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Abstract  

 
 
 
 
 
 
 
 

Mendes, Saulo Matusalém da Silva; Zohren, Stefan (Advisor). Ma- 

trix  Models  Techniques  and  2D  Causal   Quantum   Gra- 

vity. Rio de Janeiro, 2014. 82p. Dissertação de Mestrado — 

Departamento de Física, PUC Rio. 
 
 

In this thesis we discuss the matrix models techniques applied to two 

dimensional quantum gravity, the dynamical triangulations (DT) approach 

and its causal version, so-called causal dynamical triangulations (CDT). 

By virtue of the Gauss-Bonnet theorem, the Einstein-Hilbert action in two 

dimensions becomes a topological invariant, thereupon the evaluation of the 

path integral becomes a simple combinatorial counting problem of graphs 

drawn on a Riemann surface, which leads to a topological expansion of the 

partition function. Using integral methods from quantum field theory we can 

understand the correspondence between large N matrix models and a lattice 

(DT and CDT) formulation of quantum gravity, where the N ×N Hermitian 

matrices generates planar graphs (fatgraphs). Once the matrix integral is 

reduced to an integral of its eigenvalues, we solve the matrix model using 

two techniques: Orthogonal polynomials and saddle point analysis. Using 

orthogonal polynomials we compute the free energy in the Large N  limit 

for different potentials. Finally, we study DT and CDT using matrix models 

and further make contact with a Coulomb gas analogy. 
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Resumo  
 

 
 
 
 
 
 
 

Mendes, Saulo Matusalém da Silva; Zohren, Stefan. Técnicas de 

Modelos de Matrizes e Gravidade Quântica Causal em duas 

Dimensões. Rio de Janeiro, 2014. 82p. Dissertação de Mestrado 

— Departamento de Física, PUC Rio. 
 
 

Nesta dissertação nós discutimos as técnicas de modelos de matrizes 

para gravidade quântica em duas dimensões, as triangulações dinâmicas (DT) 

e sua versão causal, chamada de triangulações dinâmicas causais (CDT). Em 

virtude do teorema de Gauss-Bonnet a ação de Einstein-Hilbert se torna um 

invariante topológico em duas dimensões, por conseguinte, a avaliação da 

integral de caminho se transforma em um simples problema combinatório de 

contagem dos diagramas desenhados em uma superfície de Riemann, o 

que implica numa expansão topológica da função de partição. Usando 

métodos de integrais da teoria quântica de campos, podemos entender a 

correspondência entre modelos de matrizes e a formulação em grade da 

gravidade quântica, onde as N × N matrizes Hermitianas geram gráficos 

planares. Uma vez que a integral matricial se reduz a uma integração 

dos seus autovalores, solucionamos o modelo matricial utilizando duas 

técnicas: polinômios ortogonais e a análise do ponto de sela. Usando os 

polinômios ortogonais calculamos a energia livre no limite planar para diferentes 

potenciais. Por fim, partindo dos modelos matriciais estudamos DT e CDT 

numa analogia com o gás de Coulomb. 
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Surely there is a mine for silver, and a place

for gold that they refine. Iron is taken out

of the earth, and cooper is smelted from the

ore...But where shall wisdom be found? And

where is the place of understanding? Man does

not know its worth, and it is not found in the

land of the living...It cannot be bought for gold,

and silver cannot be weighed its price...From

where, then, does wisdom come? And where is

the place of understanding?...God understands

the way to it, and he knows its place. For he

looks to the ends of the earth and sees every-

thing under the heavens...Behold, the fear of

the Lord, that is wisdom, and to shun evil is

understanding.

Job 28, Bible.
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1

Introduction

One of the prominent challenges of contemporary theoretical physics is the

pursuit of a quantum theory of gravity, yet there are plenty of inconsistencies

between the two theories [1, 2, 3]. Since the emergence of QFT, many physicists

tried to apply conceptual and technical foundations of quantum mechanics to

gravity. However, gravity has shown to be harder to be understood in the

quantum level than the other three forces, which have all been described

successfully through a quantum field theory by the end of forties (QED) and

in the seventies (QCD). Due the fact that both electromagnetism and general

relativity are classical field theories, and the first has been fully quantized, one

might expect to achieve a quantum theory of gravity following the standard

methods of QFT. However, it was early realized that due the dimensional

character of the gravitational coupling constant, there is a problem with

renormalization. By the end of the thirties it was understood that when

applying the Pauli’s quantization methods to the full non-linear version of

general relativity one needs background independence [4].

In the fifties two main approaches for quantum gravity became evident,

the canonical approach and the covariant approach. The first was largely

developed by Dirac’s Hamiltonian constraint quantization [5]. In the sixties

the ADM Formalism arose to simplify the approach followed by the Hamilton-

Jacobi equation [6, 7], further leading to the development of the Wheeler-

Dewitt equation (a.k.a WDW equation) [8]. However, the WDW equation

proved to be inefficient when tackling the quantum gravity problem, until

the introduction of Ashtekhar’s connection variables [9], which gave their first

fruits: loop-like solutions were found in the modifiedWDW equation [10]. These

events lead to the creation of an approach called loop quantum gravity (LQG)

[11]. Furthermore, the LQG quantization method was applied to cosmology

[12], known as loop quantum cosmology. One of the interesting features of

this theory is that the quantum geometry effects create a repulsive force when

the energy density of the spacetime reaches its maximum (This upper bound

comes from LQG [13, 14]), which can be neglected at low energy scales, but

at Planck scales it becomes stronger than the classical gravitational force,
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Chapter 1. Introduction 12

therefore resolving the singularities (including those of black holes) that arise

in general relativity.

Another main approach of quantum gravity is the covariant method.

This approach started with perturbations around a given metric quantized

through the Rosenfeld-Pauli method, which was later improved by Feynman

and others [1]. In the seventies Veltman and ’t Hooft showed evidence for the

non-renormalizability of general relativity [15]. With such an obstacle within

the approach, attempts to save it showed up, among them supergravity was

the most promising. Although not conceived as a quantum theory of gravity,

string theory has been reformulated and joined the group of approaches to

tackle the problem in the eighties [16]. Since string theory is composed by

extended objects rather than point-like objects, the size of the string serves as

a regulator and tames problems with renormalization. Afterwards, many types

of strings were discovered as well new extended objects called branes [17]. Not

long after, supergravity was added to a bigger picture called M-theory along

with all types of strings, even though to this day there is no clear and complete

formulation of M-theory. Nevertheless two important achievements can be

mentioned. The first is the study of black hole entropy in some backgrounds

that obtained the exact formula found by Hawking [18]. The second is the anti-

de Sitter/conformal field theory (AdS/CFT) correspondence, which is useful

to study strongly coupled gauge theories [19].

Nonetheless, there are plenty of another approaches to quantum gravity,

such as twistor theory [20], which in the last decade has been aplied to

string theories [21, 22, 23, 24], causal sets [25], asymptotic safety [26], group

field theory [27], noncommutative geometry [28], Regge Calculus [29] and

others. A more recent approach is Hor̆ava-Lifshitz gravity [30]. First of all,

it is renormalizable in four dimensions. In this theory there is an anisotropy

between space and time, such that at short scales it is not Lorentz invariant,

whereas it recovers Lorentz invariance at large scales. Similar to another

attempts to quantize gravity with higher curvature terms, Hor̆ava-Lifshitz

applies higher order derivatives terms to spatial components only, achieving

both renormalizability and unitarity. HL gravity uses the ADM formalism

(decomposition of the metric) mentioned above and it does not obey usual

diffeomorphism invariance, but rather a foliation preserving diffeomorphisms

(which is a starting point of the theory). Another important aspect of the

theory is the formulation of the spectral dimension of the universe. See

[31, 32, 33] for reviews of HL gravity.

In many of the covariant approaches one aims to define a quantum theory

of gravity using a Feynman’s functional integral formulation: spin foams [34],
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Chapter 1. Introduction 13

many lattice-like formulations as well as Euclidean quantum gravity [35] belong

to this line of research. Dynamical triangulations (DT) is such an approach,

which aims to give a non-perturbative definition of the gravitational path

integral while preserving background independence. In the quantum gravity

context DT began as a regularization for the bosonic string [36, 37]. The

integral over the geometry of a two-dimensional surface can be discretized and

defined as a sum over triangulated surfaces, then quantum gravity is recovered

in the continuum limit. Even though in two dimensions we do not have any

propagating degrees of freedom, it is important as a toy model, in which the

continuum approach in the context of non-critical string theory is also a toy

model (Liouville gravity). It was later realized that the numerical results for

higher dimensional DT have a pathological behaviour [38, 39]. Thereupon, a

causal version of DT was established. It is known that numerical results in CDT

are well-behaved [41, 42]. For a detailed analysis of the differences between DT

and CDT see [38, 43, 44, 45, 46]. In recent years physicists have found evidence

of a possible connection between CDT and Hor̆ava-Lifshitz gravity, first in [47]

and later by [48, 49], where the value of the spectral dimension is the same

for both theories in four dimensions as well as other similarities (such as the

phase diagram), opening a new outstanding overlap of approaches to quantum

gravity (similarly to the overlap between twistor theory and string theory). In

this Thesis we focus on the two-dimensional problem. The connection between

matrix models and the random triangulated 2D surface is the following: A

matrix integral generates fatgraphs (planar graphs) that are dual graphs of

the triangulation, and thus the matrix model is a powerful technique to count

the number of diagrams. Accordingly, the partition function of 2D gravity can

be expressed as the free energy of a hermitian matrix model. The important

fact about this connection is that it agrees with the results obtained in Liouville

gravity [50, 51, 52]. There is also the possibility to take into account topology

change in the theory (see [53] for a detailed analysis of topology change). As

a result, the aim of this work is to use matrix models techniques as a unified

framework to help us to better understand the relation between DT and CDT.

This Master’s thesis is organized as follows: In chapter two we present

an overview of random matrices and their connection with two-dimensional

quantum gravity, where we introduce the topological expansion, Euclidean

quantum gravity and Liouville gravity. In chapter three we explore the ba-

sic knowledge of discrete two-dimensional quantum gravity, defined through

Euclidean dynamical triangulations (DT) and Lorenztian (or causal) dynam-

ical triangulations (CDT). In addition, the continuum limit of DT and CDT

is taken to recover the Hartle-Hawking wavefunctions of quantum gravity. In
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Chapter 1. Introduction 14

chapter four are presented the necessary techniques and machinery of matrix

models that we need to apply to DT/CDT, where we assess its eigenvalue

distributions and its critical points, as well as the case of pure CDT where

repulsion between the eigenvalues goes to zero, interpreted as a Fermi gas at

zero temperature. In chapter five we discuss the results and open problems

concerning matrix models of CDT. Besides, we compute the resolvent and the

eigenvalue distribution of different matrix models (especially those attributed

to DT and CDT). In Appendix A we show how to reformulate the matrix in-

tegral in terms of its eigenvalues. Appendix B provides background on crucial

relations of the chapter 2. Appendix C presents two important derivations of

orthogonal polynomials tools and detailed calculation of free energies for differ-

ent potentials along with the functions r and s for DT and CDT. In Appendix

D we show how to obtain the critical point of the coupling g in a different

fashion.
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2

Random matrices and quantum gravity: An overview

In this chapter we present an overview of random matrix theory and its

applications as well as the motivation and advantages for its usage in physics

and related fields. Then we make contact with Wick’s theorem which enables

us to understand matrix integrals as generators of fatgraphs (oriented double

lines) which are dual graphs to a the discretized surface. Following that we

present Euclidean quantum gravity and a brief review of the mains aspects of

Liouville theory that is necessary to further compare with the discrete version

of 2D quantum gravity.

2.1

Ensembles of random matrices

Random matrix theory aims to define a probability measure over N × N

matrices. Consider the matrices M are Hermitian. One can define the Gibbs

measure,

P (M) =
1

Z
e−N trV (M)dM , V (M) =

∑

k

gkM
k , (2.1)

Where dM is the Haar measure, which is expressed as

dM =
N∏

i

dMii

N∏

i<j

d(ReMij)d(ImMij) . (2.2)

We will see in the next pages the different types of probability distributions

and its implications. Let us discuss a simple example. We choose the function

V (M) to be a Gaussian potential. Notice that there are N diagonal terms and

N(N − 1)/2 terms on both lower and upper triangular parts of the matrix.

In addition, note that the matrix elements are independent of each other.

Alternatively, one could define a matrix G (a.k.a Ginibre matrix [54]) which is

formed by a composition of the type,

M = M † =
1√
2
(G+G†) , G ≡ 1√

2
(A+ iB) , (2.3)

Where Aand B are real Ginibre matrices. Real Ginibre matrices are nothing

but matrices with all entries identically and independent distributed as a
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Gaussian with average at zero and standard deviation equal to one. The

imaginary part of the new matrix (2.3) is completely independent of the real

part because ReGij depends of Aij alone and on the other hand ImGij depends

only on Bij. Furthermore, the trace of V (M) reads,

trM2 =
∑

i

M2
ii + 2

∑

i<j

MjiMij =
∑

i

M2
ii + 2

∑

i<j

|Mij|2 , (2.4)

Accordingly, the partition function is written as:

Z =

(
N∏

i=1

∫ +∞

−∞
dMii e

−NM2
ii

)(
∏

i<j

∫ +∞

−∞
dMije

−NM2
ij

)
×

(
∏

i<j

∫ +∞

−∞
dMjie

−NM2
ji

)
, (2.5)

Which can be reformulated as (due to the r.h.s of (2.4)):

Z =

(
N∏

i=1

∫ +∞

−∞
dMii e

−NM2
ii

)
×
(

N∏

i<j

∫ +∞

−∞
dMij e

−2N |Mij |2
)

,

=

(∫ +∞

−∞
dMii e

−NM2
ii

)N(∫ +∞

−∞
dMije

−2NM2
ij

)N(N−1)

, (2.6)

It follows:

ZGUE =

(
π

N

)N/2(
π

2N

)N(N−1)/2

=

(
π

N

)N2/2(
1

2

)N(N−1)/2

, (2.7)

Where GUE stands for Gaussian unitary ensemble, here ”unitary” stands for

the unitary symmetry of the Hermitian matrices. For higher order potential

the partition function does not factorize anymore and thus the elements are

not independent anymore. General matrices with d entries are called Wigner

matrices. Only the GUE is at the same time Wigner and unitary, while more

complicated unitary matrices are not Wigner anymore. Due to this, we shall

reformulate (2.1) and (2.2) in terms of eigenvalues of the matrix to be able to

compute the partition function (see appendix A). The partition function given

by the eigenvalues λi of a N ×N Hermitian matrix reads:

Z =
1

N !(2π)N

N∏

i=1

∫
dλi e

−N
∑

i V (λi)
∏

1≤i<j≤N

|λj − λi|2 , (2.8)

Here the constant decoupled of the integral is the volume of the unitary

group (see [50, 55] for another derivation). In accord with appendix A, the

Vandermonde’s determinant equivalence is held only because of the power of

two in (2.8). So far we have dealt only with the GUE ensemble, the oldest
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to be known and arguably the simplest. The GUE ensemble has its unitary

invariance as its main characteristic and is named after it. This invariance can

be written as,
M = M † = UΛU † , UU † = ✶, (2.9)

Here U denotes unitary matrices. Thus, we rewrite (2.8)

Z =
1

V ol(Group)

N∏

i=1

∫
dλi e

−Nf(λ)
∏

1≤i<j≤N

|λj − λi|β , (2.10)

Where β is known as the Dyson’s index, which in classical RMT admit three

possible values: 1 for the GOE (orthogonal) and 4 for the GSE (symplectic)

as well as 2 for the GUE. The GOE is composed by real symmetric matrices

and the GSE is formed by real quaternion self-dual matrices. The probability

distribution of the two ensembles are respectively invariant under a change

M = OΛOT , OOT = ✶ ,

M = WRΛW , WW † = ✶ , (2.11)

Where W is a quaternion matrix. Alternatively we could have written

WR(Self-Dual) = W−1 = W T (more details available here [55]). Note that

the exponential in (2.1) is invariant under (2.9) due to cyclic permutation

invariance of the trace. While one has to handle properties of orthogonal poly-

nomials and determinants in GUE case, the alternative ensembles requires

some extra level of machinery. This is so because we no longer are dealing with

complex matrix elements, therefore the Pfaffians, skew-orthogonal polynomials

as well as anti-symmetric scalar products become necessary tools. Briefly, one

has to take the β = 2 case as the cornerstone and extend this to a determi-

nant with quaternion elements, which require a cumbersome task of Pfaffian

calculations[55]. A next natural step is the establishment of an analogy with

physical systems to understand the role of the latter term in (2.8). Hereinafter:

Z = cN

N∏

i=1

∫
dλi e

−N2S({λi}) ,

S({λi}) ≡
1

N
Veff =

1

N

∑

i

V (λi)−
β

N2

∑

i<j

ln|λj − λi| , (2.12)

Here S stands for the action and Veff is the effective potential . What

apparently had no physical picture whatsoever (the definition (2.1)), now

gained some physical panorama, namely: There is an interaction between all

eigenvalues which in turn make each one be coupled to one another (repulsion

of Coulomb character). It was soon realized by Wigner that the earlier version
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of RMT could be strengthened if adopted the log-gas analogy, which was later

developed in depth by Dyson [56].

Consider that this physical system is in thermodynamic equilibrium and

existing in a two-dimensional setting. From statistical physics we also know

that the probability density of the positions of the electric charges to be of

order e−E/kBT , implying that the large-N limit actually corresponds to the

limit of T approaching absolute zero. This means that the eigenvalues are

confined in some restricted region, which in the case of a Gaussian potential

would be the interval [-2,2] (In chapter four we explain how to obtain the

interval). In other words, because of the repulsion, it is very implausible that

the eigenvalues are either very close or too distant of each other. Moreover,

there are different ways to compute the probability density of finding the

eigenvalue λ among its neighbours, we will see two different ways to do so in the

chapter four. For the sake of the analogy, one might carry on the calculation

of the probability density. For instance, notice that a charged thin line has a

potential of logarithmic character, and we have a pair interaction of the same

type in (2.12). Furthermore, if we impose a conservation of charge in the system

(stable), it is possible to find the celebrated Wigner’s semi-circle law, which is:

ρ(λ) =
1

2π

√
4− λ2 . (2.13)

As often one does in electrostatics, the overall potential due to all pair potential

interactions is computed as,

V (λ) =

∫ 2

−2

dλ′ ln|λ− λ′|ρ(λ′) , (2.14)

We have assumed continuum distribution because we impose the N to be

large, otherwise it would become a sum instead of an integral. The necessary

calculation to find V (λ) is not trivial (see [55, 57]), nonetheless, the last integral

is calculated to be exactly λ2

2
, endorsing both the Wigner’s semi-circle law and

the relevance of the log-gas analogy.

Before an overview of the broad range of RMT applicability, let us

first discuss its advantages, because at the end of the day, this is the reason

why RMT is so successful. The first one is universality: In the large matrix

dimension the correlations of the spectrum of an particular ensemble are

independent of the probability distribution (2.1) that is used to define it,

rather depending only in the invariance of the distribution. As one might

expect, the correlations are also independent from the chosen couplings.

Besides, RMT recover much of known effective field theories in this limit.

Surprisingly, the large-N limit in RMT is related to the limit cases of another

statistical ensembles, albeit they are not studied through random matrices.
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Remarkably, the intrinsic universality property is expected to hold even

without the invariance features of the ensembles. This most basic feature of

RMT is argued to be the reason why Wigner paid attention to the Wishart

matrices and applied it to nuclear physics in the early fifties [57]. In addition,

RMT techniques allow analytical computations that are almost impossible to

accomplish in its own formulation. As if this was not enough, RMT also admits

additional symmetries (time reversal, chiral etc. [55, 57]), not to mention the

possibility of couple it to external frameworks. RMT also have the possibility

to be applied to fields that actually are not built upon the analysis of random

matrices. Even though some of its applications are based on some ensembles

that are not originated from random matrices, they indeed can be analysed by

some general RMT techniques. Commonly, RMT is carried to tackle two kinds

of issues: as a counting tool to resolve enumerative combinatorics (such as

graphs, random surfaces, knots, folding problems, orbits, strings etc.) and as a

random operator in order to analyse spectral properties of a given operator

along with correlation functions (when it can not be treated explicitly).

Roughly speaking, RMT can be thought as the overlap of linear algebra and

probability theory, such that stochastic and random problems fit very well

unto its techniques. After all, one could imagine that RMT might also have

significant insights towards QCD. Either theoretical or phenomenological parts

of QCD can be understood by RMT techniques [55, 57, 58, 59]. Because RMT

has some different approaches within itself there are many applications in fields

thought to be uncorrelated, such as RNA folding, information theory, business,

financial markets as well as economic models, growth models, optics (classical

and quantum), chaos or condensed matter physics.

2.2

Matrix models and fatgraphs

One of the beautiful applications of RMT is in the field of enumerative

combinatorics, particularly in the task of counting graphs. In fact large-N

matrix models do generate planar graphs which are very important to the

discretization of surfaces in quantum gravity. This was inspired by the 1/N

expansion in QCD [60], and their applications are not restricted to the problem

of formulate a quantum theory of gravity. The key element in the combinatorics

of the graphs relies on the Wick’s Theorem, which enables us to compute graphs

drawn on a Riemann surface. Consider the following integral:

〈
x2n
〉
=

∫ +∞
−∞ dx x2n e−

x2

2

∫ +∞
−∞ dx e−

x2

2

. (2.15)
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Figure 2.1: Diagram corresponding to 〈xixj〉.

The procedure to compute the above formula is quite simple. One rewrites the

denominator of (2.15) plugging a constant γ alongside x2, further obtaining a

value of
√

2π
γ
for the integral. Hence, one has only to take successive derivatives

of the given result relative to γ, yielding (2n− 1)!!. A much more elegant way

to compute (2.15) is the following:

〈
epx
〉

=
1√
2π

∫ +∞

−∞
dx e−

x2

2
+px ,

=
1√
2π

∫ +∞

−∞
dx e−

1
2

(
(x−p)2−p2

)
= e

p2

2 . (2.16)

Observe that if we take the derivative twice and then set p = 0, we will achieve

〈x2〉. Analogously, if one takes 2n derivatives of
〈
epx
〉
at p = 0, we once again

find (2n−1)!!. This has a important interpretation. The idea here is that we are

taking derivatives in pairs, which means that the factor (2n− 1)(2n− 3) · · · 1
represents the number of possible pairs. Suppose we have 2n points that can be

joined in pairs. The point p2n can create 2n− 1 different pairs. After the first

pair is made, the next point, have 2n minus two and minus one (representing

itself) as the possible number of pairs, which is 2n − 3, and so on. In other

words: 〈
xi1 · · · xin

〉
=
∑

pairs

2n∏

i 6=j

〈
xixj

〉
, 〈xixj〉 = δij . (2.17)

This is nothing but the Wick’s theorem for scalars. Following the same

procedure, we introduce the Wick’s theorem for matrices. Again we consider

an expectation value, now for N ×N Hermitian matrices, as follows:

〈
A(M)

〉
=

∫
dM e−NtrM

2

2 A(M)
∫
dM e−NtrM

2

2

, (2.18)

applying the same strategy, one finds (see appendix B for a derivation):

〈
MijMkl

〉
=

∂

∂Skl

∂

∂Sij

〈
etrSM

〉
=

1

N
δijδkl , (2.19)

Which yields,
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Figure 2.2: Diagram corresponding to 〈MijMkl〉.

〈
Mi1j1 · · ·Mi2nj2n

〉
=
∑

pairs

2n∏

i 6=k
j 6=l

〈
MijMkl

〉
. (2.20)

Remarkably, we can link this with Feynman’s diagrams. For instance, we now

write down the partition function of the φ4 field theory

Z =

∫ +∞

−∞

dφ√
2π

e−
φ2

2
+g φ4

4! , (2.21)

Then we evaluate it in a perturbation series:

+∞∑

n=0

1

n!

∫ +∞

−∞

dφ√
2π

e−
φ2

2

(
g
φ4

4!

)n

=
+∞∑

n=0

gn

n!
An . (2.22)

Observing that An is the 〈φ4n〉, we naturally see that its diagram must be a

point vertex with four lines emerging from it (not oriented because there are

not labels such as i or j). On the other hand, if we rather evaluate an integral

substituting the scalar φ by a N ×N Hermitian matrix M , we would have

An =

∫
dM e−NtrM

2

2 Mi1j1 · · ·Mi4j4 . (2.23)

As we know, we can represent a sum over a product of matrices as a trace,

tr(Mp) =
∑

pairs

∏
Mikjk , (2.24)

Figure 2.3: On the left we see the hermitian matrix four-point vertex, while on
the right we see the scalar four-point vertex.
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Figure 2.4: Double four-point vertex illustration. Each propagator (edge)
contributes with a 1/N term whereas the closed loops (faces) and the vertices
contribute with N .

Then, is natural to replace expectation values of matrices by the trace of

matrices. Furthermore, the above relation means that the 〈trMp〉 will generate
a number of diagrams like those in figure 2.3 in which all of them converge,

although not towards a point, creating a thick structure. This thick structure

is important to form a two dimensional surface. In fact the diagrams without

orientation and thin are not capable to establish a Riemann surface. What

happens is that the oriented links form closed internal (oriented) loops (see

figure 2.6) identifying the location and orientation of each face, explaining why

one needs thick diagrams (’fatgraphs’). In the perturbative series of (2.22) the

gn counts the number of diagrams built up with n different four-point vertex.

But as we want to study dynamical triangulations, we change our ansatz to

Z =

∫
dM e

−N
(

trM2

2
−g trM3

3

)

. (2.25)

It is plain to see that this integral generates three-point vertex: Each edge

of the diagram is dual to the edge of a triangle, the same for its faces and

vertices, then we form a great number of connected three-point vertices that

form closed oriented polygons. The dual of these polygons are nothing but

triangles, as depicted in figure 2.6. We are able to make a connection between

Feynman’s rules and the hermitian matrix integral: For each hermitian matrix

propagator we associate it to a factor of N−1 (recall that the propagator of the

field theory is the inverse of the higher polynomial term in the potential), For

each vertex a factor of N as well as for each face (closed loop). The argument
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is that for each propagator the average (2.19) will give 1/N because of the

deltas δij, δkl. For the closed loops however, we have that the closed path will

make j = i and k = l, therefore we have a sum over the deltas δii, δkk, which

clearly gives a factor of N2, then dividing by N we do obtain the overall N

factor for the faces. For the vertices we can use the same argument (See figure

2.4). Now if we take the sum over the logarithm of all closed loops, the overall

factor for a number V of vertices, F faces along with E edges is NF+V−E. The

power in N is well known as the Euler characteristic:

χ = 2− 2h ≡ V − E + F , (2.26)

Where h is the genus of the surface (number of holes on the surface). The

physics of the described procedure is quite simple, we only computed the free

energy as a sum over N to the power of the Euler characteristic. This in turn

conceives what is called topological expansion:

F (t) =
∑

h

N2−2hFh(t) , (2.27)

Where t is the ’t Hooft parameter and is related to the size of the matrix as

t = gsN (gs is the string coupling). In the planar limit (N → +∞) we have

instead,
lim

N→+∞

1

N2
F = F0 ≡ F (sphere) . (2.28)

Known as the ’sphere contribution’ of the free energy. An interesting relation

in [61] expands the sphere contribution of the free energy around the critical

point of g for the m-th multi-critical region.:

F0(g) ≈ (gc − g)2−γ ∼
∑

n

nγ−3

(
g

gc

)n

, γ = − 1

m
, (2.29)

Here n is the number of vertices. Because the number of vertices is proportional

to the area, when the coupling g approaches its critical value the area goes to

infinity (remember that gn counts the number of vertices), therefore in this

regime we would have
F0(g → gc) ∼ Aγ−3 . (2.30)

2.3

Euclidean quantum gravity

We already explained how matrix integrals generates fatgraphs (the importance

of the type of matrix, whether hermitian or not, is related to the solutions of

the matrix model). We shall now analyse how the gravitational action and

partition function are inserted in this context. Foremost, we write down the

action over a manifold M in a four dimensional theory of gravity,
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Figure 2.5: Sum over histories in quantum mechanics. In black is seen the
shorter path, in red are depicted six different paths (or histories).

S =
1

16πG

∫

M
d4x

√
|det gab| (R− 2µ) +

1

8πG

∫

∂M
d3x

√
|H|K , (2.31)

Where G denotes the Newton constant, gab the metric, R the scalar curvature

and µ the cosmological constant. The second term of the r.h.s in (2.31) is the

boundary term while the first term is the well known Einstein-Hilbert action,

and (H,K) are respectively determinant of the induced metric and the induced

scalar curvature. We want to find an expression for the partition function

in four dimensional quantum gravity. Recall that in quantum mechanics the

partition function (transition amplitude) is expressed as

Z =

∫
Dx

∫ Dp

2π~
e

i
~
S = const×

∫
D[x(t)] e

i
~
S[x(t)] . (2.32)

Thereby, we formulate the amplitude probability (partition function) over a

path (from one geometry to another one) as

Z =

∫
D[gab]e

i
~
SEH [gab] . (2.33)

Roughly speaking, if one considers the above partition function as the prob-

ability amplitude of a transition of spatial geometries and applies it to the

schrdinger equation, the result is the WDW equation, in which time does not

have any role whatsoever, preventing the equation to describe the time evolu-

tion of the universe [62]. Not only in this context, but generally, the definition

in (2.33) causes many problems in quantum gravity. For instance, often in the

realm of quantum mechanics the complex nature of the exponential in (2.32)

is removed after a Wick’s rotation (τ → it) without any conceptual or techni-

cal problems arising, connecting quantum mechanics to statistical mechanics.

However, this lack of difficulties does not hold when a Wick’s rotation is per-

formed in a partition function over D[gab] [63]. The main issue here relies on

the fact that such rotation in not diffeomorphism invariant. One of the best

approaches to tackle the integration over D[gab] is Liouville gravity, which will
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Figure 2.6: Random triangulation (blue) over a surface (light blue) and the
dual graphs (red) of a three-point vertex of a Hermitian matrix model.

be shortly introduced in the next section. Yet, in Euclidean quantum gravity

we have the provisional change from Lorentzian manifolds to Euclidean ones,

and the partition function becomes

Z =

∫
D[gab]e

−S[gab] . (2.34)

Now, in two dimensions QG has an interesting particularity: it does not have

degrees of freedom. The Gauss-Bonnet theorem is responsible for that. The

theorem states, ∫

M
d2x
√

|det gab|R = 4πχ(h) . (2.35)

For instance, a naive integration of triangulated surfaces can be carried out

to show that theorem holds. Of course the type of polygon does not interfere

in the continuum limit results, yet we are mainly interested in triangulations

here. We want to make a shift of paradigm, precisely:
∫ √

|det gab|R →
∑

Triangulations

. (2.36)

We start with very simple triangulations: Equilateral triangles turns the task

of identifying the geometry of a closed loop dual to the triangulation easier.

For example, if we impose that a group of six triangles form a planar hexagon

(i.e zero curvature), the simple manoeuvre of removing or adding a triangle

turns the surface such that it is no longer flat. The discrete scalar curvature

for a given vertex i is then,

Ri = 2π
(6−Ni)

Vi

, (2.37)

Where Vi is the volume associated to the vertex i. In figure 2.6 one observes

that there are vertices linked to three, four, five, six or seven triangles,
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recovering in some extent the continuum curvature of the real surface, because

the more the number of triangles better we imitate the curvature of the surface

in a given point. Note that the area of the surface is an integration over√
|det gab| (in two dimensions), and its discrete counterpart when summed

should give the number of triangles, as each triangle has unit area, the

counterpart should be Vi = Ni. Using topological relations (the number of

edges is equal to the half of the sum of all triangles and the number of faces is

equal to two thirds of the number of edges), we obtain:
∫

d2x
√
|det gab|R →

∑

i

Vi

3

(6−Ni)

Vi

2π = 4πχ , (2.38)

Notice that the factor 1/3 comes from the fact that each triangle has three

vertices and are counted three times. The theorem allows us to rewrite (2.32),

in the following manner:

Z =

∫
D[gab]e

− 1
16πG

∫

d2x
√

|det gab| (R−2µ) =

∫
D[gab] e

−χ(h)
4G e

λVg

8πG ,

Vg =

∫
d2x
√

|det gab| , (2.39)

And after a rescaling of constants, it yields a topological expansion:

Z =
+∞∑

h=0

e−
χ(h)
G Zh , χ(h) = 2− 2h− b , (2.40)

b being the number of boundaries. Is important to realize that partition

function of the gravitational action and the one of the matrix models are not

the same. From the point of view of matrix models, the topological expansion

is connected to the gravitational partition function in the following manner:

Z ≡ lnZ(g,N)

lnZ(0, N)
=

F

FGaussian

. (2.41)

The gravitational partition function of a fixed genus h reads:

Zh =

∫
D[gab] e

−S(µ,g) =

∫
D[gab]e

−µVg . (2.42)

Now we shall use its Laplace transform:

Z(V ) =

∫ +∞

0

dµ eµVZ(µ), (2.43)

Thus:

Z(V ) =

∫ +∞

0

dµ

(∫
D[gab]e

−µVg

)
eµV =

∫
D[gab] δ(V − Vg) (2.44)

The above formula is the partition function for fixed volume. Well, one might

wish to add boundaries, and in this case we make a change in the action:
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S(µ, ηi) = µVg +
∑

i

ηiLi(g) , (2.45)

Here ηi represents the i-th boundary cosmological constant, while Li the i-th

boundary loop. In analogy with the above usage of Laplace’s transform, we

shall find the partitions function for either fixed boundary loops or boundary

cosmological constants. It follows:

W(µ, η1, ..., ηp) =

∫
D[gab] e

−µVg

p∏

i=1

e−ηiLi(g), (2.46)

Where p is the number of boundaries. Now using their Laplace’s transform:

W(µ, Li) =
∏

i

∫ +∞

0

dηi e
ηiLi

[ ∫
D[gab] e

−µVg

p∏

i=1

e−ηiLi(g)

]
(2.47)

We therefore arrive at what is known as the Hartle-Hawking wavefunctions:

W(µ, Li) =

∫
D[gab] e

−µVg

∏

i

δ
(
Li − Li(g)

)
. (2.48)

2.4

Liouville theory

There are some continuum methods capable to handle the integral in (2.33).

Broadly, all attempts to compute the partition function in two dimensions in

a Minkowskian signature are derived from dilaton gravity. The general action

is formulated as,

S2D = const×
∫

d2x
√

|g(x)|
[
RX + U(X)(∇X)2 − 2V (X)

]
, (2.49)

Depending on the scalar field X, where R is the scalar curvature and we see

two potentials which defines any model of continuum two-dimensional gravity.

For a list containing such models see [64, 65]. One of the most prominent

among these models is the Liouville gravity. One generally starts with the the

Polyakov action:

S(g,Xσ) = const×
∫

d2x
√

|g|
(
gab∂aX

σ∂bX
σ + µ

)
, (2.50)

Which is an action similar to the relativistic free particle. The Polyakov action

is a sophisticated manner to rewrite the Nambu-Goto action [66], in the same

way there are different manners to write the action of the free particle. The

evaluation of gravitational path integral is done through fixing a conformal

gauge g = eγφĝ, where γ is a parameter and φ is the Liouville field. Upon this

procedure, one constructs the classical Liouville action [67]:
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SCL = const×
∫

d2x
√
|ĝ|
(
ĝab∂aφ∂bφ+

2

γ
Rφ+

µ

γ2
eγφ
)

, (2.51)

Which is Weyl invariant (φ → φ − a
γ
), making it a classical conformal

field theory. Using apropriate quantization techniques [67, 68], the quantum

Liouville action becomes,

SL = const×
∫

d2x
√
|ĝ|
(
ĝab∂aφ∂bφ+QRφ+ 4πµeγφ

)
. (2.52)

This action is supposed to satisfy Virasoro algebra as well as conformal

invariance, which impose the value for Q and for the central charge, namely:

Q =
2

γ
+ γ ; c = 1 + 3Q2 . (2.53)

After requiring BRST invariance in the effective action, two conditions arise:

Q =

√
25−D

3
; γ = −Q

2
+

√
1−D

12
. (2.54)

We therefore can extract critical exponents from Liouville gravity. For instance,

we write down the partition function for fixed volume (similar to (2.44)) in the

Liouville paradigm,

Z(A) =

∫
DφDXe−Seff δ(Aĝ − A) , Aĝ ≡

∫
d2x
√

|ĝ|) eγφ . (2.55)

However if we make a shift φ → φ+ a
γ
, where a is a constant, the fixed partition

function for genus zero develops a critical behavior [51]:

Z(A) ∼ AΓ∗−3 , (2.56)

Where Γ∗ is the string susceptibility. Keeping in mind (2.30), we obtain from

(2.53), (2.54) and (2.56):

Γ∗ =
1

12

(
D − 1−

√
(D − 25)(D − 1)

)
= − 1

m
. (2.57)

If D = 0 (target space) then γ = 1
2
(only one critical region), corresponding to

pure two dimensional gravity.
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3

Discrete quantum gravity

In this chapter we present dynamical triangulation as a regularization of the

Euclidean gravitational path integral (2.33). Following the special behaviour

of two dimensional quantum gravity due to Gauss-Bonnet theorem, two

dimensional DT admits analytical solutions and we see in particular how to

obtain the Hartle-Hawking function within this context. However, a mayor

problem with DT is its pathological behaviour when extending the model to

higher dimensions. An attempt to address this problem is the introduction of

CDT. The main arguments of this chapter follows [39].

3.1

Dynamical triangulations

In DT the main idea is to define the integral over geometries to a sum over

triangulations. This was inspired by early work of Regge [69]. In this early

work its shown that one can define curvature as piecewise linear combinations

of simplices. Curvature is then located at the vertices. In this way we formulate

the Gaussian curvature at the vertex v:

Rv =
2π −∑v θv

Vv

=
ǫv
Vv

, (3.1)

where ǫv is the deficit angle and Vv the volume associated to the vertex (which

is defined through the volume of the dual lattice). Therefore, we find that the

Regge’s action is
SRegge =

∑

v

(µVv −Gǫv) . (3.2)

We define the gravitational path integral through,

Z =

∫
D[gab] e

−S[gab] →
∑

T

1

CT

e−SRegge(T ) , (3.3)

Here CT is the dimension of the automorphism group of the triangulation T .

We replace the former action by,

S(µ′, η′1, ..., η
′
p) = a2µ′Ntriangles + a

p∑

i=1

η′ili , ST = aµ′Ntriangles. (3.4)

DBD
PUC-Rio - Certificação Digital Nº 1222132/CA



Chapter 3. Discrete quantum gravity 30

Figure 3.1: Building blocks of DT. In one dimension the simplex is a line, in
two dimensions is a triangle while for three dimensions it is a tetrahedron.

Notice the prime notation, this is introduced to denote the discrete counter-

part of (2.45). In analogy with the continuum formulation, we can define a

expression for the loop equation:

W(µ′, η′1, ..., η
′
p) =

∑

li

W(µ′, l1, ..., lp) e
−a

∑

i η
′
ili ,

W(µ′, l1, ..., lp) =
∑

k

e−a2µ′k wk,li , (3.5)

Here the W(µ′, η′1, ..., η
′
p) is a generating function of wk,li (where k is the

number of triangles and li the number of boundary edges). This turns the task

of computing the two dimensional partition function of quantum gravity into a

combinatorial problem of finding the number of triangulations, for a particular

number of triangles and boundary components. For the sake of simplicity, we

focus on a single boundary component and write:

W(g, z) =
∑

k

∑

l

gk z−l−1 wk,l , (3.6)

Where we identify g = e−a2µ′
as the fugacity of the triangle and z = eaη

′
.

Henceforth we point out the difference between the generating functions for

restricted and unrestricted triangulations, respectively:

W̃(g, z) =
+∞∑

k=1

+∞∑

l=3

gk z−l−1 wk,l =
+∞∑

l=3

w̃l(g) z
−l−1 ,

W(g, z) =
+∞∑

k=0

+∞∑

l=0

gk z−l−1 wk,l =
+∞∑

l=0

wl(g) z
−l−1 . (3.7)

For restricted triangulations, lines and points are not allowed. For unrestricted

triangulations the least object is a point, then k = 0 and l = 0. Because we

have included points in the generating function, the first term comes with z−1,

therefore w0(g) = 1. In order to better understand the implications of these

generating functions, let us see the expansion for restricted triangulations:
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Figure 3.2: An example of triangulation over a surface. We remove a l-gon of
the (say a sphere) and we end up with the disc function with a triangulation
all over its surface (the blue circumference qualitatively represents the polygon
removed.

w̃l(g) =
+∞∑

k=3

w̃k,l g
k = w̃0,l + w̃1,l g + w̃2,l g

2 + · · · (3.8)

Then we conclude that each triangle is coupled with a g and k triangles coupled

with gk. If we remove a triangle from the whole triangulation turns out that now

we will have a term gk−1. We want to create a connection between the Hartle-

Hawking wavefunctions and the generating function in (3.6). In figure 3.2 we

see a removal of a l-gon (A bunch of fatgraphs dual to a triangulation, see figure

2.6) and the result of this process is a disc function. The blue circumference

is the same l-gon and it is associated with M l (l edges). Now the generating

function of this process can be written as (recall that the expectation value of

the trace of Mk generates fatgraphs with k-point vertices):

ω(z) =
∑

l

w(µ′, g, l) z−l−1 =
1

N

∑

l

〈
trM l

〉
z−l−1 . (3.9)

Using some trace properties, we rewrite it:

ω(z) =
1

N

〈
tr
[∑

l

M lz−l−1
]〉

=
1

N

〈
tr
[1
z

∑

l

(
M

Z

)l ]〉

=
1

N

〈
tr

1

z −M

〉
. (3.10)
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Figure 3.3: Possible decomposition moves in DT and its outcomes: On the left
a black dot is a mark of the triangulation before a triangle is removed, a white
dot is the mark after the removal, On the right a black dot is a mark of the
triangulation before the link (between two disc functions) is removed and the
white dot are the marks after the removal of the link.

In fact this is called resolvent and we will see in chapter four that the resolvent

of the DT/CDT potentials matches exactly the generating function of the loop

equation of the disc function in figure 3.2. For simplicity, henceforth we will

not draw the triangulation but only a grey circle. Now, let us come back to the

process of removal of a triangle concerned with the edges: We see in figure 3.3

that whenever removing a triangle we remove also a boundary edge (l → l−1).

But there are now two new internal boundary edges, such that at the end we

have added one boundary edge to the original number of boundary edges. Let

be x another variable such that x ≡ z−1. Moreover, we rewrite (3.7) as:

W(g, z) =
1

z

∑

k

∑

l

wk,l g
kz−l , (3.11)

As a result, we can define:

W (g, x) = zW(g, z) =
∑

k

∑

l

wk,l g
kz−l =

∑

k

∑

l

wk,l g
kxl . (3.12)

A general unrestricted triangulation, like a ball with a mark, is associated

with W (g, x). If we remove the mark, it will be associated with W (g, x) − 1.

Removing the triangle yields:

W(N−1)(g, x) =

(
W(N)(g, x)− 1

)
− xw1(g) , W(N)(g, x) ≡ W (g, x) , (3.13)

Here (N) denotes the number of triangles of the generating function. Observing

the expansion of W (g, x), we find another way to express the removal of the

triangle (recall that when one triangle is removed the total number of boundary

edges is increased by one):
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Figure 3.4: Graphic representation of the loop equation of the disc function.

W(N−1)(g, x) =
∑

k

∑

l

wk−1,l+1 g
k−1xl+1 =

x

g
W(N)(g, x) , (3.14)

Now, because (3.13) and (3.14) represent the same removal of one triangle, we

conclude:
W(N)(g, x) →

g

x

[
W(N)(g, x)− xw1(g)− 1

]
. (3.15)

The next step is to figure out an expression for the removal of the double-link

in figure 3.3. While removing a triangle we increase the initial number of edges

by one, if one removes the double-link the outcome is the loss of two boundary

edges. For each link removed there is a x multiplying the generating function,

so, the expression correspondent to the figure 3.3 is:

W (g, x) → 1 + x2W 2(g, x) . (3.16)

Applying the above expressions to the graphical representation we obtain:

W (g, x) =
g

x

(
W (g, x)− xw1(g)− 1

)
+ 1 + x2W 2(g, x) , (3.17)

With the help of (3.11), one finds:

(z − gz2)W(g, z) =

[
1− g

(
w1(g) + z

)]
+W2(g, z) . (3.18)

By means of this, the solution reads,

W(g, z) =
1

2

[
V ′(z)−

√
(V ′(z))2 − 4P (z)

]
,

V ′(z) = z − gz2 , P (z) = 1− g

(
w1(g) + z

)
. (3.19)

The sign of the square root shall be chosen based on the asymptotic form

of the generating function. For large z the generating function is required to

be W(g, z) ∼ 1/z, then it explains why we chose the minus sign. If we take
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Figure 3.5: A rooted branched polymer.

the limit of g going to zero we would have a rooted branched polymer type of

structure, as shown in figure 3.5. A consequence of taking g = 0 is:

W(0, z) =
1

2

(
z −

√
z2 − 4

)
. (3.20)

The square root in the above formula gives rise to a branch cut in [-2,2]. We

can generalize the form inside the square root as:

(V ′(z))
2 − 4P (z) = (gz − c(g))2 (z − c+(g)) (z − c−(g)) , (3.21)

When g is equal to zero we require:

c(0) = 1 ; c+(0) = 2 ; c−(0) = −2 . (3.22)

Once known the potential and the conditions that restrict the possible solu-

tions, one is able to find the four unknown quantities: w1(g), c(g), c+(g) and

c−(g). We shall find these quantities for a DT potential plugging it unto (3.19),

leading to a system of four equations with four unknown variables. Solving the

system for c gives:
4c3 − 6c2 + 2c+ 4g2 = 0 . (3.23)

Among the three solutions, the only one which satisfies (3.22) reads:

c(g) =
1

2

(
1 +

3

√
1

3a
+ 3

√
a

9

)
,

a = −36g2 +
√
3
√
432g4 − 1 . (3.24)

Once c(g) is known, is straightforward to find the remaining unknown quan-

tities in terms of the latter. For the support [c+, c−], one can show, from the
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Figure 3.6: The function in blue is a representation of c+(g) and the one in red
corresponding to c−(g).

system of equations, that they can be expressed as:

c±(g) =
1

g

[
(
1− c(g)

)
±
√

2c(g)
(
1− c(g)

)
]
. (3.25)

3.2

Continuum limit of DT

The continuum limit is associated with the asymptotic form of wk,li in (3.7)

when both the number of triangles and edges (boundaries) approach infinity,

while the cut-off a (edge of each triangle) approaches zero, in such a way

that the product of the cut-off and the number of edges remains fixed. We

want to know the exact form for the Hartle-Hawking wavefunction (2.46),

(2.48). Due to the dimensions of µ′ (bare cosmological constant) and η′i

(bare boundary cosmological constant), respectively 1/a2 and 1/a, we have

an additive renormalization:

µ′ =
µ′
c

a2
+ µ ; η′ =

η′c
a
+ η . (3.26)

The critical points are:

gc = e−µ′
c ; zc = e−η′c . (3.27)

It follows:
g = e−a2µ′

= gc e
−a2µ ; z = eaη

′
= zc e

aη . (3.28)
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Figure 3.7: An example of quantum geometry in DT [70]. There are two colors
which identify positive and negative curvature (respectively blue and red)
according to equations (2.37) and (3.1).

Bearing in mind the radius of convergence of the analytic structure in this

limit, we know that zc = c+(gc) = −c−(gc). Furthermore, one is able to find gc

as the radius of convergence of w1(g) (This value is 432
−1/4 which agrees with

(D.7)). Nevertheless, the important task here requires us to insert the scaling

relations (3.28) into the resolvent (3.19) [71], finding:

W(z) ∼ a3/2(µ−
√
η

2
)
√

(µ+
√
η) , (3.29)

and
W(µ, η) = (µ−

√
η

2
)
√

(µ+
√
η) . (3.30)

Using (2.47) we obtain:

W(µ, L) = L− 5
2 (1 +

√
µL)e−

√
µL . (3.31)

3.3

Causal dynamical triangulations

In the same way that DT is associated to Euclidean quantum gravity CDT is

associated to Lorentzian quantum gravity. Although is true that DT does not

bring expected well-behaved quantum geometries, even if it was not so, CDT is

still necessary to recover the background geometry (general relativity). In CDT

the triangulation is created with Minkowskian simplices instead of euclidean
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Figure 3.8: An example of spacetime in CDT [41]. This is an analogue of figure
2.4.

in DT, where these triangles have one spacelike edge (horizontal) and the

two remaining edges are timelike (see figure 6.1 in [39]), and one constructs a

triangulation with t time slices of size equal to one. Because the structure glues

together spacelike with spacelike only and timelike with timelike only as well,

causality is present in the whole structure. One can perform a Wick’s rotation

on the timelike edges and we would have

eiS
(l)
Regge → e−S

(e)
Regge , (3.32)

Here l stands for Lorentzian and e for Euclidean. The action for CDT has

the same structure as in (3.4). Particularly, we can compute the one-step

propagator [40]:

Gµ′(l2, l1, t) =
∑

T (l1,l2,t)

1

CT

e−a2µ′NTriangles , (3.33)

Where l1 denotes the initial boundary edge and l2 the final one of the

triangulation and CT has the same meaning as in (3.4) but T denotes the

causal triangulations with such initial and final boundary lengths in a structure

with t time-slices. As for DT, we present a generating function, namely:

Gµ′(x, y, t) =
∑

k,l

xkylGk,l,t , (3.34)

Where again the x, y are related to the boundary cosmological constants as

x = e−aµ′
i , y = e−aµ′

0 . One can show that the generating function is expressed
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Figure 3.9: Decomposition moves for CDT: The moves consists of adding a
triangle, whereas the white dot shows the mark before the addition of the
triangle, and the black one the mark after the triangle was added.

[39, 40]:

G(x, y, g, 1) =
+∞∑

k=1

1

k

(
gx

1− gx

gy

1− gy

)k

= −log

[
1− g2xy

(1− gx)(1− gy)

]
, (3.35)

Where a factor of gx is assigned for triangles pointing up (in the time slicing)

and a factor of gy to one pointing down (alternatively, gx is assigned to the

spacelike edge on the initial boundary length and gy to the final boundary

length). This coupling g is the equivalent of the one in (3.6), i.e the fugacity

of the triangle. Now, because in the first section of this chapter we studied

DT through the loop equations, relating the generating function with the

resolvent, we shall do the same in this section as well. It is remarkable that

for both types of triangulations, there are loop equations and matrix models

which describes the physics of the theory. Following the steps of section 3.1,

we briefly summarize the loop equations of CDT. Causal triangulations can be

generated by adding triangles, with two possible models (figure 3.9) [39, 72]:

gluing two edges of the additional triangle unto the triangulation, one mark to

the edge in the loop circumference and the remaining mark to the next edge

(in the clockwise direction) or adding a triangle using the method of gluing one

of its edges to the marked edge of the triangulation assigning the new mark to

the new edge (again clockwise direction). If the two moves are done together,

we have the CDT equivalent of (3.17), as depicted in figure 3.10:
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Figure 3.10: Representation of the loop equation of the disc function in
generalized CDT.

Wβ(g, x) =
g

x

{
Wβ(g, x)− xw1(g)− 1

}
+ 1+ βx2W2

β(g, x) + gxWβ , (3.36)

Here the β factor is related to the inclusion of spatial topology change [72], and

(3.36) is known as generalized CDT loop equation. It follows (here we apply

the same reasoning for DT):

Wβ(g, z) =
1

2β

(
V ′(z)−

√
(V ′(z))2 − 4βPβ(z)

)
,

V ′(z) = −g + z − gz2 , Pβ(z) = 1− g

(
w1(g, β) + z

)
. (3.37)

Notice that the role of β here is similar to the t in chapter four. Applying the

CDT potential to (3.21) we obtain:

2c3 − 3c2 + (1 + 2g2)c+ (2β − 1)g2 = 0 . (3.38)

This leaves us with,

c(g) =
1

2

[
1 + (1− 4g2)

3

√
2

α′ +
1

3
3

√
α′

2

]
,

α′ = −216g2β +
√
46656g4β2 + 4(3− 12g2)3 , (3.39)

alongside with

c±(g) =
1

g

(
1− c±

√
2
√

(1− c)c− g2
)

. (3.40)

Figure 3.11 shows the plot of the support as a function of g and β. For the

scenario when β vanishes the cut vanishes as well, corresponding to the pure

CDT case when topology changes are not allowed, we also notice that for bigger
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Figure 3.11: The CDT analogue of figure 3.6. In the pure CDT realm (β = 0)
both c+(g) and c−(g) vanish.

values of β its behaviour is approximately close to those in figure 3.6. We will

see in the next section that figure 3.11 has important consequences to the pure

CDT eigenvalue distribution and its effective potential.

3.4

Continuum limit of CDT

The main idea here follows the procedure of section 3.2. However, now we have

the following renormalization for the bare cosmological constants:

µ′ =
µ′
c

a2
+ µ , µ′in =

µ′in
c

a2
+ µin , µ′out =

µ′out
c

a2
+ µout . (3.41)

We shall introduce the critical values:

gc = e−µ′
c , xc = e−µ′in

c , yc = e−µ′out
c . (3.42)

Note that the joint convergence of (3.35) requires the critical values to be

gc = 1/2 and xc = yc = 1 (See how to find gc using other methods in section

4.3). The above formula allows us to write,
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g = gc e
−a2µ , x = xc e

−aX , y = yc e
−aY . (3.43)

Now if we apply the scaling unto (3.35), we obtain:

Gµ(X, Y, T ) = −log(1− Zµ) ,

Zµ =
µ

sinh2(
√
µT )

[
X +

√
µ coth(

√
µT )

] [
Y +

√
µ coth(

√
µT )

] . (3.44)

Performing the Laplace’s transform of the above equation, we find the finite

time propagator of CDT [39]:

Gµ(L1, L2, T ) =

√
µL1

L2

I1

(
2
√
µL1L2

sinh(
√
µT )

)
e−

√
µ coth

(
(L1+L2)

√
µT
)

sinh
√
µT

, (3.45)

Here T ∼ at and I1(x) the modified Bessel function of the first kind (see

appendices of [39, 40]). To find the disc function, one needs to compute (slightly

different for DT):

W (µ, L) =

∫ +∞

0

dT Gµ(L1 = L,L2 = 0, T ) . (3.46)

Once the integral is calculated, we acquire:

W (µ, L) =
1

L
e−

√
µL , (3.47)

Which is the Hartle-Hawking wavefunction of CDT, the analogue of (3.31).
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4

Random matrices techniques applied to DT and CDT

In this chapter we introduce two methods for computing matrix integrals:

saddle point and orthogonal polynomials. The outline of these methods have

enormous importance for further calculations in two dimensional quantum

gravity. We use the analogy of a Coulomb gas to construct the saddle point

analysis, implementing the resolvent and through it we find how to compute

the eigenvalue distribution, where complex analysis play an important role.

Afterwards we define a set of orthogonal (or orthonormal) polynomials that

remarkably solve the matrix model through a recursion formula. Following

the background of these methods, we discuss its application to DT and CDT

matrix models, followed by the study of the double scaling limit.

4.1

Saddle point analysis

We want to solve (2.1), but we have seen how to rewrite it to an integral of

eigenvalues (2.8). Due to the fact that the potential has one deepest well, the

eigenvalues tend to be restricted to the basement of the well. In the Gaussian

case the eigenvalue distribution has only one continuous support, i.e the density

vanishes outside an interval I (then called one-cut solution, otherwise it is

called a multi-cut solution). In order to better understand the behaviour of

ρ(λ) regarding the Vandermonde’s interaction, we shall include a parameter t

(known as ’t Hooft parameter) unto (2.8):

Z = const×
∏

i

∫
dλi e

−N
t

∑

V (λi)∆2(λ) , (4.1)

Thus, we have then an effective potential,

Veff =
∑

i

V (λi)−
2t

N

∑

i<j

ln|λj − λi| . (4.2)

The saddle point of the action is straightforwardly found:

∂S

∂λj

≡ 0 = V ′(λj)−
2t

N

∑

i<j

1

λj − λi

. (4.3)
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With such configuration, the factor t manages the strength of the repulsion

between the eigenvalues. For small t the eigenvalues tend to be around the the

saddle point (when V ′(λi) = 0). If t vanishes, the the interval of the eigenvalues

collapses to the saddle point. If t increases, the eigenvalues are compelled to

disperse over a support of interval I. If one multiplies both sides in (4.2) by
1
N
(z − λj)

−1 and sum over j, it is obtained:

1

N

N∑

j=1

V ′(λj)

z − λj

=
2t

N2

∑

1≤i 6=j≤N

1

(z − λj)

1

(λj − λi)
. (4.4)

Simple algebra can change the form of r.h.s of (4.4), as follows:

1

N

N∑

j=1

V ′(λj)

z − λj

=
t

N2

∑

i 6=j

∑

j

1

(z − λj)

1

(λj − λi)
+

t

N2

∑

j 6=i

∑

i

1

z − λi

(
− 1

λj − λi

)
,

t

N2

∑

1≤i 6=j≤N

1

λj − λi

(
1

z − λj

− 1

z − λi

)
=

V ′(z)

N

N∑

j=1

1

z − λj

−

1

N

N∑

j=1

V ′(z)− V ′(λj)

z − λj

.

We introduce new quantities. First the resolvent,

ω(z) =
1

N

〈
tr

1

z −M

〉
∼ ωN(z) +O

( 1
N

)
,

ωN(z) =
1

N

N∑

j=1

1

z − λj

, (4.5)

along with a polynomial of two orders below V ′(z), defined through

P (z) ≡ lim
N→+∞

t

N

N∑

j=1

V ′(z)− V ′(λj)

z − λj

. (4.6)

Accordingly, we rewrite (4.3),

V ′(z)ωN(z)−
1

t
PN(z) =

t

N2

∑

1≤i 6=j≤N

1

(z − λj)(z − λi)
. (4.7)

Nevertheless, in the large-N limit we acquire:

ω2(z)− 1

t
V ′(z)ω(z) +

1

t2
P (z) = 0 , (4.8)

Whose solution is (see section 3.1):
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ω(z) =
1

2t

[
V ′(z)−

√(
V ′(z)

)2 − 4P (z)

]
. (4.9)

The eigenvalue distribution reads (because we are evaluating it at the saddle

point):
ρ(λ) =

1

N

∑

i

δ(λ− λi) =
1

N

∑

i

〈δ(λ− λi)〉 , (4.10)

And in the planar limit (large-N limit) is normalized as follows
∫

I
dλ ρ(λ) = 1 . (4.11)

Is quite easy to find the eigenvalue density once we have the resolvent.

Foremost, let’s remind the reader of the Cauchy’s formula:

f (n)(a) =
n!

2πi

∮

I
dz

f(z)

(z − a)n+1
, (4.12)

for the n-th derivative of the function f evaluated at a. As a result,

ρ(z) =
1

2πi

∮

I
dz

ρ(λ)

λ− z
. (4.13)

(4.3) together with (4.11) enables us to write,

V ′(λj) =
2t

N

∑

i<j

1

λj − λ
δ(λ− λi) . (4.14)

Following the same train of thought, we see that

ω(z) =

∫
dλ

ρ(λ)

z − λ
. (4.15)

From (4.13) and (4.15) one obtains,

ρ(z) = lim
ǫ→0

∫ z+iǫ

z−iǫ

dλ

2πi

ρ(λ)

λ− z
,

=
1

2πi
lim
ǫ→0

[
ω(z − iǫ)− ω(z + iǫ)

]
. (4.16)

Recalling the expression for the resolvent in (3.19), we can find a general

expression for ρ(z) based on the discontinuity equation above. It follows:

4πitρ(z) = lim
ǫ→0

{[
V ′(z−iǫ)−V ′(z+ǫ)

]
+

[
(gz−c)+iǫ

]√
(z + iǫ− c+)(z + iǫ− c−) ,

−
[
(gz − c)− iǫ

]√
(z − iǫ− c+)(z − iǫ− c−)

}
. (4.17)

Moreover, the discontinuity part of the potential reads:

V ′(z − iǫ)− V ′(z + iǫ) ∼ −const× 2ǫi+O(ǫ2) , (4.18)
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By this means obtaining,

ρ(z) =
1

2πt
(gz − c)

√
−(z − c+)(z − c−)

=
1

2πt

√
4P (z)− (V ′(z))2 . (4.19)

Once one knows how to compute the eigenvalue distribution, it is simple to

find averages. For instance,

1

N
〈trMp〉 =

∫

I
dλρ(λ)λp . (4.20)

Even though we have a formula for ω(z), there is a more powerful technique

to express it. Recall the Laurent series:

f(z) = a0 + a1(z − a) + a−1(z − a)−1 + · · · ,

an =
1

2πi

∮
dz

f(z)

(z − a)n+1
. (4.21)

If one wants to compute the residue of f(z) at a for a pole of order k, we would

have
a−1 = lim

z→a

1

(k − 1)!

dk−1

dzk−1

[
f(z)(z − a)k

]
. (4.22)

Then, we simply expand (4.9) as a Laurent series. For the sake of simplicity,

we define a polynomial such that,

P(z) =
V ′(z)√

(z − c+)(z − c−)
= (gz − c) + P− = P+ + P− , (4.23)

Hence,

ω(z) =
P−(z)

2

√
(z − c+)(z − c−) =

∑

i

P−i

2

√
(z − c+)(z − c−)

zi
. (4.24)

Of course this formulation of the resolvent must obey the large z behaviour of

ω(z) ∼ 1/z. On the other hand,

1

z
= lim

z→+∞

[
P−1

2

√
(z − c+)(z − c−)

z
+

P−2

2

√
(z − c+)(z − c−)

z2
+ · · ·

]
, (4.25)

Which requires:

P−2 = 2 ; P−1 = P−k = 0 ∀ k ∈ ◆ , k > 2 . (4.26)
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Figure 4.1: Eigenvalue distribution of a Gaussian potential. We show distribu-
tions with three different fixed values of t.

From (4.21),(4.23) and (4.26) we find two equations powerful to find out an

explicit form of w(z):

∮
dz

2πi

V ′(z)√
(z − c+)(z − c−)

= 0 ,

∮
dz

2πi

zV ′(z)√
(z − c+)(z − c−)

= 2t . (4.27)

Alternatively, after the following change of variable,

z = w +
1

2
(c+ + c−) +

(c+ − c−)
2

16w
(4.28)

One obtains instead: ∮
dw

2πi

V ′(z(w))

w
= 0 ,

∮
dw

2πi
V ′(z(w)) = t . (4.29)

A simple example is given: For a Gaussian potential V ′(λ) = λ (in the above

equations we have set z = λ, not affecting at all its structure. Recall that due

to the symmetry of the potential c+ = −c− and we have the pole at w = 0),

so:

λ = w +
c2±
4w

,

Applying (4.22) we arrive at,

t = lim
w→0

1

0!
[f(w)(w − 0)] = lim

w→0

[
w2 +

c2±
4

]
∴ c± = ±2

√
t ,
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And substituting it unto (4.9) and (4.19), we find:

ρ(λ) =

√
4t− λ2

2πt
. (4.30)

Notice that this would have been exactly the expression for the resolvent in

(3.17) if we had set t = 1. The saddle point gives the large-N limit contribution

of the matrix integrals and is not valid for multi-matrix integrals.

4.2

Orthogonal polynomials

Another method to solve the matrix models are the orthogonal polynomials.

It can give us the contributions of all orders in the 1/N expansion. Yet,

it presents a more elegant and easier way to understand the large-N limit.

Like saddle point analysis, it can not be applied to multi-matrix models in

its simplest formalism. However, its analytic strength allows the extension to

general orthogonal polynomials and operators which are able to handle multi-

matrix models and fancy mathematical structures [50, 73, 74]. Once again we

start with the partition function:

Z =
1

N !(2π)

∫ ∏

i

dλi

(2π)
∆2(λ) e−

N
t
V (λ) . (4.31)

Foremost, we introduce a set of orthogonal polynomials which will be useful

to compute the partition function. These polynomials have the form,

Pn(λ) = λn +O(λn−1) , (4.32)

So that the normalization comes out naturally:
∫ ∏

i

dλi

2π
e−

N
t
V (λ)Pα(λ)Pβ(λ) =

∫
dµPα(λ)Pβ(λ) = δαβhα. (4.33)

Is easy to see that λPα ∼ λα+1 +O(λα) ∼ Pα+1, implying:
∫

dµ(λPα)Pα+1 = hα+1 or

∫
dµPα+2(λPα+1) = hα+2 . (4.34)

The form of these polynomials enable us to express them as a linear combina-

tion of one to another, as follows:

λPα =
α+1∑

k=0

σk
αPk , σk

α =
1

hk

∫
dµλPαPk 6= 0 ⇔ |α− k| = 1 . (4.35)

Accordingly,

λPα = Pα+1 +

(
hα

hα−1

)
Pα−1 = Pα+1 + rαPn−1 . (4.36)
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The above recursion relation can be generalized and it is a special case for even

potentials. The most general relation is:

λPn(λ) = Pn+1(λ) + snPn(λ) + rnPn−1(λ) . (4.37)

The reason is plain. Let us reconsider (4.28) and (4.29): It can be written as

(in the planar limit)

X(r, s) ≡
∮

dw

2πi

V ′(w + s+ r
w
)

w
= 0 ,

Y (r, s) ≡
∮

dw

2πi
V ′(w + s+

r

w
) = t . (4.38)

Roughly speaking, for even potentials the support of the eigenvalue density

is the interval [−a, a], then we conclude that s automatically vanishes. An

important feature of the recursion relations is that it is an hermitian operation.

In other words, does not matter which of the two polynomials, Pα(λ) or Pβ(λ),

is multiplied by λ. For instance,

〈Pn+1|λPn〉 =
∫

dµPn+1(λPn) =

∫
dµPn+1(Pn+1 + snPn + rnPn−1) = hn+1 ,

On the other hand,

〈λPn+1|Pn〉 =
∫

dµPn(λPn+1) =

∫
dµPn(Pn+2+sn+1Pn+1+rn+1Pn) = rn+1hn ,

which is exactly the same of the latter. Therefore,
∫

dµλPαPβ = 〈λPα|Pβ〉 = 〈Pα|λPβ〉 . (4.39)

Now that we have a general recursion relation, we urge to figure out how

to associate the square of Vandermonde’s determinant with the polynomials

mentioned. See appendix C.1 for such a procedure. In fact, the partition

function can be written as a function of the normalization of the polynomials,

namely:

Z =
N−1∏

i=1

hi = hN
0

N∏

i=1

rN−i
i . (4.40)

Naturally, the next step is to find a nice expression for the free energy. We

acquire:

F = N lnh0 +
N∑

i=1

(N − i) lnri . (4.41)

Recall the topological expansion of the matrix integral’s free energy (2.27). We

now take into account the ’t Hooft parameter t. We shall rewrite it as,
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F (t) =
+∞∑

h=0

g2h−2
s Fh(t) , t = gsN . (4.42)

By virtue of that, we revise (4.41)

1

N2
F =

1

N
lnh0 +

1

N

N∑

i=1

(1− i

N
) lnri . (4.43)

Well, in the planar limit the sum becomes an integral. Besides, the ratio i/N

turns into a variable, henceforth denoted by ξ. In addition, the first term of

the r.h.s of (4.43) vanishes. Hereby,

F0(t) = t2
∫ 1

0

dξ (1− ξ) lnr(ξ) = t2
∫ r(ξ=1)

r(ξ=0)

dr
dξ

dr
(1− ξ) lnr(ξ) . (4.44)

Nevertheless, we don’t know how ξ depends on the planar limit contribution

of rn. The bridge between the recursion relations and the free energy are the

string equations. The equations are written as (see appendix C.2)

∫
dµPn(λ)V

′(λ)Pn(λ) = 0 ,

∫
dµPn−1(λ)V

′(λ)Pn(λ) =
ξnhn

rn
t . (4.45)

A rather simple way to derive the string equations comes from transforming

(4.37) into a matrix recursion relation (actually, the aim of such extension to

generalized formulae of the polynomials is far beyond the need for a derivation

of the string equations). That is, we define two matrices A and B which obeys

the relations (AP = ∂λP and BP = λP so that [B,A] = ✶):

∂λPn =
n−1∑

m=0

AnmPm ; λPn =
n+1∑

m=0

BnmPm . (4.46)

Within this formulation, (4.39) still holds. We revise (4.33):
∫

dµPmPn = hmδmn = Hmn . (4.47)

Hence,

∫
dµ

( n+1∑

i=0

BniPi

)
Pm = (Bniδmi)hm = Bni(δmihm) = BH ,

∫
dµPn

(m+1∑

j=0

BmjPj

)
= (hnδnj)Bmj = hn(δnjBmj) = HBT . (4.48)
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Therefore,
HBT = BH . (4.49)

If we follow the derivation of the string equations, specially the vanishing

integral (C.11), we would have

N

g
V ′
nmsm =

∫
dµP ′

nPm +

∫
dµPnP

′
m , (4.50)

Where V ′
nm = V ′(λ)δnm. Additionally, we have:

∫
dµ

( n−1∑

k=0

AnkPk

)
Pm = Ank(δkmhm) = (Ankδkm)hm = AH ,

∫
dµPn

(m−1∑

l=0

AmlPl

)
= (hnδnl)Aml = hn(δnlAml) = HAT . (4.51)

Leading to,
AS + SAT =

N

g
V ′(B)S . (4.52)

Doing the normalization (4.47), It is straightforward to see:

An,n−1 = n ; Bn−1,n = Bn,n+1 = 1 . (4.53)

Is easy to check from (4.52) and (4.53) that if m = n− 1 is set, we attain the

string equations in the matrix version:

V ′
n,n = 0 ; V ′

n,n−1 = ξnt . (4.54)

Alternatively, one might want to work with orthonormal polynomials. They

are chosen to obey
∫

dµΠnΠm = δmn , Πn(λ) =
1√
sn

Pn(λ) . (4.55)

We immediately arrive at:

λΠn =
√
rn+1 Πn+1 + sn Πn +

√
rn Πn−1 . (4.56)

This is useful for computing averages. For example we can compute (4.20):

〈
trM l

〉
=

1

N !Z

∫
dµ∆2(λ)

(
∑

i

λl
i

)
. (4.57)

Useful formulae from (4.40), (C.2) and (C.3) enable us to go further:

〈
trM l

〉
=

1

N !
∏

i hi

∑

i

∫
dµ

(
N !
∏

i

hiΠ
2
i

)
λl
i

=
N−1∑

i=0

∫
dµλlΠ2

i (λ) . (4.58)
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4.3

Eigenvalue distributions and critical points

We shall discuss the critical points of eigenvalue distributions for higher order

potentials. In figure 4.1 is depicted the distribution of the Gaussian case, notice

that the repulsion increases along with the values of t. Interesting though, is

that for t = 0 the repulsion is gone (see (4.2)) and we have a singularity

(figure C.4), because the saddle point of the Gaussian potential is found at

λ = 0. Now we need to compute the distributions for higher order potentials.

Following matrix arguments based on (4.20) and (4.58) (see [81, 61]), one finds

an expression to compute the eigenvalue distribution:

ρ(λ) =
1

π

∫ 1

0

dξ√
4r(ξ)− [λ+ s(ξ)]2

θ(4r(ξ)− [λ+ s(ξ)]2) , (4.59)

θ being the Heaviside’s step function. As an example we can compute once

again the eigenvalue distribution for the Gaussian potential. Firstly, we are

obligated to find r(ξ) and s(ξ). In order to do so, we better apply the string

equations. The eigenvalue distribution of the Gaussian potential is computed

by (See appendix C.3),

ρ(λ) =
1

π

∫ 1

0

dξ√
4tξ − λ2

θ(4tξ − λ2) .

However, after a change of variables (y = 4tξ − λ2) and integration by parts

we acquire:

ρ(λ) =
1

4πt

∫ 4t−λ2

−λ2

dy√
y
θ(y) =

1

4πt

[
2
√
yθ(y)− 2

∫
dyδ(y)

√
y

]4t−λ2

−λ2

,

=
1

2πt

√
4t− λ2 , (4.60)

Matching exactly the previous result (4.30). We already know the function r,

after plugging it unto (4.45) one easily finds the free energy. In appendix C.3

we show how to compute the free energy for some cases. Another way to find

the resolvent apart from (4.27) or (4.29) is found from a discontinuity equation

which can be derived using (4.14) and (4.15)(see also [50]). It reads:

ω(z) =

√
(z − c+)(z − c−)

2πit

∫ c+

c−

V ′(λ)dλ

(λ− z)
√

(λ− c+)(λ− c−)
. (4.61)

To find what exactly a is we can use either (4.29) or (4.59). Notice in the

example of the Gaussian potential in (4.62) that there is an easier way to

find the support [c−, c+]: the zeros of the denominator. Thereupon, it is
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Figure 4.2: Eigenvalue distribution for a quartic potential when t = tc and
g = 1.

straightforward to see the following:

c±(t) = ±2
√

r(ξ = 1)− s(ξ = 1) . (4.62)

The reason we want to find the resolvent is very simple: is not quite easy to

perform (4.59) when s 6= 0 and because we can solve (4.61) with (4.62) as an

alternative. As a consequence we should plug the found resolvent unto (4.19).

One might compute the resolvent of the quartic potential (c± = ±a):

ω(g, z) =

√
z2 − a2

2πit

∫ +a

−a

(λ− gλ3) dλ

(λ− z)
√
λ2 − a2

,

=
1

2t

[
(z − gz3)−

(
1− gz2 − 1

2
ga2
)√

z2 − a2
]
. (4.63)

Furthermore, using (4.62) and (C.18) we find:

a2 = c2±(g) =
2

3g
(1−

√
1− 12gt) . (4.64)

Hence, the eigenvalue distribution is,

ρ(λ) =
1

2πt

[
1−gλ2− 1

3
(1−

√
1− 12gt)

]√
2

3g
(1−

√
1− 12gt)− λ2 . (4.65)

In this case we see that the limiting value for the ’t Hooft parameter is around

0.08 in figure C.4, which is actually an approximation of the critical point

DBD
PUC-Rio - Certificação Digital Nº 1222132/CA



Chapter 4. Random matrices techniques applied to DT and CDT 53

Figure 4.3: Quartic potential with the Fermi level (blue bar) of the potential
associated with the outermost eigenvalue when g = 1.

tc = 1/12. So, unlike the Gaussian potential, the quartic potential assumes a

distribution that does not exists for all t, i.e there is a limit for the strength

of the repulsion as seen in figure C.4 (one might be suspicious that all even

potentials admit eigenvalue distributions defined for every value of t because

of the absence of s in the recursion relation (4.37), expecting funny behaviour

from odd potentials only). It is important to realize that although the critical

values of t and g coincide for the quartic potential (see another method

to achieve gc in appendix B), this does not happens for the DT and CDT

cases. Note also that the critical value can be extracted from the functions

r(1): Equation (C.18) allows us to do so. clearly, one should understand that

the maximum value of r(1) is 1/6 when t = tc = 1/12. Recalling that the

maximum values for the eigenvalues are formulated in (4.62), the furthermost

eigenvalue would be
√

2/3 ≈ ±0.816. Remarkably, this result agrees with figure

C.4, where the maximum eigenvalue appears to be about ±0.8. For better

visualization though, we show the same distribution at the critical point t = tc

in figure 4.2, which turns out to be

ρ(λ) =
(4− 6λ2)

π

√
2

3
− λ2 . (4.66)

The potential evaluated in the maximum eigenvalue is about 0.222, therefore

the eigenvalue region corresponds to the region shadowed in figure 4.3 (bounded

by the blue bar). This blue bar is identified with the Fermi level (chemical

potential), which is the the difference between the highest and lowest excited
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Figure 4.4: behaviour of the functions
√
r(1, t) and s(1, t) .

states, in what might be thought of a electron gas in a metal. As a remark

we observe that the Fermi level shall not be confused with the Fermi energy

(defined at zero temperature), since there still are interactions, although the

value of t diminishes the strength of the interaction fiercely. We shall now

make comparisons between DT and CDT through the resolvent, distributions

and the effective potential. The string equations for both matrix models are

summarized in (C.22),(C.23) and (C.24). Because the functions r(ξ) are way

more complicated in the case of odd potentials, not to mention that s(ξ) does

not vanish any longer, these integrals are extremely difficult to handle. We now

put (4.61) into practice:

ωDT (g, z) =

√
(z − c+)(z − c−)

2iπt

∫ c+

c−

(λ− gλ2) dλ

(λ− z)
√

(λ− c+)(λ− c−)
. (4.67)

Even for a mathematical software it would take much time to evaluate this

integral when s 6= 0. Its faster to compute the integral with a denominator

like
√
λ2 − a2. Therefore, we need a change of variables. We choose the new

variable to be y = λ+ s(1) and the radius a2 = 4r(1), obtaining:

ω(z) =

√
(z + s(1))2 − a2

2iπt

∫ a

−a

V ′(y) dy

(y − z − s(1))
√

y2 − a2
. (4.68)

It follows (see appendix C.3):

ωDT (g, z) =
1

2t

{
z − gz2 −

[
1 + gse(1)− gz

]√
(z + se(1))2 − a2e

}
, (4.69)
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Figure 4.5: Eigenvalue distribution of the DT matrix model at the critical point
t = tc and g = 1.

ρDT (λ) =
1

2πt

[
1 + gse(1)− gλ

]√
a2e − (λ+ se(1))2

]
, (4.70)

Here we associate DT quantities with the label e (which stands for Euclidean)

whilst l (Lorentzian) for CDT. The derivative of the CDT potential adds a

term −g to the DT counterpart. For a linear potential the integral in (4.73) is

equivalent to
∫ a

−a

dy

(y − z − s(1))
√

y2 − a2
=

iπ√
(z + s(1))2 − a2

. (4.71)

Thusly, we note that (4.69) is changed by a factor (−g/2t) only (of course the

values of s and a2 are different). Likewise, We would expect that (4.70) does

not change its ’structure’ (by structure we mean the formula not considering

the explicit forms of s and a2). Even if we did not compute (4.71), it is

quite clear why we don’t have any change in the structure of the CDT

eigenvalue distribution. In the case we have a potential V (λ) = −gλ the string

equations would give r = s = 0. Applying it to (4.59) we clearly understand

that ρ(λ) = 0, i.e the −g contribution to the ’structure’ of the eigenvalue

distribution is null, although the −g does affect the functions r(ξ) and s(ξ)

dramatically. Therefore,

ωCDT (g, z) =
1

2t

{
−g+z−gz2−

[
1+gsl(1)−gz

]√
(z + sl(1))2 − a2l

}
, (4.72)
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Figure 4.6: DT potential for different values of g. Note that when g is
near zero the potential is symmetric relative to the vertical axis (Gaussian
potential limit). However, when g increases the potential slowly becomes more
asymmetric, whereas the saddle point is at the left side (λ < 0).

ρCDT (λ) =
1

2πt

[
1 + gsl(1)− gλ

]√
a2l − (λ+ sl(1))2

]
. (4.73)

The distributions are illustrated with the choice g = 1, only to make fair

comparison with the Wigner’s semicircle law. We shall use the functions r and

s to find the farthermost eigenvalue. The attainment of the maximum values

of either r and s consists of a simple task, once noticing that the critical value

of t for both functions is exactly 1/
√
432 ≈ 0.048, and then applying it back

to the functions. Remark: In chapter three is pointed out the critical value of

g and how it is obtained. From (C.38) and (C.39) one understands that we

can find critical values for both g and t. The role of these two parameters are

distinct and in the literature it is often interchangeable. For instance, [81] uses

t for the ’t Hooft parameter and g for coupling whilst [50, 51] associates the g

for both purposes. As an example, in DT (see chapter 3) the critical value of

the coupling g is 1/ 4
√
432 and another way to extract it apart from (D.7) or

the radius of convergence of w1(g)) is to consider the limiting values r and s

for fixed t. Figure 4.6 shows these functions for a fixed g = 1, one can easily

obtain the maximum value of t studying the form of α1 in (C.38). Analogously

if we fix t = 1 we achieve the critical value of g again from (C.38). As discussed

previously, the coupling g does not take part of the role of t, which is to rule the

intensity of the interaction. Figure 4.4 exhibits these functions, which shows
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Figure 4.7: Effective potential of the Gaussian case.

a halt around t = 0.05, agreeing with the value of tc. It follows then that the

maximum value for an eigenvalue is

λ± = ±
√
3

3
− (3−

√
3)

6
≈ 0.366 or − 0.788 ,

Which is corroborated by figure 4.5. Observe that for general odd potentials the

eigenvalue distribution is not symmetric relative to the vertical axis, unless the

distribution vanishes. This is due the fact that s does not vanishes. The reason

for the the eigenvalue distribution be more to the left is due to the position

of the saddle point, which in this case is negative (figure 4.6). Additionally,

the DT fermi level of the DT potential is lower than for the quartic potential

because tc also has decreased. Without surprise, the eigenvalue function does

not exists everywhere in CDT either, and it is not symmetric. The matrix

model expression for the CDT partition function is [39, 72]:

ZCDT = Zβ(g,N) =

∫
dλ exp

[
− N

tβ
(−gλ+

1

2
λ2 − g

3
λ3)

]
, (4.74)

As pointed out before (section 3.2) the factor β has the same role of t in

the special case of Lorentzian dynamical triangulations, regardless whether

it is defined inside or outside the potential. Peculiarly, we know from (3.36)

that the CDT matrix model does not evanesce if β vanishes (this β is not

the Dyson’s index, rather the topology change coefficient in the CDT loop

equation), rather it becomes the pure CDT model, i.e quantum gravity without

topology change. Figure 3.11 reveals the character of the complex support

[c−, c+] in the regime of pure CDT: It vanishes. Now, if the support no longer
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Figure 4.8: Effective potential of the quartic case when g = 1.

exists, we have as a direct consequence the disruption of the repulsion between

the eigenvalues. Therefore, the distribution of pure CDT is a singularity at the

origin. This can be thought of a Fermi gas at zero temperature. In the Dyson

gas analogy, whenever t goes to zero we have a scenario where the temperature

vanishes. Analogously, in the pure CDT regime of β approaching zero also

implies the same phenomena. We have non-interacting fermions occupying

different levels up to the Fermi energy (which is exactly the Fermi level in

this situation), implying that the mean occupation numbers are, in a very

good approximation, step functions. Likewise, the probability of finding the

eigenvalue is one at the origin and zero elsewhere. Also interesting is the fact

that the pure CDT effective potential is flat, which gives a picture (taking as

an example of the figure 4.3) that the Fermi level tends to zero in this case . For

a pedagogical calculation of the Fermi energy of the quartic potential see [75].

Further analysis of (C.33) and (C.34) shows that the critical value of t is either

0 or i/4 and the critical value of g is equal to 1/2, which supports the Fermi gas

at zero temperature interpretation: if tc = 0 then we would have ρ(λ) blowing

up around λ = 0. However, one might not be convinced of the breakdown

of the eigenvalue interactions yet. Nonetheless, we still have another powerful

tool to confirm this: The plot and explicit form of the effective potential. We

can generalize (2.12) in the following way:

Veff ({λi}) =
∑

i

V (λi)−
2Ψt

N

∑

i<j

ln|λj − λi| , (4.75)
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Figure 4.9: Effective potential of CDT when g = t = 1.

Where Ψ = β for CDT and Ψ = 1 otherwise. Of course it is not easy to find

a simple expression for the above formula. Instead, we shall use the very good

approximation (as N → ∞) for the effective potential of the N -th eigenvalue

λN ≡ x (see [76] and recall (4.74)):

Veff (x) ≈ −ΨRe

[ ∫ x

dz

√(
V ′(z)

)2 − 4P (z)

]
. (4.76)

With this in mind, we can assure the results discussed earlier in this section.

Clearly the effective potential is controlled by β either in (4.75) or (4.76). As

argued before, we have the following scenario: If β approaches zero there is a

disruption of the interaction and the correspondent Fermi level completely

vanishes. In figure 4.8 we can see what was explained: When β = 0 the

effective potential becomes a straight line passing through the origin, the

effective potential felt by all eigenvalues is zero, there is no repulsion between

the eigenvalues whatsoever in pure CDT. Moreover, Figure 4.7 shows the

approximate value of the outermost eigenvalue for the quartic potential (the

interval of the support is actually the plateau of the effective potential) is

about ±0.9, agreeing with figure 4.2. Also, whenever t approaches its critical

value the graphic flattens. In the CDT case this effect would be inverted, since

the ’real’ critical point is zero, then explaining why the pure CDT potential is

flattened and the Fermi level decreases until it vanishes. On the other hand,

the effective potential of the Gaussian potential in figure 4.9 shows that there

is no critical point in the plot, implying that indeed t has no bound and the

higher the value of t the effective potential becomes flatter.
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4.4

Double scaling limit

Let’s analyse the recursion relations and its consequences towards the contin-

uum limit of the potential gV ′(λ) = λ+ 2λ3 + 3bλ5 (we have set t = 1):

gξn = rn

{
1 + 2

(
rn+1 + rn + rn−1

)
+ 3b

[
rn+1(rn+2 + rn+1 + rn) +

rn(rn+1 + rn + rn−1) + rn−1(rn + rn−1 + rn−2) + rn+1rn−1

]}
, (4.77)

Having the approximate behaviour:

gξ ≈ W (r) + (2r + 30br2)

[
r(ξ + ǫ) + r(ξ − ǫ)− 2r

]
. (4.78)

From the basics of Calculus we can simplify the second term of the above

equation:

gξ = W (r) + (2r + 30br2)ǫ2r′′(ξ) ,

∼ W (r) + ǫ2(2r + 30br2)r′′(ξ) . (4.79)

We can go further by making an expansion of W (r) around its critical point,

i.e W ′(rc) = 0 (first critical region). It reads:

W (r) ≈ gc +
1

2
W ′′(rc)(r − rc)

2 . (4.80)

Meanwhile,

W ′′(rc) =
d2

dr2

∣∣∣∣
r=rc

[
r + 6r2 + 30br3

]
= 12(1 + 15brc) , (4.81)

Implying,

gξ = gc + 6(1 + 15brc)(r − rc)
2 + 2ǫ2rc(1 + 15brc)r

′′(ξ) . (4.82)

If we set :
gc − gξ = a2gcx ; r = rc

(
1− u(x)

)
, (4.83)

It follows right away,

gξ − gc
(6 + 90brc)

= r2ca
2u2 − 1

3
ǫ2rc

(
g

gc

)2

a−3rcu
′′(x) . (4.84)

Hence, identifying ǫ = a5/2 and considering g very near to its critical value,

the equation now reads:

αx = u2 − 1

3
u′′(x) , α = − gc

r2c (6 + 90brc)
, (4.85)
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Which is known as Painlevé I equation. Using (4.70) in the planar limit, we

obtain:
r − rc ∼ (gc − gξ)1/2. (4.86)

One could generalize this expression to

f

fc
− 1 ∼ (gc − gξ)−γ , f = f(ξ) = f(r(ξ)) . (4.87)

We shall analyse the behaviour of the free energy in the double scaling limit

(N → ∞ at the same time as g → gc). First we use Taylor’s series to make

the approximation ln(1 + δ) ≈ δ (for small δ). Ergo, we can write down the

expression of the free energy (4.45) in the double scaling limit :

1

N2
F ≈

∫ 1

0

(1− ξ) (gc − gξ)−γ dξ ≈ g−γ
c

(1− γ)(2− γ)

(
1− g

gc

)2−γ

, (4.88)

The last equation can be approximated as,

1

N2
F ≈

+∞∑

n=1

1

g−γ
c Λ(γ)

nγ−3

(
g

gc

)n

∼
∑

n

nγ−3

(
g

gc

)n

. (4.89)

The last approximation is an important result, because it relates the continuum

Liouville Theory critical exponents to the ones in the discrete approach

(topological expansion). Notice for example that if we choose γ = 3 we would

have (1 − g/gc)
−1 =

∑
n(g/gc)

n instead, which is a very known and trivial

expansion. Finally, we shall compute the second derivative of the free energy,

which is:

d2

dX 2

(
1

N2
F

)
=

g−2
c

(1− γ)(2− γ)
X−γ , X ≡ gc − g = a2gcx(1). (4.90)

The Painlevé equations are important because once one applies it to the

generalized operator formalism (see [73, 74]) it becomes related to KdV flows

[50]. Albeit we did not address the general operator formalism here, it has

crucial role in topological gravity [77, 78, 79, 80, 81], Kontsevich matrix model

[82] and non-critical string theory in D = 0 target space [83, 84, 85]. Finally

but not least, equation (4.88) reveals the singular behaviour of the free energy

which is essential in the study of multicritical regions (see [50]), that is:

Z(g) ∼ − N2m2

(m+ 1)(2m+ 1)

(
1− g

gc

)2+ 1
m

, (4.91)

Where m denotes the m-th critical point.
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5

Summary and outlook

In this thesis two different techniques to tackle the two-dimensional quantum

gravity problem were outlined, using log-gas analogy in matrix models to study

the eigenvalue distribution function for an arbitrary potential. Even though the

two-dimensional quantum gravity consists of a toy model, it is worth studying

due to being analytically solvable either in continuum or discrete approaches.

The orthogonal polynomial approach gives us knowledge to find quantities like

the free energy in the planar limit (all order corrections as well [72]) and the

eigenvalue distribution. We analysed in a fair depth the consequences of using

odd potentials in matrix models. Fortunately, matrix models can be applied to

a recent discovered non-perturbative approach for the path integral formulation

of gravity which in turn is defined through causal dynamical triangulations

(which is described by odd potentials). We have shown the difficulty to compute

quantities in the DT/CDT scenario, and its stunning conclusions, like the

asymmetrical distribution, the existence of a bound of the parameter t and the

zero temperature Fermi gas limit when β = 0 in CDT, in addition we plotted

the effective potential for different cases, in particular showing that in the pure

CDT we reach the null interaction. Furthermore, we showed how to encounter

the Painlevé differential equation in the double scaling limit and by this means

obtaining an agreement between continuum and discrete approaches regarding

the topological expansion.

A open problem consists in finding a rigorous proof of the equivalence of

continuum and discrete approaches, although there is evidence to believe they

are perfectly compatible [52, 86]. An important next step would be the study

of the continuum matrix model of CDT (see [39]). It would be useful to stud

an extension of this work to multi-matrix models, not to mention the inclusion

of matter fields. Another further step forward would consist of applying CDT

matrix model to study ZZ brane amplitudes through instanton sectors, an

extension of the result for DT matrix model in [87].
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A

Vandermonde’s determinant

In this appendix we show how to integrate out the unitary degrees of freedom

in the partition function of a N × N hermitian matrix ensemble. In the

case of the one matrix model the partition function is expressed as in (2.8).

Noting the eigenvalue decomposition M = U †ΛU , we shall change from

integrating over all elements ofM to integrate over the elements of the matrices

Λ = diag(λi, . . . , λN) and U . As in general transformations of coordinates, we

include a Jacobian which has to be found:

Z =
1

V ol(U(N))

∫
dMf(M) =

∫
dU

∫ ∏

i

dλif(Λ)J(Λ, U) , (A.1)

Where we have used f(M) = f(Λ) due to unitary symmetry. In the following

we will see that J(Λ, U) = J(Λ) and then determine its explicit form. Now we

construct a new object, namely:

∆−2(M) =

∫

U(N)

dUδ(2)[(UMU † −M)ij] , (A.2)

Where

δ(2)[(UMU † −M)ij)] = δ[Re(UMU † −M)ij]δ[Im(UMU † −M)ij] , (A.3)

And the integration is taken over the unitary group. The last expression is

not unanticipated if one takes into account the way we define the measure dM

in (2.2), which is described in terms of diagonal and off-diagonal terms. One

might interpret the ∆2 as the Faddeev-Popov determinant with the eigenvalue

playing the gauge fixed condition role. The above defined object can be inserted

in the partition function in such a way that (for an explicit form of the unitary

group volume see [88])

Z =
1

V ol(U(N))

∫
dMf(M)∆2(M)∆−2(M) ,

=
1

V ol(U(N))

∫
dU

∫
dMf(M)∆2(M) δ(2)[(UMU † −M)ij] ,

=
1

N !(2π)N

∫ ∏

i

dλif(Λ)∆
2(Λ) , (A.4)
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Where the expression outside the integral in the last line is the result of

the integration over the unitary group. One can see that indeed J(Λ, U) =

J(Λ) = ∆2(λ). We now seek an explicit form for ∆2(Λ). First of all, we express

the unitary matrix U by some exponential of an anti-hermitian matrix A.

Thereafter:

U = e−A and A† = −A ,

U †ΛU = eAΛe−A = Λ + [A,Λ] +
1

2
[A, [A,Λ]] + · · · , (A.5)

Then:

(U †ΛU − Λ)ij = AikΛkj − ΛilAlj ,

= (λjAikδkj − λiAljδil) =
(
λj − λi

)
Aij , (A.6)

Where we have used the relation Λij = λiδij. With this result we can find an

explicit expression for the Jacobian:

∆−2(λ) =

∫ N∏

i<j

d(ReAij)d(ImAij)δ
[
Re
{
(λj − λi)Aij

}]
δ
[
Im
{
(λj − λi)Aij

}]

=
N∏

i<j

(∫
dAij δ

[
(λj − λi)Aij

])2

. (A.7)

Using a property of the Dirac’s delta function:

δ
[
(λj − λi)Aij

]
= δAij

∣∣∣∣
d

dAij

[
Aij(λj − λi)

]∣∣∣∣
−1

, (A.8)

We understand that,

N∏

i<j

(∫
dAij

δAij∣∣λj − λi

∣∣

)2

=
N∏

i<j

(∫
dAijδAij

)2∣∣λj − λi

∣∣−2
, (A.9)

Yielding,

∆(λ) =
N∏

i<j

(
λj − λi

)
. (A.10)

The above expression is known to be the Vandermonde’s determinant, given

by:
∆(λ) = det(λj

i ) . (A.11)

Now we are able prove the equivalence between (A.10) and (A.11) . The

procedure consists of applying the property of matrices which assures they

do not change under linear combinations of either columns or arrows. The

determinant is written as

DBD
PUC-Rio - Certificação Digital Nº 1222132/CA



Appendix A. Vandermonde’s determinant 65

det(λj
i ) =

∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λn−2
1 λn−1

1

1 λ2 · · · λn−2
2 λn−1

2

1 λn−1 · · · λn−2
n−1 λn−1

n−1

1 λn · · · λn−2
n λn−1

n

∣∣∣∣∣∣∣∣∣∣

.

We can then apply the property needed: one multiplies the first column by

(−λ1) and then sum it to the second. If we do the same to all other columns,

we obtain

det(λj
i ) =

n∏

p=2

(λp − λ1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ2 · · · λn−3
2 λn−2

2

1 λ3 · · · λn−3
3 λn−2

3
...

...
. . .

...
...

1 λn−1 · · · λn−3
n−1 λn−2

n−1

1 λn · · · λn−3
n λn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus, we can use mathematical induction to go further, that is:

det(λj
i ) =

n∏

p2=2

· · ·
n∏

pn=n

(λp2 − λ1) · · · (λpn − λn−1) ,

=
∏

1≤i<j≤n

(λj − λi) =
∏

i<j

(λj − λi) . (A.12)
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B

Matrix integrals

In this appendix we shall prove that (2.17) and (2.19) holds. We start with the

average of a new object, precisely:

〈epkxk〉 = 1

Z0

∫ +∞

−∞
dxk e

−x2
k
2 epkxk , Z0 =

√
2π . (B.1)

We want to find a connection between (B.1) and (2.17). First we take the

derivative of (B.1) relative to pi:

∂

∂pi
〈epkxk〉 =

1

Z0

∫ +∞

−∞
dxk e

−x2
k
2

(
xk

∂pk
∂pi

epkxk

)
,

=
1

Z0

∫ +∞

−∞
dxk e

−x2
k
2 xkδki e

pkxk . (B.2)

We take the derivative once again, only that this time it will be relative to pj :

∂

∂pj

∂

∂pi
〈epkxk〉 =

1

Z0

∫ +∞

−∞
dxk e

−x2
k
2 xi

(
xk

∂pk
∂pj

epkxk

)
,

=
1

Z0

∫ +∞

−∞
dxk e

−x2
k
2 xixkδkj e

pkxk ,

=
1

Z0

∫ +∞

−∞
dxk e

−x2
k
2 xixj e

pkxk . (B.3)

Well, it is straightforward to see that if we set pk = 0 we recover the two-point

average is recovered, that is (see (2.16)):

∂

∂pj

∂

∂pi
〈epkxk〉

∣∣∣∣
pk=0

=
∂

∂pj

∂

∂pi
ep

2
k
/2

∣∣∣∣
pk=0

= 〈xixj〉 . (B.4)

Therefore:

∂

∂pj

(
pk

∂pk
∂pi

)
ep

2
k
/2

∣∣∣∣
pk=0

=
∂

∂pj

(
pkδki

)
ep

2
k
/2

∣∣∣∣
pk=0

=
∂pk
∂pj

δki , (B.5)

Ergo,
〈xixj〉 = δkiδjk = δij , (B.6)

Which assures that (2.17) holds. Now we apply this method to matrices. It is

easy to check the following,
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〈etrSM〉 = 1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

etrSM = eS
2/2N (B.7)

Once more, we perform the derivatives:

∂

∂Sij

〈etrSM〉 = 1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

(
∂

∂Sij

etrSM
)

, (B.8)

Notice that,
tr(SM) =

∑

a

SabMba , (B.9)

Yielding:

∂

∂Sij

〈etrSM〉 =
1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

(
Mba

∂Sab

∂Sij

etrSM
)

,

=
1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

(
Mbaδajδbi e

trSM

)
. (B.10)

Taking another derivative (respective to Skl) we acquire:

∂

∂Skl

∂

∂Sij

〈etrSM〉 =
1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

(
Mbaδajδbi

)(
Mba

∂Sab

∂Skl

etrSM
)

,

=
1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

(
Mbaδajδbi

)(
Mbaδalδbk

)
etrSM ,

=
1

Z0

∫ +∞

−∞
dM e−

N
2
trM2

MijMkl e
trSM , (B.11)

Thereupon,

∂

∂Skl

∂

∂Sij

〈etrSM〉
∣∣∣∣
S=0

=
∂

∂Skl

∂

∂Sij

eS
2/2N

∣∣∣∣
S=0

= 〈MijMkl〉 . (B.12)

It follows (we write S2 = SijSjq),

〈MijMkl〉 =
∂

∂Skl

[
1

2N

(
Sjq + Sij

∂Sjq

∂Sij

)
eS

2/2N

]

S=0

,

=
1

2N

∂

∂Skl

[(
Sjq + Sijδqi

)
eS

2/2N

]

S=0

,

=
1

2N

(
∂Sjq

∂Skl

+
∂Sij

∂Skl

δqi

)
=

1

2N

(
δjlδqk + δikδjlδqi

)
,

=
1

2N

(
δjlδik + δikδjl

)
=

1

N
δikδjl , (B.13)

Showing that (2.19) holds as well.

DBD
PUC-Rio - Certificação Digital Nº 1222132/CA



C

Orthogonal polynomials formulas

In this appendix we prove that equations (4.40) and (4.45) holds. Afterwards,

we shall compute the free energy for different potentials and find the explicit

form of a2e, a
2
l , se(1), sl(1) as well.

C.1

Partition function from recursion relations

It is possible to express the elements of the matrix in terms of each polynomial

Pn(λ). Using the property of matrices in which adding columns to another

column does not change the determinant, we rewrite the Vandermonde’s

determinant (Appendix A):

∆(λ) =

∣∣∣∣∣∣∣∣∣∣

P0(λ1) P1(λ1) · · · Pn−1(λ1)

P0(λ2) P1(λ2) · · · Pn−1(λ2)
...

...
. . .

...

P0(λn) P1(λn) · · · Pn−1(λn)

∣∣∣∣∣∣∣∣∣∣

= det

(
Pj−1(λi)

)
.

Now we should revise the partition function with the help of orthogonal poly-

nomials. To do that one has first to compute the Vandermonde’s determinant

in the polynomial fashion. We start with determinant definitions:

det

(
Pj−1(λi) = ǫi1···inV1i1 · · ·Vnin = ǫi1···inPi1−1(λ1) · · ·Pin−1(λn) . (C.1)

Plugging it into (A.4) (Recall A.12), we acquire:

Z =
1

N !(2π)N

∫ N∏

i=1

dλif(λ)

[
ǫi1i2···iN

N∏

k=1

Pik−1(λk)

]2
, (C.2)

Which can be rewritten as

=
1

N !

∫ N∏

i=1

dλi

2π
f(λ)

[
ǫi1i2···iN

N∏

k=1

Pik−1(λk)ǫ
j1j2···jN

N∏

k=1

Pjk−1(λk)

]
,

=
1

N !
ǫi1i2···iN ǫj1j2···jN

[∫ N∏

k=1

dλk

2π
f(λ)Pik−1(λk)Pjk−1(λk)

]
, (C.3)
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After careful algebra we find (because ǫi1i2···ikǫi1i2···ik = k!):

Z =
1

N !

[
ǫi1i2···iN ǫi1i2···iN

N∏

k=1

hik−1

]
=

N∏

k=1

hik−1 . (C.4)

Applying (4.36) to the above result we obtain:

Z =
N−1∏

i=1

hi = hN
0

N∏

i=1

rN−i
i . (C.5)

C.2

String equations

We have found a better way to compute the partition function using the

orthogonal polynomials. So, is necessary to figure out some sort of equation in

which ri can be found. From basic properties of the polynomials one can see

that:
λP ′

n(λ) ∼ nλn
∴

∫
dµλP ′

n(λ)Pn(λ) = nhn . (C.6)

From (4.36) we obtain,

rn

∫
dµP ′

n(λ)Pn−1(λ) = nhn . (C.7)

One quickly realizes that the following relations holds:
∫

dλf(λ)Pn−1Pn = 0 ,
d

dλ

[ ∫
dλf(λ)Pn−1Pn

]
= 0 . (C.8)

Thus,
∫

dλf ′(λ)Pn−1Pn = −
∫

dµPn−1P
′
n . (C.9)

Another relations we want to mention are:

d

dλ

[ ∫
dλf(λ)Pn(λ)Pn(λ)

]
=

dhn

dλ
= 0 ,

∫
dλf ′(λ)Pn(λ)Pn(λ) = 0 (C.10)

We rewrite (C.7) and (C.10) as:

nhn = rn

∫
dλPn−1(λ) f

′(λ)Pn(λ) ,

0 =

∫
dλPn(λ) f

′(λ)Pn(λ) . (C.11)

These are the string equations. In order to match (4.45) one simply has to

choose f(λ) = e−(N/t)V (λ).
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Figure C.1: Free Energy of a Gaussian potential.

C.3

Free energy

In this section we aim to find the free energy for a particular choice of the

potential V (λ). Hereinafter, we shall use the string equations and the recursion

relations, in such a way that we find an expression for rn. We start with the

simplest one, the Gaussian potential:

nhnt

N
= rn

∫
dµ
(
λPn−1(λ)

)
Pn(λ) ,

= rn

∫
dµ
(
Pn + rn−1Pn−2

)
Pn = rnhn , (C.12)

Therefore,

lim
N→+∞

rn = r(ξ) = ξt , (C.13)

Applying (C.13) unto (4.44) we acquire:

F0(t) =

∫ t

0

dr (t− r) lnr =
t2

4

(
2lnt− 3

)
, (C.14)

Whose behaviour is depicted in figure C.1. For a quartic potential of the form

V (λ) = 1
2
λ2 − 1

4
gλ4 the string equation reads:

ξn
hn

rn
t =

∫
dµ
(
Pn + rn−1Pn−2

)
Pn − g

∫
dµ

[(
Pn+1 + rnPn−1

)
×

(
Pn+1 + (rn + rn−1)Pn−1 + rn−1rn−2Pn−3

]
,

= hn − g
[
hnrn+1 + (rn + rn−1)hn

]
, (C.15)

Being simplified as:

ξnt = rn − grn
(
rn+1 + rn + rn−1

)
. (C.16)
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Now we apply the large-N limit and obtain:

ξt = r(ξ)
(
1− 3gr(ξ)

)
. (C.17)

Consequently:

r2 − 1

3g
r +

t

3g
ξ = 0 ∴ r(ξ) =

1

6g

(
1±

√
1− 12gtξ

)
.

We are now obligated to choose the exact intervals of integration in (4.44),

since both r(1) and r(0) admit two different values. The way to decide this is

by noticing that when g goes to zero those intervals must converge back to the

ones of the Gaussian potential. Ergo:

lim
g→0

r(1) = lim
g→0

1 +
√
1− 12gt

6g
= +∞ or lim

g→0

d
dg

(
1−√

1− 12gt
)

d
dg

(
6g
) = t .

One could rather take the limit for r(ξ) when g approaches zero and check if

(C.13) would be recovered. Indeed we have:

lim
g→0

r(ξ) = ξt ⇔ r(ξ) =
1−

√
1− 12gξt

6g
. (C.18)

It follows:

F0(t) =

∫ 1−
√

1−12gt
6g

0

dr (t− r + 3gr2)(1− 6gr) lnr . (C.19)

The free energy of the quartic potential can be written as:

F0(t) =
1

432g2

{
54g2t2

[
4ln

(
1−√

1− 12gt

6g

)
− 3

]
+

[
1− 36gt+ (30gt− 1)

√
1− 12gt

]}
. (C.20)

We are ready to study odd potentials as it is clear that the recursion relations

are a little bit different in this case. Let us analyse what happens for a general

cubic potential:

ξn
hn

rn
t =

∫
dµPn−1

d

dλ

(
g1λ+

1

2
λ2 +

1

3
g3λ

3
)
Pn ,

Leading to

ξnt = rn

[
1 + g3(sn + sn−1)

]
.
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Figure C.2: Free Energy for a quartic potential.

The second recursion relation comes from the second string equation, as follows:

0 = g1

∫
dµPnPn +

∫
dµ
(
λPn

)
Pn + g3

∫
dµ
(
λPn

) (
λPn

)
,

Thus,

0 = g1 + sn + g3
(
rn+1 + rn + s2n

)
.

In the large-N limit the two string equations become:

ξt = r(ξ)

[
1 + 2g3s(ξ)

]
; 0 = g1 + s(ξ) + g3

[
2r(ξ) + s2(ξ)

]
. (C.21)

We now solve the second equation for s(ξ):

g3s
2 + s+

(
2g3r + g1

)
= 0 ∴ s = − 1

2g3

[
1±

√
1− 4g3

(
2g3r + g1

)]
,

The solution is,

s(ξ) = − 1

2g3

[
1−

√
1− 4g3(2g3r + g1)

]
. (C.22)

Now we are able to perform (4.44). First, we isolate r(ξ), yielding:

ξ =
r

t

√
1− 4g3(2g3r + g1) ; 8g23r

3 + (4g1g3 − 1)r2 + ξ2t2 = 0 . (C.23)
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There are three solutions, namely:

r± =
(1− 4g1g3)

24g23
− (1± i

√
3)(1− 4g1g3)

2

48g23
3

√
γ +

√
γ2 − 4(1− 4g1g3)6

−

(1∓ i
√
3) 3

√
γ +

√
γ2 − 4(1− 4g1g3)6

48g23
,

r(0) =
(1− 4g1g3)

24g23
+

(1− 4g1g3)
2

24g23
3

√
γ +

√
γ2 − 4(1− 4g1g3)6

+

3

√
γ +

√
γ2 − 4(1− 4g1g3)6

24g23
,

γ = 1− 12g1g3 + 48g21g
2
3 − 64g31g

3
3 − 864g43ξ

2t2 . (C.24)

After carefully taking the limit of all three solutions, turns out that

lim
g3,g1→0

r±(ξ) = ±i
√

−ξ2t2 ,

lim
g3,g1→0

r(0)(ξ) = ∞ , (C.25)

As a result,

lim
g3,g1→0

r(ξ) = 0 ⇒ r(ξ) = r−(ξ) . (C.26)

Notice that r− is the only solution that plugged into (C.23) also satisfies the

condition in which s vanishes for g1 = g3 = 0. For the DT potential we would

have g1 = 0 and g3 = −g, implying:

lim
g→0

r
−(ξ) = 0 ⇒ r ≡ lim

g1→0
r(ξ)

∣∣
g3=−g

. (C.27)

The DT free energy can be found by,

F0(t) =

∫
r
−

0

dr
(t− r

√
1− 8g2r)(1− 4g2 − 8g2r)√

1− 8g2r
lnr , (C.28)

Moreover, we set g1 = g3 = −g to find the free energy in CDT:

F0(t) =

∫ r−

0

dr
(t− r

√
1− 4g2 − 8g2r)(1− 8g2 − 8g2r)lnr√

1− 4g2 − 8g2r
(C.29)

Furthermore, the values for the functions r and s are:

se(1) =
1

2g
− (1 + i

√
3)

4 3
√
α1

− (1− i
√
3) 3
√
α1

12g2
, (C.30)
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Figure C.3: Free Energies of all four potentials with a fixed parameter g = 1.

a2e =
1

6g2
− (1− i

√
3)

12g2 3
√
α2

− (1 + i
√
3) 3
√
α2

12g2
, (C.31)

α1 = 108g5t+3
√
3 3
√
432g10t2 − g6 ; α2 = 1−864g4t2+

√
(1− 864g4t2)2 − 1 ,

sl(1) =
1

2g
+

(1 + i
√
3)(1− 4g2)

4 3
√
γ1

− (1− i
√
3) 3
√
γ1

12g2
, (C.32)

a2l = (1− 4g2)6g2 − (1− i
√
3)(1− 4g2)2

12g2 3
√
γ2

− (1 + i
√
3) 3
√
γ2

12g2
, (C.33)

γ1 = 108g5t+ 3
√
3 3
√

432g10t2 − g6(1− 4g2)3 ,

γ2 = 1−12g2+48g4−64g6−864g4t2+
√

(1− 864g4t2)2 − 1 + 1728 t2(12g6 − 48g8 + 64g10) .
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Figure C.4: On the top we see the Gaussian distribution, while the quartic
distribution is shown on the bottom.
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D

Critical points

In this short appendix we show how to find the critical value of g in DT. Often

it is important to find the critical values of the couplings, especially of the gi

encountered within the potential of eigenvalues V (λ). Consider the potential

equivalent of a dynamical triangulation V = 1
2
λ2− g

3
λ3. For such potential the

string equations are

gξ = gr(1− 2gs) ; gr =
1

2
(s− gs2) . (D.1)

We make an expansion around the critical point of s = s(ξ), such that

(remember that the critical value of ξ is 1)

W (s) ≡ gξ = gc +W ′(sc)(s− sc)
2 + · · · , (D.2)

On the other hand,

W (s) =
1

2
(s− gs2)(1− 2gs) =

1

2
(s− 3gs2 + 2g2s3) . (D.3)

Because we are dealing with only one critical point, it is required that W ′(sc)

be equal to zero (D.2). Once this is imposed we arrive at

s2c −
1

gc
sc +

1

6g2c
= 0 ∴ sc =

3±
√
3

6gc
. (D.4)

Plugging the previous solution into the second part of (D.1) we obtain

rc =
1

2gc
(sc − gs2c) =

1

12g2c
. (D.5)

We return once again to (D.1), Note that the role g in the first part is merely a

trick (not the g inside the bracket). Removing it and approaching the critical

point as well as bearing in mind (D.4), one acquires

1 = rc(1− 2gcsc) ∴ rc = ∓
√
3 , (D.6)

And because gc is real and having in mind (D.5), yields

gc =
1

2 · 33/4 , sc =
3−

√
3

6gc
. (D.7)
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