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Introduction

This thesis is devoted to a number of extensions of a seminal result in the

theory of semi-linear elliptic equations, obtained by Ambrosetti and Prodi in

1972 ([1]).

In order to give proper context for this work, we need to return to the

“dawn”of the theory of nonlinear elliptic PDE, the late 1960’s and early 1970’s.

Consider the basic equation in a smooth bounded domain

−Lu = f(x, u) in Ω, u = 0 on ∂Ω, (1.1)

where L is a linear uniformly elliptic differential operator of order two, say

L = ∆ + λ, where λ is a parameter, with λ ∈ (−∞, λ2) (we shall denote with

λi the i-th eigenvalue of the Laplacian). A classical result is that if the equation

is linear, that is f = f(x) is independent of u, then the solvability of (1.1) is a

consequence of the Fredholm alternative, namely, if λ 6= λ1, problem (1.1) has

a solution for each f , while if λ = λ1 (resonance) it has solutions if, and only

if, f is orthogonal to φ1, the first eigenfunction of the Laplacian.

The first fundamental results on nonlinear equations were obtained by

that time by Krasnoselskii and Amann, among others, who showed that the

existence result in the non-resonant case extends to nonlinearities f(x, u) which

grow sub-linearly in u as u→ ±∞, thanks to Leray-Schauder degree and fixed

point theory, see [2].

Another fundamental result, obtained by Landesman and Lazer [3] (see

also [4]) in 1970, states that in the resonance case λ = λ1 the problem is

solvable provided f is bounded and its limits as u tends to plus or minus

infinity are functions whose scalar product with φ1 have opposite signs. Not

less importantly, it was observed that in this sublinear situation for values of

λ around λ1, more than one solution may exist, and this started the prolific

study of multiplicity of solutions of nonlinear elliptic equations.

Ambrosetti and Prodi obtained the first general existence and multiplicity

result for nonlinear equations which are not sublinear. Specifically, f has

different linear asymptotic behaviour, with respect to the line λ1u as u tends
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to plus or minus infinity. This result induced huge interest in nonlinear elliptic

PDE, and, together with the fundamental results on superlinear equations

which started to appear after 1974 in the works of Amann, Ambrosetti,

Crandall, Lions, Nirenberg, Rabinowitz, lead to the blossoming of this field

which we have witnessed in the last 40 years.

The Laplacian is the most important example of the two main classes

of elliptic operators — those in divergence form such as Lu = div(A(x)Du)

and in non-divergence form such as Lu = tr(A(x)D2u), where A is a bounded

uniformly positive matrix. Divergence form operators are typical for problems

of the calculus of variations, while non-divergence form operators model non-

homogeneous diffusions in biological, chemical or physical problems.

The theories of these operators have developed separately during the

years, with the former preceding the latter. In the last 20 years there has been

a lot of general effort of bringing the theory of non-divergence form elliptic PDE

to the level of divergence form equations. We observe that this effort has been

long hindered by the fact that Lu = tr(A(x)D2u) is not self-adjoint and by the

impossibility of representing the solutions of non-divergence form equations as

critical points of functionals on Banach spaces. Only in the 1990’s, after the

founding works of Krylov-Safonov, Caffarelli, Berestycki-Nirenberg, methods

based on the maximum principle for solving non-divergence form equations

appeared. Our thesis is part of this general effort and concentrates specifically

on the Ambrosetti-Prodi problem.

Let us now state precisely the result of Ambrosetti and Prodi. Consider

the Laplacian with Dirichlet boundary conditions defined on a bounded C2,α-

domain Ω ⊂ Rn. Define by λ1 < λ2 its two smallest eigenvalues.

Theorem 1.1 Let f ∈ C2(R) be such that f ′′ > 0, f ′(R) = (a, b) and

0 < a < λ1 < b < λ2. Then, there exists a closed connected C1-manifold

M of codimension 1 which splits the space C0,α(Ω) into three disjoint subsets,

C0,α(Ω) = S0 ∪M∪ S2, such that the equation

−∆u− f(u) = g ∈ C0,α(Ω) , u ∈ C2,α(Ω) ∩ C0(Ω)

has no solution if g ∈ S0, exactly one solution if g ∈ M, and exactly two

solutions if g ∈ S2.

In order to obtain that result Ambrosetti and Prodi used topological methods

to prove the following remarkable feature of the map F = −∆ − f :

C2,α(Ω) ∩ C0(Ω) → C0,α(Ω). It turns out that the domain of this operator

is also decomposed in disjoint components R0 ∪ C ∪R2 where C is the critical
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set of F and a closed connected C1-manifold of codimension 1, in such a way

that each one of R0 and R2 is taken by F diffeomorphically to S2, while

C is taken diffeomorphically (in the manifold sense) to M. Consequently,

Im(−∆ − f) = M∪ S2. Soon after, Manes and Micheletti [5] weakened the

Figure 1.1: The components R0 and R2 are taken diffeomorphically to S2.

hypothesis to just a < λ1, thus allowing a to be negative.

The use of topological methods (index theory) was furthered by Dancer

([6]), who obtained extensions of theorem 1.1, in particular for any self-adjoint

operator in divergence form defined on the Sobolev space H1, instead of the

Laplacian. Furthermore, Dancer described the sets R0, C, and R2 as containing

precisely the functions u such that the linearized operator DF (u) = −∆−f ′(u)

(here f ′(u) is the operator which multiplies functions of the domain of −∆ by

f ′(u)) has a first eigenvalue of constant sign.

Another approach to the Ambrosetti-Prodi problem was provided by De

Figueiredo and Solimini, [7], [8]. They make use of the variational structure of

the equation −∆u− f(u) = g, that is, of the possibility to represent the weak

Sobolev solutions of this equation as critical points of the associated energy

functional. Then the set R0 contains local minima of this functional, while the

set R2 contains points of higher Morse index, i.e., of mountain pass type.

Observe that the aforementioned topological and variational methods

give a description of the domain of the operator, but not of its range. In other

words, given a function g, it is not clear how to determine whether the equation

is solvable at g or how the solvability is affected by small variations of g.

A method for describing the counterdomain of F was first developed

by Berger and Podolak in [9]. They provided a description of the regions

R0, R2 and S0, S2. To that purpose they took advantage of the self-adjoint

structure of −∆ : H2(Ω) ∩ H1
0 (Ω) → L2(Ω), which makes spectral estimates

available by means of the Rayleigh quotient (quadratic forms), in order

to introduce a Lyapunov-Schmidt type reduction approach to the problem.
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Adding the technical hypothesis f ′′ ≤ M to the Ambrosetti-Prodi theorem,

define F : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) by F (u) = −∆u − f(u). Let φ1 > 0 be

a normalized (in L2(Ω)) eigenfunction of −∆ associated to λ1. Take g and

decompose it as the sum of a function orthogonal to φ1 and a multiple of

φ1: g = z + tφ1. One of the results of Berger and Podolak says that for each

z ∈ 〈φ1〉⊥ := {u ∈ L2(Ω) : 〈u, φ1〉 = 0}, there exists a unique tz ∈ R such that

the equation

F (u) = −∆u− f(u) = z + tφ1 , u ∈ H2(Ω) ∩H1
0 (Ω)

has exactly two solutions if t < tz, exactly one solution if t = tz and no solution

if t > tz. Another way of saying this is that they proved the Ambrosetti-Prodi

theorem for the Laplacian in divergence form. A review of both the Ambrosetti-

Prodi and Berger-Podolak results is provided in [10, pages 62-70].

Later on, in [11], Berger and Church weakened the hypothesis f ′′ > 0

to both f ′′ ≥ 0 and f ′′(0) > 0, and, above all, gave a novel geometric

description of the map F . They proved that there exist homeomorphisms

Ψ1 : L2(Ω)→ H2(Ω) ∩H1
0 (Ω), Ψ2 : L2(Ω)→ L2(Ω), such that

(Ψ2 ◦ F ◦Ψ1)(z + tφ1) = z − t2φ1.

Another way of saying this is to call F a topological fold (meaning that the

domain of F is folded by F along its critical set, just like p(x) = x2 folds R
into R+ over its critical point 0). If the homeomorphisms Ψ1 and Ψ2 are C1-

diffeomorphisms, then F is called a differentiable fold. We note that F need

not be differentiable to be a topological fold — it suffices that there exists

some set that behaves like the critical set of a differentiable fold, this is the

case of the extreme point 0 of the real function p(x) = |x|. These notions are

Banach space generalizations of results concerning singularities of maps of the

plane to the plane obtained by Whitney in 1955, in his classical paper [12].

The theorem below condenses the work of Berger, Podolak and Church.

Theorem 1.2 Let f ∈ C2(R) be convex such that f ′′(0) > 0 and f ′(R) = [a, b]

where a < λ1 < b < λ2. Then, F is a topological fold.

We now provide the context of our results. Let Ω be a bounded Lipschitz

domain and L be a second order uniformly elliptic operator in non-divergence

form defined on Ω,

L := aij∂i∂j + bi∂i + c,
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with coefficients satisfying the following assumptions: for some λ > 0,

aij = aji ∈ C(Ω) , bi , c ∈ L∞(Ω) , aij(x)ξiξj ≥ λ|ξ|2 , ξ ∈ Rn.

Let X := W 2,n(Ω) ∩ C0(Ω), Y := Ln(Ω) and define the operator L : X → Y .

Now, define the map F : X → Y such that F (u) = −Lu− f(u).

According to Berestycki, Nirenberg and Varadhan [13], the operator L has

a simple eigenvalue λ1 = λ1(L,Ω) with positive eigenfunction φ1 = φ1(L,Ω),

Lφ1 = −λ1 φ1 , Ker(L+ λ1I) = 〈φ1〉 .

Also, for any other eigenvalue λi, we have that λ1 < Re(λi).

Theorem 1.3 (section 4.3) Fix a < λ1. There exists some B(L,Ω, a) > λ1

such that for all f ∈ C2(R) satisfying f ′(R) = [a, b] and

lim
s→−∞

f ′(s) = a ≤ f ′ ≤ lim
s→+∞

f ′(s) = b ≤ B(L,Ω, a),

there exists C1 diffeomorphisms Ψ1 : Y → X ,Ψ2 : Y → Y such that, for all

z ∈ 〈φ∗1〉⊥

(Ψ2 ◦ F ◦Ψ1)(z + tφ1) = z − t2φ1

(F is a differentiable fold) if, and only if, f ′′ ≥ 0 and either f ′′(0) > 0 or both

f ′′(0) = 0 and f ′(0) 6= λ1.

The necessary conditions in the last theorem are new even for L = ∆.

Some difficulties related to the new setting are the following. The operator

L is not self-adjoint, so that spectral estimates involving the quadratic form are

lost, such as the possibility of relating spectrum and norms of functions of the

operator. The operator might not even have a second smallest eigenvalue, that

is, it is not clear what an explicit upper bound for b as in the Ambrosetti-Prodi

theorem could be.

In addition, we are interested in nonlinearities f which are Lipschitz and

not necessarily differentiable — local extrema are handled without differentia-

tion. In theorem 5.1 of chapter 5, we obtain an extension of theorem 1.2, to the

case where L is an elliptic operator in non-divergence form as above and f is

both Lipschitz and convex. In section 5.2, we introduce appropriate functions

f , which satisfy conditions generalizing those in the differentiable case (i.e. the

necessary and sufficient condition in theorem 1.3).
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Theorem 1.4 Given a < λ1, there exists some B(L,Ω, a) > λ1 such that, if

f is convex, appropriate and λ1 < b ≤ B(L,Ω, a) then, F is a topological fold.

An example of an appropriate nonlinearity is the usual piecewise linear

f(x) = ax (bx) for x ≤ 0 (x > 0) where a < λ1 < b ≤ B(L,Ω, a). We

prove this theorem by approximating F = −L − f by a sequence of maps

{Fk = −L − fk}k∈N for convenient smooth fk. The argument uses additional

ingredients from [13] as well as the uniform Lipschitz bounds in theorem 1.5

depending only on a, L and Ω.

We explain in more detail the approach of Berger and Podolak ([9])

with the geometric vocabulary used in [14]. They obtained a diffeomorphism

Φ : L2(Ω) → H2(Ω) ∩ H1
0 (Ω) which may be used as a change of variables as

indicated in figure 1.2. Vertical lines {z+ tφ1 : t ∈ R}, for z ∈ 〈φ1〉⊥, are taken

to fibers {Φ(z + tφ1) : t ∈ R}, which in turn are taken by F to vertical lines

{z + h(z, t)φ1 : t ∈ R} ⊂ L2(Ω), for the height h(z, t) = 〈F (Φ(z + tφ1)), φ1〉
— formally, for all z ∈ 〈φ1〉⊥ and t ∈ R, there exists some real number h(z, t)

such that F (Φ(z + tφ1)) = z + h(z, t)φ1.

The change of variables Φ provides a global Lyapunov-Schmidt reduction

for F : it trivializes F on a subspace of codimension 1, turning the problem of

finding solutions for F (u) = g into a scalar problem, the so called bifurcation

equation, as done below. Let P be the orthogonal projection of Y onto 〈φ1〉⊥.

For some fixed g = z+ 〈g, φ1〉φ1, we want to solve the system below for u ∈ Y :{
P F (Φ(u)) = z

(I − P )F (Φ(u)) = 〈g, φ1〉φ1.

Note that the problem above is essentially one dimensional. The vertical

line through g = z+〈g, φ1〉φ1 has its pre-images in the vertical line ` = {z+tφ1 :

t ∈ R}, that is, if a solution u ∈ Y exists, it must be in `. Now, we walk along `

and check how many times we encounter t’s such that h(z, t) = 〈g, φ1〉. Indeed,

to prove the Ambrosetti-Prodi theorem, Berger and Podolak simply showed

that, for all z ∈ 〈φ1〉⊥

1. lim
|t|→∞

h(z, t) = −∞,

2. the real function t 7→ h(z, t) is C1 and has a unique critical point.

The geometry of the Lyapunov-Schmidt reduction invites to consider

more general scenarios. Thus, for example, the Laplacian may be replaced by

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Chapter 1. Introduction 15

Figure 1.2: The point z + tcφ1 is a critical point of F ◦ Φ.

Schrödinger operators in bounded and unbounded domains, so as to include the

hydrogen atom and the quantum harmonic oscillator, together with integral

operators in bounded domains with positive kernel. These generalizations were

considered, among other results, in our works [15], [16]. The increased flexibility

gained through the methods introduced in these papers led us to consider non

self-adjoint problems, such as uniformly elliptic operators in non-divergence

form, in the spirit of this thesis.

The reduction also allows for robust numerical analysis for standard

Ambrosetti-Prodi equations ([17], [18], [19]). From our results, mainly theorem

1.5, the expansion of numerical techniques towards non self-adjoint problems

is natural, although we do not treat the issue here.

In the self-adjoint scenario, eigenvalue estimates are used in the construc-

tion of a global Lyapunov-Schmidt reduction (all the above quoted works con-

cern equations in divergence form). In the non-divergence setting these meth-

ods cannot be used, nor a Hilbert structure is available. To circumvent these

difficulties, topological (index) methods have been applied to non-divergence

form equations, see [20], [21], [22], with the drawback that no exact count of

solutions is obtained and, of course, no description of the counterdomain (i.e.

solvability of the equation for a given g) is possible.

In this thesis we obtain the global Lyapunov-Schmidt reduction for

equations in non-divergence form, by using the maximum principle and its
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consequences, together with elliptic regularity. This seems to be the first time

an exact multiplicity result appears for a semilinear elliptic equation driven by

an operator in a general non-divergence form. Along the way we establish a

number of results which are also new for equations in divergence form.

We now present the Lyapunov-Schmidt reduction obtained in the non

self-adjoint case, along with an overview of the proofs of our theorems.

By standard functional analysis, L has a dual operator L∗ : Y ∗ → X∗

with Ker(L∗ + λ1I) being one dimensional and Y ∗ = L
n
n−1 (Ω). As proved by

Birindelli in [23], L∗ has an everywhere positive eigenfunction φ∗1 = φ1(L∗,Ω)

associated to λ1 (in particular, 〈φ1, φ
∗
1〉 6= 0).

Decompose Y into a direct sum of horizontal and inclined complementary

subspaces 〈φ∗1〉⊥ ⊕ 〈φ1〉 = Y . Although in that scenario we lack a precise

meaning for orthogonality, we refer to the subspace 〈φ1〉 as the vertical

subspace. In the Berger-Podolak spirit, we obtain a global Lyapunov-Schmidt

reduction for F . Note that, by the hypotheses below, f is just Lipschitz.

Theorem 1.5 (section 2.1) Given F : X → Y as above and a < λ1, there

exists B := B(L,Ω, a) > λ1 such that, if

a ≤ f(x)− f(y)

x− y
≤ B , x 6= y,

then there exists a Lipschitz homeomorphism Φ : Y → X with Lipschitz inverse

such that, for all z ∈ 〈φ∗1〉⊥, we have (F (Φ(z + tφ1)) = z + h(z, t)φ1 where

h(z, t) :=
〈F (Φ(z + tφ1)), φ∗1〉

〈φ1, φ∗1〉
.

Thus, each fiber, i.e., the pre-image of each vertical line {z + tφ1 : t ∈ R}
(z ∈ 〈φ∗1〉⊥) by F , is parametrized as the graph of the Lipschitz function

t 7→ Φ(z + tφ1). Also, F (Φ(z + tφ1)) ∈ Y has height h(z, t).

The proof of theorem 1.5 is based on theorem 2.6 (chapter 2), which is

fundamental to our work. Its proof uses elliptic estimates and a result contained

in [13] which provides lower bounds for the increase of the eigenvalue λ1 when

restricting L to strict subdomains Ω′ ⊂ Ω in terms of the measure of the

difference Ω \ Ω′. The positivity of φ∗1 is also essential to our arguments. We

point out that the constant B(L,Ω, a) is actually quantified while we only

prove the existence of the Lipschitz constant of Φ.
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As far as we know, similar Lipschitz estimates appeared first in a

paper by Podolak ([24]). She describes some interesting ideas on how to

construct a Lyapunov-Schmidt reduction in a geometric setting including both

the self-adjoint and non self-adjoint cases. However, in the case of interest,

her techniques would require the somewhat unnatural hypothesis that the

difference b − a be very small. The special case of theorem 1.5 for general

self-adjoint operators T perturbed by a Lipschitz nonlinearity with constant `

for which [−`, `] ∩ σ(T ) is finite is treated in our works [15] and [16].

Now that fibers and heights are available, we extend the construction by

Berger and Podolak to equations in non-divergence form. As before, to get the

representation of F as a differentiable fold (theorem 1.3), we walk along a fiber

and use the following result.

Proposition 1.6 (section 4.1) Fix a < λ1. There exists some B(L,Ω, a) >

λ1 such that, if f ∈ C2(R), f ′′ ≥ 0, f ′(R) = [a, b] with λ1 < b ≤ B(L,Ω, a) and

either f ′′(0) > 0 or both f ′′(0) = 0 and f ′(0) 6= λ1. Then, the homeomorphism

Φ of theorem 1.5 is actually a C2-diffeomorphism such that, for all z ∈ 〈φ∗1〉⊥,

1. lim
|t|→∞

h(z, t) = −∞,

2.
∂h

∂t
(z, t0) = 0 =⇒ ∂2h

∂t2
(z, t0) < 0,

The techniques employed to prove item 1 include, in particular, an use

of the Lipschitz estimates on Φ in order to prove that Φ(z + tφ1)/t converges

to φ1 as |t| → ∞. Regarding item 2, we give two proofs, both of which use

proposition 3.5, which states that, if 0 is an eigenvalue of DF (u) = −L−f ′(u),

then it is its smallest eigenvalue. One of them provides a precise formula for

the second derivative of t 7→ h(z, t). The other one involves the differentiability

of the principal eigenfunction λ1(u) of the Jacobian of F at u ∈ X given by

DF (u)v = −Lv − f ′(u)v, v ∈ X. This last proof provides the basis to obtain

new criteria for classifying critical points of the height function t 7→ h(z, t) —

we show that, if F is Ck for k ≥ 1 then there exists a positive Ck−1 function

p : 〈φ∗1〉⊥ × R→ R satisfying

∂h

∂t
(z, t) = p(z, t)λ1(Φ(z + tφ1)).

That result was first stated for the self-adjoint scenario in [16] and its proof is

to be given in [15], both our works.
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In particular, the derivative of h along a vertical line has the same sign

as the first eigenvalue of the linearized operator along the corresponding fiber.

As a corollary, Dancer’s characterization for the domain of −∆− f is valid for

our F = −L− f . We use this fact and the validity of the maximum principle

relative to the sign of the principal eigenvalue to prove that, if f ′′(0) > 0, then

t 7→ h(z, t) is concave to the left of its critical point. This result is the content

of proposition 4.8. To our knowledge, this was also unknown for L = ∆.

Finally, we state more precisely the result which proves the necessity of

the convexity assumption in theorem 1.3.

Theorem 1.7 (section 4.2) Take a < λ1 < b ≤ B(L,Ω, a). Suppose that

f ∈ C2(R), f ′(R) = [a, b] and lim
s→−∞

f ′(s) = a ≤ f ′ ≤ lim
s→+∞

f ′(s) = b. If there

exists some r ∈ R such that f ′′(r) < 0, then there exists some g ∈ Y such that

F (u) = g has at least four solutions in X.

This result was stated by us for the self-adjoint case in [16] — its proof is due

to appear in [15]. There, B(L,Ω, a) is any number in (λ1, λ2). This theorem

answers a long standing open problem proposed by Dancer in [6]: the necessity

of convexity to the validity of the Ambrosetti-Prodi theorem.

This thesis contains six chapters including this introduction, and three

appendices.
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