5

A topological fold

Take some convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ with Lipschitz bounds a and b such that

$$
\begin{equation*}
a \leq \frac{f(x)-f(y)}{x-s} \leq b \leq B \tag{5.1}
\end{equation*}
$$

where B is as in theorem 3.6. Suppose that

$$
\begin{equation*}
a=\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow+\infty} \frac{f(s)}{s}=b . \tag{5.2}
\end{equation*}
$$

In the first section we prove a counting result with f as above. In the second section we define strict convexity at a point $s \in \mathbb{R}$ and suppose that f is strictly convex at 0 to prove that F is a topological fold.

5.1

A count of solutions for convex Lipschitz nonlinearities
Theorem 5.1 Suppose that f is convex (but not necessarily strictly convex) and satisfies hypotheses (5.1) and (5.2). Then, for every $z \in H_{Y}$ there exists $t_{z} \in \mathbb{R}$ such that the equation $F(u)=-L u-f(u)=z+t \phi_{1}$ for $u \in X$ has the following count of solutions:

1. no solution if $t>t_{z}$,
2. exactly one solution or a curve of solutions if $t=t_{z}$,
3. exactly two solutions or one solution and a curve of solutions if $t<t_{z}$.

In order prove theorem 5.1, we approximate F by functions

$$
F_{\delta}: X \rightarrow Y, \quad u \mapsto-L u-f_{\delta}(u)
$$

$\delta>0$, where f_{δ} is a regularization of f defined by equation (A.1).
Proof: For $F_{\delta, t}(w)=F_{\delta}\left(w+t \phi_{1}\right)$, define

$$
P F_{\delta, t}: H_{X} \rightarrow H_{Y}, \quad w \mapsto P F_{\delta}\left(w+t \phi_{1}\right) .
$$

Given $z \in H_{Y}$, the fiber of F_{δ} related to z is defined by

$$
u_{\delta, z}(t)=w_{\delta, z}(t)+t \phi_{1}:=\left(P F_{\delta, t}\right)^{-1}(z)+t \phi_{1} .
$$

From equation (2.6), the height function of F_{δ} related to z is given by

$$
h_{\delta, z}(t):=\left\langle F_{\delta}\left(u_{\delta, z}(t)\right), \phi_{1}^{*}\right\rangle=\lambda_{1} t-\frac{\left\langle f_{\delta}\left(u_{\delta, z}(t)\right), \phi_{1}^{*}\right\rangle}{\left\langle\phi_{1}, \phi_{1}^{*}\right\rangle} .
$$

We prove that, given $z \in H_{Y}, \delta \rightarrow 0$ implies that $h_{\delta, z}(t) \rightarrow h_{z}(t)$ uniformly. Suppose $\left\|\phi_{1}^{*}\right\|_{Y^{*}}=1$. By the Hölder inequality and the Lipschitz bounds on f_{δ}

$$
\begin{aligned}
& \left|h_{\delta, z}(t)-h_{z}(t)\right|\left\langle\phi_{1}, \phi_{1}^{*}\right\rangle \\
= & \left|\left\langle f_{\delta}\left(u_{\delta, z}(t)\right)-f\left(u_{z}(t)\right), \phi_{1}^{*}\right\rangle\right| \\
\leq & \left\|f_{\delta}\left(u_{\delta, z}(t)\right)-f\left(u_{z}(t)\right)\right\|_{Y}\left\|\phi_{1}^{*}\right\|_{Y^{*}} \\
\leq & \left\|f_{\delta}\left(u_{\delta, z}(t)\right)-f_{\delta}\left(u_{z}(t)\right)\right\|_{Y}+\left\|f_{\delta}\left(u_{z}(t)\right)-f\left(u_{z}(t)\right)\right\|_{Y} \\
\leq & (|a|+|b|)\left\|u_{\delta, z}(t)-u_{z}(t)\right\|_{Y}+\left\|f_{\delta}\left(u_{z}(t)\right)-f\left(u_{z}(t)\right)\right\|_{Y} \\
\leq & (|a|+|b|)\left\|w_{\delta, z}(t)-w_{z}(t)\right\|_{Y}+\left\|f_{\delta}\left(u_{z}(t)\right)-f\left(u_{z}(t)\right)\right\|_{Y}
\end{aligned}
$$

By lemma 2.8, $\delta \rightarrow 0$ implies that $\left\|f_{\delta}\left(u_{z}(t)\right)-f\left(u_{z}(t)\right)\right\|_{Y} \rightarrow 0$ uniformly on t. We are left to prove that, for fixed $z \in H_{Y}, \delta \rightarrow 0$ implies that $\left\|w_{\delta, z}(t)-w_{z}(t)\right\|_{Y} \rightarrow 0$ uniformly on t.

Note that, for all $t \in \mathbb{R}, P F_{t}\left(w_{z}(t)\right)=z$ and $P F_{\delta, t}\left(w_{\delta, z}(t)\right)=z$, so that

$$
\begin{aligned}
0 & =\left\|P F_{\delta, t}\left(w_{\delta, z}(t)\right)-P F_{t}\left(w_{z}(t)\right)\right\| \\
& \geq\left\|P F_{\delta, t}\left(w_{\delta, z}(t)\right)-P F_{\delta, t}\left(w_{z}(t)\right)\right\|_{Y}-\left\|P F_{\delta, t}\left(w_{z}(t)\right)-P F_{t}\left(w_{z}(t)\right)\right\|_{Y} .
\end{aligned}
$$

Recall that $P F_{\delta, t}\left(w_{z}(t)\right)=P F_{\delta}\left(w_{z}(t)+t \phi_{1}\right)=P F_{\delta}\left(u_{z}(t)\right)$, so that

$$
\begin{aligned}
\left\|P F_{\delta}\left(u_{z}(t)\right)-P F\left(u_{z}(t)\right)\right\|_{Y} & =\left\|P F_{\delta, t}\left(w_{z}(t)\right)-P F_{t}\left(w_{z}(t)\right)\right\|_{Y} \\
& \geq\left\|P F_{\delta, t}\left(w_{\delta, z}(t)\right)-P F_{\delta, t}\left(w_{z}(t)\right)\right\|_{Y}
\end{aligned}
$$

By propositon A.1, $f_{\delta}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
a \leq \frac{f_{\delta}(x)-f_{\delta}(y)}{x-y} \leq b \leq B, \quad x \neq y .
$$

By proposition $2.5,\left(P F_{\delta, t}\right)^{-1}$ is Lipschitz with constant C not depending on δ
and t. It follows that, for all $t \in \mathbb{R}$ and $\delta>0$,

$$
\left\|P F_{\delta, t}\left(w_{\delta, z}(t)\right)-P F_{\delta, t}\left(w_{z}(t)\right)\right\|_{Y} \geq C\left\|w_{\delta, z}(t)-w_{z}(t)\right\|_{X}
$$

and we have

$$
\left\|P F_{\delta}\left(u_{z}(t)\right)-P F\left(u_{z}(t)\right)\right\|_{Y} \geq C\left\|w_{\delta, z}(t)-w_{z}(t)\right\|_{X} .
$$

As $P: Y \rightarrow Y$ is linear continuous and, by lemma $2.8, \delta \rightarrow 0$ implies that $F_{\delta} \rightarrow F$ uniformly, we have $\left\|w_{\delta, z}(t)-w_{z}(t)\right\|_{X} \rightarrow 0$ uniformly.

Clearly, $f_{\delta} \in C^{\infty}(\mathbb{R})$ so that the height functions $h_{\delta, z}$ are $C^{\infty}(\mathbb{R})$. By proposition 2.14, $\lim _{|t| \rightarrow \infty} h_{\delta . z}(t)=-\infty$ so that it has some critical point t_{z}. By lemma A.3, f_{δ} is strictly convex, so that the heights $h_{\delta, z}$ are strictly concave for $t<t_{\delta, z}$ (proposition 4.8). It follows that the height h_{z} is concave up until its lowest point of local maximum, say, t_{z}. We conclude that, for each $g \in\left\{F\left(u_{z}(t)\right): t \in \mathbb{R}\right\}$ there exists a single t such that $t<t_{z}$ and $F\left(u_{z}(t)\right)=g$.

On the other hand, $h_{\delta, z}(t)$ is decreasing for $t \geq t_{\delta, z}$, so that h_{z} is also decreasing for $t \geq t_{z}$. It follows that, for every $g \in\left\{F\left(u_{z}(t)\right): t \in \mathbb{R}\right\}$, there exists either a segment $\left[t_{1}, t_{2}\right]$ such that for $t \in\left[t_{1}, t_{2}\right]$ we have $F\left(u_{z}(t)\right)=g$ or a single point $t \geq t_{z}$ for which $F\left(u_{z}(t)\right)=g$.

5.2
 An exact count of solutions

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex and satisfies (5.1) and (5.2). Define, for all $s \in \mathbb{R}$, the set

$$
D(s)=\{d \in \mathbb{R}: \text { for all } r \in \mathbb{R}, f(r) \geq f(s)+d(r-s)\}
$$

As f is convex, $D(s) \neq \emptyset$ and is bounded for each $s \in \mathbb{R}$. Define

$$
d_{-}(s):=\inf D(s), \quad d_{+}(s):=\sup D(s)
$$

Definition 5.2 A real function f is strictly convex at $s_{0} \in \mathbb{R}$ if there exists some neighbourhood around s_{0} at which f is convex and, for all s_{1}, s_{2} in that neighbourhood such that $s_{1}<s_{0}<s_{2}$, we have $d_{+}\left(s_{1}\right)<d_{-}\left(s_{2}\right)$.

Theorem 5.3 Suppose that f is convex and satisfies hypotheses (5.1) and (5.2). If either f is strictly convex in an interval around 0 or is strictly convex at 0 with $d_{-}(0), d_{+}(0) \neq \lambda_{1}$ then, F is a topological fold.

Proof: By theorem 2.4, there exists an homeomorphism Φ such that, for all $z \in H_{Y},(F \circ \Phi)\left(z+t \phi_{1}\right)=z+h(z, t) \phi_{1}$. Also, $\lim _{|t| \rightarrow \infty} h_{z}(t)=-\infty$. We need to prove that every local extreme point of h_{z} is a strict maximum point. By theorem 5.1, we only need to exclude the possibility of appearing plateaus in the graph of the height functions h_{z}, that is, a segment on which h_{z} is constant.

Suppose by contradiction that, given $z \in H_{Y}$, there exists a segment $\left[t_{-}, t_{+}\right]$for which, for all $t \in\left[t_{-}, t_{+}\right], F\left(u_{z}(t)\right)=z+h_{z}(t) \phi_{1}=z+c \phi_{1}$. Suppose that f is strictly convex at a neighbourhood around 0 .

For simplicity, set $u(t)=w(t)+t \phi_{1}:=u_{z}(t)=w_{z}(t)+t \phi_{1}$. Define $L^{\infty}(\Omega)$ potentials

$$
V_{t_{0}, t}(x):=\left\{\begin{array}{cc}
\frac{f(u(t))-f\left(u\left(t_{0}\right)\right)}{u(t)-u\left(t_{0}\right)} & , \quad\left\{x \in \Omega: u(t)(x) \neq u\left(t_{0}\right)(x)\right\} \\
d_{-}(u(t)) & , \quad\left\{x \in \Omega: u(t)(x)=u\left(t_{0}\right)(x)\right\}
\end{array} .\right.
$$

It follows that $V_{t_{0}, t}$ has the same bounds as the quotient $\left(f(s)-f\left(s_{0}\right)\right) /\left(s-s_{0}\right)$. Note that, for all $t_{0}<t$ with $t_{0}, t \in\left[t_{-}, t_{+}\right]$, we have

$$
\left(L+V_{t_{0}, t}\right)\left(u(t)-u\left(t_{0}\right)\right)=0 .
$$

By proposition 3.5, we have that $u(t)-u\left(t_{0}\right)$ is a principal eigenfunction associated to the elliptic operator $L+V_{t_{0}, t}: X \rightarrow Y$, so that it has sign. We claim that it has the same sign as $t-t_{0}$. As $\left\langle w(t)-w\left(t_{0}\right), \phi_{1}^{*}\right\rangle=0$,

$$
\left\langle u(t)-u\left(t_{0}\right), \phi_{1}^{*}\right\rangle=\left\langle\left(t-t_{0}\right) \phi_{1}, \phi_{1}^{*}\right\rangle=\left(t-t_{0}\right)\left\langle\phi_{1}, \phi_{1}^{*}\right\rangle .
$$

Since $\left\langle\phi_{1}, \phi_{1}^{*}\right\rangle>0$ we have proved our claim.
As a consequence, if $t_{-} \leq t_{1}<t_{2}<t_{3}<t_{4} \leq t_{+}$we have that

$$
\begin{gathered}
\left(L+V_{t_{1}, t_{2}}\right)\left(u\left(t_{2}\right)-u\left(t_{1}\right)\right)=0, \quad\left(L+V_{t_{2}, t_{3}}\right)\left(u\left(t_{3}\right)-u\left(t_{2}\right)\right)=0, \\
\left(L+V_{t_{3}, t_{4}}\right)\left(u\left(t_{4}\right)-u\left(t_{3}\right)\right)=0
\end{gathered}
$$

so that $\lambda_{1}\left(L+V_{t_{1}, t_{2}}, \Omega\right)=0=\lambda_{1}\left(L+V_{t_{3}, t_{4}}, \Omega\right)$, by proposition 3.5. Moreover,

$$
\begin{equation*}
u\left(t_{1}\right)<u\left(t_{2}\right)<u\left(t_{3}\right)<u\left(t_{4}\right) . \tag{5.3}
\end{equation*}
$$

We prove that $V_{t_{3}, t_{4}} \geq V_{t_{1}, t_{2}}$ with $V_{t_{3}, t_{4}} \neq V_{t_{1}, t_{2}}$ so that

$$
\lambda_{1}\left(L+V_{t_{1}, t_{2}}, \Omega\right)=0<\lambda_{1}\left(L+V_{t_{3}, t_{4}}, \Omega\right)
$$

which is a contradiction. Note that the potentials $V_{t_{1}, t_{2}}$ and $V_{t_{3}, t_{4}}$ are continuous functions on $\bar{\Omega}$ from inequalities (5.3) and the definition of $V_{t_{0}, t}$. Clearly,

$$
d_{-}\left(u\left(t_{1}\right)\right) \leq V_{t_{1}, t_{2}} \leq d_{+}\left(u\left(t_{2}\right)\right), \quad d_{-}\left(u\left(t_{3}\right)\right)<V_{t_{3}, t_{4}}<d_{+}\left(u\left(t_{4}\right)\right)
$$

Since $u\left(t_{2}\right)<u\left(t_{3}\right)$, as f is strictly convex around 0 , we have that $d_{+}\left(u\left(t_{2}\right)\right)<$ $d_{-}\left(u\left(t_{3}\right)\right)$ at some open subset of Ω, that is, $V_{t_{1}, t_{2}} \leq V_{t_{3}, t_{4}}$ with $V_{t_{1}, t_{2}} \neq V_{t_{3}, t_{4}}$ so that $\lambda_{1}\left(L+V_{t_{1}, t_{2}}, \Omega\right)>\lambda_{1}\left(L+V_{t_{3}, t_{4}}, \Omega\right)$.

Now, suppose that f is strictly convex at 0 and that $d_{+}(0), d_{-}(0) \neq \lambda_{1}$. Suppose that there exist sequences of positive numbers $\left\{p_{k}\right\}_{k}$ and negative numbers $\left\{n_{k}\right\}_{k}$ such that $p_{k}, n_{k} \rightarrow 0$ and f is strictly convex at p_{k} and n_{k} for every $k \in \mathbb{N}$.

There exists some $k \in \mathbb{N}$ such that the images of neither $u\left(t_{2}\right)$ nor $u\left(t_{3}\right)$ contains p_{k} or n_{k} (otherwise, we would have $u\left(t_{2}\right)=u\left(t_{3}\right)=0$). Without loss, suppose that there exists some $x_{0} \in \Omega$ such that $u\left(t_{3}\right)\left(x_{0}\right)=n_{k}$. Note that $d_{-}\left(n_{k}+s\right)>d_{+}\left(n_{k}-s\right)$ for all $s \in \mathbb{R}$, since f convex in \mathbb{R} and strictly convex at n_{k}. Since $u\left(t_{2}\right)\left(x_{0}\right)<u\left(t_{3}\right)\left(x_{0}\right)$, it follows that $d_{+}\left(u\left(t_{2}\right)\right)<d_{-}\left(u\left(t_{3}\right)\right)$ at a heighbourhood around x_{0}. Then, we have that $V_{t_{1}, t_{2}} \leq V_{t_{3}, t_{4}}$ and, at a neighbourhood around $x_{0}, V_{t_{1}, t_{2}}<V_{t_{3}, t_{4}}$, so that $\lambda_{1}\left(L+V_{t_{1}, t_{2}}, \Omega\right)=0>$ $\lambda_{1}\left(L+V_{t_{3}, t_{4}}, \Omega\right)$, which is a contradiction.

Finally, suppose that there exists some interval containing 0 such that f is not strictly convex at any point. Let $[\alpha, \beta]$ be the maximal interval containing 0 with that property. It follows that

$$
\frac{f(x)-f(y)}{x-y}=c \neq \lambda_{1}(L, \Omega), \quad x, y \in[\alpha, \beta] .
$$

First, suppose that there exists some $t_{0} \in\left[t_{-}, t_{+}\right]$such that $\alpha \leq u\left(t_{0}\right) \leq$ β. Then, by equation (5.3), for some $t \in\left(t_{-}, t_{+}\right)$we have $\alpha<u(t)<\beta$. It follows that, for some $\tilde{t}>t, \alpha<u(t)<u(\tilde{t})<\beta$. That is, for all $s \in[t, \tilde{t}]$ we have $\alpha<u(s)<\beta$. Now, suppose that

$$
-L(u(\tilde{t})-u(t))-V_{t, \tilde{t}}(u(\tilde{t})-u(t))=-L(u(\tilde{t})-u(t))-c(u(\tilde{t})-u(t))=0
$$

that is, $c=\lambda_{1}(L, \Omega)$ which is a contradiction.

If there is no $t \in\left[t_{-}, t_{+}\right]$such that $u(t) \in[\alpha, \beta]$. Take $t_{1}<t_{2}<t_{3}<t_{4}$ as before and suppose, without loss, that there exists some $x \in \Omega$ such that $u\left(t_{3}\right)(x) \geq \beta$. Note that f is strictly convex at β. By the continuity of $u\left(t_{3}\right)$ and the Dirichlet condition on $u\left(t_{3}\right)$, there exists some $x_{0} \in \Omega$ such that $u\left(t_{3}\right)\left(x_{0}\right)=\beta$. Note that $u\left(t_{2}\right)<u\left(t_{3}\right)$ so that $d_{+}\left(u\left(t_{2}\right)\left(x_{0}\right)\right)<d_{-}\left(u\left(t_{3}\right)\left(x_{0}\right)\right)$, so that $V_{t_{1}, t_{2}} \leq V_{t_{3}, t_{4}}$ and $V_{t_{1}, t_{2}} \neq V_{t_{3}, t_{4}}$. This is a contradiction since

$$
\lambda_{1}\left(L+V_{t_{1}, t_{2}}, \Omega\right)=0>\lambda_{1}\left(L+V_{t_{3}, t_{4}}, \Omega\right)=0
$$

