6
 Technical tools

6.1
 Regularity of the nonlinearity

Recall that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with Lipschitz boundary, $X:=$ $W^{2, n}(\Omega) \cap C_{0}(\bar{\Omega})$ and $Y:=L^{n}(\Omega)$.

We begin by relating the regularity of $f: \mathbb{R} \rightarrow \mathbb{R}$ to the regularity of

$$
F: X \rightarrow Y, \quad u \mapsto-L-f(u) .
$$

Proposition 6.1 If $f \in C^{k}(\mathbb{R})$ then the map below is $C^{k}(X, Y)$

$$
f: X \mapsto Y, \quad u \mapsto N_{f}(u):=f(u) .
$$

Proof: Set $T v=f^{\prime}(u) v$ - this is the candidate for $D N_{f}(u)$. First, $T: X \rightarrow Y$ is well defined and a bounded operator: indeed, $f^{\prime}(u)$ is bounded and $v \in X \subset$ Y. To see that $D N_{f}(u)=T$, we must check that

$$
r(t)=\frac{N_{f}(u+t v)-N_{f}(u)-t T v}{t} \rightarrow 0 \quad \text { in } Y .
$$

Since f is Lipschitz, say with constant $M,|r(t)| \leq M|v|+\left|f^{\prime}(u)\right||v| \leq 2 M|v| \in$ Y - the result now follows from dominated convergence.

Now, we use the continuous embedding $X \hookrightarrow C(\bar{\Omega})$. To show that $u \mapsto D N_{f}(u)$ is continuous, we have to show that

$$
\left\|u-u_{0}\right\|_{X} \rightarrow 0 \Longrightarrow \sup _{\|v\|_{X}=1}\left\|\left(f^{\prime}(u)-f^{\prime}\left(u_{0}\right)\right) v\right\|_{Y} \rightarrow 0
$$

Since $\left\|u-u_{0}\right\|_{\infty} \rightarrow 0$ and f^{\prime} is continuous, use uniform continuity to get

$$
\left\|f^{\prime}(u)-f^{\prime}\left(u_{0}\right)\right\|_{\infty} \rightarrow 0
$$

and the rest is easy.
If $k \geq 2$, we consider the second derivative. Let $H(u)(v, w)=f^{\prime \prime}(u) v w$ be the candidate. We show that it is well defined. Since $u, v \in X \hookrightarrow C(\bar{\Omega})$, $f^{\prime \prime}(u)$ is bounded:

$$
\left\|f^{\prime \prime}(u) v w\right\|_{Y} \leq C\|v\|_{\infty}\|w\|_{Y} \leq \tilde{C}\|v\|_{X}\|w\|_{X}
$$

To see that $D^{2} N_{f}(u)=H$, we must check that

$$
s(t)=\frac{D N_{f}(u+t w) v-D N_{f}(u) v-t H(v, w)}{t} \rightarrow 0 \quad \text { in } Y(x \in \Omega) .
$$

The estimate here is more delicate than the one for the first derivative. Note that f^{\prime} is a $C^{1}(\mathbb{R})$ function, so it is Lipschitz on compact sets. For $|t|<1$ we have that $|u+t w|$ is bounded. So, there exists $M>0$ such that,

$$
\left|f^{\prime}(u+t w)-f^{\prime}(u)\right| \leq M|u+t w-u|=M|t||w| .
$$

Recall that $\left|f^{\prime \prime}(u)\right|$ is bounded. A simple computation provides

$$
|s(t)| \leq M|v||w| \in Y
$$

and once more use the dominated convergence theorem.
Finally, we show continuity of $D^{2} N_{f}$. We need to prove that

$$
\left\|u-u_{0}\right\|_{X} \rightarrow 0 \Longrightarrow \sup _{\|v\|_{X}=\|w\|_{X}=1}\left\|\left(f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right) v w\right\|_{Y} \rightarrow 0
$$

Again, since $\left\|u-u_{0}\right\|_{\infty} \rightarrow 0$ and $f^{\prime \prime}$ is continuous, use uniform continuity to get $\left\|f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right\|_{\infty} \rightarrow 0$. The inequality below ends the proof

$$
\begin{aligned}
\left\|\left(f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right) v w\right\|_{Y} & \leq\left\|f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right\|_{\infty}\|v w\|_{Y} \\
& \leq C\left\|f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right\|_{\infty}\|v\|_{\infty}\|w\|_{Y} \\
& \leq \tilde{C}\left\|f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right\|_{\infty}\|v\|_{X}\|w\|_{X} \\
& \leq \tilde{C}\left\|f^{\prime \prime}(u)-f^{\prime \prime}\left(u_{0}\right)\right\|_{\infty} .
\end{aligned}
$$

The proof for $f \in C^{k}(\mathbb{R})$ is analogous.

Corollary 6.2 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{k}, then $F: X \rightarrow Y$ is C^{k}.
Now we state a result about the continuity of the potential $f^{\prime}(u)$ when $u \in Y$ instead of X. This a consequence of proposition 6.1 and the fact that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is bounded.

Corollary 6.3 If $f \in C^{1}(\mathbb{R})$, then the map below is continuous

$$
\mathrm{m}_{f^{\prime}}: Y \mapsto \mathcal{L}(X, Y), \quad u \mapsto f^{\prime}(u)
$$

where $f^{\prime}(u)$ is the multiplication operator in $\mathcal{L}(X, Y)$

6.2
 Proof of lemma 2.8

Proof: (lemma 2.8) Take $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
a \leq \frac{f(x)-f(y)}{x-y} \leq b, \quad x \neq y
$$

Consider functions f_{δ} as defined in (A.1).
Recall that

$$
\begin{array}{cl}
F: X \rightarrow Y, & u \mapsto-L u-f(u) \\
F_{\delta}: X \rightarrow Y, & u \mapsto-L u-f_{\delta}(u)
\end{array}
$$

We want to prove that $F_{\delta} \rightarrow F$ uniformly.
It suffices to prove that $\delta \rightarrow 0$ implies that $f_{\delta}: X \rightarrow Y, u \mapsto f_{\delta}(u)$ converges uniformly to $f: X \rightarrow Y, u \mapsto f(u)$,

By proposition A.1, there exists some function $c:\{x>0\} \rightarrow\{x>0\}$ such that $\delta \rightarrow 0$ implies that $c(\delta) \rightarrow 0$ and, for all $x \in \mathbb{R}$, we have $\left|f(x)-f_{\delta}(x)\right|<c(\delta)$.

Take $u \in X$. By the estimate above, given $\epsilon>0$, there exists some $\delta>0$ such that, for all $x \in \Omega$, we have

$$
\left|f_{\delta}(u(x))-f(u(x))\right|<c(\delta)<\frac{\epsilon}{|\Omega|^{\frac{1}{n}}}
$$

so that $\left\|f_{\delta}(u)-f(u)\right\|_{Y}<\epsilon$. Now it is easy to obtain a sequence $f_{k} \rightarrow f$: $X \rightarrow Y$ uniformly where $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} (actually, C^{∞}).

6.3

Regularity of the principal eigenpair

Here we assume that $X=W^{2, n}(\Omega) \cap C_{0}(\bar{\Omega})$ and $Y=L^{n}(\Omega)$ and L is an elliptic operator as defined in the introduction.

Let A be a Banach space and $q: A \rightarrow \mathcal{L}(X, Y)$ be a C^{k} map where $q(u)$ is a bounded potential, that is, $q(u) \in L^{\infty}(\Omega)$. Clearly, the map

$$
T: A \rightarrow \mathcal{L}(X, Y), \quad u \mapsto-L-q(u)
$$

is C^{k} and $T(u)$ is an elliptic operator as in [13] and hence has a principal eigenvalue.

Fix $u_{0} \in A$ and suppose that $|q(u)| \leq M-1$. Proposition B. 7 assures the existence of a C^{k} function $\lambda: B\left(u_{0}\right) \subset A \rightarrow \mathbb{R}$ satisfying $\lambda\left(u_{0}\right)=\lambda_{1}\left(T\left(u_{0}\right), \Omega\right)$. In proposition 6.4, we prove that there is a possibly smaller ball containing u_{0} such that the restriction of λ to that ball satisfies $\lambda(u)=\lambda_{1}(T(u), \Omega)$. We will use this result to prove that the principal eigenpair of $T(u)$ has a C^{k} dependence on $u \in A$.

Proposition 6.4 Let A be a Banach space and $q: A \rightarrow \mathcal{L}(X, Y)$ be a C^{k} map where $q(u): X \rightarrow Y$ are uniformly bounded potentials, that is, $q(u) \in L^{\infty}(\Omega)$ and for some $M>0,|q(u)| \leq M-1$. Then, for all $u_{0} \in A$, there exists a C^{k} function $\lambda: B\left(u_{0}\right) \subset A \rightarrow \mathbb{R}$ such that $\lambda(u)=\lambda_{1}(-L-q(u), \Omega)$.

Proof: Consider the complexifications of X and Y, that is, the Banach spaces

$$
\begin{aligned}
X_{\mathbb{C}} & :=\left(\{u+i v: u, v \in X\},\|u+i v\|_{X_{\mathbb{C}}}:=\left(\|u\|_{X}+\|v\|_{Y}\right)^{\frac{1}{2}}\right) \\
Y_{\mathbb{C}} & :=\left(\{u+i v: u, v \in Y\},\|u+i v\|_{Y_{\mathbb{C}}}:=\left(\|u\|_{Y}+\|v\|_{Y}\right)^{\frac{1}{2}}\right) .
\end{aligned}
$$

Denote the eigenvalues of $-L-q(u)+M: X_{\mathbb{C}} \rightarrow Y_{\mathbb{C}}$ by $\lambda_{i}(u)+M$ ordered in a way that $\left|\lambda_{i}(u)+M\right| \leq\left|\lambda_{i+1}(u)+M\right|$. Observe that, $\lambda_{1}(u)=$ $\lambda_{1}(L+q(u), \Omega)$. Also, since $|q(u)| \leq M-1$, we have

$$
\begin{equation*}
1 \leq \lambda_{1}(u)+M<\operatorname{Re}\left(\lambda_{i}(u)\right)+M, \quad \text { for } i>1 \tag{6.1}
\end{equation*}
$$

In conclusion, all the eigenvalues of $-L-q(u)+M$ have positive real part.
Consider the function

$$
\Psi: A \rightarrow \mathcal{L}\left(Y_{\mathbb{C}}, Y_{\mathbb{C}}\right), \quad u \mapsto(-L-q(u)+M)^{-1}
$$

As $f \in C^{k}(\mathbb{R})$ implies that $u \mapsto q(u)$ is C^{k}, we have that Ψ is C^{k}.

Consider complex valued functions
$\xi: \mathbb{C}-\{-M\} \rightarrow \mathbb{C}, \xi(z)=\frac{1}{z+M} \quad ; \quad \xi^{-1}: \mathbb{C}-\{0\} \rightarrow \mathbb{C}, \xi^{-1}(z)=\frac{1}{z}-M$.
Observe that the eigenvalues of $\Psi(u)$ and $-L-q(u)$ are given respectively by

$$
\tau_{i}(u):=\xi\left(\lambda_{i}(u)\right)=\frac{1}{\lambda_{i}(u)+M}, \quad \xi^{-1}\left(\tau_{i}(u)\right)=\lambda_{i}(u)
$$

Note that $\sigma\left(\Psi\left(u_{0}\right)\right)=\tau_{i}\left(u_{0}\right) \cup\{0\}$ and, by equation $6.1, \operatorname{Re}\left(\tau_{i}(u)\right) \leq 1$.

Figure 6.1: The image of $\xi_{\mid \sigma\left(-L-q\left(u_{0}\right)\right)}$.

Now fix $u_{0} \in A$. We provide neighbourhoods for $\tau_{1}\left(u_{0}\right)$ and $\sigma\left(\Psi\left(u_{0}\right)\right)-$ $\left\{\tau_{1}\left(u_{0}\right)\right\}$ where we use proposition B. 6 to obtain the desired result.

Since $\operatorname{Re}\left(\lambda_{2}\left(u_{0}\right)+M\right)>\lambda_{1}\left(u_{0}\right)+M \geq 1$ (equation 6.1) we have that

$$
0<\operatorname{Re}\left(\tau_{2}\left(u_{0}\right)\right)<\tau_{1}\left(u_{0}\right)
$$

Take a ball $B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \subset \mathbb{C}$ of radius

$$
r=\frac{\tau_{1}\left(u_{0}\right)-\operatorname{Re}\left(\tau_{2}\left(u_{0}\right)\right)}{2}
$$

Also, for $i>1$,

$$
\lambda_{1}\left(u_{0}\right)+M<\left|\lambda_{2}\left(u_{0}\right)+M\right| \leq\left|\lambda_{i}\left(u_{0}\right)+M\right| \Longrightarrow\left|\tau_{i}\left(u_{0}\right)\right| \leq\left|\tau_{2}\left(u_{0}\right)\right|<\tau_{1}\left(u_{0}\right) .
$$

Consider the ball $B_{s}(0) \subset \mathbb{C}$ of radius $s=\left|\tau_{2}\left(u_{0}\right)\right|+r / 4$. and observe that $\sigma\left(\Psi\left(u_{0}\right)\right)-\left\{\tau_{1}\left(u_{0}\right)\right\}$ is contained in $B_{s}(0)$.

Now, we note that

$$
\sigma\left(\Psi\left(u_{0}\right)\right) \subset B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \cup B_{s}(0), \quad B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \cap B_{s}(0)=\emptyset .
$$

By proposition B. 6 we have that, for a small neighbourhood of $V\left(\Psi\left(u_{0}\right)\right)$, $T \in V_{1}\left(\Psi\left(u_{0}\right)\right) \subset \mathcal{L}\left(Y_{\mathbb{C}}, Y_{\mathbb{C}}\right)$ implies that $\sigma(T) \subset B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \cup B_{s}(0)$.

Set γ_{1} as the positively oriented parametrization of $\partial B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$. By lemma B. 5 , there exists a neighbourhood $V_{2}\left(\Psi\left(u_{0}\right)\right) \subset \mathcal{L}\left(Y_{\mathbb{C}}, Y_{\mathbb{C}}\right)$ such that, for all $T \in V_{2}\left(\Psi\left(u_{0}\right)\right)$ we have $P_{\gamma_{1}}(T)$ is unidimensional, that is, there exists a single eigenvalue of T contained in $B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$. Moreover, still from lemma B. 5 , this eigenvalue is simple. Another important property of this eigenvalue is that it is the one of largest modulus in $\sigma(T)$.

By proposition B.8, there exists $V_{3}\left(\Psi\left(u_{0}\right)\right) \subset \mathcal{L}\left(Y_{\mathbb{C}}, Y_{\mathbb{C}}\right)$ in which we can define a C^{k} function $\left(\lambda_{p}, \phi_{p}\right): V_{3}\left(\Psi\left(u_{0}\right)\right) \rightarrow B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$ such that $T \phi_{p}(T)=$ $\lambda_{p}(T) \phi_{p}(T)$ where $\lambda_{p}(T)$ is a simple eigenvalue of T. Also, $\lambda_{p}(T)$ is the eigenvalue of largest modulus contained in $\sigma(T)$ and is C^{k} dependent on T.

Take $V\left(\Psi\left(u_{0}\right)\right)=V_{1}\left(\Psi\left(u_{0}\right)\right) \cap V_{2}\left(\Psi\left(u_{0}\right)\right) \cap V_{3}\left(\Psi\left(u_{0}\right)\right)$ and note that, for all $T \in V\left(u_{0}\right)$ we have $\sigma\left(\Psi\left(u_{0}\right)\right) \subset B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \cap B_{s}(0)$ and the point spectrum of $\Psi\left(u_{0}\right)$ has a single point contained in $B_{r}\left(\Psi\left(u_{0}\right)\right)$.

Finally, take a neighbourhood $B\left(u_{0}\right)$ of $u_{0} \in A$ such that $u \in B\left(u_{0}\right)$ implies that $\Psi(u) \in V\left(u_{0}\right)$. It follows that there exists a single eigenvalue $\tau_{1}(u) \in B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$ and it is also simple.

Note that the spectrum of $\Psi(u)$ for $u \in B\left(u_{0}\right) \subset A$ is given by $\{0\}$ and a sequence of eigenvalues converging to 0 with all of them having positive real part (equation (6.1)). It follows that $\tau_{1}(u)$, the eigenvalue of largest modulus of $\Psi(u)$, must be contained in $B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$. Also, it is simple, isolated and the only eigenvalue contained in $B_{r}\left(\tau_{1}\left(u_{0}\right)\right)$.

All the other eigenvalues are contained in $B_{s}(0)$. As a consequence, $\left|\tau_{i}(u)\right|<\left|\tau_{1}\right|$ and $0<\operatorname{Re}\left(\tau_{i}(u)\right)<\operatorname{Re}\left(\tau_{1}(u)\right)$ for all $i>1$. It follows that the eigenvalues of $-L-q(u)+M: X_{\mathbb{C}} \rightarrow Y_{\mathbb{C}}$ are given by $\xi^{-1}\left(\tau_{i}(u)\right)=\lambda_{i}(u)$ satisfying, for $i>1, \operatorname{Re}\left(\lambda_{1}(u)\right)<\operatorname{Re}\left(\lambda_{i}(u)\right)$, so that $\lambda_{1}(u)$ is the principal eigenvalue of $-L-q(u)$. Hence, $\tau_{1}(u)=\lambda_{p}(\Psi(u)) \in \mathbb{R}$.

Now we obtain $\lambda_{1}(L+q(u), \Omega)$ as a composition of C^{k} functions
$u \in B\left(u_{0}\right) \mapsto \Psi(u) \in \mathcal{L}\left(Y_{\mathbb{C}}, Y_{\mathbb{C}}\right) \mapsto \lambda_{p}(\Psi(u)) \in B_{r}\left(\tau_{1}\left(u_{0}\right)\right) \cap \mathbb{R} \mapsto \xi^{-1}\left(\lambda_{p}(\Psi(u))\right)$
where $\xi^{-1}\left(\lambda_{p}(\Psi(u))\right)=\lambda_{1}(T(u), \Omega)$.

We use propositions 6.4 and B. 7 to show that, given $u_{0} \in A$, there is a ball $B\left(u_{0}\right) \subset A$ where we can define a function

$$
u \mapsto\left(\lambda_{1}(u), \phi_{1}(T(u), \Omega), \phi_{1}\left(T(u)^{*}, \Omega\right)\right)
$$

which is as regular as $q: A \rightarrow \mathcal{L}(X, Y)$.
Take $u_{0} \in A$. Set $\phi_{1}\left(T\left(u_{0}\right), \Omega\right)>0$ with $\left\|\phi_{1}\left(T\left(u_{0}\right), \Omega\right)\right\|_{X}=1$. Analogously, take $\phi_{1}\left(T\left(u_{0}\right)^{*}, \Omega\right)>0$ with $\left\|\phi_{1}\left(T\left(u_{0}\right)^{*}, \Omega\right)\right\|_{Y^{*}}=1$. Consider affine subspaces

$$
\begin{aligned}
W_{\phi_{1}\left(u_{0}\right)} & :=\phi_{1}\left(T\left(u_{0}\right), \Omega\right)+\left\langle\phi_{1}\left(T\left(u_{0}\right)^{*}, \Omega\right)\right\rangle^{\perp} \cap X \\
W_{\phi_{1}^{*}\left(u_{0}\right)} & :=\phi_{1}\left(T\left(u_{0}\right)^{*}, \Omega\right)+\left\langle\phi_{1}\left(T\left(u_{0}\right), \Omega\right)\right\rangle^{\perp} \cap Y^{*} .
\end{aligned}
$$

Proposition 6.5 Let A be a Banach space and $q: A \rightarrow \mathcal{L}(X, Y)$ be a C^{k} map where $q(u): X \rightarrow Y$ are uniformly bounded potentials $q(u) \in L^{\infty}(\Omega)$, $|q(u)| \leq M$. Then, for every $u_{0} \in A$, there exists a neighbourhood $B\left(u_{0}\right) \subset A$ in which is defined a C^{k} function

$$
\left(\lambda, \phi, \phi^{*}\right): B\left(u_{0}\right) \rightarrow \mathbb{R} \times W_{\phi_{1}\left(u_{0}\right)} \times W_{\phi_{1}^{*}\left(u_{0}\right)}, \quad u \mapsto\left(\lambda(u), \phi(u), \phi^{*}(u)\right) .
$$

such that, for $T(u)=-L-q(u): X \rightarrow Y$, we have

$$
\lambda(u):=\lambda_{1}(T(u), \Omega), \quad T(u) \phi(u)=\lambda(u) \phi(u), \quad T(u) \phi^{*}(u)=\lambda(u) \phi^{*}(u)
$$

Proof: If q is C^{k}, then $u \in A \mapsto T(u)$ is C^{k}. Given $u_{0} \in A, T\left(u_{0}\right)$ has a simple isolated eingenvalue $\lambda_{1}\left(u_{0}\right)$ to which one can associate an eigenfunction $\phi_{1}\left(u_{0}\right)>0$ (theorem 2.2).

By proposition B.7, there exists a neighbourhood $B\left(T\left(u_{0}\right)\right) \subset \mathcal{L}(X, Y)$ and a C^{∞} function $T \mapsto\left(\lambda(T), \phi(T), \phi^{*}\left(T^{*}\right)\right)$ satisfying

$$
\begin{gathered}
T\left(u_{0}\right) \phi_{1}\left(u_{0}\right)=\lambda_{1}\left(u_{0}\right) \phi_{1}\left(u_{0}\right), \phi_{1}\left(u_{0}\right)>0 \\
T\left(u_{0}\right)^{*} \phi_{1}\left(u_{0}\right)=\lambda_{1}\left(u_{0}\right) \phi_{1}^{*}\left(u_{0}\right), \phi_{1}^{*}\left(u_{0}\right)>0 \\
T \phi(T)=\lambda(T) \phi(T), \quad T^{*} \phi^{*}(T)=\lambda(T) \phi^{*}\left(T^{*}\right) .
\end{gathered}
$$

Proposition 6.4 implies that, for a possibly smaller ball in $B\left(T\left(u_{0}\right)\right), \lambda(T(u))=$ $\lambda_{1}(T(u), \Omega)$ so that $\phi(T(u))$ and $\phi\left(T(u)^{*}\right)$ are eigenfunctions of $T(u)$ and $T(u)^{*}$ (repectively) associated to the principal eigenvalue $\lambda_{1}(T(u), \Omega)$ and thus, have sign.

As $u \in A \mapsto T(u)$ is C^{k}, the triple $\left(\lambda_{1}(T(u), \Omega), \phi(T(u)), \phi\left(T(u)^{*}\right)\right.$ is locally C^{k} on $u \in B\left(u_{0}\right)$.

Proposition 6.6 Let $L: X \rightarrow Y$ be an elliptic operator. Let $\left\{q_{k}\right\}_{k} \in L^{\infty}(\Omega)$, $\left|q_{k}\right| \leq M$. If $\left\|q_{k}-q\right\|_{Y} \rightarrow 0$ then $\lambda_{1}\left(L+q_{k}, \Omega\right) \rightarrow \lambda_{1}(L+q, \Omega)$ and $\left\|\phi_{1}\left(L+q_{k}, \Omega\right)-\phi_{1}(L+q, \Omega)\right\|_{X} \rightarrow 0$ where $\phi_{1}\left(L+q_{k}, \Omega\right)>0$ and $\| \phi_{1}(L+$ $\left.q_{k}, \Omega\right) \|_{X}=1$. Moreover, $\left\|\phi_{1, k}^{*}-\phi_{1}^{*}\right\|_{Y^{*}} \rightarrow 0$ where $\phi_{1, k}^{*}:=\phi_{1}\left(\left(L+q_{k}\right)^{*}, \Omega\right)>0$, $\phi_{1}^{*}:=\phi_{1}\left((L+q)^{*}, \Omega\right)>0$ and $\left\|\phi_{1, k}^{*}\right\|_{Y^{*}}=\left\|\phi_{1}^{*}\right\|_{Y^{*}}=1$.

Proof: Without loss, suppose that $L: X \rightarrow Y$ is invertible. Set $\lambda_{1, k}:=$ $\lambda_{1}\left(L+q_{k}, \Omega\right)$ and $\phi_{1}\left(L+q_{k}, \Omega\right)=\phi_{1, k}$. The bound $\left|q_{k}\right| \leq M$, implies that $\lambda_{1}(L, \Omega)-M \leq \lambda_{1, k} \leq \lambda_{1}(L, \Omega)+M$. Together with the compact inclusion, $X \hookrightarrow L^{\infty}(\Omega)$ we obtain convergent subsequences

$$
\left\{\lambda_{1, k_{i}}\right\}_{i}, \quad\left\{\phi_{1, k_{i}}\left(L+q_{k_{i}}, \Omega\right)\right\}_{i}:=\left\{\phi_{k_{i}}\right\}_{i} .
$$

Now, the already relabelled subsequences $\left\{\phi_{1, i}\right\}_{i},\left\{\lambda_{1, i}\right\}_{i}$ and $\left\{q_{i}\right\}_{i}$ converge, respectively, to $\phi_{1, \infty}, \lambda_{1, \infty}$ and q, being the first convergence in $L^{\infty}(\Omega)$, the second one in \mathbb{R} and the third one in Y. Clearly,
$\left(-L-q_{i}\right) \phi_{1, i}=\lambda_{1, i} \phi_{1, i} \Longrightarrow \phi_{1, i}=-L^{-1}\left(q_{i}+\lambda_{1, i}\right) \phi_{1, i} \rightarrow L^{-1}\left(\left(q+\lambda_{1, \infty}\right) \phi_{1, \infty}\right)$.
so that $\phi_{1, i} \rightarrow \tilde{\phi}_{1, \infty}$ in X, and hence in $L^{\infty}(\Omega)$. Then we have that $\tilde{\phi}_{1, \infty}=\phi_{1, \infty}$. Observe that $\phi_{1, \infty} \neq 0$ because $\left\|\phi_{1, i}\right\|_{X}=1 \rightarrow\left\|\phi_{1, \infty}\right\|_{X}=1$.

Finally,

$$
L \phi_{1, i}+\left(q_{i}+\lambda_{1, k}\right) \phi_{1, i} \rightarrow L \phi_{1, \infty}+\left(q+\lambda_{1, \infty}\right) \phi_{1, \infty}=0
$$

so that $\phi_{1, i}>0$ and converges uniformly to $\phi_{1, \infty}$ implying that $\phi_{1, \infty} \geq 0$. By [13, theorem 2.3], if $\lambda_{1, \infty} \neq \lambda_{1}(L+q, \Omega)$, then $\phi_{1, \infty}$ would change sign. It follows that $\lambda_{1, \infty}$ is the principal eigenvalue of $L+q$ and $\phi_{1, \infty}>0$ with $\left\|\phi_{1, \infty}\right\|_{X}=1$, that is, $\phi_{1, \infty}$ is a principal eigenfunction of $-L-q$.

Now we prove that every subsequence of the original sequence $\left\{\lambda_{1, k}\right\}_{k}$ converges to $\lambda_{1, \infty}$. Suppose that there exists a subsequence $\left\{\lambda_{1, i}\right\}_{i}$ (already relabeled) converging to $\tilde{\lambda}_{1, \infty}$. By the same reasoning as above we conclude that $\tilde{\lambda}_{1, \infty}$ is an eigenvalue of $L+q$ with a positive eigenfunction associated to it. By [13, theorem 2.3], we conclude that $\lambda_{1, k} \rightarrow \lambda_{1, \infty}=\lambda_{1}(L+q, \Omega)$.

Lastly, we prove that every subsequence of $\left\{\phi_{1, k}\right\}$ converges to $\phi_{1, \infty}$. Suppose that there exists a subsequence $\left\{\phi_{1, i}\right\}_{i}$ (already relabeled) that converges
to $\tilde{\phi}_{1, \infty}$. By the reasoning we did before, $\tilde{\phi}_{1, \infty}$ would be some eigenfunction associated to $\lambda_{1, \infty}$. By [13, theorem 2.3], we would have $\tilde{\phi}_{1, \infty}=c \phi_{1, \infty}$ for some $c \neq 0$. But, $\tilde{\phi}_{1, \infty}>0$ and $\left\|\tilde{\phi}_{1, \infty}\right\|_{X}=1$, that is, $c=1$. It follows that $\phi_{1, k} \rightarrow \phi_{1, \infty}=\phi_{1}(L+q, \Omega)$ with $\phi_{1, \infty}>0$ and $\left\|\phi_{1, \infty}\right\|_{X}=1$.

Now, we prove that $\phi_{1, k}^{*} \rightarrow \phi_{1}^{*}:=\phi_{1}\left(L^{*}+q, \Omega\right)>0$.
Consider the sequence of positive, normalized (in Y^{*}) eigenfunctions $\left\{\phi_{1, k}^{*}\right\}$ such that $\left(-L^{*}-q_{k}\right) \phi_{1, k}^{*}=\lambda_{1, k} \phi_{1, k}^{*}$. From what we have seen before, $q_{k} \rightarrow q$ implies that $\lambda_{1, k} \rightarrow \lambda_{1, \infty}:=\lambda_{1}(L+q, \Omega)$.

Then,

$$
\begin{aligned}
\left\|\left(L^{*}+q\right) \phi_{1, k}^{*}+\lambda_{1, \infty} \phi_{1, k}^{*}\right\|_{X^{*}} & \leq\left\|\left(L^{*}+q+\lambda_{1, k}\right) \phi_{1, k}^{*}\right\|_{X^{*}}+\left|\lambda_{1, \infty}-\lambda_{1, k}\right|\left\|\phi_{1, k}^{*}\right\|_{X^{*}} \\
& \leq\left\|\left(L^{*}+q-L^{*}-q_{k}\right) \phi_{1, k}^{*}\right\|_{X^{*}}+\left|\lambda_{1, \infty}-\lambda_{1, k}\right| \\
& \leq\left\|\left(L-q_{k}\right)^{*}-(L-q)^{*}\right\|+\left|\lambda_{1, \infty}-\lambda_{1, k}\right| \\
& =\left\|\left(L-q_{k}\right)-(L-q)\right\|+\left|\lambda_{1, \infty}-\lambda_{1, k}\right| \rightarrow 0 .
\end{aligned}
$$

Fix $z_{k}:=\left(L^{*}+q+\lambda_{1, \infty}\right) \phi_{1, k}^{*} \in\left\langle\phi_{1}^{*}\right\rangle^{\perp}$, which converges to 0 . By observing that

$$
\phi_{1, k}^{*}=w_{k}+t_{k} \phi_{1}^{*} \in\left\langle\phi_{1}^{*}\right\rangle^{\perp} \cap Y^{*} \oplus\left\langle\phi_{1}^{*}\right\rangle=Y^{*},
$$

we have

$$
z_{k}=\left(L^{*}+q+\lambda_{1, \infty}\right)\left(w_{k}+t_{k} \phi_{1}^{*}\right)=\left(L^{*}+q+\lambda_{1, \infty} I\right) w_{k} \rightarrow 0 \quad \text { in } X
$$

The Fredholm alternative assures that

$$
L+q+\lambda_{1, \infty} I:\left\langle\phi_{1}^{*}\right\rangle^{\perp} \cap Y^{*} \rightarrow\left\langle\phi_{1}^{*}\right\rangle^{\perp}
$$

is an isomorphism, so that

$$
\left(L^{*}+q+\lambda_{1, \infty} I\right)^{-1} z_{k}=w_{k} \rightarrow 0 \quad \text { in } Y .
$$

Since $\left\|w_{k}+t_{k} \phi_{1}^{*}\right\|_{Y^{*}}=1$ we have that $\left|t_{k}\right| \rightarrow 1$, that is, $\phi_{1, k}^{*}=w_{k}+t_{k} \phi_{1}^{*} \rightarrow \phi_{1}^{*}$ or $\phi_{1, k}^{*} \rightarrow-\phi_{1}^{*}$ in the Y^{*} norm.

Since $\phi_{1, k}^{*}>0$, we have that its limit is greater than or equal to 0 . Then its limit must be ϕ_{1}^{*}.

