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A

Regularization of real Lipschitz functions

In this section f : R→ R satisfies

a ≤ f(x)− f(y)

x− y
≤ b , x 6= y.

For δ > 0 define ψδ : R→ R by

ψδ(x) =
1

δ
√

2π
exp

(
− 1

2

(x
δ

)2)
.

Define

fδ(x) :=

∫
R
f(s)ψδ(x− s)ds =

∫
R
f(x− s)ψδ(s)ds. (A.1)

Proposition A.1 There exists some function c : {x > 0} → {x > 0} such

that δ → 0 implies that c(δ) → 0 and for all x ∈ R we have |f(x) − fδ(x)| <

c(δ). Moreover, if x 6= y, then a ≤ fδ(x)− fδ(y)

x− y
≤ b.

Proof: It is easy to see that

a ≤ fδ(x)− fδ(y)

x− y
≤ b , x 6= y.

Now, we obtain the desired c : {x > 0} → {x > 0}.

|fδ(x)− f(x)| =
∣∣ ∫

R

(
f(x− s)− f(x)

)
ψδ(s)ds

∣∣
≤
∫
R
|f(x− s)− f(x)|ψδ(s)ds

≤ (|a|+ |b|)
∫
R
|s|ψδ(0− s) = c(δ).

Observe that δ → 0 implies that c(δ)→ |0| = 0.

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Appendix A. Regularization of real Lipschitz functions 76

Lemma A.2 Suppose that

lim
s→−∞

f(s)

s
= a , lim

s→+∞

f(s)

s
= b.

Then,

lim
s→−∞

fδ(s)

s
= a , lim

s→+∞

fδ(s)

s
= b

Proof: By proposition A.1, for all x ∈ R,

|fδ(x)− f(x)| ≤ c(δ).

Dividing by x and making x→ −∞ (resp. +∞) we have that fδ(x)/x→
a (resp. b).

Lemma A.3 Let f : R→ R be a Lipschitz (thus, almost everywhere differen-

tiable) convex function such that

lim inf
s→−∞

f ′(s) = a < lim sup
s→+∞

f ′(s) = b.

Then, for all δ > 0, fδ is such that f ′′δ > 0.

Proof: Take ψδ : R → R and fδ : R → R as defined above. As we have

already seen, fδ converges uniformly to f as δ → 0.

We prove that fδ is strictly convex. As f is Lipschitz, the fundamental

theorem of calculus is valid for it. Integrating by parts we obtain

fδ
′(x) =

∫
R
f ′(s)ψδ(x− s).

As a consequence, noting that ψδ
′ is odd, (ψδ(−s) = −ψδ(s))

fδ
′′(x) =

∫
R
f ′(x− s)ψδ ′(s)ds

=

∫ 0

−∞
f ′(x− s)ψδ ′(s)ds+

∫ +∞

0

f ′(x− s)ψδ ′(s)ds

=

∫ 0

−∞
f ′(x− s)ψδ ′(s)ds+

∫ 0

−∞
f ′(x+ s)ψδ

′(−s)ds

=

∫ 0

−∞
f ′(x− s)ψδ ′(s)ds−

∫ 0

−∞
f ′(x+ s)ψδ

′(s)ds

=

∫ 0

−∞

(
f ′(x− s)− f ′(x+ s)

)
ψδ
′(s)ds.
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Appendix A. Regularization of real Lipschitz functions 77

For s < 0, f ′(x − s) ≥ f ′(x + s) as f is convex. Also, ψδ(s) > 0. This

suffices to prove that fδ is convex. To obtain that it is strictly convex, for each

x ∈ R, take s0(x) < 0 so that, for s < s0(x) both |f ′(x − s) − b| ≤ (b − a)/4

and |f ′(x+ s)− a| ≤ (b− a)/4 almost everywhere. Then, we have

f ′(x− s) ≥ 3b+ a

4
, −f ′(x+ s) ≥ −3a+ b

4
.

Finally,

fδ
′′(x) ≥

∫ s0(x)

−∞

(3b+ a

4
− 3a+ b

4

)
ψδ
′(s)ds =

∫ s0(x)

−∞

b− a
2

ψδ
′(s)ds > 0.
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B

Spectral Theory

Definition B.1 1. The spectrum of an operator defined in a complex Ba-

nach space, T : Y → Y is designated by σ(T ) which is a subset of C.

2. The resolvent of an operator defined in a complex Banach space T : Y →
Y is designated by ρ(T ).

3. A spectral component of an operator defined in a complex Banach space

T : Y → Y is a subset of σ(T ) which is both open and closed in σ(T ).

4. If a closed simple curve γ : [0, 1] → C is positively oriented, then its

interior is the bounded set delimited by it (in the Jordan sense).

In the next results, γ, γ1, γ2 are allways simple closed rectifiable and

positively oriented curves.

Theorem B.2 ([26] theorem 4-3) Let Y be a complex Banach space and

T : Y → Y be an operator. Let γ be a curve which lies in ρ(T ). Define

Pγ(T ) :=
1

2πi

∫
γ

(zI − T )−1dz. (B.1)

Then P is a projection (PP = P ) and it commutes with every transformation

which commutes with T . In particular, Y = Ran(P )⊕Ker(P ).

Theorem B.3 ([26] theorem 4-6) For the projection P defined in (B.1),

P = 0 if and only if the interior of the curve γ belongs to ρ(T ). Similarly,

P = I if, and only if, σ(T ) lies entirely in the interior of γ.

Corollary B.4 Consider T ∈ L(Y ). Take two disjoint curves γ1 and γ2

with disjoint interior V1 and V2, respectively. The projection Pγ1∪γ2(T ) :=

Pγ1(T )+Pγ2(T ) equals 0 if and only if, V1, V2 ⊂ ρ(T ). Similarly, Pγ1∪γ2(T ) = I

if and only if σ(T ) ⊂ V1 ∪ V2.

The proof of corollary B.4 follows usual techniques involving calculus in

complex Banach spaces as well as theorem B.3.
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Appendix B. Spectral Theory 79

Lemma B.5 Take T0, Vi, σi and γi as above. Suppose dim RanPγ1(T0) = k.

Then in some ball Br(T0), the map T 7→ Pγ1(T ) is well defined and Lipschitz,

dim RanPγ1(T ) = k and the operators T −λI for λ /∈ V2 are Fredholm of index

zero.

Note that dim RanPγ1(T0) could be infinite, but we are interested in the

case when it equals one. The continuity of T 7→ Pγ1(T ) does not depend on

Pγ1(T0) being finite dimensional and corresponds to a an appropriate notion

of continuity of the invariant subspaces related to a spectral component of T .

Proof: As γ1 is compact, it is not hard to see that there exists a ball

B(T0) ⊂ L(Y ) for which, if T ∈ B(T0) and z ∈ γ1, then (T − zI)−1 ∈ L(Y ).

It follows that the projections Pγi(T ) are well defined in Br(T0) and

given by an integral along the same curve γ1. For T, T̃ ∈ Br(T0), the Lispchitz

estimate is easy:

‖Pγ1(T )− Pγ1(T̃ )‖ ≤ 1

2π

∫
γ1

‖(zI − T )−1 − (zI − T̃ )−1‖dz

≤ c

2π

∫
γ1

‖(zI − T )−1(T̃ − zI − T + zI)(zI − T̃ )−1‖dz ≤ c̃

2π
‖T − T̃‖.

Here, we used the fact that the inverses (zI−T )−1 are uniformly bounded

for all T ∈ Br(T0) and z ∈ γ1. Now take r so that ‖Pγ1(T ) − Pγ1(T0)‖ < 1.

This implies that dim RanPγ1(T ) = k for T ∈ Br(T0).

Now, split Y = RanPγ1(T ) ⊕ RanPγ2(T ), both terms being closed

invariant subspaces under T . In particular, from theorem B.2, for λ /∈ V2,

the restriction of T − λI to RanPγ2(T ) is invertible and the restriction to

RanPγ1(T ) is a linear operator from a vector space of dimension k to itself —

adding up, T − λI is a Fredholm operator of index zero.

Proposition B.6 Let T0 ∈ L(Y ). Take σ1, σ2 ⊂ σ(T0) disjoint spectral

components of T0 such that σ1∪σ2 = σ(T ). Take disjoint curves γ1, γ2 ⊂ ρ(T0)

with disjoint interior V1, V2 such that σ1, σ2 are contained,respectively, in V1, V2.

Then, there exists a ball B(T0) ⊂ L(Y ) such that, for all T ∈ B(T0), we have

σ(T ) = V1 ∪ V2.

Proof: Observe that, for a curve γ containing σ(T ) we have

Pγ1(T0) + Pγ2(T0) =

∫
γ1∪γ2

(zI − T0)−1 =

∫
γ

(zI − T0)−1 = I. (B.2)
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Appendix B. Spectral Theory 80

We prove that, for T close enough to T0 we have Pγ1(T ) + Pγ2(T ) = I,

that is, by corollary B.4, σ(T ) ⊂ V1 ∪ V2.

Observing that {T0 − zI : z ∈ γ1 ∪ γ2} ⊂ L(Y ) is compact, and that

(T0 − zI)−1 well defined for all z ∈ γ1 ∪ γ2, it is not hard to find a ball

B(T0) ⊂ L(Y ) for which, for all T ∈ B(T0) and z ∈ γ1 ∪ γ2, the operators

T − zI : Y → Y are all invertible.

Suppose, to the contrary, that there exists a sequence {Tk}k ⊂ L(Y ) such

that Tk → t0 and for all k ∈ N there exists some λk ∈ σ(Tk)− (V1 ∪ V2). Take

k ≥ N great enough so that Tk ∈ B(T0), that is (Tk − z)−1 ∈ L(Y ) for all

z ∈ γ1 ∪ γ2. It follows that, for k ≥ N , both projections below are well defined

Pγ1(Tk) =

∫
γ1

(zI − Tk)−1dz , Pγ2(Tk) =

∫
γ2

(zI − Tk)−1dz

From equation (B.2), I = Pγ1∪γ2(T0), so that for k ≥ N , we have

‖I − Pγ1∪γ2(Tk)‖ = ‖Pγ1∪γ2(T0)− Pγ1∪γ2(Tk)‖

≤ 1

2π

∫
γ1∪γ2

‖(zI − T0)−1 − (zI − Tk)−1‖L(Y )dz

≤ 1

2π

∫
γ1∪γ2

‖(zI − T0)−1(T0 − Tk)(zI − Tk)−1‖L(Y )dz ≤
c

2π
‖T0 − Tk‖L(Y ).

Let B(I) ⊂ L(Y ) for which every linear transformation in it is invertible. For

k ≥ N1, we have that Pγ1∪γ2(T ) is invertible. It follows that Pγ1∪γ2(Tk) = I,

that is, from corollary B.4, the spectrum of Tk lies in V1 ∪ V2.

Proposition B.7 Let X, Y be real reflexive Banach spaces, X ⊂ Y , X dense

in Y and consider T0 : X → Y an operator which is Fredholm of index 0.

Suppose that there exist eigenvectors φ0 ∈ X, φ∗0 ∈ Y ∗ of T0 and T ∗0 associated

to the eigenvalue λ0 ∈ R such that Ker(T0 − λ0I) is one dimensional and λ0

is an isolated eigenvalue. Then, for some ball B(T0) ⊂ L(X, Y ), there exists a

C∞ function (λ, φ, φ∗) : B(T0)→ R×X × Y ∗ such that

1. T ∈ B(T0) is Fredholm of index 0,

2. Tφ(T ) = λ(T )φ(T ), with φ(T ) 6= 0 and Ker(T − λ(T )) = 〈φ(T )〉,

3. T ∗φ∗(T ) = λ(T )φ∗(T ), with φ∗(T ) 6= 0 and Ker(T ∗ − λ(T )) = 〈φ∗(T )〉,

4. λ(T0) = λ0, φ(T0) = φ0, φ∗(T0) = φ∗0.
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Proof: To prove item 1 we observe that the operators in L(X, Y ) with

Fredholm index equal to 0 form an open subset of L(X, Y ). As T0 is Fredholm

of index 0, take B(T0) contained in that subset.

Take l ∈ Y ∗ such that l(φ0) = 1 and Ker(l) = Ran(T0 − λ0I), which is

possible because φ0 /∈ Ran(T − λ0I) as T0 is Fredholm of index 0.

Consider the function

G : L(X, Y )× R× {φ0 +Ker(l)} → Y , (T, λ, φ) 7→ Tφ− λφ.

Note that G is a C∞ function and that G(T0, λ0, φ0) = 0.

We want to show that, at (T0, λ0, φ0), the derivative of G on λ and φ

is invertible, so that, by the implicit function theorem, the level 0 of G near

(T0, λ0, φ0) can be written as G(T, λ(T ), φ(T )) = 0 where φ(T ) and λ(T ) are

C∞ functions.

It is clear that( ∂G

∂λ∂φ
(T0, λ0, φ0)

)
(λ, φ) = T0φ− λ0φ− λφ0.

We prove that it is an isomorphism from R×Ker(l) to Y .

Suppose that T0φ − λ0φ − λφ0 = 0 for some pair (λ, φ). Apply the

functional l to both sides of the equation above. Note that l(T0φ − λ0φ) = 0

and l(λφ0) = λ. It follows that λ = 0. Now, we have T0φ − λ0φ = 0 with

φ ∈ Ker(l) with φ0 /∈ Ker(l). It follows that φ = 0 and injectivity is proved.

Now we prove surjectivity. Take g ∈ Y . Write g = w + tφ0 ∈ Ran(T0 −
λ0)⊕ 〈φ0〉. As T0− λ0I : Ker(l)∩X → Ran(T0− λ0) is an isomorphism, take

u ∈ Ker(l) ∩X such that T0u− λ0u = w and λ = t ∈ R.

Finally, by the implicit function theorem, there exists a neighbourghood

V (T0) where we can define a C∞ function

(λ, φ) : V (T0)→ V (λ0)× V (φ0)

such that, for T ∈ V (T0), G(T, λ(T ), φ(T )) = 0 if and only if (λ(T ), φ(T )) =

(λ, φ) for all (T, λ, φ) ∈ V (T0)× V (λ0)× V (φ0).

Now we want to prove that there exist balls B(T0) ∈ V (T0) and

B(λ0) ⊂ V (λ0) such that λ(T ) is simple and that for all T ∈ B(T0), we

have σ(T ) ∩B(λ0) = λ(T )
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Appendix B. Spectral Theory 82

Consider the complexification

TC : XC → YC , u+ iv 7→ Tu+ iTv.

Fix z ∈ ρ(T0,C) ∩ R. Consider the operators (T − zI)−1 which are defined in

a ball B1(T0,C) ⊂ L(YC). By hypothesis, the eigenvalue λ0 is also a simple

isolated eigenvalue of T0,C, that is, (λ0− z)−1 is a simple isolated eigenvalue of

(T0,C − zI)−1. Take a curve γ ∈ ρ(T0,C) such that the interior of γ intersects

σ((T0,C− zI)−1) only at (λ0− z)−1. Then, there exists a ball around T0,C such

that Pγ((TC− zI)−1) has unidimensional kernel, by lemma B.5. It follows that

(TC− z)−1 has a single eigenvalue in the interior of the curve γ. That is, there

exists some ball B(T0) ⊂ L(X, Y ) such that for all T ∈ B(T0) there exists a

single eigenvalue (maybe complex) in the interior of γ.

Take a possibly smaller ball B1(T0) ⊂ B(T0) ∩ V (T0), where V (T0) was

given by the implicit function theorem. From the arguments above, it follows

that, for all T ∈ B1(T0), the only eigenvalue belonging to V (λ0) ∩ λ(B(T0)) is

λ(T ), which is real.

Now, apply the same result to the operator T ∗0 : Y ∗ → X∗ with

T ∗0 φ
∗
0 = λ0φ

∗
0 to obtain B(T ∗0 ) ⊂ L(X, Y ) in which we can define a C∞ function

(λ∗, φ∗) : B(T ∗0 )→ V (λ0)× V (φ∗0)

satisfying, for all S ∈ B(T ∗0 ), Sφ∗(S) = λ∗(S)φ∗(S) and λ(T ∗0 ) = λ0 and

φ∗(T ∗0 ) = φ∗0 and that, if there exists some eigenvalue λ ∈ V (λ0) for an operator

S ∈ B(T ∗0 ), then λ∗(S) = λ.

Take a possibly smaller ball B2(T0) ⊂ B1(T0) such that for all T ∈ B2(T0)

we have T ∗ ∈ B(T ∗0 ). Note that λ∗(T ∗) = λ(T ). It follows that the function

(λ, φ, φ∗) : B1(T0)→ V (λ0)× V (φ0)× V (φ∗0)

is well defined with the components λ and φ being C∞. As φ∗ : B(T ∗0 )→ V (φ∗0)

is C∞ and T 7→ T ∗ is linear, it follows that T 7→ φ∗(T ∗) is C∞.

Proposition B.8 Let X, Y be complex reflexive Banach spaces, X ⊂ Y , X

dense in Y and consider T0 : X → Y an operator which is Fredholm of index

0. Suppose that there exists an eigenvector φ0 ∈ X of T0 associated to the

eigenvalue λ0 ∈ C such that Ker(T0 − λ0I) is one dimensional and λ0 is an

isolated eigenvalue. Then, for some ball B(T0) ⊂ L(X, Y ), there exists a C∞

function (λ, φ) : B(T0)→ C×X such that
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1. T ∈ B(T0) is Fredholm of index 0,

2. Tφ(T ) = λ(T )φ(T ), with φ(T ) 6= 0 and Ker(T − λ(T )) = 〈φ(T )〉,

3. λ(T0) = λ0, φ(T0) = φ0.

The proof is analogous to the one of proposition B.7, but with the simplification

that we are not interested in showing that the eigenfunction associated to λ(T )

of the adjoint operator T ∗ is differentiable on T .
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C

Folds

C.1

Differentiable fold

Proposition C.1 (differentiable fold) Let B be a Banach space. Let

G : B × R→ B × R , (z, t) 7→ (z, h(z, t))

be a C2 function. Suppose that, for every fixed z ∈ B, the map (t) 7→ hz(t) :=

h(z, t) satisfies lim|t|→∞ h(z, t) = −∞. Then, the following propositions are

equivalent

if h′z(c(z)) :=
∂h

∂t
(z, c(z)) = 0, then h′′(z, c(z)) :=

∂2h

∂t2
(z, c(z)) < 0

there exist C1 diffeomorphisms Ψ1,Ψ2 : B × R→ B × R such that

(Ψ2 ◦G ◦Ψ1)(z, t) = (z,−t2).

Proof: The proof follows a few simple (but technical) steps. We give a one

dimensional counterpart of the proof so that the reader gets familiarized with

the ideas. By one dimensional counterpart we mean: let h : R→ R be C2 such

that lim|t|→∞ h(t) = −∞. Then, the assertions below are equivalent.

if h′(t) = 0, then h′′(t) < 0

there exist C1 diffeomorphisms ψ1, ψ2 : R→ R such that ψ2(h(ψ1(s))) = −s2.

(⇐=) Suppose that there exist diffeomorphisms ψ1, ψ2 : R → R such that

ψ1(h(ψ1(s))) = −s2.

First we prove that h has a unique critical point. By the behaviour of h

at infinity, it has some critical point. Let c0 ∈ R be a critical point of h. Let

s0 ∈ R be such that ψ1(s0) = c0. Then, h′(c0) = h′(ψ(s0)) = 0.
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Clearly,

frac∂∂tψ2 ◦ h ◦ ψ1(s) = −2s

implies that 0 is the only critical point of ψ2 ◦ h ◦ ψ1. Since ψ1, ψ2 are

diffeomorphisms, it follows that ψ1(0) = c0 is the only critical point of h.

That is, h′(t) = 0 if and only if t = c0.

Since h has a unique critical point, c0 and lim|t|→∞ h(t) = −∞, then its

critical point must be a local maximum, in other words, h′′(c0) ≤ 0.

Now we prove that h′′(c0) < 0. For s ∈ R, we have that

ψ′2(h(ψ1(s)))h′(ψ1(s))ψ′1(s) = −2s.

Use Taylor’s formula with a remainder in the C1 function h′ ◦ψ1 to obtain, for

s near 0,

h′(ψ1(s)) = h′(ψ1(0)) + h′′(ψ1(0))s+ o(s) = h′′(c0)s+ o(s).

It follows that

ψ′2(h(ψ1(s)))
h′′(c0)s+ o(s)

s
ψ′1(s) =

−2s

s
= −2.

Take the limit s→ 0 to obtain

ψ′2(h(c0))h′′(c0)ψ′1(0) = −2

so that h′′(c0) 6= 0. Since h′′(c0) ≤ 0 we have proved that h′′(c0) < 0.

(=⇒) Suppose that, if c0 is a critical point of h, then h′′(c0) < 0. It is clear that

h has a single critical point. Let c0 be the unique critical point of h. Consider

the function t 7→ h1(t) := h(t + c0), that is, a translation in the argument.

Now, make a translation in the counterdomain t 7→ h2(t) := h(t+ c0)− h(c0).

It follows that h2(0) = 0 and h′2(0) = h′(c0) = 0. Using a technique due to

Hadamard we obtain that for all t ∈ R,

h2(t) = h2(t)− h2(0) = t

∫ 1

0

h′2(rt)dr ≤ 0.

Also, h′2(rt) = h′2(rt)− h′2(0) = tr
∫ 1

0
h′′2(rst)ds, so that, for all t ∈ R,

h2(t) = t2
∫ 1

0

r

∫ 1

0

h′′2(rst)ds dr =: t2γ(t) ≤ 0.
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We claim that t 7→ t
√
−γ(t) is a diffeomorphism. First we check that

it is well defined, that is, for all t ∈ R we have γ(t) ≤ 0. This is easy: since

h2(t) has a unique critical point c0 = 0, h2(c0) = 0 and lim|t|→∞ h2(t) = −∞.

Now we show that γ(t) < 0. For t 6= 0, it is clear that γ(t) < 0. For t = 0, we

use continuity of γ and the fact that h′′2(0) < 0. Again, use Taylor’s remainder

formula, for t 6= 0 near 0,

h2(t) = h2(0) + h′2(0)t+ h′′2(0)
t2

2
+ o(t2) = h′′2(0)

t2

2
+ o(t2).

Dividing by t2 and making t→ 0, we obtain

γ(t) =
h2(t)

t2
=
h′′(0)

2
+
o(t2)

t2
→ γ(0) =

h′′(0)

2
< 0,

so we have proved that γ(t) < 0. It is also easy to see that t 7→ t
√
−γ(t) is

surjective using the fact that lim|t|→∞ h2(t) = −∞.

Finally, we check that t 7→ t
√
−γ(t) is stricly increasing. To that end

we prove that its derivative is everywhere positive. A simple calculation shows

that

t
√
−γ(t) :=

 −
√
−h2(t) , if t < 0√
−h2(t) , if t ≥ 0

.

If t > 0, then we differentiate t
√
−γ(t) and obtain

− h′2(t)

2
√
−h2(t)

> 0,

since h′2(t) < 0. Analogously, for t < 0,

h′2(t)

2
√
−h2(t)

> 0

since h′2(t) > 0. The difficulty now is to prove that t
√
−γ(t) is differentiable at

0 and that its derivative is positive, thus proving that γ is a diffeomorphism.

We use the mean value theorem and

lim
t↑0

∂ −
√
−h2(t)

∂t
=
√
−h′′(c0)/2 = lim

t↓0

∂
√
−h2(t)

∂t

to obtain our result. Note that h′′2(0) = h′′(c0) < 0.

DBD
PUC-Rio - Certificação Digital Nº 1221625/CA



Appendix C. Folds 87

First, consider, for t < 0 near 0,

− h′2(t)

2
√
−h2(t)

=− h′2(0) + h′′2(0)t+ o(t)

2
√
−h2(0)− h′2(0)t− h′′(0)t2/2− o(t2)

=− h′′2(0)t+ o(t)

2t
√
−h′′2(0)/2− o(t2)/t2

=− h′′2(0) + o(t)/t

2
√
−h′′2(0)/2− o(t2)/t2

→ − h′′2(0)

2
√
−h′′2(0)/2

=
√
−h′′2(0)/2 > 0

Now, for t > 0 near 0,

h′2(t)

2
√
−h2(t)

=
h′2(0) + h′′2(0)t+ o(t)

2
√
−h2(0)− h′2(0)t− h′′2(0)t2/2− o(t2)

=
h′′2(0)t+ o(t)

−2t
√
−h′′2(0)/2− o(t2)/t2

= − h′′2(0) + o(t)/t

2
√
−h′′2(0)/2− o(t2)/t2

→ − h′′2(0)

2
√
−h′′2(0)/2

=
√
−h′′2(0)/2 > 0.

Now, by the mean value theorem, for ξ(t) = t
√
γ(t) and 0 < c(t) < t,

∣∣ ξ(t)− ξ(0)

t
−
√
−h′′(c0)/2

∣∣ =
∣∣ ξ′(c(t))−√−h′′(c0)/2

∣∣
with the right hand side going to 0 as t→ 0, by the limits we obtained before.

Consider ξ−1 : R→ R. Observe that, by the definition of ξ−1,

h2(ξ−1(s)) = −ξ−1(s)2γ(ξ−1(s))

= −
(
ξ−1(s)

√
γ(ξ−1(s))

)2
= −ξ(ξ−1(s))2 = −s2.

It follows that ψ1(s) = ξ−1(s) + c0 and ψ2(t) = t − h(c0). Clearly, ψ1 and ψ2

are diffeomorphisms.

Now we consider the higher dimensional case. Note that the maps ψ1

and ψ2 have C∞ dependence on the parameter c0. The thing to worry about

is how c0 depend on the component z ∈ B. So, we can consider the changes

of variables Ψ1(c(z), t) and Ψ2(c(z), t) where c(z) is the unique critical point

associated to the height hz. If these functions have C1 dependence on z, then

we will have proved the implication (=⇒).
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The upshot here is that the parameter c(z) does not depend on t, so

that our changes of variables will be invertible, and hence diffeomorphisms.

We refrain from giving more details on that — we just prove that c(z) has C1

dependence on z. That said, we prove that the critical set is the graph of a C1

function c : B → R. Let c(z) ∈ R be the unique point such that h′(z, c(z)) = 0.

Clearly, the derivative of the function G at a point (z, t) is not invertible

if, and only if, h′(z, t) = 0. Consider the function C1 function h′ : B ×R→ R.

Consider the level h′(z, c(z)) = 0. As h′′(z, tz) < 0, the implicit function

theorem provides that there exists a C1 function z ∈ B 7→ c̃(z) ∈ R such that

h′(z, c(z)) = 0. Again, by hypothesis, c̃(z) = c(z), that is, z ∈ B 7→ c(z) ∈ R is

C1.

Finally we prove (⇐=) for the multidimensional case, which is trickier

than the one dimensional case since it involves 2× 2 matrices of operators.

Suppose that there exist diffeomorphisms Ψ1,Ψ2 : B × R→ B × R such

that Ψ2(G(Ψ1(z, s))) = (z,−s2). The Jacobian of the composite function is

give by

DΨ2(G(Ψ1(z, s)))DG(Ψ1(z, s))DΨ1(z, s) =

[
I 0

0 −2s

]
.

Clearly, fixed z ∈ B, the only critical point of Ψ2 ◦ G ◦ Ψ1 is the point

(z, 0) ∈ B × R.

With that information in hand, we prove that, at a critical point c0 of hz,

we have that h′′z(c0) ≤ 0. By contradiction, suppose that there exists a critical

point c0 of hz such that h′′z(c0) > 0. Since lim|t|→∞ hz(t) = −∞, there exists

some other critical point c1 of hz.

Observe that, since Ψ2 and Ψ1 are diffeomorphisms and

DG(z, t) :=

[
I 0

H(t) h′z(t)

]
,

that D(Ψ2 ◦G ◦Ψ1)(z, t) is not invertible if, and only if, h′z(t) = 0.

Take s0 6= s1 such that Ψ1(z, s0) = (z, c0) and Ψ1(z, s1) = (z, c1)

which is possible because Ψ1 is a diffeomorphism. Then we have that both

(z, s0) 6= (z, s1) are critical points of Ψ2 ◦G ◦Ψ1 which is a contradiction.

Now, we prove that h′′z(c0) < 0 if c0 is a critical point of hz. Set, for fixed

z ∈ B, with the capital letters representing operators from B to B and the
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small ones representing real numbers,

(DΨ2)(G(Ψ1(z, t))) :=

[
A2(t) b2(t)

C2(t) d2(t)

]
, DΨ1(z, t) :=

[
A1(t) b1(t)

C1(t) d1(t)

]
,

(DG)(Ψ1(z, t)) :=

[
I 0

H(t) h′z(t)

]
.

Then, we conclude that[
(A2 + b2H)A1 + b2h

′
zC1 b1(A2 + b2H) + b2d1h

′
z

(C2 + d2H)A1 + d2h
′
zC1 b1(C2 + d2H) + d2d1h

′
z

]
(t) =

[
I 0

0 −2t

]

All the terms in the left side matrix depend on t, and we use the notation (t)

so that the equation fits in one line.

Suppose, by contradiction, that h′′z(c0) = 0. Take the term m11 of matrix

D(Ψ2 ◦G ◦Ψ1)(t)

(A2(t) + b2(t)H(t))A1(t) + b2(t)h′z(t)C1(t) (C.1)

and observe that, as t→ c0, the unique critical point of hz, we have that

(A2(t) + b2(t)H(t))A1(t) + b2(t)h′z(t)C1(t)→ (A2(c0) + b2(c0)H(c0))A1(c0) = I

so that A2(c0) + b2(c0)H(c0) 6= 0.

On the other hand, divide both terms in the equation (C.1) by t and note

that, as t→ c0,

b1(t)

t
(A2(t) + b2(t)H(t)) + b2(t)d1(t)

h′z(t)

t
→ 0

so that b1(t)/t→ 0.

Finally, as t → c0 we have, for the term m44 of the matrix D(Ψ2 ◦ G ◦
Ψ1)(t),

b1(t)

t
(C2(t) + d2(t)H(t)) + d2(t)d1(t)

h′z(t)

t
→ −2

which is a contradiction since both b1(t)/t and h′z(t)/t converge to 0. It follows

that h′′z(c0) < 0.
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C.2

Topological fold

Proposition C.2 Let B be a Banach space. Let G : B × R → B × R be a

Lipschitz function such that G(z, t) = (z, h(z, t)). Suppose that, for all z ∈ HY

we have lim|t|→∞ h(z, t) = −∞ and that every local extreme point of h is a

strict maximum point. Then, there exist homeomorphisms Ψ1,Ψ2 such that

Ψ2(G(Ψ1(z, s))) = (z,−s2)

Proof: We proceed in a similar way as we did to prove proposition C.1. We

consider a real function h : R → R which is continuous, lim|t|→∞ h(t) = −∞
and that every local extreme of h is a strict maximum point. We want to obtain

homeomorphisms ψ1, ψ2 : R→ R such that ψ2(h(ψ1(s))) = −s2.

First we observe that h reaches its maximum at a single point c0. Then,

consider the translation in the domain given by s 7→ h1(s) := h(s + c0). It

follows that h1 reaches its maximum at 0.

Now consider the translation of h1 in the counterdomain given by

t 7→ h2(t) = h(t + c0) − h(c0). Note that lim|t|→∞ h2(t) = −∞ and that it

reaches its maximum at 0 with h2(0) = 0, that is, h2 ≤ 0. Morever, h2 is

strictly increasing for t ≤ c0 and strictly decreasing for t ≥ 0. Consider the

homeomorphism

ξ(s) :=

 −
√
−h2(s), if s ≤ 0√
−h2(s), if s > 0

.

Now, observe that, for s > 0√
−h2(ξ−1(s)) = ξ(ξ−1(s)) = s,

so that, h2(ξ−1(s)) = −s2. Similary, for s ≤ 0, h2(ξ−1(s)) = −s2. Define

ψ1(s) = ξ−1(s) + c0 and ψ2(t) = t− h(c0).

Now we proceed to the multidimensional case. If c0 varies continuously on

the parameter z we obtain the homeomorphisms Ψ1(z, s) = (z, ξ−1(s) + c(z))

and Ψ2(z, t) = (z, t − h(z, c(z))) where c(z) is the unique height at which

h(z, c(z)) = maxt∈R{h(z, t)}.

This is a consequence of G being Lipschitz and the behaviour of t 7→
h(z, t) at infinity. Take zk → z0 with zk ∈ B. Consider the sequence c(zk).

We want to prove that c(zk) → c(z0). First, observe that h(zk, c(zk)) ≥
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h(zk, c(z0)) → h(z0, c(z0)), that is, h(zk, c(zk)) is bounded. Put the following

piece together

|h(zk, c(zk))− h(z0, c(zk))| ≤ C‖zk − z0‖B → 0.

Now, if |c(zk)| → ∞, then h(zk, c(zk))→ −∞, contradicting h(z0, c(zk)) being

bounded — hence {c(zk)}k is bounded.

Take any subsequence of {c(zk)}k. Relabel it and call it {c(zi)}i. It has a

convergent subsequence {c(zij)}j with limit c0. We prove that c(zij) → c(z0).

Note that h(zij , c(zij)) ≥ h(zij , c(z0)). By continuity of h, it follows that

h(z0, c0) ≥ h(z0, c(z0)). Since c(z0) is the maximum point of t 7→ h(z0, t),

it follows that c0 = c(z0). As the argument above is valid for any subsequence

of {c(zk)}k, we have that c(zk)→ c(z0).
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