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Technical tools

6.1

Regularity of the nonlinearity

Recall that Ω ⊂ Rn is a bounded domain with Lipschitz boundary, X :=

W 2,n(Ω) ∩ C0(Ω) and Y := Ln(Ω).

We begin by relating the regularity of f : R→ R to the regularity of

F : X → Y , u 7→ −L− f(u).

Proposition 6.1 If f ∈ Ck(R) then the map below is Ck(X, Y )

f : X 7→ Y , u 7→ Nf (u) := f(u).

Proof: Set Tv = f ′(u)v — this is the candidate for DNf (u). First, T : X → Y

is well defined and a bounded operator: indeed, f ′(u) is bounded and v ∈ X ⊂
Y . To see that DNf (u) = T , we must check that

r(t) =
Nf (u+ tv)−Nf (u)− tTv

t
→ 0 in Y .

Since f is Lipschitz, say with constant M , |r(t)| ≤M |v|+ |f ′(u)||v| ≤ 2M |v| ∈
Y — the result now follows from dominated convergence.

Now, we use the continuous embedding X ↪→ C(Ω). To show that

u 7→ DNf (u) is continuous, we have to show that

‖u− u0‖X → 0 =⇒ sup
‖v‖X=1

‖(f ′(u)− f ′(u0))v‖Y → 0.
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Since ||u− u0||∞ → 0 and f ′ is continuous, use uniform continuity to get

‖f ′(u)− f ′(u0)‖∞ → 0

and the rest is easy.

If k ≥ 2, we consider the second derivative. Let H(u)(v, w) = f ′′(u)vw

be the candidate. We show that it is well defined. Since u, v ∈ X ↪→ C(Ω),

f ′′(u) is bounded:

‖f ′′(u)vw‖Y ≤ C‖v‖∞‖w‖Y ≤ C̃‖v‖X‖w‖X .

To see that D2Nf (u) = H, we must check that

s(t) =
DNf (u+ tw)v −DNf (u)v − tH(v, w)

t
→ 0 in Y (x ∈ Ω) .

The estimate here is more delicate than the one for the first derivative. Note

that f ′ is a C1(R) function, so it is Lipschitz on compact sets. For |t| < 1 we

have that |u+ tw| is bounded. So, there exists M > 0 such that,

|f ′(u+ tw)− f ′(u)| ≤M |u+ tw − u| = M |t| |w|.

Recall that |f ′′(u)| is bounded. A simple computation provides

|s(t)| ≤M |v| |w| ∈ Y

and once more use the dominated convergence theorem.

Finally, we show continuity of D2Nf . We need to prove that

‖u− u0‖X → 0 =⇒ sup
‖v‖X=‖w‖X=1

‖(f ′′(u)− f ′′(u0))vw‖Y → 0.

Again, since ||u−u0||∞ → 0 and f ′′ is continuous, use uniform continuity

to get ‖f ′′(u)− f ′′(u0)‖∞ → 0. The inequality below ends the proof

‖(f ′′(u)− f ′′(u0))vw‖Y ≤ ‖f ′′(u)− f ′′(u0)‖∞‖vw‖Y
≤ C‖f ′′(u)− f ′′(u0)‖∞‖v‖∞‖w‖Y
≤ C̃‖f ′′(u)− f ′′(u0)‖∞‖v‖X‖w‖X
≤ C̃‖f ′′(u)− f ′′(u0)‖∞.

The proof for f ∈ Ck(R) is analogous.
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Corollary 6.2 If f : R→ R is Ck, then F : X → Y is Ck.

Now we state a result about the continuity of the potential f ′(u) when

u ∈ Y instead of X. This a consequence of proposition 6.1 and the fact that

f ′ : R→ R is bounded.

Corollary 6.3 If f ∈ C1(R), then the map below is continuous

mf ′ : Y 7→ L(X, Y ) , u 7→ f ′(u)

where f ′(u) is the multiplication operator in L(X, Y )

6.2

Proof of lemma 2.8

Proof: (lemma 2.8) Take f : R→ R satisfying

a ≤ f(x)− f(y)

x− y
≤ b , x 6= y

Consider functions fδ as defined in (A.1).

Recall that

F : X → Y , u 7→ −Lu− f(u)

Fδ : X → Y , u 7→ −Lu− fδ(u)

We want to prove that Fδ → F uniformly.

It suffices to prove that δ → 0 implies that fδ : X → Y , u 7→ fδ(u)

converges uniformly to f : X → Y , u 7→ f(u),

By proposition A.1, there exists some function c : {x > 0} → {x > 0}
such that δ → 0 implies that c(δ) → 0 and, for all x ∈ R, we have

|f(x)− fδ(x)| < c(δ).

Take u ∈ X. By the estimate above, given ε > 0, there exists some δ > 0

such that, for all x ∈ Ω, we have

|fδ(u(x))− f(u(x))| < c(δ) <
ε

|Ω| 1n

so that ‖fδ(u) − f(u)‖Y < ε. Now it is easy to obtain a sequence fk → f :

X → Y uniformly where fk : R→ R is C1 (actually, C∞).
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6.3

Regularity of the principal eigenpair

Here we assume that X = W 2,n(Ω)∩C0(Ω) and Y = Ln(Ω) and L is an elliptic

operator as defined in the introduction.

Let A be a Banach space and q : A→ L(X, Y ) be a Ck map where q(u)

is a bounded potential, that is, q(u) ∈ L∞(Ω). Clearly, the map

T : A→ L(X, Y ) , u 7→ −L− q(u)

is Ck and T (u) is an elliptic operator as in [13] and hence has a principal

eigenvalue.

Fix u0 ∈ A and suppose that |q(u)| ≤M−1. Proposition B.7 assures the

existence of a Ck function λ : B(u0) ⊂ A→ R satisfying λ(u0) = λ1(T (u0),Ω).

In proposition 6.4, we prove that there is a possibly smaller ball containing

u0 such that the restriction of λ to that ball satisfies λ(u) = λ1(T (u),Ω). We

will use this result to prove that the principal eigenpair of T (u) has a Ck

dependence on u ∈ A.

Proposition 6.4 Let A be a Banach space and q : A→ L(X, Y ) be a Ck map

where q(u) : X → Y are uniformly bounded potentials, that is, q(u) ∈ L∞(Ω)

and for some M > 0, |q(u)| ≤ M − 1. Then, for all u0 ∈ A, there exists a Ck

function λ : B(u0) ⊂ A→ R such that λ(u) = λ1(−L− q(u),Ω).

Proof: Consider the complexifications of X and Y , that is, the Banach spaces

XC := ({u+ iv : u, v ∈ X}, ‖u+ iv‖XC := (‖u‖X + ‖v‖Y )
1
2 )

YC := ({u+ iv : u, v ∈ Y }, ‖u+ iv‖YC := (‖u‖Y + ‖v‖Y )
1
2 ).

Denote the eigenvalues of −L − q(u) + M : XC → YC by λi(u) + M

ordered in a way that |λi(u) + M | ≤ |λi+1(u) + M |. Observe that, λ1(u) =

λ1(L+ q(u),Ω). Also, since |q(u)| ≤M − 1, we have

1 ≤ λ1(u) +M < Re(λi(u)) +M , for i > 1. (6.1)

In conclusion, all the eigenvalues of −L− q(u) +M have positive real part.

Consider the function

Ψ : A→ L(YC, YC) , u 7→ (−L− q(u) +M)−1.

As f ∈ Ck(R) implies that u 7→ q(u) is Ck, we have that Ψ is Ck.
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Consider complex valued functions

ξ : C−{−M} → C , ξ(z) =
1

z +M
; ξ−1 : C−{0} → C , ξ−1(z) =

1

z
−M.

Observe that the eigenvalues of Ψ(u) and −L− q(u) are given respectively by

τi(u) := ξ(λi(u)) =
1

λi(u) +M
, ξ−1(τi(u)) = λi(u).

Note that σ(Ψ(u0)) = τi(u0) ∪ {0} and, by equation 6.1, Re(τi(u)) ≤ 1.

Figure 6.1: The image of ξ|σ(−L−q(u0)).

Now fix u0 ∈ A. We provide neighbourhoods for τ1(u0) and σ(Ψ(u0)) −
{τ1(u0)} where we use proposition B.6 to obtain the desired result.

Since Re(λ2(u0) +M) > λ1(u0) +M ≥ 1 (equation 6.1) we have that

0 < Re(τ2(u0)) < τ1(u0).

Take a ball Br(τ1(u0)) ⊂ C of radius

r =
τ1(u0)−Re(τ2(u0))

2
.

Also, for i > 1,

λ1(u0) +M < |λ2(u0) +M | ≤ |λi(u0) +M | =⇒ |τi(u0)| ≤ |τ2(u0)| < τ1(u0).

Consider the ball Bs(0) ⊂ C of radius s = |τ2(u0)| + r/4. and observe that

σ(Ψ(u0))− {τ1(u0)} is contained in Bs(0).

Now, we note that

σ(Ψ(u0)) ⊂ Br(τ1(u0)) ∪Bs(0) , Br(τ1(u0)) ∩Bs(0) = ∅.
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By proposition B.6 we have that, for a small neighbourhood of V (Ψ(u0)),

T ∈ V1(Ψ(u0)) ⊂ L(YC, YC) implies that σ(T ) ⊂ Br(τ1(u0)) ∪Bs(0).

Set γ1 as the positively oriented parametrization of ∂Br(τ1(u0)). By

lemma B.5, there exists a neighbourhood V2(Ψ(u0)) ⊂ L(YC, YC) such that,

for all T ∈ V2(Ψ(u0)) we have Pγ1(T ) is unidimensional, that is, there exists

a single eigenvalue of T contained in Br(τ1(u0)). Moreover, still from lemma

B.5, this eigenvalue is simple. Another important property of this eigenvalue

is that it is the one of largest modulus in σ(T ).

By proposition B.8, there exists V3(Ψ(u0)) ⊂ L(YC, YC) in which we can

define a Ck function (λp, φp) : V3(Ψ(u0)) → Br(τ1(u0)) such that Tφp(T ) =

λp(T )φp(T ) where λp(T ) is a simple eigenvalue of T . Also, λp(T ) is the

eigenvalue of largest modulus contained in σ(T ) and is Ck dependent on T .

Take V (Ψ(u0)) = V1(Ψ(u0)) ∩ V2(Ψ(u0)) ∩ V3(Ψ(u0)) and note that, for

all T ∈ V (u0) we have σ(Ψ(u0)) ⊂ Br(τ1(u0)) ∩Bs(0) and the point spectrum

of Ψ(u0) has a single point contained in Br(Ψ(u0)).

Finally, take a neighbourhood B(u0) of u0 ∈ A such that u ∈ B(u0)

implies that Ψ(u) ∈ V (u0). It follows that there exists a single eigenvalue

τ1(u) ∈ Br(τ1(u0)) and it is also simple.

Note that the spectrum of Ψ(u) for u ∈ B(u0) ⊂ A is given by {0} and

a sequence of eigenvalues converging to 0 with all of them having positive real

part (equation (6.1)) . It follows that τ1(u), the eigenvalue of largest modulus

of Ψ(u), must be contained in Br(τ1(u0)). Also, it is simple, isolated and the

only eigenvalue contained in Br(τ1(u0)).

All the other eigenvalues are contained in Bs(0). As a consequence,

|τi(u)| < |τ1| and 0 < Re(τi(u)) < Re(τ1(u)) for all i > 1. It follows that

the eigenvalues of −L− q(u) + M : XC → YC are given by ξ−1(τi(u)) = λi(u)

satisfying, for i > 1, Re(λ1(u)) < Re(λi(u)), so that λ1(u) is the principal

eigenvalue of −L− q(u). Hence, τ1(u) = λp(Ψ(u)) ∈ R.

Now we obtain λ1(L+ q(u),Ω) as a composition of Ck functions

u ∈ B(u0) 7→ Ψ(u) ∈ L(YC, YC) 7→ λp(Ψ(u)) ∈ Br(τ1(u0))∩R 7→ ξ−1(λp(Ψ(u)))

where ξ−1(λp(Ψ(u))) = λ1(T (u),Ω).
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We use propositions 6.4 and B.7 to show that, given u0 ∈ A, there is a

ball B(u0) ⊂ A where we can define a function

u 7→
(
λ1(u), φ1(T (u),Ω), φ1(T (u)∗,Ω)

)
which is as regular as q : A→ L(X, Y ).

Take u0 ∈ A. Set φ1(T (u0),Ω) > 0 with ‖φ1(T (u0),Ω)‖X = 1. Analo-

gously, take φ1(T (u0)∗,Ω) > 0 with ‖φ1(T (u0)∗,Ω)‖Y ∗ = 1. Consider affine

subspaces

Wφ1(u0) := φ1(T (u0),Ω) + 〈φ1(T (u0)∗,Ω)〉⊥ ∩X

Wφ∗1(u0) := φ1(T (u0)∗,Ω) + 〈φ1(T (u0),Ω)〉⊥ ∩ Y ∗.

Proposition 6.5 Let A be a Banach space and q : A → L(X, Y ) be a Ck

map where q(u) : X → Y are uniformly bounded potentials q(u) ∈ L∞(Ω),

|q(u)| ≤ M . Then, for every u0 ∈ A, there exists a neighbourhood B(u0) ⊂ A

in which is defined a Ck function

(λ, φ, φ∗) : B(u0)→ R×Wφ1(u0) ×Wφ∗1(u0) , u 7→
(
λ(u), φ(u), φ∗(u)

)
.

such that, for T (u) = −L− q(u) : X → Y , we have

λ(u) := λ1(T (u),Ω) , T (u)φ(u) = λ(u)φ(u) , T (u)φ∗(u) = λ(u)φ∗(u).

Proof: If q is Ck, then u ∈ A 7→ T (u) is Ck. Given u0 ∈ A, T (u0) has a

simple isolated eingenvalue λ1(u0) to which one can associate an eigenfunction

φ1(u0) > 0 (theorem 2.2).

By proposition B.7, there exists a neighbourhood B(T (u0)) ⊂ L(X, Y )

and a C∞ function T 7→ (λ(T ), φ(T ), φ∗(T ∗)) satisfying

T (u0)φ1(u0) = λ1(u0)φ1(u0) , φ1(u0) > 0

T (u0)∗φ1(u0) = λ1(u0)φ∗1(u0) , φ∗1(u0) > 0

Tφ(T ) = λ(T )φ(T ) , T ∗φ∗(T ) = λ(T )φ∗(T ∗).

Proposition 6.4 implies that, for a possibly smaller ball in B(T (u0)), λ(T (u)) =

λ1(T (u),Ω) so that φ(T (u)) and φ(T (u)∗) are eigenfunctions of T (u) and T (u)∗

(repectively) associated to the principal eigenvalue λ1(T (u),Ω) and thus, have

sign.
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As u ∈ A 7→ T (u) is Ck, the triple (λ1(T (u),Ω), φ(T (u)), φ(T (u)∗) is

locally Ck on u ∈ B(u0).

Proposition 6.6 Let L : X → Y be an elliptic operator. Let {qk}k ∈ L∞(Ω),

|qk| ≤ M . If ‖qk − q‖Y → 0 then λ1(L + qk,Ω) → λ1(L + q,Ω) and

‖φ1(L + qk,Ω) − φ1(L + q,Ω)‖X → 0 where φ1(L + qk,Ω) > 0 and ‖φ1(L +

qk,Ω)‖X = 1. Moreover, ‖φ∗1,k−φ∗1‖Y ∗ → 0 where φ∗1,k := φ1((L+ qk)
∗,Ω) > 0,

φ∗1 := φ1((L+ q)∗,Ω) > 0 and ‖φ∗1,k‖Y ∗ = ‖φ∗1‖Y ∗ = 1.

Proof: Without loss, suppose that L : X → Y is invertible. Set λ1,k :=

λ1(L + qk,Ω) and φ1(L + qk,Ω) = φ1,k. The bound |qk| ≤ M , implies that

λ1(L,Ω) −M ≤ λ1,k ≤ λ1(L,Ω) + M . Together with the compact inclusion,

X ↪→ L∞(Ω) we obtain convergent subsequences

{λ1,ki}i , {φ1,ki(L+ qki ,Ω)}i := {φki}i.

Now, the already relabelled subsequences {φ1,i}i, {λ1,i}i and {qi}i converge,

respectively, to φ1,∞, λ1,∞ and q, being the first convergence in L∞(Ω), the

second one in R and the third one in Y . Clearly,

(−L−qi)φ1,i = λ1,iφ1,i =⇒ φ1,i = −L−1(qi+λ1,i)φ1,i → L−1
(

(q+λ1,∞)φ1,∞

)
.

so that φ1,i → φ̃1,∞ in X, and hence in L∞(Ω). Then we have that φ̃1,∞ = φ1,∞.

Observe that φ1,∞ 6= 0 because ‖φ1,i‖X = 1→ ‖φ1,∞‖X = 1.

Finally,

Lφ1,i + (qi + λ1,k)φ1,i → Lφ1,∞ + (q + λ1,∞)φ1,∞ = 0

so that φ1,i > 0 and converges uniformly to φ1,∞ implying that φ1,∞ ≥ 0. By

[13, theorem 2.3], if λ1,∞ 6= λ1(L+q,Ω), then φ1,∞ would change sign. It follows

that λ1,∞ is the principal eigenvalue of L+ q and φ1,∞ > 0 with ‖φ1,∞‖X = 1,

that is, φ1,∞ is a principal eigenfunction of −L− q.

Now we prove that every subsequence of the original sequence {λ1,k}k
converges to λ1,∞. Suppose that there exists a subsequence {λ1,i}i (already

relabeled) converging to λ̃1,∞. By the same reasoning as above we conclude

that λ̃1,∞ is an eigenvalue of L+ q with a positive eigenfunction associated to

it. By [13, theorem 2.3], we conclude that λ1,k → λ1,∞ = λ1(L+ q,Ω).

Lastly, we prove that every subsequence of {φ1,k} converges to φ1,∞. Sup-

pose that there exists a subsequence {φ1,i}i (already relabeled) that converges
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to φ̃1,∞. By the reasoning we did before, φ̃1,∞ would be some eigenfunction

associated to λ1,∞. By [13, theorem 2.3], we would have φ̃1,∞ = cφ1,∞ for

some c 6= 0. But, φ̃1,∞ > 0 and ‖φ̃1,∞‖X = 1, that is, c = 1. It follows that

φ1,k → φ1,∞ = φ1(L+ q,Ω) with φ1,∞ > 0 and ‖φ1,∞‖X = 1.

Now, we prove that φ∗1,k → φ∗1 := φ1(L∗ + q,Ω) > 0.

Consider the sequence of positive, normalized (in Y ∗) eigenfunctions

{φ∗1,k} such that (−L∗ − qk)φ
∗
1,k = λ1,kφ

∗
1,k. From what we have seen before,

qk → q implies that λ1,k → λ1,∞ := λ1(L+ q,Ω).

Then,

‖(L∗ + q)φ∗1,k + λ1,∞φ
∗
1,k‖X∗ ≤ ‖(L∗ + q + λ1,k)φ

∗
1,k‖X∗ + |λ1,∞ − λ1,k| ‖φ∗1,k‖X∗

≤ ‖(L∗ + q − L∗ − qk)φ∗1,k‖X∗ + |λ1,∞ − λ1,k|

≤ ‖(L− qk)∗ − (L− q)∗‖+ |λ1,∞ − λ1,k|

= ‖(L− qk)− (L− q)‖+ |λ1,∞ − λ1,k| → 0.

Fix zk := (L∗+ q+λ1,∞)φ∗1,k ∈ 〈φ∗1〉⊥, which converges to 0. By observing that

φ∗1,k = wk + tkφ
∗
1 ∈ 〈φ∗1〉⊥ ∩ Y ∗ ⊕ 〈φ∗1〉 = Y ∗,

we have

zk = (L∗ + q + λ1,∞)(wk + tkφ
∗
1) = (L∗ + q + λ1,∞I)wk → 0 in X.

The Fredholm alternative assures that

L+ q + λ1,∞I : 〈φ∗1〉⊥ ∩ Y ∗ → 〈φ∗1〉⊥

is an isomorphism, so that

(L∗ + q + λ1,∞I)−1zk = wk → 0 in Y .

Since ‖wk + tkφ
∗
1‖Y ∗ = 1 we have that |tk| → 1, that is, φ∗1,k = wk + tkφ

∗
1 → φ∗1

or φ∗1,k → −φ∗1 in the Y ∗ norm.

Since φ∗1,k > 0, we have that its limit is greater than or equal to 0. Then

its limit must be φ∗1.
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