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A differentiable fold

Our goal in this chapter is to prove theorem 1.3. To this end we obtain necessary

and sufficient conditions for F to be a differentiable fold. Sufficient conditions

are obtained in section 4.1. Necessary conditions are obtained in section 4.2.

In section 4.3, we conclude the proof of theorem 1.3. Finally, in section 4.4, we

provide some geometric properties of the height function hz when f is convex.

Throughout this chapter we assume that f ∈ C2(R), f ′(R) = (a, b) and,

for B as in theorem 3.6, a < λ1 < b ≤ B. The hypotheses above imply that

hypothesis (2.7) is valid and that F , Φ, hz are C2 by corollaries 6.2 and 3.2,

respectively.

4.1

Sufficient conditions

Add the hypothesis f ′′ ≥ 0. Note that hypothesis (2.8) is now valid with ã = a

and b̃ = b. By proposition C.1, to prove that F is a differentiable fold, it suffices

to

1. Prove that F is C2, a consequence of corollary 6.2;

2. Obtain the Lyapunov-Schmidt reduction given by Φ, done in theorem

3.6, and show that Φ is a C2-diffeomorphism, done in lemma 3.1;

3. Show that, for all z ∈ HY , the height function t 7→ hz(t) satisfy

lim
|t|→−∞

hz(t) = −∞, which was proved in proposition 2.14;

4. Show that, for all z ∈ HY , at a critical point t0 of hz, we have h′′z(t0) < 0.

This is very close to what Berger and Podolak did in [9] to obtain an exact

count of solutions for the equation −∆u−f(u) = g for u ∈ H2(Ω)∩H1
0 (Ω) and

g ∈ L2(Ω), except that, in their case, F was just C1 (then, F was a topological

fold). Nevertheless, it was still possible to differentiate each height hz twice by

observing that elliptic estimates provide u′z(t) ∈ L∞(Ω).
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Chapter 4. A differentiable fold 46

We prove item 4 in the list above supposing, additionally, that f ′′(0) > 0.

This actually proves the first part of theorem 1.6.

Lemma 4.1 If f ∈ C2(R), f ′′ ≥ 0, f ′′(0) > 0 and f ′(R) = (a, b) with

a < λ1 < b ≤ B then at a critical point uz(t0) of F we have that h′′z(t0) < 0.

We provide two proofs which rely on the fact that F is C2. The first one obtains

a formula for
∂λ1

∂t
(z, t) and the second one a formula for h′′z(t).

There is still a third proof which uses only the fact that u′z(t) ∈ L∞(Ω)

and F ∈ C1. This is the one which shows that hz is twice differentiable in the

case studied by Berger and Podolak, even though F is just C1. We do not give

this proof as it is more technical and out of context.

First proof: For simplicity, given z ∈ HY , take t near t0 and let (λ1(t), φ1(t)),

(λ1(t), φ∗1(t)) be some principal eigenpairs of DF (uz(t)) and DF (uz(t))
∗,

respectively. The principal eigenpairs above have C1 dependence on t (use

proposition 6.5 to obtain such pairs). Note that

DF (uz(t))φ1(t) = λ1(t)φ1(t).

Differentiating on t we have

DF (uz(t))φ
′
1(t)− f ′′(uz(t))u′z(t)φ1(t) = λ′1(t)φ1(t) + λ1(t)φ′1(t)

=⇒ (DF (u(t))− λ1(t))φ′1(t)− f ′′(uz(t))u′z(t)φ1(t) = λ′1(t)φ1(t)

Apply the functional φ∗1(t) to obtain

λ′1(t) = −〈f
′′(uz(t))u

′
z(t)φ1(t), φ∗1(t)〉

〈φ1(t), φ∗1(t)〉
(4.1)

We observe that the formula for λ′1(t) above does not depend on the choice of

the eigenvectors φ1(t) and φ∗1(t).

As f ′′(0) > 0, there exists an interval (−ε, ε) ⊂ R on which f ′′ > 0. Since

uz(t) is continuous and uz(t)|∂Ω = 0, there exists some measurable Bz,t ⊂ Ω

with positive measure on which −ε < uz(t) < ε. Since f ′′ ≥ 0 and f ′′(uz(t)) > 0

on Bz,t we have that f ′′(uz(t)) ≥ 0 and is positive on the set Bz,t where

|Bz,t| > 0.

For t = t0, uz(t0) is critical, so that, from lemma 3.9 we have u′z(t0) > 0.

It follows that λ′1(t0) < 0.

From corollary 3.8, as h′z(t0) = 0 we have that λ1(t0) = 0. Now, corollary

3.11 implies that h′′z(t0) = p(z, t)λ′1(z, t) with p(z, t) > 0, so that h′′z(t0) < 0.
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Second proof: Consider the function t 7→ F (uz(t)) = z + hz(t)φ1 and

differentiate it twice on t to obtain, by the chain rule,

−Lu′′z(t)− f ′(uz(t))u′′z(t)− f ′′(uz(t))u′z(t)2 = h′′z(t)φ1,

so that DF (uz(t))u
′′
z(t)− f ′′(uz(t))u′z(t)2 = h′′z(t)φ1.

Apply the functional φ∗1(t) := φ∗1(z, t) 6= 0 such that

DF (uz(t))
∗φ∗1(t) = λ1(z, t)φ∗1(t)

to obtain

h′′z(t)〈φ1, φ
∗
1(t)〉 = 〈DF (uz(t))u

′′
z(t), φ

∗
1(t)〉 − 〈f ′′(uz(t))u′z(t)2, φ∗1(t)〉

= λ1(z, t)〈u′′z(t), φ∗1(t)〉 − 〈f ′′(uz(t))u′z(t)2, φ∗1(t)〉

The formula above does not depend on the choice of the eigenvector φ∗1(t).

Now, if t = t0 and λ1(z, t0) = 0 we have

h′′z(t0) = −〈f
′′(uz(t0))u′z(t0)2, φ∗1(t0)〉

〈φ1, φ∗1(t)〉
(4.2)

which is negative since u′z(t0) > 0, φ∗1(t0) > 0 and f ′′(uz(t0)) ≥ 0 in Ω and is

stricly positive in some measurable Bz,t0 ⊂ Ω with positive measure. It follows

that h′′z(t0) < 0.

What if f ′′(0) = 0? Will F still be a differentiable fold?

Lemma 4.2 Suppose that f ∈ C2(R), f ′′ ≥ 0, f ′′(0) = 0, f ′(R) = (a, b) with

a < λ1 < b ≤ B and f ′(0) 6= λ1. Then at a critical point uz(t0) of F we have

that h′′z(t0) < 0.

Proof: The proof is divided in two cases, the first one is where f ′′ is not

identically 0 in a closed interval containing 0, and the other one when it is.

(First case) Let u = uz(t) ∈ X be a critical point. Either u ≡ 0 or u 6= 0.

Suppose, by contradiction that u ≡ 0. Then, uz(t) = wz(t) + tφ1 ∈ HY ⊕ VY
with wz(t) ≡ 0 and t = 0. Use equation (3.1) to obtain

h′z(0) = λ1 −
∫

Ω
f ′(0)u′z(0)φ∗1
〈φ1, φ∗1〉

= λ1 − f ′(0) 6= 0.

By lemma 3.7, u is not a critical point.
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Suppose u = uz(t) 6= 0. Set ‖u‖L∞(Ω) = δ > 0. Take points p, n ∈ R such

that −δ < n < 0 < p < δ and f ′′(n), f ′′(p) > 0. As u is continuous in Ω, δ is

in its range and u equals 0 at ∂Ω, then there exists some point x0 ∈ Ω such

that u(x0) = p or u(x0) = n. It follows that, the continuous function f ′′ ◦ u is

positive at x0 ∈ Ω. Then, there exists a ball B(x0) ⊂ Ω in which f ′′(u) > 0.

From equation (4.2),

h′′z(t) = −
∫

Ω
f ′′(uz(t))u

′
z(t)φ

∗
1

〈φ1, φ∗1〉
≤ −

∫
B(x0)

f ′′(uz(t))u
′
z(t)φ

∗
1(z, t)

〈φ1, φ∗1〉
< 0.

(Second case) By an argument similar to the one in the previous case, we

have that u ≡ 0 cannot be a critical point.

Suppose that [α, β] is the maximal interval containing 0 such that, if

s ∈ [α, β], then f ′′(s) = 0. Note that at least one of the terms α or β is finite

since f ′(R) = [a, b] with a 6= b.

Let 0 6= u = uz(t) ∈ X be a critical point of F . Either α ≤ u ≤ β or

there exists some x ∈ Ω such that u(x) > β or u(x) < α.

If α ≤ u ≤ β then f ′′(u) = 0 and f ′(u) ≡ f ′(0). From equation (3.1), it

follows that h′z(t) = λ1 − f ′(0) 6= 0, that is, u is not a critical point.

On the other hand, suppose, without loss, that u(x) > β for some x ∈ Ω.

As u equals 0 at ∂Ω, by the definition of [α, β] and the continuity of f ′′◦u, there

exists some x0 ∈ Ω such that f ′′(u(x0)) > 0 and there exists a ball B(x0) ⊂ Ω

in which f ′′(u) > 0. Again, from equation (4.2),

h′′z(t) = −
∫

Ω
f ′′(uz(t))u

′
z(t)φ

∗
1

〈φ1, φ∗1〉
≤ −

∫
B(x0)

f ′′(uz(t))u
′
z(t)φ

∗
1(z, t)

〈φ1, φ∗1〉
< 0.

Up until now we have the following: under usual Lipschitz and asymptotic

hypotheses on f , if f ′′ ≥ 0 and either f ′′(0) > 0 or both f ′′(0) = 0 and

f ′(0) 6= λ1, then F is a differentiable fold.

One can use proposition C.1 to prove the result below, nevertheless, there

is a simple real analysis argument to that fact.

Proposition 4.3 Under the hypotheses of lemma 4.1 or lemma 4.2, for every

z ∈ HY , the height function hz has a single critical point.

Proof: By proposition 2.14, for every z ∈ HY , its height function hz has some

critical point.
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Suppose that, for z ∈ HY and t0 < t1 we have that uz(t0) and uz(t1)

are critical points of F . By lemma 3.7, h′z(t0) = h′z(t1) = 0 and, by lemma

4.1, h′′z(t0) is negative. Then, there exists an interval (t0, t) ∈ R such that, for

all s ∈ (t0, t), we have h′z(s) < 0. Take s0 := inf{s > t : h′z(s) = 0} which

is well defined, because t1 ∈ {s > t : h′z(s) = 0}, and s0 > t > t0. Then,

h′z(s) < h′z(s0) = 0 for all s ∈ (t0, s0). If follows that

h′z(s)− h′z(s0)

s− s0

> 0,

which is a contradiction, since h′z(s0) = 0 and h′′z(s0) < 0, by lemma 4.1.

4.2

Necessary conditions

We first prove that convexity is necessary for F to be a differentiable fold.

Proposition 4.4 Suppose that f ∈ C2(R), f ′(R) = [a, b] with a < λ1 < b ≤ B

where B is given in theorem 3.6. Also, suppose that

lim
s→−∞

f ′(s) = a , lim
s→+∞

f ′(s) = b.

Then, if there exists some r ∈ R such that f ′′(r) < 0, then there exists some

g ∈ Y such that the equation F (u) = g for u ∈ X has at least four solutions.

Proof: We have seen in proposition 2.16 that lim|t|→∞ h(z, t) = −∞. So it

suffices to find a critical point u0 = uz(t0) of F : X → Y such that h′′z(t0) > 0.

The idea is to use two nonlinear functionals,

λ1 : Y → R , u 7→ λ1(L+ f ′(u),Ω)

ψ : Y → R , u 7→ −〈f ′′(u)φ1(u)2, φ∗1(u)〉

where φ1(u) and φ∗1(u) are, respectively, the positive, normalized in X and Y ∗

eigenfunctions of the elliptic operator L+ f ′(u) and its adjoint (L+ f ′(u))∗.

We claim that when λ1(u) = 0 and u = uz(t) ∈ X, then ψ(u) has the

same sign as h′′z(t). Note that, in this case, u′z(t)/‖u′z(t)‖X = φ1(z, t) (apply

lemma 3.9). From equation (4.2)

h′′z(t) = −〈f
′′(uz(t))u

′
z(t)

2, φ∗1(t)〉
〈φ1, φ∗1(t)〉

= ψ(u)
‖u′z(t)‖2

X

〈φ1, φ∗1(t)〉
,

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Chapter 4. A differentiable fold 50

so we claim that it suffices to find some u = uz(t) ∈ X such that λ1(u) = 0 and

ψ(u) > 0. By proposition 2.14, our hypotheses imply that lim|t|→−∞ hz(t) =

−∞. So, if we show that, for some t0 ∈ R we have h′z(t0) = 0 and h′′z(t0) > 0,

then there exists some s0 ∈ R such that the equation hz(t) = s0 has at least

four solutions thus finishing the proof. In other words, we have found a critical

point of t 7→ hz(t) which is a local minimum.

Recall that, in this context, f ′′ changes sign, so that it is not guaranteed

that ψ has always the same sign, demanding a more careful argument.

To that end, we first note that ψ and λ1 are continuous. After that we

obtain some u ∈ Y such that λ1(u) = 0 and ψ(u) > 0. Finally, with a sort of

regularization argument, we obtain some u0 ∈ X near u ∈ Y (in the Y norm)

such that λ1(u0) = 0 and ψ(u0) > 0 to finish the proof.

Lemma 4.5 The maps

λ1 : Y → R , u 7→ λ1(L+ f ′(u),Ω)

φ1 : Y → X , u 7→ φ1(L+ f ′(u),Ω)

φ∗1 : Y → Y ∗ , u 7→ φ1((L+ f ′(u))∗,Ω)

with

φ1(u) > 0 , ‖φ1(u)‖X = 1 ,

φ∗1(u) > 0 , ‖φ∗1(u)‖Y ∗ = 1.

are continuous.

Proof: Take uk → u0 in Y . It follows that there exists a subsequence uki such

that f ′(uki) → f ′(u0) almost everywhere. As |f ′(uki)| ≤ M , the dominated

convergence theorem implies that f ′(uki) converges to f ′(u0) in Y . As for all

sequence there exists some subsequence with that property, it follows that for

all uk → u0 we have f ′(uk)→ f ′(u0) in Y .

Now, use proposition 6.6 to see that the maps λ1, φ1 and φ∗1 above are

continuous.

�

Lemma 4.5 above provides the continuity of λ1. The continuity of ψ

depends on the continuity of φ1 and φ∗1 and the continuous inclusion X ↪→
C0(Ω): we omit its proof.
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For Ω ⊂ Rn, take a box, containing Ω, parallel to the cartesian axis.

Define for x = (x1, . . . , xn) ∈ Ω and (s, l, r) ∈ R3,

u(s, l, r)(x) :=

{
l , x1 ≤ s

r , x1 > s

Suppose that f ′(r) > λ1. Take a sequence lk → −∞ such that f ′(lk) < λ1 and

is decreasing. We claim that, for each k ∈ N, there exists sk ∈ R such that

λ1(u(sk, lk, r)) = 0. Just observe that, as Ω is bounded, for very negative s,

u(s, lk, r) = r, so that

λ1(u(s, lk, r)) = λ1(−L− f ′(r),Ω) = λ1 − f ′(r) < 0.

On the other hand for very big s, u(s, lk, r) = lk so that

λ1(u(s, lk, r)) = λ1(−L− f ′(lk)) = λ1 − f ′(lk) > 0.

By the continuity of λ1 : Y → R, we obtain the sequence {sk}k.

Set uk := u(sk, lk, r). By definition, λ1(uk) = 0. Now we calculate ψ(uk)

ψ(uk) = −
∫
{uk=lk}

f ′′(lk)φ1(uk)
2φ∗1(uk)−

∫
{uk=r}

f ′′(r)φ1(uk)
2φ∗1(uk).

By the monotonicity of the principal eigenvalue, sk is increasing. Note

that the sequence sk is bounded (by maxx∈Ω |x1|), so that it has a (already

relabelled) convergent subsequence {sk} with limit s∞. We claim that

min
x∈Ω

x1 < s∞ < max
x∈Ω

x1.

If not, the principal eigenvalue λ1(uk) = 0 would not converge to 0, a

contradiction. For a measurable subset A ⊂ Ω define, for x ∈ Ω, the function

χ : Ω→ R satisfying χ(x) = 1 if x ∈ A and χ(x) = 0 if x /∈ A.

Observe that

1. f ′(uk) → bχ{x1≤s∞} + f ′(r)χ{x1>s∞} = q∞ almost everywhere. As f ′(uk)

is uniformly bounded, it converges in Y to bχ{x1≤s∞} + f ′(r)χ{x1>s∞}.

2. Analogously, f ′′(uk)→ f ′′(r)χ{x1>s∞}+ 0χ{x1≤s∞} = f ′′(r)χ{x1>s∞} in Y .

We note that, by proposition 6.6, the sequence of potentials f ′(uk) : X → Y

converge to q∞ : X → Y .
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By proposition 6.6, we have the following convergences

φ1(uk)→ φ1(L+ q∞,Ω) = φ1,∞ > 0

φ∗1(uk)→ φ1

(
(L+ q∞)∗,Ω

)
= φ∗1,∞ > 0

where both sequences are of normalized functions in X and Y ∗ respectively.

Now, it is easy to see that

ψ(uk)→ ψ∞ := −
∫
{x1>s∞}

f ′′(r)φ2
1,∞φ

∗
1,∞ > 0.

Take k ∈ N such that ψ(uk) > 0. Also, there exists a ball B(uk) ⊂ Y such

that ψ(u) > 0 for every u ∈ B(uk). There exists some δ > 0 such that, for all

ε ∈ (0, δ), we have u(sk, lk, r± ε) ∈ B(uk) and f ′ is decreasing in (r− δ, r+ δ),

since f ′′(r) < 0.

For all ε such that 0 < ε < δ and x ∈ {x = (x1, . . . xn) ∈ Rn : x1 ≥ sk},
we have

−f ′(u(sk, lk, r − ε)) < −f ′(uk) < −f ′(u(sk, lk, r + ε))

so that, by [13, proposition 2.1] (monotonicity of the principal eigenvalue)

λ1(u(sk, lk, r − ε)) < λ1(uk) = 0 < λ1(u(sk, lk, r + ε)).

Take u+, u− ∈ B(uk)∩X close to u(sk, lk, r+ ε) and u(sk, lk, r− ε) in the

norm of Y respectively, such that λ1(u+) > 0 and λ1(u−) < 0. As they belong

to B(uk), we have ψ((1−t)u−+tu+) > 0 for all t ∈ [0, 1], and λ1((1−t)u−+tu+)

changes sign as t goes from 0 to 1. It follows that there exists some point u ∈ X
such that λ1(u) = 0 and ψ(u) > 0.

The case f ′(r) < λ1 and is handled in a similar fashion taking a sequence

lk → +∞.

If f ′(r) = λ1 and f ′′(r) < 0, then begin with the function u(x) = r ∈ Y
so that ψ(u) > 0 and λ1(u) = 0 and obtain the desired u0 ∈ X as we did

before.

Now we prove that, if f ′′ ≥ 0 and f ′′(0) = 0, then f ′(0) 6= λ1 is also

necessary for F to be a differentiable fold. It is very easy, indeed. Just note

that, if both f ′(0) = λ1 and f ′′(0) = 0, then at u = wz(t) + tφ1 ≡ 0 we have
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Figure 4.1: Here, uk(ε+) = u(sk, lk, r + ε) and uk(ε−) = u(sk, lk, r − ε).

that t = 0, so that

h′z(t) = λ1 − λ1

∫
Ω
u′z(0)φ∗1
〈φ1, φ∗1〉

= λ1 − λ1 = 0,

that is, u ≡ 0 is a critical point. Also, h′′z(0) = 0 since f ′′(u) ≡ 0, that is, the

point u ≡ 0 is critical but is not a fold point. Use equivalence C.1 to conclude

that F is not a differentiable fold.

We finish this section with a simple example. Suppose that f(0) = 0,

f ′′ ≥ 0, and that there exists an interval [α, β] containing 0 such that

f ′′|[α,β] ≡ 0. Suppose that f ′(0) = λ1 and, without loss, that α = 0. We claim

that the segment tφ1 for t ∈ [0, β/maxφ1] satisfies F (tφ1) = 0, that is, equation

F (u) = 0 has a segment of solutions. Observe that f |[0,β](s) = sλ1 and that,

for all t ∈ [0, β/maxφ1], we have tφ1 ∈ [0, β]. Hence, for all t ∈ [0, β/maxφ1]

F (tφ1) = −Ltφ1 − f(tφ1) = tλ1φ1 − tλ1φ1 = 0.

4.3

An equivalence statement

We resume what we did in this chapter with the following theorem.

Theorem 4.6 Suppose that f ∈ C2(R), f ′(R) = [a, b] and, for B as in

theorem 3.6, a < λ1 < b ≤ B. Then, the map F is a differentiable fold if,

and only if, f ′′ ≥ 0 and either f ′′(0) > 0 or both f ′′(0) = 0 and f ′(0) 6= λ1.

Proof: (=⇒) Suppose that F is a differentiable fold. By proposition C.1, we

must have that, at every critical point uz(t0) of F , h′′z(t0) < 0. By proposition
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4.4, we have that f ′′ ≥ 0. If f ′′(0) > 0, then by lemma 4.1, we have that

h′′z(t0) < 0. On the other hand, if f ′′(0) = 0, then we must have that f ′(0) 6= λ1,

otherwise 0 would be such that h′z(0) = 0 = h′′z(0) as shown at the end of section

4.2 that is, 0 is a critical point of hz but not a fold point.

(⇐=) Since f ′′ ≥ 0 and f ′(R) = [a, b] with a < λ1 < b, we have that

lim
s→−∞

f ′(s) = a , lim
s→+∞

f ′(s) = b

so that, by proposition 2.14, lim|t|→∞ hz(t) = −∞. Now, by lemmas 4.1 and

4.2, both the conditions f ′′(0) > 0 and f ′′(0) = 0 with f ′(0) 6= λ1 imply that

at a critical point t0 of hz, we have that h′′z(t0) < 0. Apply proposition C.1 and

conclude that F is a differentiable fold.

4.4

Geometry of heights for C2 convex nonlinearities

This section contains some important results that we use in chapter 5.

Here we say something about the behaviour of h′z(t) at infinity and discuss

the sign of h′′z and the monotonicity of λ1. In this section, B is given by theorem

3.6.

Proposition 4.7 Suppose that f ∈ C1(R) and

lim
s→−∞

f(s)

s
= a < λ1 < lim

s→+∞

f(s)

s
= b ≤ B

Then, given z ∈ HY , we have

lim
t→−∞

h′z(t) = λ1 − a , lim
t→+∞

h′z(t) = λ1 − b.

Proof: Recall that, from equation (3.2),

−Lu′z(t)− f ′(uz(t))u′z(t) = h′z(t)φ1.

Note that h′z(t) is bounded since DF (uz(t)) is uniformly bounded and, from

theorem 3.6, u′z(t) is bounded in X (Φ(z + tφ1) = u(z, t) = uz(t) is Lipschitz).

Take a sequence tk → +∞. There exists a subsequence (already relabelled)

such that h′z(tk)→ h∞ and u′z(tk)→ u∞ in C0(Ω).
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Observe that f ′(uz(tk)) → b in Ω (recall that uz(tk)/tk → φ1 by lemma

2.13) and is bounded by B. It follows that

f ′(uz(tk))u
′
z(tk)→ bu∞ , and |f ′(uz(tk))u′z(tk)| ≤ bmax

k∈N
‖u′z(tk)‖C0(Ω).

so that, by the dominated convergence theorem, f ′(uz(tk))u
′
z(tk)→ bu∞ in Y .

Apply L−1 : Y → X to the equation in the beginning of the proof to

obtain

u′z(tk) = L−1
(
f ′(uz(tk))u

′(z, tk)
)

+
h′z(tk)

λ1

φ1

with the right hand side converging to bL−1u∞ + h∞φ1 in X, that is, u′z(tk)

converges in X. As u′z(tk)→ u∞ in Y , we have that u′z(tk)→ u∞ in X.

Finally, making k →∞, we have

−Lu′z(tk)− f ′(uz(tk))u′z(tk) = h′z(tk)φ1 → −Lu∞ − bu∞ = h∞φ1

so that u∞ is parallel to φ1. As u′z(tk) = w′z(tk)+φ1 → cφ1 = u∞, we have that

c = 1, that is, u∞ = φ1. Then we obtain −Lφ1 − bφ1 = (λ1 − b)φ1 = h∞φ1.

As {tk}k is an arbitrary sequence, it follows that t → +∞ implies that

‖w′z(t)‖X → 0, ‖u′z(t)− φ1‖X → 0 and h′z(t)→ λ1 − b.

The case t→ −∞ is handled similarly with h′z(t)→ λ1 − a.

Proposition 4.8 Suppose that f ′′ ≥ 0, f ′′(0) > 0 and that f ′(R) = [a, b],

a < λ1 < b ≤ B. For every z ∈ HY , the corresponding function t 7→ hz(t) is

concave up until its single critical point t0.

Proof: First we prove that, for t < t0, the maximum principle is valid for

DF (uz(t)). Note that t 7→ λ1(DF (uz(t))) is a continuous function that reaches

0 only once, more precisely, at t = t0. As we have seen in the first proof of

lemma 4.1, λ′1(z, t0) < 0, so that it is positive for t < t0 and negative for t > t0.

It follows that the maximum principle is valid for DF (uz(t)) if t < t0 [13,

theorem 1.1].

Recall that F (uz(t)) = z + hz(t)φ1. Differentiate it twice on t to obtain

DF (uz(t))u
′′
z(t) = −Lu′′z(t)− f ′(uz(t))u′′z(t) = f ′′(uz(t))u

′
z(t)

2 + h′′z(t)φ1.

Suppose that, for some t− < t0, h′′z(t−) ≥ 0. It follows that the right hand

side is positive. By the maximum principle u′′z(t−) ≥ 0. The strong maximum

principle implies that either u′z(t−) > 0 or u′′z(t−) ≡ 0. As the right hand side
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is not identically zero and DF (uz(t−)) is bijective, it follows that u′′z(t−) > 0.

This is a contradiction with the fact that u′′z(t−) = w′′z (t−) ∈ HX (recall that

u′z(t) = w′z(t) + φ1 ∈ HX ⊕ VX and w ∈ HX =⇒ 〈w, φ∗1〉 = 0).

We conclude that, h′′z(t) < 0 for every t ≤ t0.

Lemma 4.9 Let f ′′ > 0, f ′(R) = (a, b) and a < λ1 < b ≤ B. Given a fiber uz

let u0 = uz(t0) be the single critical point of F contained in it. Then, for all

t ≤ t0 we have u′z(t) > 0.

Proof: If t = t0, DF (u0)u′z(t0) = 0 so that, by lemma 3.9, u′z(t0) > 0. For

t < t0 we have that λ1(z, t) > 0 so that the maximum principle is valid for

DF (uz(t)) and h′z(t) = λ1(z, t)p(z, t) > 0. Then,

DF (uz(t))u
′
z(t) = h′z(t)φ1 > 0.

An application of the maximum principle and the strong maximum principle

provides u′z(t) > 0.

Proposition 4.10 Under the hypothesis of lemma 4.9, the restriction of

t 7→ λ1(z, t) to (−∞, t0) is strictly decreasing.

Proof: Recall equation (4.1)

λ′1(z, t) = −〈f
′′(uz(t))u

′
z(t)φ1(z, t), φ∗1(z, t)〉

〈φ1(z, t), φ∗1(z, t)〉
.

By lemma 4.9, for t ≤ t0 we have λ′1(z, t) < 0.
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