
2

Lipschitz nonlinearities

In this chapter, we always suppose that f : R→ R satisfies

a ≤ f(x)− f(y)

x− y
≤ b , for x 6= y and a < λ1. (2.1)

In section 2.1, we obtain the homeomorphism Φ : Y → X mentioned in

theorem 1.5. In section 2.2 we impose an extra condition on f and we obtain

results about the behaviour at infinity of the map t 7→ Φ(z + tφ1) for fixed

z ∈ HY . In section 2.3 we obtain some results concerning the count of solutions

of the equation F (u) = g for u ∈ X and g ∈ Y . Afterwards, in section 2.4 we

obtain a characterization of properness for F which depends on the behaviour

of the image of fibers at infinity. Lastly, in section 2.5, we provide the proof of

a coercive property of the homeomorphism Φ used in the previous sections.

2.1

Lyapunov-Schmidt reduction

Take an elliptic operator L : X → Y .

Definition 2.1 Let L be elliptic. Define λ1(L,Ω) by

inf
{
λ ∈ R : ∃φ ∈ W 2,n

loc (Ω) such that


(L+ λ)φ ≥ 0 , Ω

φ ≤ 0 , ∂Ω

∃x0 ∈ Ω : φ(x0) > 0

}
.

Theorem 2.2 ([13]) Let L : X → Y be an elliptic operator. Then, λ1(L,Ω)

is an isolated eigenvalue of −L with smallest real part in σ(−L). Also,

Ker(−L− λ1(L,Ω)I) is unidimensional (λ1(L,Ω) is simple) and is generated

by a positive function φ1(L,Ω).

Theorem 2.3 ([23, proposition 1.1]) If L : X → Y is an elliptic operator,

then the operator L∗ : Y ∗ → X∗ has a simple isolated eigenvalue λ1(L∗,Ω) =
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Chapter 2. Lipschitz nonlinearities 20

λ1(L,Ω) with smallest real part in σ(−L∗) to which one can associate a strictly

positive eigenfunction φ1(L∗,Ω) ∈ Y ∗.

For brevity, let λ1 := λ1(L,Ω), φ1 := φ1(L,Ω) > 0, φ∗1 := φ1(L∗,Ω) > 0.

Decompose X and Y in direct sums. Define HY = 〈φ∗1〉⊥ and VY = 〈φ1〉.
As φ1 > 0, HY ∩ VY = {0}. Also, define VX = VY ∩ X and HX = HY ∩ X.

Then,

X = HX ⊕ VX , Y = HY ⊕ VY .

Our main goal in this section is to prove the following theorem.

Theorem 2.4 There exists B = B(L,Ω, a) > λ1 such that, if b ≤ B then,

there exists a Lipschitz homeomorphism with Lipschitz inverse

Φ : HY ⊕ VY = Y → HX ⊕ VX = X

such that, for every z ∈ HY and t ∈ R, (F ◦Φ)(z+tφ1) ∈ {z+sφ1 : s ∈ R} ⊂ Y .

In other words, for

h(z, t) :=
〈(F ◦ Φ)(z, t), φ∗1〉

〈φ1, φ∗1〉
,

we have (F ◦ Φ)(z + tφ1) = z + h(z, t)φ1.

Figure 2.1: The function F ◦ Φ trivializes the first coordinate.

Without loss, we can suppose that L is an isomorphism, i.e. its first

eigenvalue is positive (see [13]). We can, for instance, translate both L and f

by aI : X → Y as follows:

−Lu− f(u) = −(L+ aI)u− (f(u)− au) = −(L+ a)u− (f − a)(u).
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Chapter 2. Lipschitz nonlinearities 21

The Fredholm alternative and the fact that λ1 is a simple eigenvalue of

L give that u ∈ X is a solution of Lu + λ1u = f if, and only if, 〈φ∗1, f〉 = 0.

As L : X → Y is an isomorphism, the aforementioned Fredholm alternative

assures that L : HX → HY is a well defined isomorphism.

In the following arguments, the letters w and z will be reserved, respec-

tively, for members of the horizontal spaces HX , HY . Consider the projection

P : HY ⊕ VY = Y → HY ⊕ VY , z + v 7→ z.

Given g = Pg + (I − P )g = zg + tgφ1 ∈ HY ⊕ VY , we want to solve the two

equations and two variables nonlinear system{
PF (w + tφ1) = zg

(I − P )F (w + tφ1) = tgφ1

for the unknowns w ∈ HX , t ∈ R. (2.2)

The system above motivates us to define, for Ft(w) = F (w + tφ1), a

family of maps {PFt}t∈R

PFt : HX → HY , w 7→ PFt(w) = −Lw − Pf(w + tφ1),

and to prove the following, where a and b are as in equation (2.1),

Proposition 2.5 Given a < λ1, there exists B = B(L,Ω, a) > λ1 such that,

if b ≤ B, the mappings PFt are Lipschitz homeomorphisms with Lipschitz

inverses such that the Lipschitz constants of both PFt and (PFt)
−1 are inde-

pendent of t.

A consequence of this result is that, given g = zg + tgφ1 ∈ HY ⊕ VY , for

all t ∈ R, there exists some w(zg, t) such that PF (w(zg, t)+ tφ1) = zg. In other

words, we can always solve the first equation of system (2.2), on w ∈ HX ,

for every fixed t and zg. Each zg has exactly one pre-image in each horizontal

affine subspace tφ1 +HX of X.

We use proposition 2.5 to define the map Φ

Φ : HY ⊕ VY → HX ⊕ VX , z + tφ1 7→ (PFt)
−1(z) + tφ1.

Note that Φ moves a point at height t to a point at the same height t. Turning

back to system (2.2), we observe that, for all z ∈ HY and t ∈ R,

PF (Φ(z + tφ1)) = PF ((PFt)
−1(z) + tφ1) = PFt(PF

−1
t (z)) = z.
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Chapter 2. Lipschitz nonlinearities 22

As a consequence,

F (Φ(z + tφ1)) = PF (Φ(z + tφ1)) + (I − P )(F (Φ(z + tφ1))

= z + (I − P )(F (Φ(z + tφ1)) ∈ HY ⊕ VY . (2.3)

Our goal now is to prove proposition 2.5 and theorem 2.4. The following

theorem 2.6, which is proved at the end of this chapter (section 2.5), plays a

central role in our arguments. It is a consequence of the maximum principle

and results contained in [13] concerning the existence of lower bounds for the

difference λ1(L,Ω′) − λ1(L,Ω), where Ω′ ⊂ Ω is a strict subset, in terms of

the measure of the set Ω \Ω′. Also, we use results on the stability of viscosity

subsolutions and supersolutions under suitable hypotheses as in [25].

Theorem 2.6 For all a < λ1, there exist B = B(L,Ω, a) > λ1 and C =

C(L,Ω, a) > 0 such that, for all f ∈ C(R) satisfying

a ≤ f(x)− f(y)

x− y
≤ b ≤ B , x 6= y,

we have that, for every t, t̃ ∈ R and w, w̃ ∈ HX ,

‖PFt(w) + tφ1 − PFt̃(w̃)− t̃φ1‖Y ≥ C‖w − w̃‖X .

This theorem is used not only to prove that PFt and Φ are invertible, but also

to obtain Lipschitz bounds for their inverses.

Now, we use theorem 2.6 to prove proposition 2.5 and theorem 2.4.

Proof: (proposition 2.5) We begin by proving the lemma below, which deals

with the case where F is C1.

Lemma 2.7 The maps PFt : HX → HY have closed image and are injective.

Also, if f is C1, then the mappings PFt are Lipschitz diffeomorphisms with

Lipschitz inverse. Moreover, the constants of Lispchitz can be taken to be the

same for every t ∈ R.

Proof: For fixed t ∈ R, from theorem 2.6, we have that

‖PFt(w)− PFt(w̃)‖Y ≥ C‖w − w̃‖X ,

so that PFt is injective and has closed image.
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Chapter 2. Lipschitz nonlinearities 23

Now, suppose that f is C1. Note that PFt : HX → HY is C1 — as a

consequence of proposition 6.1, the Jacobian of PFt at a point w ∈ HX is given

by

D(PFt)(w) : HX → HY , v 7→ −Lv − P
(
f ′(w + tφ1)v

)
.

We use theorem 2.6 to prove that it has invertible derivative at every point

w ∈ HX . Note that v 7→ P
(
f ′(w+ tφ1)v

)
is a compact map since P : Y → HY

is continuous and HX is compactly embbeded in HY . Also, L : HX → HY is an

isomorphism, so that D(PFt)(w) is the sum of the bijective map L with the

compact map Pf ′(w + tφ1), hence, Fredholm of index zero. As it is injective

(theorem 2.6), it follows that it is also surjective, thus it is an isomorphism.

(There is another Fredholm index argument which does not depend on the

compact inclusion mentioned above, it can be found in [17]).

From the inverse function theorem, PFt is a local diffeomorphism, so that

its image is open. As its image is open and closed (theorem 2.6), it equals HY ,

so that PFt is surjective and, hence, bijective. Again, by theorem 2.6, we have

that its inverse is Lipschitz with the same constant for every t ∈ R, as we

wanted.

�

The main difficulty to extend the result to the case where f is only

Lipschitz is to prove that PFt is surjective. In the previous argument, we

used the fact that the image of PFt is open, by means of the inverse function

theorem, which is not readily available for Lipschitz maps.

We prove surjectivity for PFt in the Lipschitz case by showing that it is

the uniform limit of surjective functions and by using the fact that its image is

closed. We use the next lemma 2.8 to aproximate PFt uniformly by a sequence

of C1 surjective functions

PFk,t : HX → HY , w 7→ PFk(w + tφ1),

where Fk(u) = −Lu− fk(u), with fk ∈ C1(R) obtained in the lemma below.

Lemma 2.8 If f : R→ R is such that

a ≤ f(x)− f(y)

x− y
≤ b ≤ B , x 6= y,

then there exists a sequence {fk} ∈ C1(R) such that fk → f uniformly and

a ≤ fk(x)− fk(y)

x− y
≤ b , x 6= y.
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Also, the sequence {Fk : X → Y , u 7→ −Lu− fk(u)}k converges uniformly to

F .

Proof: By propositon A.1, there exists a sequence of C∞ real function {fk}
which satisfies

a ≤ fk(x)− fk(y)

x− y
≤ b ≤ B , x 6= y.

and fk → f uniformly.

Now we prove that Fk → F uniformly. Fix ε > 0. Take N big enough so

that, for all k ≥ N and s ∈ R we have |fk(s) − f(s)| < ε/|Ω| 1n . In particular,

for all u ∈ X and x ∈ Ω we have that |fk(u(x))− f(u(x))| < ε/|Ω| 1n . It follows

that, for all u ∈ X and k ≥ N we have

‖Fk(u)− F (u)‖Y = ‖fk(u)− f(u)‖Y <
ε

|Ω| 1n
|Ω|

1
n = ε.

�

Since PFk,t(w) = PFk(w + tφ1), which is the result of a translation in

the domain of F and the composition with a linear map, Fk → F uniformly

implies that PFk,t → PFt uniformly.

By proposition 6.1, PFk,t is C1 for all k ∈ N. Then, lemma 2.7 implies

that PFk,t are diffeomorphisms for every k ∈ N, t ∈ R and, hence, surjective.

Now, fix t ∈ R. We prove that, for every z ∈ HY , there exists w ∈ HX

such that PFt(w) = z, that is, that PFt is surjective. Because PFk,t are

surjective and PFk,t → PFt uniformly, there exists a sequence {wk}k ∈ HX

such that PFk,t(wk) = z and

‖PFk,t(wk)− PFt(wk)‖Y = ‖z − PFt(wk)‖Y → 0.

As the image of PFt is closed, z ∈ Ran(PFt).

Use theorem 2.6 to check that (PFt)
−1 : HY → HX is Lipschitz for every

t ∈ R with the same Lipschitz constant.

We proceed to the proof of theorem 2.4.

Proof: (theorem 2.4) Recall the definition of Φ : HY ⊕ VY = Y → X,

Φ(z + tφ1) = (PFt)
−1(z) + tφ1 ∈ HX ⊕ VX .
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First we prove that Φ is injective. Take, in HY ⊕VY , z+ tφ1 6= z̃+ t̃φ1. If

t 6= t̃, clearly Φ(z+ tφ1) 6= Φ(z̃+ t̃φ1). If t = t̃, then z 6= z̃. As PFt is bijective,

(PFt)
−1(z) 6= (PFt)

−1(z̃) so that Φ(z + tφ1) 6= Φ(z̃ + tφ1).

To see that Φ is surjective, take w+ tφ1 ∈ HX ⊕ VX . For such t, as PFt :

HX → HY is bijective, there exists some z ∈ HY such that w = (PFt)
−1(z).

Then, for such z, we have Φ(z + tφ1) = (PFt)
−1(z) + tφ1 = w + tφ1.

It follows that Φ is invertible and

Φ−1 : X = HX ⊕ VX → Y = HY ⊕ VY , w + tφ1 7→ PFt(w) + tφ1

is well defined and Lipschitz, since PFt : HX → HY is uniformly Lipschitz on

t ∈ R from proposition 2.5.

We prove that Φ is Lipschitz. Fix t, t̃ ∈ R and z, z̃ ∈ HY . Consider

(PFt)
−1(z) = w and (PFt̃)

−1(z̃) = w̃. Substituting in theorem 2.6 we obtain

‖z + tφ1 − z̃ − t̃φ1‖Y ≥ C‖(PFt)−1(z)− (PFt)
−1(z̃)‖X .

As a consequence

‖Φ(z + tφ1)− Φ(z̃ + t̃φ1)‖X ≤ ‖(PFt)−1(z)− (PFt̃)
−1(z̃)‖X + ‖(t− t̃)φ1‖X

≤ 1

C
‖z − z̃ + (t− t̃)φ1‖Y +

‖φ1‖X
‖φ1‖Y

‖(t− t̃)φ1‖Y

≤

(
1

C
+ 1 +

‖φ1‖X
‖φ1‖Y

)
(‖z − z̃‖Y + ‖(t− t̃)φ1‖Y )

By an application of the closed graph theorem, for z + tφ1 ∈ HY ⊕ VY , the

norm given by ‖z + tφ1‖Γ(Y ) := ‖z‖Y + ‖tφ1‖Y is equivalent to the norm of Y ,

so that Φ is Lipschitz.

Now we verify that (F ◦ Φ)(z + tφ1) = z + h(z, t)φ1 where h(z, t) is

defined by the multiple of φ1 such that (I − P )(F ◦ Φ)(z + tφ1) = h(z, t)φ1.

From equation (2.3),

(F ◦ Φ)(z + tφ1) = z + (I − P )(F ◦ Φ)(z + tφ1) ∈ HY ⊕ VY

That is, (F ◦Φ)(z+tφ1) = z+h(z, t)φ1. Recalling that HY ⊥ 〈φ∗1〉 and z ∈ HY ,

apply the functional φ∗1 to both sides of the equation above to obtain

h(z, t) =
〈(F ◦ Φ)(z + tφ1), φ∗1〉

〈φ1, φ∗1〉
. (2.4)
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Define w(z, t) := (PFt)
−1(z) ∈ HX and

u(z, t) := w(z, t) + tφ1 = Φ(z + tφ1).

Applying the new notation to equation (2.3), we have

F (u(z, t)) = −Lu(z, t)− f(u(z, t)) = z + h(z, t)φ1. (2.5)

Now we obtain a formula for h(z, t) by expanding the one in (2.4)

h(z, t) =
〈F (u(z, t)), φ∗1〉
〈φ1, φ∗1〉

=
〈−Lw(z, t)− tLφ1, φ

∗
1〉

〈φ1, φ∗1〉
− 〈f(u(z, t)), φ∗1〉

〈φ1, φ∗1〉

= λ1t−
〈f(u(z, t)), φ∗1〉
〈φ1, φ∗1〉

= λ1t−
∫

Ω
f(u(z, t))φ∗1∫

Ω
φ1φ∗1

. (2.6)

Definition 2.9 (fiber) For fixed z ∈ HY , the fiber related to z is the function

uz : R→ X , t 7→ uz(t) = wz(t) + tφ1 := u(z, t),

where wz(t) := w(z, t) = (PFt)
−1(z).

Definition 2.10 (height) For fixed z ∈ HY , the height related to z is the

function

hz : R→ R , t 7→ hz(t) := h(z, t).

The propositions below are immediate consequences of theorem 2.4 and

the definition of fibers and heights.

Proposition 2.11 For every z ∈ HY , the map t 7→ uz(t) = u(z, t) =

Φ(z + tφ1) is Lipschitz with Lipschitz constant independent of z.

Proposition 2.12 For each z ∈ HY , the set {uz(t) : t ∈ R} ⊂ X is the pre-

image of {z+ tφ1 : t ∈ R} ⊂ Y by F . Moreover, F (uz(t)) = z+hz(t)φ1, where

hz(t) is Lipschitz on both z and t.

Turning back to the system of equations (2.2), note that, given g =

zg + tgφ1 ∈ HY ⊕ VY , to solve F (w + tφ1) = g = zg + tgφ1 for w ∈ HX and

t ∈ R, take the fiber t 7→ uzg(t) and observe that{
PF (uzg(t)) = PFt(wzg(t)) = zg

(I − P )F (uzg(t)) = hzg(t)φ1
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so that the equation F (u) = g has as many solutions as the equation

hzg(t) = tg, for t ∈ R.

2.2

Behaviour of fibers at infinity

Now we discuss the behaviour of a fiber at infinity supposing that

a ≤ f(x)− f(y)

x− y
≤ b ≤ B , x 6= y (2.7)

a ≤ lim
s→−∞

f(s)

s
= ã ≤ lim

s→+∞

f(s)

s
= b̃ ≤ b. (2.8)

The lemma below proves that uz(t) = o(t) + tφ1, that is, wz(t) = o(t).

Lemma 2.13 For every z ∈ HY we have lim
|t|→∞

‖wz(t)/t‖X = 0, that is,

lim
|t|→∞

∥∥uz(t)
t
− φ1

∥∥
X

= 0.

Proof: Fix z ∈ HY . By theorem 2.6, for some C > 0,

∥∥z
t
− PFt(0)

t

∥∥
Y

=
1

|t|
‖PFt(wz(t))− PFt(0)‖Y ≥ C

∥∥wz(t)
t

∥∥
X
,

so that we need to prove that the left hand side converges to 0. It suffices to

prove that ‖PFt(0)/t‖Y → 0 as t → ±∞. We use the dominated convergence

theorem to prove this.

Note that PFt(0) = −Pf(tφ1). Suppose that t → +∞. Then, for every

x ∈ Ω, we have f(tφ1(x))/t→ b̃φ1(x). Moreover, for t ≥ 1,

∣∣f(tφ1(x))

t

∣∣ ≤ ∣∣f(tφ1(x))− f(0)

t

∣∣+
∣∣f(0)

t

∣∣ ≤ max{|a|, |b|}φ1(x) + |f(0)|

with the right hand side belonging to Y = Ln(Ω), so that the dominated

convergence theorem assures that f(tφ1)/t → b̃φ1 in Y . Finally, PFt(0)/t =

−Pf(tφ1)/t→ −b̃Pφ1 = 0.

The case t→ −∞ is proved similarly using lim
s→−∞

f(s)/s = ã.
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2.3

Behaviour of heights at infinity

We have already seen in proposition 2.12 that, for a fiber uz(t) we have

F (uz(t)) = z + hz(t)φ1.

Suppose, again, that conditions (2.7) and (2.8) are valid. We claim that,

under these hypotheses,

t→ +∞ =⇒ ‖f(uz(t))/t− b̃φ1‖Y → 0

t→ −∞ =⇒ ‖f(uz(t))/t− ãφ1‖Y → 0.

Observe that

∣∣f(uz(t))

t
− f(tφ1)

t

∣∣ ≤ max{|a|, |b|}
∣∣wz(t)

t

∣∣.
From lemma 2.13, ‖wz(t)/t‖Y → 0 for |t| → ∞. Moreover, we have already

seen in the proof of the same lemma that ‖f(tφ1)/t − b̃φ1‖Y → 0 if t → +∞
and ‖f(tφ1)/t− ãφ1‖Y → 0 if t→ −∞, so that the claim is proved.

Proposition 2.14 Suppose (2.7) and (2.8). If ã < λ1 < b̃ then, for every

bounded set B ⊂ HY we have that |t| → ∞ implies that hz(t)→ −∞ uniformly

on z ∈ B.

Proof: Fix any z ∈ HY . By equation (2.5),

F (uz(t))

t
= −Luz(t) + f(uz(t))

t
=
z

t
+
hz(t)

t
φ1.

Take t→ +∞.

By lemma 2.13, ‖uz(t)/t−φ1‖X → 0, so that ‖−Luz(t)/t−λ1φ1‖Y → 0.

On the other hand, as we have proved above, ‖f(uz(t))/t− b̃φ1‖Y → 0. Then,

hz(t)

t
φ1 =

F (uz(t))− z
t

→ (λ1 − b̃)φ1 , in Y,

so that t→ +∞ implies that hz(t)/t→ λ1 − b̃ < 0.

For t → −∞, a similar argument provides hz(t)/t → λ1 − ã > 0, and,

again, hz(t)→ −∞.

Now, take z, z0 ∈ B ⊂ HY where B is bounded. As F (uz(t)) =

F (Φ(z + tφ1)) = z + h(z, t)φ1 is Lipschitz, it follows that h(z, t) = hz(t) is

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Chapter 2. Lipschitz nonlinearities 29

Lipschitz. Then,

|hz(t)− hz0(t)| ‖φ1‖Y ≤ C‖z − z0‖Y ,

which assures that the convergence is uniform on B for |t| → ±∞.

We observe that in this proof, the Lipschitz property of Φ plays a

fundamental role as we used it to prove that ‖uz(t)/t−φ1‖X → 0 and to obtain

the uniform convergence. Also, this approach has the advantage of proving

what the limits of hz(t)/t are when t→ ±∞.

On the other hand, the techniques used by Berger and Podolak in [9], if

applied to that case, would use only the compact inclusion X ↪→ Y instead of

lemma 2.13, but do not provide uniform convergence on bounded sets nor the

limits lim
t→±∞

hz(t)/t.

We state similar results below but we omit their proofs as they are

analogous to the one in proposition 2.14.

Proposition 2.15 Under hypotheses (2.7) and (2.8) we have

1. ã, b̃ < λ1 =⇒ lim
t→−∞

hz(t) = −∞ and lim
t→+∞

hz(t) = +∞.

2. ã, b̃ > λ1 =⇒ lim
t→−∞

hz(t) = +∞ and lim
t→+∞

hz(t) = −∞.

3. ã > λ1 > b̃ =⇒ lim
t→−∞

hz(t) = +∞ and lim
t→+∞

hz(t) = +∞.

For slightly different hypotheses on f there is a similar approach which

relies on the positivity of φ∗1 and does not depend on the existence of a limit

for uz(t)/t. It provides uniform convergence on z of the height functions hz(t)

to −∞ regardless of the Lipschitz bounds for Φ, but we do not know what the

limits of hz(t)/t are when t→ ±∞.

Proposition 2.16 Suppose that there exist lines a0 + ãs and b0 + b̃s, s ∈ R,

ε > 0 with ã < λ1 < b̃ such that

a0 + ãs ≤ f(s) if s < 0 , b0 + b̃s ≤ f(s) if s > 0. (2.9)

Then, |t| → ∞ implies that hz(t)→ −∞ uniformly on z ∈ HY .

Proof: Fix z ∈ HY . Equation (2.6) provides

hz(t) = λ1t−
∫

Ω
f(uz(t))φ

∗
1∫

Ω
φ1 φ∗1

.
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By hypothesis, for all s ∈ R, b0 + b̃s ≤ f(s). Since φ∗1 > 0,

−f(uz(t))φ
∗
1 ≤ −b0φ

∗
1 − b̃uz(t)φ∗1.

Substituting in the equation above, we have

hz(t) = λ1t−
∫

Ω
f(uz(t))φ

∗
1∫

Ω
φ1 φ∗1

≤ λ1t−
b0

∫
Ω
φ∗1 + b̃

∫
Ω

(wz(t) + tφ1)φ∗1∫
Ω
φ1 φ∗1

≤ λ1t− b̃t− b0

∫
Ω
φ∗1∫

Ω
φ1 φ∗1

Since λ1 < b̃, taking t → +∞ we have that, hz(t) → −∞. As the right hand

side does not depend on z ∈ HY , the uniform convergence is clear.

An analogous argument provides that hz(t) → −∞ for t → −∞
uniformly on z using the inequality a0 + ãs ≤ f(s), where ã < λ1.

Also, with hypotheses (2.7) and (2.9) instead of (2.7) and (2.8), propo-

sition 2.15 is valid. Clearly, the results in proposition 2.15 provide non-exact

counts of solutions for the equation F (u) = g, for g ∈ Y and u ∈ X. These

results are well known for the case L = ∆, as it can be seen, for example, in

[1], [9], [24], jus to name a few.

2.4

Criteria for properness

In this section we obtain a criteria for deciding if F is proper, that is, if the

pre-image of compact subsets of Y are compact in X. This is the same as

saying that: for every sequence {yk} ∈ Im(F ) that converges in Y , the set

{u ∈ X : for some k ∈ N, F (u) = yk} has a convergent subsequence.

It is possible to prove that F is proper with the use of the maximum

principle and the compact inclusion X ↪→ Y . This is what Ambrosetti and

Prodi did in [1], but we would like to give an alternate geometric approach by

considering fibers, that is, the Lyapunov-Schmidt reduction of F .

All we need is the following hypothesis

a ≤ f(x)− f(y)

x− y
≤ b ≤ B , x 6= y
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where B is given in theorem 2.4, and the easy lemma below, which we do not

prove.

Lemma 2.17 Let F : X → Y be continuous and let G : Y → X be an

homeomorphism. Then F ◦G is proper if, and only if, F is proper.

Now we provide a criteria for deciding if F is proper.

Proposition 2.18 The map F : X → Y given by F (u) = −Lu − f(u) is

proper if, and only if, for every z ∈ HY we have lim
|t|→∞

|hz(t)| =∞.

Proof: (⇐=) Suppose that, for all z ∈ HY , we have that lim|t|→∞ |hz(t)| =∞.

By lemma 2.17, we just need to prove that F ◦ Φ is proper, where Φ is given

by theorem 2.4. Take zk + skφ1 ∈ Im(F ) ⊂ HY ⊕ VY converging to z0 + s0φ1.

Then, for some sequence zk + tkφ1 ∈ HY ⊕ VY we have

F (Φ(zk + tkφ1)) = zk + h(zk, tk)φ1 = zk + skφ1.

First we prove that h(z0, tk)→ s0. By theorem 2.4, F ◦Φ is Lipschitz, so that

h is Lipschitz. Then, for some constant C > 0,

|h(zk, tk)− h(z0, tk)| ≤ C‖zk − z0‖Y → 0.

Since h(zk, tk) → s0, we have that h(z0, tk) → s0. It follows, by hypothesis,

that {tk}k is bounded, otherwise |h(z0, tk)| would have a subsequence going to

infinity. Then, it has a convergent subsequence tki → t0. Clearly, zki + tkiφ1 →
z0 + t0φ1, that is, zk + tkφ1 has a convergent subsequence and thus F ◦ Φ is

proper.

(=⇒) Suppose that F is proper. Then, F ◦ Φ is proper, by lemma 2.17. Fix

some z ∈ HY . Take |tk| → ∞. Suppose, by contradiction, that hz(tk) does not

go to infinity, that is, it has bounded subsequence — {hz(tk)} has a convergent

subsequence hz(tki)→ s0. It follows that

F (Φ(z + tkiφ1)) = z + h(z, tki)φ1 → z + s0φ1.

Since F ◦Φ is proper, then {tki}i must have a convergent subsenquence, which

is a contradiction with the fact that |tk| → ∞.

An immediate corollary of propositions 2.15 and 2.18 is the following.

Corollary 2.19 Under hypotheses (2.7) and (2.8), if ã, b̃ 6= λ1, then F is

proper.
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2.5

Proof of theorem 2.6

The reader should now be convinced that the estimate contained in theorem

2.6 is fundamental to our construction of the Lyapunov-Schmidt reduction.

The theorem below, which was first proved in [13, theorem 2.4], is the

cornerstone of our argument.

Theorem 2.20 Let Ω′ ⊂ Ω be a closed subset in Ω such that, for some δ ∈ R
satisfying 0 < δ < |Ω|, we have |Ω′| ≤ |Ω| − δ. Then, there exists some

η = η(L,Ω, δ) such that

λ1(L,Ω′)− λ1(L,Ω) ≥ η.

The proof is made by contradiction in two steps. First we obtain upper

bounds (which depend only on L, Ω and a) for the measure of the subsets of Ω

where a certain function u ∈ X is positive and negative. This provides a lower

bound for the increase of the principal eigenvalue of L when restricted to such

subdomains. Then, we choose B to be equal to λ1(L,Ω) plus this lower bound

and use this information to obtain a contradiction.

Proof: (theorem 2.6)

Step 1: Recall that a < λ1. Suppose, by contradiction, that there exist

sequences wk, w̃k ∈ HX , tk, t̃k ∈ R and a sequence of real functions {fk}k
satisfying

a ≤ fk(x)− fk(y)

x− y
≤ λ1 +

1

k
, x 6= y

such that, for every k ∈ N, and

1

k
> ‖PFk(wk + tkφ1)− PFk(w̃k + t̃kφ1) + (tk − t̃k)φ1‖Y

=
∥∥L wk − w̃k
‖wk − w̃k‖X

+ P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1

∥∥
Y
.

Observe that,

0 ≤ fk(x)− fk(y)

x− y
− a =

(fk − a)(x)− (fk − a)(y)

x− y
≤ λ1 +

1

k
− a , x 6= y

so that, −Lu − fk(u) = −(L − aI)u − (fk − aI)(u). It follows from a < λ1

that, without loss, we can suppose that a = 0, λ1(L,Ω) > 0 and λ1 + 1/k is a
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Lipschitz bound for fk. That said, all the constants we take will depend on a

as well.

Note that the terms

L
wk − w̃k
‖wk − w̃k‖X

+P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
∈ HY ,

t̃k − tk
‖wk − w̃k‖X

φ1 ∈ VY ,

are linearly independent, so that both of them converge to 0. It follows that

t̃k − tk
‖wk − w̃k‖X

→ 0.

For simplicity, let (wk − w̃k)/‖wk − w̃k‖X = uk ∈ HX . By the compact

inclusion X ↪→ C0,α(Ω), there exists a subsequence, already relabelled, such

that uk
C0,α(Ω)−→ u ∈ HX ∩ C0,α(Ω) for, say, α = 1/2 ∈ (0, 1). Note that,

Luk = ψk − P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
− t̃k − tk
‖wk − w̃k‖X

φ1,

with ψk
Y−→ 0, so that

ψk = Luk + P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1
Y−→ 0.

We use elliptic and α-Hölder estimates on uk to prove that ‖u‖∞ :=

‖uk‖L∞(Ω) 6= 0. For some C1 = C(Ω) and C2 = C(L,Ω), we have

‖uk‖C0,α(Ω) ≤ C1‖uk‖X = C1 ≤

C1C2

(
‖uk‖∞ +

∥∥ψk − P fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
− t̃k − tk
‖wk − w̃k‖X

φ1

∥∥
Y

)
As k →∞ we have

‖ψk‖Y +
∥∥ t̃k − tk
‖wk − w̃k‖X

φ1

∥∥
Y
→ 0,

so we just have to deal with the term

P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
.
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It is easy to see that,

∥∥P fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
∥∥
Y

≤‖P‖
∥∥fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
∥∥
Y

≤(λ1 +
1

k
) ‖P‖

∥∥ wk − w̃k
‖wk − w̃k‖X

+
tk − t̃k
‖wk − w̃k‖X

φ1

∥∥
Y
→ λ1‖P‖ ‖u‖Y .

Note that ‖u‖Y = ‖u‖Ln(Ω) ≤ |Ω|1/n‖u‖∞, and we have, for k →∞

‖u‖C0,α(Ω) ≤ C1 ≤ C1C2(‖u‖∞ + λ1|Ω|1/n‖P‖ ‖u‖∞) = C(L,Ω)‖u‖∞,

and it is proved that ‖u‖∞ > 0. As a consequence, ‖u‖C0,α(Ω) > 0.

Set w = u/‖u‖L∞(Ω) ∈ HX , which changes sign, as
∫

Ω
w φ∗1 = 0. For every

x, y ∈ Ω,

|w(x)− w(y)| ≤ C(L,Ω)|x− y|α = C|x− y|α.

In particular for x1 = arg max{|w(x)|} and x0 = arg min{|x1 − x0| : w(x0) =

0, x0 ∈ Ω} we have |w(x1)| = 1 and w(x0) = 0, so that

1

C1/α
≤ |x1 − x0|.

Clearly, in BC−1/α(x1) ⊂ Ω, w(x) does not change sign. For every z ∈ C(Ω)

define

Ω+
z := {x ∈ Ω : z(x) > 0} , Ω−z := {x ∈ Ω : z(x) > 0}.

If w(x1) = 1, then |Ω+
w | ≥ |BC−1/α|, so half of our work is done.

Now we need to find a positive lower bound for supw− depending only

on L and Ω. Note that the ball around x1 where w(x) ≥ 1/2 has radius

(2C)−1/α = r = r(L,Ω).

As w ∈ HX ,
∫

Ω
w+φ∗1 =

∫
Ω
w−φ∗1 and φ∗1 > 0, we have

sup
Ω
w−
∫

Ω

φ∗1 ≥
∫

Ω

w−φ∗1 =

∫
Ω

w+φ∗1

≥ 1

2

∫
Br(x1)

φ∗1

≥ 1

2
inf
{∫

Br(x)

φ∗1 : Br(x) ⊂ Ω
}

which implies that supΩ w
− > ε = ε(L,Ω).
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For w(x2) = − supΩw
− = infΩ w < −ε and x0 = arg min{|x2 − x0| :

w(x0) = 0, x0 ∈ Ω},

ε ≤ sup
Ω
w− = |w(x2)− w(x0)| ≤ C|x2 − x0|α =⇒ (ε/C)1/α ≤ |x2 − x0|.

In the ball B(ε/C)1/α(x2), w(x) < 0. Now take δ = |B(ε/C)1/α|. Note that

δ = δ(L,Ω), that is, δ does not depend on w, only on L and Ω.

The case sup |w| = −w(x1) = 1 is handled in a similar fashion providing

again δ = |B(ε/C)1/α|.

By theorem 2.20, given δ = |B(ε/C)1/α|, there exists η = η(L,Ω, δ) =

η(L,Ω) > 0 such that for every Ω′ ⊂ Ω, satisfying |Ω′| ≤ |Ω| − δ we have

λ1(L,Ω′) ≥ λ1 + η.

Step 2: Recall that

Luk + P
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1 = ψk → 0,

so that, there exists a bounded sequence {sk} ∈ R such that

Luk +
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1 = ψk + skφ1.

To see that {sk} is bounded, note that {Luk} is bounded, (tk − t̃k)/‖wk −
w̃k‖X → 0, uk → u in C0,α(Ω) and

∥∥fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
∥∥
Y
≤ (λ1 +

1

k
)
∥∥uk +

tk − t̃k
‖wk − w̃k‖X

φ1

∥∥
Y
.

Take a subsequence of indices for which the (already relabelled) sequence

{sk} converges to s0.

First, suppose s0 ≥ 0. Define

Ω+
k := {x ∈ Ω : wk + tkφ1 ≥ w̃k + t̃kφ1}.

Set, for Ω′ ⊂ Ω, χ(Ω′)(x) = 1 if x ∈ Ω′ and 0 if not. For all k ∈ N, we

have

Luk + (λ1 +
1

k
)χ(Ω+

k )

(
uk +

tk − t̃k
‖wk − w̃k‖X

φ1

)
+

t̃k − tk
‖wk − w̃k‖X

φ1

≥Luk +
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1 = ψk + skφ1.
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Recall that L = aij∂i∂j+bi∂i+c, where c ∈ L∞(Ω). Now, we have the following

inequality

(L− c)uk ≥

ψk +

(
sk −

tk − t̃k
‖wk − w̃k‖X

)
φ1 − (λ1 +

1

k
)χ(Ω+

k )

(
uk −

tk − t̃k
‖wk − w̃k‖X

φ1

)
− c uk,

with the right hand side converging to s0φ1 − λ1χ(Ω+
u )u − c u in the norm of

Y = Ln(Ω) and with uk → u in the C(Ω) norm. We use the following result to

be able to take limits on k in the inequality above. It is an easy corollary of the

stability of viscosity subsolutions and supersolutions with respect to uniform

convergence — see lemma 2.5, corollary 3.7 and theorem 3.8 of [25].

Theorem 2.21 Let Ω have an exterior cone condition and T be an elliptic

operator in Ω without terms of zero order. For p ≥ n, let gk, g ∈ Lp(Ω) be such

that gk → g in Lp(Ω). Moreover, let uk, u ∈ C(Ω) be such that uk → u in C(Ω)

and, for all k ∈ N, uk is a strong subsolution (supersolution) of Tuk = gk in

Ω. Then u is a strong subsolution (supersolution) of Tu = g in Ω.

In theorem 2.21 take p = n and let T = L− c. Also, set

gk = ψk +

(
sk −

tk − t̃k
‖wk − w̃k‖X

)
φ1

− (λ1 +
1

k
)χ(Ω+

k )

(
uk −

tk − t̃k
‖wk − w̃k‖X

φ1

)
− c uk ∈ Ln(Ω)

g = s0φ1 − λ1χ(Ω+
u )u− c u ∈ Ln(Ω)

where gk → g in Ln(Ω), since uk → u in C0,α(Ω). Then, we have that

(L− c)u ≥ s0φ1 − λ1χ(Ω+
u )u− c u.

It follows that, in Ω+
u

(L+ λ1)u ≥ s0φ1 ≥ 0,

so that, by definition 2.1, λ1 = λ1(L,Ω) ≥ λ1(L,Ω+
u ) with |Ω+

u | ≤ |Ω| − δ, i.e.,

λ1(L,Ω) ≥ λ1(L,Ω) + η, a contradiction.

If s0 < 0, define Ω−k := {x ∈ Ω : wk + tkφ1 < w̃k + t̃kφ1}. By a similar

argument,

Luk + (λ1 +
1

k
)χ(Ω−k )

(
uk +

tk − t̃k
‖wk − w̃k‖X

φ1

)
+

t̃k − tk
‖wk − w̃k‖X

φ1

≤Luk +
fk(wk + tkφ1)− fk(w̃k + t̃kφ1)

‖wk − w̃k‖X
+

t̃k − tk
‖wk − w̃k‖X

φ1 = ψk + skφ1.
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As before, apply theorem 2.21 to obtain, in Ω−u , (L + λ1)u ≤ s0φ1 < 0. That

is,

(L+ λ1)(−u) ≥ −s0φ1 > 0.

so that λ1 = λ1(L,Ω) ≥ λ1(L,Ω−u ). Because |Ω−u | ≤ |Ω| − δ, we have

λ1(L,Ω) ≥ λ1(L,Ω) + η, and again, a contradiction.
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