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Differentiable Lipschitz nonlinearities

In this chapter we always suppose that f ∈ Ck(R) for k ≥ 1. We take advantage

of the continuous inclusion X ↪→ C0(Ω) which provides, by corollary 6.2, that

if f ∈ Ck(R), then F ∈ Ck(X, Y ).

Then, we prove that Φ : Y → X is a Ck-diffeomorphism. As a

consequence, the map (z, t)→ h(z, t) ∈ R is Ck.

After that, we obtain a relationship between the principal eigenvalue

λ1(uz(t)) of the linear elliptic operator given by the Jacobian of F at the point

uz(t),

DF (uz(t)) = −L− f ′(uz(t)) : X → Y

and the first derivative of the height t 7→ hz(t). Above, f ′(uz(t)) is the

multiplicative operator taking functions v ∈ X to f ′(uz(t))v ∈ Y . This

relationship provides a criteria for deciding how deep a singularity of t 7→ hz(t)

is, in other words, if t0 is a critical point of hz, we provide a criteria for

evaluating the number

M := max
{
m ∈ N : if j ≤ m, then

∂jhz
∂tj

(t0) = 0
}
.

3.1

Regularity of fibers and heights

Since f ∈ Ck(R) for k ≥ 1, suppose additionally that f ′ ≤ B where B is

obtained from theorem 2.4. Recall formula (2.6): F (u(z, t)) = z + h(z, t)φ1.

By corollary 6.2, we already know that F ∈ Ck(X, Y ). By the chain rule of

differentiation, if we knew that (z, t) 7→ u(z, t) was Ck, then (z, t) 7→ h(z, t)

would be Ck. So, our goal is to show that, if f ∈ Ck(R) then (z, t) 7→ u(z, t) is

Ck.

We remind the reader that, by theorem 2.4

Φ : Y = HY ⊕ VY → X = HX ⊕ VX , z + tφ1 7→ (PFt)
−1(z) + tφ1 = u(z, t).
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is a Lipschitz homeomorphism with Lipschitz inverse.

Lemma 3.1 If f ∈ Ck(R) then Φ : Y → X is a Ck-diffeomorphism.

Proof: Recall that

Φ−1 : X = HX ⊕ VX → Y = HY ⊕ VY , w + tφ1 7→ PFt(w) + tφ1.

By corollary 6.2, F is Ck. It follows that Φ−1 is Ck.

The Jacobian of Φ at a point u = w+ tφ1 ∈ X can be interpreted as the

matrix [
∂wPFt(w) ∂tPFt(w)

0 I

]
: HX × VX → HY × VY .

Observe that it is invertible since ∂wPFt(w) = D(PFt)(w) which is

invertible as proved in lemma 2.7. That said, by the inverse function theorem,

we have that Φ−1 : X → Y is a Ck diffeomorphism.

Two immediate corollaries are the following.

Corollary 3.2 If f ∈ Ck(R), then the map (z, t) ∈ HY × R 7→ h(z, t) is Ck.

Corollary 3.3 Fix z ∈ HY . If f ∈ Ck(R) then, given z ∈ HY , the fiber

t 7→ uz(t) ∈ X and the height t 7→ hz(t) ∈ R are Ck.

Now, for fixed z ∈ HY , we want to differentiate F (uz(t)) on t, that is, we

want to differentiate F along a fiber uz(t).

For simplicity, given t0 ∈ R, set

∂wz
∂t

(t0) := w′z(t0) ,
∂uz
∂t

(t0) := w′z(t0) + φ1 = u′z(t0) ,
∂hz
∂t

(t0) := h′z(t0).

In the spirit of equation (2.6), we use the chain rule to provide a formula for

t 7→ h′z(t)

h′z(t) = λ1 −
∫

Ω
f ′(uz(t))u

′
z(t)φ

∗
1∫

Ω
φ1φ∗1

. (3.1)

First recall that, for all z ∈ HY and t ∈ R we have F (uz(t)) = z+hz(t)φ1.

Differentiating on t we have, by the chain rule,

DF (uz(t))u
′
z(t) = −Lu′z(t)− f ′(uz(t))u′z(t) = h′z(t)φ1. (3.2)

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Chapter 3. Differentiable Lipschitz nonlinearities 40

3.2

Singularities

We begin with the following definition.

Definition 3.4 A principal eigenpair of L is a pair (λ1(L,Ω), φ1(L,Ω)) where

φ1(L,Ω) > 0. Analogously, a principal eigenpair of L∗ : Y ∗ → X∗ is a pair

(λ1(L∗,Ω), φ1(L∗,Ω)) with λ1(L∗,Ω) = λ1(L,Ω) and φ1(L∗,Ω) > 0.

Note that the Jacobian DF (u) = −L − f ′(u) is a Fredholm operator of

index zero. It follows that it is not invertible if, and only if, 0 is an eigenvalue

of DF (u). The proposition below assures that if 0 is an eigenvalue of DF (u)

then its principal eigenvalue λ1(u) is zero — that result is crucial to the exact

counting results we obtain in chapters 4 and 5.

Proposition 3.5 Let L be an elliptic operator and suppose that d ∈ L∞(Ω).

Then, there exists some B(L,Ω) > λ1(L,Ω) such that, if a ≤ d(x) ≤ B :=

B(L,Ω) and for some u ∈ X such that u 6= 0 we have that Lu + d(x)u = 0,

then 0 is the principal eigenvalue of L+ d(x).

Proof: By theorem 2.20, for δ ∈ (0, |Ω|), there exists η = η(L,Ω, δ) >

0 such that, for every Ω′ ⊂ Ω satisfying |Ω′| ≤ |Ω| − δ, we have that

λ1(L,Ω′) > λ1(L,Ω) + η. Set δ = |Ω|/2. Take B = B(L,Ω) such that

λ1(L,Ω) < B < λ1(L,Ω) + η. Suppose that d(x) ≤ b ≤ B(L,Ω).

For u 6= 0 with Lu+ d(x)u = 0, define

Ω+
u := {x ∈ Ω : u(x) > 0} , Ω−u := {x ∈ Ω : u(x) < 0},

and χ(Ω+
u ) : Ω → R assuming the value 1 if x ∈ Ω+

u and 0 otherwise.

Suppose, by contradiction, that neither Ω+
u = Ω nor Ω−u = Ω. Clearly, either

0 < |Ω+
u | ≤ |Ω| − δ or 0 < |Ω−u | ≤ |Ω| − δ. If |Ω+

u | ≤ |Ω| − δ, then for

Lu+ d(x)u = 0 we have that

(L+ aI)u+ (B − a)χ(Ω+
u )u ≥ (L+ aI)u+ (d(x)− a)u = 0

Restricting the equation above to Ω+
u , we have

(L+ aI)u+ (B − a)u = Lu+ bu ≥ 0.

By definition 2.1, this implies that B ≥ λ1(L,Ω+
u ) ≥ λ1(L,Ω) + η > B, an

absurd. With that we conclude that u is an eigenfunction of L + d(x) which

has sign. By theorem [13, theorem 2.3] the only eigenfunction of L + d(x)
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which does not change sign is its principal eigenfunction, thus 0 is the principal

eigenvalue of L+ d(x).

The case |Ω−u | ≤ |Ω| − δ is handled similarly.

The following theorem is now easy to prove. It will serve as reference for

the choice of B in the main theorems we prove in chapters 4 and 5.

Theorem 3.6 Given a < λ1, there exists some B = B(L,Ω, a) > λ1(L,Ω)

such that both theorem 2.4 and proposition 3.5 are valid.

Proof: Take B(L,Ω, a) > λ1 as the minimum between the bounds B obtained

in both theorem 2.4 and proposition 3.5.

From this point until the end of this chapter, we always take B as

in theorem 3.6

We prove some interesting geometric consequences of the Lyapunov

Schmidt reduction we obtained in chapter 2.

Lemma 3.7 A point u0 = u(z, t0) = uz(t0) ∈ X is a critical point of F if and

only if h′z(t0) = 0.

Proof: Consider the composition (F ◦ Φ)(z + tφ1) = F (uz(t)) = z + hz(t)φ1.

We can represent the derivative of F ◦ Φ at z + tφ1 by the matrix

DF (Φ(z + tφ1))DΦ(z + tφ1) =

[
I 0

∂zh(z, t) h′z(t)

]
: HY ⊕ VY → HY ⊕ VY ,

which is invertible if, and only if, h′z(t) 6= 0. As Φ : Y → X is a diffeomorphism,

we conclude that DF (uz(t)) is invertible if, and only if, h′z(t) 6= 0.

When u0 = uz(t0) is critical, then h′z(t0) = 0. On the other hand, if

h′z(t0) = 0, then uz(t0) is a critical point of F .

The following corollary connects proposition 3.5 and lemma 3.7.

Corollary 3.8 A point u0 ∈ X is critical of F if, and only if, the principal

eigenvalue λ1(u0) of DF (u0) equals 0.
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This fact is a consequence of a deeper relationship between the principal

eigenvalue of DF (uz(t)) and the derivative h′z(t) which we prove in proposition

3.10. In order to obtain such relationship, we need the following result.

Lemma 3.9 If u0 = uz(t0) is a critical point of F , then u′z(t0) is positive and

is a principal eigenfunction of DF (u0).

Proof: Take u0 = uz(t0) a critial point of F . By lemma 3.7, h′z(t0) = 0. It

follows that DF (u0)u′z(t0) = 0 so that u′z(t0) is an eigenvector associated to the

smallest eigenvalue of DF (u0), by proposition 3.5, i.e., it has sign. Moreover,

〈u′z(t0), φ∗1〉 = 〈φ1, φ
∗
1〉 > 0. It follows that u′z(t0) > 0.

We now relate λ1(L+f ′(uz(t)),Ω) = λ1(−DF (u(z, t)),Ω) := λ1(z, t) and

h′z(t).

Proposition 3.10 Let f ∈ Ck(R). Then, there exists a positive Ck−1 function

(z, t) ∈ HY × R 7→ p(z, t) ∈ R such that h′z(t) = p(z, t)λ1(z, t).

Proof: As f ∈ Ck(R), from corollary 3.2 we have that h′z(t) is Ck−1. From

proposition 6.4, since (z, t) 7→ DF (u(z, t)) is Ck−1 the function (z, t) 7→ λ1(z, t)

is also Ck−1.

Take any eigenfunction φ∗1(z, t) such that

DF (uz(t))
∗φ∗1(z, t) = λ1(z, t)φ∗1(z, t).

Apply the functional φ∗1(z, t) to the equation DF (uz(t))u
′
z(t) = h′z(t)φ1

obtaining

λ1(z, t)〈u′z(t), φ∗1(z, t)〉 = 〈DF (u(z, t))u′z(t), φ
∗
1(z, t)〉 = h′z(t)〈φ1, φ

∗
1(z, t)〉.

As 〈φ1(z, t), φ∗1(z, t)〉 6= 0, we have that λ1(z, t)p(z, t) = h′z(t) with

p(z, t) =
〈u′z(t), φ∗1(z, t)〉
〈φ1(z, t), φ∗1(z, t)〉

.

Observe that, if u0 = uz(t0) is critial, then u′z(t0) > 0 by lemma 3.9,

so that p(z, t0) > 0. It follows that, for all t ∈ R, λ1(z, t) = 0 if, and only

if, h′z(t) = 0, which is another way of phrasing lemma 3.7. The continuity

of (z, t) 7→ p(z, t) and the aforementioned fact suffice to prove that p(z, t) is

everywhere positive. By contradiction, suppose that p(z, t) = 0 somewhere.
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Then, h′z(t) = 0 so that u = uz(t) is a critical point of DF (u). Then, u′z(t) > 0

and so p(z, t) > 0: a contradiction.

Up until now we have that p(z, t) > 0 and for regular points u = uz(t) of

F , we can write

p(z, t) =
h′(z, t)

λ1(z, t)
,

which is uniquely defined (independently of the choice of φ∗1(z, t) ). Moreover,

at regular points uz(t) of F , we have that p(z, t) is Ck−1, since λ1(z, t) and

h′z(t) are Ck−1 by proposition 6.4 and corollary 3.2.

We are left to check that p(z, t) is Ck−1 at a critical point u0 = uz0(t0).

In proposition 6.5, take A = X and q(u) = f ′(u) ∈ L(X, Y ), so that

u ∈ X 7→ f ′(u) ∈ L(X, Y ) is a Ck−1 map by corollary 6.2. Use proposition 6.5

to conclude that, there exists a ball B(uz0(t0)) ⊂ X in which we can define a

Ck−1 function u 7→ (φ1(u), φ∗1(u)) such that

DF (uz0(t0))φ1(z, t0) = λ1(z0, t0)φ1(z0, t0)

DF (uz0(t0))∗φ∗1(z0, t0) = λ1(z0, t0)φ∗1(z0, t0)

DF (u)φ1(u) = λ1(−DF (u),Ω)φ1(u)

DF (u)∗φ∗1(u) = λ1(−DF (u)∗,Ω)φ∗1(u) = λ1(−DF (u),Ω)φ∗1(u).

Take a small ball B((z0, t0)) ⊂ HY × R such that Φ(B(z0 + t0φ1)) ⊂
B(uz0(t0)). Since (z, t) ∈ HY × R 7→ uz(t) ∈ X is Ck, by the chain rule, the

map

(z, t) ∈ B((z0, t0)) 7→ uz(t) 7→ (φ1(z, t), φ∗1(z, t))

is Ck−1. It follows that

(z, t) 7→ p(z, t) =
〈u′z(t), φ∗1(z, t)〉
〈φ1, φ∗1(z, t)〉

is Ck−1 in B((z0, t0)). We conclude that (z, t) 7→ p(z, t) is Ck−1 is all of HY ×R.

Corollary 3.11 If f is Ck and j ≤ k and h′z0(t0) = . . . = hjz0(t0) = 0, then

λ1(z0, t0) = . . . = λj−1
1 (z0, t0) = 0. Moreover, if j < k, then

hj+1
z0

(t0) = p(z0, t0)λj1(z0, t0).
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Proof: The first part is an immediate consequence of Proposition 3.10.

Moreover, the same proposition assures that λ1(z, t) and p(z, t) are Ck−1. By

the product rule of differentiation,

hj+1
z (t) =

j∑
m=0

j!

m!(j − k)!
λj−m1 (z, t)pj(z, t).

so that hj+1
z0

(t0) = λj1(z0, t0)p(z0, t0).
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