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Abstract

Pérez Opazo, Sebastian Alejandro; Diaz Casado, Lorenzo Justini-
ano (Advisor). C"-stabilisation of non-transverse heterodi-
mensional cycles. Rio de Janeiro, 2016. 146p. PhD Thesis — De-
partamento de Matematica, Pontificia Universidade Catolica do Rio
de Janeiro.

A diffeomorphism f has a heterodimensional cycle if there are (transi-
tive) hyperbolic sets with different indices (dimension of the unstable bun-
dle) whose invariant sets meet cyclically. The cycle of f is C"-robust if every
small C"-perturbation of f has a cycle associated to the continuations of
these hyperbolic sets. When the cycle of f is defined by a pair of hyperbolic
saddles we say that this can be C"-stabilised if every C" -neighbourhood
of f contains diffeomorphisms with a robust cycle associated to hyperbolic
sets containing the continuations of these saddles. In dimension three we
consider non-transverse heterodimensional cycles associated to saddles: the
saddles are involved in a heterodimensional cycle and their two dimensional
manifolds have some non-transverse intersection. For r > 2, we study the
occurrence of C"-robust cycles in this setting as well as the C"-stabilisation
of the initial cycles. We prove that for every r > 2 there exist a class
N7 of three-dimensional diffeomorphisms having non-transverse cycles such
that any diffeomorphism in N can be C"-stabilised. A key ingredient of
our method is a renormalisation scheme at the heteroclinic quadratic inter-
section converging to a Hénon-like family of endomorphism with blender-
horseshoes. We also see that this type of bifurcation leads to C"-intermingled
homoclinic classes (the homoclinic classes of two saddles with different in-

dices have non-empty intersection) which are non-dominated.

Keywords
Blender-horseshoe; Dominated Splitting; Hénon-like families;
Heterodimensional cycle; Homoclinic class; Renormalisation scheme;

Robust cycle; Stabilisation of a cycle;
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Resumo

Pérez Opazo, Sebastian Alejandro; Diaz Casado, Lorenzo Jus-
tiniano. C'"-estabilizagdo de ciclos heterodimensionais nao
transversais. Rio de Janeiro, 2016. 146p. Tese de Doutorado —
Departamento de Matematica, Pontificia Universidade Catolica do
Rio de Janeiro.

Um difeomorfismo f tem um ciclo heterodimensional se existem
conjuntos hiperbdlicos (transitivos) com indices diferentes (dimensao do
fibrado instavel) cujos conjuntos invariantes interseptam-se ciclicamente. O
ciclo de f é C"-robusto se toda pequenha C"-perturbacao de f tem um ciclo
associado as continuagoes destes conjuntos hiperbdlicos. Quando o ciclo de
f é defindo por um par de selas hiperbélicas se diz que este ciclo pode ser
C"-estabilizado se toda C"-vizinhanca de f contém difeomorfismos com um
ciclo robusto entre conjuntos hiperbélicos que contém as continuacoes destas
selas. No caso tridimensional consideramos ciclos heterodimensionais nao
transversais associado a selas: as selas definem um ciclo heterodimensional
onde as suas variedades dois dimensionais tem alguma intersecao nao
transversal. Para r > 2 estudamos a ocorréncia de ciclos CT-robustos
neste contexto assim como a C"-estabilizagao destes ciclos. Provamos que
para cada r > 2 existe uma classe N de difeomorfismos tridimensionais
tendo ciclos nao transversais tais que quaisquer difeomorfismo nesta classe
pode ser C"-estabilizado. Um ingrediente chave do nosso método é um
esquema de renormalizacao definido sobre a tangéncia quadratica do ciclo
convergindo para uma familia tipo Hénon que tem ferraduras-misturadoras.
Também vemos que este tipo de bifurcagao leva ao misturamento de classes
homoclinicas (as classes homoclinicas de duas selas de indices diferentes tem

interse¢ao nao-vazia) as quais nao suportam decomposi¢oes dominadas.

Palavras-chave
Ferradura-misturadora; Decomposi¢ao dominada; Familias tipo
Hénon; Ciclos heterodimensionais;  Classes homoclinicas;  Esquemas

de renormalizacao;  Ciclo robusto;  Estabilizacdo de um ciclo;
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“Creo en los cafés, en el didlogo, creo en la
dignidad de la persona, en la libertad. Siento
nostalgia, cast ansiedad de un Infinito, pero
humano, a nuestra medida.”

Ernesto Sabato, La Resistencia.
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1
Introduction

Heterodimensional cycles and homoclinic tangencies are two important
mechanisms that prevent hyperbolicity. Indeed, Palis density conjecture claims
that they are the main mechanisms for the absence of hyperbolicity: every non-
hyperbolic system can be approached by a system with either a homoclinic
tangency or a heterodimensional cycle!, see (37).

The simples heterodimensional cycle is obtained by the heteroclinic inter-
sections of the invariant manifolds of two saddles of different indices? (this nec-
essarily implies that some intersection is non-transverse). In the case of a homo-
clinic tangency, the invariant manifolds of a saddle have some non-transverse
intersection. Kupka-Smale genericity theorem (47) states that generically (i.e.,
in a residual set) the invariant manifolds of hyperbolic periodic points meet
transversely. Thus, heterodimensional cycles and homoclinic tangencies are as-
sociated to saddles are fragile. One can define heterodimensional cycles and
homoclinic tangencies associated to hyperbolic sets as above. In this case
Kupka-Smale theorem cannot be applied and one may that “robust” heterodi-
mensional cycles and tangencies. In this work we study the robust inherent
phenomena to the unfolding of a heterodimensional cycle associated to saddes
whose configuration involves tangencies. In particular we are interested in the
generation of robust cycles and tangencies. We now discuss these notions in a

bit more precise way.

1.1
Robust cycles and Stabilisation of cycles

Recall that a hyperbolic set A of a diffeomorphism f has defined a
continuation A, for every g close to f (in particular, A and A, are conjugate).
Recall that a invariant set is transitive if it has a dense orbit. The index of
a hyperbolic transitive set A, ind(A), is the dimension of its unstable bundle

(transitivity implies that this number is well defined).

!This conjecture was proved for surface C*-diffeomorphisms in (43). Currently, the C"-
case, r > 2, seems to be beyond reach.
2dimension of the unstable bundle
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Definition 1.1.1 (Robust cycles and tangencies) Let f be a C"-

diffeomorphism defined on a compact manifold.

— Robust heterodimensional cycles. f has a heterodimensional cycle asso-
ciated to the transitive hyperbolic sets I' and ¥ with different indices
if

WHT)NW3(E)#0 and W) N W) # 0.

The cycle above is C"-robust if there is a C"-neighbourhood U of f
such that every g € U has a heterodimensional cycle associated to the

hyperbolic continuations I'; and ¥, of I' and X.

— Robust homoclinic tangencies. f has a homoclinic tangency associated to
a transitive hyperbolic set I' if there exists a non-tranverse intersection
point between the invariant manifolds W*(I') and W*(I"). We say that
the tangency is C"-robust if there exists a C"-neighbourhood U of f such

that for every g € U the continuation I'y of I' has a homoclinic tangency.

Note that heterodimensional cycles can only occur in manifolds of
dimension three or higher.

An important type of cycles are those associated to hyperbolic periodic
points. Observe that Kupka-Smale genericity theorem implies that robust
cycles and tangencies involve, necessarily, some non-trivial hyperbolic set
(containing infinitely many orbits). Thus a crucial point is to determine when
these cycles generate robust ones. Moreover, in the positive case, determine
the relation of the hyperbolic sets in the robust cycle with the (continuations)
of the saddles in the initial cycle. This leads to the following notion introduced
in (12):

Definition 1.1.2 (Stabilisation of cycles) Consider a C"-diffeomorphism
f + M — M having a heterodimensional cycle associated to a pair of
saddles P and @). This cycle can be C"-stabilised if every C"-neighbourhood
U of f contains a diffeomorphism g having a robust heterodimensional cycle
associated to hyperbolic basic sets A, > P, and ¥, > @,. Here P, and @,
denotes the respective continuations of the initial saddles P and ). A cycle
that cannot be stabilized is called C"-fragile.

Note that, mutatis mutandi, the previous definition can be formulated
for homoclinic tangencies. Hence, from (33, 39, 45) every homoclinic tangency
of a C%-diffeomorphism is always stabilised.

Let us observe the definition of stabilisation of a cycle was also motivated

by Bonnatti’s robustness conjecture below and the study of spectral decompo-
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sition of the dynamics into elementary pieces of dynamics in non-hyperbolic

settings.

1.2
Generation of robust cycles

In what follows, for simplicity, we restrict our attention to three dimen-
sional diffeomorphisms. In this case the indices of the hyperbolic sets in a
heterodimensional cycle are one and two. Let us summarise the main results
in this setting:

e Every diffeomorphism with a heterodimensional cycle (associated to a pair
of saddles) can be C'-approximated by diffeomorphisms with robust cycles,
(9). If one of the saddles of the cycle has a non-real multiplier (i.e. it is a
saddle focus) the the cycle can be C'-stabilised, (12). A key ingredient in
these constructions are the blenders and blender-horseshoes (very roughly a
horseshoe which is immersed in the space with special geometric superposition

properties, see the precise discussion in Section 3.4).

e For cycles associated to saddles with real eigenvalues the study is done con-
sidering three parameters using the symbols 4+ and —. The two first parameters
involves the signal of the so-called central eigenvalues of the saddles in the cycle
and third parameter involves the central orientation of the transition along the
quasi-transverse heteroclinic orbit related to the intersection of the one dimen-
sional manifolds. This leads to eight configurations. In (12) it is shown that
seven of these configurations can be stabilised, however (11) provides examples

of cycles associated to the remaining configuration that cannot be stabilised.

e About robust tangencies we have the following results: (33) provides ex-
amples of C?-robust homoclinic tangencies of surface diffeomorphisms, (10)
provides examples of Cl-robust homoclinic tangency (in dimension three or
higher), and (31) proved that surface diffeomorphisms cannot have C'-robust
tangencies. Note that in (33) the underlying mechanism for the generation of
robust tangencies are the so-called thick horseshoes while the mechanism in
(10, 9) for robust cycles are blenders. These two mechanisms have different

nature.

e In (22) was introduced the concept of a heterodimensional tangency. In some
cases, this type of tangencies can be thought as a “homoclinic tangency” be-
tween two dimensional invariant manifolds of a transitive partially hyperbolic
set: there are saddles of different indices in the set whose two dimensional in-

variant manifolds have a non-transverse intersection®. As was shown (22), the

3 The creation of this tangencies appear as a natural transition from partially hyperbolic
dynamics to non-dominated dynamics, see the examples in (22).
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C'-unfolding of a such tangency in the leads to C''-robustly non-dominated dy-
namics and in some cases to very intermingled dynamics related to universal
dynamics®. Examples of C%-robust heterodimensional tangencies are provided
in (26) using the thick horseshoes in (33). The authors also see how these ro-
bust tangencies can be associated to heterodimensional cycles using blenders.
Assuming large codimension of heterodimensional tangencies on manifolds of
dimension > 7, in (2) the authors also exhibit C?-robust heterodimensional
tangencies. The above results motivate the problem of generation and stabili-

sation of cycles in the C"-topology.

1.3
The setting: Palis and Bonatti’s conjectures

Motivated by the Palis density conjecture, Bonatti proposed in (3) to split
the space of C!-diffeomorphisms considering the following three dichotomies

(we postpone the precise definitions)

e tame (having robustly finitely many chain recurrence classes whose
number is locally constant) versus wild (having robustly infinitely many

chain recurrence classes) diffeomorphisms,

e diffeomorphisms far from heterodimensional cycles versus diffeomor-

phisms with robust heterodimensional cycles,

e diffeomorphisms far from homoclinic tangencies versus diffeomorphisms

with robust homoclinic tangencies.

Bonatti’s conjecture claims that in each case union of the two opens sets in-
volved in each dichotomy is a dense subset in the space of C''-diffeomorphisms.
Note that when two (transitive) hyperbolic sets of different indices are involved
in a robust cycle then they are in the same chain recurrence class. Thus the
occurrence of robust cycles has immediate consequences in the description of
the elementary pieces of dynamics of the diffeomorphisms.

Considering the above dichotomies Bonatti proposed the following types

of diffeomorphisms with increasing complezity® of dynamics:

4 This phenomenon can be thought as a generalisation of the phenomenon of Newhouse:
sets with universal dynamics displays infinitely many pairwise disjoint exhibit non-trivial
homoclinic classes; infinitely many non-trivial hyperbolic and non-hyperbolic attractors,
and infinitely many non-trivial hyperbolic and non-hyperbolic repellors. In dimension three,
the construction of Cl-universal dynamics involves the (robust) presence of saddles with
different indices and non-real eigenvalues in the same transitive set, see (7).

SIn extremely rough terms and considering three dimensional systems, case (ii) corre-
sponds to dominated dynamics with three bundles, case (iii) corresponds to dominated dy-
namics with two bundles, and (iv) corresponds to non-dominated dynamics, see for instance
(49).
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(i) hyperbolic systems,

(ii) tame systems far from homoclinic tangencies (note that these diffeomor-

phisms may exhibit robust heterodimensional cycles),

(iii) tame systems with robust homoclinic tangencies (in the known examples

these systems also have robust heterodimensional cycles), and

(iv) wild diffeomorphisms.

We observe that there are some partial progress in the C'-topology to describe
the dynamics above and that very few is know in the case of wild dynamics
(besides some locally generic examples). The understanding of these dynamics

with higher regularity is a quite open problem.

1.4
Overview of our main results

The goal of this thesis is to present a semi-local scenario illustrating
the occurrence of C"-robust cycles and other related dynamics. We introduce
explicit families of local diffeomorphisms (we are only concerned with some
local and semi-local aspects of the dynamics) displaying C"-robust heterodi-
mensional cycles, r > 2. More precisely, in the C"-setting, we consider three
dimensional diffeomorphisms having a pair of saddle-focus fixed points, say
P and @, having a heterodimensional cycle. We also assume that the two di-
mensional invariant manifolds have non-transverse intersection (we call these
cycles non-transverse heterodimensional cycles). In this way we have a pair of
non-transverse heteroclinic orbits, say X and Y, where the a-limit set of X is
@ and its w-limit is P and the w-limit set of Y is () and its a-limit is P, see

Figure 1.1. In this case the point Y is called a heterodimensional tangency.

0 o e .

W) N J ) /@\\\%f\

u L)) ) X w ) |
/X w(Q <) ) @ )]

/

< -

Figure 1.1: Non-transverse heterodimensional cycles

We study the semi-local dynamics of this cycle (i.e, the orbits which
remain in the future and in the past in a neighbourhood of the orbits of P, ), X
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and Y') and see how this configuration may lead to C"-robust cycles and to

the stabilisation of the original cycle. This study has three main ingredients:

e A parametric Hénon-like family exhibiting (agree to the choice of param-
eters) blender-horseshoes (see Theorem 1) and a pair of fixed saddle-node
points related cyclically by the intersection of their invariant manifolds
(see Lemma 6.6.3).

e A renormalisation scheme associate to a non-transverse heterodimen-

sional cycle converging to maps of the Hénon-like family (see Theorem 2).

e Applications of the two items above to get robust cycles (Theorem 3)

and the stabilisation of the initial cycle (Theorem 4).

The study of the cyclic configuration depicted above is motivated by (21).
The configuration in (21) involves saddles P and ) having different indices (say
one and two, respectively) and real multipliers of a diffecomorphism f. The au-
thors introduce a renormalisation scheme associated to the heterodimensional

tangency converging the center unstable Hénon-like family

Glepmm(@,y,2) = Ex+y,p+y* +ra® +nay,y), €>1

For every parameter (£, u, k,n) close enough to (11,—9,0,0) these maps have
blenders (see Section 3.4). Indeed we accomplish the construction in (21)
proving that these blenders are indeed blender-horseshoes®. Following the ideas
in (21) we get a sequence of diffeomorphisms f,, converging to f (in the C"-
topology, r > 2) having blender-horseshoes. These blender-horseshoes have
one dimensional stable manifolds. Using these blenders in (21) the authors
obtain some additional semi-global information of the diffeomorphisms f,:
small C*T*perturbations of f,, a € (0,1/2), yield robust connections between
the manifolds one dimensional stable manifold of the blender and the one
dimensional unstable manifold of (the continuation of) Q.

This results are a partial step in the direction of the generation of C"-
robust cycles. In (21) the authors are not able to get intersections between
the two dimensional stable manifold of the blender and the two dimensional
stable manifold of (). Thus it is unknown if there is possible to get robust
cycles involving the blenders and (). Finally, it is also unknown if the blender

is (homoclinically) related to the saddle P. Two important cons in the

6A blender is a hyperbolic set satisfying some superposition geometrical properties, its
structure as hyperbolic set is not important and it may fail to be locally maximal. Blender-
horseshoes are locally maximal and conjugate to the complete shift of two symbols. This
property guarantees a complete description of the local stable manifold of the blender-
horseshoes.
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constructions in (21) are that the systems are “slowly recurrent” after the
generation of the blender and the “size” of the blenders decrease exponentially
fast (this is a difficulty to “relate” the blender to the saddles in the cycle).
The naive idea in this paper to bypass these two difficulties is to add extra
recurrences to the system considering saddles with non-real multipliers (saddle
focus) this allows to get C"-robust connections between the one unstable
manifolds. We also obtain an appropriate control of the size of the blender-
horseshoes that allows us we get the intersections between the stable manifold
of the blender and the stable manifold of Q).

Organisation of the thesis. This thesis is organised as follows. In Section 2
we give a rough description of the bifurcation setting that we consider. In
Section 3 we describe precisely the main ingredients involved in this thesis. In
Section 4 we state precisely our main results in this thesis and sketch the key
steps of the proofs. Theorem 1 about the existence of blender-horseshoes in
Hénon-like families is proved in Section 5. In Section 5.3 we prove Theorem 2
about the convergence of the renormalisation scheme. In Section 6 we construct
laminations of the parameter space corresponding to diffeomorphisms with
blender-horseshoes and prove the first part of Theorem 4 about stabilisation
of cycles. The second part of this theorem is given in Section 7. In Section 6.7
we prove Theorem 3. Finally, in Section 8.3 we apply our results to get non-

dominated homoclinic classes.
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2
The bifurcation context: Non-transverse heterodimensional
cycles

In this section we discuss our bifurcation setting. In a three dimensional
manifold, we study a bifurcation setting of a heterodimensional cycle associ-
ated a pair of hyperbolic saddles having non-real eigenvalues such that the
one-dimensional manifolds meets quasi-transversely and the two-dimensional
invariant manifolds also meet non-transversely. More precisely, let f : M — M
be a diffeomorphism having a pair of fixed saddles P and @ of indices (dimen-

sion of unstable bundle) two and one, respectively, such that

e P and Q are irrational saddle-focus: D f(P) have a non-real expanding
eigenvalue and D f(Q) have a non-real contracting eigenvalue, having

both eigenvalues an irrational argument);

e The one-dimensional manifolds meets through a orbit of a quasi-
transverse intersection point X ie., X € W3(P, f)nW"(Q, f) and

TxW2(P, f) + TxWHQ, f) = TxWA(P, f) @ TxWX(Q, f);

e The two-dimensional manifolds meet through an orbit of a non-transverse

intersection point Y i.e., the orbit of Y is contained in the set
(W, )y W@, H) \ (W (P, £) hW*(Q, ).

The study of such bifurcations depends on the geometrical constrains
(shape and relative positions of the invariant manifold close to the
heteroclinic orbits) as well of type of intersections (elliptic and hyperbolic
contact of the two-manifolds) in the cycle. The resulting dynamics is

determined by four maps:

— the local dynamics in (small) neighbourhoods Up and Ug of the
saddles P and @,

— two transition maps Ty p and Tpg, where T p follows the orbit of
the heteroclinic point X and goes from Ug to a Up and Tp follows
the orbit of the heteroclinic point Y and goes from Up to Uy.
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See Figure 2.1.

Figure 2.1: Non-transverse heterodimensional cycle satisfying conditions (H),

(Q), (T) and (L).

A key aspect of the dynamics of the bifurcation, using the terminology
in (13, Preface) and in very rough terms, heterodimensional cycles correspond
to the so-called non-critical dynamics and the homoclinic tangencies corre-
spond to the so-called critical dynamics. The dynamical configuration in this
paper involves the simultaneous occurrence of a heterodimensional cycle and
heterodimensional tangency, as a results aspects of critical and non-critical dy-
namics overlap and there is an interplay between the two types of dynamics.
In our setting T p corresponds to a non-critical dynamics and Tpg to the
critical one. Let us also observe that the transitions Tp o and Ty p determines
the (local) geometry of the invariant manifolds of the saddles in the cycle along
the heteroclinic orbits.

We postpone the discussion of these points and emphasise that our results

depend on appropriate choices for these configurations, see Section 4.2.
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3

Preliminaries

In this section we define and discuss the main objects in our results: non-
transverse heterodimensional cycles (Section 3.1), dominated splittings (Sec-
tion 3.2), homoclinic classes (Section 3.3), blender-horseshoes (Section 3.4),
and renormalisation schemes and Hénon-like families (Section 3.5). In what
follows, we denote by M a three-dimensional compact boundaryless manifold
and for r > 1, we denote by Diff" (M) the metric space of C"-diffeomorphisms

on M endowed with the uniform metric || - ||,..

3.1
Non-transverse heterodimensional cycles

For the next discussion recall the definition of a heterodimensional cycle,
see Definition 1.1.1. Consider a diffeomorphism f with a heterodimensional
cycle associated to hyperbolic sets I' and . Then by definition we can assume
that for every X € W5(I') N W*(X) and every Y € W*(I') N W3(X) it holds

dim (TxW*(I")) + dim (TxW" (%)) < dim (Tx M),
dim (TyW*(I')) + dim (TyW*(%)) > dim (TyM).

Thus the last condition allows two types of intersections between W*(I') and
W3(%): transverse and non-transverse. The set of transverse intersection of
such manifolds is denoted by W*(I") h W*(X). This motivates the following

definition:

Definition 3.1.1 (Non-transverse heterodimensional cycles) Consider
a diffeomorphism f : M — M having a heterodimensional cycle associated
to saddles P and @ such that ind(P) > ind(Q). A heteroclinic orbit of the
cycle in WY(P, f) N W3(Q, f) disjoint from W*(P, f) h W3(Q, f)) is called a

heterodimensional tangency. In such a case we say that cycle is non-transverse.
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3.2
Dominated Splittings

There are several notions extending the concept of uniform hyperbolicity.
Let us discuss briefly one of this generalisations.

In the context of the stability conjeture, Liao (27), Mane (28), Pliss (41)
were led to the more general notion of hyperbolicity known as dominated
splitting. This systems support a invariant splitting shaped for two subbundles:
one of the bunddle is definitely more contracted (or less expanded) than the
other after a fixed time (uniform in whose invariant set) of iterated.

We now give the formal definition of this weaker form of hyperbolicity.

Definition 3.2.1 (Dominated splitting) An f-invariant set A has a domi-
nated splitting if the tangent bundle Th M over A splits into two D f-invariant
bundles F and F', TAM = E & F, whose fibers F, and F, have constant di-
mensions, and there exists constants 0 < A < 1 and C' > 0, and an integer
[ > 1 such that for every point € A it holds that

1 _
IDS ] < 5 IDFk e (3:2.1)

In this case, we say that splitting is [-dominated and that ' dominates F.

We now list some important properties of a dominated splitting (for

details see, for instance, (13)).

Remark 3.2.2

(i) Continuous dependence of the fibers. The fibers E, and F, of the
dominated splitting depend continuously on the point x € A.

(ii) Bounded angle. The angle between the bundles E, and F,, z € A, is

uniformly bounded away from below.

(iii) Eztension to the closure. Suppose that E @ F' is a dominated splitting
defined on an (not necessarily closed) f-invariant set A. Then there is
a dominated splitting E @ F defined on the closure A of A such that
E’x = F, and Fx = F,, for all z € A.

In this paper we obtain three-dimensional C"-diffeomophisms f, r > 2,
such that every system sufficiently C"-close to f has a transitive invariant
sets that does not support any splitting dominated. We will use the following

simple observation.

Remark 3.2.3 (Obstruction to domination) In dimension three, the si-

multaneous presence of two saddles-focus of different u-indices in a transitive
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set A prevents the existence of dominated splittings defined on the whole A.
Indeed, let P and ) be two saddle-focus in A such that P has a non-real
expanding eigenvalue and () has a non-real contracting eigenvalue. Assume
that T\M = E @& F is a dominated splitting. Assume for instance that E
is one-dimensional (the case when F'is one dimensional follows analogously
interchanging the roles of P and Q). Then Eq N Ef, is a one-dimensional
D f-invariant sub-bundle contained in Ef),. This contradicts the fact that the

derivate of f at ) has two non-real (contractive) eigenvalues.

3.3
Homoclinic class

Homoclinic classes were introduced by Newhouse in (34) as an abstraction
of the basic sets of the Smale theory (see (48)). They are an essential ingredient
in the structure of the dynamics of diffeomorphisms and in many relevant cases

correspond to the elementary pieces of dynamics (see (13), Chapter 10.4]).

Definition 3.3.1 (Homoclinic class) Let f be a diffeomorphism and P a
periodic saddle of f. Denote by O(P) the orbit of P. The homoclinic class of
P (or of the orbit of P), denoted by H(P, f), is the closure of the transverse
intersections of the stable and unstable manifolds of O(P). We say that a

homoclinic class is non-trivial if it contains at least two different orbits.

A homoclinic class can be also defined as the closure of the set of saddles
that are homoclinically related with P. Recall that a saddle ) is homoclinically
related with P if the invariant manifolds of the orbits of P and () meet cyclically
and transversely. Note that homoclinically related saddles have the same index.

We observe that the saddles of H(P, f) having the same index as P form
a dense subset of the whole class H (P, f). Finally, any homoclinic class H (P, f)
is f-invariant and transitive. For these properties of homoclinic classes see, for
instance, (36).

We observe that a homoclinic class H(P, f) may fail to be uniformly
hyperbolic. Indeed, this, may contain in a robust way hyperbolic saddles having
indices different from the one of P (see, for instance, the constructions in (20)).

Denote by h (P, f) the dense subset of saddles in H(P, f) that are
homoclinically related to P. For each @ €M (P, f) we have the hyperbolic
splitting (E° ® E")|o(q) defined over the orbit O(Q) of Q. The dimensions of
the bundles in these splittings do not depend on ). One aims to extend these
splittings to the whole closure of M (P, f) (i.e., H(P, f)) to get a “nice” splitting
defined on H (P, f). Unfortunately, this is not always possible. First, the angles

between the bundles can be arbitrarily small (this prevents the extension, recall
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Remark 3.2.2). Second, if such an extension exists it may fail to be dominated.
In this work, we get, after unfolding of a non-tranverse heterodimensional
cycle, homoclinic classes that are C"-robustly non-dominated for » > 2. This
is obtained considering a homoclinic class containing a pair of saddle-focus

points with different indices. This motivates the following definition.

Definition 3.3.2 (Intermingled homoclinic classes) Let P and @ be
saddles of different indices of a diffeomorphism f. The homoclinic classes
H(P, f) and H(Q, f) are intermigled if they has non-empty intersection. This
intermingledness is C"-robust if there exist a C"-neighbourhood U of f such
that for every g € U the continuations P, and ), of P and () satisfies

H(P,,9) N H(Qq,9) # 0.

In the C'-topology, the persistence of intermingled homoclinic classes of dif-
ferent indices is a phenomenon inherent to the unfolding of heterodimensional
cycles. For details and precise statements see (24). On the other hand, by (1, 17)
there exist a residual set of C''-diffeomorphisms such that any two homoclinic
classes are either disjoint or coincide. In this work we get two homoclinic classes

of sadles with different indices that are intermingled C"-robustly for r» > 2.

34
Blenders and Blender-horseshoes

We now discuss the definition of a three-dimensional blenders and
blender-horseshoes, for further details and generalisations see (5), (10), and (13,
Chapter 6). First, we give an axiomatic definition and thereafter sufficient
conditions for the existence of a special kind of cu-blender called blender-

horseshoe.

Definition 3.4.1 (cu-Blender, Definition 3.1 in (10)) Let f : M — M be a
three-dimensional diffeomorphism. A transitive hyperbolic compact set A of
index two of f is a cu-blender if there are a C''-neighbourhood U of f and a
C'-open set D of embeddings of one-discs D into M such that for every g € U
and every disc D € D the local stable manifold W} (A,) of the continuation
A, intersects D. The set D is called the region of superposition of the blender.


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 3. Preliminaries 27

3.4.1
Blender-horseshoes

We begin with some preliminary constructions. In what follows we restrict
our attention to the three dimensional case. Since the construction is local we
assume that the ambient space is R3.

Consider a cube of the form
A=1,xI,xI, C R3,  where I, I,, and I, are closed intervals.
We divide the boundary 0A of A into three parts as follows:
0*A:=0l, xI, x1,, 0"MA:=1,x0l, x1I, 0"A:=1, x9(, xL,).

Note that "A C 9"A and 0A = FA U I"A.
Given 0 > 1 for each p € A C R? we consider the cone fields

Cp(p) = {(u,v,w) € T,A : Olu| < Vov? +w2},
Cy"(p) = {(u,v,w) e T,A: 0vVu? +u? < \vy}, (3.4.1)
Cy(p) = {(u,v,w) € T,A : 0vV0? +w? < |u]}

Note that Cj"(p) C Cy(p).
Related to these cone fields we define vertical and horizontal curves and

vertical strips as follows:

e A regular curve L C A is vertical (resp. horizontal) if for every point p
in L, it holds T,,L C Cy"(p) (resp. T,L C Cj(p)) and the end-points of L
are contained in different connected components of 9" A (resp. *A). In

what follows the vertical curves will be called uu-disc.

o A surface S C A is called a wertical strip in A if T,,S C Cj(p) for every
p in S and there exists a C'-embedding F : I, x J — A (where J is a
subinterval of I,) such that E(I, x J) = S and L(z) := E(I, x {z}) is a
vertical curve for every z € J. The width of S, denoted by w(S5), is the
infimum of the length of the curves in S which are transverse to Cj" and

join the two components of L(0.J).

Note that every horizontal curve W in A define two different (free)
homotopy classes of vertical segments through A and disjoint from W. This
allows us to consider uu-discs to the left and to the right of W (corresponding

to two different homotopy classes). We will denote this classes by H;, and Hiy,.
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e The right class HY, (resp. left class HY,) consist of every vertical curve L
in A such that LNW = 0 and L is (freely) homotopic to {zo} xI, x {z*}
(resp. {zo} x I, x {z7}) for some xq € I, where I, = [z, 2%]. If L € Hj,
(resp. L € HY,) we say that L is at the right (vesp. at the left) of W.
Observe that if W, and W, are different horizontal curves in A, then
Hy, NHY, # 0 or Hy, NHY, # 0.

Similarly, a vertical strip S through A is at the right (vesp. at the left)
of W if it is foliated by vertical curves at the right (resp. at the left) of
W.

We now borrow the following definition from (10).

Definition 3.4.2 (Blender-Horseshoes) The maximal invariant Ap =
NiezF'(A) of a local diffeomorphism F : A — R® is a blender-horseshoes
if F satisfies conditions (BH1)-(BH6) below:

(BH1) Vertical legs of the blender: The intersection F/(A)N (R x I, x R) consists
of two connected components, denoted F'(A) and F(B) satifiying

F(A)UF(B) Ccint(l,) x I, x R and (AUB)NI"A = .

Here int(X) denote the interior of X.

(BH2) (i) Strict invariance of cone fields: There exist § > 1 such that for
every p € F(A)N F(B) and ¢ € AN B then

DF,(C5(p) € CF(F 1 (p)), DFy(C5(q)) € C(F(q)), =,

(ii) Expansion/Contraction the cone fields: The derivatives DF|cu and

DF7!¢s are uniformly expanding and contracting, respectively.

(BH3) Markov partition: Consider the connected components of F'~1(A) N A:
A:=FYFA)NA), B:=F'(F(B)NA).
Then,

F(A)UF(B) C int(I,) xI, xI,, AUB CI, xint(I, x L,).

Conditions (BH2) and (BH3) imply the existence of two saddles P € A and
@ € B. We define the local stable manifolds of P and () by

Wi .(P) := connected componet of W5(P) N A containig P,
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W (Q) := connected componet of W*(Q) N A containig Q).

These local manifolds are horizontal curves in A. Note that either HQVIS N
Hﬁ,ﬁ) (@ # () or Hﬁ/lso (o NHiy o # () and assume that the first case holds.
We say that a vertical curve is in between Wp (P) and W .(Q) if it belongs
to Hype (p) N H%]/VEC(Q)' We use the notation

b._ gr L
1= g ) N Hig 0

We say that he saddles P and @ are the reference saddles of Ap, where P is
the left saddle and @ is the right saddle. The family of discs in H® is called

superposition region of the blender-horseshoe.

(BH4) uu-discs through the local stable manifolds of P and Q: Let D and D’ be
uu-discs such that D NWE (P) # 0 and D' N WE_(Q) # 0. Then

DN (0"AN\O™A) =0, D'n("A\o™A) =0
(BH5) Positions of images of uu-discs: Let D be a uu-disc in A and write
Dy:=DNA and Dg:=DNBKB.

There are the following six cases:

( ) ool ( ) loc(P)?

(2) if D € HWQ (py then F(Dy) € HWg (P)

(3) if D e H;Vs (@ then F(Dgp) € HWFOC @)

(4) if D € HWS (@) then F(Dg) € HWS (@

(5) if D € HWS (porDn We.(P) # @ then F(Dpg) € Hf,[,s (p)> and
(6) if D € HWS (@ or DN WE(Q) # 0 then F(Dy) € H;VISOC(Q).

(BH6) Positions of images of wu-discs H’: Let D € HP. Then either F/(D4) or
F(Dg) belongs to HP.

Figure 3.1 illustrates a prototypical blender-horseshoes dynamics.

Remark 3.4.3 (Consequences of (BH1)-(BH6), Section 3.2.4 in (10))

e Condition (BH3) is equivalent to

(F(A)UF@®)No'A=0, and (AUB)NI"A=0.
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e From (BH3), one gets that {A, B} is a Markov partition generating Ag.
In particular, the set Ap contains exactly two fixed points of F', P € A
and @ € B. Therefore, (BH2) and (BH3) imply that the dynamics of F’
in Ap is hyperbolic and conjugate to the full shift of two symbols.

e The conditions (BH1)-(BH6) are C''-open ones. Hence if A is a blender-
horseshoe of F for every GG close enough to F' the continuation Ag of Ap

is a blender-horseshoe.

Figure 3.1: (a) The diffeomophism F' satisfies conditions (BH1)-(BH6) in A.
(b) Projection of the region of superposition H” between the reference saddles
P and Q of the blender-horseshoe Ap. The curve ¢ is a uu-disc in H°.

We consider the following local stable manifold of Ap,

Wie(Ar) =[] F*(A) C W*(Ar).
neN
We borrow the following lemma (and its proof) from (4) stating the

distinctive property of a blender.

Lemma 3.4.4 (Lemma 3.13 in (4)) For every D € H® it holds D N
We(Ar) # 0 for every D € H®.

Proof. Consider D = Dy € H®. By condition (BH6), F(D) contains a disc
D, € H®. Write F~Y(D;) = D} C Dy. We now proceed inductively, assuming
defined D, € H® with D, C F(D,_;) and F~"(D,) = D, C D, we
define D, 11 € H® contained in F(D,) and let F~""1(D,) = D! C D,. The
sequence D!, is nested and hence () # N, D!, C Dy. Note that by construction
ﬂnD;z - I/Vlfac(AF)- n
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We also the following refinement of the above lemma. First we say that
a vertical strip is in between Wi _(P) and Wi _(Q) if it is foliated by curves in
H.

Lemma 3.4.5 Every vertical strip in between Wi (P) and W .(Q) intersects
transversely W3(P).

Proof. Since Ap is the maximal invariant set in A, then W{ (Ap) =
NienF'*(A). Thus, it is sufficient to see that the stable manifold W*(P*, F') of
P* € Ap intersects transversally every vertical strip S through A to the right
of W§ (note that any vertical segment D through A can be seen as an intersec-
tion of a nested sequence of vertical strip S throughout A). To see that, note
that the conditions (H1)-(H6) above imply that the width of vertical strips
in A grows exponentially after iterations by F (i.e., the image F'(S) contains
a strip S’ such that w(S’) > dw(S) for some ¢ > 1). This implies that the
stable manifold W*(P*, F') of P* intersects transversally every vertical strip S
through A to the right of W§. In particular, we have that Wg_(Ap) NS # 0,
ending the proof of the lemma. |

3.4.2
Blender-horseshoes for endomorphisms

Now we reformulate the definition of a blender-horseshoe for endomor-

phisms:

Definition 3.4.6 (Blender-horseshoes for endomorphisms) The gener-
alised maximal invariant Ag = Niez (A N Gi(A)) of a local endomorphism
G : A — R3 is a blender-horseshoes if G satisfies the conditions below:

(BH1") Vertical legs of the blender: The intersection G(A)N (R x I, x R) consists
of two connected components, denoted G(A) and G(B) satifiying

GA)UGB) Cint(l,) x I, xR and (AUB)NIUA =0,

where A and B are connected subsets of A.

(BH2') (i) Strict invariance of cone fields: There exist § > 1 such that if
p € AN B then

C(G(D) € DG, (CP W), DGy(Ci(1)) € C(G), * =,

(ii) Expansion/Contraction the cone fields: The derivatives DG|cw and

DG|es are uniformly expanding and contracting, respectively.
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(BH3’) Quasi Markov partition: Consider connected components of G~ (A)NA:
ACGHGANAINA, BcCcG Y GB)NA)NA.

such that
GA)=GANA, GB)=GMB)NA.

Then,

G(A)UGB) Cint(I,) x I, xI,, AUB CI, xint(I, x L,).

Conditions (BH2’) and (BH3’) imply the existence of two (reference) saddles
P € A and @ € B. Thus, the local stable manifolds of Wi (P) and W} (Q)

are horizontal segments in A. We assume that Hj s (p) N Hﬁvﬁ) (@ # 0.

(BH4’) The uu-discs D and D’ in A such that
DAWg(P)£0 and D' AW (Q) # 0.

satisfies the condition (BH4) in Definition 3.4.2.

(BH5’) Let D be a uu-disc in A and denote Dy := DN A and Dg := DN B.
Then the discs G(D4) and G(Djp) satifies the posibilities of (BH5) in
Definition 3.4.2.

(BH6") Let D be a uu-disc in H”. Then either G(D4) or G(Dg) is in H®.

We now reformulate the item about continuations of blender-horseshoes

for endomorphisms.

Remark 3.4.7 (Continuations of blender-horseshoes endomorphisms)
Suposse that the endomorphism G has a blender-horseshoe in A. Then every
diffeomorphism F' such that F|a is sufficiently close to G|a has a blender-

horseshoe in A.

3.5
Renormalisation schemes and Hénon-like families

First, let us observe that renormalisation methods play an important role
in the study of homoclinic bifurcations (dynamics at homoclinic tangencies).
This method leads to the approximation of dynamics by quadratic families
(Hénon-like families) and allows to translate some properties of such families
(as existence of strange attractors and sinks, or thick hyperbolic sets) to the

renormalised diffeomorphisms, see for instance (38, Chapter 6.4).
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Analogously to the case of homoclinic bifurcations, in (21) is introduced
a renormalisation scheme for a three-dimensional C"-diffeomorphism f, r > 2,
having a non-transverse heterodimensional cycles between saddles P and @) (in
(21) both saddles in the cycle have real multipliers) of u-index two and one,

respectively, whose dynamic limit it the center unstable Hénon-like family

Glepnm(®,9,2) = Ex+y,p+y* +ra’+nayy), €>1 (3.5.1)

This Hénon-like family exhibits, for an appropriate open set of parameters,
blender-horseshoes, see Theorem 1.

Recall our bifurcation setting in Section 2 of a diffeomorphism f €
Diff"(M) having a non-transverse heterodimensional tangency point Y and
a quasi-transverse heteroclinic point X. A renormalisation scheme to f at Y

is a 4-tuple
Ri(f): = ({Wehe {fii (LR}, Reo(F)) (3.5.2)

where

e U, : R3 — M is a sequence of local coordinates such that U, (K) — {Y'}

for every compact set K in R?;

o fr.: M — M is a sequence of diffeomorphisms (obtained by an unfolding
of the cycle - both heteroclinic connections X and Y') converging to f in

the C"-topology;

e /(k) € N is a sequence of return times of f to the heterodimensional

tangency; and

o Ro(f):R>— R?is an endomorphism,
such that the renormalised sequence

Ri(f): =¥, o f;f(k) oWy,

converges on compact sets to R (f) in the C"-topology. The endomorphism

Roo(f) is called dynamic limit.
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4
Precise statements of the main results

4.1
Hénon-like families with blender-horseshoes
Next result is a version of (21, Theorem 1.1) where blenders are replaced

by blender-horseshoes.

Theorem 1 Consider the center unstable Hénon-like family of endomor-

phisms

G(E,u,/@,n)<x7y72) = (yau +y2 + RY =z +,’7227€Z + y)a f > 17

and the cube
A = [—4,4)* x [-40,22].

Then there is € > 0 such that for every
v=(&pk,m) €0 = (1.18,1,19) x (=10, -9) x (—¢,¢)?

the endomorphism G5 has a blender-horseshoe in A.
As a consequence, every diffeomorphism sufficiently C*-close to G has

a blender-horseshoe in /\.

Remark 4.1.1 The endomorphism G¢ . in (3.5.1) and G(e ..., are con-
jugated by the map O(z,y, 2) = (z,y, x).

4.2
A bifurcation setting for C"-robust cycles

Recall that M denotes a three-dimensional compact Riemannian mani-
fold. Consider a diffeomorphism f € Diff" (M) having a pair of periodic saddles
P and @ of u-indice two and one, respectively, related by a heterodimensional
cycle satisfying the following conditions (L), (H), (Q) and (T):

(L) Linearising and Spectral conditions. Suppose that there exist C"-linearising
local chart Up and Uy at the the saddles P and ). We assume also, that the

saddles P and () has non-real eigenvalues with spectrum are given by
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Spec(Df(P)) = {Ap,op =79 | Spec(DF(Q)) = {og, g 2750 .

where 0 < |Ap|,|Aq] < 1 < |opl,|og|, and ¢p,pq € Q°. We called to this
type of saddles irrational saddle-focus. We assume some technical conditions

(including non-resonance like ones) on the parameters
LocDyn(f) := (Ap,0p, Ag,00) € RY,

given by a open and non-empty set P (see Lemma 6.5.3). For simplicity,
we relegate the explicit formulation of these conditions to Section 5.3.1 (see
(5.3.2)).
(H) Heterodimensional tangency. The two dimensional manifolds W"(P, f)
and W*(Q, f) have a heterodimensional tangency Y € W"(P, f) N W3(Q, f),
see Defintion 3.1.1.

Taking backward iterates of Y, if necessary, we can assume that Y €
W2.(P, f). Identify a linearising neighbourhood of P with a neighbourhood of
0 € R3, we know, by the classification of quadratic surfaces in R? that Y has

the form as illustrated in following Fig. 2.1.

(Q) Quasi-transverse intersections. The one-dimensional manifolds W*(P, f)
and W"(Q, f) meet quasi-transversely along the orbit of a heteroclinic point
X € WP, f)ynW™Q, f) i.e., TxW3(P, f) + TxW™(Q, f) = TxW?3(P, f) ®
TxWH(Q, ).

Replacing the heteroclinic points X € W3(P, f) N W*(Q, f) and Y €
WP, f) N W*(Q, f) by some backward iterates we can assume that X € Ug
and Y € Up. Associated to these heteroclinic points we define a pair of
transition maps corresponding to suitable iterations of the diffeomorphism f

in small neighbourhoods of X and Y.

Definition 4.2.1 (The set 7 u.q of allowed quadratic transitions)
Denote by Tquaa the space of polynomials of R* fixing the origin of the

form
T a1 + agy + asz
q |y | =|biz+ boy?® + b32* + bayz | ,
Z C1T + CY + C3%
such that

blcg(ag—ag)#o, b2+b3+b47é0, Cy = C3.

Note that ¢ is a local diffeomorphism at the origin. We identify the map

q € Tquaa with the vector v = (ay,as, as, by, ba, bz, by, c1,c9) € R? and write


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 4. Precise statements of the main results 36

q = q,. We denote Q C RY the set of vectors v such that ¢, € Tquaa and
IT: Tquaa — Q,  1(gy) =v. (4.2.1)

(T) Transition maps. There are natural numbers Ny and Ny (called transition
times) such that f"(X) € Up and f™(Y) € Ug such that

e in a small neighbourhood of X, the transition map f is C"-close
to a translation: there are small neighbourhoods Ux C Ug of X and
Upni(xy C Up and local coordinates in these neighbourhoods (where X
and f(X) are identified with the origin) such that

N Ux = Uiy, fY(2) =2+ H(2),

where the map H is a higher order term (of order at least two) satisfying
the flat conditions in (5.3.8) at Z = 0.

e in a small neighbourhood of Y, the transition map f»? is a C"-map
of quadratic type: there are small neighbourhoods Uy C Up of YV and
Upnyyy C Ug and local coordinates in these neighbourhoods (where Y
and fN2(Y) are identified with the origin) such that

fNQi Uy — Usz(y), fNQ(Z) = Quad(f)yn,(2) + H(Z),

where Quad(f)y.n, € Tquaa and H denotes the high order terms (of order
at least two) satisfying flat conditions in (5.3.11) and (??) at Z = 0!

The map Quad(f)yn,, called the quadratic transition of f, describes, up to a
C"-error of order two, the tangential contact between W*(P, f) and W*(Q, f)
at Y.

Definition 4.2.2 For r > 1, we define the subset N7 o(Tquaa) of Diff"(M)
consisting of diffeomorphisms f having a non-transverse heterodimensional
cycle associated to irrational saddle-focus Py and @) satisfying conditions (L),
(H), (Q), and (T). Given a subset T C Tquaa We denote by Np (7)) the subset
of Npo(Tquaa) of diffeomorphisms f such that Quad(f) € T.

IThe flat conditions of H imply that there is no “interference” between Quad(f)y n, and
H: the first and the third components of H have no linear terms, the second component of
H has no z,%?, 22, yz terms.


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 4. Precise statements of the main results 37

4.3
The renormalisation scheme

Following the constructions in the proof of (21, Theorem 1.2), we
get a renormalisation scheme of diffeomorphisms having a non-transverse
heterodimensional cycle between irrational saddles-focus, converging to the

family of endomorphisms

E(é,u,<1,<2,<3,<4,<5)(x7 Y, Z) = (§$ + ¢ Yy, u + G y2 + G3 12 +Qux Y, S5 y) (431)

For an appropriate choice of parameters this family is C'*°-conjugate to the

family G, ., in Theorem 1 (see Lemma 6.4.1).

Theorem 2 (Renormalisation scheme) Consider a diffeomorphism f in
the set Npo(Tquaa), 7 > 2 with quadratic transition Quad(f) = q,. Then there
is a unfolding family § = {fs}sers in Diff" (M) bifurcating the non-transverse
heterodimensional cycle of f = f5 € § satisfying the following property:

For every & > 0, there exist a renormalisation scheme R(,§, f) consist-

ing of

e m,n > 1 sequences of natural numbers;
o U, . :R®— M sequence of parameterisations of the manifold;

® Unn @ R* — R® sequence of functions parameterizing the bifurcating
Jamily fs;
® Ron (f@mm) : M — M, sequence of rescaled diffeomorphisms defined by

)N2+m+N1+n

R (Fonn) = (Foun,

e rational maps ¢; : Dom(q;) CRxR? - R, i=1,2,3,4,5;
satisfying the following conditions:

e for compact sets L, A in R® we have the convergence:
Umn(L) = {0}, V., (A) = {Y}, when m,n— +oo,

here Y is the point of heterodimensional tangency;

o for each (u, &, ) € R3 the corresponding renormalised sequence
\I/;;n 0 Rmn (fq;,mﬁn) oWy n, where Upmp = Upa(p,d, ), (4.3.2)

converges in the C"-topology and on compact sets of R3 to the endomor-

phism
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Eepcen)®y,2)=Ex+qy, p+oy’+ar’+ary, y), (4.3.3)

where g_ = (§1,§27§3,§4,§5> and S = g’i(gav>7 1= 1727374a 5.

4.4
C"-robust cycles and C"-stabilisation

We give a first result asserting that for every r > 2 there is a class of
diffeomorphisms in Np o (7Tquaa) such that every diffeomorphism in this class
can be C"-approximated by diffeomorphisms having C"-robust (heterodimen-

sional) cycles.

Theorem 3 (C"-robust cycles) Letr > 2. There exist a seven-dimensional
sub-manifold TR in Tquaa such that every diffeomorphism in Npo(TRC) can
be C"-approximated by diffeomorphisms having C"-robust heterodimensional

cycles.

The previous theorem does not provide any relation between the hyper-
bolic sets involved in the robust cycle and the continuations of the saddles in
the initial cycle. This motivates the next result. Recall that a lamination is a

locally trivial partition of a set (contained in a manifold) into sub-manifolds.

Theorem 4 (C"-stabilisation) Let 2 < r < 4o0. There are an open subset
B C R? and a local lamination Tg = (T;)pep whose leaves are sub-manifolds

of Tquaa of dimension seven satisfying the following properties:

(1) For every f € Npo(Ty) there is a sequence of diffeomorphisms fj,
converging to f in the C"-topology such that every f, has a blender-
horseshoe Ay, (of index two) accumulating to the heterodimensional
tangency of f.

(II) There is a subset B' C B such that for every b € B’ there exist a open
subset Ty of Ty such that if f € N§o(To) then for every k large enough
it holds

(1) Ay, and the saddle Qg form a robust cycle,

(i1) Ay, is a homoclinically related to the saddle Py, , and

i17) the homoclinic classes of Py, and Qs are C"-robustly intermingled.
Ik Tk

In particular, the initial cycle of every diffeomorphism in N"(Ty) can be
C"- stabilised by diffeomorphisms having homoclinic classes C"-robustly

non-dominated.
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4.5
Strategy of the proofs of Theorems 3 and 4

We now sketch the main steps in the proofs.

e Renormalisation scheme. Bearing in mind Theorems 1 (specially equation
(4.3.2)) and 2 and recalling the conjugation O, , ;) in Lemma 6.4.1 between
the Hénon-like family in (3.5.1) and the quadratic family of endomorphisms in
(4.3.1),

1
(s1,52,55) © E(€7M7€) o @(<1,§2,<5) = G(£7u7n,n)a

we get the following convergence result. Recall the maps ¢; = ¢1(§,v), & =

6% (&,v), and ¢5 = ¢5(&, v) in Theorem 2 and consider

Ii(f, U) =91 (67 U)Q §2(€7 U)_l §3(§7 U)? 77(57 U) =91 (f) U) 62 (67 v)_l §4(§7 U)'
(4.5.1)

Proposition 1 For appropriate choice of parameters &, pu, and v the following

C"-convergence holds

6@i7§27§5) © \I];’L}n © RT)’L,TL (ff}m,n> © \Ijm7n © ®(§1?§2>§5) - G(f,ﬂ,ﬂvﬁ)‘

Next step is know the dynamics of G ¢ )

e Blenders and saddle-node points in the renormalisation scheme: proof of
Theorem 3. To explain the proof of this theorem we begin by recalling some
ingredients in (9). To get robust cycles in (9) the authors first consider a series
of genuine C'-perturbations leading to a configuration called strong homoclinic
intersections of a saddle-node (roughly, the strong unstable and stable man-
ifolds of the saddle node meets quasi-transversely). This configuration yields
robust cycles after small C'*°-perturbations. In our setting the existence of
strong homoclinic intersections of a saddle-node occurs naturally in Hénon-
like families, we now discuss this point.

For the family G ¢« there are two important set of parameters:

— an open set where the maps have blender-horseshoes (Theorem 1) and

— parameters of the form (1, p,0,0), with g ~ —9, where there are a pair
of saddle-nodes which are “homoclinically related” (the strong invari-
ant one-dimensional manifolds meet quasi-transversally and cyclically).
After small perturbations this configuration leads to strong homoclinic

intersections associated to saddle-nodes.

Here we use the Hénon-like families in the place of C''-perturbations to get the
strong homoclinic intersections.

Summarising, the main step of the proof of Theorem 3 is the following:
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Proposition 2 Let {Fy}r be a sequence in Diff"(R3) such that for every
compact set K C R? it holds

kglfoo [(Fk — G o)kl = 0.
Then there exist ¢, — 0 and an ex-C" -perturbation Gy of Fy such that Gy has

strong homoclinic intersection associated to a saddle-node for every large k.

e Laminations and admissible leaves in Theorems 3 and 4. The proof of the
stabilisation theorem involves a careful choice of an open subset B C R? and
a local lamination 7z := (7;);cz Whose leaves are sub-manifolds of 7qyaq. For
that recall the maps IT : Tguaqa — R? in (4.2.1), and £ and 7 in (4.5.1). Consider
the family of maps

75 : H(Euad) — R27 75(1)) - (K(€7v)7n(§7v>> S RQ (g S R)

For regular values (kg,70) of 7¢ (we denote such set by RV(7¢)) we consider
the sub-manifold -, (Ko, mo) of dimension seven in R?.

Recall the Hénon-like family G, ., and take the open subset O =
I xJxV CR xR x R? of parameters providing blender-horseshoes for this
family in Theorem 1. Let B = I x V), then we will see that for every £ we have
that RV(v¢) C V and hence the leaves T of the lamination 7Tz are given by

T =17 (7' (w), b: = (& w) €B.

We also note that the sub-manifold TEC of Tquaa in Theorem 3 is
I (70, 0)).

e Homoclinic and heteroclinic relations leading to Theorem 4. The stabilisation
of the initial cycle is related to the existence of additional heteroclinic inter-
sections between the saddles in the cycle. The existence of these heteroclinic
intersections depends on the initial configuration the cycle, this leads to split
Tquad according to geometrical constrains such as the type of tangency (elliptic
or hyperbolic contact) and the relative position of the invariant manifolds of
the saddles. The choice of the sub-regions of Tqu.a guarantees the following
properties:

* New quasi-transverse orbits. The new quasi-transverse orbits have a suitable

unfolding independent of the renormalisation scheme.

* Robust cycle between the blender-horseshoe and the saddle @) in the cy-
cle. Consider the sequence of diffeomorphisms f;,, and their corresponding

horseshoe-blender A,, ,, in Theorem 4. Bifurcating a new quasi-transverse orbit
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(by a small C"-perturbation) we obtain a uu-disc simultaneously contained in
the unstable manifold of ) and in superposition region of blender A,,,,. This
provides a robust intersection between the one-dimensional invariant manifolds
of the saddle and the blender.

To generate the robust cycle we need to get a transverse intersection
between the two-dimensional invariant manifolds of the saddle and the blender.
The key property guaranteeing this intersection is obtained analysing the
blender of the Hénon-like family. Let us give some additional details.

Consider G¢ .m|a. The properties of this family implies that if D is
a uu-disc then G(g .)la(D) contains a “uu-disc" of size close to |D|? (this
claim is depicted in Figure 8.2). This assertion, in particular, holds for unstable
manifolds of the references saddles of the blender. With this in mind we can
take increasing domains A,,,, D A such that, restricted to the set A,,, and
in the C"-topology we have the following: let

P = Vinm © Oy 0,05)

)

then
Q;L}n © Rm7n (f/l_)m,’n) © émvn —> G(Ehuﬂn’n).

and
Bt (Wi @, f,)) WP, G| a,) # 0.

This implies that

(I)’;l}n (I/Vlic(Q7 fﬁm,n)) M Wu(Pgm,n’ q)’;:n © Rm,n (fﬁm,n) o (I)m,n|Am,n) 7"é Qa

where P; is the continuation of P*. This completes our sketch of the
generation of the robust cycle. To get the stabilisation of the cycle it remains

to connect the saddle P and the blender homoclinically.
* The blender-horseshoe and the saddle P are homoclinically related. The cycle
configuration implies that W' (P, f,, ) meets transversely W (Q, f,..). The
irrational argument of the saddle ) and the one-dimensional intersection of
the robust cycle imply that W*(P; = f5,..) is dense in Wi (Q, f5,, ). From
this we obtain that

W2 (P, o fon,) DWH(P, fo,,,) # 0.

D'm,n7

To obtain the remaining transverse intersection, we note that after of genera-
tion of the robust cycle there is “surviving" quasi-transverse heteroclinic orbit.

Using this orbit and the irrational argument of saddle (), we have that the
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stable manifold W*(P, f5,, ) is dense in W (Q, f3,..)- On the other hand,
using the transverse intersection of the robust cycle, we have W*(P; . f5,..)

meets transversely W (Q, fs,...). Thus, we get that
Wu(Pgm,na f'L_)m,n) rh WS<P7 ff}m,n> 7& @

This completes the sketch of the construction.
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5
Blender-horseshoes in Hénon-like families: Proof of Theorem
1

In this section we prove Theorem 1. By the C''-robustness of properties
(BH1")-(BH6’) in Definition 3.4.6 (recall Remark 3.4.3 and 3.4.7), it is sufficient

to show the following theorem.

Theorem 5.0.1 For every (&, ) € (1.18,1,19) x (=10, —9), the Hénon like

endomorphism

Gepo0) (T, y,2) = (Y, u+y>, €2+ y)

has a blender-horseshoes in A = [—4,4]* x [—40, 22].

To prove this theorem we first investigate some properties of the endo-
morphisms G¢, = G 00 on A to the parameters (§,p) € (1.18,1.19) x
(—10,-9).

5.1
Properties of the Hénon like family

Let
P = (1.18,1.19) x (=10, —9). (5.1.1)
Lemma 5.1.1 (Hyperbolic fixed points) For every ({,u) € P, the endo-
morphism G, has two hyperbolic fixed saddles Pﬁi,u = (xzu,ynggu) e A

where
Te, = Yo, =+ We,) =1 —8) 2,

5 .

+ .
Yeo = Yu =

Proof. The condition p € (—10,—9) implies that —2.7 < y < —2.5 and
3.5 <yt < 3.71. Thus, for every (&, ) € P we get following estimates for 2/ :

Y

(1-¢)

—20.6 <z, = < —184, 13 < Zgu =
Therefore, Pﬁi,u e A.
It remains to check the hyperbolicity of these points. Note that A> = 0

and \° = £ > 1 are the eigenvalues of DGg,u(Pgi’H) associated to eigenspaces
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spanned by the vectors (1,0,0) and (0,0, 1), respectively. The (strong) expand-
ing eigenvalue of DGW(PS;) is given by )\u“(PgM) =2 y/“f that is associated to
the eigenvector

(29F - &29F (v — 9, 2u7).
Note that [\"*(P{,)| = 2|yf| > 7 and |[\""(P;,)| = 2|y, | > 5. This ends the

proof of lemma. [ |

Remark 5.1.2 (Invariant directions) Consider the straight lines
(Wt st +0ter), {t+uyt ) ter)

These lines are are G¢ ,-invariant, contains to Pgi’u in its interior, are tangent
to EC(PE%N) = {0} x {0} x R and ES(PE%H) = R x {0} x {0} (respectively),

and

GewlW Y 2e, 1) = (W yy 28, +E1), tER,

(5.1.3)
Geulyy +tyr,28,) = Wi yn,28,), teR

We put

Wen(A) = {(yff,yff, Ft) e R} NA,
- (5.1.4)
Wew (B) = {(yff Y aE,) it E R} NA.

Remark 5.1.3 (Invariant foliation) Consider g, ¢ : R? — R? defined by

Gepu(y, 2) =11 0 Ge (9, 2) = (n+y°, €2+ y). (5.1.5)

Note that, for every (&, 1) € P, the map II; o G¢ (2, y, z) does not depend on
x. Note that also ge , preserves the vertical foliation {{y} xR:ye€ R} of R2.

In particular, the lines
£ .
Wéc,u = {(yi,zgu—i—t)} teR,

are invariant and ge (v, 24, + 1) = (v, 28, +€1).

5.2
Proof of Theorem 5.0.1

We now see that for every (£, 1) € P the endomorphism G ,|a satisfies
the Definition 3.4.6. The proof of these properties is organised as follows.
Conditions (BH1") and (BH3’) follow from Lemmas 5.2.1 and 5.2.5. Condition
(BH2’) is given in Lemma 5.2.7. Condition (BH5’) is given in Lemma 5.2.11
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and condition (BH6’) in Lemma 5.2.14. Finally, condition (BH4’) follows from
Remark 5.2.15.

Lemma 5.2.1 (Condition (BH1’)) For every (&, ) € P there is two con-
nected components Ag , and Be,, in A such that Ge ,(Ae,) and Ge ,(Be ) are
the connected component of the intersection G ,(A) N A. Moreover, it holds
that

Geul(Aey) UGeu(Bey) C (=4,4) x [=4,4] X R, (Ag U Bey) NO™MA = 0.
Proof. Let I3, IT; : R? — R? be the projections
HS(xayWZ) - (Ivy)u Hl(xvyuz) = (yaz)‘

Note that
Ms(Geu(D)) = {(y, 1 +v?) : |yl < 4},

and that I3 (GW(A)) N [—4,4]? consists of the two curves

Cop i ={n+9") 1y € yZ,0v1,0}

) . (5.2.1)
l = {(%u +y’):y € [y_,wy_,#]},
where
Vo= VT, yh, = VIR 509
y:,,u, = —\/4 — L, yi—,,u, = —w/_4 — M
Thus, we get that
Ge (D) N [—4,4)% = (0, , ULl ,) x [—40,22].
Condition p € (—10, —9) gives the following estimates to yi i
—V1d<yZ,<—V13, —V6<y', <—V5, (523)

VB <yp, <V6, VI3<yl, < V14

This imply that £, , Ul_ , C (—4,4) x [—4,4].

We now consider the following subsets in A:

A&,M = AM = [_47 4] X [y-i_-,u7y-—:-_,p] X [_40722]7
B, = [—4,4] x [y:vu,yiu] x [—40, 22].
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Then, for every (&, 1) € P we have that
Geu(A) UGe (By) C (—4,4) x [—4,4] xR, (A,UB,)No"A = 0.

This completes the lemma. [ |

Remark 5.2.2 Observe that for every pu € (—10,-9), we have that y €
(Y vt ) and vy € (Y=, 07 ,).

Scholium 5.2.3 We investigate a little bit thoroughly intersection G¢ ,(A) N
A. Roughly speaking, the next claim assert that for every (£, u) € P the
intersection A\ (G&#(Ag’“)UGg#(B&#)) consist of three connected components.
This will be used to obtain the condition (BH3’) to G .

Claim 5.2.4 (Covering property) Consider the sub sets
AT :=An{y>0} and A" :=AN{y <0}
Then, for every (&, u) € P it holds that
M (A) € I (Ge (A1) NI (Ge (A7),

Proof.
Recall the definition of g¢, in (5.1.5). Note that II; (A) = [—4,4] x
[—40, 22]. We calculate

e (D01-4,4] x [-40,22))).
Observe that g¢ , maps the lines {0} x [-40, 22] and {4} x[—40, 22| respectively
in
{p} x[-40&,22¢] and {p+ 16} x [—40& 44,226 +4].
Conditions (£, ) € P imply that

6<putlb<7, —40&<—40, 22<22¢, —40&+4 < —40, 22 < 22£+4.

On the other hand, g¢,([0,4] x {22}) and g¢,([0,4] x {—40}) are contained

(respectively) in

o+ 16 x [22€,22€ + 4], and [, + 16] x [~40€, —40€ + 4]
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This imply that II; (A) c I (GW(AJF)). Let us now see that II; (A) -
I (Gg,M(A*)). Analogously to the previous case, we have that

geu({—4} x [-40,22]) = {n + 16} x [-40€ — 4,22¢ — 4]
and

geu([—4,0] x {22}) C [, 1 + 16] x [22€ — 4,22¢],
Geu([=4,0) x {—40}) C [, 11+ 16] x [~40& — 4, —40¢].

Since £ € (1.18,1.19) we have that 22 < 22¢ — 4. This implies that Hl(A> C
I, (Gg,u(A*D, ending the proof of the claim. B Recall the definitions of ¢, ,
in (5.2.1) and consider the sets

Al =04, x [-40,22] and B, =(_, x [~40,22]. (5.2.4)

Then for every (&, u) € P it holds
Gé,u(A) NA= G&u(Aé,u) U Gé,u(B&u) = AL U B,/u

ending this completes the scholium.

Lemma 5.2.5 (Condition (BH3’)) Let A, and Be, be as Lemma 5.2.5.
Then, for every (&, ) € P there exist parallelepipeds

Aeyu C Gep(Geu(Ae) NA)  and Be, C Gp(Geu(Beu) N A),
such that

Ai,u - Afyu’ nyu(AS,u) = Gﬁ,u(Aéu) NA,
BE,M - BE,W GE,M(BS,M) - GE,M(BS,M) NA

and

(AeyUBe,) NO™A =0,

Proof. Recall the terms yi’# in (5.2.2). Consider the parallelepiped A} , C R?

whose boundary consists in the following four curves:

le = {(y (22-y):ye [y+,u,yi,u]},
(0.6 (~40 =) sy € 70T,
Wp X (40— g3, €7 (22 -y ),
P (€7 (-40 —yL ), €71 (22— )]
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Thus, for every (£, 1) € P we have that A} , C (—4,4) x (—40,22) and
0p U2 U ul; ) =0([—4,4] x [—40,22]).
e\ teu P ten ™~ te P e ) )

Then, ge,(A¢,) = [—4,4] x [-40,22]. Thus, recalling the set A in (5.2.4)
we get that for every (u,§) € P the set A¢, = [-4,4] x A} , defines a
parallelepiped in A such that Ge¢ ,(A¢ ) = A),.

Analogously, we consider the parallelepiped IB%’& ., bounded by the curves

By={(n6 2= ) v e by},
e, = {(%5_1 (—40 — y)) Ly € [yi,wyf,u]},

=y, < [E (=40 —y? ), 67 (22— 97 )],
gg,u = {yir”u} X [571 (_40 - yi,u)’ 571 (22 - y:,u)]a

and recall the set B in (5.2.4). Then for every (£, 1) € P it holds
gﬁ,#(Bé,u) = [_474] X [_407 22]7 B;,g - (_474) X (_407 22)

and
G&u(BE,u) = B;u Be, = [—4,4] x B/&u'

This completes the proof of lemma. |
Remark 5.2.6 Note that ' (=40 —y~ ) < 2z, and 2, < £71(22 =y ).

These conditions imply that the projection into the z-coordinate of the union

¢, UG, covers the interval [z, 27 ,]. See Figure 5.1.

_l’_
P&u 4
[ — -yl
e 22
—40 N . T
B&H N o« Tl | T =y
p-7 ’
S
—4

Figure 5.1: Projection of Markov partition of G¢ ,|a

Lemma 5.2.7 (Condition (BH2)) For every (¢, 1) € P the endomorphism
Ge satisfies the following properties:

(i) If p € Acyu U Be, then C3(Geu(p)) C D(Ge )y (C3(p))-
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(ii) If p € AU Be then D(Ge,)y(C(p)) C C3(Geu(p)).
(iii) If p € Acyu U Be, then D(Ge,)p(C"(p)) € C(Gen(p))-
(iv) DF

cs s uniformly contracting and DF|cy is uniformly expanding.

Proof. For p = (7,y, z) € A¢ U Be, we have that G¢ ,(p) € A}, U B),. We put
v = (u,v,w) € T,A and

(w1, v1,wr) := D(Gep)pv = (v, 2yv, v + Ew).

Next claim asserts that the derivative D(G¢,), “opens” the cones C* and

“closes” the cones C".

Claim 5.2.8 (Items (i)-(ii)) Let p = (z,y,2) € Ae, U By, and v =
(u,v,w) € T,A \ spanned{(1,0,0)} then D(G¢,),v € C’u(Gg,M(p)).

Proof. Note that if p = (2,9, 2) € A, U Be, then |y| > /5, see (5.2.3). Thus

Voi +wt > [of| = 2lyllo] > 2v/5[v] > 2Ju],

proving the claim. [

Claim 5.2.9 (Item (iii)) Let p € A¢, U B¢, and v € C™(p). Then
D(Geu)y(p)v € C™ (Genlp).

Proof. We need to check that if v = (u,v,w) and D(G¢,),(p)v = (u1, v1,wn)
we have that . .
2 2 = -~ Ju? 2 o 2
u? +w 2|v[ uy + wi 2|v1]
Note that vu? + w? < $|v| implies that |w| < 3|v| and hence

2
uf +wl =07+ (v+ Ew)? < 207+ 28 Jolw| + £ Jw|? < <2+5+ @ ) v

Note that the condition ¢ € (1.18,1.19) implies that

(5 (5)

and that p = (7,y,2) € Ag, U Be,, implies that |y| > v/5. Thus

2y/ui +wt < 4| < 2Jy[lv] =[],

proving the claim. |
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Claim 5.2.10 (Item (iv)) DG¢,

uniformly expanding.

s 15 uniformly contracting and DG¢ ,|cs 18

Proof.

The uniform contraction of the cone field C* follows from the fact that
D(G¢ ), is an endomorphism whose eigenspace associated the eigenvalue 0 is
spanned by (1,0,0).

To study uniform expansion of D(G¢,)v we consider the norm
|(u, v, w)|, == max {]u|, V2 + wQ} :

Take v = (u,v,w) € Cy(p) and write D(G¢,),v = (u1,v1,wq) = (v,2yv,v +
¢w). We will check that if v € C§(p) then [(D(Gg ,),V|« > |v|.. By compactness
this implies that |(D(Geu)pVv]s > ¢o|V|s, for some uniform ¢y > 1. We divide
the proof into two cases: 6.5|v| > |w| and 6.5|v| < |w|.

Note that for v = (u,v,w) € C§(p) we have |v], = Vv? +w? and
v +wi =%+ (v + Ew)® > 407y + v — 2 uljw] + £’

Then 6.5|v| > |w| and using the conditions ¢ € (1.18,1.19) and |y| > v/5 we
get that
4o2y? — 26| jw| > (20 — 13€) v? > 4v* > 0.

Therefore, |(D(Ge,u)pV]s > |Vv]«, completing the first case.

Similarly, in the case 6.5/v| < |w| we have
v? +wi > 4yPv? + Ew? — 2€ ul|w] +v? > dyPo® + Ew? —2£(6.5)w? + 07
The condition € € (1.18,1.19) implies that
€2 —-2€6(65)71 > 1.

Hence, [(D(G¢,u)pV]« > |v|« ending the proof of the claim. M This completes
the proof of the lemma. [ |

Lemma 5.2.11 (Condition (BH5’)) Let ¢ be a uu-disc in A. For every
(&, 1) € P consider the discs

lac, =lNAey and Lp,, =00 B,

Then, for every (§, 1) € P, the curves Ge,, (KAW) and Ge, (€B£,u> are uu-discs
satisfying condition (BH5’).
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Proof.
We extend the cone field C™ to the set Ay, :=[—4,4]* x R by

1
c™(p) 1= {(uwv.w) € R Vi T < ool ), pe An

We begin with the following claim.

Claim 5.2.12 Let ¢ be a uu-disc in As. Then Ge () contains two uu-discs

AN

Proof. Define the subsets A, and B, , of Ay by
AOO,H = [_47 4] X [yjr,/uyi”u] X Ra IBOO,,LL = [_474] X [y:,;uyi,u] x R.

Consider a parameterised C'-curve v : [—4,4] — A, () = ('yl (t),t,’}/g(t)),

contained in the cone field C*™|a_, thus

VA2 + %) < 1/2.

Recalling that |y£ | > v/5in (5.2.3) and noting that for every £ € (1.18,1.19)

it holds that
¢ 2
J1 + (1 + 2) < /5.

Thus, for every ¢ in [y7 ,,yT ] U [y~ ., y" ], we have that

52

The claim follows from the following subclaim.

Sub-claim 5.2.13 The curves GW(AOO,M N 7([—4,4])) and GW(BOOM N
7([—4,4])) are uu-disk in Ay.

Proof. Note that the curves G¢ , (Am,#ﬂ”y([—& 4])) and Ge (IB%OO,Mﬂfy([—ZL, 4]))

are respectively parameterised by

Vae, Wil = Door yalt) = Gepoy(t) = (6, p+ %, E3(t) + 1),
Ve, Wi U] = Doy YB(t) := Gepor(t) = (B, p+ 12, Eys(t) +1).

We now check that va,, ([y5,,v5,]) and s, ([y~ .y ,]) are tangent to
C"|a... Note that

(Geuo)'(t) = (1,28, E%(1) +1).
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Thus, for every t in [y7 ,,yT ], we have that

Vae, (t) € C™(y(t)) if, and only if, \/1 +(Evh() + 1)2 < |2.

Since 7/ (t) € C™(~(t)) for every t € [—4,4], we have that

)] < V()2 + (34(1)? <

N | —

Therefore, for every § € (1.18,1,19) and every ¢ € [y; ,, yi,u} follows that

\/1+(£7§(t)+1)2<J1+<§+1> < VB <l

Therefore, 74, , is a uu-disk. Note that the above also applies to the curve
V5e,,- This ends the proof of the sub-claim. B The proof of the claim is now
complete. [ |

To complete the proof of Lemma 5.2.11, it is enough to study the dy-
namics of G¢ ,, along the central directions of the saddles Péi,u in Lemma 5.1.1.
We now focus on the sets contained in A.

From Remark 5.1.2 it follows that G¢ , restrict to these central directions
is given by the the multiplication by & > 1. Recall the definition of the sets
We ;t in (5.1.4). We denote by ¢§M the restrictions G&leg’,f. The corresponding
iterated function system {¢g,, ¢¢ .} in I = [—40,22] is given by

Pl (2) =82+ (1=8) 2, oeu(2) =862+ (1—8) 2,

Consider the points

GZM = 5_1(_40 —(1- f)zu g)» bﬂ,g = 5_1(22 —(1- f)zug)a
ag, =& (40— (1= 8)z¢), b =122 (1= 8)z.¢)

Note that the intervals

e P e P T
Ié,u T [au,@ bu,E] and Ié,u T [au,f’ bu,é}

satisfy ¢f ,(I¢,) =1, see Figure 5.2.

Moreover, since

2, 0-8 =y, yr €W vl vi€W .y,
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—40 % gy, %

+ - ot
/10 e b&u bﬁ-u

&

Zen

|—40

Figure 5.2: Iterated function system
it follows from Remark 5.2.6 that

0= €140~ (1-€)28,) = €1 (~40 — ) < € (~40 —y,) < 2,
<@ yl,) <672 -y =2 (- Oz,) = b,

Therefore, [z, 2] CIZ, N1z,

Using the iterated function system (ﬁZu it is easy to see that if ¢ is a
uu-disc in A then the discs Ge ,(la,,) and Ge ({5, ,) satisfy the possibilities
in (BH5"). This completes the proof of the lemma. |

Recalling the definitions of the sets W;;t(A) in (5.1.4) the following

lemma implies condition (BH6).

Lemma 5.2.14 (Region of superposition, (BH6’)) Consider ¢ a uwu-disk
in between W' (A) and W, (A). Then either Ge((a, ) or Ge,(ls,,) is a
uu-disc in between WEJ(A) and Wg', (A).

Proof. This follows immediately from [z, 2/ ,] C I, NI, [ |
Remark 5.2.15 (Condition (BH4’)) Let HY , the region of superposition

associated to G ,|a in Lemma 5.2.14. Note that one has that

U pn(oavoma) -,

b
DeH; ,

This immediately implies condition (BH4’).

This completes the proof of Theorem 5.0.1.
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5.3
Renormalisation scheme: Proof of Theorem 2

In this section we describe the renormalisation scheme associated to our
bifurcation setting and prove Theorem 2. Sections 5.3.1 and 5.3.2 are dedicated
to the local (dynamics at the saddle points) and semi-local (transition maps)
aspects of the dynamics of the cycle. In Section 5.3.3 we describe the types of
unfolding of the cycle that we consider. Finally, in Section 5.3.4 we prove the

convergence of the renormalisation scheme ending the proof or the theorem.

5.3.1
Local dynamics at the saddle points

Without loss of generality, let us assume that P and @) are fixed points.

(L) We assume the existence of local C"-linearised charts at the saddles P and
Q, Up ~ [-3,3]? and Ug ~ [—3, 3]?, (the saddles are identified with the
respective origins) such that the expression of f in these neighbourhoods

is of the form

Ap 0 0
flop =1 0 opcos(2mpp) —opsin(2rpp) |, and

0 opsin(2rpp) opcos(2mep)
(5.3.1)
Agcos(2mpg) 0 —Agsin(2meg)

f’UQ = 0 aQ 0 ,
Agsin(2mpg) 0 Agcos(2meq)

where Ap, A\g,0p,00 € R and ¢pp, pg € (0,1) are such that

0<|)\P|7|/\Q| <l< |0-P|7|O-Q| and SOP%QOQ

In this case, we say that local dynamic of f at Up and Ug (or shortly
local dynamic of f) is of type (Ap, op, pp, AQ, 0¢, ¥g) and we denote this
last 6-ple as LocDyn(f).

We assume the following condition on these multiplies:

1 n log [\t
0< ()\p)2 op| og| <1, where n= M. (5.3.2)
log |op|

We called to the equation (5.3.2) spectral condition of f.
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We define the local stable and unstable manifolds W§ (P, f) and
W2.(P, f) of P as the connected components of W3(P, f)NUp and W"(P, f)N
Up containing P. We similarly define W} (Q, f) and W2 (Q, f).

5.3.1.1
Range of the eigenvalues of Df(P) and Df(Q)

We now discuss the spectral condition (5.3.2) on the eigenvalues of the
saddles P and @ in the cycle. The main role of this range of values is to
ensure the convergence of the renormalisation scheme in Theorem 2. Due to
the irrelevance of the arguments ¢p and ¢g in the vector LocDyn(f) (see
Section 5.3.1) in the description of the spectral condition (5.3.4) also they will

be omitted and we write
LocDyn™(f) = (Ap,op, Ag, 0g). (5.3.3)

Taking the square of f, if necessary, we can assume that the coordinates
of LocDyn*(f) are all positives. Let P be the set of points (X, &, A, o) in R*
such that A, \ < 1 < &, 0 and
log \71

—. (5.3.4)
log &

0< (5\% )0 <1, where n=

In the following proposition we prove that the condition 5.3.4 are non
degenerated. As consequence the set of diffeomorphisms f described in con-
dition (L), i.e., diffeomorphisms f such that LocDyn™(f) satisfy the spectral

condition (5.3.4) is a non-empty set.
Proposition 5.3.1 The set P is non-empty and open in R*.

Proof. The condition in (5.3.4) is clearly open one. Thus it remains to show the

existence of numbers satisfying these inequalities. For this, consider the set

Z2:={(A,6)€(0,1) x (1,+00) : 0 < A2 5 < 1} C R (5.3.5)

the proof of proposition follows following lemma.

Lemma 5.3.2 For every point (X\,G,\) in Z x (0,1) there is a interval
Insg) = (1’067&6))’ such that every point (A, 6, A,0) in Z x (0,1) X I 5 5
satisfying conditions (5.3.4).

Proof. Note that the inequality in (5.3.4) is equivalent to

log A1
log o

log(A? &) + log o < 0.
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With this in mind, we observe that every every point (X, &,\) in Z x (0,1)

satisfies log A-1
08 log(:\% ) <0
log &
Thus, for every o > 1 such that
log \71 ~1
(i(g)g& log(A\z2 6) < —logo. (5.3.6)
The interval I, 5 5) is given by (1, O'Ek/\75\7&)), where 0'21\75\7&) it is the supreme of

the o > 1 satisfiying (5.3.6). This completes the lemma. B This completes
the proof of the proposition. [ |

5.3.2
Transitions along heteroclinic orbits

Consider X € W*(P, f)NW™(Q, f) a quasi-transverse intersection point
and consider Y € WY (P, f)NW3(Q, f) a tangency point. Let ud now to describe
the transitions from Ug to Up and from Up to Uy along the heteroclinic orbits
of X and Y, respectively. We consider first the transition from Ug to Up along
the orbit of X.

5.3.2.1
Transition along the quasi-transverse orbit

Recall that W"(Q) intersects W*(P) quasi-transversally at a point X.
Replacing X by some backward iterate, if necessary, we can assume that
X € Wa(Q, f). We can also assume that in the local coordinates X =
(0,1,0) € Ug. Then, there exists a positive integer Ny (called transition time
from Q to P) such that X = fNM(X) € W (P, f) C Up. We also can assume
X =(1,0,0) € Up.

We consider the transition from a small neighbourhood Uy of X € Ug
to a small neighbourhood Uz of X € Up by the map f™,

x 1+ auw + any + sz + Hi(2,y, 2)
Aol y+l | = 1z + Bay + B3z + Ho(x,y, 2) , (5.3.7)
z M+ Yy + v3z + Hz(z,y, 2)

where «;, 5;,7;, © = 1,2, 3 are constants. In our construction, we assume that

ap = Py =3 = 1;

ay=a3=pF1=P3=7=7=0.
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For each i = 1,2,3, H; is a term of order at last two satisfying the following
conditions:
g =270 =250 =27

Hi(0) = 5 Hi(0) = 5 Hi(0) = 7 Hi(0) = 0. (5.3.8)

5.3.2.2
Transition along the heterodimensional tangency orbit

We now consider the transition from Up to Ug along the orbit of
heterodimensional tangency point Y. By replacing Y by some backward
iterate we can assume that Y € W2 (P, f). There is a positive integer Ny
(called transition time from P to Q) such that ¥ = fN2(Y) is contained in
We.(Q, f). By some linear coordinate change in Up and in Ug, one may set
Y = (0,1,1) € Up and fM(Y) = (1,0,1) € Ug, respectively. Note that this
coordinate change can be done independently of the previous one involving X
and X.

We consider the transition from a small neighbourhood Uy of Y € Up to
a small neighbourhood of Uy of Y € Ug by the map f™2. We assume that

T 1+ a1x + ay + agz + Hi(z,y, 2)
0l 14+y | = | biz 4 byy® + bs2® + byyz + Hy(x,y,2) |, (5.3.9)
1+ 2 1+ 1@ + coy + c32 + Hs(z,y, 2)

where a;, b;, c;, i = 1,2, 3 are constants satisfying the conditions

b2 + bg + b4 7é 0, Co = Cg, bl (6)) (ag — CZQ) 7& 0. (5310)

Remark 5.3.3 The first two conditions in the equation (5.3.10) are merely
techniques while the last follows from fact that f is a diffeomorphism. This

condition, imply in particular, that by # 0, ¢2 # 0 and as # as.

For each i = 1,2,3, H; is a term of order at last two satisfying the following

conditions:

0 0 0
=5 @Hi(o) =9

o o o

H;(0) H;(0) = H;(0) =0,

(5.3.11)

5.3.3
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The unfolding family

Here we describe the family § bifurcating the cycle of f. The cycle of f
has two parts with “independent” unfolding: the heterodimensional tangency
and the quasi-transverse heteroclinic point. This unfolding involves an eight-
parameter family {f;}5 in Diff" (M), r > 2, such that f; = f. The parameter

v it is the form (f1, 7, &, ) € [—¢, €%, € > 0, where
e /i € R3 unfolds the heterodimensional tangency,
e v € R3 the quasi-transverse intersection, and
e the pair (&, ) € RxR controls the arguments of the non-real eigenvalues

of P and @), respectively.

The family {f;}s is obtained by local perturbations near the quasi-
transverse intersection X and the heterodimensional tangency Y and by
rescaling the arguments pp and g of the eigenvalues of the saddles P and Q.
We now go to the details of this construction.

Let Uz and Uy be 2p-neighbourhoods of X = (1,0,0) € Up and of
Y =(1,0,1) € Ug such that Uy C Up, P ¢ Uz, and Uy C Ug, and Q ¢ Us.
Here U ¢, Uy denotes the closure of Ug, Uy, respectively. The number p > 0

is taken small enough so that
fUz)NUz =0 and f(Uy)NUs =10.
To define the local perturbations, we use a bump C"-function B : R® — R
B(z,y,z) = b(x) b(y) b(z),

where b: R — R is a C"-function satisfying

b(z) =0, if 2p=>|zf,
0<blx)<l1, if p<|z|<2p,
bx) =1, if [|z] <p,

for some small p > 0.

We consider a family of C"-maps
tap: RO =R’ 1= (p1, po, pi3), 7= (v1,00,13) € R?, (5.3.12)
such that

o if (1+,y,1+2) € Uy then

tﬁ,z?(l + x,y, 1 + Z) = (1 +Jf,y, 1 + Z) + B((L’,y, Z)(:U’h,u271u3)7
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o if (1+x,y,2) € Ug then

tas(1+x,y,2) = (14,9, 2) + Bz, y, 2)(v1, v2, v3).

Note that, by construction, we can extend these maps to complement of
Uz U Uy as the identity. In this way we get a family of diffeomorphisms.
To rescale the arguments of the eigenvalues of the saddles P and @) we

argue as follows. For each o € R we consider the following rotations in R?

1 0 0 cos(2ra) 0 —sin(27ma)
Io =] 0 cos(2ra) —sin(27ma) and J, = 0 1 0
0 sin(2ra) cos(2ma) sin(2ra) 0 cos(2ma)

Observe that Iy = Jy = Idps.

We now consider a bump C"-function w : R — R satisfying

w(z) =0, if 4> |z,
O0<w(z)<l, if 3<|z| <4, (5.3.13)
w(x)=1, if |z] <3,

Using these maps, we consider a family of C"-maps
Sae: RP 2R3 & acR, (5.3.14)
defined as follows:

e if (x,y,2) € Up, then
$6,0(T: Y, 2) = Taw(| @) (y) )
e if (z,y,z2) € Ug, then

Sa,a(%, Y5 2) = Jaw(|(@w.2)l) (5) :

Note that, by construction, we can extend these maps to complement of UpUUg
as the identity. In this way we get a family of diffeomorphisms.
We are now ready to define the C"-family of diffeomorphisms unfolding

the cycle
fo=tisosancf, U= (,v,aca)c ¢ (5.3.15)

By construction, f; = f, see Figure 5.4. In the next remark we list some

relevant properties satisfied by this family.
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Figure 5.3: The perturbation sz, in a linear neighbourhood of Q.

Remark 5.3.4 (Properties of the unfolding family f;) The family f;
satisfies the following properties. Each map f; has saddle periodic points
P@:PandQ@:Q.

1. The spectra of P; = P and Q5 = Q for f; are

spec (nger(P)(P)) = {)\p, op 2Tlerta) oo e*2ﬂ(svp+&)i}’
spec( D" (Q)) = {og Ag e, pemEnlraret),

2. For every (z,y,2) € Up N f5 *(Up), it holds f5(z,y,2) = I5 0 f(z,y, 2).

3. For every (z,vy,2) € Ug N f5*(Ug), it holds fy(z,y,2) = Ja o f(x,y, 2).

4. For every (z,1 + y, z) sufficiently close to X = (0, 1,0),
Nz, 14y, 2) = N2, 1 +y,2) + (11, v, 13).

5. For every (z,1+ y, 1+ z) sufficiently close to Y = (0,1, 1),
[ (e, 14y, 2) = 2 (2, 1+ y,2) + (1, oo, p13).

Hereinafter we adopt the following notation.

Notation 5.3.5 Since all the relevant dynamics in our construction is con-
tained in the neighborhoods [—2,2]* C Up and [-2,2]* C U, we identify
[—2,2]* with these neighborhoods Up and Uy, see (5.3.1). Note also that f;
depends only on & in Up, on « in Ug, on v in Ux, and on g on Uy. Motivated

by this, we simply write
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>
Nwrep)

Figure 5.4: The Unfolding § of the non-transverse heterodimensional cycle.

f17|Up - fP,(pP+5é7 f17|UQ = fQ,LpQ-i-OM

N- N- N: N-
fﬁ 1’UX = X,lfn fﬁ 2|UY = fY,;2]'

(5.3.16)

5.3.4
Renormalisation scheme and convergence

We now describe the elements of the renormalisation scheme associated

to f in Theorem 2. This scheme involves compositions of the form
FJ" = feo fmo fo 1 (5.3.17)

where Ny and N, are the (fixed) transition times from @ to P and from P to @
given by the condition (T) of the cycle (see Section 5.3.2) and the adequately
sojourn times m and n of the local dynamics of f in neighbourhoods Up and
Ug, respectively, to be defined below.

The construction of the renormalisation scheme involves three main part.
First, the choice of appropriate sojourn times m and n in Section 5.3.5.

Second, we introduce a suitable (m,n)-sequence of unfolding parameters 0y, ,,
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converging to 0 € R® and a suitable (m,n)-sequence of parametrisations
U,n @ R® — Uy converging to Y on the compact sets, see Section 5.3.6.
The last part, consist in study the convergence of the renormalised sequence
\I/;&n o F5" o Wy, ,, on compact sets in R3. This convergence is obtained in

Section 5.3.8.

5.3.5
Adapted sojourn times

For selecting these sojourn times m, n, we use the following result.

Lemma 5.3.6 (Lemma 5.1 in (21)) Consider the set Z := (1,400) X
(0,1). There a residual subset R of Z consisting of points («, ) € Z satisfying
the following property:

For every e > 0, Ng > 0, w > 0 and £ > 0 satisfying wé1 > 1, and

€&t < 1, there exist integers m,n > Ny such that
jwa™ B — ¢l <€ [m—nn—1q| <1,

where n = log 87! /log a and 7} = log(w&™1)/ log a.

In particular, there exits a subsequence (my,ny) € N? such that
wa™ M — €k — +o0.

The sojourn times are defined by the sequence (my,n;) € N? obtained

by applying the previous lemma to:

e (0p,\qg) € Z, where \g,op are as in the spectral conditions (5.3.4)";

o w=uw(azaz) = “3\;5“2 > 0, where ay and as are constants involved in the

definition of the transitions f*2 in (5.3.9),

— & > 0 is arbitrary but fixed?.

As a consequence,

mE \ Nk az — az !
o N %( 7 ) ‘. (5.3.18)

As in (21), the adapted sequence of sojourn times is used to guarantee

the convergence of the renomalisation schemes, see (5.3.8).

Note that as the spectral conditions (5.3.4) are open ones, we can suposse that
(A, 0) €R.

2 The choice of this number will be important later, when we study the generation of
blenders.
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5.3.6
Elements of the renormalisation scheme

Consider A\ < 1 < op satisfying the spectral condition in (5.3.4). Taking
the (09, \g) € Z and £ > 0, we get from Lemma 5.3.6 a adapted sequence of

sojourn times (my, ng). The renormalization scheme R(&, ) as consisting in

e my,ng > 0 sojourn times as above;
e U, . :R>—= M asequence of parameterizations on the manifold M;

® Uy, n, @ RP — R® a sequence of functions involved in the bifurcation

parameter of the family f;, defined by
,Dmkvnk (lLL? &7 Oé) = (ﬂmkank (M)? V"’”f}m”k’ &mkynk (d)7 ? dmkynk (O{))

® Ronyng,(fom, ., ) the sequence in Diff"(M) defined by

fg\fz o fMk Of{\h o fnk

Umy,,ny Ump,ng Ump,ng 'Umk,nk'

We will called to this composition renormalised sequence of f.

o ;:RxRY % R,i=1,2,3,4,5 polynomial maps defining the coefficient
of the limit endomorphism obtained by the convergence of renormalised

sequemnce.

Remark 5.3.7 Recall the notations in (5.3.16), we get that the diffeomor-
phism f;,, . is a C"-perturbation of f defined by the local perturbations

fDmk,nk (},L,&,Of) |UP = fP:‘)oP+amkan (Of)?

fﬁmk,nk (sx) |UQ = fQ:¢Q+5¢mk,nk (&)
(5.3.19)
fN1 ‘ _ Vi
’Dmk,nk (M,&,O&) Ux — X7DTILk,7Lk7
N2 _ N2
f'Dmk,nk (,uﬂ&va)‘UY o vaﬂmk,nk (/’L)

Next, we give the definition of each object in the renormalization scheme.

e For every compact set K C R? containing the origin there is a kg = ko(K)

such that for every k > ko we have
Voon, t K = U, (5.3.20)
where

\I/mk,nk (Z‘, n Z) = (1 + O_;mko.énk T, O_énk + 0';2mk0'Q_2nk Y, 1 + O_E)mko_Q—nk Z)


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 64

Note that U,,, . (K) converges (in the Hausdorff distance) to the point
of heterodimensional tangency ¥ = (1,0,1) € Ug when k — +o0.

e The sequence of re-parameterizations fi,,, ,, : R — R? is defined by
fimg . (1) = (= Xprar, 0™ 4 05" 0p ™ — Np*by, —=Ap*cr),  (5.3.21)

where aq, by, ¢; are given in (5.3.9).
Note that for every pu € R fixed, fim, n, (1) — (0,0,0) as k — +o0.

e The sequence of re-parameterizations vy, n, pp.po @ R — R is defined by

Qg om0 (a) = p— (4 — 2mmypp + QW[mkSOPD 90P—90QQ+

1 (m In(ng)\ a—¢p
——2 2 .
21Ny, (2 TEpQ F w[nkch] * Nk YQ — ¥p

Note that for every a € R, Qi nppppo(@) — 0 as k — +oo.

Remark 5.3.8 For notational simplicity, in what follows we omit the sub-

scripts ©p, @ N Ay nyop oo (+)-

Remark 5.3.9 Since for every z € R the sequence of rational numbers Ing]

converges to z and since for every n in N, log(n) is a irrational number?, we
get that

YqQ + &mk:”kWP,LPQ(SOQ) =

kol N 1 <7r N ln(nk)> |

un 2mng \ 2 un

is a sequence of irrational numbers converging to ¢g.

To define the sequence of parameters v,,, ,, we need to introduce some

notation. Let

o
=
I

Q

0S (27ka(<,0P + &mk,nk<90p)))7

S5 1= sin (27ka Yp+ @mk,"k(gop)))’ (5.3.22)
; 3.
)

Ck = €08 (2N (PQ + Qmyny, (0Q

)

)
)

(2mn( (ve)
5§} 1= COS (27mk(g0Q + Qg (0Q)

and

3This follow from Lindemann-Weierstrass theorem: e® is transcendental for all a algebraic
and non-zero. In particular if a is rational, e* cannot be rational. Hence, for every n € N,
In(n) is irrational.
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1 0% - 192 .

s~ _ 2 - 2.

Pai = 5 g Ha(0) ek = 51" + 5 55 Ha0) (5 + )" (5.3.23)
N 1 0% - 10% . o
P3k = §@H3(0>(5k — Ck)Q + 5@1{3(0)(5’“ + Ck)Q.

We note that for every k large enough fpepia,, ., (o) 18 a C'-

perturbation of fp,, and the coefficients of the rotation (E’; _;;’“) of

mp

Papptamy iy (9P) associated to an expansion satisfies:

Cx = COs (27ka(<pp + &mkmk((pp))) = cos (% + 27r[m;€<pp]) =

S, = sin (27rmk(gop + o?mk,nk(goP))) = sin (Z + Qﬁ[mk@p]) =

Sl =Sl

4
Arguing analogously we get that for every k large enough fg uotam, n, (v0)
is a C"-perturbation of fq ., and the coefficients of the rotation (& ) of

Nk

Qrpatam, my (0) associated to a contraction satisfies:

In(n
Cx = COS (271'71,]4;(30@ —+ O_émkynk (SDQ))) = Cos <g + QW[nka] + ( k)) N 0’

: _ T In(n
s = sin (277(9q + Gy () = sin <2 + 27 [nipg)] + f} ’“)> - 1.
k

In summary, we have the following observation.

Remark 5.3.10 It holds

1 1
= —F&—=, Sp=—, ¢ —0, s,— 1
V2 V2
In particular, for every big k
1 0% - 10% - 1 0% - 10?2 .
D ——H ——H. D ———H. ———H3(0).
Pk = 2 0x? 2(0) + 2022 2(0), Pax = 2 0z 3(0) + 2022 3(0)

Now we continue with the description of element of renormalisation
scheme.

e The sequence of parameter values v, ,, € R? is given by
( — NGk — 58), V2R — AP P, — N (i + 51) — Aé”kﬁg,k). (5.3.24)

Note that vy, », — (0,0,0) € R? as k — +o0.

e the renormalized sequence of maps

Vot e © R (Fomy o r6)) © Wi, + RS = R,

MmNk
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is define as follows:
For X € K we let

\I];nt,nk © Rmkank (f’ﬁmk,nk (,Uﬂ&va)) © \Ijmk’nk (X) =
=0l o f)? o 1 o fp 0 Wy e (X).

i O _ -\ O _
MMk Y iimy, ny, (1) Q,pQ+amy,n, (&) X Vmy, ny, Pypp+am ,ny (¥)

e The rational maps ¢; : Dom(s;) CR x R® = R, i = 1,2,3,4, 5, are given by

To + T3 Ts + Tg + T7 2<x5+x6—x7)
7X = ) 7X' :—7 ’X' = T N9
aleX)=="757 al®X) V2 slo X) =z (25 — 22)?
§4(x,X):x\/§(x6_x5), (2, X) ($8+IL‘9>7
T3 — To \/§
where

X = (1'1, L2, X3,T4,T5,Te, L7, T8, :CQ)'

This completes the description of the elements in the renomalisation

scheme.
Remark 5.3.11 We now list some observations.

(i) Note that for any fixed p and by in R, the y-coordinate of fi,,, n, (1) is
positive for every k > 1 large enough. Indeed, by (5.3.43) we have that
Aprog — 0 when k — +oo. Thus, it holds

1+ 05"’“0;27"’“/1 — Aprogbr — 1, k — +oo.

This fact will be relevant to study the dynamical properties of the family
Ee ¢ in (4.3.1), see Section 6.2.

(i) For ¢ = 1,2,5 it holds Dom(s;) = R x RY and for i = 3,4, it holds
Dom(s;) = R x {X ERY w3 — a9 # O}.

5.3.7
The renormalised sequence of maps

We now provide step-by-step calculations to obtain entries of the return
maps
W;}c,nk o Rmk,nk (fﬂmk7”k> o \Ijmk,nk K= R?’,

where U, n, = Omyn (1, PP, pg) and K is a compact subset of R3. Note
that the compact set K can be chosen arbitrarily large, for this it is enough
to take k sufficiently large. The parametrization ¥,,, , maps the point

X = (z,y,2) € K to

Xii=(1+0p 0 ™z, 0™ + 0;27”’“052”’“ y,14+0p"og "™ 2) € Ug.
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By the compactness of the set K, X, — Y = (1,0,1) € Ug, as k — +o0.
After ny, iterations by the linear map [ oo +am, n, (po)+ the point X, moves

to -
(wnkyynk + 17an) = giﬂ@""&mk,nk(‘PQ)(Xk) € UQ, (5325)

where

Ty,

=o0p A 0™ (k= 5, 2) G (¢ — Sk),
Yn, ‘= Op og *vy,

Zn, = O'pim]C )\gk O-C_an (Sk T+ Ck Z) + )\g’“(ck + 5k)-

Since K is a compact set, the spectral conditions (5.3.4) imply that
Tn, = ONS),  Yny = O(a;m’“ 0qQ ™), zn, = O(NG), (5.3.26)

where O(-) denotes the symbol of Landau.

This guarantees (2, , Yn, + 1, 2, ) = X = (0,1,0) € Ug, when k — +o0.
Thus, for k large enough, we can apply the transition flf:;lknk (see equation
(5.3.19)) to the point (zy,, Yn, + 1, 2n,) in (5.3.25) obtaining

(14 Ty s Jrnge 2y, ) 1= ;g;mm (Tngs Yny, + 1, 20, ) € Up, (5.3.27)
where
f'mk = Up_mk /\gk O‘C_znk (Ck T — Sk Z) + El (Xk),
g = 0p 2™ o™y +V20p ™ + (Xk) — XS Pk,
Emk = gp—mk /\gfc O’énk (5k T+ ¢k Z) + Eg (Xk) — A2anﬁ3,k7
and

X i = (Tngs Yngs Zny ) - (5.3.28)

By simplicity, in what follows we write

o~

Hi(xi) = Hi(xi) = \g"pip, i =2,3. (5.3.29)

Next, we apply my iterations by the linear map prPJr&m,wnk (op)- For k

large enough, the point (1 + Zy,, , Uiy, 2m,,) € Up it is mapped to

Ber L+ Gonir 1+ 2me) = S5 o) (L Fong Gy Zmy) € Up, (5.3.30)

where
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Ty = ApF + Xp* op ™A 0™ (ckx — 85 2) + Ap™ H, (Xk>,

. oo™ ap Tk Ay oy
Ymy = £ \/§Q Y- Q\/§Q (s + cp 2)+
opt [ -~
V] (H2 () — s (Xk)> (5.3.31)
. op oo T Ag oo™
By = 2 \/§Q Y+ Q\/g (8T + ¢ 2)+

We now estimate the Landau’s symbols of Z,,,, U, and Z,,.
Informally speaking, the terms )\Zgnkﬁz’,k “correct" the quadratic terms of
H; (xk> that provide O()\%"’“) of the symbol of Landau of H; (xk) This kind of

correction allows us to control the convergence of the renormalization scheme.

Lemma 5.3.12 #,,, = O\p™) and Jm, = 2m, = O(cp™ og™™) +
OGS 75™).

Proof. Clearly 9, and Z,,, have the same symbol of Landau.

From the Taylor expansion of the transition f in (5.3.7), we have that
the higher order terms ﬁi, 1 = 1,2,3 are are dominated by quadradic terms.
This implies that

. 1 0% ~ ) 0* ~
0wy + 2 0) 42 4 (5.3.32)
0xoz " 20y o -

+ id H;(0) +182ﬁ(0)2+
oo i n Ay T 5 g HilU) 2, T
Oy0z Y Zna T o 5 k

i=1,2,3.

Since z,, and z,, have the same Landau symbol (see (5.3.26)), we have

Hi(x1) = OOG*) + O(op ™M\ ag™) + O(op ™™ 0™™), i=1,2,3.

(5.3.33)
Recalling that the set K is compact it follows that Z,,, = O(Ap"™*).

We now us estimate the symbol of ¢,,, . For this, we need to estimate the
term op™*k (.7—]\2 (Xk) - H\g (xk)> in the definition of ¢, .

Using the Taylor formula in (5.3.32) and the definition of the coordinates
(5.3.25), we obtained from (5.3.26) that
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H, (Xk> — /\Qanﬁi,k = O(op™™ )\2an og"™*) + O(ap~2m A oQ" )+
+ O(U;4mk O_Q—an)
= Oloy ™ i)+ 0l ™ o), =23
(5.3.34)

We observe that in this last equality we use the fact that op™ A > 1 for
every k big sufficient. Thus, the definition of H; (Xk) in (5.3.29) and its symbol
of Landau given in (5.3.34), implies

apmkE<xk) = O(A%"’“aé"’“) + O0(0p™ oo 2™, i=2,3.

Then
Jmy, = O(ap™ 0q™™) + O(NG 0g™).

This completes the prove of the lemma. [

Remark 5.3.13 It follows from the calculations above that the Landau’s
symbols of §,,, and 2, are not modified by the absence/presence of higher
order terms 6mkf-\fz~ (Xk) In order of to have a more transparent calculations in
the sequel we assume that H; (Xk) =0, fori = 2,31in (5.3.30). At the end of this
section we will recover these expressions and we will study the effect of these

. ~1
terms in the convergence of the return map W © Ry, (ff,mkan) oW, -

Lemma 5.3.12 guarantees the convergence of (%, 1 + Gy, 1 + 2m,) = Y =
(0,1,1) € Up as k — +o0. Thus, for k large enough, we can apply the transition

fl]/\,[/%mk,nk(u) to the point (2, , 1 + Um,, 1 + 2, ) obtaining

_ N2
Yyﬂmk,nk (N)v”mk,nk

Bearing in mind the Remark 5.3.13, we can omit the higher order terms

in the vector
Xk - (j\;mk7 Qmm 2’rnk) (5335)
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In this way we obtain

_ _ as + a _
Ty, = a1 Ap"™  op” " AG 00" (G x — 5 2) + < 2 3) M

o oo "yt
V2 P Q )
nk _—ny (@3 7 G2 my TF "
—|—)\Q O'Q (\/§ ) (ska:+ckz)+a1 )\p H1(Xk)+H1(Xk),
Uy = 0™ + 057 ™ 0 2™+ by Ap™ ap NG 05" (cpx — 55 2)+
by + b3+ b
+ O—;2mk UQ—27Lk (2"‘23'}‘4
2

ka =C1 )\1173% O'P_mk )\Zék O'énk (Ck T — Sk Z) + (

) v 4 op™* )\g’“ O'C_Qan (bs — b2) (spxy+ cpyz)t+

+ MG g ( > (5% 2 4 ¢ 2)2 + by Ap™ H (xk) + H, (xk)

Co + Cg) —mg —ny,
o o +
\/5 P Q Yy

) (Ekl‘ + CL Z) + )\pmk El(Xk) + Hg(f(k)

C3 — Co
V2

Recalling the map ¥,,, ,, in (5.3.20), we have that the inverse map

g o

Ul U — R (5.3.36)

M ,Ng

is given by

Vo, (8.7, 2) = (0% 0™ (T = 1), 0™ 00> (§ — 0g"™), 05" 0™ (2 — 1))

—1
MmNk

Applying now ¥ to the point (1 + Zy,, Yy, 1 + Zm, ) We get the return

map

er = 717 o Rmk,nk (fﬁmk,nk) © \Ijmk,nk (X) (5337)

Performing the corresponding substitutions, the coordinates (¥, ¥k, Z) € R3
of X}, are defined by

a3 — a2

V2

T = a; NpF g™ (Ckx—5k2)+§1y+0'pmk)\gk< )(skx+ckz)+

+ ap )\Pmk O'gk O'an ﬁl (Xk) —+ O'?;k O'anHl ()A(k),
k= f+ bi XpF op™ AQ™ 0 (epw — 81 2) + @y +

by + bs — by

+ap™ A (b3 — bz) (spxy+cryz) +op™™ )\22"’“ ( 5

) (Ek T+ Ck Z)2+

+ by Ap™ o 0 H, (Xk) +0p" 0™ Hy (fik)>

C3 — Co
V2

+ e Ap™ o oo™ Hy (Xk) +opt oo™ Hs (fik),

= AP A" (G — 85, 2) + G5y +opF A < > (sk 2 + ¢ 2)+
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where

Gi(&,v) = <a2\j§a3), (&,v) = <bz+b23+b4> (&, v) = (CQ\J/F;S>,

and

V= (a17a27a37 b17b2yb37b47 01762>-

This completes the calculations of the return map

-1
qjmk,nk © Rony,n (fﬁmk,nk (IMDP#PQ)) 0 Wiy

5.3.8
Convergence of the renormalised sequence

-1

We now prove that as k — +oo the sequence of maps W .

Ry mi (f@mwk (M#PP,LPQ)) o Wy, . converges in the C"-topology to a family of
endomorphisms on any compact set of R3.
In order to make transparent our calculations, we recall below the con-

vergence of some leading terms in the definition of the coordinates (&, ¥, 2 ):

e From the neutral dynamic conditions in (5.3.18), we have the convergence

O.Pmk )\Z)k — 5(&3\;52)—1‘

e From Remark 5.3.10, we get the limits ¢, = 5, = %, ¢ — 0, and s, — 1.

Using these facts and recalling the spectral conditions in (5.3.4) and the
condition ¢; = ¢3 in (5.3.10), we obtain the following convergence result: for

every compact set K in R® and (z,y, z) € K the coordinates

v~y 1
(xk” Yk zk) = lpmk,nk © Rmkmk (fﬂmk,nk(u:<ﬁ1>7€0@)) © \Ijmkvnk (ZB, Y, 2)7

satisfy
ﬂj"k — al)\pmkdgk Janﬁfl (Xk) — O?k UanHl ()A(k) — ffE +S1Y,
gk — b1 )\pmkaf;m’“ O'Qangl (Xk;)—

(5.3.38)

- U?Dmk UQanH2(f<k) —Sput ey +aritary,
Zr— )\pka'?;k O'anﬁl (Xk) — 0'}73% O'anﬂg ()Ack) —S5Y,

when k — 400, where
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as +a ba + b3+
§1(§,'U): 2\/537 §2<57U):%7

by +b3—0
2 (02 3 4
(& v) =& <(a3 EE ) ) (5.3.39)
bs — b Co + C3
) - \/§ 3 2 ) ) - 2 b
alen) = V2 (222 ). wlen =25
and
v = (ah ag, as, b17 b27 b37 b47 C1, C2>‘
Let us denote the limit endomorphism in (5.3.38) by
Eepa(,y,2) = Ex+ay, p+ey’ +sr’+ury, sy), (5.3.40)

where ¢ = (<1, 62, 63,61, 65) is a vector of coordinates ¢; = ¢;(§,v) as in (5.3.39).

We observe this vector depend on both the constant £ and the transition map

fre.
We will prove the following:

Lemma 5.3.14 When k — +oo the sequence

-1
\Ijmk,nk © Ronn (fﬂmk,nk(uﬁapv‘ﬁ@)) 0 Wiy i
converges to E¢ ¢ in the C"-topology on compact sets in R?.

The proof this lemma consist in to estimate the Landau’s symbols of the

high order terms of the difference

-1
\Ijmk,nk © Rmkvnk (f"-_)mk,nk (#a@P:SDQ)) © \Ijmlmnk - E(g’“’f)

and we check the CT-convergence to zero on compact set in R3. In this
difference, there are two types of high order terms associated to terms ﬁl()
and H;(-), i = 1,2, 3, in the definition of the transitions maps, see (5.3.7) and
(5.3.9). We observe that from (5.3.38) the higher order terms of

-1
\Pmk,nk © lemnk (fl_)mk,nk (“1%013790@)) ° ‘I]mlmnk: - E(gnu‘ug_)

containing the (higher order) terms H;, i = 1,2, 3, are

O'gk O'anHl ()A(k)7 O_}Z)mk O'Q2nkH2()A(k), O'?;k UanH3<§(k). (5341)


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 73

On the other hand, to study the higher order terms in

—1
\Ijmkmk © Rmkvnk (fﬁmk,nk (P«’WP#PQ)) © \Ijmk»nk - E(S,MS_)

associated to the terms Ei, 1 = 1,2,3, we need to estimate the Landau’s

symbols in
-1
\I,mk,nk © Ron,n (fﬁmk,nk(ﬂvﬁapv‘PQ)) 0 Wiy i

of those (higher order) term omitted in the coordinates (5.3.31), see Remark
5.3.13. This higher order term also converges to zero in the C"-topology on
compact set in R3. This completes the proof of lemma.

Before going to the prove of lemma we point out the following.

Remark 5.3.15 We recall the sequences x; = (Zn,,Yn,,2n,) and X =
(s Umys 2my, ), Whose coordinates are given in (5.3.25) and (5.3.31), respec-
tively.

We note that by definition:

— the higher order terms H, (Xk), 1 = 1,2, 3, associates to the transition
from @ to P (see (5.3.7)), are dominated by the quadratic terms

2 2 2
'Tnk7 ynk7 znku xnk ynk7 'Tnk znka ynk an'

Recalling the expansions (5.3.32) and the symbols of Landau of z,,, , yn,

and z,, in (5.3.26) we have
Hi(x1) = OAG*) + O(op 2™ Ao g") + O(0 "™ a2

Note that z,, and z,, have the same symbol of Landau.

— the higher order terms H; (f{k> and H; (fck), associates to the transition
from P to @ (see (5.3.9)), are dominated by quadratic terms

2 A2 A A~ A A A~ A
xmk7 ymk7 ka7 xmkymk7 xmkzmka ymkzmka

A

and the higher order term H, (f(k> is are dominated by the quadratic

terms

A

PN A A
Zrn s Ty Umi» Ty 2 -
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Recalling the symbols of Landau of Z,,, ,im, and 2, given in (5.3.12),

we have

Hi(%¢) = OOp™™) + O\p™ 05 ™ g ™™) + ONp™ NG 0™ )+
+O0(0p™™ g 2™) + O(op ™™ )\g’“aé%’“) + O()\énka —Q7*™), i=1,3;
and

H2 (ﬁk) _ O(/\Pka) + O(}\Pmko_;mng—nk) 4 O(A;’}k )‘anaénk>‘
Note that ¢,,, and Z,,, have the same symbol of Landau.

In what follows we proceed to complete the proof of the lemma.
Proof.[Proof of Lemma 5.3.14] In the proof of the lemma we need to control in

a separated way to types of higher order terms (associated to H; and E)

Higher order terms containing H,, Hs, H3. From the estimates in Re-

mark 5.3.15 and the expressions in (5.3.38) we have
O'gkO'anHZ<)A(k) = O()\p2mk0'gkO'an) + O()\pmk>+
+ O()\pmkdpmkkgk) + O(U;mkUQ_nk)—}‘
+ O og™) + O(ap™ NG ag™), i=1,3;
oo ™ Hy (&k) = O\p*™ oy ™ 0g™™) + OAp™ o oq™ )+
+ O()\gkUPkaAanO'gk).
(5.3.42)

By Lemma (5.3.6) there exist a constant C' > 0 such that
m 2 ne\ 2
Ao R g = (/\kacrpm’“Ug’“) <C (((/\péap)naQ) k) . (5.3.43)

The spectral conditions (5.3.4) implies that the right-hand term in this last
inequality tends to zero when k& — 4o00. Thus, we have that

ApFop?™ A agk, Ap ko™ — 0

Moreover, it is easy to see also that the convergence of (5.3.42) it holds for the

derivatives of order 1 < k < r.

Higher order terms containing ﬁl, HQ, ﬁg. Here we need to study the higher
order terms of ﬁi, i = 1,2, 3, in the coordinates (&, ¥k, Zx) which are explicit in

(5.3.38) as well as the omitted terms are higher order, see Remark 5.3.13. For

-1 No
of-
mg,Nk f//'mk,nk (kP PspQ)

on the Landau’s symbols of higher order terms that were omitted in the
coordinates @, and 2, in (5.3.31), see also Remark (5.3.13). We recall that

this last type of terms, we need to estimate the effect of ¥


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 75

the omitted terms are

—~ —

Hi(xx) = Hi(xi) = A" pus =23,
with corresponding symbols of Landau
E(xk) = O(O'p_mk)\ZanUC_gnk) +O0(0p ™ oo™ 2™), =23,

see (5.3.34).
We start by studying the coordinates ¥, and Zx. It is easy to see that

these coordinates contains the following higher order terms
)\pmkag’“aQ"kﬁl (Xk>, J?DmkaQ"’cﬁg (xk>, J?DmkaQ”’“ﬁg (xk) (5.3.44)
Using the estimates in Remark 5.3.15, we have

)\PmkngUanﬁl (Xk> = O()\?;kO'pmk)\lekng) + O()\Pka'pimk)\gk) +
+OAp ™ ap ™ ag ™),

a%mkaQ"kE<xk> = O(Upmk)\énk> +0(0p" ™ ap™™), i=23.

The spectral conditions (5.3.4), the convergence in (5.3.18), and the previous
arguments imply the C"-convergence to zero of (5.3.44) in compact sets of R>.

We now study the convergence of the coordinate g in

—1
\Ijmk,nk © lewnk (ff)mk,nk (#,SOP#PQ)) ° ‘Pmk»“k'

Keeping in mind Remark 5.3.13, is not hard to see that the higher order terms
in 9 are

Ap oo ook H, (xk) ,

a?gm’“(f@"’“ﬁi (Xk), UPka)\gkO'ng(Xk>, i=23;
) ) . 9 (5.3.45)
op trog Tt (5m’“Hi(xk)) . 1=2,3;
Ujlgmk oo™ H, (xk) H, (xk> )

Noting that the terms ﬁg (xk> and ﬁg (xk) have the same symbol of Lan-
dau (see Remark 5.3.15), and using the spectral conditions in (5.3.4), the
convergence in (5.3.45) can be reduced to the convergence of the terms
)\pmkaf;mkag2"kﬁ1 (Xk) and a%mkaQ”kE<xk), 1 = 2, 3. Observe that these two
last expressions were estimated in the analysis of the coordinates &, and 2

above.


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 5. Blender-horseshoes in Hénon-like families: Proof of Theorem 1 76

Therefore it follows from the estimates in Remark 5.3.15 that
Ap o B 0o H (xk> = O()\pm’“JPQm’“/\QQ”"Ué"’“) + OAp"™ X" 0" ) +
+ O(/\pka'p_2mk).

. o 2, 2
The only term whose convergence to zero is not obvious is A\p™*op"* A" ook

Applying same arguments that in the study of the convergence of the

equations in (5.3.45) we conclude that if £ — +o0 then
Ap ™o R AL R o™ — 0.

This completes the proof of Lemma 5.3.14. |
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Laminations of the parameter space corresponding to diffeo-
morphisms with blender-horseshoes: Proof of item (1) in The-
orem 4

Recall the definitions of the space Tquaqa in Definition 4.2.1, of the
set Npo(T), with T C Tquaa in Definition 4.2.2 and of the renormalised
sequence of diffeomorphisms R, n, (o, n, (mpp.eg)) Of @ diffeomorphism f €
Nbo(Tquaa) in Theorem 2. In what follows, the arguments pp and ¢q in
the notation f3,, . (uepee) are irrelevant, thus they will be omitted. Recall
also that RV(h) denotes the set of regular values of a map h € C"(M,N)
and that if y € RV(h) then h™'(y) is a sub-manifold in M of dimension
dim(M) — dim(N) > 0.

The main goal in this section is the next theorem above. We observe that

this theorem implies item (I) in Theorem 4.

Theorem 6.0.1 Given r > 2 there are:

e an open subset B:=1 xV C R x R? and an open interval J C R,

e a family v € R — 7, : Dom(v,) C RY — R? of C*-maps such that for
each x it holds RV(v,) = R?, and

o a projection II : Tqyaa — R?

such that every sub-manifold of the family Tg: = {7?; b€ B} where
To=1" (3 (w)), b= (&w)€B,

satisfying the following property: If f € Npo(T;) then for every p € J
the renormalised sequence R, n, (f@mkﬁnk(u)) has a blender-horseshoe near the

heterodimensional tangency point of f.

The proof Theorem 6.0.1 it is divided three parts and it is organized as
follows.

In the first part, Section 6.1, we split the manifold Tquaq into different
parts according algebraic and geometric properties.

In the second part, Section 6.2, we state Theorems 6.2.2 and 6.2.2,

that contains dynamics properties of the family F , ¢ in accordance with the
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choice of the parameters (£, u,<) (blender-horseshoe and strong homoclinic
intersection associated to saddle-node). In particular, Theorem 6.0.1 follows
from Theorem 6.2.2.

In Sections 6.3 and 6.6, we prove Theorems 6.2.2 and 6.2.4, respectively.

6.1
Splitting the space of quadratic transition maps

Recall the definition of the manifold Tquaq in Definition 4.2.1. We split
this manifold into different parts according algebraic (polynomial form of
the transition) and geometric (relative positions and shape of the invariant
manifold at the tangency) conditions that we proceed to describe. This
partition will play a key in the proof of the second part of Theorem 4. The set

Tquaa consists of the quadratic polynomials ¢ = ¢, of the form

x a1 + agy + asz
G |y | = | bz + boy? + b3z + bayz |, (6.1.1)

C1T + CoY + C32

where v := (ay, as, as, by, b, bs, by, c1, c2) belongs to the set

Q = {(a17a27a’37b17 b27 b37b4701702) = Rg : <a3 - CLQ) bl (b2 + b?) + b4) C2 7é 0}

Consider the diffeomorphism given by the projection

IT: Tquaa — Q,  1(gy) = 0. (6.1.2)

Remark 6.1.1 It is not hard to see that the set QQ is a union of sixteen open
sets in R? whose closure is whole R?. We detail breafly this last claim. Each
of the four conditions deferent of zero defining the set Q in RY providing two
inequality. This splits Q in 2* open sets. We can describe these open sets
as follows. We splits R? as R® x R* x R? with coordinates (a,b,¢), where
a = (ay,as,a3), b = (b1, ba,b3,bs) and ¢ = (c1,c2). Thus, the set of vectors
a € R? satisfying ay —as # 0 consist of whole R? minus one plane. Analogously,
the set of vectors b € R* satisfying by # 0 and by + bg + b # 0 consist of whole
R* minus the two hyperplanes (three-dimensional subspaces) {0} x R? and
R x P where P is the plane in R? generated by the condition by + b3 + b = 0.
Finally, the set of vectors ¢ € R? satisfying c; # 0 consist of whole R? least

one line.
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6.1.1
The algebraic splitting

Consider the following subsets of Q,

Q+ = {(a17a27a3ablab27b3vb4701702) € Q : b2 + b3 + b4 > 07 62<a2 - CL3) 7é 0}7

Q = {(a17a2,a37517bz,b3vb4701702) €EQ:by+b3+by <0, co(ag —asz) # 0};

We consider the partition of 7quaq in open regions:

7:1113(1 = Ttad U quad Eﬁad = Hil(Q$)' (613>

a

Remark 6.1.2 Note that any set Q& is a union of eight open set in R?. See
Remark 6.1.1.

Consider the following subsets of Q:
Q= {(a1,a27a3751752,53754,01702) €Q:axtaz# 0};

(6.1.4)
QH = {(a17a27a37b17b27b37b4acl762) €Q:ar+az= 0};

We consider the partition of 7quaq in open regions:

Tauad = Tomaa U Touma>  Where T :=T1"1(Q"), ¢=1,11I. (6.1.5)

Remark 6.1.3 Note that the submanifold Q! has dimension eight.

6.1.2
The geometrical splitting

This splitting depends on the behaviour of v € Q = ¢, € Tquaa in a
neighbourhood of (0,0,0) € R3. Consider the neighbourhood Uy = [, §]* of
(0,0,0) for some small § > 0 and write

Up:= |J B., where B, ={z} x [-4§,d]%

x€[—6,9]

Let

v = (aflaa/27a’37b17b27b37b47cl762) S Q

Note that for every = € [—0,d] the leaf ¢,(B,) is the translation of ¢,(By) by

the vector zw, € R3, where w, = (ay, b1, c1). Thus in what follows we restrict
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our analysis to the leave ¢,(By) and translate this analysis to ¢,(B,) using the
translation zw,.

Writing o(y, 2) = bay? + b32? + byyz we have that

qv(07y7z) = (aQy —|—a32,90(y,z),62y + CQZ) = (j},gp © A;l(i‘7§),2), (616)

where

(7,2) = Ay(y,z) and A, = (“2 “3>.
Cy Co

Note that the definition of Tqu.q implies that det A, # 0 and hence A, Uis well
defined. Thus ¢,(By) is locally the graph of the function

(Z,2) = pa,(T,z), where py,: = cpoAzjl,

see Figure 6.1.

Figure 6.1: The linear map A, and the function g4, .

We observe that ¢4, (0,0) = 0 and that (0,0) is a critical point of ¢4,
i.e., Dpy,(0,0) = (0,0). We now study the type of this criticality.

e The Hessian matriz of @, at the (0,0). This matrix is given by

52 52

2:224(0,0)  5.5:04(0,0
Hopu,(0,0) = %gzcm( ,0) azgzsm( ,0) |

8:(:6z90A(070) @(bA(0,0)

The entries of Hpa,(0,0) depend on the vector v € Q. A straightforward

(6.1.7)

calculation gives

o2 2(by + by — by) _
%901% (07 O) - (az _ a3)2 T Cl(v)a
0? 2(by a% + b3 a% —byayas)
_— — .= 1
022 #4,(0,0) 3 (ag — az)? c2(v), (6.1.8)
02 by (ag — ag) — 2(byag + by ag)

781‘02’%4”(07 0) = e (a3 — a3)° . =c3(v).
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Thus, if det (D2¢A(0,O)> > 0 then Y is of elliptic type while if
det <D2¢A<0, O)) < 0 then Y is of hyperbolic type. Thus,

H(v): = det (Hpa,(0,0)) = c1(v)es(v) — cav)™.

There are the following possibilities for the critical point:
(i)
(ii) If H
(iii) If H
(iv) If H

) > 0 and ¢;(v) > 0 then (0,0) is a local minimum,

) > 0 and ¢;(v) < 0 then (0,0) is a local maximum,
v) < 0 then (0,0) is a saddle point,

)

= 0 there is no information about the criticality.

In cases (i) and (ii) we say that (0,0) is of elliptic type and the case (iii) we
say that (0,0) is of hyperbolic type.

Remark 6.1.4 The parameters corresponding to a Hessian equal to zero (case
(iv) above) will be discarded. We note that the map v € Q — H(v) is smooth
one and dH (v) # 0 for every v € Q (this last assertions follows from fact that
dH(v) = 0iff by = b3 = by = 0). From here we get that for every ¢ € R, H!(c)
is a eight-sub-manifold in Q, see (25, Theorem 3.2).

Under the condition H(v) > 0, the surface ¢,(By) is a tangent to
Co = [—0,0] x {0} x [=04,d] in (0,0,0) this follows from cases (i) and (ii).
When H(v) < 0, the set ¢,(By) meet transversely to Cy. This is the case
(iii) in that g,(Bp) has horse-saddle shape. From the comment above the leaf

q; 1(Cp) satisfies identical properties in relation to By, see Figure 6.2.

Yy Yy

Figure 6.2: The parabolic configuration in (P1).

e Relative positions. We now to study the local relative position of the surfaces
¢,(By) and ¢, (Cp) at (0,0,0). The relative position of g,(By) is determined by

conditions (i),(ii) and (iii), while the relative position of ¢, (Cp) is determined
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by the orientation of the linear maps (y, z) — A,(y, z) = (&, Z). More precisely,
consider the sets Uéi") and Ué"i) given by

st =10,0] x [<6,0%, UG = [6,0] x [=6, )%,

Uy =1-6,6] x [0,8] x [=0,8],  US"+ =[=0,8] x [=4,0] x [~4,4].

If g,(By) and g, (Cy) are paraboloids (cases (i) and (ii) above) there are
the following configurations (P1)-(P4) and (H) given by:

(P1) if H(v) >0, ¢1(v) > 0 and det A, > 0 then

¢»(Bo) C Ué"“ and ¢, 1(Cy) C UO(+");
(P2) if H(v) > 0, ¢1(v) < 0 and det A, >0

¢»(Bo) C Ué"_) and ¢, '(Cy) C U(_");
(P3) if H(v) >0, ¢1(v) > 0 and det A, <0

qs(Bo) C Ué"+) and qv_l(C’O) C Ué_");

(P4) if H(v) > 0, ¢1(v) < 0 and det A, <0

¢»(Bo) C Ué”_) and qv_l(Co) C Ué+").

If ¢,(By) and g, *(Cy) are of horse-saddle type (i.e., H(v) < 0) it holds
that

(H) q,(Bo) h Cy # 0.
This condition implies that ¢, *(Cy) M By # 0 and
G(Bo) N US® £0  and ¢ Y(Bo) N U £ 0. (6.1.9)

6.1.3
The split

We are now ready to define the splitting of Tquaq in terms of the conditions

above. Consider the sets
QP = {v €Q:H(w) > 0} and Q" := {v €Q:Hw) < O} (6.1.10)

and the subsets Q”T of QP defined by:
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QPHTt = {v € QP: v satisfying (Pl)}, Qr—t = {v € QP: v satisfying (PQ)};

QP = {v € QP: v satisfying (PS)}, QYT = {v € QP: v satisfying (P4)}.
Consider the corresponding subsets in Tquaq given by

Tha =T1Q" and TEET.=1I71(QrH7). (6.1.11)

Remark 6.1.5 We observe that QP and Q" are open sets in Q such that
QP U Q" = Q. Indeed, by Remark 6.1.4, Q? U Q" is equal to Q minus a eight-
sub-manifolds (given by H~1(0)).

6.2
Dynamics of the quadratic family: Theorems 6.2.2 and 6.2.4

We study some dynamical properties of the quadratic family of endomor-

phisms

Eepo (v, y,2) = Ex+qy, p+9y +32° +ury, GY), (6.2.1)

agree to parameters (£, i, <), where
SRXR SR, G(60) = (a60), - 6En).  (622)

Our main result state that there exist an open set B in R?, an open interval
J, a family of submanifolds {Qb bhe B} in RY and a submanifold Q' in R?

satisfying the following properties:

(i) Let b € B. Then there exist a compact set K C R* such that if
(& p,v) € I x J x Qg then Ee j, ce0)) |k has horseshoes-blenders.

(ii) Let (u,v) € J x Q. Then there are a compact set K C R? such that
Eq eyl x has a two partially hyperbolic saddle-node whose strong

invariant manifolds meets cyclically and quasi-transversely.

Properties above allows translate/generate some dynamical properties
to diffemorphisms nearby enough to such endomorphisms. A immediate con-
sequence from item (i) is that every (local) diffeomorphism F|x sufficiently
C'-close to E¢ .00k has blender-horseshoe. This fact will be used in the
proof of item (I) of Theorem 4.

On the other hand, we will see later (Theorem 6.2.4) that the item (ii)
leads to the following assertion. If (u,v) € J x Q' then every sequence in
Diff"(R?), C"-converging to E(1 ,,.¢(1,,)) on compact sets in R, may be slightly

C"-perturbed so that this new sequence display strong homoclinic intersections
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associated to a partially saddle-node (roughly, a saddle with a neutral direction
whose strong stable and unstable manifolds meets quasi-transversely). This
type of saddle-node are a key ingredient to generate robust (heterodimensional)

cycles, see (9). We now formulate in precise form our assertions.

Definition 6.2.1 (Saddle-nodes and strong homoclinic intersections)

Let S be a periodic point of period 7(S) of a diffeomorphism f: M — M.

e We say that S is a partially hyperbolic saddle-node of f if the derivative
D f™(5)(S) has exactly one eigenvalue equal to 1 and all other eigenvalues
of Df™%)(S), are all different from 1 in modulus.

e Consider the strong unstable (resp. stable) invariant direction E"" (resp.
E®) corresponding to the eigenvalues x of D f™%)(S) with || > 1 (resp.
|k| < 1). The strong unstable manifold W"(S, f) of S is the unique
f-invariant manifold tangent to E"" of the same dimension as E"". The
strong stable manifold W*(S, f) of S is defined similarly considering E*°.

e We say that S has a strong homoclinic intersection at a point X # S if
X e Ws(S, f)ynWw™(s, f) and

dim (TxW™=(S, f) @ Tx W™ (S, f)) = dim M — 1.

To state the two main results of this section recall the definitions of the
Henén-like family G¢ . € C®(R?, R?) in (3.5.1), the sub-manifolds Q' and
Q' in (6.1.4), and the map ¢ in (6.2.2) with components i, . .., 5.

Theorem 6.2.2 (Blender-horseshoes for E ) There exist

e an open subset B=1 xV in R x R? and an open interval J,
I
s C QU

e a family of coordinate change O, : R* — R* w € R?, and

e a family of seven-sub-manifolds (Qw>

e rational maps k : Dom(k) — R and n : Dom(n) — R whose domains are

contained in R x R?
such that

(1) For every &, u € R and every v € Q the endomorphisms (g, E¢ pce0)))
and (1, G e () nen) @€ Oq(e) () ss(en) -COnJugate.

(II) For every (§, p,w) € I x J xV and every v € Qe the endomorphism
G (¢,un(e ) mev)) has a blender-horseshoe.
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Remark 6.2.3 The proof of item (I) of Theorem 4 follows inmediatly from
Theorem 6.2.2. Indeed, this theorem jointly with Theorem 2 imply that
f e N}@,Q(H_l(QI;)), b € B, then the sequence {fi}r of C"-diffemorphisms
accumulating f obtained by its renomalisation display horseshoes-blenders for

every k large enough.

Theorem 6.2.4 (Strong homoclinic intersections for E , ) There

is a seven-dimensional sub-manifold QF° < Q! such that for every
(w,v) € J x QFY and every sequence of diffeomeorphisms (Fy), in R?
converging on compact sets to G(1,x(1,0)m01,0)) ™ the C"-topology, there are
er — 07 and ep-C"-perturbations Gy, of F, such that Gy, has a strong homo-
clinic intersection associated to a partially hyperbolic saddle-node for every

large k.

6.3
Blender-horseshoes for quadratic family: Proof of Theorem 6.2.2

6.4
Proof of item (1)

Let w = (wy, wo, w3) € R3, with wy we w3 # 0. Consider the linear change

of coordinates O : R* — R* given by
Owl(t, z,y,2): = (w3 p,wywy 'z, wy 'y, wywy ! 2) (6.4.1)

and the rational maps

k,n:RxD—=R, DcCR?

defined by
o X) = (22D (B
T3 — X9 Ts + Tg + X7 (642)
To + T3 Te — Ts o
n(z,X) =2z ,
T3 — T Ts + Tg + T7
where
X = (fxl,1'2,1'37374,1'5,1‘6,.1’7,378,1'9) € Rg
and

D := {X € RY: (v — x5) (25 + 6 + T7) # 0}

Recall the definition of Q in (6.1.4). The first item of the theorem follows

immediately from the next lemma.
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Lemma 6.4.1 For every &,0 € R and v € Qf, the endomorphisms
(1 Bepctenn) and (1, Giepmemnier))) are O ey aten) ss(en) -conjugate.

Proof. Note that if v € Q! then for any € € R it holds ¢(&,v) # 0,
¢(&v) # 0 and (&, v) # 0, see (5.3.39). Thus the map O, ) @ R* —
R with ¢; = (£, v), is well defined. A straightforward calculation shows

that O, ¢v),0(0).00) (1, T, Y, 2) is a conjugation between the families of

endomorphisms ([L,E(g’#7§(€,v))(x,y72)) and (,u, G(§7M7,{(57v)7n(§7v))(x,y,z)), where
x and 7 are as in (6.4.2). This completes the proof of lemma. |

Remark 6.4.2 Note that for every (£,v) € R x QI it holds

/i(fa U) =G (57 U)Q §2(f, v)il §3<€7 U): 77(5> U) =4 (57 U) §2(£7 'U)il §4(£> U)'

6.5
Proof of item (Il)

To define the sub-manifolds {QW} -
result. If y € N is a regular value of a C"™-map h : M — N then h~!(y)

in Q! we recall the following

is a sub-manifold of class C” and dimension dim(M) — dim(N) > 0, see for
instance (25, Theorem 3.2).

We observe that domain R x D of the maps x and 7 in (6.4.2) contain
the open set R x Q. We consider the restrictions of x and 7 to this last open

set. For every £ € R we define the C'*°-map

Ve - QI — RQv Vﬁ(v) = (K(£>U)7H(€7'U))'

Putting v = (ay, as, as, by, ba, bs, by, c1, co) we have that

2 a2+a3)2(b2+b3—b4)
“(5”’)_5(@3—@2 by + by + b

ne) = 2g( BT (),

a3 — a9 b2+b3+b4

)

(6.5.1)

Lemma 6.5.1 For every £ € R, it holds that RV (v¢) = R?. In particular,
{Q(f,ﬁo,no) = ’Y{l("‘v’o,??o) 2 (€, Ko, 10) € R3}>

is a family of sub-manifold in QF.

Proof.[Proof of Lemma 6.5.1] We adopt the following notation

a = (ala a/27a’3)7 l;: (b17b27b37 b4)7 and c¢= (01702)'
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Given £ € R and (9, 79) € R? we consider the set
Qe = {(0,5,0) € Q' k(€ 0.b.8) = ko, W(€.a,5.0) =m). (6.5

To see that (ko,70) € RV(7¢) it is enough to see that if (@, b, ¢) € Qe xo.m0) then
the vectors

d(&vaé)"i(g? a, BJ E) and d(ﬁ,é,é)ﬁ(&? a, BJ 5)7

(here d (5529 (v) stands for the differential of the map ¥ at (a, b, &) applied to

the vector v) are linearly independent. For that we rewrite

K’(ga C_L7 Z)v E) = 52 Rl (C_L)2 R2(6)7 7)(57 C_L, 67 E) = le (C_L) Rg(b),

where

Ri(@) = 22,

Ry(b) = m (6.5.3)
Thus,
A (6,8,5,0) = (262 da Ba(@) B (@) Ral0), € Fa(a)? ds Ra(B).0) 5

a(€.3.5,0) = (€ da P @) Ra(b). € Fr () s (). 0).

where 0 = (0,0).
We note that if v = (a,b,¢) € Q then Ry(a) # 0.
We the study the set Q¢ q,n0) i (6.5.2) to following four cases:

(i) Suppose kg # 0,79 # 0. In this case Ry(b) and Ry(b) are different of zero
and the derivate in (6.5.4) are given by:

. da Ba(a) ds Rg,((g 029
diap.en(§; a,b,¢) = (Tlo Ri(a) : Mo (D) 70> ;
Analogously,
(ii) If kg # 0,79 = 0, then R3(b) = 0 (i.e. by = b3) and
bt - (w000

d(a,B,a)Tl(fv EL? B? E) = (07 é Rl (&)di) R3 (l_)), 0) )
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(iii) If kg = 0,19 # 0 then R3(b) =0 (i.e. by + b3 = by) and

dia0(6,8,0,8) = (0,€” Ry (a)*d; Ra(D),0)
daRi(a@)  dyRs(b) ) (6.5.7)
Ri(@) " Ry(0) )

d(a,é,a)n(fa a, Bv E) = (770

(iv) If ko = o = 0 then Ry(b) = R3(b) = 0 (i.e. by = by and by + bs = by) and

dia,05(6,8,,8) = (0,€” Ry(a)*d; Ra(D),0)

_ - (6.5.8)
dapen(€ 8, ,¢) = (0,€ Fa(a)d; Fs(b),0)
We observe that
= (O’ e <a32—a32>2>
& Fa(8) = (O’ (bs +i:4+ bs)2" (by +i§: bi)?’ (bjibz;;bZ)?) (6:5.9)
s 1 (8) = (O’ (bz_sz;;%m (b22+b2b3+ +b24>2’ (b izb;i3b4)2> '

Thus, in the case (i) the vectors (6.5.5) are linearly dependent if there exist
A= A5 € R\ {0} such that

However, the vectors dj Ro(b) and dj R3(b) are linearly independent. This

follows from next claim.

Claim 6.5.2 The vectors

U(b) = (O, b47 b4, —2 b2 -2 bg), and V(b) = (0, —2b3 - b4, 2 bg + b4, bg - bg),

are linearly independent.

Proof. Taking into account that by + bz + by # 0, the proof of this claim follows
easily studying separately the cases by = 0 and by # 0. [

For case (ii) we note that dg R, (@) and d; Rs(b) are not zero vector. This
imply that the vectors (6.5.6) are linearly independent. The same argument
shows that the vectors (6.5.7) in the case (iii) are linearly independent. For
the case (iv), the linear independence follows intermediately evaluating by = b3

and by + b3 = by in (6.5.8). This completes the proof of Lemma. [
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Lemma 6.5.3 For every (&, ko, m0) € R® the sub-manifolds vz ' (ko,no) C R?

has dimension seven.

Proof. Observe that the maps ~v¢(v) depends only of the coordinates
as, as, ba,bs, by of v. Recall the description of QQ in Remark 6.1.1 in term of
the coordinates v = (a,b,¢) € R? x R* x R?. Let IT* : R® x R* x R* — R”,
I1*(@,b,¢) = (ag,as, by, bs,by), and Fe : R® — R? defined by ¢ o IT* = 7.
By the proof Lemma 6.5.1, for every (§,w) in R x R? the set ﬁgl(w) is
a three-dimensional sub-manifold of R® (see (25, Theorem 3.2)). Thus,
Ve H(w) = (1)~ (7@ 1(w)) C R? is a seven-sub-manifold diffeomorphic to
Ye '(w) x R*. This completes the lemma. |

We now proceed the proof of item (II) from Theorem 6.2.2.

Recall the family G,y and the open set of parameters O =
(1.18,1.19) x (—10,—-9) x (—&,£)* in Theorem 1. We observe that family
G ¢,k and the family G(&uﬁm) in (3.5.1) are conjugated:

Gleprm (T,y,2) = 0 lo CNJ(&MM) o (:)(x,y, 2), (x,y,2) € R3, (6.5.10)

where O(z,y,2) = (z,y,z), see Remark 4.1.1. Consider the family of sub-
manifolds in Lemma 6.5.1 and the open set B: = I x V in R? defined the

subsets
I:=(1.18,1.19) and V:=(—¢,¢) (6.5.11)

By construction, the family of sub-manifolds

Q; = 75_1(/%,7)0), b= (& ko,m) €B (6.5.12)

satisfies item (II) of the theorem. This completes the proof of the theorem M.

6.6
Strong homoclinic intersections associated to saddle-node of quadratic
family: Proof of Theorem 6.2.4

We discusse some preliminaries facts.

6.6.1

Preliminaries

Recall the rational maps x and 7 in (6.4.2). We observe the domains of
these maps contain to the sub-manifold R x QL. If v = (ay, as, as, by, ba, bs, by,
C1,Co) € Q! then as + ag = 0. Thus, we have that

k(& v) =n(,v) =0, forevery ¢ € R.

Consider the sub-manifold Q®¢ of Q! given by
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{(Gl,a2>a3>b1, by, b3, by, c1,¢0) € QM 1 by = by, by + by — by = 0}- (6.6.1)

We observe that to the rational maps ¢;, ¢ = 1,...,5, in (5.3.39), we get that
if v € QY then

a(§0) = aEv) =) =0, @ v) #0, and (& v) #0, (6.6.2)

for every ¢ € R. This leads to the following fact:

Lemma 6.6.1 For every v € QFC the endomorphisms

(1 B ssttmnss o (@, 9,2)) - and (11, G o) (#, 9, 2))-

are conjugate by the map

Oore) (1,2, y, 2) = (5 165 ' 2065 Ty ' ), s = gi(1,0).

Remark 6.6.2 Using Remark 6.1.1 and the analysis of the proof of

Lemma, 6.5.3 follows easily that QF¢ is a sub-manifold of dimension seven.

6.6.1.1
Strong homoclinic intersections

We study the invariant manifolds of the saddle-node in the family
G(I,H,O,O)'

Lemma 6.6.3 For every u € (—10,—-9) and any zop € R fized, the endomor-
phism G(1,.,00) has two partially hyperbolic saddle-nodes P (z) and P, (o)
in the plane {z = zo} of R? such that

- W (PJ(ZO), G(1,u,o,o)) meets quasi-transversely W™ (P,I(Zo), G(l,u,O,O))?

- W (P:(zo), G(17u70,0)> meets quasi-transversely W= (P;(zo), G(l,u,O,O))-

Proof. Note that the fixed points of G(1 .0.0)(2, ¥, 2) = (y, p+y?, z), are the from
(P,, z) where P, is a fixed point from endomorphisms g,(z,y) := (y, u + y?).
The map g,, p € (—10,—9), has a two fixed points in [—4,4]? of the form

£+ (4t o+

Pr= (yu,yu ), where
. 1+yT—4n
yu_ 2 °

As was observed in (5.1.2), the condition pu € (=10, —9) imply that

—27<y, <-25 and 3.5 <y, <3.7L
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We now to describe the invariant manifolds of P¥ in [—4,4]*. Consider

the following local strong stable manifold of PMi given by

(P, gu) = { (@, y0) < 2] < 4) C [—4, 4P,

The fact that this set is contained in the strong stable manifold follows from
au(Wise(Pio0u)) = {BE).
Similarly, consider the following local strong unstable manifold of P/f

given by

1E3(P+7gu)r:{( ey VA p <y < Vi } [—4,4];
Wat(P ) i= { o+ 97) s —VI= < y < —VA— i) € [-4,4]

To see, for instance, that the first set is contained in the strong unstable

manifold of Plj consider the curve

liy = {(y7u+y2)r\/—u+x/—4—u§y§\/—u+x/4—u}-

It is easy to see that P, € £, and that g, (¢, ;) = WX (P, g,), see Figure 6.3.

ocC
—4 4]
/ “h VIR

\ ’;f
% V-t V=1—p
Y 3
-4] | /y: 4
N ]

o

(a) (b)

Figure 6.3: (a) Fixed points P of g,. (b) Construction of the unstable manifold
of PF.
m

Proceeding inductively we construct a nested sequence of discs
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0 CWiee(PF 5 g,) (6.6.3)

such that for every n > 1 it holds P, € £f  and g, (¢ ,,,) = €}, . This imply
that Wit (PF, g,) is contained in the unstable manifold" of P in [—4,4]*.

Now the intersections below follow immediately

VVIOC( ’gu) rh VV]OC( w ’gﬂ) 7é @ VVIOC( agu) m VVIOC( w agu) 7é @

The proof of lemma follows noting that:

I/Vloc (P;:(Zo), G(LIMO 0 ) VVIOC( 79#) {ZO}

. (6.6.4)
I/Vloc (P;L (20)7 G(L%O 0 ) VVIOC( ’glt) {ZO}

6.6.1.2
Proof of Theorem 6.2.4

The first step in the proof of this theorem is the following result.

Proposition 6.6.4 Let » > 1. Consider {F}r a sequence of C"-
diffeomorphisms in R converging on compact sets to G100 in the C"-
topology. Then there are a sequence of positive numbers €, — 0 and a local
ex-C"-perturbation Gy, of F. such that Gy has a strong homoclinic intersections
associated to a partially hyperbolic saddle-node fixed point for every k large

enough.

Proof. Let F,, : R® — R3 be any sequence of diffeomorphisms converging to

G(1,1,0,0) as above. We write

Fk(xayu Z) = (Fkl('ruy72)aFk2<x7yu z)aF]?(xvyu Z))

For every M > 0, consider the compact set Ay := [—4,4]* x [—M, M]. We let

Gllc ” Fkl .13 Y, 2 ))’AIVIH"'7
& = 1(F2(z,y,2) — u+y°) | anllr

(
(

||(F,§xy, —2)|anlr,
1(Fe = Gawo0) ol

(6.6.5)

€k -

Note that € < €, ¢ = 1,2,3, and by hypothesis ¢, — 0 as k — +o0.

'Recall that the unstable manifold of a hyperbolic fixed (periodic) point p of a endomor-
phism A in a neighbourhood U consists of those x( for which there is a sequence (), in U
with h(zp41) = @, and z, — p, see for instance (46, Theorem 6.1).
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The shape of G(1,,0,0)|a,, implies that for every z € [-M, M| and k large
enough there are y; (2) < 0 < ;7 (2) , such that

FH (5 (2), v (2), 2) = FR (5 (2), 0 (2), 2) = wiE (2).

Lemma 6.6.5 For every zg € [—M, M] there exist e, — 0 and a local C"-¢y-
perturbation F,fo of Fy such that every k sufficiently large it holds

F’kZO (ylzct(ZO)a ylzct<20)a ZO) = (y]::(ZO), y,:f(zo), ZQ) .
Proof. Without loss of generality we can assume that zy = 0. Fix a small p > 0

and consider a C"-function b = b, : R — R satisfying

b) =0, if 2p>|al
0<b(z) <1, if p<|z|<2p, (6.6.6)
b(x)=1, if |z| <p.

Consider the perturbation of the identity 6, supported in P =
Fy, (y,j(()), v (0), O) defined (in local coordinates around P;") by

0f ((2,9,2) + P) = (w,y,2)+ B = (F( 0),5(0),0)) (0,0,b(2)). (6.6.7)
Note that

(63 — i) |y llr < | (FE(@,y, 2) = 2) | anllr 8]l = € 1Bll- — 0,

where the convergence follows from (6.6.5). Thus the diffecomorphism F; :=

0 o Fy, is a C"-perturbation of Fy, of size €}[|b]|, satisfying

Fu(yf 0), 4 (0),0) = 6 o Fi(y(0), 4 (0),0) = 6 (BF) = (5(0), 4 (0),0).

See Figure 6.4. Changing “+” by “—” in the construction above, we get a
C"-perturbation 6, of the identity (of the same size as ;) supported in P,
(and whose support is disjoint from supp(6;)) such that the perturbation
Ey :=0; o F;f of Fy, satisfies

Fi(y(0), 4 (0),0) = (£(0), 55(0),0).

To complete the proof of the lemma it is enough to take 15,8 = F, and

e = €lbll. n
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Gamo.0) ({0} x [-4,4P%)
" Fi({0} x [~4.47)

() (b)

Figure 6.4: (a) Images of the square [—4,4]* x {0} by G100 and Fy. ()
Projection of the perturbations 6 on Fj,([—4,4]> x {0}).

Lemma 6.6.6 Let [}, = FQ be as in Lemma 6.6.5. There exist e, — 0 and a
e,-C" -perturbation ﬁ’k of Fk such that ﬁ’k has a two partially hyperbolic saddle-

node for every k large enough.

Proof. Given (x,y,2) € R® and k large enough we can write

0ty 1+6t,  Ofy
DFy(z,y,2) == |65, 2y+05, 055 |, (6.6.8)
05, 05 1405,

where the entries 51% = 5£fj (x,y, z) are functions of C""!-class converging to 0
on the compact sets.

Recall the fixed point P = (y*(0),4%(0),0) of Fy(z,y, z). Consider the
numbers nyj ’ji = (55 ’ji(P,f). In what follows we consider perturbations at P
(the perturbations at P, are analogous and hence omitted). For simplicity we
simply write P, = P (where ,,(0) =y, (0)) and }; := yf;r

Using the map b(z) in (6.6.6) we define the local perturbation of identity
at Py given by

é\k((x7y7 z)+Pk> - (xayv ) +Pk_Zb(Z)wka

1+ 7:]{3

where
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k k

_ 1,3 V2.3

Wy, 1= = =— 0]. (6.6.9)
<1+’Y§,3 1"‘753 )

Note that @), — (0,0,0) and that ||, — id|, < i, where

1
o :MQ —1‘+||b||r||wk||) 50, k— +oo.
1495,

Let
ﬁk<x7y7z) = é\k o Fk(x7y7 Z)

Then, for large & > 1, it holds ﬁk (Pk) = P, and hence
DFy(Py) = DO(Py) o DFy(Py).

Noting that

753
0 k
1 +k73,3
Do.(P) =10 1 —_ 723
( ) 1‘11’7:]{3
00 7
I+755
and recalling equation (6.6.8) we get that
ko ’Yf:’) 7§,1 1 +7k B 7{{,3 7§,2 0
171 1;‘ ’)/é]:’g 172 1 + 2/5;73 )
=~ V3,1 72,3 V3,2 72,3
DF,(P,) = | ~b, — 2222 24,.(0) + A, — 222 6.6.10
k( k) Y21 i_i_%;{g yk( ) 72;2 1+7§;’3 ( )
V3,1 V3,1 1
1495, 1495,

Therefore \;, = 1 is eigenvalue of Dﬁk(Pk), hence P, is a saddle-node
fixed of F}, for every k large enough 2. This complete the proof of lemma. W
We define the local strong stable manifold W (PF, Fy) as the con-
nected component of W (PF, ﬁk) N Ay containing P;F. Similarly, we define
(P, F).
The end of the proof of the proposition has two steps. We first obtain
a pair os saddle-node whose strong invariant manifolds meet cyclically and
quasi-transversely. In the second step consist in turn one of these saddle-node
in a saddle of index one. The A-lemma leads to the existence of a strong
homoclinic intersection associated to remaininig saddle-node. Observe now

that as k£ — 400 we get the following C"-convergence

2The other two directions of P}, are hyperbolic (Spec (Dﬁk (Px)) \ {\i} does not intersect

S1). This follows from Dﬁk(Pk) — DG (1,11,0,0)(Py,0), where P, is a fixed point of g, recall
Section 6.6.1.
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Wik (PE, Fr) = Wie(PE0), Gpon),  *=s,1, (6.6.11)

where Wi (P (20), G pu00)) and Wi(Py(20), G(1,u00) are definied as in
(6.6.4).
Recall that the strong invariant manifolds of P (0) and P, (0) meets

cyclically and quasi-tranversely, see Lemma 6.6.3.

Lemma 6.6.7 There exist e, — 0 and a e-C" -perturbation ék ofﬁk such that
Gy, has a pair of partially hyperbolic saddles whose strong invariant manifolds

meet cyclically and quasi-transversely

Proof. From convergence in (6.6.11) and Lemma 6.6.3 we can consider £, — 0
such that the distance between the manifolds W (P, Fy,) and W (P, F})
is e5. Consider X;7 € W (P, F,) and @y, € R?, with ||@g || = 1, be such
that

Xio =X +epwey € Wi (B F).

Using the map b(x) in (6.6.6) we define a local perturbation of identity at X;"
given by:

Qk((x, y,z)+ X,j) = (z,y,2) + X;f + e B(z,y,2) Wy . (6.6.12)

Then, for every k large enough, the diffeomorphism Gj: = 6, o F is a e4-C"-
perturbation of F}. such that
Xy = Gu(X[) € Wi (P, Gr) N\ Wii(B, Gy).

See Figure 6.5. We can generate the same type of intersection between the
manifolds WP, Gy) and W (P, Gy) keeping the size e]|b||> of the
C"-perturbation. Therefore the diffeomorphism G, has a pair of partially
hyperbolic saddles P, and P;" whose strong invariant manifolds meet cyclically
and quasi-transversely. This completes the first step. [

Through a new local C"-perturbation of Gy supported in P, that we
denote Gy, we can turn the saddle-node P, into a hyperbolic saddle of index
one®. Note that this perturbation we can be taking arbitrarily close to Gy, and

preserving the strong heteroclinic intersections obtained in Lemma 6.6.7.

Claim 6.6.8 There exist an arbitrarily small C"-perturbation Gy, of Gy, such
that P is a partially hyperbolic saddle-node with a strong homoclinic inter-

section.

3This is done by identifying We (P, ék) with a small interval I centered in zero, and

perturbing @k| = ids by a linear map with slope 0 < Ay < 1, such that A\ — 1.

W (P ,Gr)
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Wls()SC(Pl:?F\k:

Wuu(PIj? F\k)

loc

Figure 6.5: Perturbation 6y.
Proof. Consider (" a (small) segment of W
section point WiE,(Py, Gi) N W (PF, Gi). For every big sufficient n > 1,

oc loc

(P, Gy) containing the inter-

the segment C:’Z(ﬁ“) transversely intersects the two dimensional manifold
W (Py ,@k). By the A-lemma, for every n > 1 large enough, there exist
0* C (" such that GP(£2) is C™-close to W2t (P, Gy). Since W (P, G,) meets
quasi-transversely to W (P, @k), we can modify by a small C"-perturbation
0; (like 6, in 6.6.12), the strong unstable manifold of P so that G7(£") and

ss
loc

C"-diffeomorphism. This ends the proof of claim. |

(PF ,@k) meets quasi-transversely, see Figure 6.6. We put Gj this last

The proof of Proposition 6.6.4 is now complete. |

6.7
Generation of C"-robust cycles: Proof of Theorem 3

Theorem 3 is a consequence of Theorem 6.2.4. Recall the definitions of
the set Q¢ in (6.6.1) and of the projection II in (6.1.2). Consider TEC :=

mt (QRC). Theorem 3 follows immediately from the next proposition.

Proposition 6.7.1 Let r > 2. Given any diffeomorphism f € N qo(TR¢)
there is sequence (gi)r of CT-diffeomorphisms converging to f in the C”-
topology such that every g, has a partially hyperbolic saddle-node Py with a

strong homoclinic intersection.

Remark 6.7.2 In this paper we begin by considering a diffeomorphism f

with a heterodimensional cycle and a heterodimensional tangency associated
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Figure 6.6: Perturbation 0;.

to a pair of saddles P and (). Under appropriate conditions, we have that
[ e N, IQ’Q(TRC). Theorem 3 gives diffeomorphisms arbitrarily C"-close to f
having robust cycles. However, a priori, these robust cycles may not involve the
(continuations of) saddles in the initial cycle. This is related to the stabilisation

problem in Section 7.

Note that, by (9, Theorem 4.1), Proposition 6.7.1 guarantees the exis-
tence of diffeomorphisms exhibiting C'-robust cycles arbitrarily C'-close to
f e Npo(TH).

We will see in Proposition 6.7.3 that these approximations also hold in
the C"-setting, for r > 1. Indeed the construction in (13) have two parts. The
first part, that is genuinely C': heterodimensional cycles lead to the existence
of strong homoclinic intersections associated to partially hyperbolic saddle-
node. The second part consist in the passage from this saddle-node to robust
cycles. This is obtained by local C"-perturbations, for r > 1 (see for instance
the construction in (13) which provides C'*°-families of diffeomorphisms having
blenders).

Proof.[Proof of Proposition 6.7.1] Consider the renormalisation scheme of
J € Nio(THY) in Theorem 2 associated to £ = 1 (recall also the main
ingredients of this scheme). Since Quad(f) := ¢, € TE it holds

a(1,v) =g(l,v) =c(l,v) =0, <(1,v)#0, and ¢(1,v) # 0.

By Theorem 2 the corresponding renormalised sequence R, n,(fr), (see

Section (5.3.6)), where f denote the sequence (5.3.19), generates a sequence
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of global diffeomorphisms

Fk : Rg — RB» Fk = \Ij_l © Rmk:”k(fkf) © q}mk,nk'

MMk

converging to E(1,,,0.,,00,) on compact sets of R®. Recall that E ,,.0.,0,0.) 19
C°-conjugate to G'(1,,,0,0), see Lemma 6.6.1.

Applying Proposition 6.6.4 to Fy|a,, we obtain a small C"-perturbation
Gy of Fy|a,, such that Gy has a strong homoclinic intersection associated a
saddle-node fixed point. Let g, be now the C"-perturbation of f; given by the
composition

Ry nie (gx) == Vome © Gi 0 i

MmNk

e Dift"(M).

By construction, g, — f and g has a strong homoclinic intersection associated

a saddle-node fixed point, completing the proof of the proposition. [ |

Proposition 6.7.3 (C"-version of Theorem 4.1 in (9)) Let r > 1 and
f M — M be a C"-diffeomorphism having a partially hyperbolic saddle-
node S with a strong homoclinic intersection. Then there is a diffeomorphism

h arbitrarily C"-close to f with a robust heterodimensional cycle.

Proof. We follow closely and modify accordingly the construction in (12,
Proposition 3.4). For simplicity, let us assume that S has period one. After
a C"-perturbation, we can suppose that for the resulting diffeomorphism ¢ the
saddle-node S splits into two hyperbolic fixed points S (contracting in the
central direction) and S;} (expanding in the central direction)*. The saddles S
and S have different indices and the manifolds W*(S;, g) and W"(S;", g) have
a transverse intersection containing (the interior of) a central curve joining S, g
and S;. Note that this transverse intersection is C"-robust. The next step
is to unfold the quasi-transverse strong homoclinic point between the strong
unstable manifold and the stable manifold of S;” and S (exactly as in (13)).

In this way we have that

(i) Using S, and a strong homoclinic intersection we generate a partially
hyperbolic horseshoe of u-index two. A small C"-perturbation of g, un-
folding the strong homoclinic intersection, produces a blender-horseshoe

I'y having S; reference fixed point.

(ii) A small C"-perturbation of g, unfolding (some point of the orbit of)
the strong homoclinic intersection associated to saddle S, generates
4The diffeomorphism g is obtained identifying Wi, with a small interval I centred at

zero and perturbing f |ch (s) = ids to get a (locally) Morse-Smale diffeomorphism having
exactly a contracting and an expanding fixed points.
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a uu-disc A in the superposition region D of the blender-horseshoe
I'y. Thus, by the definition of blender-horseshoe, W*(I'y, g) intersects
WH(S;, g). Hence, as S € I'y and W5(S,, g) h W*(S[, g) # 0, there is
a heterodimensional cycle associated to I'y and S .

(iii) Finally, the following three properties are C"-open ones: 1) the contin-
uation of the hyperbolic set I'y to be a blender (the elements in the
definition of a blender depend continuously on g, see Remark 3.2); 2)
WH(S, g) to contain a vertical disk in the superposition region D of the

blender; 3) W*(S,, g) h W*(S;},g) # 0.

Therefore, every diffeomorphism A that is C"-close to g has a heterodimensional
cycle associated to S, and I'j,. Since g can be taken arbitrarily close to f this

concludes the proof of the proposition. [ |
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In this section we prove the second part of Theorem 4. This result follows
from the result below, where 7; is a leaf and 7%2 a suitable open subset of it

(for the precise definitions see Section 7.0.1). Here by belong to a subset B’ of

B.

Theorem 7.0.1 (Stabilisation of cycles) Let 2 < r < oo. Given [ €
po(Ty) there exists a sequence {gx}ti of diffeomorphisms converging to f

in the C"-topology such that every g, has a blender-horseshoe Ay, satisfying:

(1) Ay, is related to the saddle Qg by a C"-robust cycle and

(11) Ag, is homoclinically related to the saddle P, .

Moreover, the homoclinic classes H(P,, , gi) and H(Q,,, gr) are both non-trivial

and is intermingled C"-persistently.

Note that the second item in the theorem implies that there is a transitive
hyperbolic set £,, containing A, and {P,, } and H(FP,,, gr) is non-trivial. This
also means that the initial cycle can be C"-stabilised.

This Section is organised as follows. In Sub-section 7.0.1 We construct the
leaf T;, and the subset 7;*. We state some auxiliary results in Sub-section 7.0.2
and using these, we construct new heteroclinic orbits in Sub-section 7.0.3.
We study the transition maps associated to these new intersections in Sub-
section 7.0.4. Finally, with these ingredients in hand we start the proof
of Theorem 7.0.1 in Sub-section 8 with the definition of the sequence g.
Concerning the robust cycles of these maps, the robust intersections between
the one dimensional invariant manifolds are obtained in Sub-section 8.1.
Transverse intersections between the two dimensional invariant manifolds are

obtained in Sub-section 8.2.
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7.0.1
Restrictions of the bifurcation setting

Recall the subsets B C R? and the family of sub-manifolds {Qg beB }
in (6.5.12). Consider the family Tquaa given by

T, =1"(Q;), beB. (7.0.1)
Recall the follows open subsets of Tquaa: 7?53(1 = II74Q%) in (6.1.3) and

Tl o= TI7HQM), TEaT o= II71(QP®F) in 6.1.11. The bifurcation setting it
is defined by the sets:

762 = 7%0 N (7:11_1ad M Eﬁblad U 7-7?17;:17_)7 (702)

q

where by = (£, 11,0,0) € B := P x {(0,0)} with P := (1.18,1.19) x (—10, —9).
Recall ¢, in (6.1.1) and (£,v),n(§,v) in (6.5.1). Note that if ¢, € T,
then v € Qg and thus x(§,v) = n(§,v) = 0.
We now see that the family of open sets 7})’;, with by € B, is not empty

in Ty, .

Claim 7.0.2 For every by = (£, 1) € P = (1.18,1.19) x (—10,—-9) the set T

is not empty in Ty, .

Proof. To see that is not empty, for instance, consider the roots of b* from

b? — 4byb — 3(b2)? = 0 and consider the set
{vh — (an, @, —a, by, by, —ba, b, 1, ¢o) by bycs # 0,0 € (b, b+)} C R,
is contained in the set Q= N Q" N Q¢ u0,0) and the set
{vp = (ay,a,—a,by,—2,—1,-2,¢1,¢0) :abyca #0, acy > O} c RY,

is contained in the set Q™ N QP N Qe 0,0), for every (&, ) € (1.18,1.19) x
(=10, —9). This completes the proof. [ |
Let f € N, p.0(Tquaa) and consider the following sets associated to f:

P C Up be the connected components of W*(Q, f) containing Y, (7.0.3)

P} C Ug be the connected components of W'(P, f) containing Y. (7.04)
Consider the subsets of Up and Ug
U;:UPQ{SCPZO}, UISIUPQ{JIPSO};

7.0.5
U5:UQﬂ{yQ20}, Ué:UQﬂ{ng(]}. ( )


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 7. Stabilisation of cycles: Proof of item Il of Theorem 4 103

7 it holds that

quad

We observe that since Quad(f) € T

qua

aU
P;NUs #0 and PrNU; #0.

In the next remark we list some properties satisfied by the diffeomor-
phisms f in Njo(7;7), that will be relevant in the remainder of this work.
Besides we give some aditional flat conditions on the higher order terms of the
transition map f™? (see (5.3.9)).

Remark 7.0.3 Let by = (£, 1) € P. Consider f € Np(Ty), with Quad(f) =

Qv and v = (a’17a27a3vblab27 b37b4701702)- Then

(1) From g, € T paq, the parameter (€&, v) = 245+ in (5.3.39) is negative.

(2) From ¢, € T;,, the parameters (¢, v) and n(§,v) (6.5.1) are zero (this
is equivalent to the conditions by + b3 — by = b3 — by = 0) and there
exist a sequence of diffeomorphisms { fx}, C"-converging to f (obtained
in Theorem 2) such that the renormalised sequence of fj converge (in
suitable charts) to G 00y and hence f; has a blender-horseshoe for

every big sufficient k.
(3) Recall the sets P} and P} in (7.0.3) and (7.0.4), respectively. From g, €

Eﬁad U 7:111'1’:{ and from Remark 5.3.11, these sets and its continuations

Py, Ps, satisfies:
PinUS £0, PinU; #0, and P; NUS £0, P AU #0.
The intersection associated to the continuations above it is equivalent to
Pi, A WH(P, fr) # 0, P; A W@, fr) # 0.

Recall the higher order terms H,(-), i = 1,2,3, in (5.3.11). We assume the
following conditions:
orta orta oprta
o 3qul<O) = o aZqHQ(O) = o aZqu(O) =0, 1<p+gq<r. (7.06)

Before going to the proof of Theorem 7.0.1 we need some preliminary results.

7.0.2
Preliminary technical results

In this section we prove the auxiliary Lemmas 7.0.5 and 7.0.7 used
to generate new quasi-transverse intersections between the one dimensional

invariant manifolds of the saddles in the cycle. The first lemma provides


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 7. Stabilisation of cycles: Proof of item Il of Theorem 4 104

perturbations that modify the arguments of the irrational eigenvalues of D f(P)
and Df(Q). The second lemma asserts that in the inicial cycle the closure of
the one-dimensional manifold W*(P, f) contains W (Q, f) (the same density
holds for W*(Q, f) in W2.(P, f)).

Recall that M denote a compact manifold of dimension 3. Let P be a
saddle fixed of a C"-diffeomorphism f : M — M. Suppose that the index of P
is two and the spectrum of D f(P) is given by

Spec(Df(P)) = {)\,aeﬂ”‘p}, where 0 < A <1 < o and ¢ € Q°.
Suppose that there is a C"-linearising chart Up ~ [—3,3]® at P such that

A 0 0
flup =1 0 ocos(2mp) —osin(2myp) (7.0.7)
0 osin(2ry) o cos(2mp)

and
Wie(P, f) = [=3,3] x {(0,0)} C Up, Wyso(P, f) = {0} x [=3,3]* C Up.

To emphasize the argument ¢ we write f, := f|y,. Consider the canonical
projections II* : Up — Wit (P, f,), * = s,u, induced by the decomposition
Up =Wg.(P, f,) @ Wi.(P, f,). Consider the unitary circle

Sp 1= {(O,y,z) cUp:y*+ 22 = 1} C WP, f)

and the radial projection

HP

rad

W (P, f) — SL. (7.0.8)

Definition 7.0.4 Let S C M be a two-dimensional disc intersecting trans-
versely W2.(P, f). We say that S has positive radial projection on Wi.(P, f)
if TIE (S th WE.(P, f)) contains some interval in Sh.

rad

In what follows, ¢y,¢; C Up are two one-dimensional C'-discs such
that ¢y is quasi-transverse to Wy (P, f,) and ¢ is transverse to Wi (P, f,)
and S C Up is a two-dimensional C'-disc with positive radial projection in
Wi (P, f,), see Figure 7.1

Lemma 7.0.5 (Accelerating perturbation) For every mg € N there are

an arbitrarily small local C"-perturbation f of f in Up and m > mq such that

f~™(¢1) and €y meet quasi-transversely.
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,,,,,,,

« (P.J) e
Wio (P, f)

Figure 7.1: ¢, is quasi-transverse to W (P, f,), {1 is transverse to W}k (P, f)
and S has positive radial projection in W2.(P, f) .

Proof. Without loss of generality we can assume that
X = (1’070) €lo N VVlic(Past)

is a quasi-transverse intersection point. The A-lemma (see (38, Theorem 2))
implies that for every € > 0 there exists my = mg(e) such that for every
m > my there is a one-disc (}" (strictly) contained in ¢; such that f ™ (¢7") is
e-C"-close to W (P, f.,).

For every m large enough, we consider an angle § = 6(m) € [0, 1] (mod-
ulus 2k7) such that the rotation of the segment f™(¢1") (around Wy (P, f,))
by —6, intersect quasi-transversely ¢y. The rotation of this segment is given by
R_(f;™(47)), where

1 0 0
Ro=1 0 cos(2mf) —sin(270)
0 sin(270) cos(270)

Thus we have

R_g(f"(4")) N by # 0. (7.0.9)
Recall now the C"-perturbation s,4 of identity (with a,& small enough)
defined in (5.3.14). Let S, := su0
The perturbation f of f is defined by

J=Jm 5:SMOJC¢'

Note if m is sufficiently big then f = f,, is a small C"-perturbation of
fo. We now check that the f‘m(ﬁl) meets quasi-transversely {y. Indeed, as
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Som © fo = [, owm in Up (see (5.3.14)), we have that

T = o (0) = R (£, ()

In view of (7.0.9) this ends the proof of the lemma. [

Remark 7.0.6 Denoting by LocDynp(f|v,) = (A, o, ¢) the parameters defin-
ing the local dynamic of f in Up (see (7.0.7)) we have that LocDyn(f|y,) =
(N, o, 0+ M) and say that f|UP is obtained accelerating the argument of f|y,.

m
After an arbitrarily small perturbation of f(¢]") if necessary, we can assume

that 6(m) is rational and hence ¢ + @ is a irrational number. Finally, tak-
ing m sufficiently large, we can assume that the quasi-transverse intersection

{Xm} — f~™(¢™) N £ is arbitrarily close to X

We now see that the closure of the {fé (0) i€ N} contains W (P, f,).

We consider a small sub-disc ¢ of ¢ containing X = (1,0,0) € ¢ parameterised

as follows,

(.= {(1 +tvy 4+ p1(t), tve + pao(t), tvs + pg(t)) ] < 5}, (7.0.10)
where v = (v, v9,v3) is a unitary vector in Tx¢ and p; : R — R are C'-maps
satisfying

p:(0) = p(0) =0, i=1,2,3.

Note that since ¢ is quasi-transverse to W§ (P, f,) we have that (vq,vs) #
(0,0). Note also that (at the origin)

pi(t) = O(t?). (7.0.11)

Finally, consider the segment tangent to ¢ at X

ZZ: {(1 +t’01,t'02+,t’03) . ‘t’ < 5}

Lemma 7.0.7 The closure of {fg(f) ‘n € N} contains Wit (P, f,).

Proof. Fix any point Z € W (P, f,,) and any e-ball B.(Z) of Z, it is enough
to see that there is n such that f2(0) N B.(Z) # 0.

We need a preparatory step. First, the irrationality of ¢ straightforwardly
implies that the lemma holds for forward iterations of . Indeed, as the
argument ¢ is irrational, there is a sequence (i;); such that FEONB(2) £ 0
for every j. Consider sufficiently big j such that o=% (HZ || + 6) < 4 for every
J > jo. For j > jo, consider the segment ¢; C ¢ defined by
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_ 2 +€

(= l4+0 Wt o0 9tvg, o Gtug), |t|<t*:=
={ Lot ), M S e Sy

} . (7.0.12)

for some 0 < € < e. The extremes of féj (EJ) are given by (with a slight abuse

of notation) ' S
& = (AU £ Nvo Uty 17 V) (7.0.13)

V.o cos(2mijp) —sin(2mijp)\ [v2
7 \sin(2mije)  cos(2mijep) vs)
Note that the arguments of the vectors V; tend to the argument of the vector Z.
Thus, if j it is large enough, then X\ + Nig™%¢* vy < € and |[t* V}|| = || Z]| + €.

with

Then either éj or €; belongs to B.(Z), suppose that the first case holds.
We are now ready show that f& (€) N B.(Z) # 0. Let

V(1) = (COS(27Tij§0) —sin(2m’jgp)> (pg (0‘”25))

sin(27ijp)  cos(27i;p) 3 (O'_ijt)

and consider the curve Zj C ¢ defined by

G={(1+ ot +pi(o5t),to BV + Vi) . [t <t}

We will see that one of the extremes of f% (ZJ) is €; close to é;’ where €¢; — 0
as j — oo. Therefore this extreme also belongs to B.(Z) and the proof of the

lemma follows.

+

Consider the extreme éj

()\ijpl (U_ijt*) V (t*)) . Let

of the segment f2 (0;) given by el +

J

16 — eIl = [|(X2 o1 (07t7), V)l = €.

We claim that ¢; — 0. As |A] < 1 it is enough to see that 0% py (U*"J't*) — 0,
for k = 2,3. Since the condition (7.0.11) implies that

pk(a_ijt*> = O(c™%), k=1,2,3.

follows that
o’ py, (J_ijt*) =0(c7%) =0, j— +oo.

Hence ||€] — &/ || — 0, proving the lemma. |

An immediate consequence of Lemma 7.0.7 is the following result:
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Lemma 7.0.8 Let S C Up be a two-dimensional disc with positive radial
projection in Wi (P, f,). Then the forward f,-orbit of { meets transversely
the disc S.

There is a similar statement for the case of a saddle-focus Q) of index

one taken backwards iterates.

Supposse that f has a saddle @ of index one such that W"(Q, f)
and W*5(P, f) meets quasi-transversely. Lemmas 7.0.7 and 7.0.8 imply the

properties:

(i) Wise(P, f) € WH(Q, f), and

(il) W™(Q, f) intersects transversely every two-disc S with positive radial
projection in W2.(P, f).

Properties (i) and (ii) above will be crucial in the subsequent applications.
Note that these properties are not robust since the quasi-transverse intersec-
tions are not. In the following scholium we explain how using blenders these
properties can be turn robust. For that recall the terminology of blenders in
Section 3.4.

We observe that in similar way we define the same elements (replacing

stable by unstable directions and vice-versa) for a saddle @ of index one.

Scholium 7.0.9 (Mixing superposition directions) Suppose that f has
a blender-horseshoes A with reference P which is activated by an irrational
saddle-focus of () of index one. Then every diffeomorphism ¢ sufficiently C"-
close to f the stable manifold W*(F,, ¢g) intersect transversely every two-disc
S with positive radial projection in W .(Qg, ¢g). In particular W§ (Q,,g9) C
Proof. Since @) activates the blender A, for every diffeomorphism ¢ sufficiently
C*-close to f it holds that W (X, g) N W"(Q,,g) # 0 for some X € A,. The
irrationality of the argument of the contrative eigenvalue of Dg(Q,) imply
that W5(X,g) NS # () (Lemma 7.0.8). Thus, there are N* in N such that
Wi (X, g) g™ (S) # 0. Consider P; € A, homoclinically related to P, and
sufficiently close to X such that W (Py,g) Ng"" (S) # 0. The A-lemma imply
that We (P, 9) N g™ (S) # 0, ending the proof. |


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 7. Stabilisation of cycles: Proof of item Il of Theorem 4 109

7.0.3

New quasi-transverse heteroclinic orbits

We show that there exist a C"-dense subset £ in N7 o (T, q U Thi™)
such that every diffeomorphism in £” has a non-transverse cycle and two quasi-
transverse heteroclinic orbits between the one-dimensional invariant manifolds.
We now formalize this statement.

Let f € W, p0(Tquaa)- Recall the C"-linearising neighbourhoods
Up,,Ug, ~ [-3,3]® of the saddles Py and @Q; described in Section 5.3.1.
Note that in these coordinates we have

Wise(Pr, f) = [=3,3] x {(0,0)},
Wiee(Py, f) = {0} x [-3,3]?
Wiee(Qy, [3,3] x {0} x [-3,3],

o) (7.0.14)
I/Vloc(C?f f) {0} X [_373] X {O}

Recall the choice of the heteroclinic points associated to the transitions

maps in the initial cycle:

— the quasi-transverse intersection points: X = X; € WS(Pf, f) N
W™ (Qy, f) and X = )A(} € O¢(X) where

X =(0,1,0) e Wa(Qy, f) and X = (1,0,0) € Wi (Py, f),

— the non-transverse intersection points: Y =Yy € W( Py, f) N W3(Qy, f)
and Y =Y; € O(Y) where

Y =(0,1,1) e Wa(Py, f) and Y =(1,0,1) € Wi (Qy, f).

Consider the canonical projection in the neighbourhood Up defined by
Iy, 1Ty, 3 : Up, — [-3, 3] (7.0.15)

(x,y,2) =z, ly(z,y,2) =y, ls(z,y,2):=z2

In similar way, we define the projections I1y, Ily, IT3 : Ug, — [-3,3].
Recall the definition of the sets in (7.0.3) and (7.0.4),

P =P; CWQs. [)NUp,, Py =P; CW" Q. f)NUq,,

and the neighbourhoods Ulff and Ugf in (7.0.5).
By Remark 7.0.3 our bifurcation setting implies that

(i) PsNUL # 0 and PPN Up # 0; and
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(ii) for any k large enough it holds
Pi AWNP, fr) #0, P dW(Q, fr) # 0

where f}, is the sequence converging to f obtained via its renomalisation.

Finally, recall the notation in (5.3.16)

flus == frepr and  flu, == fo.po-

In what follows, for notational simplicity, we omit the subscript f in the
dependence of the saddles P; and ()y.

Lemma 7.0.10 Let v > 2. There is a C"-dense subset M” of Npo(Tohq U
TP such that if f € M” then

quad
- H(Q, f) is non-trivial,
— there is Z close to X such that Z ¢ Of(X) and such that the one-

dimensional manifolds W3(P, f) and W"(Q, f) meet quasi-transversely
along the orbit of Z.

Proof. Fix f € Npo(Th.a U TE ") and consider the quasi-transverse in-
tersection points X = (1,0,0) € Up and X = (0,1,0) € Ug above. Let
0y C W™Q, f) be a small one-disc such that X is in the interior of 0.

Using an accelerating (local) perturbation as in Lemma 7.0.5 (see also
Remark 7.0.6), we get diffeomorphism f|y,, C"-close to f|y, and large i > 0
such that fi(ég) intersects transversely 73;’ = 73]‘?.1 For simplicity, let us denote
the perturbed diffeomorphism f also by f.

Fix 4; > 1 such that " (£3) meets transversely to W§_(Q, f).

Consider a small segment ¢ C W?5(P, f) containing X in its interior
and contained in Ug. A new accelerating (local) perturbation gives a diffeo-
morphism f|UQ, C"-close to fly,, and large j > 1 such that fi (f”“(ﬁg))
meets quasi-transversely £ in a point Z = Z; close to X. The lemma follows
observing that the orbits of Z and X are different. [ |

Remark 7.0.11 The pertwrbation f of f € WNpo(Th.y U Thai™) in

uad quad
Lemma 7.0.10 can be written as follows. Recall the parameters defining the

local dynamics of f in the neighbourhoods of P and @ (see Section 5.3.1)

LocDyn(f) = (Ap,0p, P, A0, 00, ¥q),

1To be more precise, we consider a one-disc ¢; transverse to WE.(P, f)in Y such that ¢,
is “interior” of P3. Then, the aplication of Lemma 7.0.5 provides a such traverse intersection
between P} and forward iterated of £j .
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we have that f it is the form f; ;, where f;; satisfy the (local) conditions

LocDyn(fi ;) = (Ap,op, §i, Ao, 00, §j).

where ¢; — ¢p and @¢; — . Finally, we observe that by small C"-
perturbations defined in a small neighbourhood of the (transverse and quasi-
transverse) intersections obtained in Lemma allowed us modify slightly the
intersection points so that we can consider the new arguments ¢; and ¢; as

irrational numbers.

Scholium 7.0.12 Let f; ; be the sequence converging to f in Remark 7.0.11.
By construction, there exists a segment £ C W"(Q, f; ;) that intersects trans-
versely W (Q, fi;) such that flj ;(£5) meets quasi-transversely to W*(P, fi ;)
in a point Z; close to X. By the A-lemma, there exists a sequence of one-discs
l5; C £y such that ff;j(ﬁg’j) CT-converges to Wi (Q, fi;) as j — +oo. Note
that f7;(65) N W*(P, fi;) = {Z;}.
The previous comment imply that the perturbations f;; of f &
E,Q(E}ﬁad U 7;711’:(1’_) satisfy the following properties: Given any small one-
disc " in W2.(Q, fi;) containing X in its interior there exist a sequence of

sub-discs £} ; of £ such that:

— the one-disc ff j (EEJ) meets quasi-transversely Wp (P, f; ;) in a point Z;
and Z; — X, when j — +o00, and

_ ZJ] (g‘%) — (" as ] — +o0 in the C"-topology.

The next result state that small perturbations of diffeomorphisms in M"
generates a third quasi-transverse orbit between the one-dimensional invariant

manifolds of the initial saddles.

Lemma 7.0.13 Let f be a diffeomorphism in M" as in Lemma 7.0.10. Then
there is e, — 0% and a £,-C"-perturbation f, of f such that

— the orbits Of(X) and Of(Z) are preserved by f, i.e., in a neighbourhood
of Op(X)UOf(Z) , the diffeomorphisms f and f; coincides, and

— the one-dimensional manifolds W*(P, f;) and W™(Q, f;) meet quasi-
transversely at point Z; such that Z; ¢ Op(X) U O (2).

Proof. Fix f € M". Consider a segment ¢° of W*(P, f), quasi-transverse to
W (P, f) in X. From Lemma 7.0.7, the closure of {f‘i(és) i€ N} contain
the local manifold W} (@, f). In particular, this closure contains the non-trivial
class H(Q, f). Then, given Z* € W (Q, f) h W"(Q, f) there is a sequence
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{Z;}o in W3(P, f) such that Z; — Z* (this sequence is associated a sequence
of times n, such that f™(¢%) converge to the straight line in W} (Q, f) that
contains to () and Z*). Thus, for every £ large enough we can modify, by a local
CT-perturbation (like (6.6.12)), the local unstable manifold W2 .(Z*, f), so that
for this perturbation f; of f it holds Z; € W (Z*, f;). We observe that the
size of this C"-perturbation is €,, where ¢, is the distance between W2_.(Z*, f)
and Zj. Therefore, f, has a three quasi-transverse heteroclinic orbits. This

completes the proof of the lemma. [ |

Remark 7.0.14 In view of Lemmas 7.0.10 and 7.0.13 if f € Np (7.4 U

uad

731’;’7) then there are a diffeomorphism f;;, arbitrarily C"-close to f such

that:

(i) H(Q, fie) is not trivial,
(ii) fije preserves the cycle of f associated to heteroclinic points X €
WA(P, f) N W@, f) and Y € WH(P, f) nW*(Q, [).

(iii) fi ¢ has two quasi-transverse heteroclinic point Z; and Z} such that

Zj, Z; — X when j,{ — +oo0.

We denote L" to such C"-dense set in N}’;’Q(Eﬁad U7, 7).

uad

7.0.4
Transition map associated to the new heteroclinic orbit

Let f € N} o(ThaUThai™) and fi ;. the C"-perturbation of f belong to
L", see Remark 7.0.14. Recall the f; ;, has three quasi-transverse intersection
points X, Z; and Zj such that Z;,Z; — X, as j,{ — 400, where X is the
heteroclinic point associated to the initial cycle of f. By construction, the
diffeomorphisms in f; ; » preserves the initial cycle of f (i.e., f and f; ;¢ coincides
in a neighbourhood of cycle of f). In particular, preserves its corresponding

transitions maps (see (5.3.7) and (5.3.9)), that is,

N
fi,j}f

Ux — fN1|UX and fz{\;?de = fN2|UY'

Note that for every j large enough, we have that Z; € Ux. Let us now
describes the transition map associated to the points Z; and f™(Z;). For
notational simplicity, in what follows, we will omit the subscripts 4, ¢ in f; ;.
By construction, Z; = (x;,y; + 1, 2;), where z;,y;,2; = 0 as j — 4o00. Hence
Z; belongs to the domain Uy of the transition map f™' for every j large
we can take a pair of small and disjoint neighbourhoods Ux and Uz, of X

and Z; (respectively) and consider the transition maps fJN ' Ux — Uz and
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fi Uz, — Uy, where fN1(Z;) = Z; is close to X . Note that ij1|UX = My,
and f]N1|UZj — fN1|Uzj'

Let Zj = (14%;,0,0) € Up, with ; = 0 and Z; # 0. We note that

We now explicit the transition maps f*'|y, around of Z;. Considering the
J
point Z; as the center of Uz, and performing by an affine linear change of

coordinates around of X we can write

rj+x 1—|—fj—|—x+ﬁf(x,y,z)
M og, o | T+yi+y | = y+ Hi(z,y, 2) : (7.0.16)
Zj+z Z+H§(:p,y,z)

where
ﬁ,ﬁ(m,y,z) = ﬁk(a:j +x,y; +y, 2+ 2)—

N (7.0.17)
—Hk(l’j,yj,Zj), k21,2,3

The maps Hj, are defined in (5.3.7). Note that

H{(0) = H3(0) = Hj(0) = 0.

Remark 7.0.15 The higher order terms Hj(x,y, z) of the transition fM ’Uzj
do not satisfy the “flat conditions" at the origin (i.e., for X = 0) satisfied by
the maps Hy(x,y, z) of the transition fM |y, see (5.3.8). However these terms

satisfy the following convergence property:

O =i 9 iy 9 7 _
5 H0) = 5 F(0) = 5 (0) >0, k=123 (7.0.18)
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8
Proof of Theorem 7.0.4: construction of g

We recall the properties in Remark 7.0.3 satisfied by a diffeomorphism f
in NV, £.q(T;,)- The sequence {gi}, in Theorem 7.0.1 is constructed by arbitrarily
small local C"-perturbations of f. We start recalling the following type of
perturbations: From Lemmas 7.0.10 and 7.0.13 (see also Remark 7.0.14). f
can be C"-approximated by diffeomorphisms f; ;, such that:

e fijr and f coincides in a neighbourhood of the initial cycle whose
transitions maps are associated to a quasi-transverse intersection point
X € W3(P, f)n W2.(Q, f) and to a heterodimensional tangency Y €

Wise(P, [) N W@, f).

e fi;¢ has two quasi-transverse intersection heteroclinic points Z;, Z;

converging to X as j,{ — +o0.

The next assert not involve the subscript ¢ in f;;,. For notational

simplicity, their will be omitted.

e Consider f;s5 the renormalisation of f;, given by Theorem 2 (see
equation (5.3.19)). We will see that there is k(j, ¢), with k(j, ) — +o0 as
g, £ — 400, such that for every k > k(j, (), Z; and Z; are quasi-transverse
intersection heteroclinic points of f;,z,. Moreover we can unfold these

heteroclinic points unmodified the orbit of blender A, of associated to

fj!ﬂjk‘

We now explain how arbitrarily small local C"-perturbations of f; s,

generated a C"-robust cycle between A;,; and Q. This define our gr = g,k

* Robust intersection between WS(A;yx, fivs,) and WQ, fiiz,.):
unfolding of the heteroclinic quasi-transverse orbits. Unfolding suitably
the quasi-transverse Z; we generates a uu-disc simultaneously contained
in W™(Q, fjes,) and in the superposition region of the blender A, (see
Proposition 8.1.4). From Lemma 3.4.5, the manifolds W (Ajk, fr0.)
and W"(Q, fj.r.z,) is meet C"-robustly. We continue to denote by f; 5,
this last diffeomorphism. Z; (see Section 8.1).

* Transverse intersection  between  W"(Aj.y, fivs,)  and
W3(Q, firs,): growth of the size of the strong unstable leaves of the
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blender. We begin observing that the definition of G¢,00)|a imply
that the unstable manifolds of its left reference ngu, growth along
of the uu-direction quadratically in relation to the height of the box
A. This gives estimations on the growth of the unstable manifold of
the reference P, of Aj,, in the chart @, of the renomalisations
scheme of f. Since ®x(A) — {Y}, then for every small neighbour-
hood W* € Wi (Q, fies,) of Y it holds that W;'(W®) moves away
from A. A careful choices of increasing domains Ay C A we guar-
antees that Wu(Png(ivaO’OﬂZk) meet transversely to W, (W®) (see
Lemma 8.2.8) and that ||(®;' o Ry(fjer) © @1 — Gepom)lz ler = 0
(see Lemma 8.2.11). This imply that WY(P}, ., ;' o Ri(fiexlx,) and

j
WU, L (W) it meets transversely (see Section 8.2).

% Homoclinic relations between A;,; and P. These relations are
obtained from the heteroclinic relation in the cycle above. Our bifurcation
setting imply that W™(P, fjrz,) N WE(Q, fies) # 0. On the other
hand, the stable manifold of Pj,, is dense in W¢.(Q, fjz,) and thus

WU(R fj,e,f;k) M WS(P]‘J,Fe,ka fj,ﬁ,ﬁk) 7é @

The irrationality of angular argument and the heteroclinic connections
associated to point Z; implies that the manifold W*(P, f; 5, ) is dense in
Wi (Q, fiew,)- Since WY(PS, ., fjs,) meet transversely the last mani-
folds obtaining

WS(P7 f]}f,@k) h Wu(Pj*,é,k? fjfﬂ?k) 7é 0.

Therefore, P and P;,; are homclinically related (see Section 8.3.1).

We now go into the details of these constructions.

8.0.0.1
Unfolding of the heteroclinic quasi-transverse orbits

Let f € Npq(T; ). Consider the sequence of perturbations f;;, of f in
Remark 7.0.14. The next results, not involves the subscript i, for this reason
this will be omitted along of this section. Consider the renormalisation f; s,
of f;¢ given in Theorem 2. Note that for any large and fixed k, ¢, the points Z;
and Z; are heteroclinic points of f; 4, for every k large enough. Let us now
to unfold the point Z; of f;,z,. More precisely, we consider perturbations of
the form

Ojk © fi¥s vz, + Uzy = Uz, (8.0.1)

j7£7ﬁk
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where 6, is a C"-perturbation of identity supported in a small neighbourhood
of
Zj = [ito(Z;) € Wie(P, fiem,)-

]7€7’Uk

Note that by the comments above we have
N N
Ojk © fido vz, = Ojk 0 fid vz, = O 0 F o,

for every k large enough. To build such perturbations of identity, we consider

the following preliminary ingredients:

— A C"-bump function
b(z) =0 for |z > 1,
b:R—1[0,1], q0<blz)<1 fors < |z]<3, (8.0.2)
b(z) =1 for |z] < 3.
Let C'= C(r) > 0 be the C"-norm of b, i.e.,

C:=max sup [b9(z)], (8.0.3)

1Sisr pe—1/2,1/2)
where b (z) denote the i**-derivative of b in x.

— Fix 0 < A < 1 such that Ay < A". Recall the sojourn time ny
(see Subsection (5.3.5)) associated to the renormalisation f;,z, of fj..

Consider the sequence of neighbourhoods U, C Up centered in Zj given

by . )\nk
Up={ @+ 2 bl bl <) s0a)
— The sequence of C™-bump functions By, : R* — R defined by
n r Yy z
Bulw.y.2) = N B (o). (8.0.5)
where
B(x,y, z) = b(z)b(y)b(z).
Remark 8.0.1 Note that the support of By, is U, — {Z;} and

s

A
Bi(z,y,z) = N\ ifand only if  |z|, |y, |2| < ER

Recall the convergence of the sequence op* Ay in (5.3.18). We are now

ready to define 0, .

Definition 8.0.2 The map 0;; : M — M is defined by
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— if (,y,2) + Z; € U;1, then

V2

— otherwise the map is the identity.

Recalling that Ao < A", the constant C' > 0 in (8.0.3) and taking K > 0
such that |%ink\ < K we have that the inequality it is easy to check that
op"Ag

Ao\
10, —id], < K C? <AQ> — 0. (8.0.7)
Let gj ¢ the local C"-perturbation of f; 5, defined by the condition
gyNélk =0 fjl,\;l,ak =Ujk© fﬁngUzj- (8.0.8)

Next lemma assert that for every large and fixed j, ¢, we can take k large

enough such that the perturbation 6, does not modify the orbit of blender of

Of f]vevﬁk} :

Lemma 8.0.3 For every large and fized j and ¢ there ezists k(j,¢) € N such
that for every k > k(j,£) it holds:

(1) the restrictions of fjrz, and gjox to the domain of definition of the

blender A coincide and

(11) Z; is a heteroclinic orbit of g; k-

Proof. We note that since g, is obtained from f;,, by the bifurcation of
the point Zj = (1 + 2,,0,0) it sufficient to verify that the renomalisations
scheme not does modified in the neighbourhood of X = (1,0,0), that is, the
coordinates of (fi ) "™ o Wy, n, (A) is far of support of 6, for every big
sufficient k. To this, we will exhibit a k(j, ¢) and a local C"-perturbation of the
identity 0y, satisfying lim |0, — id||, = 0, and such that for every k > k(j,€) it
holds:

M _ N Ny _ N Ny
.- = (@) . = (@)
J,e,vk’fl.’f;%ommk,nk(A) Ok o fiy ’ffﬁakommk,nk (A) Ok o f |ff;5kommk,nk (A)»

and

— the sets supp(fx) and U, are disjoint, and f; .5, (Z;) ¢ supp(fy) UT 1.

These two points above imply the items (i) and (ii) in the lemma. We now
proceed to construction of §k
Recalling that f]{?(X ) = fM(X) = X and the sojourn time 7y, involved

in Uy = Uy, n,, consider the open sets
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Nk

~ A
UX,k = {(I’yaz)—i_X: ’I‘|,|y|,|Z| < 2}’ )‘Q<)\r‘ (809>
We define the local perturbations of the identity supported in Ux , by
gk : UX,k — UX,k7 gk((x7yv Z) + Y) = (‘Ta Y, Z) + Y—'— Bk(l‘,y, 2) (Dka

where the map By, is defined in (8.0.5) and the vector @y, is given by

V2
Ok = |5k — ¢k, ———— — NS P2k — (56 + &) — AP ,
k < k k apmk)\Q’“ Q P2k ( k k) Q P3k
where s, ¢, op™* )\ZQ‘“, and pg i, P31 are the convergent sequences defined
in Remark 5.3.10, (5.3.18) and (5.3.23), respectively. In particular, sequence
of vectors wy, is convergent. This implies that 0 is a CT-perturbation of the
identity whose support is U x 4 for every k large enough. The lemma now follows

from the next claim.

Claim 8.0.4 For every big j, ¢ there exits k(j,0) > 1 such that for every large
enough k > k(j) it holds

(Z) U)Qk ﬂUch — @

(ZZ) fj,g,@k(Zg‘) §é UXJ{; UUj,k = @ and
Proof. For the first part recall that X = (1,0,0) and Z; = (14 ;,0,0), where
Z; — 0. Welet Z; == f;4(Z;) = (14 5,0,0). We choose k(j,£) > 1 such that

A" < min {]@1, 1], |75 — 5:;;\} for every k > k(j, €).
This choice immediately implies that
UX’]g ﬂUj’k = @, Zg ¢ UXJg UUqu for every k 2 k(], f)

For the second part, recall the coordinates in (5.3.25) and the equations
(5.3.26) and (5.3.7). The neutral condition (5.3.18) imply that each coor-

dinates from
N _
f ' |UX © gip‘i‘dmk,nk (¥) © \Ijk(A) - X’

has a symbol of Landau equal to O(A) (here ¢ is the argument associated
to rotation fj¢|y,, ¢ is the argument associated to rotation fj7g|UQ and
g dio(") = Qmpnpzo()). This imply that the map By(x,y, 2) restrict to
set
N —
f ' |UX © fgip'i‘&mk,nk(‘/’) © \Ijk(A) o X’
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is equal to A for every k big sufficient (see Remark 8.0.1). We conclude the
proof observing that the vector v,,, ,, in (5.3.24) satisfies A\o" @y = V.- B
The proof of the lemma is now complete. [ |

In the next remark we white explicitly the definition of the perturbation

gj.ek (including the omitted subscript 7)

Remark 8.0.5 For f € NV, po(T;), we recall the sequence of C"-perturbations
fije of f in Remark 7.0.14. Recall that the local dynamics of f;;, in Re-
mark 7.0.11 is given by

LocDyn(fije) = (Ap,op, $is Ao, 00, §5),

such that ¢; = ¢p, and @¢; — po. We observe that the subscript ¢ in f; ;¢ is
associated to a local perturbation along of the unstable manifold of () that not
modify the parameters above (see Lemma 7.0.13).

Finally, recalling the notation in (5.3.19) and taking k& > k(j,¢) the
diffeomorphism g, ¢ = gijex in (8.0.8) is defined by small C"-perturbation of

fije given by the following equations

Gieklve = Gijerlve = fPgitam, n (o) Pi = PP

9jeklvg = Gigeklvg = fQpstampn, @) Pi = Qi

Gitrlox = Gigerlve = (figo) X5, 0 (8.0.10)
g]]'\,[fl,k|UZj = nyjl,e,szj = fz'],\ﬁe,k|Uzj =0jm, © ﬁlevzj,

fo,ﬂUy = gi]?;?,é,k’UY = (fz',j,@)gjzmk,nk(u)-

Remark 8.0.6 Recall the definition of ay,, n, (-) in the renomalisation scheme,
see Section 5.3.6. In the equation (8.0.10), it holds that

Qg g () = dmkﬂk#m@j ()

We observe that, by definition, ¢; 4+ aup, n, ($;) is a irrational number for every
J, k.

8.1
One-dimensional connections

The main result in this section is the next proposition that provides the
one-dimensional connection between the stable manifold of blender A; ;.5 and

unstable manifold of the saddle @ of the diffeomorphism g;;¢x in (8.0.10).

More precisely,
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Proposition 8.1.1 For every i,5,¢ and k large sufficient it holds
we (Am,é,k,gi,j,&k) h W (Qagi7j,€,k> # 0

C"-robustly.

The proof of this result not involve the sub-scrips ¢ and ¢. For notational
simplicity along of this section them will be omitted from notation above.

To prove this proposition we need to recall some properties and defini-
tions. Recall the sequence of parameterisations W,,,, . : R3 — Ug in (5.3.20),
the coordinate changes © : R* — R* in (6.4.1) and © : R® — R? in Re-

mark 4.1.1, associated to these maps we consider
D RE = U, Py (X) = Ty 00 0 O(X). (8.1.1)

Remark 8.1.2 Notice that map © is a coordinate change in R*. The maps
®,,, n, is defined in precise form extending naturally the maps © and |\
to whole R* as

(2,9, 2) = (11, 0(x,y,2), (2,9, 2) = (1 Vi e (2,9, 2)).

However, by notational simplicity, in what follows we will preserve the abuse

of notation in the equation (8.1.1).

Recall also the renormalised sequences R, », (-) in Theorem 2 and that

the blender A, x of R, n,(9;%) is the maximal invariant in
Ap =Dy (A), A =[—4,4] x [—40,22] C R, (8.1.2)

that is, .
A = () (Runy (g70)) (A4). (8.1.3)

LeZ

Let G¢pnmla be as in Theorem 2 and consider the curve ¢ := {(O,y,()) :

ly| < 4}. Then, / is a uu-disc in the region of superposition of the blender of

Geprm|a- For large k > 1 we consider the curve

-1

T
The C"-convergence @,

0 Ry i (956) © Prnme — G 0,0y imply that,
for every sufficiently large £, the segment

-1

D1 o (g NN ()

?

contains a uu-disc in the region of superposition of blender A .
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Following the construction in (21, Proposition 6.3) we now see that

there is a disc contained in W*(Q, g; ) whose return to the heterodimensional

-1

mymy,) 18 arbitrarily C"-close to ol o

tangency (considered in the chart @ S

(gjp) Ve N (7)) We now go to the details of this construction.
Recall the choice of the heteroclinic point Z; = (z;,1 + y;,2;) in
Remark 7.0.14 and the transition map ijl : Uz, — Uz, in (7.0.16), with

Z; = fi(Z;) = (1+;,0,0),

x—i_xj 1—|—ij+x+ﬁf(x,y,z)
Ul y+y+1 | = y+ Hi(z,y, 2) , (8.1.5)
2+ 2+ Hi(w,y,2)

where
E,Z(m,y,z) = ﬁk(x] +x,y; +y, 2+ 2) — Ek(xj,yj,zj), k=1,2,3.

Note that for k& = 1,2, 3, it holds Eé(ﬂ) =0 and if j — +o00 then

aaxﬁg(o), gyﬁg(o), gzﬁg(o) -0, k=1,2,3. (8.1.6)

Note that ij 1|Uzj = fM |Uz7.- We write this transition map compactly as

f;vl(Z]+W):Z]+W+EJ(W), Zj—f‘WEUZj.
Choosing small § > 0 and an unitary vector V; in Tz W*"(Q, f;) we can
write (in local coordinates) the local unstable manifold of Z; contained in Uz,

as

o ={Z+ v+ 50 1t < o}, (8.1.7)

where

Zj (ZL’j,l—l—yj,Zj), l‘j,yj,Zj—)O;
= (vl 1+ 0h,0), IIVill=1, V;—(0,1,0); (8.1.8)

(P00, A1), 5740) = (0) =0

p;j(t)

The A-lemma (see (38, Theorem 2)) implies that ||p;|(—s4] — 0, as j — +o0.
Recall gﬁ; |Uzj in (8.0.10). Consider the segment

0% = g (88) = 050 f;M(0D).
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From definition of 6, in (8.0.6) we have that
B = {2+ i+ i) + TPV + py(0))+

+ Bk<th v+ BV, + m(t))) (0, V2 0) 1t < 5}.

ot Ay
We rewrite the segment g‘;k as follows
Gy = {Zj +t W+ p;(t)+

+ Bi(tW; + p;(1)) (0, V2 0>:|t|<5}’ (8.1.9)

opk )\Zf ’

where

W; = (id+ DHI(0)) Vj,  pi(t) = p;(t) + H' (¢ V; + p(t)) — t DHI(0) V.

Note that d
5 (3)(0) = 7;(0) = 0. (8.1.10)
We let W; = (w], w}, w}). From (8.1.8) and (8.1.6) it holds
w (1+ 2 H{(0)) v] + 2 H{(0)(1+v) + 2 H{(0) v}
wh | = | ZH0)v] + (1+ 2 H(0))(1+ ) + ZHI(0)v] |, (81.11)
w) 2 H(0)v] + ZH{(0)(1+v}) + (1+ £ H3(0)) v]
where w?, w% — 0 and wé — 1. For big j > 1, consider
ol . wh o
Wy = w—% and w3 := w—% where @1, w3 — 0. (8.1.12)

Thus, writing p;(t) = (ﬁ}(t),ﬁ?(t),ﬁ?(t)), we can express the segment

!Z“k as
B = { (U 25+ 20000, 3300, 51000)) < 1] < 0,

where

N ot
x(t) = tw] + ) <wj>

2
t V2 t t
gin(t)=t+ 2| — = B —=W,+p | — ],
yjk() + /; (w%>+0_$k)\gk k(w% J+pﬂ<w%>>
~ it
Ziw(t) = tw} + p° <j>
wy

For sufficient large j, consider the sub-segment ¢;; of g}lk (obtained
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k

rescaling the parameter ¢ by the factor 05" 04~ ) given by

gj,k = {(1 + i’j -+ LL’ng(t), yj,k(t)y Zj7k(t>) : ’t| < 5},

where

Tin(t) == 0p M og it + Py (1),
yik(t) = 0p oo ™ ot + pr () +

V2 op ™ oo™ G

V< B ( "2y
ap Ayt w) 7 (8.1.13)
_2mk —Nng
~ (Op gQ <2
wo(T )
2
2ik(t) 7= 0p oo WGt + 7 (1),
and

o S (0p "o ™ st
() = 7 | k=123,

w3

Claim 8.1.3 For every large sufficient k, it holds

—2my, —Nnp —2my, —Ng
g g g g
Bk< r_%e CQth—I—ﬁ]( r_74 gzt)) — A

wy w3

Proof.
We recall the constant 0 < A\g < A < 1 involved in the definition of By(-)
in (8.0.5). From Remark 8.0.1 it is sufficient verify that every coordinate of

0';2ka'an’“ S N ngka'ank S

wy w%

is less than 23" To see this, we note that as [t| < , each coordinate of (8.1.14)

k

has a Landau symbol equal to op>™ o ". Since op* o™ convergence to a

number different of zero (see equation (5.3.18)) we have that
U;mk O.Q—nk )\gk

—ka —Npg __ nk
Op oQ - M \ Nk <A ’
optAG

for every big k. This imply that each coordinate in (8.1.14) is less than %,
for every k large enough. This completes the proof of claim. B Return to the

coordinates in (8.1.13), we get that y; x(t) is given by
yin(t) = 0p7 oo Gt + P (t) + V20

Recalling the definition of the curve ¢, in (8.1.4) we state what following:
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Proposition 8.1.4 The C"-distance between the segments Cbﬁwnk o

N- — N- N-
2+mk(€j7k) and ® 1 2+mp+Ni+ng

9k i O 9ok (41) goes to zero as j, k — +oo.

Remark 8.1.5 As an immediate consequence of Proposition 8.1.4 we have
that the saddle ) activates the blender Ajj, that is, the unstable manifold
of () contains a uu-disc in the region of the superposition of the blender, see
Remark 3.4.3.

Proof.[Proof of Proposition 8.1.4] The proof follows considering calculations
similar to the ones in the proof of Theorem 2. Recall the definition of
Do = Yinpm, 0O 0 O in (8.1.1). We will consider parameterizations 7y (t)
and 7;(¢) (with common domains) of the curves ¢, and ¢, and estimate the

C"-distance:

[k, © g7 (5 (0)) — @k 0 2T ()] <

MmNk mMp,Nk

e ) g e N (8.1.15)
1674 0 O 1150y e © (g3 ™™ (k1)) = 3™ () -

Since the coordinate change © o O is bounded and independent of m, and ny,
it is sufficient to check that the last C"-norm goes to zero as j, k — +o00.
We recall that our bifurcation setting (see Remark 7.0.3) imply that

by — bs = by + b3 — by = 0.

e The segment U1 o gf,§+m’“+Nl+n’“ (¢x). Consider any point (0,¢,0) €

MmNk

@1 (f;) where |t| < 4, and we let

M,k

T(t) = (Zn(8), Gu(t), 2 (1)) = Wpp 1, 0 g T 0 @y, (0,2,0).

MMk

Recalling coordinates (5.3.37) we have that

Tr(t) = q ot + a1 Ap™ 0Bt og™ H, (Xk(t)) +opt o™ Hy ()Ek(t)),
gk(t) =u+ §§ t2 + by Ap™* 0'123mk O'Q2nk]j]1 (Xk<t)> + O'E)mk O'Q2nk H, <)A(k<t)>,
Ek(t) =g et+tc )\pmk O'ZLk O'anﬁl (Xk(t)) + O'gk O'an Hg (}A(k(t)),

where x;(t) and X(t) in the higher order terms are given by

Xp(t) = g5k © Py, (0,2,0) — (0,1,0),

N (8.1.16)
x(t) = g;r,zf o @, 0 (0,,0) — (0,1, 1).

o The segment U1 Nt (). Recall that

M,k © g.j7k

bk = {(1 +I;+ xj,k(t)ayj,k<t)7zj,k(t)) ] < (5} (8.1.17)
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where the coordinates xz;x(t), y;x(t), and z;,(t) are given in (8.1.13). Write

Yik(t) = (Zjx(t), Yin(t), Zx(t))

o (8.1.18)
=W o g T (& 4 wia(t), yik(t), 2(t).

Applying f}f = gi} (recall (8.0.10)) to (1 + 24 2,6(t), yik(t), zjvk(t)) we get

(x(), 1+ T8, 14 24(8) = g (14 35 + 254(t), yi(8), 214(8)). (8.1.19)
where
Zik(t) = Ap™ (1 +3;) + Ap"ap ™ oq ™ @ ot + Ap™* pj (1),
Pon(t) — Pu(t)

- 1= @\ -
i(t) = g3 ) o o tattor /2 " (8.1.20)

1+ 52(1) + P2 (¢
2]7k(t) = <_‘_Uj3> O.;mk O.Q—nk §2t+ Upmk (p],k( ) p],k:( )) '

V2 V2

The definitions of g%, (¢) in (8.1.13) and p;(t) in (8.1.9) imply that the

symbols

O(:0), (1), O(F4lt) + 74(1)) = Olop o). (8.1.21)

Thus the symbols of Landau of Z;;(t), y;x(t) and Z;x(t) are given by

Zjn(t) = O(AP™),

- - o L (8.1.22)
Uik(t) = Zjx(t) = O(op ™ aq ™) + O(op™ ™ og™="").

Finally, we apply ¥, ! ogﬁ% to the point (Z;x(t), 14+, ,(t), 14+Z; (1)) in

(8.1.20) to get the coordinates (Z;x(t), ¥;jx(t), Zjx(t)) in (8.1.18). For notational

simplicity, let us introduce the following terms

wjk(t) = p3 () = i (1);  vin(t) = 77 (1) + 554 (8). (8.1.23)

Recalling the definitions of W1 | in (5.3.36) and of gjv,f, in (8.0.10) and that
g]N,j coincides with fij’\,[flmk o () (see (5.3.19), Remark (5.3.4), and (5.3.9)), and
the definition of fiy, », (1) in (5.3.21), we get
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fj’k(t) = a1 )\pka'gkO'an (1 + .i'j)‘i‘

+ <a1 )\pm’“ap_mkﬁ){ + as (1_\/;%> + ag (H\/%Ué>> G i+
+a AP TR 0 Q™ P (1) + a2 0" 0@ (1) + ag op 0" vk () +
+ oprog™ Hy (Xj k(t));
Jin(t) = s+ by \p™ o p o™ (14 &)+
+ b )\pka'?;ka'Qanp] (t) + b1 Ap™ oy Wl G t+

1— 1 ~J\2 1— ~7\2
+GQCQ%)>+@<(ﬁ;Q>+m<yﬁ)>éﬁ+
+ 0_2ka, 2ny, u 29 —ny, - UN)?% t+ b 2myg,, (t) +

P 0Q ]k 20Q \/5 S2 20p "Ujk

. " + w m
022 g, (f) (25,3% (\/§3><2t+bgap2 ’“Uj,k(t)>+

- 14w 1 — )
+b4 0'% kO'an §2t (( 3) U]k t) + (\/§3> Uj’k(t)> +

+ b4 U;l;ka'QQHkuj-yk(t)Uj’k(t) + O'P 0Q2nkH2 ()/Ej,k(t»;

gj’k(t) = C )\pmkngUan (1 + i'])‘i‘

» 1— @ 14 )
+ <C1 Ap" o p D] + ¢ (\/§3> +c3 (\/§3>> G l+

+ 1 )\pkagkO’anﬁ;k(t) + Co U%ka'anuj7k(t) + c3 U?DmkUanijk(t)—F
+ O'glkO'anHg ()/Z],k(t))a

where

)A(jak (t) = (I/L"\j,k(t), gj7k(t)’ Ej,k(t» = g;?l? (‘Ti,k (t)v yj,k<t), Zj.k (t)) - (07 1? 1)'

Recall this last terms in equation (8.1.20).
We are now ready to compare the coordinates of 7;x(t) and 7;(t). For
that first recall that

as + as byt b3+ 0y ety

1= , S =—F=, G5 =
1 \/5 2 2 5 \/§

we have that
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Tik(t) = Tu(t) = ar AP opt o™ T + <a1 ATt 4 (8 %) w§> G 1+

V2
+ay Ap™ oo™ Pl (t) 4 az 08 o ™ k() + as o o ™ vk (t)+
+oprog™ Hy (Xjk(t)) — a \p™ oo™ Hy (x ) —oprtog" Hy ()Ack(t)),
Gi(t) = Gr(t) = bidp™ OB Q™™ Ty + by AP O™ 0™ B () + by Ap™ o b £+

+ (bz (—w§ + (w§)2> + by (—wg + (w3)2> — by <w§)2> 2+

2
2m 2n -n wi]’) 2m
+ oo™ ug(t) (262 05" b+ by op ™ ui(t) | +

V2

w
+ o2 a0 (1) (205 0_"’“< +2 : <2t+bgap2m’“vj,k(t)> +

i
+ bao B o™ 6ot (( ) u;n(t) + (1_\/%1]‘%) vj,k(t)> +

+ b0 0 Q™ k(1) vk (1) + 050 Q™ Ha(R;(t) ) -
- bl)\pka'?gka'Qangl (Xk(t)) — O'?pmkUQanHQ( ( ))

Zik(t) — Zu(t) = ct \p™ oproQ"™ T + <01 Ap™ o p ] 4 (62)“7%) G t+

V2

“+ )\pmkagngnkﬁ;jk(ﬂ + o U?Dkaanu]'k(t) + c3 UlgpkaTan’l)Zk(t)—i-
+ 0P oQ" Hy (% (1)) — e Ap™ o 0" Hy (x(t)) — ot oq™ Hy (Re(t)).

Landau symbols of the coordinates of X, ;(¢) in (8.1.22), imply the convergence

to 0 of the following higher order terms
O'gkO'anHl<)/zj7k(t)), )\pmkdgdenkﬁl(Xk(t)>, ngO'anHl(ik(t)>, = 173,

in the expresions Z; ;(t) — zx(t) and Z;4(t) — 25 (¢).

On the other hand, the C"-convergence to zero of the higher order terms
2my, 2ny, S my _2myg 2ny 17 2my, 2nyg S
Op "0Q Hg(Xj,k(t)), )\p Op "0Q Hl(Xk(t)), Op "0Q HQ(Xk(t)),

in g; x(t) — yx(t) were already obtained in the proof of Theorem 2 (see (5.3.8)).
Now we analyze the convergence of the associated terms p} . (t), w;(t)
and v; 4 (t) contained in (F;(t) — Zx(t), Tk () — Gr(t), Zia(t) — Z(t)).
The Landau symbols of j;,(t), u;x(t) and v;x(t) in (8.1.21) imply that

Ap"roptoQ” P;k(t) O™ op ™™ 0g™™),
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and

op 0 (1) = o™ 0g vy (t) = O(op™ ™).

Thus, the terms Ap"* o5 oo™ pl (1), o3 0> u;4(t) and op ™ 0o v, 4(t) are
convergent to zero in the C"-topology as k — +o00.
Therefore, it remains to study the convergence of the linear parts in
T(t) — Tx(t) and Z;,(t) — z(t), and of the quadratic part of y; (t) — yk(%).
The linear part in 7, (t) — Zx(t) is given by

(a‘”’_ﬂa”wg) Gt (8.1.24)

For that recall the spectral condition in (5.3.4), 0 < ()\p%O'p)nO'Q < 1, with

-1
_ log/\Q

logop

- ~ .
arAp"Foprog" T + <a1 Ap" op MR ] +

. By Lemma 5.3.6 there is a constant C' > 0 such that

mi ng

()\p%O'P) 0g < C(()\p%O'Py]O'Q)nk.
Thus, when k — +00 we have that
my _2my 2n Tk myg N 2 1 n 2
Ap kO'P kO’Q k= ()\p 2 0p kO'Qk) < (C()\pQO'p)nO'Q) k) — 0. (8125)

This implies that the constant term in (8.1.24) goes to 0 as k — +oc.
Recalling that @], @} — 0 in (8.1.12), we get that factor that multiply ¢

in (8.1.24)

(a3 —az) _;

w
\/5 3

tends to zero, when j, k — +4o00. This last assertion jointly with the convergence

aq )\pka‘P_mklIJ{ +

in (8.1.25), imply that the C'-norm (and therefore the C"-norm) of linear part
(8.1.24) tend to zero when j and k tends to infinity. Therefore, |Z; () —zx(t)],
tend to zero when j and k tend to infinity. The same arguments apply to the
convergence of |Z; x(t) — zi(t)],-

On the other hand, the quadratic part of g; x(t) — yx(¢) is given by

by Ap" OB o () — 1) + by Ap oy i ¢+

~7\2 ~72 ~7\2 8.1.26
o (o (e Y o (ot ) ) g O

The convergence ”J)% — 0, imply that the C*-norm (and therefore the C"-norm)
of the expression in (8.1.26) tend to zero when j and k goes to infinity. This
implies that |y(t) — y(¢)|, tends to zero when j and k tend to infinity. This
completes the proof of Proposition 8.1.4. [ |
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8.2

Two-dimensional connections

The main result in this section is the next proposition that provides the
two-dimensional connection between the unstable manifold of blender A,/
and stable manifold of the saddle @) to the diffeomorphism g; ,x in (8.0.10).

More precisely, we have the following proposition.

Proposition 8.2.1 For every i,j,¢ and k we have the following transverse

intersection

wH (Ai,j,é,k;gi,j,f,k) m W* (Q>gi,j,e,k) # 0.

The results of this section do not depend on the subscript ¢, 7,¢ thus, by
simplicity, the will be omitted and we will write g, and A, in the places of
9ij.0.k and Az’,j,z,k-

Before going to the details of the proof of the proposition let us ex-
plain briefly its main steps. Recall the renormalised sequence R, »,(gx) in
Section 5.3.6. Recall that

G : R 5 R, Gr(X) = Pppny © Ring (90) © Opt L (X)
is a sequence of diffeomorphisms defined in whole R? that converges in the
C"-topology to the endomorphism G 00 € C(R? R?) on compact sets.
For k large sufficient we denote by Ay = @;@im(/\k) the respective blender of
G
Consider the left reference P, = (2, ¥, 2¢,) of blender of G ¢ ,.0,0)a-

For large k we denote by P,:f ¢, the continuation of Pg ., for Gi.

8.2.1
Strategy of the proof of proposition

Note first that the domain of definition Ay = Dy, 5, (A), see (8.1.3),
of the blender of g;, converges exponentially to Y € We(Q,gx) as k — +oo.
Thus, any (fixed) small neighbourhood W* € W¢,.(Q, gx) of Y measured in the
®,! | -charts, it moves exponentially fast away from A C R?® as k — +o0. This
is illustrated in Figure 8.2. With this in mind, we define a suitable increasing
sequence of domains Ak CR3 AC Ak C Ak»_ﬁrl , such that W" (P,;Ew Gk|3k>

meets transversely & !

mrn, (W?). This intersection is obtained if we guarantee

the follwing two facts:

(1) ||<G(§’M’070) — Gk)‘ngT — 0, when k — +00, and


DBD
PUC-Rio - Certificação Digital Nº 1213295/CA


PUC-RIo - Certificacdo Digital N° 1213295/CA

Chapter 8. Proof of Theorem 7.0.4: construction of gy, 130

(2) For every k > 1 large enough it holds

WP Genonlz,) N Pt (WF) # 0,

M, Nk

The first condition above implies that for every £ large enough, the man-
ifolds W“(P,;E,“,Gﬂzk) and WY(P;

&
condition imply that W*(P[ ,, Gi[3, ) and @, (W*) meet transversely. As

MmNk

G(§7M7070)|3k) are C"-close. The second

consequence we get that
W (Ble o ) hW* £ 0,

where P, , = @, n, (P ) denotes the reference of the blender of Ry, n, (gx)
in Ak

We now we provide the precise proofs of the steps above.

8.2.1.1
The unstable manifold of the fixed saddles of the Hénon-like family

In this sections we study the growth (along of the unstable direction)
of the unstable manifold of the saddle Pgu,n of G ko) for parameters
(& p,m,0) € (1.18,1.19) x (—10,—9) x (—¢€,€) as in Theorem 1. Figure 8.2
illustrates this growth.

Recall that from Lemma 5.1.1, for every (£, ) € P = (1.18,1.19) x
(=10, —9) the left reference P;u = (x/f,y:[,zg ,.) of the blender-horseshoe of
Ge.u,0,0)|a is a partially hyperbolic point with two unstable directions (a strong

one and a weak one) satisfying the relations

o=yl =p+ (y:[)Q =(1—=&) 2, y;>0 (8.2.1)

Lemma 8.2.2 Let AT = [—4,4]x[0, 4] x [—40, 22] C R3. Then, G(e 0.0/ (AN
A C WP, Gepon)-

Proof. Consider the projection I1j5(z, y, z) = (x,y). Recall the nested sequence
of discs in (6.6.3):

(o =Ty (G(E,H,O,())(N) N A), (€F,)n C Ty (G(g,u,o,o)(w) N A),

satisfying for every n € N :

(@hyh el 9.0, 0)="0n  gu(zy) =y n+1y7).
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For every n consider the two-disc :

Top = {(x,y,z: +1): (z,y) € 4], E(—40—2z7) <t <E7(22 - z:[)} :

Note that Ty = £} x [~40,22] = G ¢ u00)(AF) N A.

By construction, the sequence (l:,m)n satisfy
Pg/.t S f”:”’ f“’n+1 - fu:”’ and G(gvuvovo) (f#»n+1) = fﬂvn (n S N)

This completes the proof. [ |
We define the local unstable manifold of the saddle Pgu of Gepu0,0) as

Wi, (P?,w G(s,u,o,0)> = Gepo0)(AT)NA. (8.2.2)

Remark 8.2.3 The continuity of the local unstable manifold implies that for
every small € > 0 (fixed) and every (&, u,k,n) € (1.18,1.19) x (=10, —-9) x
(—€,€)? it holds that

I/I/ll(l)c (Pgﬂv'fﬂl’ G(&:uv"@n)) = G(ﬁ,#ﬂ%ﬂ) (A+> m A7 (823>
where Py, = (2, s Ve uwms Zepnn) it is the continuation of P, satisfying

+ o+ + )
Lepmm = Yeumm  Yeurm > 0;
ygmn,n = ,U + (ygp,ﬁ,n)Z + Kk (Zg:uﬁ,n)Q + 77 (ygu,n,n) (Zg:u,fi,n); (824>

— _ — +
ZE ki gzﬁw,mn + Ye purm:

Let us investigate the size and growth of the unstable manifold

W, (ng#ﬁ, G(&“,mo)). For this, we consider W"" (PJr G(W’,@o)) the strong

ISV
invariant manifold of P7, . and the following subsets of this

Wuu7+ <P§J’;/—L,I€7 G(§7ﬂ7570)> - Wuu (Pg‘uﬂi’ G(Ea#’ﬁ’0)> m {y Z ygu,l{}

and

7+ — bl
M/lgg,ﬁ,,u,ﬁ - Wuu +(P§+,u,/£7 G(fvuﬁvo)) N A
We write

uu,+ o .
I/Vloc,ﬁ,,u,n T {Pgu,n + @é,u,n(t) : yg:u,n S t S 4}7

where ¢, .(t) = (gplygwﬂ(t),902757,%&(15),@375%,{(15)) is the (unique) invariant
curve tangent to E"*(P, ) such that

(‘Oivgvﬂvﬁ(ygu,n) = 07 (Z = 17 27 3) a‘nd
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Consider the (family of) sequences of maps,

nen®) = oGl o (P + 9eu(®) ), 20,

Lemma 8.2.4 For every (¢, 1) € P and every 0 < t < § the sequence (ay,(t)),

is strictly increasing and satisfies Erf a,(t) = +00.
Proof. Let (¢, 1) € P. We claim that:

(i) For i =1,2 and every small ¢ > 0, it holds ;¢ ,(t) > 0; and
(ii) for every small ¢ > 0, it holds @a¢ . (t) = 24 P1.eu(t) + @reu(t)®.

Indeed, by definition of Wygey ,» We have that

(U +eren(®) yf +2en(t)) € {(:r, y)y=ptat, x>yl y> yj}- (8.2.5)

Thus, ¢t > 0 imply that ¢1(f) > 0 and ¢o(t) > 0. Moreover, recalling
p+ (yh)? =y in (5.1.2), we get

yb +0aent) = pn+ (yr + o1eu(t))’
= p+ W)+ 2y ereu(t) + ou(t) (8.2.6)
= y:[ + 29: Pren(t) + 901,5,#(75>2~

This completes the proof of our claim.

Note that aoe,(t) = y5 + @1.e,u(t). Is easy to see that

U ep(t) = 1+ ano1eu(t)’. (8.2.7)

Claim 8.2.5 For every ({,pu) € P and for every small t > 0, it holds
anf]-:&-nu'(t) < anvf:#(t)'

Proof. Let y,; be the root of y? — y + p different from y, . Then y <yt and
y? —y+pu>0 if andonlyif, y ¢ Y. Y]

We claim that for every (£, ) € P, every small ¢ > 0, and every n > 1
we have that an¢,.(t) > yZ,. To see why this is so note that age,,.(t) > yg, for
every small ¢ > 0. Thus, by (8.2.7)

o gu(t) = p+ O‘O,&MG)Q e (3/:)2 = ?/:
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Proceeding inductively we get that for every n > 1 and every small ¢ > 0, it

holds ay, ¢ ,,(t) > y;i. Therefore,

0 < g u(t)® = Qngn(t) + 1 = angren(t) — Qnenlt),

proving the claim. [ ]

Easily it follows that for every (&, ) € P and every small ¢ > 0, the
sequence (o, ¢ ,(t))n>1 is unbounded. This completes the proof of Lemma 8.2.4.
[

Remark 8.2.6 From Lemma &8.2.4 we have that

Wuu’—’—(Pg_u’ 5%00 U G (&,1,0,0) ( 122;;;)

n>1

and that
I, (W‘“"*(P&v G(&AMO,O))) = [y;r’ +00).

Lemma 8.2.4 also implies that the size of Gf; 0 (T/Vlour ) along to the

0C,&,
positive semi y-axis only depends on the y-coordinate of G u 0,0) (I/Vllcl,lcl gru> and
the size |H2( (6,1,0.0) (VVICC,g u))' is approximately |IIs (G” ulo 0) (I/Vlgggu)) 2.

We observe also that the endomorphism G 0,0y collapses the z-directions
(this direction is a eigenspace of DG ¢ 0,0y With eigenvalue equal to zero, see
Lemma 5.1.1).

Let

W £wG(€#00)) W nggu,OO))ﬂ{yZy:} (8.2.8)

and consider the projection

os(z,y,2) = (y, 2).

Claim 8.2.7 For every (&, ) € P it holds that

= G(g.u.00) ({yﬁ }x [y, +00) x R)-

In particular,

H23 (Wu’_‘—(Pg_w 6(5#7070))) = [y:, +OO) x R.
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Proof. Consider the plane £¢, parallel to the xz-plane through of Pgu:
Seu=Rx{(yF 28, +1): t R},

Then, the definition of G ¢ ,0,0) imply that

Glenoo (Len) = {(y,?y,f,zgu +t):te R}.

The claim now follows from Remark &8.2.6. [ |

8.2.2
Relative positions around of heterodimensional tangency.

We study the relative position of the blender-horseshoe associated to g

as well the positions of the invariant manifolds (after of the unfolding) around

of Y using the coordinates ®,,,, ,, : R? — Ug. Recall that
q)mk,nk (I7 y? Z) = \Ijmk,nk o @ o é(l’, % 2)7

where

Wi (2,9, 2) = (1 R S Y e T I z);

O, ,y,2) =55 ' (51,9, 55 2);

O(z,y, z) = (2,9, ).

We observe that when the heterodimensional tangencies of the cycle of
f € Nio(Ty) are of type elliptic, the condition ¢ < 0 (see Remark 7.0.3)
implies, that the blender-horseshoe Aj associated to gy is “encapsulated” by
the two-dimensional invariant manifolds of the saddles P and (. Thus, in this

case we seek an intersection as illustrated in Figure 8.1.

Wi .(Q, gr)

Figure 8.1: “Encapsulated” blender-horseshoes.
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Fix small § > 0 and consider the d-ball WE(Y) of ¥ = (1,0,1) in
VI/]?)C(Q? gk) given by

Wi (V) = {(1+2,0,142) fal, |2l < 6} < Vo

Thus

mg,Nk

Bt (Wi (V) = I x { = 0l op™™q} x I, (8.2.9)

where

L= [—‘Ql& og' Pmk7@5 og o Pm’“l, Lis = [—Méag’“apm’“,mg oo apE
1] St IS5 |<5]

Recall also the sequence of (global) diffecomorphisms Gy, : R? — R3

LX) = By © Ry (91) 0 B0 (X)X € R,

MmNk

converging to G'¢ 0,0y in the C"-topology on compact sets (see Remark 7.0.3).

We now construct the sequence of domains of blenders Ak c R3

mentioned in Section 8.2.1. For that consider the sequence a;, = i Note
that
lim a,=0, and lim af oy = +oo. (8.2.10)
k—4o00 k—+o00

Consider the sequence of domains Ay, in R3 given by

~

Ap = [—4,4] X [—4, 0y 0% op™] x [~40,22]. (8.2.11)
Recall that A = [—4,4] x [—40,22] C R3, see (8.1.2) Hence A C A, for

sufficiently large k. Let

Then, from Claim 8.2.7 we have that

) (Am) C W“(Pgw G (¢,1,0,0) ) (8.2.12)

Lemma 8.2.8 G .00 (Ak#) h ot (Wé( )) £ 0, for every large k > 1.

M Nk

Proof. Note that
Hl (G(gnu‘)“ 0 ( k P‘)) yy, 9 a’k O-Q UP k]y
I (G@,u,a o (A u)) = [y}, p+aq op™ op™™, (8.2.13)

IT5 (G(E H515,0) (Ak,yi )

(408 — 4, ap o op™].
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The properties of (ay), in (8.2.10) imply that for every big sufficient k£ > 1 it
holds

X )
ay, Jg" op™ < —| | 508“ op™*,

[S1
— Qo op”™ < p+aj, aé"’“ op?™mk, (8.2.14)
ar oy op™t < tz; og op™*
5

Bearing in mind (8.2.9), from (8.2.14) we get that for every k large enough it
holds

Clesnn (D) 1 L, (W3(Y)) #0.

This completes the proof of the lemma. [ |

Remark 8.2.9 The transverse intersection G'¢ 0,0 (Aku) h Pt (W;(f/))

Mp,Nk

is given by the following straight line segment:

Ly = {(yk, —G00° ap2m’“,§z+yk) HETIRES \/—ggag“ op?™ — pu, —40 < z < 22}.
Let ~ N
Ag =P, (Ar) C Ug. (8.2.15)
We now to check that the renormalised sequence R, , (gk”& is well defined

and satisfies lezk = Dy i © Ringni (95) © o

MmNk |Ak

Lemma 8.2.10 The renormalised sequence R, n, (gk)|zk is well defined.

Proof. We need to check that the following convergences hold:
A=Y, g (Ak) — X, gt (ﬁk) =Y, k— +oo.

Thus the retwrn map Ronn, (91)[5, = g > ™" 5 is well defined.

We will estimate the Landau symbols of
Ak - 377 gzk (Ak) - X, g;THNlJrnk (Ak> -Y,

as in Theorem 2. Recalling the definition of ®,,, ,, in (8.1.1), we have that
the coordinates (x, yx, zx) of the points in Ay —Y satisfy

—ng

zp =z, = 0(0g™ op™™) and y = O(ap o™

O'pimk).
Thus, Ar =Y as k — +oo.

Similarly, the coordinates (Z, Jx, Zx) of the points in g (Ak) — X satisfy
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therefore g"* (Ak) — X.
Finally, recalling the definitions of g,* and g;** in (8.0.10) we get that

the the coordinates of the points (Z, J, 2x) of gkm’“+N1+"’“ (Ak) — X satisfy

therefore g st +m (Ak) — X. This completes the proof of the lemma. W
Recalling the coordinates in the equation (5.3.37) we have that the

sequence of diffeomorphisms G}, : R® — R? is given by

Gk<x7 Y, Z) = ( - )‘gk )‘g)k T+ Y + h.O.ti(l‘, Y, Z)a

p— b1 NpF opt NS 0 G5+ y? +h.oti(z,y, 2),

mg \n — mi \n as — a
—a )\Pk )\Qk S5 <1 1x+y+gpk )\Qlc ( 3 5 2> Z+h,o.ti(x,y,z))
where

both (2,5, 2) = 5265 en N o2t 008 T (5) + 6265 o o1 H(K7),
h.o.t2(z, y, 2) i= G by NpE 0B™ 002" Hy(XL) + 6 08" 00> Hy(X]),

hoo.t (2,9, 2) = i tar Ap™ op* 0" Hy(x}) + o510t 0™ Hi(X),

and
XZ(SL',y, Z) =XE O ©o (:)(a:,y,z), )A(l:(xvyv Z) = )A(k 000 é(l’,y, Z)a

where x;, = xi(z,y,2) and X, = Xi(z,y, 2) are defined as in (5.3.28) and
(5.3.35), respectively.

Finally we estimate the C"-distance between G ¢ ,0,0) and Gy, in the set

o~

Ay
Lemma 8.2.11 limy || (Gie uo0) — G ) Iz, [l = 0.

Proof. By the estimates of G} above and the definition of é(g,u,o,o) we have
that

Gr(2,y,2) — Gepo0)(®,y,2) = ( —a ApF A" T+ h.o.t,lg(x, Y, 2),
_ bl )\gk O‘Pmk Agk O'an S5 T+ hOti(J?, Yy, Z),
—a ApF Q™ 56w+ <0pm’“ Ao (*“3;’2) — f) 2+

+h.o.t3(z,y, z))
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Recall that by equation (5.3.18)
o™ NG (H52) = €.

As the first and third coordinates of the points in the A, are bounded, we only
we need to study the convergence to zero of the higher order terms h.o.t};|£k,

for ©+ = 1,2, 3. This covergence is covered in the next claim.

Claim 8.2.12

(1) tim By (232, ,2) |5, = 0.
(3) lim 2™ B Hol (1,25, = .

Proof. We observe that the Landau symbols of the coordinates of the vector
xj(z,y,2)|3, are
O()\g’“), O(arop™), and O(/\g’“),
respectively. This imply that H; (x3 (2,9, 2))| z, 0.
Since Ap™* ap* oo™ — 0, as k — 400 (see (5.3.43)) it holds
AP 0Bt o™ H(x)|5, — 0.
In similar way, we observe that the Landau symbols of the coordinates of the

vector X (z,y,z)|3 are
O(Ap*), Of(ax), and O(ag),

respectively. Since limy Np* o7 52" = 0 (see (8.1.25)) the Taylor’s expansion
of Hj(-) (around of 0) and the conditions (7.0.6) implies that

op" o™ Hi(%3)|

5, 0 (i=1,23).

Thus, h.o.ti!zk,h.o.tﬂzk,h.o.tz\gk — 0 as k — +oo in the C"-topology. This
completes the claim. [ |
Thus we get that || (G(f,u,O,O) - Gk> |3k |l» = 0 completing the proof of the

lemma. [ |

Lemma 8.2.13 For each (&, ) € P consider the left reference saddle Pl;ré,u
associated to blender of Gy (the continuation of PgM). Then, for every k
large enough the unstable manifold W“(P,;z,#,GHKk) meets transversely to

Ol (W),

M,k
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Proof. From (8.2.12) and Lemma 8.2.8, for A;W C A it holds and

Gleno0)(Brp) C WP, Geponlz,)
and
Grepon (Biy) ML (WE(Y)) £0.

Lemma 8.2.11 implies that W*(P,, G(e o0z, ) and WH(PL . Gxlz ) are

C"-close. Therefore, for every k > 1 large enough we have that

W(Pe, Grlz,) M s, (Wi (V) #0.

mg,Ng

This ends the proof of the lemma. |

~<§m .
N
=
g(l)
o
Q
=
=
E——

Figure 8.2: Growth of the unstable manifolds of blender along of the uu-
direction.

8.3
Generation of non-dominated homoclinic classes

In this section we see that blender A;;,; and the saddle P of the
diffeomorphism g; ;¢ in (8.0.10) are homoclinically related. We prove also
that Q € H(P, ¢gijer) in a C"-robust way. In particular, this implies that
the set H(P, g; jx) does not admit any dominated splitting C"-robustly, see

Remark 3.2.3. Let us now to claim in precise form our statement. The next
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results do not depend on the subscript ¢, thus, by simplicity, the will be
omitted and we will write g, and Ayy in the places of g; j,, and A; ;.
Recall the sets P} and P} in (7.0.3) and (7.0.4) (associated to a inicial
diffeomorphism f in Njo(7;7)) and consider the continuations P7, and Py,
associated to the diffeomorphism gy;. Recall that our bifurcation setting

implies that for every big k it holds

Tee = Pry, h Wie(Q, ge) # 0. (8.3.1)

In the case in that the cycle of f has a heterodimensional tangency of type
elliptic or hyperbolic, then the intersection (8.3.1) consist of a closed curve or
two curves with boundary, respectively. More explicitly, for every large k£ and

up to a small C"-error, we have the following two possibilities for the curve

TngI

(1) 7o is a ellipse. This is the case when the heterodimensional tangency Y

is of elliptic type see Section 6.1.

(2) Tox consist of two curves with boundary. Here we distinguish two cases.

e Two symmetrical curves contained in a hyperbola whose center is
close to Y. This is the case in that YV is of hyperbolic type, see
Section 6.1.

e Two segments of parallel straight lines. This is the case in that Y

is a degenerated tangency.

Lemma 8.3.1 For every large { and k, the radial projection of the curves Ty

on Sg C W§(Q, gex) contains intervals.

Proof. Tt is clear that if 7, is a closed curve or consists of two segments
contained in a hyperbola, the radial projection of 7, contains intervals,
independently of the relative position of 7, around of Y. If Ty consists of
two segments of parallel straight lines, we observe that if the radial projection
of one of the segments is a point then the projection of the second segment is

a interval. This completes the proof of claim. [

Lemma 8.3.2 For every big £ and k, the homoclinic class H(P, go,) is non-

trivial.

Proof.
From Lemma 8.3.1 the set Pglj C WY(P, g,x) contains two-discs with
positive radial projection on Wy (Q, g x). Recall that the argument of non-

real eigenvalue of Dgy (@) is a irrational number (see Remark (8.0.6)) and
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recall the quasi-transverse heteroclinic orbit
Oy (Z7) T WP, gog) NW™HQ, gek),

in Remark 7.0.14. Lemma 7.0.8 implies that W*(P, gox) th Pj) # 0. This

completes the proof of the lemma. [

8.3.1
Heteroclinic relations implies Homoclinic relations

In this section, we use the heteroclinic connections in Propositions 8.1.1
and 8.2.1 to prove that the reference saddle ﬁéfk of blender A, and the saddle
P of g, are homoclinically related. In what follows we can assume that, after

an arbitrarily small C"-perturbation the following holds:

Theorem 8.3.3 For every k > 1 large enough, the saddles f’gfk and P of goy
are homoclinically related. Moreover, the saddle Q) belongs to the homoclinic
class H(P, gey) CT-robustly. In particular, H(P, gix) is not dominated in a

C"-robust way.

Note that the last assertion is an immediate consequence of Remark 3.2.3.
Proof. We need to check that for every large enough ¢ and k it holds that:

WP, gor) WP, ger) # 0, WP, gew) O WP, ge) # 0.

Claim 8.3.4 W"(P, go) N W*(P/,, ges) # 0.

Proof. Recall that from Proposition 8.1.1 the saddle @) activates the blender
Ay (Remark 8.1.5). Thus,

W™Q, ger) N Wio(Aek, ger) 7 0.

Let X,k € Ay such that W™Q, gex) N WE (Xek, gex) # 0. Thus, W™(Q, gex.)
and W*(X,, ger) meet along of a quasi-transverse orbit. The irrationality of
the argument of the contractive eigenvalue of Dgy (@) and Lemma 7.0.8 imply
that W*(Xyx, gr ) meet tranversely any two-disc S tranverse to We (Q, gox)
with positive radial projection. Then, Lemma 8.3.1 imply that W*(X,x, gex) M
P # 0. Consider N* € N such that g7 (Pp) M Wi (Xek, gex) # 0 and
consider P, € Ay a saddle homoclinically related to ﬁfk and sufficiently
close to Xy (recall that the set of saddles homoclinically related to ﬁfk is
dense in Agy,) so that g (Py) M We(Pry, ger) # 0. The A-lemma guarantees
that go (Pi) M W (P, gex) # 0. This completes the proof of claim. |
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Claim 8.3.5 W*(P, gpy) h Wu(ﬁz—f—kvgﬁ,k) # 0.

Proof. By Proposition 8.2.1, the two-dimensional manifold W“(ﬁgfk, ge ;) meet
transversely to W (Q, gox) in a curve C"-close to the straight line segment
Ly = D, n, (L) where Ly is as in Remark 8.2.9. Note that Ly, is parallel
to Xg-coordinate in Ug, see Remark 8.2.9. Therefore its radial projection in
Sb C WE(Q,gex) is a interval. Thus, every curve C'-close to L, project
a interval in S}Q. On the other hand, using the quasi-transverse heteroclinic
orbit Oy, (Z;) C W(P, gex) "WH(Q, gex) (see Remark 7.0.14) and applying
Lemma 7.0.8, we obtain a transverse intersection between W?*(Pg,)) and
W (P ges), proving the claim. |

This completes the first part of theorem. We now go to the second part of
theorem. To see that ) € H(P, g¢)) in C"-robust form, we consider the curve
For in WO(PE, ger) h WE(Q, gex) with positive radial projection obtained in
Proposition 8.2.1.

Lemma 8.3.6 For every large sufficient ¢ and k it holds T, C H(]Bgfk,g&k)

in C"-robust way.

Proof. Consider Xy in 7. We will see that given € > 0 it holds that
B(Xe g, €) "W (P, gor) h WP, geg) # 0.

Consider
Se 1= B(Xex, €) N WPy, ge)-

Note that S, is a two-disc transverse to WP (Q, grx) having positive radial

projection. Thus, arguing as Claim 8.3.5 we have that
Se h WS(]SZMQZ,k) # 0.

Thus, we get that

Teg C Wu(ﬁzrk’ ge,k) M WS(‘ﬁZ_]W ge,k) = H(ﬁz_ka ge,k)u

which proves the lemma. [ |

The proof of the Theorem 7.0.1 is now complete. |
Remark 8.3.7 The set I';;, given by

F&k = {ﬁgk, Q} U {ng(%&k) n e Z},

is a closed invariant subset of H (E’fk, gex) which is robustly non-dominated.
See Definition 3.2.1 and Remark 3.2.3.
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