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Abstract

Silva, Edgar Matias da; Díaz, Lorenzo (Advisor).Non-hyperbolic
Iterated Function Systems: attractors, stationary
measures, and step skew products. Rio de Janeiro, 2016.
86p. PhD Thesis – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.
We consider iterated function systems IFS(T1, . . . , Tk) consisting of

continuous self maps of a compact metric space X. We introduce the subset
St of weakly hyperbolic sequences ξ = ξ0 . . . ξn . . . having the property that⋂
n Tξ0 ◦ · · · ◦ Tξn(X) is a point {π(ξ)}. The target set π(St) plays a role

similar to the semifractal introduced by Lasota-Myjak.
Assuming that St 6= ∅ (the only hyperbolic-like condition we assume)

we prove that the IFS has at most one strict attractor and we state a
sufficient condition guaranteeing that the strict attractor is the closure of the
target set. Our approach applies to a large class of genuinely non-hyperbolic
IFSs (e.g. with maps with expanding fixed points) and provides a necessary
and sufficient condition for the existence of a globally attracting fixed point
of the Barnsley-Hutchinson operator. We provide sufficient conditions under
which the disjunctive chaos game yields the target set (even when it is not
a strict attractor).

We state a sufficient condition for the asymptotic stability of the
Markov operator of a recurrent IFS. For IFSs defined on [0, 1] we give a
simple condition for their asymptotic stability. In the particular case of
IFSs with probabilities satisfying a “local injectivity” condition, we prove
that if the target set has at least two elements then the Markov operator is
asymptotically stable and its stationary measure is supported in the closure
of the target set.

We use the results about IFSs to study several types of attractors of
step skew products of non-hyperbolic type. We introduce the subset S−t of
Σk of sequences with trivial spines (this set is a version of St for bilateral
sequences) and assume that this set is non-empty. We identify a closed
subset of the phase space (that is a bony-like graph) where the restriction
of the skew product map is topologically mixing. We prove that, in many
relevant cases, the skew product has only a Milnor attractor that coincides
with this bony-like graph. Finally, as an application, we construct a robust
example of a topologically mixing Milnor attractor having a complicated
fiber structure (the attractor contains “disconnected bones”).
Keywords

Barnsley-Hutchinson operator; Conley and strict attractors;
Markov operators; Target set; Chaos game;

DBD
PUC-Rio - Certificação Digital Nº 1222005/CA



Resumo

Silva, Edgar Matias da; Díaz, Lorenzo. Sistemas de funções
iteradas não-hiperbólicos: atratores, medidas estacionárias
e produtos tortos simples. Rio de Janeiro, 2016. 86p. Tese de
Doutorado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.
Nós consideramos sistemas de funções iteradas SFI(T1, . . . , Tk) con-

sistindo de funções contínuas definida em um espaço métrico compacto
X. Introduzimos o conjunto St de sequências fracamente hiperbólicas ξ =
ξ0 . . . ξn . . . tendo a propriedade que ⋂n Tξ0 ◦· · ·◦Tξn(X) é um ponto {π(ξ)}.
O conjunto alvo π(St) desempenha um papel similar ao semi-fractal intro-
duzido por Lasota-Myjak.

Assumindo que St 6= ∅ (a única condição do tipo hiperbólica que
assumimos) provamos que o SFI tem no máximo um atrator estrito e
estabelecemos uma condição suficiente garantindo que o atrator estrito é
o fecho do conjunto alvo. Como consequência obtivemos uma condição
necessária e suficiente para a existência de um ponto fixo globalmente
atrator do operador de Hutchinson. Nós também estabelecemos condições
sob as quais o jogo do caos disjuntivo determina o conjunto alvo (mesmo
quando não existe atrator estrito).

Nós estabelecemos uma condição suficiente para estabilidade assin-
tótica do operador de Markov de um SIF recorrente. Para SIFs no intervalo
[0, 1] apresentamos uma condição simples garantindo a estabilidade assin-
tótica. No caso particular de um SFI com probabilidade satisfazendo uma
"injetividade local” provamos que se o conjunto alvo tem pelo menos dois el-
ementos então o operador de Markov é assintoticamente estável e o suporte
da medida estacionária é o fecho do conjunto alvo.

Os resultados sobre SFIs são usados para estudar os diversos tipos de
atratores do produto torto simples de tipo não-hiperbólico. Introduzimos o
subconjunto S−t de Σk de sequências com espinho não trivial (este conjunto
é uma versão do conjunto St para sequências bilaterais) e assumimos que
este conjunto é não vazio. No espaço de fases identificamos um conjunto
fechado(que é o fecho de um gráfico) onde a restrição do producto torto
é topologicamente misturadora. Em muitos casos relevantes provamos que
o produto torto tem apenas um atrator de Milnor que coincide com este
gráfico. Finalmente, como aplicação, contruímos um exemplo robusto de
um atrator de Milnor tendo uma estrutura complicada (O atrator contém
bones desconexos).

Palavras-chave
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1
Introduction

In this work we study iterated function systems (IFSs) associated to
continuous self-maps T1, . . . , Tk, k ≥ 2, defined on a compact metric space
(X, d) (denoted by IFS(T1, . . . , Tk)). In his fundamental paper (17), Hutchinson
considered hyperbolic (uniformly contracting) IFSs and proved the existence
and uniqueness of global attractors and stationary measures for such IFSs. We
obtain similar results for genuinely non-hyperbolic IFSs having contracting
and expanding regions as well as contracting and expanding fixed points. We
use our constructions and results for IFSs to study Milnor attractors of their
associated step skew product.

1.1
Iterated function systems

A key ingredient in this study is the so-called Barnsley-Hutchinson
operator of an IFS F = IFS(T1, . . . Tk) that associates to each subset A of
X the set

BF(A) def=
k⋃
i=1

Ti(A). (1.1.1)

This operator acts continuously in the space of nonempty compact subsets of
X endowed with the Hausdorff metric. In the hyperbolic setting (all maps Ti
are uniform contractions) the operator BF has a unique global attractor: there
exists a compact set AF, called the attractor of the IFS, such that

lim
n→∞

BnF(K) = AF for every compact set K ⊂ X, K 6= ∅,

see (17). Edalat (14) extended this result to weakly hyperbolic IFSs, that is,
IFSs satisfying the following “reverse” contracting condition

diam
(
Tξ0 ◦ · · · ◦ Tξn(X)

)
→ 0 for every ξ = ξ0ξ1ξ2 · · · ∈ Σ+

k , (1.1.2)

where Σ+
k

def= {1, . . . , k}N.
In this thesis we will study a more general setting than the above one,

considering genuinely non-hyperbolic IFSs. One of our goals is to describe the
global and local “attractors” of BF. More precisely, we will consider so-called
strict and Conley attractors. A compact set A ⊂ X is a strict attractor of the
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Chapter 1. Introduction 12

IFS F if there is an open neighbourhood U of A such that

lim
n→∞

BnF(K) = A for every compact set K ⊂ U .

The basin of attraction of A is the largest open neighbourhood of A for which
the above property holds. A strict attractor whose basin of attraction is the
whole space is a global attractor. A compact set S ⊂ X is a Conley attractor
of the IFS F if there exists an open neighbourhood U of S such that

lim
n→∞

BnF(U) = S.

The continuity of the Barnsley-Hutchinson operator BF implies that Conley
and strict attractors both are fixed points of BF. Note also that strict attractors
are Conley attractors but the converse is not true in general. Finally, we say
that the IFS F is asymptotically stable if there is a (unique) global attractor.

The above mentioned results in (17, 14) require some sort of global
contraction (hyperbolicity) of the IFS. Having in mind the definition of weakly
hyperbolicity in (1.1.2), we introduce the subset St ⊂ Σ+

k of weakly hyperbolic
sequences defined by

St
def=
{
ξ ∈ Σ+

k : lim
n→∞

diam
(
Tξ0 ◦ · · · ◦ Tξn(X)

)
= 0

}
. (1.1.3)

Note that for a weakly hyperbolic IFS one has St = Σ+
k . If St 6= Σ+

k we will
call the IFS non-weakly hyperbolic. We say that an IFS has a weakly hyperbolic
sequence if St 6= ∅. When St 6= ∅ then it contains a residual subset of Σ+

k
1.

We replace the condition every sequence is weakly hyperbolic by the condition
there is at least one weakly hyperbolic sequence. The goal of this thesis is to
recover results in the spirit of (17, 14) in such a setting.

We briefly sketch our main results and philosophy of our approach,
postponing the precise statements. As a general principle, rephrasing Pugh-
Shub principle (28), we show that “a little hyperbolicity goes a long way
guaranteeing stability-like properties”. Here by a “little hyperbolicity” we
understand either the almost-sure existence of weakly hyperbolic sequences or
the existence of at least one, according to the case. First, assuming that the set
St has “probability one”, we prove that the Markov operator is asymptotically
stable (here we consider Markov measures associated to transition matrices
and the particular case of Bernoulli probabilities). Second, we prove that if
the Barnsley-Hutchinson operator has a unique fixed point then the IFS is
asymptotically stable. Finally, in the case when X is an interval, to establish

1This follows using genericity standard arguments, see for instance the construction in
(12, Proposition 3.15)
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Chapter 1. Introduction 13

the stability of the Markov operator we show that it is enough to assume that
there are no common fixed points for the maps of the IFS and that there exists
at least one weakly hyperbolic sequence.

We now provide more details for our main results (for the precise
definitions and statements see Section 2). Associated to the set St of weakly
hyperbolic sequences we consider the coding map π : St → X that projects St

into the phase space X, see equation (2.1.1). The set At
def= π(St) is called the

target set and contains relevant dynamical information of the IFS. Assuming
that St 6= ∅, we prove the following results:

– The closure of the target set At is a Conley attractor if and only if it is
a strict attractor (Theorem 1).

– The set At is the global maximal fixed point of the IFS if and only
if the IFS is asymptotically stable. Moreover, the Barnsley-Hutchinson
operator has a unique fixed point if and only if it is asymptotically stable
(Theorem 2).

We will investigate more closely the relation between target sets and
semifractals introduced in (24). An IFS F = IFS(T1, . . . , Tk) is said to be regular
if there are numbers 1 ≤ i1 < i2 < · · · < i` ≤ k such that F′ = IFS(Ti1 , . . . , Ti`)
is asymptotically stable. The global attractor of F′ is called a nucleus of F (an
IFS may have several nuclei). By (24) for any regular IFS F there exists the
minimum fixed point of F, called its semifractal and denoted by Semi(F). It is
obtained from any nucleus of F and attracts every compact set inside it, where
iterations are taken with respect the Barnsley-Hutchinson operator of F. On
the other hand, when St 6= ∅, the set At is a minimum fixed point that attracts
every compact set inside it. This provides the following characterisation of
semifractals:

– If an IFS F is regular and satisfies St 6= ∅ then Semi(F) = At.

For a non-regular IFS with St 6= ∅ (see Example 11.0.8) the set At plays the
same role as a semifractal plays for a regular IFS. We refer to Remark 4.3.5 to
support this assertion.

We will also study the consequence of our approach for the so-called chaos
game. The chaos game is an algorithm for generating fractals using random
iterations of an IFS, see (3). It has probabilistic and disjunctive (deterministic)
versions, see (3, 7, 9, 6). Given an initial point x = x0 ∈ X, one considers the
orbit xn+1 = Tξn(xn), where the sequence ξ ∈ Σ+

k is chosen according to some
probability (probabilistic game) or is a disjunctive sequence (disjunctive game).

DBD
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Chapter 1. Introduction 14

Recall that ξ ∈ Σ+
k is disjunctive if its orbit (with respect to the usual left shift

σ defined by σ(ξ)n = ξn+1) is dense in Σ+
k . The chaos game holds when the

sequence of tails ({xn : n ≥ `})` in the Hausdorff distance converges to some
attracting “fractal” (in such a case we also say that chaos game yields the
fractal).

A natural question is how typically this game holds, where the term
typical either refers to sequences in Σ+

k or points in the phase space X. By (7),
the probabilistic chaos game holds when the fractal is a strict attractor and
the initial point is in its basin of attraction. By (9), the disjunctive chaos game
holds for a special class of attractors2 and every point in the pointwise basin
of attraction.

In the context of the chaos game, (24) considers IFSs whose maps are
Lipschitz with constants less than or equal to 1 and have at least one uniformly
contracting map. It is proved that the probabilistic chaos game starting at any
point of the phase space yields the semifractal (even if the semifractal is not
an attractor). In our setting, we get a similar result for the disjunctive chaos
game where the fractal is the closure of the target set.

A fixed point A of the Barnsley-Hutchinson operator is Lyapunov stable
if for every open neighbourhood V of A there is an open neighbourhood V0 of
A such that

Bn(V0) ⊂ V for every n ≥ 0. (1.1.4)
For instance, the set At is Lyapunov stable when it is a Conley attractor or
when all the maps of the IFS are Lipschitz with constants less than or equal
to 1 (the existence of a contracting map is not required). See Section 4.2 for
an example where At is stable but is not a Conley attractor.

– When At is a Lyapunov stable fixed point the disjunctive chaos game
holds for every point in the phase space (Theorem 3).

Finally we consider IFSs from the ergodic point of view, studying the
existence and uniqueness of stationary measures. Recall that given an space
of finite measures M(X) defined on a set X, an operator T : M(X)→M(X)
such that

– T is linear and
– Tν(X) = ν(X) for every ν ∈M(X)

is called a Markov operator. A stationary measure of T is a fixed point of T.
The operator T is asymptotically stable if it has a stationary measure ν such
that limTnµ = ν for every µ ∈ M(X), in the weak∗ topology. The ergodic
study of IFSs deals with two main settings:

2Called well-fibered attractors, see also the strongly fibered case in (6).
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Chapter 1. Introduction 15

– IFSs with probabilities given by a Bernoulli probability b that assigns
(positive) weights to each map;

– Recurrent IFSs associated to an irreducible transition matrix P inducing
a Markov probability P+.

From the ergodic viewpoint one studies the iterations of points by an IFS
(random orbits) as a Markov process and each type of IFS has associated
a special type of Markov operator (associated to Bernoulli probabilities and
associated to transition matrices). For a discussion see (4, 5).

Our results are summarised as follows:

– We get a sufficient condition for the asymptotically stability of a recur-
rent IFS and characterise its unique stationary measure (Theorem 6.2.1).
For a recurrent IFS on the interval [0, 1] with a splitting Markov mea-
sure 3 P+ we prove that P+(St) = 1 (Theorem 5). As consequence we
get the asymptotically stability of recurrent IFSs with a splitting inverse
Markov measure (Theorem 6).

– Every injective IFS on the interval [0, 1] with Bernoulli probability b

whose target set At is not a singleton (i.e., has at least two points)
is asymptotically stable and its unique stationary measure is π∗b and
supp(π∗b) = At. In this case, At is uncountable and the stationary
measure is continuous (Theorem 4). For IFSs with St 6= ∅ we see
that if the Markov operator associated to a Bernoulli probability b is
asymptotically stable then the support of its stationary measure is At,
even when b(St) = 0, see Proposition 6.1.4 (this proposition does not
require X = [0, 1]).

1.2
Step skew products

We now study step skew products associated to IFSs. Let Σk =
{1, . . . , k}Z be the set of infinite two-sided sequences of symbols in {1, . . . , k}.
The shift map σ : Σk → Σk associates to a two-sided sequence ω the se-
quence σ(ω) defined by (σ(ω))i = ωi+1. For a given IFS F = IFS(T1, . . . Tk),
Ti : X → X, we associate the (step) skew product map defined by

FF : Σk ×X → Σk ×X, FF(ξ, t) def= (σ(ξ), Tξ0(t)). (1.2.1)

We say that F is the underlying IFS of FF.
3This is an ergodic version of the condition “the set At is not a singleton” and means

that there is i such that the restriction of π to [i] ∩ supp(P+) is not constant.
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Chapter 1. Introduction 16

Let us introduce some definitions. The maximal attractor of FF is defined
by

ΛFF

def=
⋂
n≥0

F n
F (Σk ×X) (1.2.2)

and the spine of a sequence ξ ∈ Σk is defined by

Iξ
def=
⋂
n≥0

Tξ−1 ◦ · · · ◦ Tξ−n(X). (1.2.3)

Related to the subset St of Σ+
k in (1.1.3) we consider the set of sequences

with trivial spines defined by

S−t
def= {ξ ∈ Σk : the spine Iξ is a singleton} (1.2.4)

and the coding map % : S−t → X defined by

% : S−t → X, %(ξ) def= lim
n→∞

Tξ−1 ◦ · · · ◦ Tξ−n(p). (1.2.5)

This definition does not depend on the choice of the point p ∈ X. It follows
from definition of the target set that At = %(S−t ). An important dynamical
object is the graph of the map %,

graph % def= {
(
ξ, %(ξ)

)
: ξ ∈ S−t }. (1.2.6)

In the context where the set S−t is nonempty we study step skew product
maps from the ergodic and topological viewpoints. As in the case of IFSs,
ergodic properties of F = FF are related to the set S−t while topological
properties of F are related to At. In what follows we assume that S−t 6= ∅.

One of our goals is to study Milnor attractors of step skew products.
Milnor attractors are considered with respect some standard measure on the
ambient space Σk × X. In the one dimensional case when X = [0, 1], one
considers the product measure µ = b ×m, where m is the Lebesgue measure
on [0, 1] and b is some Bernoulli measure in Σk. In this context, we will see that,
under certain conditions on the target set of the underlying IFS F, the ω-limit
of points (ξ, x) for FF does not depend on (ξ, x) when ξ is disjunctive. Since
the set of disjunctive sequences has full Bernoulli measure, the statements for
points (ξ, x) with forward dense orbits can be used to understand the Milnor
attractor of FF.

To state these statements a bit more precisely we first obtain some results
for skew products whose fiber maps are defined on general compact sets. In
Theorem 7 we see that F is topologically mixing in graph %. It also claims that
if ξ is a disjunctive sequence then for every point z of the form z = (ξ, x) we
have that graph % ⊂ ω(z). In some special cases (for instance when At is a
Lyapunov stable fixed point of the Barnsley-Hutchinson operator or when it
has nonempty interior) we prove that in fact graph % = ω(z).
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Chapter 1. Introduction 17

To state ergodic properties of F , for a σ-invariant measure λ defined on
Σk consider the (compact and F∗-invariant) setMλ of probabilities defined on
Σk ×X whose marginal is λ, see (2.3.2). Theorem 8 states that if λ(S−t ) = 1
then F∗|Mλ

has a global attractor vλ, that is, F n
∗ µ → vλ for every µ ∈ Mλ.

Moreover, the disintegration vλ with respect to λ is the δ-Dirac measure δ%(ξ),
vλ satisfies a strong form of ergodicity, and (F, vλ) is isomorphic to (σ, λ).

We use the results above to describe the Milnor attractor (and also other
types of attractors) when X = [0, 1]. Theorem 10 claims that every Milnor
attractor of F contains the set graph %. Moreover, in some relevant cases there
is a unique Milnor attractor that coincides with graph %.

Let us recall some results in (19) that raise some interesting questions
about the structure of Milnor attractors of step skew product with fiber maps
defined on [0, 1]. In (19), assuming that the fiber maps preserve the orientation,
it is proved that generic step skew products of this type have a finite number
of physical ergodic measures m1, . . . ,mn (each of these measures is the lift of a
stationary measure of the underlying IFS). Moreover, the phase space Σk×[0, 1]
splits into finitely many pairs of attracting and repelling (in the fiber direction)
“strips” such that every Milnor attractor is contained in the maximal invariant
set in one attracting strip. For contracting (resp. repelling) strips each forward
(resp. backward) locally maximal invariant set Λi in the strip contains the
support of some physical measure mi above (but these sets can be different)
and also contains a Milnor attractor of F (although this attractor may be no
related to the measure mi). Finally, the sets Λi are bony sets, in particular,
the intersection of Λi with a fiber is either a point or an interval, where the
first case occurs almost surely. In Theorem 11 we see that Milnor attractors
can be properly contained in the sets Λi and its fiber structure can be quite
complicated: For each n there is an open set of skew products defined over Σ4

with injective fiber maps preserving the orientation such that the intersection
of the Milnor attractor with the fibers is either a point or disconnected set
with at most n components. The first case occurs almost surely in Σ4 and for
a dense subset of Σ4 the intersection consists of exactly n components which
are nontrivial closed intervals.

This thesis has two main parts, in the first one (Sections 4-6) we study
IFSs and in the second one (Sections 7-10) we apply the results in the first
part to step skew products. It is organised as follows. In Section 2 we state
the main definitions and the precise statements of our results. In Section 3
we introduce some basic definitions and notation. Section 4 is devoted to the
study of different types of attractors of IFSs and to the proofs of Theorems 1,
2, and 3. In Section 5, we consider IFSs defined on the interval [0, 1], study the
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measure of St for Markov measures, and prove Theorem 5. We also get results
about “probabilistic rigidity” of St (Theorem 5.2.1) and characterise separable
IFSs (Theorem 5.3.1). In Section 6 we prove Theorems 4 and 6 about stability
of the Markov operator. In Section 7 we start the study of step skew products
with the proof of Theorem 7. In Section 8 we study the existence of global
attracting measures and prove Theorem 8 and Corollary 9. Section 9 is devoted
to the study of Milnor attractors and the proof of Theorem 10. In Section 10
we construct robust examples of skew product having Milnor attractors with
disconnected bones and prove Theorem 11. Finally, in Section 11 we present
some examples.
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2
Precise statement of results

2.1
Topological properties of IFSs

Consider the set St of weakly hyperbolic sequences in (1.1.3) and define
the coding map1

π : St → X by π(ξ) def= lim
n→∞

Tξ0 ◦ · · · ◦ Tξn(p), (2.1.1)

where p is any point of X. By definition of the set St, this limit always exists
and is independent of p ∈ X. We introduce the target set At

def= π(St). This
name is justified by the following characterisation

At = {x ∈ X : there is ξ ∈ Σ+
k with {x} = ⋂

n Tξ0 ◦ · · · ◦ Tξn(X)}, (2.1.2)

see (4.1.2). The target set plays a key role in the study of strict attractors. We
prove that if St 6= ∅ then the IFS has at most one strict attractor. Moreover,
if such a strict attractor exists then it is equal to At, see Proposition 4.2.3.

Theorem 1 Consider an IFS defined on a compact metric space such that
St 6= ∅. Then At is a Conley attractor if and only if it is a strict attractor.

In (8) Barnsley and Vince consider IFSs consisting either of affine maps
or of Möbius maps and introduce sufficient conditions that guarantee the
existence of a unique strict attractor. The proof involves some type of local
hyperbolicity in a neighbourhood of a Conley attractor, see (2, 32). We point
out that Theorem 1 only requires the existence of at least one weakly hyperbolic
sequence.

Given an IFS F and its Barnsley-Hutchinson operator BF, a subset Y ⊂ X

is BF-invariant if BF(Y ) ⊂ Y . The closure of any BF-invariant set contains some
fixed point of BF (see the discussion below). Therefore, since X is BF-invariant,
the operator BF always has at least one fixed point. Indeed, we have a more
precise description of the fixed points of BF. Following (14), given Y ⊂ X

define the set
Y ∗

def=
⋂
n≥0
BnF(Y ). (2.1.3)

1This is the standard terminology for the map π when St = Σ+
k .
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If Y is BF-invariant then the set (Y )∗ is the global maximal fixed point of the
restriction of BF (or of the IFS) to the subsets of Y , see Proposition 4.1.1. The
next theorem generalizes (14) in two ways: it applies also to IFSs which are
not weakly hyperbolic and it provides a necessary and sufficient condition for
the existence of a global attractor.

Theorem 2 Consider an IFS F defined on a compact metric space X such
that St 6= ∅. Then the following three assertions are equivalent:

1. At = X∗,

2. the Barnsley-Hutchinson operator BF has a unique fixed point,

3. X∗ is a global attractor of the IFS F.

We observe that the statement in Theorem 2 is sharp. Indeed, there are
examples of non-weakly hyperbolic IFSs where At ( At = X∗, see Section 11.

Let us observe that for weakly hyperbolic IFSs it holds At = X∗, see
Lemma 4.1.3 and also (14). We observe that there are IFSs that are non-
weakly hyperbolic such that At = At = X∗, see Section 11.

Theorem 3 (Disjunctive chaos game) Consider an IFS(T1, . . . , Tk) de-
fined on a compact metric space X such that At is a stable fixed point of the
Barnsley-Hutchinson operator. Then for every x ∈ X and every disjunctive
sequence ξ ∈ Σ+

k we have

At =
⋂
`≥0
{xn,ξ : n ≥ `}, where xn,ξ

def= Tξn ◦ · · · ◦ Tξ0(x).

In particular
lim
`→∞
{xn,ξ : n ≥ `} = At,

where the limit is considered in the Hausdorff distance.

2.2
Ergodic properties of IFSs
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2.2.1
IFSs with probabilities

Consider an IFS(T1, . . . , Tk) defined on a compact metric space X and
strictly positive numbers p1, . . . , pk (called weights) such that ∑k

i=1 pi = 1. We
denote by b = b(p1, . . . , pk) the (non-trivial) Bernoulli probability measure
with weights p1, . . . , pk defined on Σ+

k . We denote by IFS(T1, . . . Tk; b) the IFS
with the corresponding Bernoulli probability and say that it is an IFS with
probabilities.

Let M1(X) be the space of Borel probability measures defined on X

equipped with the weak∗-topology. The Markov operator associated to the
IFS(T1, . . . Tk; b) is defined by

Tb : M1(X)→M1(X), Tbµ
def=

k∑
i=1

pi Ti∗µ, (2.2.1)

where Ti∗µ(A) = µ(T−1
i (A)) for every Borel set A. Note that the Markov

operator Tb is continuous. Hence, if Tb is asymptotically stable then its
attracting measure µ is stationary, that is, satisfies Tbµ = µ.

An IFS with probabilities IFS(T1, . . . Tk; b) is called asymptotically stable
if its Markov operator Tb is asymptotically stable. It is a folklore result that if
b(St) = 1 then the IFS is asymptotically stable and π∗b is the unique stationary
measure, see for instance (29, 23). In Proposition 6.1.1 we prove this fact and
we see that supp(π∗b) = At. Note that, since that σ−1(St) ⊂ St, the ergodicity
of the Bernoulli measure (with positive weights) b with respect to the shift
implies that either b(St) = 1 or b(St) = 0.

A combination of Theorem 2 and Proposition 6.1.1 allows us to recover
properties of hyperbolic IFSs in non-hyperbolic settings provided that the sets
At and St are “big enough” (from the topological and probabilistic points
of view, respectively): there are a unique global attractor and the IFS with
probabilities is asymptotically stable.

Proposition 6.1.1 assumes that b(St) = 1 (which is often difficult to
verify). When X = [0, 1] we improve this proposition replacing the condition
b(St) = 1 by the topological condition #(At) ≥ 2 that we call separability and
it is quite straightforward to verify.

Theorem 4 Consider an IFS(T1, . . . Tk) defined on [0, 1] such that

– the target set At has at least two elements and

– there is a non-trivial closed interval J ⊂ [0, 1] such that Ti(J) ⊂ J and
Ti|J is injective for every j ∈ {1, . . . , k}.
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Then for every (non-trivial) Bernoulli probability b the IFS(T1, . . . Tk; b) is
asymptotically stable.

Moreover, π∗b is the (unique) stationary measure of IFS(T1, . . . Tk; b),
satisfies supp(π∗b) = At, and is continuous. As a consequence, the set At has
no isolated points.

Figure 2.1: The injectivity conditions of Theorem 4

In the previous theorem, the purely topological condition #(At) ≥ 2 de-
pending only on IFS(T1, . . . Tk) implies the asymptotic stability of the Markov
operator Tb of IFS(T1, . . . Tk; b) for any (non-trivial) Bernoulli probability b.
Moreover, we also obtain properties of the stationary measure. The support of
this stationary measure is independent of the Bernoulli probability. In Propo-
sition 6.1.4 we state a result about the support of stationary measures that
holds for general compact metric spaces: if St 6= ∅ and the Markov opera-
tor associated to b is asymptotically stable then the support of its stationary
measure always is At, even when b(St) = 0.

The asymptotic stability of an IFS with probabilities has been obtained
in several contexts such as, for example, contracting on average (4), weakly
hyperbolic (14), and non-overlapping2 (31). Observe that the contexts of
(4, 14) have a hyperbolic flavour. Let us also observe that (30) states the
asymptotic stability of admissible IFSs consisting of circle homeomorphisms
(these homeomorphisms preserve the orientation and some homeomorphism of
the IFS is transitive). Note that in this case the set St is empty. Let us compare
these results with Theorem 4. First, the condition to be contracting on average
depends on the selected Bernoulli probability (an IFS may be contracting
in average with respect to some probabilities but not with respect to all

2 An IFS is called non-overlapping if the maps Ti are injective and the sets Ti(I) have
disjoint interiors. We will see that separability is a weak form of non-overlapping, see
Theorem 5.3.1. We observe that (14) and (4) do not involve injective-like conditions of
the IFS.
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Bernoulli probabilities). In contrast, weak hyperbolicity, separability, non-
overlapping, and admissibility conditions are topological conditions that do
not involve probabilities. These conditions guarantee the asymptotic stability
of the Markov operator Tb of the IFS with respect to any Bernoulli probability
b.

Note that checking the properties of weak hyperbolicity and contracting
on average may be rather complicated, while the separability condition is
comparably much simpler, thus Theorem 4 can also be useful in these contexts.

Finally, we refer to (25) to a recent outstanding result by Dominique
Malicet about synchronization on the circle. In particular, it is proved that for
an IFS on the circle, under a quite natural assumption and minimality, the
Markov operator is asymptotically stable.

2.2.1.1
Recurrent IFSs

A generalization of IFSs with probabilities are the so-called recurrent
IFSs introduced in (5), where the weights pi are replaced by a transition matrix.

To be more precise, recall that a k × k matrix P = (pij) is a transition
matrix if pij ≥ 0 for all i, j and for every i it holds ∑k

j=1 pij = 1. An stationary
probability vector associated to P is a vector p̄ = (p1, . . . , pk) whose elements
are non-negative real numbers and sum up to 1 and satisfies p̄ P = p̄. The
transition matrix P is called irreducible if for every `, r ∈ {1, . . . , k} there is
n = n(`, r) such that P n = (pnij) satisfies pn`,r > 0. An irreducible transition
matrix has a unique stationary probability vector p̄ = (pi), see (18, page 100).
We consider the cylinders

[a0 . . . a`] def= {ω ∈ Σ+
k : ω0 = a0, . . . , ω` = a`} ⊂ Σ+

k

which is a semi-algebra that generates the Borel σ-algebra of Σ+
k . We denote

by P+ the Markov measure associated to (P, p̄) defined on Σ+
k , this measure is

defined on the cylinders [a0 . . . a`] by

P+([a0 . . . a`]) def= pa0pa0a1 . . . pa`−1a` .

Given an IFS(T1, . . . Tk) and an irreducible transition matrix P = (pij),
we call IFS(T1, . . . Tk;P+) a recurrent IFS. We now introduce the Markov
operator in this context. Consider the set X̂ def= X×{1, . . . , k} with the product
topology and the corresponding Borel sets. Given a subset B̂ ⊂ X̂, its i-section
is defined by

B̂i
def= {x ∈ X : (x, i) ∈ B̂}.
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The i-section of a probability measure µ̂ on X̂ is defined on the set X by

µi(B) def= µ̂(B × {i}), where B is any Borel subset of X.

Observe that µi is a finite measure on X but, in general, it is not a probability
measure. Since the measure µ̂ is completely defined by its sections we write
µ̂ = (µ1, . . . , µk) and note that

µ̂(B̂) =
k∑
j=1

µj(B̂j) for every Borel subset B̂ of X̂.

The (generalised) Markov operator of recurrent IFS(T1, . . . Tk;P+) is
defined by

SP+ : M1(X̂)→M1(X̂), µ̂ 7→ SP+(µ̂), (2.2.2)
where

SP+(µ̂)(B̂) def=
∑
i,j

pijTj∗µi(B̂j).

A recurrent IFS(T1, . . . Tk;P+) is called asymptotically stable if the
Markov operator SP+ is asymptotically stable.

Given a Markov measure P+ there is associated its inverse Markov
measure P− defined on Σ+

k by

P−([a0a1 . . . an]) def= P+([an . . . a1a0]), for a cylinder [a0a1 . . . an]. (2.2.3)

The measure P− is also Markov (see Section 3.3).
There is the following generalised coding map from St to X̂ defined by

$ : St → X̂, $(ξ) def= (π(ξ), ξ0). (2.2.4)

In Theorem 6.2.1 we see that if a recurrent IFS(T1, . . . Tk;P+) is such
that P−(St) = 1 and P− is mixing then it is asymptotically stable and the
stationary measure of SP+ is $∗P−, that is,

Sn
P+(µ̂)→

∗
$∗P− for every µ̂ ∈M1(X̂).

This is a version of Proposition 6.1.1 for recurrent IFSs.
As in the case of IFSs with probabilities, when X = [0, 1] we can improve

Theorem 6.2.1. In this proposition it is assumed that P−(St) = 1 (verifying
this assumption is in general difficult). When X = [0, 1] we can replace this
condition by a “splitting condition” that is quite straightforward to verify.

Consider a recurrent IFS(T1, . . . Tk;P+) defined on a compact metric
space X. A cylinder [j1 . . . js] is called admissible if P+([j1 . . . js]) > 0.

DBD
PUC-Rio - Certificação Digital Nº 1222005/CA



Chapter 2. Precise statement of results 25

Definition 2.2.1 (Splitting Markov measure) Consider an IFS F =
IFS(T1, . . . , Tk) defined on [0, 1] and a non-trivial closed interval J of [0, 1].
A Markov measure P+ defined on Σ+

k splits the IFS F in J if

– Ti(J) ⊂ J and Ti|J is injective for every j ∈ {1, . . . , k},

– there are admissible cylinders [i1 . . . i`] and [j1 . . . js] of P+ with i1 = j1

such that
Tj1 ◦ · · · ◦ Tjs(I) ∩ Ti1 ◦ · · · ◦ Ti`(I) = ∅

and
Tj1 ◦ · · · ◦ Tjs(I) ∪ Ti1 ◦ · · · ◦ Ti`(I) ⊂ J.

When J = I we say that P+ splits F.

Let T be a measure-preserving transformation on a probability space
(X,B, µ). Recall that (T, µ) is ergodic if for every measurable set A with
T−1(A) = A it holds µ(A) = 0 or µ(A) = 1. Recall that (T, µ) is mixing
if

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B) for every A,B ∈ B.

A Borel measure µ on Σ+
k is mixing if the system (σ, µ) is mixing.

Next theorem states consequences of the splitting property of a Markov
measure and is the main tool to get the asymptotic stability of the Markov
operator.

Theorem 5 Consider an IFS(T1, . . . Tk) defined on the interval [0, 1]. If P+ is
a mixing Markov measure that splits the IFS in some non-trivial closed interval
J then P+(St) = 1.

Next theorem gives sufficient conditions for the asymptotic stability of
the Markov operator.

Theorem 6 Consider a recurrent IFS(T1, . . . Tk;P+) defined on the interval
[0, 1]. Suppose that the inverse Markov measure P− is mixing and splits the IFS
in some non-trivial closed interval J . Then IFS(T1, . . . Tk;P+) is asymptotically
stable and $∗P− is the stationary measure of the Markov operator SP+.

Note that P+ is mixing if and only if P− is mixing. However, a splitting
property for P+ does not imply a splitting property for P− (and vice-versa).
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2.3
Step skew products

Given an IFS F = IFS(T1, . . . Tk), Ti : X → X, consider its associated
skew product map defined in (1.2.1)

FF : Σk ×X → Σk ×X, FF(ξ, t) def= (σ(ξ), Tξ0(t)).

For simplicity, write F = FF. Recall the definition of the maximal
attractor of F in (1.2.2). We say that F is topologically mixing if for every pair
of non-trivial open sets U and V of Σk×X there is n0 such that F n(V )∩U 6= ∅
for all n ≥ n0. Finally, we denote by ωF (z) the ω-limit set of the point z for
F .

For the next theorem, recall the definitions of the set S−t ⊂ Σk of trivial
spines in (1.2.4), the coding map in (1.2.5), the graph of % in (1.2.6), and the
target set At. We denote by Ft the restriction of F to the set Σk × At and by
ΛFt the maximal attractor of this restriction.

Theorem 7 Let F be a step skew product map associated to an IFS defined
on a compact metric space X such that S−t 6= ∅. Then the following holds:

1. For every z = (ξ, x) such that ξ is disjunctive it holds graph % ⊂ ω(z).

2. ΛFt = graph %.

3. F is topologically mixing in graph %.

4. If either At is a Lyapunov stable fixed point of the Barnsley-Hutchinson
operator or has nonempty interior, then for every z = (ξ, x) such that ξ
is disjunctive we have graph % = ω(z).

Note that in the above theorem the injectivity of the underlying IFS of
the skew product map is not required.

To state ergodic properties for skew products consider the projection

π1 : Σk ×X → Σk, π1(ω, x) def= ω. (2.3.1)

Given a probability µ in Σk ×X the measure (π1)∗µ is called the marginal of
µ in Σk. For a σ-invariant measure λ consider the set of measures defined on
Σk ×X whose marginal is λ,

Mλ
def= {µ ∈M1(Σk ×X) : (π1)∗µ = λ}. (2.3.2)

The set Mλ is compact and F∗-invariant, see Proposition 8.1.1. We say that
F∗|Mλ

has a global attractor vλ if F n
∗ µ → vλ for every probability measure µ

inMλ.
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For the precise definitions of isomorphic preserving measures transfor-
mations and disintegration of measures see Definitions 8.1.5 and 8.1.3, respec-
tively.

Theorem 8 (Global attractors) Consider a skew product map F = FF

associated to an IFS F. Let λ be an ergodic probability such that λ(S−t ) = 1.
Then we have the following:

1. F∗|Mλ
has a global attractor vλ and the disintegration of vλ with respect

to λ is the Dirac delta measure δ%(·).

2. (F, vλ) is isomorphic to (σ, λ).

3. supp vλ = graph (%|suppλ).

4. For λ-almost every sequence ξ and every point x ∈ X it holds

1
n

n−1∑
i=0

δF i(ξ,x) → vλ.

This theorem implies that (F, vλ) carries all ergodic properties of (σ, λ)
as entropy, mixing properties, and ergodicity, for instance.

As consequence of Theorem 8 we get a version of Elton’s ergodic theorem,
see (15) and (5). For the next corollary recall the definition of the map
π : St → X in (2.1.1).

Corollary 9 Consider a recurrent IFS(T1, . . . Tk;P+). Suppose that P−(St) =
1. Then for P+-almost every sequence ξ ∈ Σk and every point x it holds

lim
n→∞

1
n

n−1∑
i=0

f(Tξi−1 ◦ · · · ◦ Tξ0(x)) =
∫
f d(π∗P−),

for every continuous function f : X → R.

We will see in Proposition 6.3.1 that an recurrent IFS(T1, . . . Tk;P+)
satisfying P−(St) = 1 has a unique invariant measure, given by $∗P− (recall
the definition of $ in (2.2.4)). We observe that the measure π∗P− in Corollary
9 is the push-forward of the unique stationary measure by the map Π(ξ, i) = x,
that is, Π∗($∗P−) = π∗P−. This follows from Π ◦$ = π.

Remark 2.3.1 By standard arguments, one can replace the continuous
function f in Corollary 9 by any characteristic function χB with π∗P−(∂B) = 0.
However, since the measure π∗P− is, in principle, unknown, it is not possible to
know if the boundary of a set has zero measure. For IFSs defined on the interval
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we have the following. Consider a recurrent IFS(T1, . . . Tk;P+) defined on [0, 1]
such that P+ is a mixing Markov measure that splits the IFS in some non-
trivial closed interval. Then the measure π∗P− is atom free. This fact follows
from Theorem 5.1.2. Therefore the stationary measure of any interval is the
limit of any empirical distribution (starting at any point x ∈ [0, 1]).

A version of Elton’s ergodic theorem for some infinite IFSs and Bernoulli
measures was announced in (22). The same type of ergodic result was obtained
in (30) (there called “Strong Law of Large Numbers”) for IFSs consisting of
circle homeomorphisms with at least one of them having dense orbit.

We now consider skew products whose fiber maps are defined on the
interval [0, 1]. Thus in the next definitions we consider X = [0, 1] and standard
measures s = b×m, where b is a Bernoulli measure (with nontrivial weights)
in Σk and m is the Lebesgue measure in [0, 1].

The realm of attraction of a set A ⊂ Σk × [0, 1], denoted by δ(A), is the
set of points z such that ω(z) ⊂ A. Definitions 2.3.2, 2.3.3, and 2.3.4 below
are given with respect a fixed standard measure s.

Definition 2.3.2 (Milnor attractor) A closed set A is a Milnor attractor
of FF if it satisfies the following conditions:

– s(δ(A)) > 0 and

– s(δ(A′)) < s(δ(A)) for every closed set A′ strictly contained in A.

Definition 2.3.3 (Likely limit set) The likely limit set AM of FF is the
smallest compact subset of Σk × [0, 1] with the property that ω(z) ⊂ AM for
s-almost every point z ∈ Σk × [0, 1].

The likely limit set is well defined and is the maximal Milnor attractor,
see (27).

The statistical ω-limit set of point z, denoted by ωstat(z), is the set of
points z ∈ Σk × [0, 1] such that for every neighbourhood U of z it holds

lim sup
N→∞

1
N

#{n : F n(z) ∈ U, 0 ≤ n < N} > 0.

Definition 2.3.4 (Statistical attractor) The statistical attractor Astat is
the smallest closed subset of Σk × [0, 1] such that ωstat(z) ⊂ Astat for s-almost
every point z ∈ Σk × [0, 1].

It follows from definition that ωstat(z) ⊂ ω(z). Hence Astat ⊂ AM .
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Theorem 10 (Milnor attractors) Let F be a skew product map associated
to an IFS defined on the interval [0, 1] such that S−t 6= ∅. Then

1. The statistical attractor Astat and every Milnor attractor of F contain
the set graph %.

2. If either At is a Lyapunov stable fixed point of the Barnsley-Hutchinson
operator or has nonempty interior, then the likely limit set AM is equal to
graph %. In particular, the likely limit set is the unique Milnor attractor
and

AM = Astat = graph %.

3. If At is not a singleton and the IFS is injective in some B-invariant closed
interval J , then there is a unique F -invariant measure with marginal b
(that we denote by µb) and for b-almost every sequence ξ and every point
x ∈ [0, 1] it holds

1
n

n−1∑
i=0

δF i(ξ,x) → µb.

In particular, the measure µb is physical.

4. Under assumptions of item (2) and (3) we have suppµb = AM .

The second item of the above theorem is a consequence of Theorem 7.
Let us state a remark that is an immediate consequence of Theorem 8.

Remark 2.3.5 Consider a step skew product F : Σk × [0, 1] → Σk × [0, 1].
A good measure of F with respect to the standard measure s = b ×m is any
accumulation point of the sequence

1
n

n−1∑
i=0

F i
∗(s).

The minimal attractor of F is the closure of the union of the supports of all
its good measures. See (16) for a discussion about minimal attractors.

As a consequence of Theorem 8 we have that if b(S−t ) = 1 then the
minimal attractor of F is graph %. Hence, under the hypotheses of item (2) in
Theorem 10, the different notions of attractors coincide.

Finally, we give robust examples of step skew products whose fiber
topological structure is much more complex than perhaps expected. We start
by recalling the robust examples in (20) of a skew product with two injective
and order preserving fiber maps defined on [0, 1] whose likely limit set AM
is the unique Milnor attractor and is equal to graph %. This set is bony-like
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meaning that for almost every ξ ∈ Σ2 the intersections (ξ× [0, 1])∩ graph % is
a point and for the remaining points (ξ× [0, 1])∩ graph % is an interval, where
the last possibility occurs densely in Σ2. Compare also with the constructions
in (12).

Kudryashov (21) poses the following question about the fiber structure of
attractors: Does the likely limit set of typical step skew products over a Markov
shift intersect each fiber on a finite union of intervals and points? (see (21,
Question 2.9.3)). We use the example in (20) as a plug (see the notion of a K-
pair in Section 10) to construct robust examples of step skew products having
bony-like Milnor attractors with complicated fiber structure.

More precisely, in the space of skew products FF : Σk× [0, 1]→ Σ4× [0, 1]
with C1-fiber maps, called C1 smooth step skew products, we consider the
distance

d(FF, FG) = max
i
dC1(fi, gi), F = {f1, . . . , fk}, G = {g1, . . . , gk},

where dC1 denotes the C1-uniform distance.

Theorem 11 (Milnor attractors with disconnected bones) For ev-
ery n ≥ 1 there is an open set S of C1 smooth step skew product
F : Σ4 × [0, 1] → Σ4 × [0, 1] over the Bernoulli shift with injective fiber
maps such that every F ∈ S satisfies the following conditions:

1. The likely limit set AM of F is the unique Milnor attractor AM and F
is topologically mixing in AM .

2. The projection % is defined b-almost everywhere and AM = graph %.

3. There is a dense subset Γ of Σ4 such that for every sequence ξ ∈ Γ the
intersection of the fibre {ξ} × [0, 1] with the Milnor attractor is a union
of n disjoint non-trivial intervals.

It is clear from the proof that one can perform a similar construction with
Σk for every k ≥ 4. We do not know if for k ∈ {2, 3} a similar construction
can be done.
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3
Preliminaries and notation

We now establish some basic definitions and notations.

3.1
Distances

Throughout this thesis (X, d) is a compact metric space and P(X)
denotes the power set of X. Given a point x ∈ X and a set A ⊂ X, distance
between x and A is defined by

d(x,A) def= inf{d(x, a) : a ∈ A}.

The Hausdorff distance between two sets A,B ⊂ X is defined by

dH(A,B) def= max{hs(A,B), hs(B,A)}, where hs(A,B) def= sup
a∈A

d(a,B).

Note that, in general, dH is only a pseudo-metric defined on P(X). Let
H(X) ⊂ P(X) be the set of all non-empty compact subsets of X. Then
(H(X), dH) is a compact metric space, see (3).

3.2
Shifts spaces

Let Σk = {1, . . . , k}Z be the set of infinite two-sided sequences of symbols
in {1, . . . , k}. Given a two- sided sequence ω, we define the sequence σ(ω) by
(σ(ω))i = ωi+1. In this way we get a self map σ defined on Σk called shift
map. The pair (Σk, σ) is called the full two-sided shift. The shift space Σk is a
compact topological space whose basis consist of the cylinders:

[m; ar, . . . , a`] = {ω : ωm = ar, . . . , ωm+` = a`}, where m ∈ Z. (3.2.1)

Let P = (pij) be a transition matrix and p̄ a stationary probability
vector. There is a unique σ-invariant Borel probability P calledMarkov measure
(associate to (P, p̄)), such that for every cylinder [m; ar, . . . , a`] it holds

P([m; ar, . . . , a`]) = parparar+1 . . . pa`−1a` .
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3.3
Inverse Markov measures

Consider a transition matrix P = (pij) and a stationary probability
vector p̄ = (p1, . . . , pk) of P . If all entries of p̄ are (strictly) positive then
the inverse transition matrix associated to (P, p̄) is the matrix Q(P,p̄) = (qij)
where

qij
def= pj
pi
pji.

Note that Q = Q(P,p̄) is a transition matrix and p̄ is a stationary probability
vector of Q(P,p̄). We observe that if P is primitive if and only if Q is primitive.

Denote by P− the Markov measure associated to (Q, p̄). For every cylinder
[a0 . . . a`] it holds

P−([a0 . . . a`]) = P+([a` . . . a0]),

where P+ is the Markov measure associated to (P, p̄).
Let us observe that a Markov measure P+ is mixing if and only if the

transition matrix is primitive1 (i.e. there is n ≥ 1 such that all the entries of
P n are strictly positive), see for instance (11, page 79). As a consequence, P−

is mixing if and only if P is primitive.

1Also called aperiodic.
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4
Attractors of iterated function systems

This chapter is devoted to the study of fixed points and the attractors of
the Barnsley-Hutchinson operator of an IFS (see Sections 4.1 and 4.2). Our goal
is to prove Theorems 1, 2, and 3 (see Sections 4.3, 4.4, and 4.6, respectively).
We also get some topological properties of the target set At in Section 4.5.

In what follows we consider F = IFS(T1, . . . Tk) and denote by BF = B
its Barnsley-Hutchinson operator, recall (1.1.1).

4.1
Fixed points for the Barnsley-Hutchinson operator

We will show that every compact invariant set A of X (i.e., B(A) ⊂ A)
contains some fixed point of B. Since X is invariant for B this implies that
B always has at least one fixed point. To each set A we associate the set
A∗

def= ⋂
n≥0 Bn(A), recall (2.1.3).

Recall that H(X) denotes the set consisting of all non-empty compact
subsets of X. We consider in H(X) the Hausdorff distance dH .

Proposition 4.1.1 (Existence of fixed points of B) Consider A ∈ H(X)
such that B(A) ⊂ A. Then A∗ is a fixed point of B. In particular, X∗ is a fixed
point of B.

Proof. The proposition follows from the next lemma and the continuity of B.

Lemma 4.1.2 Let (An) be a sequence of nested compact sets, An+1 ⊂ An, and
A = ⋂

n≥0An. Then dH(An, A)→ 0.

Proof. The proof is by contradiction. If the lemma is false there are ε > 0 and
a subsequence (n`), n` →∞, such that dH(An` , A) ≥ ε for all `. Since A ⊂ An,
for each ` there is a point p` ∈ An` such that d(p`, A) ≥ ε. By compactness,
taking a subsequence if necessary, we can assume that p` → p. As (An) is
nested it follows that p ∈ A, contradicting that d(p`, A) ≥ ε for all `. �

To prove the proposition it is enough to apply the lemma to nested sequence
An = Bn(A). �

Now let us look more closely to the fixed point X∗ of B. For that to each
ξ ∈ Σ+

k we consider its fibre defined by

DBD
PUC-Rio - Certificação Digital Nº 1222005/CA



Chapter 4. Attractors of iterated function systems 34

Iξ
def=
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(X), if ξ = ξ0ξ1 . . . . (4.1.1)

We will see in Lemma 4.1.3 that the set X∗ is the union of the fibres Iξ.
Note that every fibre is a non-empty set: just note that (Tξ0 ◦ · · · ◦

Tξn(X))n∈N is a sequence of nested compacts sets. Moreover, when X is an
interval, the fibres also are intervals (may be trivial ones). With this definition,
the set St of weakly hyperbolic sequences, recall (1.1.3), is given by

St = {ξ ∈ Σ+
k : Iξ is a singleton}.

From the definition of the target set At in (2.1.2) it immediately follows that

At =
⋃
ξ∈St

Iξ. (4.1.2)

Recall that by definition for every set A we have

A∗ =
⋂
n≥0
Bn(A) =

⋂
n≥0

⋃
ξ∈Σ+

k

Tξ0 ◦ · · · ◦ Tξn−1(A). (4.1.3)

Next lemma just says that the operations “ ∪ ” and “ ∩ ” above commute.

Lemma 4.1.3 Let A ∈ H(X) such that B(A) ⊂ A. Then

A∗ =
⋂
n≥0
Bn(A) =

⋃
ξ∈Σ+

k

⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(A).

In particular,
X∗ =

⋃
ξ∈Σ+

k

Iξ.

Proof. Condition B(A) ⊂ A implies that Bn(A) is a decreasing nested family
of compact subsets and Ti(A) ⊂ A for all i = 1, . . . , k. From equation (4.1.3)
it follows immediately that

⋃
ξ∈Σ+

k

⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(A) ⊂
⋂
n≥0

⋃
ξ∈Σ+

k

Tξ0 ◦ · · · ◦ Tξn(A) = A∗.

which implies the inclusion “⊃”.
To prove the inclusion “⊂” we will use the compactness the of hyperspace

(H(Σ+
k ), dH) where dH is the Hausdorff metric defined using the following

metric d on Σ+
k ,

d(ξ, ω) = 1
2n0

where n0 = min{n : ξn 6= ωn}.

The metric space (Σ+
k , d) is compact and therefore (H(Σ+

k ), dH) is also compact.
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We now prove the in inclusion “⊂”. Given p ∈ A∗, by definition, for each
n there is a finite sequence ξn0 . . . ξnn such that

p ∈ Tξn0 ◦ · · · ◦ Tξnn(A).

Consider the sequence of cylinders En = [ξn0 . . . ξnn ]. Since En ∈ H(Σ+
k ), by

compactness there is a subsequence Enk converging to some compact K.
Let ξ ∈ K. We claim that p ∈ Tξ0 ◦ · · · ◦ Tξn(A) for every n and hence
p ∈ ⋃

ξ∈Σ+
k

⋂
n≥0 Tξ0 ◦ · · · ◦ Tξn(A) proving the lemma. To prove our claim,

fix n and take k such that nk ≥ n and

d(ξ, Enk) <
1
2n .

In particular there is ω ∈ Enk such that d(ξ, ω) < 1
2n . By definition of d we get

that ξ0 = ω0 . . . , ξn = ωn. On the other hand we have ω0 = ξnk0 , . . . , ωn = ξnkn

(nk ≥ n) and
p ∈ Tξn0 ◦ · · · ◦ Tξnknk (A),

which implies that p ∈ Tξ0 ◦ · · · ◦ Tξn(A). �

4.2
Conley and strict attractors

In this section we introduce the notion of a minimum fixed point of an
IFS and prove that if St 6= ∅ then the closure of the target set is a minimum
fixed point of B. We also characterise strict attractors for IFSs with St 6= ∅.

4.2.1
Minimal fixed points and minimum fixed point

Note that the set X∗ is the maximum fixed point (ordered by inclusion)
of the map B, meaning that if K is another fixed point of B then K ⊂ X∗.
A natural question is about the existence of a minimum fixed point Y of
B, meaning that if K is any fixed point of B then Y ⊂ K. By definition,
maximum and minimum fixed points are unique. We see that, in general,
may no exist a minimum fixed point. Observe that an application of Zorn’s
lemma immediately provides a minimal fixed point for B, that is, a fixed point
that does not contain properly another fixed point. Note that, by definition, a
minimum fixed point is minimal, but the converse is not true in general.

To get a simple example of an IFS without a minimum fixed point just
consider the IFS(T1, T2) defined on the interval [0, 1] with T1(x) = x and
T2(x) = 1 − x. For each x ∈ [0, 1], the set {x, 1 − x} is a fixed point of B.
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Clearly, the set {x, 1 − x} is minimal. It is also obvious, that there is not a
fixed point contained in all fixed points. Thus the minimal fixed points cannot
be minimum fixed points.

In the previous example we have St = ∅. Next proposition shows that
the condition St 6= ∅ guarantees the existence of a minimum fixed point. For
the next result recall the characterisation of the set At in (4.1.2).

Proposition 4.2.1 Suppose that St 6= ∅. Then At is the minimum fixed point
of B.

Proof. We need to see that B(At) = At and At ⊂ K for every compact set K
with B(K) = K.

To prove the second assertion, fix any compact set K that is fixed point
of B and take any point p ∈ At. By the characterisation of At in (4.1.2) there
is a sequence ξ such that

{p} =
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(X) ⊃
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(K). (4.2.1)

Since the last intersection is non-empty and contained in K it follows p ∈ K.
This implies that At (and hence At) is contained in K.

To see that B(At) = At note that the continuity of the maps Ti implies
that for p as in (4.2.1) and every i = 1, . . . , k it holds

{Ti(p)} =
⋂
n≥0

Ti ◦ Tξ0 ◦ · · · ◦ Tξn(X).

This implies that B(At) ⊂ At. Hence, by continuity of the maps Ti, B(At) ⊂ At.
By definition this implies that (At)∗ ⊂ (At). By Proposition 4.1.1, (At)∗

is a fixed point of B. The minimality property proved before implies that
At ⊂ (At)∗. This ends the proof of the proposition. �

Note that in the proof of the proposition we obtained the following.

Scholium 4.2.2 Given an IFS(T1, . . . Tk) with St 6= ∅ it holds Ti(At) ⊂ At.

4.2.1.1
Characterisation of strict attractors

The proposition below claims that an IFS with a weakly hyperbolic
sequence has at most one strict attractor and describes such an attractor.

Proposition 4.2.3 Consider an IFS defined on a compact metric space such
that St 6= ∅. Then there exists at most one strict attractor. If such a strict
attractor exists then it is equal to At.

DBD
PUC-Rio - Certificação Digital Nº 1222005/CA



Chapter 4. Attractors of iterated function systems 37

Proof. If there are no strict attractor we are done. Otherwise assume that there
is a strict attractor K. Since K is a fixed point of B, Proposition 4.2.1 implies
that At ⊂ K. Since by definition of a strict attractor the set K attracts every
compact set in a neighbourhood of it, the minimum fixed point At is attracted
by K. Therefore At = K, proving the proposition. �

The following example shows that there are IFSs with St 6= ∅ without
strict attractors. In this example At is stable (recall (1.1.4)).

Example 4.2.4 Consider the maps T1, T2 : [0, 2] → [0, 2] depicted in Figure
4.1 and defined by

– T1(x) = 1
3x and

– T2 : [0, 2] → [0, 2] is the piecewise-linear map defined by T2(x) = 1
3x + 2

3

for x ∈ [0, 1] and T2(x) = x for x ∈ [1, 2].

Let C be the standard ternary Cantor set in the interval [0, 1]. We claim that
St 6= ∅, At = C, and C is not a strict attractor. Indeed, C is not a Conley
attractor. We now prove these assertions.

First, as T1 is a contraction 1̄ ∈ St, where 1̄ is the sequence whose terms
are all equal to 1.

For the second assertion, consider the auxiliary IFS(f1, f2) where f1 =
T1|[0,1] and f2 = T2|[0,1]. Note that C is the attractor of IFS(f1, f2) (see, for
instance, Example 1 in (17, Section 3.3)). In particular, the set C is the unique
fixed point of the Barnsley-Hutchinson operator B of IFS(T1, T2) contained
in [0, 1]. Since [0, 1] is B-invariant, by Propositions 4.1.1 and 4.2.1 we have
At ⊂ [0, 1]∗ ⊂ [0, 1] and therefore At = C.

To see that C is not a strict attractor, just note that every open
neighbourhood of C necessarily contains an interval of the form [1, δ). Since
T2(x) = x for all x ∈ [1, δ) the assertion follows.

2
3

Figure 4.1: The set At is not a Conley attractor
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4.3
Proof of Theorem 1

Since every strict attractor is a Conley attractor, to prove the theorem
1 it is enough to see that given an IFS(T1, . . . Tk) such that At is a non-
empty Conley attractor then At is a strict attractor. We need the following
preparatory lemma:

Lemma 4.3.1 Consider sequences (An) of compact sets in H(X) and (pn) of
points in X with An → A and pn → p in the Hausdorff distance dH . Then

d(p,A) = lim
n→∞

d(pn, An).

Proof. We use the following “triangular” inequality: given a point q and two
compact sets A and B it holds

d(q, A) ≤ d(q, B) + dH(A,B).

Consider the sequences (An) and (pn) in the lemma. Applying twice the
“triangular” inequality above we get

d(p,A) ≤ d(p, pn) + d(pn, A) ≤ d(p, pn) + d(pn, An) + dH(An, A).

By hypothesis, d(p, pn)→ 0 and dH(An, A)→ 0. We conclude that

d(p,A) ≤ lim inf
n

d(pn, An). (4.3.1)

Applying again twice the “triangular” inequality, we get

d(pn, An) ≤ d(pn, p) + d(p,An) ≤ d(pn, p) + d(p,A) + dH(A,An).

This implies that
lim sup

n
d(pn, An) ≤ d(p,A). (4.3.2)

Equations (4.3.1) and (4.3.2) imply the lemma. �

We are now ready to prove the theorem. Since At is a Conley attractor
it has an open neighbourhood U such that Bn(U) → At. To prove that At is
a strict attractor we need to check that for every compact set K ∈ H(U) it
holds Bn(K) → At. For that it is enough to see that for any ε > 0 there is
n0 ∈ N such that for every n ≥ n0 it holds

dH(At,Bn(K)) = max{hs(At,Bn(K)), hs(Bn(K), At)} ≤ ε. (4.3.3)
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By hypothesis, Bn(U)→ At. Thus there is n0 such that for every n ≥ n0

we have
hs(Bn(U), At) ≤ ε.

Therefore, for every n ≥ n0,

hs(Bn(K), At) ≤ hs(Bn(U), At) ≤ ε.

Hence to prove (4.3.3) it remains to see that hs(At,Bn(K)) ≤ ε for every n
sufficiently large. This is proved in the next lemma.

Lemma 4.3.2 For every K ∈ H(X) it holds limn→∞ hs(At,Bn(K)) = 0.

Proof. The proof is by contradiction. Assume that there are a compact set
K ∈ H(X) and a sequence (n`) such that hs(At,Bn`(K)) > ε for every `. Note
that for each ` there is pn` ∈ At with d(pn` ,Bn`(K)) > ε. By compactness we
can assume that pn` → p∗ ∈ At and that Bn`(K)→ K̂. By Lemma 4.3.1,

d(p∗, K̂) ≥ ε. (4.3.4)

We now derive a contradiction from this inequality. By construction,
there is `0 such that

hs(Bn`(K), K̂) < ε

2 , for all ` ≥ `0. (4.3.5)

Take q ∈ B ε
2
(p∗) ∩ At and note that there is a sequence ω = ω0 ω1 . . . ∈ St

such that ⋂
n≥0

Tω0 ◦ · · · ◦ Tωn(X) = {q}.

Therefore there is m0 such that

Tω0 ◦ · · · ◦ Tωm−1(K) ⊂ Tω0 ◦ · · · ◦ Tωm−1(X) ⊂ B ε
2
(p∗) for every m ≥ m0.

Since Tω0 ◦ · · · ◦ Tωm−1(K) ⊂ Bm(K), for every ` big enough we have
Bn`(K) ∩B ε

2
(p∗) 6= ∅.

Note that for every ` sufficiently large Bn`(K)∩B ε
2
(p∗) 6= ∅ and equation

(4.3.5) holds. Hence for every z ∈ Bn`(K) ∩ B ε
2
(p∗) we have d(z, K̂) < ε

2 and
d(z, p∗) < ε

2 . Hence d(p∗, K̂) < ε contradicting (4.3.4). This ends the proof of
the lemma. �

The proof of the theorem is now complete. �

Scholium 4.3.3 If U is a neighbourhood of At such that Bn(U) → At then
every compact subset of U also satisfies Bn(K)→ At.
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We have the following corollary that allows us to stablish a connection
between the set At and semifractals.

Corollary 4.3.4 Consider an IFS such that St 6= ∅. Then

lim
n→∞

Bn(K) = At, for every compact set K ⊂ At.

Proof. The statement is an immediate consequence of Lemma 4.3.2 and the
invariance of At. �

Remark 4.3.5 Combining Propositions 4.2.1 and Corollary 4.3.4 one gets the
following: if St 6= ∅ then set At is a minimum fixed point that attracts every
compact set inside it.

4.4
Proof of Theorem 2

Suppose that the set At is non-empty. We need to prove the equivalence
of the following three assertions:

1. At = X∗;

2. the Barnsley-Hutchinson operator B has a unique fixed point;

3. X∗ is a global attractor (a strict attractor whose basin is the whole
space).

The equivalence 1⇔ 2 follows immediately from Proposition 4.2.1 (“the
minimum fixed point At is equal to the maximum fixed point X∗”).

The implication 3⇒ 2 follows noting that if K is a fixed point of B and
since X∗ is a global attractor then K = Bn(K)→ X∗ and thus K = X∗.

To prove 1 ⇒ 3 note that, by Lemma 4.1.2, X∗ = limn→∞ Bn(X) and
thus X∗ is a Conley attractor. Then if At = X∗ we have that At is a Conley
attractor, by Theorem 1 and Scholium 4.3.3 this set is a strict attractor whose
basin is the whole space. �
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4.5
Structure of the target set

The main result of this section is Proposition 4.5.1 about the topological
structure of the target set At. This result will be used in Section 5.3.

We begin by observing that, in general, the set At is not necessarily
closed. The IFS in Example 4.2.4 illustrates this case. In this example At is
the ternary Cantor set C in [0, 1], thus 1 ∈ At. We claim that 1 6∈ At and
thus At is not closed. Recall the definitions of IFS(T1, T2) and IFS(f1, f2) in
this example and consider their natural associated projections πT and πf , see
(2.1.1). Arguing by contradiction, if 1 ∈ At then there is a sequence ξ ∈ St

with πT (ξ) = 1. In this case we also have πf (ξ) = 1. It is easy to check that
ξ = 2̄ and that 2̄ 6∈ St, where 2̄ = (ξi = 2). This gives a contradiction.

Proposition 4.5.1 Consider IFS(T1, . . . , Tk) defined on a compact set X such
that At 6= ∅.

1. Assume that the IFS is injective in At. Then either At is a singleton or
At has no isolated points (thus it is infinite).

2. Assume that the maps Ti are open. Then either At has empty interior or
int(At) ⊂ At ⊂ int(At).

We observe that in the proof of the first item of the proposition we only
use the injectivity of the maps Ti on At.

Let us also observe that if the maps Ti are not injective then the set At

can be finite with more than one element. The maps depicted in Figure 4.2
give an example of this case, where At = {0, 1

2 , 1}.

1
2

1
2

Figure 4.2: #(At) = 3

Remark 4.5.2 Every injective IFS(T1, . . . , Tk) defined on [0, 1] satisfies the
hypotheses in the second part of Proposition 4.5.1.

Proof. We prove the first item in the proposition. If At is a singleton we are
done. Otherwise #(At) ≥ 2. To see that every p ∈ At is not isolated we check
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that for every every neighbourhood V of p the set At∩V contains at least two
points. By definition of At, there is a finite sequence ξ0 . . . ξn such that

Tξ0 ◦ · · · ◦ Tξn(X) ⊂ V.

In particular,
Tξ0 ◦ · · · ◦ Tξn(At) ⊂ V.

Since Tξ0 ◦ · · · ◦ Tξn(At) ⊂ At (recall Scholium 4.2.2) and Tξ0 ◦ · · · ◦ Tξn is
one-to-one in At, we have that V contains at least two points of At, proving
the first part of the proposition.

We now prove the second item of the proposition. If At has empty interior
we are done. Thus we can assume that int(At) 6= ∅. Since int(At) ⊂ At it
only remains to see that At ⊂ int(At). Take a point x ∈ At and any open
neighbourhood V of x. By definition of At there is a finite sequence ξ0 . . . ξn

such that
Tξ0 ◦ · · · ◦ Tξn(X) ⊂ V.

By Ti(At) ⊂ At it follows

Tξ0 ◦ · · · ◦ Tξn(int(At)) ⊂ V ∩ At.

Since int(At) is an open set and the maps Ti are open, then Tξ0◦· · ·◦Tξn(int(At))
is a non-empty and open subset of V ∩ At, thus V ∩ int(At) 6= ∅. Since this
holds for every neighbourhood of x we get that x ∈ int(At). The proof of the
proposition is now complete. �

4.6
Proof of Theorem 3

Suppose that At is stable. We need to prove that given any disjunctive
sequence ξ and any point x it holds

At =
⋂
`≥0
{xn,ξ : n ≥ `}, where xn,ξ

def= Tξn ◦ · · · ◦ Tξ0(x).

To simplify notation write

Y`
def= {xn,ξ : n ≥ `}.

For the inclusion “⊂” take any point p ∈ At and fix ` ≥ 0. We need to
see that for every neighbourhood V of p it holds

V ∩ Y` 6= ∅. (4.6.1)
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By definition of At there is a finite sequence c0 . . . cr such that

Tcr ◦ · · · ◦ Tc0(X) ⊂ V. (4.6.2)

We can assume that r ≥ `. Since ξ has dense orbit there is m1 such that

ξm1 = c0, ξm1+1 = c1, . . . , ξm1+r = cr.

Therefore, from (4.6.2) it follows

xm1+r,ξ = Tξm1+r ◦ · · · ◦ Tξm1
◦ Tξm1−1 ◦ · · · ◦ Tξ0(x) ∈ V.

Since m1 + r ≥ ` we have that V ∩ Y` 6= ∅, proving (4.6.1).
We now prove the inclusion “⊂”. Take any neighbourhood V of At. Since

At is stable it has a neighbourhood V0 ⊂ V such that Bn(V0) ⊂ V for every
n ≥ 0. Since ξ is a disjunctive sequence and At ⊂ V0 there is n0 ∈ N such that
xn0,ξ ∈ V0. Hence Yn0 ⊂ V and thus Yn0 ⊂ V . As the sequence of sets (Y`) is
nested, we have that ⋂`≥0 Y` ⊂ V . Since this holds for every neighbourhood V
of At we conclude that ⋂

`≥0
Y` ⊂ At.

Finally, as Y` is a nested sequence of compact sets, from Lemma 4.1.2 and the
definition of a Hausdorff limit, it follows Y`−→At, where the convergence is in
the Hausdorff distance.
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5
Abundance of trivial fibres

In this chapter, for IFSs defined on [0, 1], we study the measure of St for
Markov measures and prove Theorem 5, see Section 5.1. In Section 5.2 we prove
a result about probabilistic rigidity of the set St: under quite general conditions,
if St intersects the support of a Markov measure it has full probability. Finally,
in Section 5.3 we characterise separable IFSs.

5.1
Proof of Theorem 5

Given an IFS(T1, . . . Tk) defined on I = [0, 1] we need to see that every
mixing Markov measure that splits the IFS in some non-trivial closed interval
J satisfies P+(St) = 1.

Recall the definition of the fibre Iξ of a sequence in Σ+
k in (4.1.1). Given

x ∈ [0, 1] we consider the set of sequences whose fibres contain x defined by

Σx
def= {ξ ∈ Σ+

k : x ∈ Iξ}. (5.1.1)

Lemma 5.1.1 Suppose that P+(Σx) = 0 for all x ∈ [0, 1]. Then P+(St) = 1.

Proof. Note that if ξ 6∈ St then its fibre Iξ is a non-trivial interval and hence
contains a rational point. This implies that

(St)c = Σ+
k \ St ⊂

⋃
x∈Q∩[0,1]

Σx.

This union is countable and each set Σx satisfies P+(Σx) = 0, thus P+(St) = 1.
�

In view of Lemma 5.1.1, to see that P+(St) = 1 it is sufficient to show
the following:

Theorem 5.1.2 Consider an IFS defined on I = [0, 1] and a mixing Markov
measure P+ that splits the IFS in some non-trivial interval J . Then P+(Σx) = 0
for all x ∈ [0, 1].

Proof. By the splitting hypothesis there is a pair of admissible cylinders
[i1 . . . i`] and [j1 . . . js] with i1 = j1 such that
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Tj1 ◦ · · · ◦ Tjs(I) ∩ Ti1 ◦ · · · ◦ Ti`(I) = ∅, and

Tj1 ◦ · · · ◦ Tjs(I) ∪ Ti1 ◦ · · · ◦ Ti`(I) ⊂ J.
(5.1.2)

Next claim restates the splitting condition:

Claim 5.1.3 There are admissible cylinders [ξ0 . . . ξN−1] and [ω0 . . . ωN−1]
such that ξ0 = ω0, ξN−1 = ωN−1,

Tξ0 ◦ · · · ◦ TξN−1(I) ∩ Tω0 ◦ · · · ◦ TωN−1(I) = ∅ and

Tξ0 ◦ · · · ◦ TξN−1(I) ∪ Tω0 ◦ · · · ◦ TωN−1(I) ⊂ J.

Proof. Consider j1, . . . , js and i1, . . . , i` as in (5.1.2). Since P+ is mixing
there is n0 such that for every n ≥ n0 there are admissible cylinders of the
form [i`c1 . . . cn−10] and [jsd1 . . . dn−10]. Take now n1, n2 ≥ n0 and admissible
cylinders [i`c1 . . . cn10] and [jsd1 . . . dn20] such that n1 + ` = n2 + s. Let
N = `+ n1 + 1. Then the cylinders

[ξ0 . . . ξN−1] = [i1 . . . i`c1 . . . cn10] and [ω0 . . . ωN−1] = [j1 . . . isd1 . . . dn20]

are admissible and satisfy the intersection and union properties in the claim. To
see why this is so note that Tc1◦· · ·◦Tcn1

◦T0(I) ⊂ I and Td1◦· · ·◦Tdn2
◦T0(I) ⊂ I.

�

We now fix x ∈ I and prove that P+(Σx) = 0. For that fix N , the
admissible cylinders [ξ0 . . . ξN−1] and [ω0 . . . ωN−1] in the claim, and for j ≥ 1
define the sets

Σj
x

def= {[a0 . . . ajN−1] ⊂ Σ+
k : x ∈ Ta0 ◦ · · · ◦ TajN−1(I)} and Sjx

def=
⋃

C∈Σjx

C.

(5.1.3)
Note that by definition Sj+1

x ⊂ Sjx and that for each j ≥ 1 it holds Σx ⊂ Sjx.
Hence

Σx ⊂
⋂
j≥1

Sjx.

Therefore
P+(Σx) ≤ P+

( ⋂
j≥1

Sjx

)
= lim

j→∞
P+(Sjx).

Hence the assertion P+(Σx) = 0 in the theorem follows from the next
proposition:

Proposition 5.1.4 limj→∞ P+(Sjx) = 0.

Proof. Suppose, for instance, that the cylinders in the claim satisfy

0 < P+([ξ0 . . . ξN−1]) ≤ P+([ω0 . . . ωN−1]). (5.1.4)
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The first inequality follows form the admissibility of [ξ0 . . . ξN−1].
Define for j ≥ 1 the family of cylinders

Ej def= {[a0 . . . ajN−1] ⊂ Σ+
k : σiN([a0 . . . ajN−1])∩[ξ0 . . . ξN−1] = ∅, i = 0, . . . , j−1}

and their union
Qj def=

⋃
C∈Ej

C.

Note that by definition Qj+1 ⊂ Qj. Let

Q∞
def=
⋂
j≥1

Qj = {ω ∈ Σ+ : σiN(ω) ∩ [ξ0 . . . ξN−1] = ∅ for all i ≥ 0}.

Recall that the mixing property of (σ,P+) implies the ergodicity of (σN ,P+).
Thus the Birkhoff’s ergodic theorem implies that P+(Q∞) = 0. Therefore
condition Qj+1 ⊂ Qj implies that

lim
j→∞

P+(Qj) = 0.

In view of this property, the proposition follows from the next lemma.

Lemma 5.1.5 P+(Sjx) ≤ P+(Qj) for all j ≥ 1.

Proof. For each j ≥ 1 consider the auxiliary substitution function Fj : Σj
x → Ej

defined as follows. For each cylinder [α0 . . . αjN−1] ∈ Σj
x we consider its

sub-cylinders [α0 . . . αN−1], [αN . . . α2N−1], . . . , [α(j−1)N . . . αjN−1] and use the
following concatenation notation

[α0 . . . αjN−1] = [α0 . . . αN−1] ∗ [αN . . . α2N−1] ∗ · · · ∗ [α(j−1)N . . . αjN−1].

In a compact way, we write

C = C0 ∗ C1 ∗ · · · ∗ Cj−1

where the cylinder C has size jN and each cylinder Ci has size N . With this
notation we define Fj by

Fj(C) def= Fj(C0 ∗ C1 ∗ · · · ∗ Cj−1) = C ′0 ∗ C ′1 ∗ · · · ∗ C ′j−1,

where C ′i = Ci if Ci 6= [ξ0 . . . ξN−1] and C ′i = [ω0 . . . ωN−1] otherwise.

Claim 5.1.6 For every j ≥ 1 it holds P+(C) ≤ P+(Fj(C)) for every C ∈
Σj
x.
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Proof. Recalling that ω0 = ξ0 and ωN−1 = ξN−1, from equation (5.1.4) we
immediately get the following: For every m, s ≥ 0 and every pair of cylinders
[a0 . . . as] and [b0 . . . bm] it holds

1. P+([a0 . . . asξ0 . . . ξN−1b0 . . . bm]) ≤ P+([a0 . . . asω0 . . . ωN−1b0 . . . bm]),

2. P+([ξ0 . . . ξN−1b0 . . . bm]) ≤ P+([ω0 . . . ωN−1b0 . . . bm]), and

3. P+([a0 . . . asξ0 . . . ξN−1] ≤ P+([a0 . . . asω0 . . . ωN−1].

The inequality P+(C) ≤ P+(Fj(C)) now follows from the definition of Fj. �

Claim 5.1.7 The map Fj is injective for every j ≥ 1.

Proof. Fix j ≥ 1. Given cylinders C, C̃ ∈ Σj
x, using the notation above write

C = C0 ∗ C1 ∗ · · · ∗ Cj−1 and C̃ = C̃0 ∗ C̃1 ∗ · · · ∗ C̃j−1. Then

Fj(C) = C ′0 ∗ C ′1 ∗ · · · ∗ C ′j−1 and Fj(C̃) = C̃ ′0 ∗ C̃ ′1 ∗ · · · ∗ C̃ ′j−1.

Suppose that Fj(C) = Fj(C̃). Then C ′i = C̃ ′i for all i = 0, . . . , N − 1. If
C 6= C̃ there is a first i such that Ci 6= C̃i. Then either Ci = [ξ0 . . . ξN−1] and
C̃i = [ω0 . . . ωN−1] or vice-versa. Let us assume that the first case occurs.

If i = 0 then the definition of Σj
x implies that

x ∈ Tξ0 ◦ · · · ◦ TξN−1(I) ∩ Tω0 ◦ · · · ◦ TωN−1(I),

contradicting Claim 5.1.3. Thus we can assume that i > 0 and define the
cylinder

[η0 . . . η(i−1)N−1] def= C0 ∗ C1 ∗ · · · ∗ Ci−1 = C̃0 ∗ C̃1 ∗ · · · ∗ C̃i−1.

Write (i− 1)N − 1 = r. By the definition of Σj
x in (5.1.3) we have

x ∈ Tη0 ◦· · ·◦Tηr ◦Tξ0 ◦· · ·◦TξN−1(I)∩Tη0 ◦· · ·◦Tηr ◦Tω0 ◦· · ·◦TωN−1(I). (5.1.5)

Since for every i we have that Ti(J) ⊂ J and Ti|J is injective, the intersection
and union inclusion properties in Claim 5.1.3 implies that

Tη0 ◦ · · · ◦ Tηr ◦ Tξ0 ◦ · · · ◦ TξN−1(I) ∩ Tη0 ◦ · · · ◦ Tηr ◦ Tω0 ◦ · · · ◦ TωN−1(I) = ∅,

contradicting (5.1.5). Thus C = C̃ and proof of the claim is complete. �

To prove that P+(Sjx) ≤ P+(Qj) note that

P+(Sjx) =
(a)

∑
C∈Σjx

P+(C) ≤
(b)

∑
C∈Σjx

P+(Fj(C)) =
(c)

P+
( ⋃
C∈Σjx

Fj(C)
)
≤
(d)

P+(Qj),
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where (a) follows from the disjointness of the cylinders C ∈ Σj
x, (b) from

Claim 5.1.6, (c) from the injectivity of Fj (Claim 5.1.7), and (d) from Fj(C) ∈
Ej ⊂ Qj. The proof of the lemma is now complete. �

This completes the proof of the proposition. �

The proof of Theorem 5.1.2 (i.e., P+(Σx) = 0) is now complete. �

The proof of Theorem 5 is now complete. �

5.2
Probabilistic rigidity

In this section we see that under quite general conditions the hypothesis
St ∩ supp(P+) 6= ∅ implies that P+(St) = 1. Recall the definition of the
projection π in (2.1.1).

Theorem 5.2.1 Consider an injective IFS(T1, . . . Tk) defined on I = [0, 1].
Let P+ be a mixing Markov measure defined on Σ+

k with transition matrix
P = (pij).

– If there is i ∈ {1, . . . , k} such that π is not constant in [i] ∩ supp(P+)
then P+(St) = 1. In particular,

#π
(
St ∩ supp(P+)

)
≥ k + 1 =⇒ P+(St) = 1.

– If the maps Ti have no common fixed points and for every i and j, with
i 6= j, there is m ∈ {1, . . . , k} with pmi pmj > 0. Then

St ∩ supp(P+) 6= ∅ ⇐⇒ P+(St) = 1.

Proof. To prove the first item of the theorem note that by hypothesis there is
i such that π is not constant in [i]∩ supp(P+). Hence ξ, ω ∈ [i]∩ supp(P+)∩St

such that π(ξ) 6= π(ω). Thus there are s and ` such that

Tξ0 ◦ · · · ◦ Tξs(I) ∩ Tω0 ◦ · · · ◦ Tω`(I) = ∅.

As ξ, ω ∈ [i] ∩ supp(P+) the cylinders [ξ0 . . . ξs] and [ω0 . . . ω`] are both
admissible and satisfy ξ0 = ω0 = i. This means that P+ splits the IFS. Hence,
by Theorem 5, P+(St) = 1.

For the second part of the first item, just note that if #π
(
St ∩

supp(P+)
)
≥ k + 1 then from the pigeonhole principle there is i such that

π is not constant in [i] ∩ supp(P+).
The implication (⇐) in the second item of the theorem is immediate. For

the implication (⇒) we need the following lemma.
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Lemma 5.2.2 For every ξ ∈ St ∩ supp(P+) there is ω ∈ St ∩ supp(P+) such
that π(ξ) 6= π(ω).

Proof. Fix ξ ∈ St. By definition of St we have that

{π(ξ)} =
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(I).

As the maps Ti have no common fixed points there is i0 such that Ti0(π(ξ)) 6=
π(ξ). The definition of an irreducible matrix implies that there is an admissible
cylinder of the form [i0i1 . . . imξ0]. Let

r
def= max

{
` ∈ {0, . . . ,m} : Ti`(π(ξ)) 6= π(ξ)

}
≥ 0.

Consider the concatenation ω = ir . . . im ∗ ξ. Note that, by definition, π(ζ) =
Tζ0(π(σ(ζ))) for every ζ ∈ St. Hence

π(ω) = Tir ◦ · · · ◦ Tim(π(ξ)).

By definition of r,

Tim(π(ξ)) = · · · = Tir+1(π(ξ)) = π(ξ).

Therefore
π(ω) = Tir(π(ξ)) 6= π(ξ).

It remains to see that ω ∈ St ∩ supp(P+), for that just note that the cylinder
[i0 . . . imξ0] is admissible and ξ ∈ supp(P+). This ends the proof of the lemma.
�

Take sequences ξ and ω as in Lemma 5.2.2. By definition of π,

{π(ξ)} =
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(I) and {π(ω)} =
⋂
n≥0

Tω0 ◦ · · · ◦ Tωn(I).

As π(ξ) 6= π(ω) there are ` and s such that

Tξ0 ◦ · · · ◦ Tξ`(I) ∩ Tω0 ◦ · · · ◦ Tωs(I) = ∅. (5.2.1)

Note that the cylinders [ξ0 . . . ξ`] and [ω0 . . . ωs] are admissible. If ξ0 = ω0 we
are done. Otherwise, ξ0 6= ω0 and by hypothesis there is m such that pmξ0 > 0
and pmω0 > 0. This implies that the cylinders [mξ0 . . . ξ`] and [mω0 . . . ωs] are
both admissible. Since the maps Ti are injective it follows from (5.2.1)

Tm ◦ Tξ0 ◦ · · · ◦ Tξ`(I) ∩ Tm ◦ Tω0 ◦ · · · ◦ Tωs(I) = ∅.
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Therefore P+ splits the IFS and by Theorem 5 we have P+(St) = 1. This ends
the proof of the theorem. �

5.3
Separability

In this section we give some characterisations of a separable IFS. Note
that item (2) in the next theorem means that the IFS is separable.

Theorem 5.3.1 Consider an IFS(T1, . . . Tk) defined on I = [0, 1]. Suppose
that there is some non-trivial closed interval J such that Ti(J) ⊂ J and Ti|J is
injective for every j ∈ {1, . . . , k}. Then the following assertions are equivalent:

1. The maps of the IFS have no common fixed points and St 6= ∅.

2. The target set At has at least two elements.

3. There are finite sequences ξ1 . . . ξ` and ω1 . . . ωs such that

Tξ1 ◦ · · · ◦ Tξ`(I) ∩ Tω1 ◦ · · · ◦ Tωs(I) = ∅ and

Tξ1 ◦ · · · ◦ Tξ`(I) ∪ Tω1 ◦ · · · ◦ Tωs(I) ⊂ J.

4. The maps of the IFS have no common fixed point and P+(St) = 1 for
every mixing Markov measure P+ whose support is the whole Σ+

k .

Proof. To prove the implication (1)⇒ (2) note that since St 6= ∅ there is p ∈ At.
Since the maps of the IFS have no common fixed point there is i such that
Ti(p) 6= p. The invariance of At implies that Ti(p) ∈ At. Thus {p, Ti(p)} ⊂ At

and we are done.
To see that (2)⇒ (3) we need the following claim:

Claim 5.3.2 #(At ∩ int(J)) ≥ 2.

Proof. Since Ti(J) ⊂ J for every i we have that B(J) ⊂ J . Hence Propositions
4.1.1 and 4.2.1 implies that At ⊂ J . The claim follows from Proposition 4.5.1.
�

Take two different points p, q ∈ At ∩ int J and consider disjoint neigh-
bourhoods U and V of p and q, respectively, such that U ∪ V ⊂ J . By the
definition of At there are sequences ξ and ω such that

{p} =
⋂
n≥0

Tξ0 ◦ · · · ◦ Tξn(I) and {q} =
⋂
n≥0

Tω0 ◦ · · · ◦ Tωn(I).

Hence there are n0 and m0 such that Tξ0 ◦ · · · ◦ Tξn0
(I) ⊂ U and Tω0 ◦ · · · ◦

Tωm0
(I) ⊂ V . Since U ∩ V = ∅ we get the implication (2)⇒ (3).
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To prove (3) ⇒ (4) consider the finite sequences ξ1 . . . ξ` e ω1 . . . ωs in
item (3). Clearly the condition in (3) prevents the existence of a common fixed
point. On the other hand, since T1(J) ⊂ J and T1|J is injective, we have that

T1 ◦ Tξ1 ◦ · · · ◦ Tξ`(I) ∩ T1 ◦ Tω1 ◦ · · · ◦ Tωs(I) = ∅ and

T1 ◦ Tξ1 ◦ · · · ◦ Tξ`(I) ∪ T1 ◦ Tω1 ◦ · · · ◦ Tωs(I) ⊂ J.

Thus every mixing Markov measure with full support P+ splits the IFS in J .
Now Theorem 5 implies that P+(St) = 1 and we are done.

The implication (4)⇒ (1) is immediate. �
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6
Asymptotic stability on measures

In this chapter we prove Theorems 4 and 6 in Sections 6.1 and 6.2,
respectively.

6.1
Stationary measures for IFSs with probabilities in [0,1]

In this section we prove Theorem 4. For that we consider a separable
IFS(T1, . . . Tk; b) defined on I = [0, 1], its Markov operator T = Tb, and its
coding map π in (2.1.1), we see that for every probability measure µ ∈M1(I)
it holds

lim
n→∞

Tnµ = π∗b (asymptotic stability).

The main step of the proof of the theorem is the next proposition that states
a sufficient condition for the asymptotic stability of an IFS with probabilities.

Proposition 6.1.1 Consider an IFS(T1, . . . Tk; b) with probabilities defined on
a compact metric space X. Suppose that b(St) = 1. Then for every probability
measure µ ∈M1(X) it holds

lim
n→∞

Tnbµ = π∗b.

In particular, µb
def= π∗b is the unique stationary measure of IFS(T1, . . . Tk; b).

Furthermore, supp(µb) = At.

We postpone the proof of Proposition 6.1.1 and deduce the theorem from
it.

6.1.1
Proof of Theorem 4

In view of Proposition 6.1.1 it is sufficient to prove that b(St) = 1 and
the measure π∗b is continuous. Since the IFS is separable and every Bernoulli
measure (with strictly positive weights) is a mixing Markov measure, Theorem
5.3.1 implies that b(St) = 1. To see that π∗b is continuous we need to prove
that π∗b({x}) = 0 for every x ∈ [0, 1]. Take x ∈ [0, 1] and recall the definition
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of the set Σx in (5.1.1). Since π−1(x) ⊂ Σx we have that

π∗b({x}) = b(π−1(x)) ≤ b(Σx) = 0,

where the last equality follows from Theorem 5.1.2. The proof of Theorem 4
is now complete. �

6.1.2
Proof of Proposition 6.1.1

We assume that b = b(p1, . . . , pk) and write T = Tb. We begin by proving
two auxiliary lemmas:

Lemma 6.1.2 For every stationary measure of T it holds B(supp(µ)) ⊂
supp(µ).

Proof. It is sufficient to show that Ti(supp(µ)) ⊂ supp(µ) for every i. Given
x ∈ supp(µ) take a neighborhood V of Ti(x). By the choice of x, µ(T−1

i (V )) >
0. Since µ is a stationary measure we have

µ(V ) = p1µ(T−1
1 (V )) + · · ·+ pkµ(T−1

k (V )) ≥ piµ(T−1
i (V )) > 0,

proving the lemma. �

Lemma 6.1.3 Consider the IFS(T1, . . . Tk). Then for every sequence (µn) of
probabilities ofM1(X) and every ω ∈ St it holds

lim
n→∞

Tω0∗ . . .∗ Tωn∗µn = δπ(ω).

Proof. Consider a sequence of probabilities (µn) and ω ∈ St. Fix any g ∈
C0(X). Then given any ε > 0 there is δ such that

|g(y)− g ◦ π(ω)| < ε for all y ∈ X with d(y, π(ω)) < δ.

Since ω ∈ St there is n0 such that d(Tω0 ◦ · · · ◦ Tωn(x), π(ω)) < δ for every
x ∈ X and every n ≥ n0. Therefore for n ≥ n0 we have∣∣∣∣g ◦ π(ω)−

∫
g dTω0∗ . . .∗ Tωn∗µn

∣∣∣∣ =
∣∣∣∣∫ g ◦ π(ω) dµn −

∫
g ◦ Tω0 ◦ · · · ◦ Tωn(x) dµn

∣∣∣∣
≤
∫
|g ◦ π(ω)− g ◦ Tω0 ◦ · · · ◦ Tωn(x)| dµn ≤ ε.

This implies that

lim
n→∞

∫
g dTω0∗ . . .∗ Tωn∗µn = g ◦ π(ω)
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Since this holds for every continuous map g the lemma follows. �

We will show that limn→∞ Tnν = π∗b for every ν ∈M1(X). In particular,
by the continuity of T, Tπ∗b = π∗b.

Note that from the definition of the Markov operator in (2.2.1), for every
ν ∈M1(X) and every continuous map f ∈ C0(X) it holds∫

fd(Tnν) =
∑

ξ0,...,ξn−1

pξ0pξ1 . . . pξn−1

∫
f dTξ0∗Tξ1∗ . . .∗ Tξn−1∗ν. (6.1.1)

Fixed ν ∈ M1(X) consider the sequence of functions Fn : Σ+
k → R

defined by
Fn(ξ) def=

∫
f dTξ0∗Tξ1∗ . . .∗ Tξn−1∗ν.

Since the map Fn is constant in the cylinders [ξ0, . . . , ξn−1], it is a measurable
function. From this property, equation (6.1.1), and the definition of the
Bernoulli measure b we have

∫
f d(Tnν) =

∫
Fn db.

By hypothesis b(St) = 1, thus applying Lemma 6.1.3 to the constant
sequence µn = ν we have that

lim
n→∞

Fn(ξ) = f ◦ π(ξ) for b -a.e. ξ. (6.1.2)

Since |Fn(ξ)| ≤ ‖f‖, from (6.1.2) using the dominated convergence theorem
we get

lim
n→∞

∫
f d(Tnν) = lim

n→∞

∫
Fn db =

∫
f ◦ π db =

∫
fdπ∗b.

Since the previous equality holds for every continuous map f it follows that
π∗b is an attracting measure.

It remains to see that supp(π∗b) = At. For that note the following
equalities

π∗b(At) = b(π−1(At)) = b(St) = 1 (6.1.3)
that imply supp(π∗b) ⊂ At.

To get supp(π∗b) ⊃ At recall that, by Proposition 4.1.1, every B-
invariant compact set contains a fixed point of B. By Lemma 6.1.2 we have
B(supp(π∗b)) ⊂ supp(π∗b). Hence supp(π∗b)) contains a fixed point of B.
As At is a minimum fixed point of B (see Proposition 4.2.1) this implies that
At ⊂ supp(π∗b). Thus supp(π∗b) = At, completing the proof of the proposition.
�

The previous proposition provides a (unique) stationary measure whose
support is At. To prove that the support of this measure is the closure of
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the target we use the characterisation of the stationary measure in (6.1.3).
Next proposition claims that the support of the stationary measure of an
asymptotically stable Markov operator of an IFS with St 6= ∅ always is At,
even when b(St) = 0 (recall that either b(St) = 1 or b(St) = 0).

Proposition 6.1.4 Consider an IFS(T1, . . . , Tk; b) with probabilities defined
on a compact metric space whose Markov operator Tb is asymptotically stable
and let µ be its stationary measure. If St 6= ∅ then supp(µ) = At.

Proof. The inclusion supp(µ) ⊃ At follows from Lemma 6.1.2. To prove the
inclusion “⊂” take any point p ∈ supp(µ) and an open neighbourhood V of p.
We need to see that V ∩At 6= ∅. For this take any point x ∈ At. Since T = Tb

is asymptotically stable Alexandrov’s theorem (see (10, page 60)) implies that

lim inf
n

Tnδx(V ) ≥ µ(V ) > 0.

Hence there is n0 such that Tn0δx(V ) > 0. By definition of the Markov operator
we have that

Tn0δx(V ) =
∑

ξ0,...,ξn0−1

pξ0pξ1 . . . pξn0−1 Tξ0∗Tξ1∗ . . .∗ Tξn0−1∗δx(V ).

Therefore there is a finite sequence ξ0 . . . ξn0−1 such that

δx(T−1
ξn0−1 ◦ · · · ◦ T

−1
ξ0 (V )) > 0

and thus x ∈ T−1
ξn0−1 ◦ · · · ◦ T

−1
ξ0 (V ). The invariance of At now implies that

V ∩ At 6= ∅, proving the proposition. �

6.2
Stationary measures for recurrent IFSs in [0,1]

In this section we prove Theorem 6. For that we consider a recurrent
IFS(T1, . . . Tk;P+) defined on a compact metric space X, where P+ is the
Markov probability associated to (P = (pi,j), p̄ = (pi)). We also consider the
set X̂ = X × {1, . . . , k} and the (generalised) Markov operator S = SP+ (see
(2.2.2)) and the generalised coding map $ : St → X̂ given by $(ξ) def= (π(ξ), ξ0)
(see (2.2.4)) of the IFS. A final ingredient is the inverse Markov measure P−

associated to P+ defined in (2.2.3).
To prove Theorem 6 we need to see that every IFS(T1, . . . Tk;P+) such

that the inverse Markov measure P− is mixing and splits the IFS in some
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non-trivial closed interval J satisfies

lim
n→∞

Sn(µ̂) = $∗P− for every µ̂ ∈M1([0, 1]× {1, . . . , k}).

The main step of the proof of Theorem 6 is the following result.

Theorem 6.2.1 Consider a recurrent IFS(T1, . . . Tk;P+) defined on a compact
metric space X such that P− is mixing and P−(St) = 1. Then

lim
n→∞

Sn(µ̂) = $∗P− for every µ̂ ∈M1(X̂).

In particular, $∗P− is the unique stationary measure of S.

Proof. Given a function f̂ : X̂ → R we define its i-section fi : X → R
by fi(x) def= f̂(x, i) and write f̂ = 〈f1, . . . , fk〉. We need to see that for
every measure µ̂ = (µ1, . . . , µk) ∈ M1(X̂) and every continuous function
f̂ = 〈f1, . . . , fk〉 ∈ C0(X̂) it holds

lim
n→∞

∫
f̂ dSn(µ̂) =

∫
f̂ d$∗P−. (6.2.1)

By definition, it follows that

∫
f̂ dµ̂ =

k∑
i=1

∫
fi dµi, where µ̂ = (µ1, . . . , µk),

and hence∫
f̂ dSn(µ̂) =

k∑
j=1

∫
fj d(Sn(µ̂))j, Sn(µ̂) =

(
(Sn(µ̂))1, . . . , (Sn(µ̂))k

)
.

(6.2.2)
To get the convergence of the integrals of the sum in (6.2.2) we need a

preparatory lemma. First, denote by ‖g‖ the uniform norm of a continuous
function g : X → R.

Lemma 6.2.2 Consider µ̂ = (µ1, . . . , µk) ∈ M1(X̂) such that µi(X) > 0 for
every i ∈ {1, . . . , k}. Then for every g ∈ C0(X) it holds

lim sup
n

∣∣∣∣∣
∫
g d(Sn(µ̂))j −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣ ≤ k ‖g‖ max

i
|µi(X)− pi|,

where p̄ = (p1, . . . , pk) is the unique stationary vector of P .

Proof. Take µ̂ ∈M1(X̂) as in the statement of the lemma and for each i define
the probability measure µi

µi(B) def= µi(B)
µi(X) , where B is a Borel subset of X.
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A straightforward calculation and the previous definition imply that

(Sn(µ̂))j =
∑

ξ1,...,ξn

pξnξn−1 . . . pξ2ξ1pξ1j Tj∗Tξ1∗ . . .∗ Tξn−1∗µξn

=
∑

ξ1,...,ξn

µξn(X) pξnξn−1 . . . pξ2ξ1pξ1jTj∗Tξ1∗ . . .∗ Tξn−1∗µξn .

Thus given any g ∈ C0(X) we have that
∫
g d(Sn(µ̂))j =

∑
ξ1,...,ξn

µξn(X) pξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn .

Let
Ln

def=
∣∣∣∣∣
∫
g d(Sn(µ̂))j −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣

and write µξn(X) = (µξn(X)− pξn) + pξn . Then

Ln ≤

∣∣∣∣∣∣
∑

ξ1,...,ξn

(µξn(X)− pξn) pξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

ξ1,...,ξn

pξn pξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣∣

≤ max
i
|µi(X)− pi|‖g‖

∑
ξ1,...,ξn

pξnξn−1 . . . pξ1j

+

∣∣∣∣∣∣
∑

ξ1,...,ξn

pξn pξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣∣ .

Note that ∑ξ1,...,ξn−1 pξnξn−1 . . . pξ1j is the entry (ξn, j) of the matrix P n. Hence

∑
ξ1,...,ξn

pξnξn−1 . . . pξ1j =
k∑

ξn=1

∑
ξ1,...,ξn−1

pξnξn−1 . . . pξ1j ≤ k.

Therefore

max
i
|µi(X)− pi|‖g‖

∑
ξ1,...,ξn

pξnξn−1 . . . pξ1j ≤ k ‖g‖ max
i
|µi(X)− pi|. (6.2.3)

We now estimate the second parcel in the sum above. Observe that
equation (6.2.3) and the following claim imply the lemma.

Claim 6.2.3 For every continuous function g it holds

lim
n→∞

∑
ξ1,...,ξn

pξnpξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn =

∫
[j]

(g ◦ π) dP−.
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Proof. Consider the sequence of functions given by

Gn : Σ+
k → R, Gn(ξ) def=

∫
g dTξ0∗Tξ1∗ . . .∗ Tξn−1∗µξn .

By definition, for every n the corresponding map Gn is constant in the cylinders
[ξ0, . . . , ξn] and thus it is measurable. By definition of P±, for every j we have
that

pξnpξnξn−1 . . . pξ2ξ1pξ1j = P+([ξnξn−1 . . . ξ1j]) = P−([jξ1ξ2 . . . ξn]).

Hence

∑
ξ1,...,ξn

pξnpξnξn−1 . . . pξ1j

∫
g dTj∗Tξ1∗ . . .∗ Tξn−1∗µξn =

∫
[j]
Gn dP−.

It follows from the hypothesis P−(St) = 1 and Lemma 6.1.3 that

lim
n→∞

Gn(ξ) = g ◦ π(ξ) for P−-almost every ξ. (6.2.4)

Now note that |Gn(ξ)| ≤ ‖g‖ for every ξ ∈ Σ+
k . From (6.2.4), using the

dominated convergence theorem, we get

lim
n→∞

∫
[j]
Gn dP− =

∫
[j]

(g ◦ π) dP−,

ending the proof of the claim. �

The proof of the lemma is now complete. �

To prove the theorem observe that since P− is mixing the transition ma-
trix P associated to P+ is primitive, recall Section 3.3. Take µ̂ = (µ1, . . . , µk) ∈
M1(X̂). Note that by definition of the Markov operator

(
(Sµ̂)1(X), . . . , (Sµ̂)k(X)

)
= p̂ P, where p̂ = (µ1(X), . . . , µk(X)).

Hence for every n ≥ 1(
(Snµ̂)1(X), . . . , (Snµ̂)k(X)

)
= p̂ P n. (6.2.5)

By the Perron-Frobenius theorem, see for instance (26, page 64), we have
that the stationary vector p̄ = (p1, . . . , pk) is positive1 and

lim
n→∞

p̂ P n = p̄ for every probability vector p̂.

Hence (6.2.5) gives n0 such that the vector
(
(Sn1µ̂)1(X), . . . , (Sn1µ̂)k(X)

)
is

1A vector v = (v1, . . . , vk) is said positive if vi > 0 for all i.
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positive for every n1 ≥ n0. Therefore we can apply Lemma 6.2.2 to the measure
Sn1(µ̂) for every n1 ≥ n0, obtaining for every g ∈ C0(X) the inequality

lim sup
n

∣∣∣∣∣
∫
g d(Sn+n1(µ̂))j −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣ ≤ k ‖g‖ max

i
|(Sn1µ̂)i(X)− pi|.

It follows from the definition of lim sup and the previous inequality that

lim sup
n

∣∣∣∣∣
∫
g d(Sn(µ̂))j −

∫
[j]

(g ◦ π) dP−
∣∣∣∣∣ ≤ k ‖g‖ max

i
|(Sn1µ̂)i(X)− pi|

for every n1 ≥ n0. By (6.2.5) and the Perron-Frobenius theorem we get

lim
n1→∞

max
i
|(Sn1µ̂)i(X)− pi| = 0.

Therefore

lim
n→∞

∫
g d(Sn(µ̂))j =

∫
[j]

(g ◦ π) dP− for every g ∈ C0(X). (6.2.6)

To get equation (6.2.1), write f̂ = 〈f1, . . . , fk〉, apply (6.2.6) to the maps fi,
and use (6.2.2) to get

lim
n→∞

∫
f̂ dSn(ν̂) =

(6.2.2)

k∑
j=1

lim
n→∞

∫
fj d (Sn(ν̂))j =

(6.2.6)

k∑
j=1

∫
[j]

(fj ◦ π) dP−.

Now observing that fj ◦ π(ξ) = f̂ ◦$(ξ) for every ξ ∈ [j], we conclude that

lim
n→∞

∫
f̂ dSn(ν̂) =

k∑
j=1

∫
[j]
f̂ ◦$dP− =

∫
f̂ d$∗P−.

proving (6.2.1) and ending the proof of the theorem. �

6.2.1
Proof of Theorem 6

Since P− is mixing and splits the IFS in some non-trivial interval it
follows from Theorem 5 that P−(St) = 1. Thus the theorem follows from
Theorem 6.2.1.

6.3
Uniqueness of the stationary measure in the irreducible case

In Proposition 6.3.1 we state a result that does not involve the mixing
condition of the probability P−. For that we consider the subset Mp̄(X̂) of

DBD
PUC-Rio - Certificação Digital Nº 1222005/CA



Chapter 6. Asymptotic stability on measures 60

M1(X̂) defined by

Mp̄(X̂) def= {µ̂ = (µ1, . . . , µk) : µi(X) = pi for every i},

where p̄ = (p1, . . . , pk) is the stationary vector of the irreducible transition
matrix P associated to P+. The setMp̄(X̂) is invariant by SP+ and contains
all stationary measures of IFS(T1, . . . , Tk;P+). For the first assertion observe
that given any µ̂ ∈Mp̄(X̂) by the definition of SP+ we have

(SP+µ̂)j =
k∑
i=1

pij Tj∗µi for every j.

Thus

(SP+µ̂)j(X) =
k∑
i=1

pijµi(T−1
j (X)) =

k∑
i=1

pijµi(X) =
k∑
i=1

pipij = pj

and hence SP+(µ̂) ∈Mp̄(X̂).
For the second assertion note that a measure µ̂ = (µ1, . . . , µk) ∈M1(X̂)

is stationary if and only if

µj =
k∑
i=1

pij Tj∗µi for every j.

If µ̂ = (µ1, . . . , µk) is stationary then (µ1(X), . . . , µk(X)) is the stationary
probability vector for the transition matrix P of P+. Thus µi(X) = pi for
every i.

A corollary of Lemma 6.2.2 is the following proposition.

Proposition 6.3.1 Consider a recurrent IFS(T1, . . . Tk;P+) defined on a com-
pact metric space X such that P−(St) = 1. Then

lim
n→∞

Sn(ν̂) = $∗P− for every ν̂ ∈Mp̄(X̂).

In particular, $∗P− is the unique stationary measure of S.

Proof. Consider µ̂ = (µ1, . . . , µk) ∈Mp̄(X̂) and note that µi(X) = pi. Lemma
6.2.2 implies that for every continuous function g it holds

lim
n→∞

∫
g d(Sn(µ̂))j =

∫
[j]

(g ◦ π) dP−. (6.3.1)

Consider a continuous map f̂ = 〈f1, . . . , fk〉. We apply (6.3.1) to the
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maps fi and use equation (6.2.2) to get

lim
n→∞

∫
f̂ dSn(ν̂) =

(6.2.2)

k∑
j=1

lim
n→∞

∫
fj d (Sn(ν̂))j =

(6.3.1)

k∑
j=1

∫
[j]

(fj ◦ π) dP−.

Observing that fj ◦ π(ξ) = f̂ ◦$(ξ) for every ξ ∈ [j], we conclude that

lim
n→∞

∫
f̂ dSn(ν̂) =

k∑
j=1

∫
[j]
f̂ ◦$dP− =

∫
f̂ d$∗P−,

proving the proposition. �
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7
Transitive invariant sets of step skew products

In this chapter we prove Theorem 7.

7.1
Preliminary topological properties

Recall that the spine of a sequence ξ ∈ Σk is defined by

Iξ
def=
⋂
n≥0

Tξ−1 ◦ · · · ◦ Tξ−n(X).

in (1.2.3). The next simple proposition characterises the maximal attractor ΛF

of F , see in (1.2.2), in term of the set of spines.

Proposition 7.1.1 ΛF =
⋃
ω∈Σk
{ω} × Iω.

Proof. Consider a point (ω, x) such that x ∈ Iω and fix n ≥ 1. By definition
there is y ∈ [0, 1] such that x = Tω−1 ◦ · · · ◦ Tω−n(y). Then

(ω, x) = F n
(
σ−n(ω), y

)
,

which implies that (ω, x) ∈ ΛF , proving the inclusion “⊃”.
Conversely, take any (ω, x) ∈ ΛF . By definition, for every n ≥ 1 there is

(ω(n), x(n)) ∈ Σk × X such that F n(ω, x) = (ω, x). Noting that ω = σ−n(ω)
we conclude that

x ∈ Tω−1 ◦ · · · ◦ Tω−n(X).

Since this holds for every n ≥ 1 it follows that x ∈ Iω, proving the proposition.
�

Recall the definition of the projection in (1.2.5),

% : S−t → X, %(ξ) = lim
n→∞

Tξ−1 ◦ · · · ◦ Tξ−n(p)

and that it does not depend on the choice of p ∈ X.
By definition, F (graph %) ⊂ graph % and thus it is contained in ΛF .

Recalling that At = %(S−t ), see (4.1.2), we have that graph % ⊂ S−t × At.
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7.2
Proof of Theorem 7

In what follows we denote by D the set of disjunctive sequences of Σk.
We now prove the first item of the theorem claiming that graph % ⊂ ω(z) for
every z = (ξ, x) ∈ D × X. Let z = (ξ, x) ∈ D × X. Since ω(z) is closed it
is enough to see that graph % ⊂ ω(z). Take a point (β, %(β)) ∈ graph % and
consider a sequence n` such that σn`(ξ) ∈ [−`; β−` . . . β`] for every ` ≥ 0 (here
we use that ξ ∈ D). Hence σn`−`(ξ) ∈ [0; β−` . . . β`]. Let

x`
def= fξn`−` ◦ · · · ◦ fξ0(x).

By definition of S−t and since β ∈ S−t it follows that

lim
`→∞

Tβ−1 ◦ · · · ◦ Tβ−`(x`) = %(β).

Hence lim`→∞ F
n`(ξ, x) = (β, %(β)), proving that graph % ⊂ ω(z).

To prove the remainder itens in the the teorem we need two preparatory
lemmas. Given a sequence ξ+ ∈ Σ+

k let

[ξ+] def= {ω ∈ Σk : ωi = ξ+
i for every i ≥ 0}.

Lemma 7.2.1 Consider any open set [−`; b−` . . . b`]× J ⊂ Σk ×X such that

At ∩
(
(Tb−1 ◦ · · · ◦ Tb−`)−1(J)

)
6= ∅.

Then for every open set Q ⊂ Σ+
k there is n0 = n0(Q) such that for every

n ≥ n0 there is a sequence ξ+,n ∈ Q such that

F n
(
[ξ+,n]×X

)
⊂ [−`; b−` . . . b`]× J.

Proof. By hypothesis there is q ∈ (Tb−1◦· · ·◦Tb−`)−1(J)∩At. Thus, by definition
of At, there is a sequence c1, . . . cp such that

Tc1 ◦ · · · ◦ Tcp(X) ⊂ (Tb−1 ◦ · · · ◦ Tb−`)−1(J).

Hence
Tb−1 ◦ · · · ◦ Tb−` ◦ Tc1 ◦ · · · ◦ Tcp(X) ⊂ J. (7.2.1)

Since the one-sided shift σ is topologically mixing, there is m0 > 0 such
that for each n ≥ m0 there is a sequence ω+,n ∈ Q such that

σn(ω+,n) ∈ [cp . . . c1b−` . . . b`] ⊂ Σ+
k . (7.2.2)
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For n ≥ m0 + `+ p we define the one-sided sequence

ξ+,n def= ω+,n−(`+p).

Since n− (`+ p) ≥ m0 this sequence is well defined. Take n ≥ m0 + `+ p and
any ζ ∈ [ξ+,n]. By construction, for every x ∈ X we have that

F n−`−p(ζ, x) ∈ [0; cp . . . c1b−` . . . b`]×X.

Therefore from equations (7.2.1) and (7.2.2) it follows that

F n(ζ, x) = F `+p(F n−`−p(ζ, x)) ∈ [−`; b−` . . . b`]× J,

proving the lemma. �

Lemma 7.2.2 Let Ω be a compact subset of Σk × At such that F (Ω) = Ω.
Then Ω ⊂ graph %.

Proof. Let (ξ, y) ∈ Ω and V = [−`; ξ−` . . . ξ`]×J be an open set with (ξ, y) ∈ V .
Since F (Ω) = Ω we have that F−`(ξ, y) ∩ Ω 6= ∅. This implies that

(Tξ−1 ◦ · · · ◦ Tξ−`)−1(y) ∩ At 6= ∅ =⇒ At ∩ T−1
ξ−`
◦ · · · ◦ T−1

ξ−1(J) 6= ∅.

Applying Lemma 7.2.1 to the open set Q = Σ+
k we get a sequence ξ+ and

n ≥ 0 such that
F n
(
[ξ+]×X

)
⊂ [−`; ξ−` . . . ξ`]× J.

As
(
[ξ+]×X

)
∩ graph % 6= ∅ and graph % is F -invariant, we conclude that

graph % ∩ [−`; ξ−` . . . ξ`]× J 6= ∅.

Thus we have Ω ⊂ graph %. �

To prove item (2). Recall that Ft is the restriction of F to the set Σk×At.
Clearly, Λt ⊂ Σk × At and since Λt is a maximal invariant set we have that
F (Λt) = Ft(Λt) = Λt, and by Lemma 7.2.2, Λt ⊂ graph %. For the converse
inclusion, take any point z = (ξ, x) ∈ Λt, such that ξ is disjunctive. Then by
the first item of the theorem and the F -invariance of Λt we have that

graph % ⊂ ω(z) ⊂ Λt,

proving the item.
We now prove item 3. The fact that F is topologically mixing in graph %

is stated in the next lemma.
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Lemma 7.2.3 Consider any pair of open sets

V = [−`; b−` . . . b`]× J and U = [−m; a−m . . . am]× I

intersecting graph %. Then there is n0 such that

F n(U ∩ graph %) ∩ V 6= ∅, for every n ≥ n0.

Proof. We first state a claim that will also be used in the proof of the third
item of the theorem. Note that the first part of the claim implies the first part
of item (2).

Claim 7.2.4 For every (ξ, q) ∈ graph % it holds

At ∩ T−1
ξ−`
◦ · · · ◦ T−1

ξ−1(q) 6= ∅.

Proof. Take (ξ, q) ∈ graph %. Since Λt = graph %, we have that F (graph %) =
graph %. This implies that F−`(ξ, q) ∩ graph % 6= ∅. By definition we have that
graph % ⊂ Σk × At which implies (Tξ−1 ◦ · · · ◦ Tξ−`)−1(q) ∩ At 6= ∅. �

By hypothesis, the set V = [−`; b−` . . . b`] × J contains a point (ξ, q) ∈
graph %. Hence, by the previous claim, (Tξ−1 ◦ · · ·◦Tξ−`)−1(q)∩At 6= ∅ and thus

At ∩ T−1
ξ−`
◦ · · · ◦ T−1

ξ−1(J) 6= ∅.

This allows to apply Lemma 7.2.1 to the sets V = [−`; b−` . . . b`] × J and
Q = [a0 . . . am] of Σ+

k . By Lemma 7.2.1, there is m0 = m0(Q) such that for
every n ≥ m0 there is a sequence ξ+,n ∈ Q such that

F n
(
[ξ+,n]×X

)
⊂ [−`; b−` . . . b`]× J = V, for all n ≥ m0.

Claim 7.2.5 (graph %) ∩ U ∩
(
[ξ+,n]×X

)
6= ∅ for every n ≥ max{m,m0}.

Proof. By hypothesis, U = [−m; a−m . . . am]×I and there is (ζ, a) ∈ U∩graph %
and ζ ∈ S−t . Consider the sequence γ = ζ−.ξ+,n ∈ Σk (that is γ is the sequence
whose negative part is ζ− and whose positive part if ξ+,n). By construction,

γ ∈ S−t ∩ [ξ+,n] ∩ [−m; a−m . . . am]

and %(γ) = a. Hence (γ, %(γ)) is in the intersection set in the claim. �

Using the claim we have

F n(U ∩ graph %) ∩ V 6= ∅ for all n ≥ n0 = max{m,m0},
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proving the lemma. �

We now prove the last item of the theorem. Note that by the first item of
the theorem we need only to show that ω(z) ⊂ graph %, provided that z = (ξ, x)
where ξ is disjunctive. We need to consider the two possibilities in this item.

First suppose that At has non-empty interior. Take any point z = (ξ, x) ∈
D × X. Since the interior of At is not empty and ξ is disjunctive there is
n0 such that z̄ = F n0(z) ∈ Σk × At. By the invariance of At we have that
F n(z) ∈ Σk × At for every n ≥ n0, which implies that ω(z̄) ⊂ Σk × At. Since
ω(z̄) = ω(z) and ω(z) is F -invariant, Lemma 7.2.2 implies that ω(z) ⊂ graph %.

Suppose now that At is Lyapunov stable. Take any point z = (ξ, x) ∈
D ×X. To prove the inclusion ω(z) ⊂ graph % take any open neighbourhood
U of At. Since At is Lyapunov stable there is a neighbourhood V of At such
that Bn(V ) ⊂ U for every n ≥ 0. The definition of At and the fact the ξ is
a disjunctive sequence imply that there is n0 such F n0(ξ, x) ∈ Σk × V . Hence
F n(ξ, x) ∈ Σk × U for every n ≥ n0, which implies that ω(z) ⊂ Σk × U . Since
U is an arbitrary neighbourhood we have that ω(z) ⊂ Σk×At. It follows from
Lemma 7.2.2 that ω(z) ⊂ graph %. �
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8
Global attracting measures for skew products

In this chapter we prove Theorem 8 and Corollary 9.

8.1
Preliminaries

We now introduce the main ingredients in the proof of Theorem 8. Recall
the definition of the projection π1(ω, x) def= ω in (2.3.1). Given a σ-invariant
measure λ in Σk recall the definition of the setMλ of measures of Σk×X with
marginal λ in (2.3.2).

Proposition 8.1.1 The setMλ is F -invariant and compact.

Proof. AsMλ is a subset of the compact setM1(Σk ×X), to prove that it is
compact it is enough to see that it is closed. Let (µn) be a sequence in Mλ

such that µn → µ. We need to see that µ ∈Mλ. Since π1 is continuous,

λ = (π1)∗µn → (π1)∗µ,

proving that µ ∈Mλ.
To prove the invariance F∗(Mλ) ⊂ Mλ first note that π1 ◦ F = σ ◦ π1.

Thus for µ ∈Mλ we have

(π1)∗ F∗µ = (π1 ◦ F )∗µ = (σ ◦ π1)∗µ = σ∗ (π1)∗µ = σ∗λ = λ,

which implies the F∗-invariance ofMλ.
�

Recall the definitions of the subset of trivial spines S−t of Σk in (1.2.4)
and of the generalised coding map % defined on S−t in (1.2.5).

Remark 8.1.2 By the continuity of the maps Ti and recalling the definition
of % it follows that Tξ0 ◦ %(ξ) = % ◦ σ(ξ) for every ξ ∈ S−t .

Given a compact metric space Z, we denote by B(Z) its Borel σ-algebra.
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Definition 8.1.3 (Disintegration of a measure) Let λ be a probability
measure defined on Σk and µ ∈Mλ. A function

(ω,B) ∈ Σk × B(X) 7→ µω(B) ∈ [0, 1]

is a disintegration of µ with respect to λ if

1. for every B ∈ B(X) the map defined on Σk by ω 7→ µω(B) is B(Σk)-
measurable,

2. for λ-a.e. ω ∈ Σk, the map defined on B(X) by B 7→ µω(B) is a
probability measure on (X,B(X)),

3. for every A ∈ B(Σk ×X)

µ(A) =
∫
µω(Aω) dλ(ω), where Aω is the ω-section of A.

There is the following result about existence and uniqueness of disinte-
grations.

Proposition 8.1.4 (Proposition 1.4.3 in (1)) For every µ ∈ Mλ its dis-
integration with respect to λ exists and is λ-a.e. unique.

We need the following definition.

Definition 8.1.5 (Isomorphic transformations) Let (X1,B1, µ1) and
(X2,B2, µ2) be a pair of probability spaces and consider measure preserving
transformations T1 : X1 → X1 and T2 : X2 → X2. We say that the system
(T1, µ1) is isomorphic to (T2, µ2) if there exist M1 ∈ B1, M2 ∈ B2 with
µ1(M1) = µ2(M2) = 1 such that

1. Ti(Mi) ⊂Mi for every i = 1, 2.

2. There is an invertible measurable transformation φ : M1 → M2 whose
inverse is also measurable, such that φ∗µ1 = µ2 and T2 ◦φ(x) = φ◦T1(x)
for every x ∈M1.
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8.2
Proof of Theorem 8

We consider the following “candidate” attracting measure vλ,

vλ(A×B) def= λ(A ∩ %−1(B)), for every A×B ⊂ Σk ×X. (8.2.1)

Note that since λ(S−t ) = 1 this is a probability measure. This definition can
be read as follows

vλ(A×B) =
∫
A
χ%−1(B)dλ =

∫
A
δ%(ω)(B) dλ(ω),

where χ%−1(B) is the characteristic function on %−1(B). As λ(S−t ) = 1 this
implies that δ%(ω) is the disintegration of vλ with respect to λ.

It remains to see that vλ is the global attractor for the restriction of F∗
toMλ. This follows from the next lemma.

Lemma 8.2.1 Consider µ ∈Mλ and its disintegration (µω)ω∈Σk with respect
to λ. Then the disintegration of F n

∗ µ with respect to λ is given by the family
of measures

(Tω−1∗ . . . Tω−n∗µσ−n(ω))ω∈Σk .

Proof.[Proof of Lemma 8.2.1] Consider any rectangle A×B in Σk ×X. Then,
by definition of a disintegration,

F n
∗ µ(A×B) = µ

(
F−n(A×B)

)
=
∫
µω
(
(F−n(A×B))ω

)
dλ(ω).

Note that if ω ∈ σ−n(A) then

(F−n(A×B))ω = (Tωn−1 ◦ · · · ◦ Tω0)−1(B).

Otherwise, (F−n(A×B))ω = ∅. Thus

F n
∗ µ(A×B) =

∫
σ−n(A)

µω
(
(Tωn−1 ◦ · · ·Tω0)−1(B)

)
dλ(ω)

=
∫

(χA ◦ σn)(ω)µω
(
(Tωn−1 ◦ · · · ◦ Tω0)−1(B)

)
dλ(ω).

Defining

g = gB,n : Σk → R, g(ω) def= µσ−n(ω)
(
(Tω−1 ◦ · · · ◦ Tω−n)−1(B)

)
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and recalling that λ is σ-invariant we get

F n
∗ µ(A×B) =

∫
(χA ◦ σn)(ω) (g ◦ σn)(ω) dλ(ω) =

∫
(χA g) ◦ σn dλ(ω)

=
∫
χA g dλ(ω) =

∫
A
µσ−n(ω)((Tω−1 ◦ · · · ◦ Tω−n)−1(B)) dλ(ω)

=
∫
A
Tω−1∗ . . .∗ Tω−n∗µσ−n(ω)(B) dλ(ω).

Since this identity holds for every rectangle, we get that the family of measures
Tω−1∗ . . .∗ Tω−n∗µσ−n(ω) is the disintegration of F n

∗ µ with respect to λ. �

Observe that if ω = (ωi)i∈Z ∈ S−t then ω− = (ω−i)i≥1 ∈ St and
%(ω) = π(ω−). Now from Lemmas 8.2.1 and 6.1.3 we get that

lim
n→∞

(F n
∗ µ)ω = δπ(ω−) = δ%(ω), for λ-almost every ω. (8.2.2)

Consider now any continuous real map f of Σk×X. We get the following

lim
n→∞

∫
f(ω, x) dF n

∗ µ(ω, x) =
(a)

lim
n→∞

∫
Σk

∫
X
f(ω, x) d(F n

∗ µ)ω(x) dλ(ω)

=
(b)

∫
Σk

(
lim
n→∞

∫
X
f(ω, x)d(F n

∗ µ)ω(x)
)
dλ(ω)

=
(c)

∫
Σk

∫
X
f(ω, x) dδ%(ω)(x) dλ(ω) =

(d)

∫
f(ω, x) dvλ(ω, x),

where (a) uses the definition of a disintegration, (b) the dominated conver-
gence, (c) (8.2.2) and the definition of the weak∗, and (d) the definition of vλ.
Since f is an arbitrary continuous function, we conclude that vλ is a global
attracting measure inMλ, ending the proof of item (1).

To prove the second item, we need to construct an isomorphism between
(F, vλ) and (σ, λ). We first observe that the map φ : S−t → graph % defined by
φ(ξ) = (ξ, %(ξ)) is an invertible measurable transformation whose inverse is
also measurable and is given by φ−1(ξ, x) = ξ. Note that σ(S−t ) ⊂ S−t and
F (graph %) ⊂ graph %. We will see that, φ∗λ = vλ and φ ◦ σ(ξ) = F ◦ φ(ξ) for
every ξ ∈ St.

For the first assertion take any measurable rectangle A × B ⊂ Σk ×X.
Recalling the definition of vλ we have that

φ∗λ(A×B) = λ(φ−1(A×B)) = λ(A ∩ %−1(B)) = vλ(A×B).

To get the conjugacy between σ and F we recall that Tξ0 ◦%(ξ) = %◦σ(ξ),
see Remark 8.1.2. Hence for every ξ ∈ St we have that

F ◦ φ(ξ) = F (ξ, %(ξ)) = (σ(ξ), Tξ0 ◦ %(ξ)) = (σ(ξ), % ◦ σ(ξ)) = φ ◦ σ(ξ).
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By hypothesis λ(S−t ) = 1, and thus vλ(graph %) = λ(φ−1(graph %)) = 1.
Therefore (F, vλ) and (σ, λ) are isomorphic.

We now prove item (3): supp vλ = graph (%|suppλ). Since vλ = φ∗λ, we
immediately get that vλ(graph (%|suppλ)) = 1 and hence

supp vλ ⊂ graph (%|suppλ)).

The next claim implies the inclusion ⊂ and hence the equality in item (3).

Claim 8.2.2 graph (%|suppλ) ⊂ supp vλ.

Proof. Take any point (ξ, x) ∈ graph (%|suppλ), to prove the claim it is enough
to see that for every ` > 0 and every neighborhood V of x it holds

vλ
(
[ξ−` . . . ξ`]× V

)
> 0.

Since x ∈ V and x = %(ξ) there is m ≥ 0 such that

%([ξ−(`+m) . . . ξ`] ∩ S−t ) ⊂ V. (8.2.3)

Thus by the definition of vλ in (8.2.1) we have

vλ
(
[ξ−` . . . ξ`]× V

)
≥ vλ

(
[ξ−(`+m) . . . ξ`]× V

)
= λ

(
[ξ−(`+m) . . . ξ`] ∩ %−1(V )

)
.

Note that by (8.2.3)

λ
(
[ξ−(`+m) . . . ξ`] ∩ %−1(V )

)
= λ([ξ−(`+m) . . . ξ`] ∩ S−t ).

Since that, by hypothesis, ξ ∈ suppλ ∩ [ξ−(`+m) . . . ξ`] and λ(S−t ) = 1 we get
that

vλ
(
[ξ−` . . . ξ`]× V

)
≥ λ

(
[ξ−(`+m) . . . ξ`] ∩ S−t

)
> 0,

which implies the claim. �

We now prove item (4) of the theorem. The argument follow closely the
ideas in the proof of (19, page 21 ). Since (λ, σ) is ergodic we have that for
λ-almost every ω it holds

1
n

n−1∑
i=0

δσi(ω) → λ. (8.2.4)

By definition of π1 for every (ξ, x) it holds

π1∗

(
1
n

n−1∑
i=0

δF i(ω,x)

)
= 1
n

n−1∑
i=0

δσi(ω). (8.2.5)
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Therefore if (ω, x) is any point with ω satisfying (8.2.4), then every accumula-
tion point of 1

n

∑n−1
i=0 δF i(ω,x) is an F -invariant measure (this follows from Krilov-

Bogolyubov Theorem, see (26)) with marginal λ (this follows from equations
(8.2.4) and (8.2.5)). Since by item (1) of the theorem the attracting measure
vλ is the unique F -invariant measure with marginal λ we get

1
n

n−1∑
i=0

δF i(ω,x) → vλ,

ending the proof of item (4) and of the theorem. �

8.3
Proof of Corollary 9

Consider a recurrent IFS(T1, . . . Tk;P+) and the corresponding step skew
product F . Suppose that P−(St) = 1. Consider the Markov measure P on Σk

determined by the transition matrix associated to P+.

Lemma 8.3.1 Consider the map Π : Σk → Σ+
k defined by

Π(ξ) = ξ−1ξ−2 . . . .

Then S−t = Π−1(St) and Π∗P = P−.

Proof. The assertion S−t = Π−1(St) follows immediately from definition of Π.
To see that Π∗P = P− take any cylinder [a0 . . . a`] in Σ+

k . Then, by definition
(recall the notation in (3.2.1))

Π∗P([a0 . . . a`]) = P([−(`+ 1); a` . . . a0]) = P+([a` . . . a0]) = P−([a0 . . . a`]).

Since this holds for every cylinder we get that Π∗P = P−. �

The previous lemma implies that P(S−t ) = P−(St) = 1. We now
can apply Theorem 8. Consider a continuous function f : X → R. Define
f̄ : Σk ×X → Σk ×X by f̄(ω, x) = f(x). Let vP be the attracting measure in
Theorem 8. Since f̄ is continuous and F i(ξ, x) = (σi(ξ), Tξi−1 ◦ · · · ◦ Tξ0(x)), it
follows from item (4) of Theorem 8 that for P-almost every sequence ξ and all
point x ∈ X it holds

lim
n→∞

1
n

n−1∑
i=0

f(Tξi−1 ◦ · · · ◦ Tξ0(x)) =
∫
f̄ dvP.

Claim 8.3.2
∫
f̄ dvP =

∫
f d(%∗P).
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Proof. Let %̄(ξ) = (ξ, %(ξ)). It follows from the definition of vP that %̄∗P = vP,
just write

%̄∗P(A×B) = P
(
%̄−1(A×B)

)
= P(A ∩ %−1(B) = vP(A×B).

Noting that f̄ ◦ %̄(ξ) = f ◦ % we get
∫
f̄ dvP =

∫
f̄ d(%̄∗P) =

∫
f̄ ◦ %̄ dP =

∫
f ◦ % dP =

∫
f d(%∗P),

proving the claim. �

Since % = π ◦ $ and P− = $∗P it follows that %∗P = π∗P− and we
conclude that for P-almost every sequence ξ and every point x it holds

lim
n→∞

1
n

n−1∑
i=0

f(Tξi−1 ◦ · · · ◦ Tξ0(x)) =
∫
f d(π∗P−),

proving the corollary. �
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Milnor attractors. Proof of Theorem 10

Let A be a Milnor attractor of F . By definition, the realm of attraction
δ(A) of A has positive measure. Since the set of disjunctive sequences has
measure 1 the set δ(A) contains a disjunctive sequence ξ. Therefore, from
definition of δ(A) and the first item of Theorem 7, it follows that

graph % ⊂ ω(z) ⊂ A.

We now prove that graph % ⊂ Astat. Let C denote the set of all cylinders
of Σk. Since (σ, b) is ergodic there is a set E with b(E) = 1 such that

lim
n→∞

1
n

#{i;σi(ξ) ∈ C, 0 ≤ i < n} = b(C) for every ξ ∈ E and every C ∈ C.

Claim 9.0.3 For every z = (ξ, x) ∈ E × [0, 1] it holds graph % ⊂ ωstat(z).

Proof. Fix z = (ξ, x) ∈ E× [0, 1]. Take a point (β, %(β)) ∈ graph % and an open
neighbourhood U = [−`; β−` . . . β`]×V of (β, %(β)). By definition of S−t , there
is m such that

Tβ−1 ◦ . . . Tβ−(`+m)(X) ⊂ V.

Note that if σi(ξ) ∈ [0; β−(`+m) . . . β`] def= D then F i(F `+m(ξ, x)) ∈
[−`; β−` . . . β`]× V . Therefore we have the following

#{i : F i(F `+m((ξ, x)) ∈ U, 0 ≤ i < n} ≥ #{i : σi(ξ) ∈ D, 0 ≤ i < n}.

Since ξ ∈ E it follows that

lim
n→∞

1
n

#{i : σi(ξ) ∈ D, 0 ≤ i < n} = b(D) > 0.

Therefore for every (ξ, x) ∈ E × [0, 1] it holds

lim sup
n

1
n

#{i : F i(ξ, x) ∈ U, 0 ≤ i < n} ≥ b(D) > 0.

Hence graph % ⊂ ωstat(z), which implies that graph % ⊂ ωstat(z), proving
the claim. �
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On the one hand, the claim implies that for (b×m)-almost every point
z it holds graph % ⊂ ωstat(z). On the other hand, by definition (b×m)-almost
every point z we have ωstat(z) ⊂ Astat. The proof of the first item of the theorem
follows intersecting these two sets with full (b×m)-measure.

We now prove item (2). Suppose that either At is a Lyapunov stable
fixed point of the Barnsley-Hutchinson operator or it has non-empty interior.
It follows from item (4) of Theorem 7 that for every disjunctive sequence ξ it
holds graph % = ω(ξ, x) for every x ∈ [0, 1]. Hence, by the definition of AM , we
have that AM = graph %. Since every Milnor attractor contains graph % and
is contained in AM it follows that AM is the unique Milnor attractor of F .
Finally, since Astat ⊂ AM it follows from item (1) that

graph % ⊂ Astat ⊂ AM = graph %,

Item (3) follows from Theorem 8 and Theorem5.1.2. Item (4) follows from
item (2), (3) and Theorem 8. The proof of the Theorem is now complete. �
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Milnor attractors with disconnected bones

In this chapter we prove Theorem 11. To construct the open set S in the
theorem we need to recall the construction by Kudryashov in (20), see also
Example 11.0.10, claiming that for every non-trivial subinterval [a, b] of [0, 1]
there are C1 increasing maps K1, K2 : [a, b]→ [a, b] such that:

1. the IFS(K1, K2) is minimal, and

2. K1 ◦K2 has a repelling fixed point.

We call a pair of maps K1, K2 as above a K-pair in [a, b]. Moreover, according
to (20) the K-pairs contains an open subset of the C1 step skew products over
Σ2 with fiber [a, b].

We now consider k disjoint subintervals of [0, 1], namely I1 =
[a1, b1], . . . , Ik = [ak, bk], with a1 = 0 < b1 < b2 < · · · < bk = 1 and two C1-
strictly increasing maps T1, T2 : [0, 1]→ [0, 1] such that for each i ∈ {1, . . . , k}
we have that T1(Ii) ⊂ Ii and T2(Ii) ⊂ Ii and T1|Ii , T2|Ii is a K-pair in Ii.

We let T3 an increasing contraction with T3([0, 1]) ⊂ I1 and T4 an
increasing map such that T4(Ii) ⊂ int(Ii+1) for i ∈ {1, . . . , k − 1} and
T4(Ik) ⊂ int(Ik), see Figure 10.1.

This construction can be done using C1 maps and in a robust way. The
maps outside of I1 ∪ · · · ∪ Ik are defined so that T1 and T2 are increasing and
C1.

We will see that the skew product F = FF : Σ4 × [0, 1] → Σ4 × [0, 1]
associated to F = IFS(T1, T2, T3, T4) satisfies all the properties in the statement
of the theorem.

Lemma 10.0.4 At = ⋃k
i=1 Ii.

Proof. Note that, by construction, the set ∪ki=1Ii is invariant under the
Barnsley-Hutchinson operator of F. Therefore, from the minimality of At, it
follows

At ⊂
k⋃
i=1

Ii.

Fix any i ∈ {1, . . . , k}. We now see that Ii ⊂ At. First observe that
Ii ∩ At 6= ∅: just note that the fixed point p ∈ I1 of T3 belongs to p ∈ At. By
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construction, for i ∈ {2, · · · , k}, T i−1
4 (p) ∈ Ii. Since At is F-invariant it follows

that Ii ∩ At 6= ∅ for every i.
Let p1 = p and pi def= T i−1

4 (p) ∈ Ii for i ∈ {2, . . . , k}. The minimality of
Gi = IFS(T1|Ii , T2|Ii) implies that the G-orbit of each pi is dense Ii. Since At is
F-invariant it follows that Ii ⊂ At. The proof of the lemma is now complete.
�

We are now ready to prove itens (1)-(3) of the theorem about topological
properties of the Milnor attractor. For that recall the definitions of the set S−t
in (1.2.4) and of the projection % defined on such a set in (1.2.5). Since At has
non-empty interior, Theorem 7 implies that ω(z) = graph % for s-almost every
z. Hence, by definition of likely limit set, AM = graph %. Theorem 10 implies
that AM is a Milnor attractor and that the Milnor attractor is unique. Finally,
by Theorem 7 we get that F|AM is topologically mixing. This ends the proof of
item (1).

To prove the second item note that At has uncountable many elements.
Hence by Theorem 5 we have that b(S−t ) = 1. Therefore % is defined almost
everywhere, proving item (2).

The prove of the third item has two parts. We first see that there is a
sequence ϑ such that ({ϑ} × [0, 1]) ∩ AM is the union of k disjoint non-trivial
intervals. Thereafter, using such a sequence,

Lemma 10.0.5 There is a sequence ϑ such that ({ϑ} × [0, 1]) ∩ AM is the
union of k disjoint non-trivial intervals.

Proof. Since AM = graph % it follows from Theorem 7 that AM is the maximal
attractor of the map Ft

def= F|Σk×At
. By the characterisation of the maximal

attractor in Proposition 7.1.1, we have that

AM =
⋃
ξ

{ξ} × It
ξ , where It

ξ =
⋂
Tξ−1 ◦ · · · ◦ Tξ−n(At).

Therefore

({ξ} × [0, 1]) ∩ AM = {ξ} × It
ξ for every ξ ∈ Σk.

Hence to prove the lemma construct a sequence ϑ such that It
ϑ is a union of k

disjoint intervals. For that recall that At = ⋃k
i=1 Ii. Thus

It
ϑ =

⋂
n≥1

Tϑ−1 ◦ · · · ◦ Tϑ−n(At) =
⋂
n≥1

k⋃
i=1

Tϑ−1 ◦ · · · ◦ Tϑ−n(Ii).
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Claim 10.0.6 Consider any i ∈ {1, . . . , k} and let It
ϑ(i) be the spine of the

sequence ϑ with respect to the IFS(T1|Ii , T2|Ii). Then

It
ϑ =

k⋃
i=1

It
ϑ(i)

for every ϑ ∈ Σk+2 such that ϑ−n ∈ {1, 2} for every n ≥ 1.

Proof. Recalling the definition of It
ϑ(i) we have that it is enough to see that

⋂
n≥1

k⋃
i=1

Tϑ−1 ◦ · · · ◦ Tϑ−n(Ii) =
k⋃
i=1

⋂
n≥1

Tϑ−1 ◦ · · · ◦ Tϑ−n(Ii).

The inclusion “ ⊃ ” it is straightforward. To see the inclusion “ ⊂ ” take a
point p ∈ ⋂n≥1

⋃k
i=1 Tϑ−1 ◦ · · · ◦ Tϑ−n(Ii). By definition, for every n ≥ 1 there

is in such that p ∈ Tϑ−1 ◦ · · · ◦ Tϑ−n(Iin). Since Tj(Ii) ⊂ Ii for every j = 1, 2
and every i ∈ {1, . . . , k}, recalling that the intervals Ii’s are pairwise disjoint
we conclude that in is independent of n, say in = s for all n. Therefore

p ∈ Tϑ−1 ◦ · · · ◦ Tϑ−n(Is) for every n ≥ 1

and hence
p ∈

k⋃
i=1

⋂
n≥1

Tϑ−1 ◦ · · · ◦ Tϑ−n(Ii),

proving the claim. �

Fix any sequence ϑ with ϑ−1 . . . ϑ−n . . . = 12121212 . . . . By Claim 10.0.6
to conclude that It

ϑ is the union of k disjoint non-trivial intervals it is sufficient
to see that It

ϑ(i) is a non-trivial interval for every i ∈ {1, . . . , k}. This follows
from the fact that T1|Ii ◦ T2|Ii has a repelling fixed point. �

To get a dense subset of Σ4 consisting of sequences ω such that the
spine It

ω is the union of k disjoint non-trivial intervals fix a sequence ϑ with
ϑ−1 . . . ϑ−n . . . = 12121212 . . . . Note that if ω ∈ Σ4 is such that ω−(n+`) = ϑ−`

for every ` ≥ 1 then
It
ω = Tω−1 ◦ · · · ◦ Tω−n(It

ϑ).

Since the maps Ti’s are monotone and It
ϑ is a union of k non-trivial disjoint

intervals, we conclude that It
ω is also a disjoint union of k non-trivial intervals.

�

Remark 10.0.7 Given any k ≥ 1, we have exhibited IFSs with 4 increasing
maps such that the closure of its target set At consists of k disjoint intervals.
We do not know of number 4 is not sharp.
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I1

I2

I3

I4

I1 I2 I3 I4

K − pair

Figure 10.1: A K-pair and a piecewise linear model
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11
Examples

Example 11.0.8 (A non-regular IFS with St 6= ∅) Consider an IFS de-
fined on [0, 1] consisting of two injective continuous maps T1 and T2 as in
Figure 11.1.

– The map T1 has exactly two fixed points 0, 1, where 0 is a repeller and 1
is an attractor.

– The map T2 has (exactly three) fixed points p1 < p2 < p3, where p1 and
p3 are attractors and p2 is a repeller, T2([0, 1]) = [α, β] ⊂ (0, 1), and
T1(p1) < β.

Obviously, IFS(T1) and IFS(T2) are not asymptotically stable. To see
that IFS(T1, T2) is not asymptotically stable just note that [0, 1] and [p1, 1] are
fixed points of the Barnsley-Hutchinson operator. For the last assertion we use
that T1(p1) < β. This implies that IFS(T1, T2) is non-regular.

Finally, to see that St 6= ∅ note that since 1 is an attracting fixed point
of T1 and T2([0, 1]) ⊂ (0, 1) we have that T n1 ◦ T2([0, 1]) ∩ T2([0, 1]) = ∅ for
every n sufficiently large. Now Theorem 5.3.1 implies that St 6= ∅. To see
that #(At) ≥ 2 just note that given any x ∈ At then Ti(x) ∈ At and that
T1(x) 6= T2(x).

T1

T2

Figure 11.1: A non-regular IFS with a weakly hyperbolic sequence

Example 11.0.9 (At ( At = [0, 1]) In this example we consider the underly-
ing IFS of the porcupine-like horseshoes in (12). We translate the construction
in (13, page 12) to our context.

Consider an injective IFS(T1, T2) defined on [0, 1] such that T1(x) =
λ (1 − x), λ ∈ (0, 1), and T2 is a continuous function with exactly two
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fixed points, the repelling fixed point 0 and the attracting fixed point 1, see
Figure 11.2. We assume that T2 is a uniform contraction on [T−1

2 (λ), 1]. Then
At = [0, 1] and 1 /∈ At.

To prove the first assertion note that λ ∈ At. For that take an open
neighbourhood V ⊂ (0, 1) of λ. Note that T−1

1 (V ) is a neighbourhood of 0.
Consider the fixed point p = λ

1+λ ∈ (0, 1) of T1 and note that p ∈ At. Since
T n2 (p)→ 1 as n→∞ and T1(1) = 0, there is ` such that T1 ◦ T `2(p) ∈ T−1

1 (V ).
Hence T 2

1 ◦ T `2(p) ∈ V . By the invariance of At we have that At ∩ V 6= ∅. Since
this holds for every neighbourhood V of λ we get λ ∈ At.

We now prove that At is dense in [0, 1]. Take any open interval J ⊂ (0, 1).
We need to see that J ∩ At 6= ∅. If λ ∈ J we are done. Otherwise λ /∈ J and
either J ⊂ (λ, 1] = I2 or J ⊂ [0, λ) = I1. We now construct a finite sequence
ξ0 . . . ξm such that

λ ∈ T−1
ξm
◦ · · · ◦ T−1

ξ0 (J).

For that let ξ0 = i if J ⊂ Ii and define recursively ξ`+1 = i if T−1
ξ`
◦· · ·◦T−1

ξ0 (J) ⊂
Ii. Note that if T−1

ξ`
◦ · · · ◦T−1

ξ0 (J)∩ Ii 6= ∅ and T−1
ξ`
◦ · · · ◦T−1

ξ0 (J)∩ Ii * Ii some
i = 1, 2, we are done. Since T−1

2 is a uniform expansion on (λ, 1] and T−1
1 is

a uniform expansion on [0, λ] the recursion stops after a finitely many steps:
there is m such that λ ∈ T−1

ξm
◦ · · · ◦ T−1

ξ0 (J). Since λ ∈ At ∩ T−1
ξm
◦ · · · ◦ T−1

ξ0 (J),
the invariance of At implies that J ∩ At 6= ∅.

The fact that 1 /∈ At follows observing that 2̄ 6∈ St and that every finite
sequence ξ0 . . . ξn such that ξi = 1 for some i satisfies 1 /∈ Tξ0 ◦ · · · ◦ Tξn([0, 1]).

T2

T1

Figure 11.2: The underlying IFS of a porcupine-like horseshoe

Example 11.0.10 (A non-weakly hyperbolic IFS in [0, 1] with At = [0, 1])
We consider the underlying IFS of the bony attractors in (20).

Consider the IFS(T1, T2) defined on [0, 1] as follows, T1 is the piecewise-
linear map with “vertices” (0, 0), (0.6, 0.2), and (1, 0.8) and T2 is the piecewise-
linear map with “vertices” (0, 0.15), (0.4, 0.8), and (1, 1), see Figure 11.3. We
claim that the IFS(T1, T2) is not weakly hyperbolic and At = [0, 1].
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T2

T1

Figure 11.3: A K-pair

To prove the first assertion note that T1 ◦ T2 has a repelling fixed point,
see (20). Therefore the periodic sequence 12 does not belong to St, hence the
IFS is not weakly hyperbolic.

To see the second assertion, note that the compositions T 3
1 , T 2

1 ◦ T2,
T 2

2 ◦ T1 and T 5
2 are uniform contractions and that the union of their images is

[0, 1], see (20). In other words, the IFS(T 3
1 , T

2
1 ◦T2, T

2
2 ◦T1, T

5
2 ) is hyperbolic and

[0, 1] is the unique fixed point of its Barnsley-Hutchinson operator. Consider
the finite set of words

W = {111, 112, 221, 22222}

and let EW be the subset of Σ+
k consisting of sequences ξ that are a con-

catenation of words of W 1. Let St be the set of weakly hyperbolic sequences
corresponding to the IFS(T1, T2) and π the associated coding map. By con-
struction we have that EW ⊂ St and π(EW ) = [0, 1]. Since At = π(St) we have
that At = [0, 1].

Example 11.0.11 In this example, we see an IFS defined on the square [0, 1]2

such that the closure of its target set is Lyapunov stable, however this set is
not a Conley attractor and the maps of the IFS are not Lipschitz with constant
≤ 1 (indeed one of the maps have Lipschitz constant greater than one 1).

Let T1, T2 : [0, 1] → [0, 1] be the maps in Example 11.0.9. Consider
the IFS(f1, f2, f3) defined in the square [0, 1]2, where f3(x, y) = 1

2(x, y) and
f1(x, y) = (T1(x), y), and f2(x, y) = (T2(x), y).

We first claim that At = [0, 1] × {0}. Since (0, 0) is the fixed point of
the contraction f3 we have that (0, 0) ∈ At. The minimality of the IFS(T1, T2)
implies that IFS(f1, f2) acts transitively in each fibre [0, 1] × {y}. Therefore
the invariance of At implies that [0, 1]× {0} ⊂ At. Since the set [0, 1]× {0} is

1There is an increasing sequence (i`)`∈N with ξ0 = 0 such that ξi`
. . . ξi`+1−1 ∈ W for

every ` ∈ N.
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p

1
2p

f2

f1

Figure 11.4: Actions of the maps of the IFS

invariant under the Barnsley-Hutchinson operator, the minimality of At implies
that At ⊂ [0, 1]× {0}.

To see that At is Lyapunov stable given an open neighbourhood U

of it consider ε such that [0, 1] × [0, ε) ⊂ U . By definition of the IFS
B([0, 1] × [0, ε)) = [0, 1] × [0, ε) ⊂ U . This also prevents the set At to be a
Conley attractor.

For the assertion about the Lipschitz constant, just observe that T2 is an
expanding map, this implies that the Lipschitz constant of f2 cannot be ≤ 1.
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