3

Differentiable Lipschitz nonlinearities

In this chapter we always suppose that $f \in C^{k}(\mathbb{R})$ for $k \geq 1$. We take advantage of the continuous inclusion $X \hookrightarrow C_{0}(\bar{\Omega})$ which provides, by corollary 6.2 , that if $f \in C^{k}(\mathbb{R})$, then $F \in C^{k}(X, Y)$.

Then, we prove that $\Phi: Y \rightarrow X$ is a C^{k}-diffeomorphism. As a consequence, the map $(z, t) \rightarrow h(z, t) \in \mathbb{R}$ is C^{k}.

After that, we obtain a relationship between the principal eigenvalue $\lambda_{1}\left(u_{z}(t)\right)$ of the linear elliptic operator given by the Jacobian of F at the point $u_{z}(t)$,

$$
D F\left(u_{z}(t)\right)=-L-f^{\prime}\left(u_{z}(t)\right): X \rightarrow Y
$$

and the first derivative of the height $t \mapsto h_{z}(t)$. Above, $f^{\prime}\left(u_{z}(t)\right)$ is the multiplicative operator taking functions $v \in X$ to $f^{\prime}\left(u_{z}(t)\right) v \in Y$. This relationship provides a criteria for deciding how deep a singularity of $t \mapsto h_{z}(t)$ is, in other words, if t_{0} is a critical point of h_{z}, we provide a criteria for evaluating the number

$$
M:=\max \left\{m \in \mathbb{N}: \text { if } j \leq m, \text { then } \frac{\partial^{j} h_{z}}{\partial t^{j}}\left(t_{0}\right)=0\right\} .
$$

3.1
 Regularity of fibers and heights

Since $f \in C^{k}(\mathbb{R})$ for $k \geq 1$, suppose additionally that $f^{\prime} \leq B$ where B is obtained from theorem 2.4. Recall formula (2.6): $F(u(z, t))=z+h(z, t) \phi_{1}$. By corollary 6.2, we already know that $F \in C^{k}(X, Y)$. By the chain rule of differentiation, if we knew that $(z, t) \mapsto u(z, t)$ was C^{k}, then $(z, t) \mapsto h(z, t)$ would be C^{k}. So, our goal is to show that, if $f \in C^{k}(\mathbb{R})$ then $(z, t) \mapsto u(z, t)$ is C^{k}.

We remind the reader that, by theorem 2.4

$$
\Phi: Y=H_{Y} \oplus V_{Y} \rightarrow X=H_{X} \oplus V_{X}, \quad z+t \phi_{1} \mapsto\left(P F_{t}\right)^{-1}(z)+t \phi_{1}=u(z, t)
$$

is a Lipschitz homeomorphism with Lipschitz inverse.
Lemma 3.1 If $f \in C^{k}(\mathbb{R})$ then $\Phi: Y \rightarrow X$ is a C^{k}-diffeomorphism.

Proof: Recall that

$$
\Phi^{-1}: X=H_{X} \oplus V_{X} \rightarrow Y=H_{Y} \oplus V_{Y}, \quad w+t \phi_{1} \mapsto P F_{t}(w)+t \phi_{1} .
$$

By corollary 6.2, F is C^{k}. It follows that Φ^{-1} is C^{k}.
The Jacobian of Φ at a point $u=w+t \phi_{1} \in X$ can be interpreted as the matrix

$$
\left[\begin{array}{cc}
\partial_{w} P F_{t}(w) & \partial_{t} P F_{t}(w) \\
0 & I
\end{array}\right]: H_{X} \times V_{X} \rightarrow H_{Y} \times V_{Y}
$$

Observe that it is invertible since $\partial_{w} P F_{t}(w)=D\left(P F_{t}\right)(w)$ which is invertible as proved in lemma 2.7. That said, by the inverse function theorem, we have that $\Phi^{-1}: X \rightarrow Y$ is a C^{k} diffeomorphism.

Two immediate corollaries are the following.
Corollary 3.2 If $f \in C^{k}(\mathbb{R})$, then the $\operatorname{map}(z, t) \in H_{Y} \times \mathbb{R} \mapsto h(z, t)$ is C^{k}.
Corollary 3.3 Fix $z \in H_{Y}$. If $f \in C^{k}(\mathbb{R})$ then, given $z \in H_{Y}$, the fiber $t \mapsto u_{z}(t) \in X$ and the height $t \mapsto h_{z}(t) \in \mathbb{R}$ are C^{k}.

Now, for fixed $z \in H_{Y}$, we want to differentiate $F\left(u_{z}(t)\right)$ on t, that is, we want to differentiate F along a fiber $u_{z}(t)$.

For simplicity, given $t_{0} \in \mathbb{R}$, set

$$
\frac{\partial w_{z}}{\partial t}\left(t_{0}\right):=w_{z}^{\prime}\left(t_{0}\right), \quad \frac{\partial u_{z}}{\partial t}\left(t_{0}\right):=w_{z}^{\prime}\left(t_{0}\right)+\phi_{1}=u_{z}^{\prime}\left(t_{0}\right), \quad \frac{\partial h_{z}}{\partial t}\left(t_{0}\right):=h_{z}^{\prime}\left(t_{0}\right)
$$

In the spirit of equation (2.6), we use the chain rule to provide a formula for $t \mapsto h_{z}^{\prime}(t)$

$$
\begin{equation*}
h_{z}^{\prime}(t)=\lambda_{1}-\frac{\int_{\Omega} f^{\prime}\left(u_{z}(t)\right) u_{z}^{\prime}(t) \phi_{1}^{*}}{\int_{\Omega} \phi_{1} \phi_{1}^{*}} . \tag{3.1}
\end{equation*}
$$

First recall that, for all $z \in H_{Y}$ and $t \in \mathbb{R}$ we have $F\left(u_{z}(t)\right)=z+h_{z}(t) \phi_{1}$. Differentiating on t we have, by the chain rule,

$$
\begin{equation*}
D F\left(u_{z}(t)\right) u_{z}^{\prime}(t)=-L u_{z}^{\prime}(t)-f^{\prime}\left(u_{z}(t)\right) u_{z}^{\prime}(t)=h_{z}^{\prime}(t) \phi_{1} . \tag{3.2}
\end{equation*}
$$

3.2
 Singularities

We begin with the following definition.
Definition 3.4 A principal eigenpair of L is a pair $\left(\lambda_{1}(L, \Omega), \phi_{1}(L, \Omega)\right)$ where $\phi_{1}(L, \Omega)>0$. Analogously, a principal eigenpair of $L^{*}: Y^{*} \rightarrow X^{*}$ is a pair $\left(\lambda_{1}\left(L^{*}, \Omega\right), \phi_{1}\left(L^{*}, \Omega\right)\right)$ with $\lambda_{1}\left(L^{*}, \Omega\right)=\lambda_{1}(L, \Omega)$ and $\phi_{1}\left(L^{*}, \Omega\right)>0$.

Note that the Jacobian $D F(u)=-L-f^{\prime}(u)$ is a Fredholm operator of index zero. It follows that it is not invertible if, and only if, 0 is an eigenvalue of $D F(u)$. The proposition below assures that if 0 is an eigenvalue of $D F(u)$ then its principal eigenvalue $\lambda_{1}(u)$ is zero - that result is crucial to the exact counting results we obtain in chapters 4 and 5 .

Proposition 3.5 Let L be an elliptic operator and suppose that $d \in L^{\infty}(\Omega)$. Then, there exists some $B(L, \Omega)>\lambda_{1}(L, \Omega)$ such that, if $a \leq d(x) \leq B:=$ $B(L, \Omega)$ and for some $u \in X$ such that $u \neq 0$ we have that $L u+d(x) u=0$, then 0 is the principal eigenvalue of $L+d(x)$.

Proof: By theorem 2.20, for $\delta \in(0,|\Omega|)$, there exists $\eta=\eta(L, \Omega, \delta)>$ 0 such that, for every $\Omega^{\prime} \subset \Omega$ satisfying $\left|\Omega^{\prime}\right| \leq|\Omega|-\delta$, we have that $\lambda_{1}\left(L, \Omega^{\prime}\right)>\lambda_{1}(L, \Omega)+\eta$. Set $\delta=|\Omega| / 2$. Take $B=B(L, \Omega)$ such that $\lambda_{1}(L, \Omega)<B<\lambda_{1}(L, \Omega)+\eta$. Suppose that $d(x) \leq b \leq B(L, \Omega)$.

For $u \neq 0$ with $L u+d(x) u=0$, define

$$
\Omega_{u}^{+}:=\{x \in \Omega: u(x)>0\}, \quad \Omega_{u}^{-}:=\{x \in \Omega: u(x)<0\},
$$

and $\chi\left(\Omega_{u}^{+}\right): \Omega \rightarrow \mathbb{R}$ assuming the value 1 if $x \in \Omega_{u}^{+}$and 0 otherwise. Suppose, by contradiction, that neither $\Omega_{u}^{+}=\Omega$ nor $\Omega_{u}^{-}=\Omega$. Clearly, either $0<\left|\Omega_{u}^{+}\right| \leq|\Omega|-\delta$ or $0<\left|\Omega_{u}^{-}\right| \leq|\Omega|-\delta$. If $\left|\Omega_{u}^{+}\right| \leq|\Omega|-\delta$, then for $L u+d(x) u=0$ we have that

$$
(L+a I) u+(B-a) \chi\left(\Omega_{u}^{+}\right) u \geq(L+a I) u+(d(x)-a) u=0
$$

Restricting the equation above to Ω_{u}^{+}, we have

$$
(L+a I) u+(B-a) u=L u+b u \geq 0 .
$$

By definition 2.1, this implies that $B \geq \lambda_{1}\left(L, \Omega_{u}^{+}\right) \geq \lambda_{1}(L, \Omega)+\eta>B$, an absurd. With that we conclude that u is an eigenfunction of $L+d(x)$ which has sign. By theorem [13, theorem 2.3] the only eigenfunction of $L+d(x)$
which does not change sign is its principal eigenfunction, thus 0 is the principal eigenvalue of $L+d(x)$.

The case $\left|\Omega_{u}^{-}\right| \leq|\Omega|-\delta$ is handled similarly.

The following theorem is now easy to prove. It will serve as reference for the choice of B in the main theorems we prove in chapters 4 and 5 .

Theorem 3.6 Given $a<\lambda_{1}$, there exists some $B=B(L, \Omega, a)>\lambda_{1}(L, \Omega)$ such that both theorem 2.4 and proposition 3.5 are valid.

Proof: Take $B(L, \Omega, a)>\lambda_{1}$ as the minimum between the bounds B obtained in both theorem 2.4 and proposition 3.5.

From this point until the end of this chapter, we always take B as in theorem 3.6

We prove some interesting geometric consequences of the Lyapunov Schmidt reduction we obtained in chapter 2.

Lemma 3.7 A point $u_{0}=u\left(z, t_{0}\right)=u_{z}\left(t_{0}\right) \in X$ is a critical point of F if and only if $h_{z}^{\prime}\left(t_{0}\right)=0$.

Proof: Consider the composition $(F \circ \Phi)\left(z+t \phi_{1}\right)=F\left(u_{z}(t)\right)=z+h_{z}(t) \phi_{1}$. We can represent the derivative of $F \circ \Phi$ at $z+t \phi_{1}$ by the matrix

$$
D F\left(\Phi\left(z+t \phi_{1}\right)\right) D \Phi\left(z+t \phi_{1}\right)=\left[\begin{array}{cc}
I & 0 \\
\partial_{z} h(z, t) & h_{z}^{\prime}(t)
\end{array}\right]: H_{Y} \oplus V_{Y} \rightarrow H_{Y} \oplus V_{Y}
$$

which is invertible if, and only if, $h_{z}^{\prime}(t) \neq 0$. As $\Phi: Y \rightarrow X$ is a diffeomorphism, we conclude that $D F\left(u_{z}(t)\right)$ is invertible if, and only if, $h_{z}^{\prime}(t) \neq 0$.

When $u_{0}=u_{z}\left(t_{0}\right)$ is critical, then $h_{z}^{\prime}\left(t_{0}\right)=0$. On the other hand, if $h_{z}^{\prime}\left(t_{0}\right)=0$, then $u_{z}\left(t_{0}\right)$ is a critical point of F.

The following corollary connects proposition 3.5 and lemma 3.7.
Corollary 3.8 A point $u_{0} \in X$ is critical of F if, and only if, the principal eigenvalue $\lambda_{1}\left(u_{0}\right)$ of $D F\left(u_{0}\right)$ equals 0 .

This fact is a consequence of a deeper relationship between the principal eigenvalue of $D F\left(u_{z}(t)\right)$ and the derivative $h_{z}^{\prime}(t)$ which we prove in proposition 3.10. In order to obtain such relationship, we need the following result.

Lemma 3.9 If $u_{0}=u_{z}\left(t_{0}\right)$ is a critical point of F, then $u_{z}^{\prime}\left(t_{0}\right)$ is positive and is a principal eigenfunction of $D F\left(u_{0}\right)$.

Proof: Take $u_{0}=u_{z}\left(t_{0}\right)$ a critial point of F. By lemma 3.7, $h_{z}^{\prime}\left(t_{0}\right)=0$. It follows that $D F\left(u_{0}\right) u_{z}^{\prime}\left(t_{0}\right)=0$ so that $u_{z}^{\prime}\left(t_{0}\right)$ is an eigenvector associated to the smallest eigenvalue of $D F\left(u_{0}\right)$, by proposition 3.5 , i.e., it has sign. Moreover, $\left\langle u_{z}^{\prime}\left(t_{0}\right), \phi_{1}^{*}\right\rangle=\left\langle\phi_{1}, \phi_{1}^{*}\right\rangle>0$. It follows that $u_{z}^{\prime}\left(t_{0}\right)>0$.

We now relate $\lambda_{1}\left(L+f^{\prime}\left(u_{z}(t)\right), \Omega\right)=\lambda_{1}(-D F(u(z, t)), \Omega):=\lambda_{1}(z, t)$ and $h_{z}^{\prime}(t)$.

Proposition 3.10 Let $f \in C^{k}(\mathbb{R})$. Then, there exists a positive C^{k-1} function $(z, t) \in H_{Y} \times \mathbb{R} \mapsto p(z, t) \in \mathbb{R}$ such that $h_{z}^{\prime}(t)=p(z, t) \lambda_{1}(z, t)$.

Proof: As $f \in C^{k}(\mathbb{R})$, from corollary 3.2 we have that $h_{z}^{\prime}(t)$ is C^{k-1}. From proposition 6.4, since $(z, t) \mapsto D F(u(z, t))$ is C^{k-1} the function $(z, t) \mapsto \lambda_{1}(z, t)$ is also C^{k-1}.

Take any eigenfunction $\phi_{1}^{*}(z, t)$ such that

$$
D F\left(u_{z}(t)\right)^{*} \phi_{1}^{*}(z, t)=\lambda_{1}(z, t) \phi_{1}^{*}(z, t) .
$$

Apply the functional $\phi_{1}^{*}(z, t)$ to the equation $D F\left(u_{z}(t)\right) u_{z}^{\prime}(t)=h_{z}^{\prime}(t) \phi_{1}$ obtaining

$$
\lambda_{1}(z, t)\left\langle u_{z}^{\prime}(t), \phi_{1}^{*}(z, t)\right\rangle=\left\langle D F(u(z, t)) u_{z}^{\prime}(t), \phi_{1}^{*}(z, t)\right\rangle=h_{z}^{\prime}(t)\left\langle\phi_{1}, \phi_{1}^{*}(z, t)\right\rangle .
$$

As $\left\langle\phi_{1}(z, t), \phi_{1}^{*}(z, t)\right\rangle \neq 0$, we have that $\lambda_{1}(z, t) p(z, t)=h_{z}^{\prime}(t)$ with

$$
p(z, t)=\frac{\left\langle u_{z}^{\prime}(t), \phi_{1}^{*}(z, t)\right\rangle}{\left\langle\phi_{1}(z, t), \phi_{1}^{*}(z, t)\right\rangle} .
$$

Observe that, if $u_{0}=u_{z}\left(t_{0}\right)$ is critial, then $u_{z}^{\prime}\left(t_{0}\right)>0$ by lemma 3.9, so that $p\left(z, t_{0}\right)>0$. It follows that, for all $t \in \mathbb{R}, \lambda_{1}(z, t)=0$ if, and only if, $h_{z}^{\prime}(t)=0$, which is another way of phrasing lemma 3.7. The continuity of $(z, t) \mapsto p(z, t)$ and the aforementioned fact suffice to prove that $p(z, t)$ is everywhere positive. By contradiction, suppose that $p(z, t)=0$ somewhere.

Then, $h_{z}^{\prime}(t)=0$ so that $u=u_{z}(t)$ is a critical point of $D F(u)$. Then, $u_{z}^{\prime}(t)>0$ and so $p(z, t)>0$: a contradiction.

Up until now we have that $p(z, t)>0$ and for regular points $u=u_{z}(t)$ of F, we can write

$$
p(z, t)=\frac{h^{\prime}(z, t)}{\lambda_{1}(z, t)},
$$

which is uniquely defined (independently of the choice of $\left.\phi_{1}^{*}(z, t)\right)$. Moreover, at regular points $u_{z}(t)$ of F, we have that $p(z, t)$ is C^{k-1}, since $\lambda_{1}(z, t)$ and $h_{z}^{\prime}(t)$ are C^{k-1} by proposition 6.4 and corollary 3.2.

We are left to check that $p(z, t)$ is C^{k-1} at a critical point $u_{0}=u_{z_{0}}\left(t_{0}\right)$.
In proposition 6.5, take $A=X$ and $q(u)=f^{\prime}(u) \in \mathcal{L}(X, Y)$, so that $u \in X \mapsto f^{\prime}(u) \in \mathcal{L}(X, Y)$ is a C^{k-1} map by corollary 6.2 . Use proposition 6.5 to conclude that, there exists a ball $B\left(u_{z_{0}}\left(t_{0}\right)\right) \subset X$ in which we can define a C^{k-1} function $u \mapsto\left(\phi_{1}(u), \phi_{1}^{*}(u)\right)$ such that

$$
D F\left(u_{z_{0}}\left(t_{0}\right)\right) \phi_{1}\left(z, t_{0}\right)=\lambda_{1}\left(z_{0}, t_{0}\right) \phi_{1}\left(z_{0}, t_{0}\right)
$$

$$
\begin{gathered}
D F\left(u_{z_{0}}\left(t_{0}\right)\right)^{*} \phi_{1}^{*}\left(z_{0}, t_{0}\right)=\lambda_{1}\left(z_{0}, t_{0}\right) \phi_{1}^{*}\left(z_{0}, t_{0}\right) \\
D F(u) \phi_{1}(u)=\lambda_{1}(-D F(u), \Omega) \phi_{1}(u) \\
D F(u)^{*} \phi_{1}^{*}(u)=\lambda_{1}\left(-D F(u)^{*}, \Omega\right) \phi_{1}^{*}(u)=\lambda_{1}(-D F(u), \Omega) \phi_{1}^{*}(u) .
\end{gathered}
$$

Take a small ball $B\left(\left(z_{0}, t_{0}\right)\right) \subset H_{Y} \times \mathbb{R}$ such that $\Phi\left(B\left(z_{0}+t_{0} \phi_{1}\right)\right) \subset$ $B\left(u_{z_{0}}\left(t_{0}\right)\right)$. Since $(z, t) \in H_{Y} \times \mathbb{R} \mapsto u_{z}(t) \in X$ is C^{k}, by the chain rule, the map

$$
(z, t) \in B\left(\left(z_{0}, t_{0}\right)\right) \mapsto u_{z}(t) \mapsto\left(\phi_{1}(z, t), \phi_{1}^{*}(z, t)\right)
$$

is C^{k-1}. It follows that

$$
(z, t) \mapsto p(z, t)=\frac{\left\langle u_{z}^{\prime}(t), \phi_{1}^{*}(z, t)\right\rangle}{\left\langle\phi_{1}, \phi_{1}^{*}(z, t)\right\rangle}
$$

is C^{k-1} in $B\left(\left(z_{0}, t_{0}\right)\right)$. We conclude that $(z, t) \mapsto p(z, t)$ is C^{k-1} is all of $H_{Y} \times \mathbb{R}$.

Corollary 3.11 If f is C^{k} and $j \leq k$ and $h_{z_{0}}^{\prime}\left(t_{0}\right)=\ldots=h_{z_{0}}^{j}\left(t_{0}\right)=0$, then $\lambda_{1}\left(z_{0}, t_{0}\right)=\ldots=\lambda_{1}^{j-1}\left(z_{0}, t_{0}\right)=0$. Moreover, if $j<k$, then

$$
h_{z_{0}}^{j+1}\left(t_{0}\right)=p\left(z_{0}, t_{0}\right) \lambda_{1}^{j}\left(z_{0}, t_{0}\right) .
$$

Proof: The first part is an immediate consequence of Proposition 3.10. Moreover, the same proposition assures that $\lambda_{1}(z, t)$ and $p(z, t)$ are C^{k-1}. By the product rule of differentiation,

$$
h_{z}^{j+1}(t)=\sum_{m=0}^{j} \frac{j!}{m!(j-k)!} \lambda_{1}^{j-m}(z, t) p^{j}(z, t) .
$$

so that $h_{z_{0}}^{j+1}\left(t_{0}\right)=\lambda_{1}^{j}\left(z_{0}, t_{0}\right) p\left(z_{0}, t_{0}\right)$.

