observe that the Landau symbols of the coordinates of the
vector x̂∗k(x, y, z)|∆̂k

are

O(λmkP ), O(ak), and O(ak),

respectively. Since limk λ
mk
P σ2mk

P σQ
2nk = 0 (see (8.1.25)) the Taylor’s expansion

of H3(·) (around of 0) and the conditions (7.0.6) implies that

σ2mk
P σQ

2nk Hi(x̂∗k)|∆̂k
→ 0, (i = 1, 2, 3).

Thus, h.o.t1
k|∆̂k

, h.o.t2
k|∆̂k

, h.o.t3
k|∆̂k

→ 0 as k → +∞ in the Cr-topology. This
completes the claim. �

Thus we get that ‖
(
G(ξ,µ,0,0)−Gk

)
|∆̂k
‖r → 0 completing the proof of the

lemma. �

Lemma 8.2.13 For each (ξ, µ) ∈ P consider the left reference saddle P+
k,ξ,µ

associated to blender of Gk (the continuation of P+
ξ,µ). Then, for every k

large enough the unstable manifold W u(P+
k,ξ,µ, Gk|∆̂k

) meets transversely to
Φ−1
mk,nk

(
W s
δ (Ỹ )

)
.
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Proof. From (8.2.12) and Lemma 8.2.8, for ∆̂k,µ ⊂ ∆̂k it holds and

G(ξ,µ,0,0)(∆̂k,µ) ⊂ W u(P+
ξ,µ, G(ξ,µ,0,0)|∆̂k

)

and
G(ξ,µ,0,0)

(
∆̂k,µ

)
t Φ−1

mk,nk

(
W s
δ (Ỹ )

)
6= ∅.

Lemma 8.2.11 implies that W u(P+
ξ,µ, G(ξ,µ,0,0)|∆̂k

) and W u(P+
k,ξ,µ, Gk|∆̂k

) are
Cr-close. Therefore, for every k ≥ 1 large enough we have that

W u(P+
k,ξ,µ, Gk|∆̂k

) t Φ−1
mk,nk

(
W s
δ (Ỹ )

)
6= ∅.

This ends the proof of the lemma. �

Figure 8.2: Growth of the unstable manifolds of blender along of the uu-
direction.

8.3
Generation of non-dominated homoclinic classes

In this section we see that blender Λi,j,`,k and the saddle P of the
diffeomorphism gi,j,`,k in (8.0.10) are homoclinically related. We prove also
that Q ∈ H(P, gi,j,`,k) in a Cr-robust way. In particular, this implies that
the set H(P, gi,j,`,k) does not admit any dominated splitting Cr-robustly, see
Remark 3.2.3. Let us now to claim in precise form our statement. The next
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results do not depend on the subscript i, j thus, by simplicity, the will be
omitted and we will write g`,k and Λ`,k in the places of gi,j,`,k and Λi,j,`,k.

Recall the sets Ps
f and Pu

f in (7.0.3) and (7.0.4) (associated to a inicial
diffeomorphism f in N r

P,Q(T ∗
b̄0

)) and consider the continuations Ps
`,k and Pu

`,k

associated to the diffeomorphism g`,k. Recall that our bifurcation setting
implies that for every big k it holds

τ`,k := Pu
`,k t W

s
loc(Q, g`,k) 6= ∅. (8.3.1)

In the case in that the cycle of f has a heterodimensional tangency of type
elliptic or hyperbolic, then the intersection (8.3.1) consist of a closed curve or
two curves with boundary, respectively. More explicitly, for every large k and
up to a small Cr-error, we have the following two possibilities for the curve
τ`,k:

(1) τ`,k is a ellipse. This is the case when the heterodimensional tangency Ỹ
is of elliptic type see Section 6.1.

(2) τ`,k consist of two curves with boundary. Here we distinguish two cases.

• Two symmetrical curves contained in a hyperbola whose center is
close to Ỹ . This is the case in that Ỹ is of hyperbolic type, see
Section 6.1.
• Two segments of parallel straight lines. This is the case in that Ỹ

is a degenerated tangency.

Lemma 8.3.1 For every large ` and k, the radial projection of the curves τ`,k
on S1

Q ⊂ W s
loc(Q, g`,k) contains intervals.

Proof. It is clear that if τ`,k is a closed curve or consists of two segments
contained in a hyperbola, the radial projection of τ`,k contains intervals,
independently of the relative position of τ`,k around of Ỹ . If τ`,k consists of
two segments of parallel straight lines, we observe that if the radial projection
of one of the segments is a point then the projection of the second segment is
a interval. This completes the proof of claim. �

Lemma 8.3.2 For every big ` and k, the homoclinic class H(P, g`,k) is non-
trivial.

Proof.
From Lemma 8.3.1 the set Pu

`,k ⊂ W u(P, g`,k) contains two-discs with
positive radial projection on W s

loc(Q, g`,k). Recall that the argument of non-
real eigenvalue of Dgk,`(Q) is a irrational number (see Remark (8.0.6)) and
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recall the quasi-transverse heteroclinic orbit

Og`,k(Z∗` ) ⊂ W s(P, g`,k) ∩W u(Q, g`,k),

in Remark 7.0.14. Lemma 7.0.8 implies that W s(P, g`,k) t Pu
`,k 6= ∅. This

completes the proof of the lemma. �

8.3.1
Heteroclinic relations implies Homoclinic relations

In this section, we use the heteroclinic connections in Propositions 8.1.1
and 8.2.1 to prove that the reference saddle P̃+

`,k of blender Λ`,k and the saddle
P of g`,k are homoclinically related. In what follows we can assume that, after
an arbitrarily small Cr-perturbation the following holds:

Theorem 8.3.3 For every k ≥ 1 large enough, the saddles P̃+
`,k and P of g`,k

are homoclinically related. Moreover, the saddle Q belongs to the homoclinic
class H(P, g`,k) Cr-robustly. In particular, H(P, g`,k) is not dominated in a
Cr-robust way.

Note that the last assertion is an immediate consequence of Remark 3.2.3.
Proof. We need to check that for every large enough ` and k it holds that:

W u(P, g`,k) t W s(P̃+
`,k, g`,k) 6= ∅, W s(P, g`,k) t W u(P̃+

`,k, g`,k) 6= ∅.

Claim 8.3.4 W u(P, g`,k) t W s(P̃+
`,k, g`,k) 6= ∅.

Proof. Recall that from Proposition 8.1.1 the saddle Q activates the blender
Λ`,k (Remark 8.1.5). Thus,

W u(Q, g`,k) ∩W s
loc(Λ`,k, g`,k) 6= ∅.

Let X`,k ∈ Λ`,k such that W u(Q, g`,k) ∩W s
loc(X`,k, g`,k) 6= ∅. Thus, W u(Q, g`,k)

and W s(X`,k, g`,k) meet along of a quasi-transverse orbit. The irrationality of
the argument of the contractive eigenvalue of Dg`,k(Q) and Lemma 7.0.8 imply
that W s(X`,k, g`,k) meet tranversely any two-disc S tranverse to W s

loc(Q, g`,k)
with positive radial projection. Then, Lemma 8.3.1 imply thatW s(X`,k, g`,k) t
Pu
`,k 6= ∅. Consider N∗ ∈ N such that gN∗`,k (Pu

`,k) t W s
loc(X`,k, g`,k) 6= ∅ and

consider P ∗`,k ∈ Λ`,k a saddle homoclinically related to P̃+
`,k and sufficiently

close to X`,k (recall that the set of saddles homoclinically related to P̃+
`,k is

dense in Λ`,k) so that gN∗`,k (Pu
`,k) t W s

loc(P ∗`,k, g`,k) 6= ∅. The λ-lemma guarantees
that gN∗`,k (Pu

`,k) t W s
loc(P+

`,k, g`,k) 6= ∅. This completes the proof of claim. �

DBD
PUC-Rio - Certificação Digital Nº 1213295/CA



Chapter 8. Proof of Theorem 7.0.4: construction of gk 142

Claim 8.3.5 W s(P, g`,k) t W u(P̃+
`,k, g`,k) 6= ∅.

Proof. By Proposition 8.2.1, the two-dimensional manifold W u(P̃+
`,k, g`,k) meet

transversely to W s
loc(Q, g`,k) in a curve Cr-close to the straight line segment

L̃k := Φmk,nk(Lk) where Lk is as in Remark 8.2.9. Note that L̃k is parallel
to XQ-coordinate in UQ, see Remark 8.2.9. Therefore its radial projection in
S1
Q ⊂ W s

loc(Q, g`,k) is a interval. Thus, every curve C1-close to L̃k project
a interval in S1

Q. On the other hand, using the quasi-transverse heteroclinic
orbit Og`,k(Z∗` ) ⊂ W s(P, g`,k) ∩W u(Q, g`,k) (see Remark 7.0.14) and applying
Lemma 7.0.8, we obtain a transverse intersection between W s(P,g`,k) and
W u(P̃+

`,k, g`,k), proving the claim. �

This completes the first part of theorem. We now go to the second part of
theorem. To see that Q ∈ H(P, g`,k) in Cr-robust form, we consider the curve
τ̃`,k in W u(P̃ ∗k , g`,k) t W s

loc(Q, g`,k) with positive radial projection obtained in
Proposition 8.2.1.

Lemma 8.3.6 For every large sufficient ` and k it holds τ̃`,k ⊂ H(P̃+
`,k, g`,k)

in Cr-robust way.

Proof. Consider X`,k in τ̃`,k. We will see that given ε > 0 it holds that

B(X`,k, ε) ∩W u(P̃+
`,k, g`,k) t W s(P̃+

`,k, g`,k) 6= ∅.

Consider
Sε := B(X`,k, ε) ∩W u(P̃+

`,k, g`,k).

Note that Sε is a two-disc transverse to W s
loc(Q, g`,k) having positive radial

projection. Thus, arguing as Claim 8.3.5 we have that

Sε t W
s(P̃+

`,k, g`,k) 6= ∅.

Thus, we get that

τ̃`,k ⊂ W u(P̃+
`,k, g`,k) t W s(P̃+

`,k, g`,k) = H(P̃+
`,k, g`,k),

which proves the lemma. �

The proof of the Theorem 7.0.1 is now complete. �

Remark 8.3.7 The set Γ`,k given by

Γ`,k :=
{
P̃+
`,k, Q

}
∪
{
gn`,k(τ̃`,k) : n ∈ Z

}
,

is a closed invariant subset of H(P̃ ∗`,k, g`,k) which is robustly non-dominated.
See Definition 3.2.1 and Remark 3.2.3.
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