PUC-RIo - Certificacdo Digital N° 1312388/CA

p) DL §
PONTIFICIA UNIVERSIDADE CATOLICA @ =)
DO RIO DE JANEIRO ‘%\

s
a
l%
eraws)

Marcelo Garnier Mota

EXPLORING STRUCTURED INFORMATION
RETRIEVAL FOR BUG LOCALIZATION
IN C# SOFTWARE PROJECTS

Dissertacdo de Mestrado

Dissertation presented to the Programa de P6s-Graduacao
em Informatica, of the Departamento de Informética do
Centro Técnico Cientifico da PUC-RiIo, as patrtial fulfillment
of the requirements for the degree of Mestre.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
September 2016

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

p) DL §
PONTIFICIA UNIVERSIDADE CATOLICA @ =)
DO RIO DE JANEIRO ‘%\

%

Marcelo Garnier Mota

Exploring structured information retrieval for
bug localization in C# software projects

Dissertation presented to the Programa de Pos-Graduacao
em Informatica, of the Departamento de Informética do
Centro Técnico Cientifico da PUC-RiIo, as patrtial fulfillment
of the requirements for the degree of Mestre.

Prof. Alessandro Fabricio Garcia
Advisor
Departamento de Informética — PUC-Rio

Prof. Arndt von Staa
Departamento de Informética — PUC-Rio

Prof. Carlos José Pereira de Lucena
Departamento de Informética — PUC-Rio

Prof. Marcio da Silveira Carvalho
Coordinator of the Centro Técnico Cientifico — PUC-Rio

Rio de Janeiro, September 16", 2016

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

All rights reserved.

Marcelo Garnier Mota

Marcelo Garnier received a Technologist degreenfarinatics

from the Federal Center of Technological Educa(l©@BFET) in

2002 and a BSc degree in Civil Engineering from S8tate

University of Northern Rio de Janeiro (UENF) in 30(He

currently works as a software architect for PetvOBrasileiro

S.A. (Petrobras), where he works since 2004. Duhigperiod,

he occupied various positions in the software dgwekent field,

such as quality assurance analyst, scrum mastkdeselopment
team lead. His research interests include softmaiatainability,

code quality, static analysis, and software metrics

Bibliographic data

Mota, Marcelo Garnier

Exploring structured information retrieval for bug
localization in C# software projects / Marcelo Garnier Mota;
advisor: Alessandro Fabricio Garcia. — 2016.

91f. :il. color.; 30 cm

Dissertacdo (mestrado) — Pontificia Universidade
Catodlica do Rio de Janeiro, Departamento de Informatica,
2016.

Inclui bibliografia.

1. Informatica — Teses. 2. Defeitos. 3. Localizacdo de
defeitos. 4. Recuperagdo de informacdo. |. Garcia,
Alessandro Fabricio. Il. Pontificia Universidade Catélica do
Rio de Janeiro. Departamento de Informatica. Ill. Titulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

To Cibele, for her love and continued support.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

Acknowledgments

| thank all the professors from the Informatics Bxement at PUC-Rio for
their contribution to my education. | also thanlkofPrClevi Rapkiewicz, Prof.
Marcelo Feres, and Prof. Rogério Atem, for theimtdbutions during my
graduation.

| thank Petroleo Brasileiro S.A. (Petrobras), forahcially supporting my
studies. | specially thank my teammates at Petsolmraassuming my tasks during
my absences.

I warmly thank my colleagues at the Opus Researohs; for their valuable
contributions during our meetings and rehearsalsrelver, | thank for the
fellowship. | will fondly remember the good timgsesit at the lab.

| am enormously grateful to my advisor, Prof. Ass$ro Garcia. | thank, in
first place, for the opportunity to join his resgaigroup, in spite of my schedule
limitations. In addition, | thank for his enthusiaswhich helped me to keep
motivated. | also thank him for his tireless put$ar excellence, which raised the
quality of my work to a higher level. Finally, 1ahk for his understanding and
patience, particularly when I could not keep uphwiis breathtaking pace.

| thank my parents, José Carlos and Maria Elenasdpporting me and for
having strived to provide me the best possible atioic since my childhood.

| thank my children, Lara, Guilherme, Lucas, antigée They are sources of
inspiration, motivation, and happiness. | thanka_&or her precious help, taking
good care of Felipe while | was busy. Moreovemiriensely thank Guilherme and
Lucas for understanding when their dad could nay plith them.

Finally, | thank my wife, Cibele, for... everythinty.is hard to find the right
words to express how much | owe to her. Withoutsugaport, this work would not
be possible. Thank you for finding strength to eedhese troubled times, and for

always being there for me.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

Abstract

Mota, Marcelo Garnier; Garcia, Alessandro Fabr{édvisor). Exploring
structured information retrieval for bug localization in C# software
projects. Rio de Janeiro, 2016. 91p. MSc. Dissertation pdd@mento de
Informatica, Pontificia Universidade Catolica do/Re Janeiro.

Software projects can grow very rapidly, reachingdreds or thousands of
files in a relatively short time span. Thereforgmually finding the source code
parts that should be changed in order to fix a isug difficult task. Static bug
localization techniques provide effective meandimding files related to a bug.
Recently, structured information retrieval has begsed to improve the
effectiveness of static bug localization, beingcassfully applied by techniques
such as BLUIR, BLUiR+, and AmalLgam. However, themee significant
shortcomings on how these techniques were evalu@ediR, BLUIR+, and
Amalgam were tested only with four projects, altfeém structured with the same
language, namely, Java. Moreover, the evaluatidtisese techniques (i) did not
consider appropriate program versions, (ii) incthdeug reports that already
mentioned the bug location, and (iii) did not exiduspurious files, such as test
files. These shortcomings suggest the actual effaatss of these techniques may
be lower than reported in recent studies. Furthegmbere is limited knowledge
on whether and how the effectiveness of these-sfatge-art techniques can be
improved. In this dissertation, we evaluate thed¢haiforementioned techniques on
20 open-source C# software projects, providing gordus assessment of the
effectiveness of these techniques on a previoudsted object-oriented language.
Moreover, we address the simplistic assumptions nconty present in bug
localization studies, thereby providing evidence hmw their findings may be
biased. Finally, we study the contribution of difiet program construct types to
bug localization. This is a key aspect of how dtrted information retrieval is

applied in bug localization. Therefore, understagdhow each construct type

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

influences bug localization may lead to effectiv@némprovements in projects
structured with a specific programming languagehsas C#.

Keywords

Bugs; bug localization; information retrieval.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

Resumo

Mota, Marcelo Garnier; Garcia, Alessandro Fabriciéxplorando
recuperacao de informacéo estruturada para localizgéo de defeitos em
projetos de software C#Rio de Janeiro, 2016. 91p. Dissertacédo de Mestrad
— Departamento de Informatica, Pontificia Univeasiel Catélica do Rio de
Janeiro.

Projetos de software podem crescer rapidamentan@ado centenas ou
milhares de arquivos num periodo relativamenteocitortanto, torna-se dificil a
tarefa de encontrar partes do codigo-fonte que rdeser modificadas para
consertar um defeito. Técnicas de andlise est@tica localizacdo de defeitos
fornecem um meio eficaz de encontrar arquivos i@mbacios a um defeito.
Recentemente, recuperacdo de informacédo estrutwamiasendo usada para
aumentar a eficacia de localizagcéo estética detdgfsendo aplicada com sucesso
por técnicas como BLUIR, BLUIR+ e AmaLgam. No entarexistem limitagdes
significativas na maneira como essas técnicas faratiadas. BLUIR, BLUIR+ e
AmalLgam foram testadas em apenas quatro projetss tles estruturados com
a mesma linguagem, Java. Adicionalmente, as adaéadessas técnicas (i) ndo
consideraram versdes apropriadas dos progranjaacl(iiiram relatérios de falhas
que ja mencionavam a localizacdo do defeito, ¢ ifiio excluiram arquivos
espurios, como arquivos de teste. Essas limitagbgerem que a eficacia real
dessas técnicas seja menor do que o informadotedosgecentes. Além do mais,
hé limitagbes no conhecimento sobre se e coma&cididessas técnicas do estado-
da-arte pode ser aumentada. Nesta dissertacacavafiamos as trés técnicas
supracitadas em 20 projetos C# de codigo abertoedendo uma avaliacdo
rigorosa da eficacia dessas técnicas numa linguagentada a objetos ndo testada
anteriormente. Além disso, ndés enderecamos 0s ypes®s simplistas
comumente presentes em estudos de localizacaofeigogefornecendo assim
evidéncias sobre como seus achados podem ser amhysesFinalmente, noés

estudamos a contribuicdo de diferentes tipos dstadns de programa para a

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

localizacdo de defeitos. Este é um aspecto-chaermea como recuperacéo de
informacéo estruturada é aplicada em localizacadedfieitos. Portanto, entender
como cada tipo de construto influencia a localipadé& defeitos pode levar a
melhorias na eficacia em projetos estruturados loguagens de programacao

especificas, como C#.

Palavras-chave

Defeitos; localizacéo de defeitos; recuperacamfitemacao.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

Summary

1 Introduction

1.1 Problem statement

1.2 Limitations of related work

1.2.1 Biased evaluations

1.2.2 Limited effectiveness

1.2.3 Unknown contribution of constructs
1.3 Goals and research questions

1.4 Dissertation outline

2 Background

2.1 Bug localization

2.1.1 Overview

2.1.2 Dynamic techniques

2.1.3 Static techniques

2.2 Information retrieval

2.2.1 Overview

2.2.2 Vector Space Model

2.2.3 Effectiveness metrics

2.3 Information retrieval-based bug localization techniques
2.3.1 BuglLocator

2.3.2 BLUIR and BLUIR+

2.3.3 AmalLgam

2.3.4 Discussion of the techniques
2.4 Conclusion

3 Evaluation of bug localization techniques
3.1 Goal and research questions

3.2 Evaluation metrics

3.3 Project selection

3.4 Dataset preparation

3.4.1 Version selection

15
17
18
18
20
21
22
24

25
25
25
27
28
28
28
29
31
32
34
35
36
38
39

40
41
43
43
45
45

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

3.4.2 Bug report selection
3.4.3 Source file selection
3.5 Model adaptation

3.6 Results

3.6.1 Effectiveness of structured IR-based bug localization in C#

projects

3.6.2 Usage of more constructs to improve bug localization
effectiveness

3.7 Threats to validity
3.7.1 Construct validity
3.7.2 External Validity
3.8 Conclusion

46
46
47
49

49

54
56
56
57
58

4 Analysis of the contribution of program constructs to bug localization60

4.1 Motivation

4.2 Analysis setup

4.3 Contribution of program constructs

4.3.1 Variances of principal components

4.3.2 Constructs associated with principal components
4.4 Effects of constructs on bug localization results
4.4.1 Suppression of low-contributing constructs

4.4.2 Emphasis on most contributing constructs

4.5 Conclusion

5 Conclusion

5.1 Findings

5.1.1 Usage of constructs

5.1.2 Influence of constructs

5.1.3 Weighted similarity calculation

5.2 Contributions

5.2.1 Alternatives to increase bug localization effectiveness
5.2.2 First bug localization study using C#

5.2.3 Replication package

5.3 Future work

References

61
62
65
65
67
71
71
72
75

77
78
79
79
80
81
81
82
82
83

86

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

List of figures

Figure 1 — Effectiveness of the techniques with C# projects

Figure 2 — Effectiveness of techniques with C# projects — Non-
prepared vs. prepared data

Figure 3 — Effectiveness of construct mapping modes
Figure 4 — Variance corresponding to each principal component
Figure 5 — Correlation between variables and principal components

51

53
55
65
67

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

List of tables

Table 1 — TF-IDF calculation

Table 2 — Dataset comparison

Table 3 — List of C# constructs

Table 4 — Construct-mapping strategies

Table 5 — C# and Java results — Average MAP

Table 6 — C# and Java results — Minimum and maximum project
MAP

Table 7 — Effect of dataset preparation steps on bug localization —
MAP

Table 8 — AmalLgam effectiveness with dataset preparation steps

Table 9 — Effectiveness of AmalLgam using different construct-
mapping modes — MAP

Table 10 — Sample of the input for principal component analysis
Table 11 — Descriptive statistics for PCA input — MAP

Table 12 — Distribution of variance through the principal components
Table 13 — Effect of the suppression of interface names — MAP

Table 14 — Effect of applying higher weights to method and class
names — MAP

Table 15 — Effect of combining higher weights on method and class
names — MAP

31
44
47
48
50

50

52
54

55
63
64
66
72

74

75

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

But | still haven't foun
What I'm looking for...

U2, 1 Still Haven't Found What I'm Looking For

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

1
Introduction

Softwarefailuresrepresent a serious concern for developers anctanaers.

A failure occurs when a system does not perform a requinectibn according to
its specification [1]. It is widely known that tlhegter a failure occurs, the higher the
cost to fix it. Software failures are causeddefectan the source code. defectis

a problem in the source code that, if not correctedid cause an application to
either fail or produce incorrect results [1]. THere, effectively identifying and
removing defects associated with failures is a ineutactivity to software
maintainers.

Despite their different meanings, both defects &mblires are popularly
referred to adugs|[2] [3] [4] [5]. When bugs occur in a software sy, they are
usually reported to a developer or development tdaach report, colloquially
called abug report contains information about the circumstanceshictvthe bug
occurred (Section 2.1.1). This information is ubgdievelopers to investigate and
fix the bug. In order to fix a bug, one must fikebw where in the source code it is
located. The activity of locating the portion oéthource code that must be modified
to fix a bug using information from a bug reportaledbug localization2].

Manual bug localization is a painstaking actividy.[Therefore, effective
methods for automatically locating bugs from bugorgs are highly desirable [4],
as they would reduce software maintenance eff¢rtf8tomated techniques for
static bug localization have been a popular resetopic [3] [4] [5] [6] [7] and
attracted the attention of many well-known softwawenpanies, such as Google [8]
and Microsoft [9]. Static bug localization techneguhave the benefit of being
applicable at any stage of the software developmpemtess [2]. Differently from
dynamic techniques, they do not require large sesies, which are often not
available [10] [11]. Thus, static bug localizatiechniques are more flexible, as
they can be applied to a wider range of scenasias) as legacy software systems

where automated test suites were not originallyiémented.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

16

To foster the process of effectively identifyingisoe code that is relevant to
a particular bug report, a number of techniquesehbgen developed using
information retrieval models, such as Latent Dirichlet Allocation (LDR],
Vector Space Model (VSM)[3], Latent Semantic Armsady (LSA)[12],
Clustering [12], and various combinatiomsformation retrieval(IR) consists of
finding documents within a collection that matchsearch query [13]. The IR
approach to bug localization generally consistsazting source files as documents
and bug reports as queries. Source files that share terms with the bug report
are ranked as having a higher probability of conta the bug. The effectiveness
of bug localization techniques is commonly measusgdtheir ability to rank
potentially buggy files at the first positions oligt (Section 2.2.3).

Recently, structured information retrieval has also been used for bug
localization [4] [5]. Traditional information regval handles documents as a “bag
of words” [13], meaning that every term in the doeunt is indistinctly computed,
regardless of its position, order, or function ime tdocument. Conversely,
structured IR splits a document according to raietfialds or zones [13]. Applying
this principle to the bug localization domain, stired IR-based techniques map a
set of prograntonstructs such as class and variable names [4] [5], to mhecu
fields. This principle allows the techniques togalalifferent emphasis on different
program constructs in order to calculate textuailarity.

Bug localization techniques based on structuredrimétion retrieval, such
as BLUIR [4] and AmaLgam [5], have shown improvemsesver other traditional
IR approaches (Section 2.3). BLUIR [4] and AmalLdainare currently the best-
performing IR-based bug localization techniqueslalie (Section 2.3). In spite of
the promising results, these studies contain sgamf shortcomings. BLUIR and
AmalLgam have been evaluated in only four projectglemented in a single
programming language (namely, Java), and underealistic experimental setups
(Section 3.4). For instance, these studies [4]ifielude in their effectiveness
evaluation bug reports that already mention theatlon of the bug in their
description. Developers are unlikely to benefitnfrthe assistance of automated
techniques to localize this kind of bug. Moreovauch bug reports have been
shown to influence bug localization results [14jeTefore, they should be removed

from effectiveness evaluations of bug localizatimethniques (Section 3.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

17

Additionally, these techniques need to be evaluated higher number of projects,
structured in languages other than Java.

1.1
Problem statement

Although IR-based bug localization has been anvacatesearch topic in
recent years (e.g., [2] [3] [4] [5] [6] [7] [10] & [14] [15]), techniques based on
this approach are still not widely used in pracfid@. A significant part of the
effort spent to contribute to the state-of-thekarbug localization is concentrated
on the development of new, more effective techrsqieeg., [2] [3] [4] [5] [6] [7]
[12] [15]), although only a few of the mentioneddies are dedicated to structured
IR [4] [5] [15]. Another thread discusses practieabects of incorporating such
techniques into developers’ workflows [10] [16].tms dissertation, we focus on
the first thread, as there are significant shoriogs on how some of these
techniques [4] [5] were evaluated.

First, the experimental setups of these studiefSj4hdopt non-realistic
assumptions, which add bias to the evaluation eftéthniques (Section 1.2.1).
Thus, the techniqgues may be less effective tharorteg (Section 1.2.2).
Furthermore, there is still limited understanding low structured information
retrieval can be used to further increase the 1{gdes’ effectiveness
(Section 1.2.3). Particularly, we explore the ieftige of program constructs — a key
aspect of structured information retrieval appltedbug localization — on bug
localization effectiveness.

Next, we summarize the problem addressed in tlssediation in a single
statement, followed by further discussion in Sectid.

Bug localization techniques based on structuredrinftion retrieval
have been evaluated under non-realistic experimesetaps,
which suggests they might be less effective thaorted, and there is
limited knowledge on how to use structured inforaratetrieval to

increase their effectiveness.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

18

1.2
Limitations of related work

This section discusses shortcomings of recent efudn IR-based bug
localization. First, we highlight important issueghe experimental setup of recent
evaluations that may be skewing reported resuktst,Nve discuss to which extent
current effectiveness of IR-based bug localizatechniques allows them to be
used in practice. Finally, we discuss how speahfaracteristics of structured IR
could be applied to bug localization in order topmowve bug localization

effectiveness.

1.2.1
Biased evaluations

The evaluation of a bug localization technique $th@im to reproduce, to
the maximum possible extent, the actual scenariergvthe techniques might be
used in practice. This scenario involves the predeowed by a development
team to fix a reported bug. The team would retridneesource code from the version
of the program where the problem occurred and lmokthe bug, based on the
information provided by the bug report. If this onfhation includes program
elements, such as a class or a method name, dev&hpuld probably start their
investigation by opening the file containing thentiened element. However, if
such information is not present, developers mighsaer using an automated bug
localization technique to generate a list of fiegentially related to the bug. We
will see, however, that current bug localizatioohteiques fail to include these
premises in their experimental setup, thus biagieg evaluations.

Previous studies on IR-based bug localization pi@Vittle or no information
about the version of the project that is used gatirio the bug localization
technigue. In many studies, as Rao and Kak [17]tpmit, researchers have merely
chosen a single version of the project and runlabalization algorithm for all
available bug reports on that same version. Howevegorous evaluation of bug
localization effectiveness should consider the eppate project version, i.e., the
version where the bug actually occurred, for e\mrg report under analysis [17].
Thus, the version where each bug occurred shoul@teemined and corresponding

source code obtained before performing bug locaimaWithout this step, there

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

19

is a high chance that the bug is not even presetitecode being analyzed. Any
result obtained in these cases would be randomtlausl, useless.

Another shortcoming of previous studies involvesatiMiochhar et al. [14]
call localized bug reportsi.e., bug reports that already contain refererioetbe
files containing the bug on its own descriptione3$é bug reports shoutwbt be
considered in the evaluation of bug localizationhteques for the following
reasons. First, they artificially increase the difgeeness of the techniques [14].
Localized bug reports accounted for 54% of the mpprts studied in [14], and
49% in our own study (Section 3.4.2). Therefore, iticidence of localized bug
reports cannot be overlooked, as it significantifluences bug localization
results [14]. Second, it is unlikely that develap@ould even need assistance from
an automated technique to localize such bugs. Asg®aal. point out, when a bug
report mentions a program entity, developers usen&gme as a keyword for
searching source files [10]. This provides develsp@th a good starting point for
investigating the failure. Therefore, in order emgrate relevant contributions, bug
localization techniques should focus on bug reposish no identifiable
information [10], i.e.non-localizedoug reports [14].

Finally, test files should not be included in theglocalization scope, as they
might inappropriately influence bug localizatiorsuéis. This happens because the
oracle in bug localization studies [3] [4] [5] cesponds to the files modified to fix
the bug. These files are obtained from the souocdral, by determining which
commit was related to the resolution of the bugc{i®a 3.2). Such commits often
include test files, which might have been modifeedpart of the bug resolution.
However, test files rarely contain the code ti@geredthe bug (Section 3.4.3).
Therefore, test files constitute false positivegha context of bug localization
results. Thus, they should be removed from theckestope of bug localization
techniques.

In addition to all the shortcomings described abdkere is the fact that the
techniques [3] [4] [5] were evaluated only on fdawa projects. To the best of our
knowledge, structured IR has never been studiesloftwvare projects written on
any other object-oriented (OO) language. In fdet,dnly other language we could
find being used in similar studies was C [15], agedural language. The lack of
studies applying bug localization to different O@nduages threatens the

generalizability of the results, as the projectieced in [3] [4] [5] might be

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

20

particularly suitable for these bug localizatiosheiques, whereas other projects
might not. Thus, it is important to assess thec#iffeness of bug localization
techniques on a higher number of projects, stredtun different programming
languages and encompassing different domains (®e818). Providing evidence
of effectiveness in different scenarios will incgeaconfidence in the reported

results.

1.2.2
Limited effectiveness

Bug localization techniques return their resulta dist of files ranked by the
probability of relationship with the bug (Sectior22). The lists returned by bug
localization techniques are commonly evaluatedupeé tenth position [3] [4] [5].
This convention acts as an implicit effectivendsgghold. In other words, bug
localization techniques should be able to returle@st one buggy file among the
first ten positions, as it would not be reasonablexpect the developer to examine
more than ten files to localize a bug.

However, in spite of continuous improvement foddely recent studies
(i.e., [2] [3] [4] [5] [6] [7] [12]), IR-based tedatiques are still not effective enough
to be widely used in practice. Consider, for exampimalLgam [5], one of the best
performing bug localization techniques based onAlgtording to [5], AmalLgam
was able to return a buggy file at the top of tise for up to 62% of the bugs.
Considering the 10 first positions of the list, Argam was able to return a buggy
file in the top-10 positions up to 90% of the timéis means that, 10% of the time,
developers would have to inspect more than 10 fddsd a buggy file. These are
the best results from an evaluation performed dwy fmur projects [5]. However,
actual effectiveness may be even lower, due to rerpatal shortcomings
presented in the previous subsection (and furtiseudsed in Section 3.4).

In order to increase effectiveness of IR-based Ibaglization, researchers
have been incorporating additional sources of mfdron to bug localization
techniques, e.g., version history [5] [7], bug meduostory [3] [5], and source file
structure [4] [5] [15]. Results from BLUIR [4] anAmalLgam [5] suggest that
structured information retrieval applied to soufite structure was the prominent
factor for the effectiveness increase reported lmsé studies. Unfortunately,
structured IR has not been explored enough witerbug localization domain. In

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

21

particular, it is unknown how specific program casts contribute to structured
IR-based techniques. As the possibility of handpnggram constructs differently
is the key advantage provided by structured IRyKadge about the influence of
different program constructs could be used to m®ee bug localization

effectiveness, as we will see in the next subsectio

1.2.3
Unknown contribution of constructs

Structured information retrieval has emerged asr@mment factor in
increasing bug localization effectiveness. Theedéhce lies on how documents are
handled. Traditional IR-based techniques deal withthe terms contained in
documents without distinction. Conversely, bug lzedion techniques based on
structured IR break documents up according to tinederlying structure. Source
files, for example, are split according to typegagram constructs, e.g., classes
and methods (Section 2.3.2). Thus, a single sdieceould be handled as several
distinct documents, each containing exclusivelymgercorresponding to the
respective construct type. Consequently, the inapoe of terms in a document is
modeled not only by the number of occurrencesataat by the number of construct
types in which they appear. Therefore, construces aentral features to the
functioning of bug localization based on structuirgdrmation retrieval.

It has been preliminarily observed that considersagirce file structure
improves bug localization effectiveness [4] [5]. whver, few studies have
investigated structured IR so far [4] [5] [15], Weag a number of questions
regarding usage of program constructs remain unamesly For instance, should
every available construct type be considered? @aotstnot explored in existing
technigues may also be able to improve effectivenissthere any construct type
whose contribution is negative? If so, effectivenesuld be improved even further
by ignoring these specific constructs. Are the gbations from every type of
construct equivalent? If they are not, the releeasfomost contributing ones could
be highlighted by assigning higher weights to thesastructs. Pondering the
effectiveness improvement brought by the usagéroétsired IR, we consider that
investigating such questions in detail have themtl to contribute to the state-

of-the-art in structured IR-based bug localization.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

22

1.3
Goals and research questions

The shortcomings regarding the evaluation of stmect IR-based bug
localization techniques [4] [5] have been discusse&ection 1.2.1. Addressing
these shortcomings is also an opportunity to evaltreem on different scenarios.
An initial step in that direction is to understatin@ behavior of bug localization
techniques applied to an object-oriented progrargntémguage that is slightly
different from Java. Java has been the focus ofigus studies of structured IR-
based techniques for bug localization (Section.2I8bnetheless, software
engineers remain unaware to what extent they chnore these techniques to
perform bug localization activities in projectsustiured with other programming
languages.

Thus, as an alternative to Java, we have seleatgdcfs written in C#
(pronounced asee sharp C# is a general-purpose, object-oriented langubgt
shares many traits with the Java language, butage some distinct programming
features. For example, some widely used C# cortstruike properties and
structures (“structs”), are inexistent in Java. dtwer, C# is a popular
language [18] that figures within the top 10 langes in number of GitHub
repositories [19]. To the best of our knowledgdth®e of these techniques have
been previously evaluated on other object-oriept®gramming languages, such
as C#.

Considering the problem stated in the Section hd farther discussed in

Section 1.2, the goal of this dissertation cantbted as follows.

Perform a realistic, in-depth effectiveness evabrat
of state-of-the-art bug localization techniques

on a previously untested programming language.

The limitations discussed in Section 1.2.1 undeentite results obtained by
state-of-the-art bug localization techniques based structured information
retrieval [4] [5]. Consequently, there is a needatldlress those shortcomings and
perform a realistic evaluation of those techniqudsreover, in spite of the
potential brought by structured information retagwvthe limited effectiveness of
current techniques (Section 1.2.2) encourages afepth evaluation of which
structured IR aspects can be explored to increageldralization effectiveness

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

23

further. These aspects are directly related withv Houg localization uses
programming language constructs (Section 1.2.3).

The proposed goal unfolds in the following reseaygbstions:

RQ1: Are BLUIR, BLUIR+, and AmaLgam effective
to locate bugs in C# projects?

This research question aims to provide a first atadn of state-of-the-art
bug localization techniques on C# software projésection 3.6.1). Results for this
research question cannot be compared with reqults Java studies due to the
distinct nature and quantity of selected proje&sc(ion 3.3). Nevertheless, this
evaluation will include preparation steps (SecBiof) needed to mitigate biases
that are commonly found in bug localization evaluad (Section 1.2.1), thus
providing evidence on how these steps cannot bétexnirom the experimental

setup of bug localization studies.

RQ2: Does the addition of more program construstsease the

effectiveness of bug localization on C# projects?

To answer this research question, a first atterhpkploring structured IR to
increase bug localization effectiveness is maddtially, we adapt a bug
localization technique to explicitly consider all#Cconstructs available
(Section 3.5). Then, we run the adaptations orsébected projects, and compare

the results with those obtained in the first resle@uestion (Section 3.6.2).

RQ3: Which program constructs contribute more @ éffectiveness
of bug localization on C# projects?

This question aims to quantify the contribution different program
constructs to bug localization effectiveness. Aistigal procedure callegrincipal
component analysi@PCA) is used for this purpose (Section 4.3). Tgriscedure
extracts components from the data, sorted by retmjaand identifies the
correlation of each construct to the most relewamponents. The answer to this
RQ will enable further experimentation with prograomstructs, formalized in the

next two questions.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

24

RQ4: Does the effectiveness of bug localizatiorea®e with the
suppression of constructs with the lowest contrins?

Data from RQ3 may reveal that some construct cateehegatively to the
more relevant components, suggesting they may bigilooting negatively to bug
localization effectiveness. In this case, the tempha will be applied again with
these constructs suppressed, in order to veriheikuppression of these constructs

causes the effectiveness of the technique to iserea

RQ5: Does the effectiveness of bug localizatiorea®e with the

emphasis on constructs with the highest contrilmstto

RQ3 will also reveal which construct correlate figsly to the more relevant
components, i.e., which ones contribute more to logglization effectiveness.
Knowing which constructs fall in this category véllow us to modify the structural
similarity scores (Section 2.3.2) by assigning bighveights to the similarity
associated with these constructs. The goal of BQ5 verify if this modification

is able to increase the effectiveness of bug lnatbn.

1.4
Dissertation outline

This dissertation is organized as follows. Chapteontains background
information, providing an overview about bug lozation and information
retrieval. Chapter 3 adapts the selected bug loatadin technique and compares the
adaptation against the original techniques in teofsffectiveness. This chapter
also discusses commonly neglected issues in theriexgntal setup of previous bug
localization studies, detailing how we solved thenour experiments. Chapter 4
builds on the findings from previous chapter to suga the contribution of different
program constructs in order to improve bug locélra effectiveness further.

Chapter 5 concludes.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

2
Background

Bug localization is a complex process, which canchgied out through
distinct approaches. Each approach to bug localiz&ncompasses its own set of
concepts, borrowed from different areas of knowéedgpr instance, information
retrieval is an area closely related to static llogglization, as information retrieval
is a key technology applied by techniques thabla static analysis approach [3]
[4] [5] [15]. Thus, it becomes necessary to provsdene background information
for a complete understanding of the process antetifeologies employed by bug
localization techniques.

In this chapter, we describe the main conceptslwedoin bug localization.
We summarize the main characteristics of dynamé static approaches to bug
localization, and we discuss the motivation for ugiog on static analysis
techniques. Afterwards, we provide an overview mfbimation retrieval. We
describe the underlying information retrieval modsled by most static bug
localization techniques, the vector space modeMY/ S hen, we demonstrate how
VSM works, providing an example using a term wdiglischeme based on term
frequency statistics, popularly known as TF-IDFrrttefrequency — inverse
document frequency). Finally, we present the beglination techniques that will
be used throughout this dissertation. These tedesicgepresent the state-of-the-art

on bug localization based on structured informategirieval.

2.1
Bug localization

2.1.1
Overview

In spite of all the effort invested by developensl desters to produce bug-
free software, in practice every program contaungsbMaintainers must be warned
about the occurrence of bugs so they can fix tli@mmunication between project

members is usually supported I®gue tracking systemsssue trackers may be

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

26

integrated in code hosting services, such as Gitldnt BitBucket, or stand-alone
applications, such as Jrdssue trackers allow the creationisgues which can
represent distinct concepts from software developnfigecycle, such as tasks,
features, anlugs The concept represented by an issue (e.qg.,festkire, bug) can

be identified bylabels (ortagy. Labels may also be used to classify issues
according to other criteria, such as module orggyéor example. Some systems,
such as Bugzilfy arebug trackers They are similar to issue trackers, however
focusing only on tracking bugs.

When a team uses an issue tracker, the occurrdngeog is commonly
reported by creating an issue and labeling it ag*bWe will refer to issues that
report bugs abug reportsin order to differentiate these issues from thetated
to other concepts or events.

Although the contents of bug reports may vary, dep®gy on the tracking
system being used, most of them contain a few camatwibutes [20] [21]: an
identification numbe(id); a shortsummary(or title); a full description a creation
date a status a reporter, the user who created the report; andaasignegethe
person currently working on the bug.

Bug reports can be created by different stakehs)dmich as developers,
testers, end users, or help desk operators. Typithé person who creates a bug
report is not responsible for fixing it. The repserves to communicate information
about the bug to maintainers, who rely on this repm perform the necessary
activities for identifying and removing the causktbe bug. Before actually
modifying source code in order to fix the bug, depers need to find the defective
source code based on the information provided enbilng report. This activity is
calledbug localization

Perhaps one of the most common forms of bug |z is debugging with
the aid of an integrated development environmddE)] Developers may load the
source code and run an application statement bgnséat until they reach the part
of the code that triggers the bug. This approachostly, especially for large
projects, because the number of files and statestikat need to be inspected until
the bug is reproduced can be very high. Moreoveret might be no information

1 https://github.com/

2 https://bitbucket.org/

3 https://www.atlassian.com/software/jira
4 https://www.bugzilla.org/

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

27

available about the parts of a program that woulsisibly trigger the bug. Thus,
debugging would still benefit from the use of coempkntary techniques that could
narrow the search space where the developer Hasltthe bug.

Automated bug localization techniques fulfill tinede, by helping developers
to locate defective source code. These technigkesats input information about a
subject software system and produce as output aflides potentially related to
each bug [22]. Automatic bug localization techngjwee mainly divided into
dynamicandstatic techniques [4]. The next subsections briefly discthe main

characteristics of each type of technique.

2.1.2
Dynamic techniques

Dynamic bug localization refers to techniques tkft on program execution
to localize bugs. A common approach uses progratisy i.e., collections of data
that provide a specific view on the dynamic behawviosoftware [23]. Spectrum-
based techniques (e.g., [24] [25]) use program wi@t information to track
program behavior [26]. When an execution failss timformation can be used to
identify suspicious code that is responsible far flure. By identifying parts of
the program covered during an execution, it is jpdesso identify the components
involved in a failure. Spectrum-based techniqués e the contrast between the
passing and failing executions to localize bugeatively [26]. For this reason,
numerous test cases must be available [27].

Other approaches to dynamic bug localization irelumdodel-based [28],
program state-based [29] [30], and mutation-ba8&g¢techniques. Note this list is
by no means complete. Regardless of the approgohndc techniques share a set
of common advantages and drawbacks. The main aaty@ig precision: dynamic
techniques are often capable of locating bugsaaerstent level [4]. However, as
aforementioned, they usually require large tesesuln fact, as several passing and
failing test cases need to be provided, dynamlotiggcies are only viable in projects
where a comprehensive test suite is previouslyl@vai Nonetheless, this is not
the case in most software projects [10] [11]. Thie, applicability of dynamic

techniques is severely reduced.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

28

2.1.3
Static techniques

Static bug localization techniques are largely dase information retrieval
(e.qg., [2] [3][4] [5] [7] [12] [15]). Informationretrieval-based techniques aim to
locate a bug from its textual description [12]. fidfere, these techniques require
only source code and bug reports in order to opgddt Nevertheless, static
techniques are frequently combined with additionfalrmation in order to improve
their effectiveness. Examples include change higtgr[7], bug report history [3]
[5], source code structure [4] [5] [15], and filetlorship information [32].

Static techniques usually do not reach the sanextefeness delivered by
dynamic techniques. However, contrary to dynamichméues, static bug
localization techniques do not require program atien. Thus, they do not need a
working subject system, which allows them to beliadpat any stage of the
software development process [2]. For the sameongadatic techniques do not
require test cases as well. Having less prereqaigitants flexibility to static
techniqgues, which enables them to be applied onderwange of scenarios,
compared to their dynamic counterparts. This fléikyds particularly important in
the case of legacy software systems, where autdnt@sts might not have been
originally implemented.

We discuss static, information retrieval-based hgalization techniques
individually in Section 2.3. Before that, in thexhesection, we present a brief

overview of information retrieval.

2.2
Information retrieval

221
Overview

Information retrieval (IR) consists of finding dounents within a collection
that match a search query [13]. When applying IRug localization, source code
files become the collection of documents, and tng feport represents the query.
Then, the task of finding buggy files is reducedhe IR problem of determining

the relevance of a document to a query. Relevandetermined by preprocessing

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

29

the query and the set of documents and then céloglghe textual similarity
between each document and the query.

Preprocessing consists of three steps: text naratadn, stop word removal
and stemming. Text normalization extracts a listterins that represents the
documents and the query by removing punctuatiorksnand performing case
folding. In the bug localization domain, normalipat steps usually include
identifier splitting. Many identifiers are made lepncatenating words, either
separated_by_underscores Or using mixed case, such@selCase Or PascalCase.
For example, an identifier nameeémoryMappedrile would be split as “memory”,
“mapped” and “file”. Therefore, splitting identifie improves recall [4], by adding
terms that represent conceptual information encadedmpound identifiers [33].

After normalization, common words, which usuallydalittle value to a
retrieval operation, are removed from the listers. These words (e.g., “the”,
“to”, “get”) are called stop words [13]. The finplteprocessing step is to reduce
inflectional forms to a common base form in ordeinhprove term matching by
representing similar words with the same term. Tdas be accomplished via
stemming or lemmatization. Stemming usually retera heuristic process that
strips off derivational suffixes from words3]. Lemmatization, on the other hand, uses
a vocabulary and performs morphological analysiwafds, aiming to return the base or
dictionary form of a word (i.e., its lemma) [13]ItAough lemmatization is more accurate
than stemming, the latter is usually the preferadtbrnative for bug localization
applications [2]3] [4] [5] due to its simplicity An ubiquitous stemming algorithm is
the Porter Stemmer [34], used in [2] [3] [5] ancidable online [35].

After preprocessing, the similarity between docuts@nd the query must be
calculated. The most common approach is based envéctor space model
(VSM) [3] [4] [5] [15]. Next subsection explains how documents and cuenie

represented in VSM, in order to allow similarityaadation.

2.2.2
Vector Space Model

In the vector space model, each document is exguless a vector of term
weights. These weights are typically the productesim frequency and inverse
document frequency (TF-IDF) of each term. Therefibi@collection of documents

contains termst,, ..., t,), a document from this collection is represented as

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

30

d = (tf (ty, A)idf (1), oo, tf (tn, A)idf (£,))

Equation 1 — Vector representation of a documem3IM

idf(t) = 1Ogd_ft

Equation 2 — Inverse document frequency

In Equation 1£f(t;) is the number of occurrencestpfin d andidf (t;) is
given by Equation 2, wher® is the total number of documents in the collection
and df; is the document frequency, i.e., the number ofudwmnts that contain
termt. Inverse document frequency serves to increasedight of rare terms, i.e.,
terms that occur in few documents from the coltectif a term occurs in most of
the documents, it has little discriminating powerdetermining relevance of a
document [13]. Thus, terms that occur many timessmall number of documents
are those that are assigned higher weights.

Given two documents, their similarity can be meadupby computing the
cosine similarity of their vector representatioh3]|
V(dy) - V(dy)

V(dy)||V(dy)]

Equation 3 — Cosine similarity

sim(dy, dy) =

In Equation 3, the numerator represents the datymto(or inner product) of

vectorsl7(d1) andV(dz), while the denominator is the product of theig#rs [13].
To illustrate how cosine similarity works, we praeia simplified bug localization
example. Consider a bug report that redeisor placing new customer order”
Assume after applying all preprocessing steps (abration, stop word removal,
and stemming), the bug report content becolplese custom order” This will be
the query used to localize similar source filesgiloly related to this bug. Consider
the subject system contains three files, whicherafireprocessing, have the
following content:*customer”, “customer detail”, and“place order controller”.

Table 1 summarizes term and document frequencighdderms in this example.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

31

Table 1 — TF-IDF calculation

Term frequency Inverse
Term . . . Document document
Query File 1 File 2 File 3 frequency frequency
place 1 0 0 1 2 0.301
customer 1 1 1 0 3 0.125
order 1 0 0 1 2 0.301
detall 0 0 1 0 1 0.602
controller 0 0 0 1 1 0.602

Table 1 displays term frequency statistics needet@omputed in order to
represent the bug report and source files fromettemple as vectors. The set
containing every term from all the documents idechbcorpus The rows from
Table 1 represent each term from the corpus. Theros undeiferm frequency
count the number of occurrences of each term om @acument (the query and the
source files). The columBocument frequencgounts the number of documents
where the term occurs. This value is applied todfgn 2 and displayed in the
columninverse document frequencihen, applying Equation 1 to the bug report

and the three files yields the vectors below:
b= (0.301,0.125,0.301,0.0,0.0)
£, = (0.0,0.125,0.0,0.0,0.0)
E = (0.0,0.125,0.0,0.602,0.0)
E = (0.301,0.0,0.301,0.0,0.602)
Thus, from Equation 3, the similarities between lg report and files 1

through 3 are, respectively, 0.282, 0.057, and4.bBerefore, file #3 would be the

one more similar to the given bug report.

2.2.3
Effectiveness metrics

Information retrieval results are usually presenésda list of documents
sorted by relevance (similarity) to the query sloiften enough to present a small
set of documents that a user can browse to lobhated¢eded information. For this
reason, theffectivenessf IR models is commonly measured by the abilityhe
models to retrieve relevant documents at the fiostitions of a list. A common
effectiveness metric is callgatecision at H13], also referred to asop N[3] [4]

[15] or Hit@N [5]. Given a set of queries, the precisiok & the percentage of the

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

32

gueries where the model was able to retrieve aiamtedocument ranked on the
first k positions. Common practice in bug localizationdgts is to consider up to
the 10 first positions of the resulting I[8] [4] [5] [15].

Another widely used metric for the effectivenesd®fmodels is thenean
average precision (MAPMAP provides a single-figure measure of the dqualf
information retrieval when a query may have muétilevant documents [13]. The
MAP for a set of queries is the arithmetic mearnhefaverage precision (APR)f
individual queries [13]. Lefd,, ..., d,,} be the set of then documents that are
relevant to a query, angl, the set of ranked results from the top resultl wnte

reaches documed,. Then, the average precision of a qugry given by:

m
1
AP(q) = Ez Precision(Ry,)
k=1

Equation 4 — Average precision for an informatietrieval query
Precision(R) = #(relevant items retrieved)/#(retrieved items)
Equation 5 — Precision of a retrieval

For example, consider a query where the threeaatedlocuments are ranked
in 1%, 4" and 18 positions. Then, precision for each document wdngd /1 =
1.0, 2/4 = 0.5, and3/10 = 0.3, yielding an average precision of 0.6. Note that a
perfect average precision score (1.0) would onlyob&ined if themrelevant
documents were ranked on thefirst positions. If only thek first positions are
being evaluated, it may be possible that a quemsdaot retrieve a relevant
document at all. For example, if we are interestagt in the 10 first results, but the
first relevant file is ranked in the Y1position, the precision of the query is

considered zero [13].

2.3
Information retrieval-based bug localization techni ques

Bug localization techniques built around informatitrieval (IR) models
have been available for a while. We present a lsimhmary of IR-based bug
localization studies conducted in recent years.

In 2011, Rao and Kak [12] compared five informatretrieval models for

bug localization: vector space model (VSM), lagrhantic analysis model (LSA),

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

33

unigram model (UM), latent Dirichlet allocation meddLDA) and cluster-based
document model (CBDM). Their evaluation used iBUGG|, a benchmarked
dataset created to evaluate automated bug detemtidrocalization tools [37],
mainly composed of AspectJ bugs [36]. The authtvewsthat IR-based bug
localization techniques were at least as effecivether static and dynamic bug
localization techniques developed until then. Taksp conclude that sophisticated
models like LDA, LSA and CBDM do not outperform siter models like Unigram
or VSM for IR-based bug localization on large s@ftevsystems.

Sisman and Kak [7] incorporated history informatioto retrieval models to
improve bug localization accuracy. They proposed base models to determine,
from version history, the prior defect and modifioa probabilities associated with
the files in a software project. These models vadse extended to incorporate a
time decay factor. This strategy reflects the etgqiean that if a file had been
modified in the past but has not been modifiedmédgeéhe modification probability
should decrease. Similarly, bug fixes that are nmecent should have a stronger
influence in estimation of prior defect probabdgi Each probability estimation
model was incorporated into six baseline retrievaldels [7]. All of the four
probability models improved retrieval performancéen compared with the
baseline results of the retrieval models usedalai®n. Evaluation showed that the
defect history based model performed consistenglyeb than the modification
history based model. The inclusion of the time gdeator also improved results
for both modification and defect history modelssrBan and Kak also compared
their approach to other tools, namely Ample [37hdBugs [38], and BugScout
(Nguyen et al. [39]), obtaining improvements oviéoathem.

Two key findings from these studies can be highédhas they influenced
upcoming work on IR-based bug localization. It whswn that (i) VSM provides
a simple and effective basis for IR-based bug Ieatibn techniques [12] and (i)
incorporating additional information to bug localin techniques could improve
their effectiveness [7]. Following these studiessequence of IR-based bug
localization techniques contributed to the statéhefart by incorporating distinct
information into their models. Next subsectionsspre these techniques.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

34

2.3.1
BugLocator

Zhou et al. proposed a bug localization methodedalugLocator [3], which
ranks files based on the textual similarity betwadug report and the source code
using a revised Vector Space Model (rVSM). The arghmodify classic VSM in
order to improve the ranking of large documents fidtionale is that larger source
files tend to have higher probability of containiadpug [3]. Therefore, these files
should be ranked higher in the context of bug lae#ibn [3].

BugLocator also considers information about simbags that have been
fixed before. It assumes that, in order to fix $ambugs, developers tend to modify
the same files. The relevance of a fite a bugB, based on the involvementfoh
previous similar bugs, denoted by the authorsSamsiScore is given by the
following equation:

SimiScore(f) = z sim(B,s)/n(s)

SESf
Equation 6 — BugLocator’s score due to similaritytevious bugs

In Equation 65, is the set of previous bugs related,tice., bugs wherewas
one of the files modified in order to fix them. Tsieilarity between bu@® and a
bugsthat is related tbis denoted asim(B, s), and is calculated using Equation 3.
Finally, n(s) is the number of files modified in order to & determined using
heuristics presented in [40]. The final score @ifeais then combined with its own
similarity to the bug being locatedSMScorg as follows:
FinalScore(f) = (1 — a) X rVSMScore(f) + a X SimScore(f)

Equation 7 — BugLocator’s final score

In Equation 7¢ is a weighting factor, valued between 0 and 1.0ést results
reported by Zhou et al. were withbetween 0.2 and 0.3. BugLocator was used to
find more than 3,000 bugs in four open source ptsjdeclipse, SWT (open source
widget toolkit for Java), AspectJ, and ZXing (bateamage processing library for
Android applications). BugLocator was compared watmer bug localization
techniques, namely VSM [12], LDA [22], LSI [41] [f2and SUM [12], and
outperformed all of them. BugLocator was approxehal 0% more effective than

the second best performing technique, i.e., SUM [3]

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

35

BugLocator's importance to IR-based bug localizatis paramount. It
advanced the state-of-the-art substantially by erfilpming various previous
approaches [12] [22] [41] [42]. Thus, it servedhdsaseline for evaluation of future
techniques, namely BLUIR[4] and AmalLgam [5], désed in the next

subsections.

2.3.2
BLUIR and BLUIR+

Saha et al. [4] developed BLUIR (Bug Localizatiorsiftgy information
Retrieval), an automatic bug localization technichesed on the concept of
structured information retrieval. In structured Ifelds from a bug report and
program constructs, such as class or method naanesseparately modeled as
distinct documents. Consequently, bug reports andce files are not counted as
single documents, as they do in BugLocator. Inst8adUJiR breaks source files
into four parts: class nhames, method names, variadines and comments. Bug
reports are split in two parts: summary and desonpBLUIR then calculates the
similarity between each file part and bug part safgdy, summing the eight
individual similarities in the end. This implicitlgssigns greater weight to terms
that appear in multiple parts. The formula belopresents the core of the BLUIR
approach.

sim(f,b) = Z z sim(fp, bp)
fpEf bpeb

Equation 8 — Structural similarity between a fitela bug report in BLUIR

In Equation 8f andb are a source file and a bug report, §mdndbp are its
respective parts. The similarity between a bugndpand a source fileis given
by the sum of the similarities of their parts, cddted according to Equation 3.

Saha et al. performed their evaluation on the sarmects used by
BugLocator [3]. In addition to structured IR, Sagtal. investigated other variables
in order to assemble their own information retrlexedel. For example, they
compared two different stemmers, Porter and Krqvetizhout finding any
significant difference in effectiveness. Anothewvastigated variable regards
identifier splitting. Recall from Section 2.2.1 thaan identifier named

MemoryMappedFile would be split as “memory”, “mapped” and “file”.LBIR

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

36

modifies this step by also including the full idéet name ("memorymappedfile”)
to the list of terms, based on the observation ittty bug reports mention code
elements. This modification increased bug localraeffectiveness by up to 30%
in terms of MAP (0.20 to 0.26 for the Eclipse paijgt]).

However, the key insight of BLUIR is, indeed, stiwred information
retrieval. Comparison of BLUIR results with and matit modeling source code
structure revealed improvements for all evaluateojepts when source code
structure is considered. Hit@1, i.e., bugs whewdated file was ranked in the first
position, increased almost 46% (37 to 54) in theT9Wbject. As for MAP, it
increased up to 23% in the Eclipse project (0.286.82). Comparison to the
previous best performing technigue, BugLocator, alss favorable. In the AspectJ
project, BLUIR was able to increase MAP by 41% {0td 0.24). Note this
improvement refers to BugLocator with no similagbaformation (i.e.a = 0).

A variant of BLUIR, called BLUIR+ [4], also leverag information from
previous similar bug reports, if available, simyato BuglLocator. The authors
compared both variations, BLUIR and BLUiIR+, to Bughtor with bug similarity
data. The comparison between BLUIR+ and BugLocaith bug similarity data
showed a performance improvement in terms of MARpm{o 28% (0.45 to 0.58
in project SWT). Another interesting result is tBatUiR achieved results similar
or superior to those of BugLocator even when tkttedaid use bug similarity data
and the former did not. This finding indicates ttia structured IR approach used

by BLUIR could compensate for the lack of previtws report information.

2.3.3
AmalLgam

Another example of bug localization technique tt@hbines structured IR
with other sources of information is AmaLgam [5]mALgam is a technique for
locating buggy files that combines the analysigipfzersion history, (ii) bug report
similarity, and (iii) structure of documents, i.byg reports and source code files.
Amalgam has three components that produce suspitss scores for each source
file. The suspiciousness score represents howylikedource file is of containing
the searched bug. Each component uses a differmnices of information.
Individual scores are then combined by a fourthponent (composer) into a single

score for each source file. AmalLgam componentsleseribed next.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

37

Version history component. Change history has been previously used to
predict which files are likely to contain defeatghe future [6] [43]. Based on these
studies, Wang and Lo included change history imeaRgam’s model through a
version history component. This component consistSoogle’s adaptation [8] to

the algorithm from Rahman et al. [6], describedH®yfollowing equation.

scoreH(f,k,R) = Z 1

12(1-((k—tc)/k)
cERNfEC I+e ()

Equation 9 — Version history component

In Equation 9R refers to the set of relevant commits, i.e., cota@ssociated
to the resolution of a bug [5], is the number of days elapsed between a commit
and the creation of the bug report. Paramketgas included by Wang and Lo to
restrict the version history period (in days) tochesidered. It was observed by the
authors that considering only more recent commitssided a good trade-off
between precision and performance. The optimalevidund by the authors was
k =15 [5].

Report similarity and Structure components. AmalLgam’s report
similarity component is based on the SimiScore fdam(Equation 6) from
BugLocator [3], also used by BLUIR+ [4]. The compah considers the textual
similarity between bug reports and the number lesfmodified to fix each bug
report. The assumption is that, in order to fix immbugs, developers tend to
modify the same files. AmalLgam’s structure companees the same approach as
BLUIR (Section 2.3.2, [4]). It breaks bug reportsdasource files into smaller
documents, composed of summary and description r@payts), and class names,
method names, variable names and comments (soe<e f

Composer componentThe composer component takes the scores produced
by the three other components and combines theraifihal suspiciousness score.
It first combines the results from the report santly (scoreR) and structure
(scoreS) components. This result is then combined with gbere from version
history componentscoreH), according to the following equations:

scoreSR(f) = (1 —a) X scoreS(f) + a X scoreR(f)

Equation 10 — Score combining structural and olbdey report similarity scores

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

38

(1 —b) x scoreSR(f) + b x scoreH(f), scoreSR >0

scoreSRH(f) = { 0 otherwise

Equation 11 — Final score attributed to a file bhpal.gam

Parametera andb in the previous equations determine the weighthef
contribution of each component to the final suspishess score. Based in their
own experiments and in results from [3] and [4f #uthors adopted the default
values of 0.2 for parametarand 0.3 for parametér[5]. These parameter values
are equivalent to attributing weights of 30% forsien history, 14% for bug report

similarity and 56% for structured IR from sourdedi

2.3.4
Discussion of the techniques

BugLocator [3], BLUIR [4], and AmaLgam [5] form aiscessful sequence
of bug localization techniques where each work ouated with a new insight.
BugLocator is based on textual similarity betweeimaut bug report and (i) source
files and (ii) older bug reports. BLUIR extends Bogator by considering source
file structure. AmalLgam aggregates version histarigich has been previously
used in isolation [7], but not combined with infation retrieval techniques.

BLUIR results highlighted the impact that structii® brought upon bug
localization effectiveness. This is illustratedthg fact that even the less effective
variation of BLUIR was still able to outperform theest configuration of
BugLocator (Section 2.3.1). AmaLgam demonstrated dombining analyses of
additional sources of information could improve hagplization effectiveness even
further. However, even in that case, the optimahpeeters found experimentally
for AmalLgam pointed to a stronger contribution tofistured IR.

All the mentioned techniques [3] [4] [5] were evatiled on the same set of
four Java projects, namely, AspectJ, Eclipse, S\WAd ZXing. This strategy
allowed the authors of the previous studies to daadirect comparison of the
techniques, highlighting the effectiveness improgatnobtained with each
technique. On the other hand, it is desirablepbaate or extend experiments using
different datasets. Given the growing relevancstiofctured IR to bug localization
techniques, it is of paramount importance to s&sting this approach on a higher

number of projects, encompassing different domgdestion 3.3).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

39

In addition, a better understanding of structufe@pplied to bug localization
is needed. Object-oriented programming languages, as C#, slightly differ from
Java in terms of key programming constructs, segir@perties. Moreover, BLUIR
and AmalLgam did not consider certain programmingstoicts of Java, such as
interfaces and packages, which are relevant to iGgrgms as well. It remains
unaddressed what would be the contribution of arolgram constructs, ignored
by such state-of-art models, on the localizationbafys in slightly different
programming languages, such as C#. Consequenftyyase developers remain
uninformed if the amount of constructs in a prograny language influence the
effectiveness of the technique. If so, we needvestigate whether structured IR-
based techniques are suitable for more expressigubages (i.e., with more

constructs available).

2.4
Conclusion

We can draw some conclusions from the aforemendietadies [3] [4] [5].
First, structured information retrieval, by leveiragthe known structure of the
documents involved in the retrieval process, hasnbenore effective than
traditional information retrieval. Second, hybriggppoaches can improve the
effectiveness of bug localization even further lmynbining different sources of
information with different weights. However, eventlwhybrid approaches, the
contribution of structured IR to the effectivene$she approach is still prominent,
as the comparison of BLUIR and AmalLgam to BugLocd&monstrates.

The potential of structured IR motivates us to stigate this approach to bug
localization further, in the context of other pragming languages, such as C#.
Therefore, we selected some of the best perforteicighiques based on structured
IR, namely, BLUIR, BLUiR+, and AmalLgam, for our diu Our goal is to verify
the effectiveness of these techniques on anothgctebriented programming
language, in order to assess if the change of Egayiiself could cause a significant
impact on the techniques’ effectiveness. We alaa pb verify if the effectiveness
of these techniques could be improved by usindfardint set of program constructs
than that used in previous studies [4] [5]. Nexamtler formalizes our research

guestions and describes the experiment conductaasieer them.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

3
Evaluation of bug localization techniques

Bug fixing is a routine, however complex, activiBetermining which parts
of the source code need to be modified to remdwggacan be a difficult task, as it
requires the inspection of a large amount of filkatomated bug localization
technigues aim to help developers in this taskrbyiding a list of suspicious files
potentially related to the bug, thus narrowingskarch space where the developer
must look for the bug.

The usage of source file structure has been the regponsible for increasing
the effectiveness of state-of-the-art, informatretrieval-based bug localization
technigues. These techniques, namely, BLUIR [4], UBR+ [4], and
Amalgam [5], were evaluated in four Java projettewever, the evaluations
performed on these techniques contain shortcontirgamight have significantly
biased the reported effectiveness (Section 1.ZHgse shortcomings suggest their
effectiveness may be lower than reported (Secti@r2)l In spite of these problems,
results from BLUIR [4], BLUIR+ [4], and AmaLgam [Bhention improvements of
up to 41%, 29%, and 32%, respectively (Section®22a8d 2.3.3). The evolution
brought by these techniques prompts us to exploeepbtential of structured
information retrieval.

In this chapter, we explore structured informatiatrieval aspects not
investigated in previous studies. In particular, weestigate how the usage of
different sets of program constructs influencesdfifiectiveness of bug localization
(Section 1.2.3). For such, we evaluate BLUIR [4H @amalLgam [5] on 20 C#
projects. C# is a popular language [18] [19], samito Java, although with
significant differences, especially regarding thaikable constructs. The similarity
will allow us to draw a parallel with Java resulé.the same time, the differences
will allow us to explore constructs inexistent iavd, such as properties and
structures.

We also discuss dataset preparation steps condioateitigate shortcomings

from previous studies (Section 3.4). These premarateps include selection of

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

41

appropriate project versions, removal of bug repdhiat could influence the

evaluation, and removal of test files from the skacope. Results show that, with
the appropriate data preparation steps, effectsgenébug localization is at least
34% lower, compared to the effectiveness witho# tlata preparation steps
(Section 3.6.1).

After evaluating the techniques as they were coeckiwe adapt them in
order to assess their sensitivity to the consideratof more constructs
(Section 3.5). We define three construct mappingespwhich represent different
forms of splitting source files, namelgefault Complete andMixed modes. The
Defaultmode corresponds to the same mapping used by B[A)iBLUIR+ [4],
and AmalLgam [5], where source files are splitted fiour documents, consisting
of class names, method names, variable names,@andhents. In th&€€omplete
mode, all the available constructs are considezpdraitely and every source file is
splitted in 12 parts, each one corresponding tb aesailable C# construct. Finally,
the Mixed mode maps all C# constructs into four groups, lantyito the original
mapping used by BLUIR and AmalLgam. Thikxed and theCompleteconstruct
mapping modes were able to increase bug localizaftectiveness by 8% and
18%, on average (Section 3.6.2).

3.1
Goal and research questions

Recall our stated goal from Section 1.3:

Perform a realistic, in-depth effectiveness evahrat
of state-of-the-art bug localization techniques

on a previously untested programming language.

In order to perform a realistic evaluation of bagdlization techniques based
on structured IR, we need to evaluate them onréifitescenarios. An initial step in
that direction is to understand the behavior ohprn@nt bug localization techniques
applied to an object-oriented programming languageis slightly different from
Java. Java has been the focus of previous stufig#siotured IR-based techniques
for bug localization (Section 2.3). Nonetheles$tvgare engineers remain unaware
to what extent they can rely on these techniquepetdorm bug localization

activities in projects structured with other pragraing languages. We have

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

42

selected C# as it is a general-purpose, objectimielanguage that shares many
traits with the Java language, but also have sastenct programming features.
For example, some widely used C# constructs, likgpgrties and structures
(“structs”), are inexistent in Java. Moreover, G#ai popular language [18] that
figures within the top 10 languages in number dHBb repositories [19]. To the
best of our knowledge, neither of these techniduze® been previously evaluated
on other object-oriented programming languaged) ascC# (Section 1.2.1).

We unfold our general goal in the following reséagioestions:

RQ1: Are BLUIR, BLUIR+, and AmaLgam effective
to locate bugs in C# projects?

The effectiveness of current structured IR techesqite., BLUIR, BLUIR+,
and AmalLgam, have been assessed and confirmedoodigva projects. However,
developers using many other languages could alsefibéom such techniques. In
order to address this gap, we ran the selecteditpeds in their best performing
configurations (Section 2.3) on a set of C# prgjedthe results enabled us to
address RQ1 by assessing the effectiveness of teelriques on a previously

untested programming language.

RQ2: Does the addition of more program construstsease the

effectiveness of bug localization on C# projects?

In order to understand the potential of structufedechniques completely,
we need to analyze their sensibility to particutanstructs of a programming
language. Therefore, we addressed RQ2 by focusilsganalysis on program
constructs that were also not considered in prevetudies [4] [5], such as string
literals, interfaces, and enumerations. In addjtibare are language features from
C# that do not exist in Java, such as structurdspaoperties. The effects of their
explicit consideration on state-of-the-art bug l@adion are not well understood.
Thus, we investigated to what extent the effecessof a structured IR technique

would benefit from the explicit consideration oé#e source code constructs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

43

3.2
Evaluation metrics

This section describes the metrics used to asteseffectiveness of the
technigues on selected projects. We focused oruskeof two sets of metrics
typically used in recent studies [3] [4] [5] ancépented in Section 2.2.3:

Hit@N: Percentage of bug reports that have at least wgg/ffile ranked by
the technique in the top N positions. Typical val@ier N are 1, 5, and 10 [3] [4]
[5].

Mean average precision (MAP):Mean of the average precision scores
(Equation 4) across all queries. Considers thesanlall the buggy files, not only
the first one.

To measure the effectiveness of a technique, orodrits variations, the
average of the results for each project is takemally, the effectiveness of a
technique, or one of its variations, correspondbeaaverage of the results for each
project. We use commit and bug report data obtafred the selected projects
(Section 3.3) as the oracle against which we coepae results of our
implementation. When a bug report explicitly contaia link to a commit, we
consider the files modified in the commit as the®that solved the bug. This is a
common assumption in many bug localization stufBg#4] [5]. When there is no
explicit link between a bug report and a commit, wee conventional
heuristics [40] to infer this relationship. Theseuhstics consist of looking for
commits that contain messages suchFases issue 97or “Closes #1295 which
usually denotes the ID number of the associatedrépgrt. All these procedures
were also important to implement in our study gittemlack of C# datasets, which
differs from the state-of-the-art on empirical sasdof Java projects.

3.3
Project selection

For our experiment, we needed a number of C# pojedth available
information on their source code, commits, and epprts. We could not find a
bug dataset for C# projects, like iBUGS [36] or eBugs [44]. Then, we used
GitHub search functionali®yto obtain a list of large C# projects, by seargtfior

Integrated development environment.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

44

projects with 1,000 or more stars and 100 or mamikst These parameters
indirectly allowed us to satisfy the requirement farge projects. The query
returned almost 80 projects from various domainsluding development tools,
compilers, frameworks, and games.

We used GitHub API to download commit and issue diam the projects.
We downloaded the 1,000 most recent issues for pagjecf, and then all the
commits that happened within the period coverethbyssues. Next, we processed
the data in order to identify (i) issues that cobll characterized as bugs and
(i) files modified in order to fix the bug. For atacterizing a GitHub issue as a
bug, we relied on the labels applied by the usessies with at least one label
containing terms such as “bug” or “defect” weresidered a bug report. As for the
files modified to fix a bug, they are determined thye associated commit, as
explained in Section 3.2. Since we are focusingCéncode, we excluded from
evaluation bugs that do not touch at least oneil€# f

After processing downloaded data, only those ptsjetiere we could find
at least 10 bugs whose resolution modified at least C# file were kept for the
experiment. We processed the projects in the astarned by the query, until we
reached 20 projects that met our selection crit@raédble 2 presents a comparison
between the dataset of C# projects used in ouy stod the dataset of Java projects
used in recent studies [3] [4] [5] of the same teghes.

Table 2 — Dataset comparison

Dataset details Java C#
Projects 4 20
Files 20,223 46,752
Source files N/A 28,596
Issues N/A 16,630
Traceable to commits N/A 2,839
Classified as bugs 3,479 878

In the table above, we highlight various differesidacluding the differences
between the amount of files and amount of soutes firesent in the corresponding
repositories. In our case, about 61% of the fi@stained in the repositories were
C# files, the ones we actually used to searchdigsbThis happens because many
files represent: (i) configuration or HTML filesr i) source files structured with
other programming languages, in the case of mariiiage projects. Actually, the

existence of multi-language projects also highbgttie importance of evaluating

6 GitHub API limits issue searching to 1,000 respks query.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

45

bug localization techniques in different programgilanguages. For the Java
dataset, it was not clear whether the total refeordy to Java source files or to all
repository files. Therefore, we assumed the latter.

As for the bugs, all of them are treated as issneSitHub issue tracker,
although not all issues are bugs. After downloaditighe available issues, we
associated them with a commit whenever possibiagube criteria explained in
Section 3.2. This step reduced the amount of asailaugs to 17% of the original
issue count. Then we discarded issues that wettalmeled as “bug”, which reduced
the number of available bug reports even furthewrdto 878 (5% of the initial
number of issues).

In the next section, we discuss additional prepamatteps we applied on the

dataset, which were important to guarantee thetagisalidity of the experiment.

3.4
Dataset preparation

As mentioned in Section 1.2, previous studies suffem a series of
shortcomings regarding their experimental setupxtNeve describe how we

handled these shortcomings in our evaluation.

3.4.1
Version selection

Previous studies on bug localization commonly getéonly a single release
and ran the bug localization for all bugs on thexsaelease. Results reported in
this manner cannot be fully trusted [17], becatseg is a high chance that the bug
is not even present on the code being analyzecvEocome this problem, we
identified the version of the source code that aetsve by the time the bug was
reported by searching for the oldest commit thaipleaed before the bug report
creation. The source code for every identified iersvas downloaded, and each

bug was localized on its corresponding version.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

46

3.4.2
Bug report selection

Some bug reports already inform the location ofdé#ect in source code, by
mentioning the file where the bug was observed.hkac et al. [14] demonstrated
that including these bug reports on the evaluabioa bug localization technique
significantly influences the results by artificiallincreasing the reported
effectiveness. The authors classified bug repaortsree categoriefully localized
partially localized andnot localized which mean that a bug report mentiatls
someor noneof the files modified to fix a bug; respectiveWe removed fully and
partially localized bug reports from our evaluatioreaning that we included only
those bug reports that contained no mention tdabky files. Although this step
contributes to more realistic results, it redudesinumber of available bug reports
in 51%, from the 878 reported in Table 2 to 450 @®the initial issue count).

3.4.3
Source file selection

Software projects often include test code. Teseagudy contain bugs, which,
in theory, may be reported just like production &€oHowever, bug localization
algorithms should not include test code within tisgiope. Consider, for instance,
three bug reports, whose resolution involved thdifreation of (i) only production
code (no test code); (ii) production and test caae; (iii) only test code. In the first
case, it is obvious that localization does not Bef®m considering test code.
When the resolution of a bug requires changing yectdn and test code (second
case), itis usually because a test was added difietbin order to catch the referred
bug in the future. Test code was not soeirceof the failure, though. Therefore,
modified test files are not what developers exps@n answer from the localization
algorithm in this case. Finally, when a bug in tbst code itself is caught (third
case), developers already have detailed informationided by the test framework,
which includes the location of the bug. Thus, ewendeveloper chooses to report
a test bug instead of fixing it immediately, itliisely that this report will include
the detailed information already provided by thet teamework. Therefore, bug
reports on test code are rarer (because the deretogy choose to fix the bug

instead of reporting it) and likely to be localiz@mbcause test frameworks already

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

47

indicate the buggy files). This rationale led usréstrict the localization to
production code.

We excluded test files from the scope of the amalyg ignoring all files that
contain the word “test” on its path. We confirmedhamanual inspection on two
sample projects that this simple heuristic was dbleaccurately remove the
undesired files, since it reflects (in our sampie) common developer practices of
naming test files with a “Test” prefix of suffixy g@lacing test code in a separate

directory named “test”.

3.5
Model adaptation

Structured IR demands the extraction of identiffessn source code. For this
task, we used the .NET Compiler Platform, also kmaw Roslyn [45]. As C# is an
object-oriented language, similar to Java, it hassame four constructs considered
on BLUIR'’s original evaluation: class names, methadhes, variable names, and
comments. However, C# also has constructs thagrewtlere not considered by
BLUIR (and, consequently, neither by BLUIR+ nor Alngam) or do not exist in

Java. Table 3 summarizes these differences.

Table 3 — List of C# constructs

Equivalent in Considered by

C# construct Java? BLUIR?
Classes Yes Yes
Comments Yes Yes
Enumerations Yes No
Fields Yes No
Interfaces Yes No
Methods Yes Yes
Namespaces Yes (packages No
Parameters Yes No
Properties No No
String literals Yes No
Structures No No
Variables Yes Yes

BLUIR breaks a source file into parts. Each parttams identifiers from one
kind of construct. To deal with the different kinofsconstructs, while keeping the
underlying philosophy of BLUIR, we devised threteaiative configuration modes

to run the experiment:

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

48

» Default Strictly uses only the same constructs used ByiBlL.ignoring any
other construct.

» Complete Uses all constructs present in Table 3, with eachstruct
mapped to an exclusive file part.

* Mixed All constructs are used, but they are mappechtoai the four file
parts corresponding to the constructs originalgdusy BLUIR.

Defaultmode is used as a baseline for the sake of congpaur results with
the original evaluation in Java projects [@pbmpletemode represents the simplest
way of including new constructs in BLUIR’s algomthMixed mode represents an
alternate way of computing new constructs, by magpphem to one of the
preexisting categories. For example, interfacesicgires, and enumerations are
semantically close to classes. Therefore, for thipgse of bug localization, it could
be enough to consider code elements of any of tiypses as “classes”. In a similar
vein, string literals usually represent plain tengerted into source files, such as
comments do. Therefore, string literals and commeatlld be mapped together in
the same file part.

The difference between some constructs is negéigibl practice. For
instance, variables and parameters are distincstaars, strictly speaking.
However, from the developers’ point of view, theg &oth handled as variables.
Although it was not clear, this simplification mighave been used in the BLUIR
evaluation. Thus, thilixed mode addresses this possible ambiguity, by defiain
broader interpretation to the four constructs nwa&d in [4]. The mapping strategy

for each mode is shown on Table 4.

Table 4 — Construct-mapping strategies

Mode Construct mapping
Default Classes, Methods, Variables, and Commentsf{lenpart for each)
Complete All constructs from Table 3 (one file farteach)

Part 1: Classes, Enumerations, Interfaces, Namespaied Structures
Part 2: Methods

Part 3: Fields, Parameters, Properties, and Masgab

Part 4: Comments and String literals

Mixed

Next section presents the results of the evaluatibns answering the
research questions formulated in Section 3.1. FQd ,RDefault mode will be
applied to the 20 selected projects (Section 3.611RQ2, Completeand Mixed
modes will also be applied to the same projectsrder to compare their results
with those fromDefaultmode (Section 3.6.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

49

3.6
Results

3.6.1
Effectiveness of structured IR-based bug localizati on in C# projects

Our goal includes performint realistic (...) evaluation of state-of-the-art
bug localization techniques on a previously unikgbeogramming language”
(Section 3.1). To reach this goal, we apply BLURRUIR+, and AmaLgam on 20
C# projects. To the best of our knowledge, the maertl techniques have not been
evaluated on C# projects so far. To perform asBalevaluation, we include the
dataset preparation steps discussed in SectiorHdwever, we also apply the
techniques without dataset preparation, in orderaw a parallel with results from
Java studies. The two sets of results will be priesenext: firstwithout dataset

preparation (Section 3.6.1.1) and tlath dataset preparation (Section 3.6.1.2).

3.6.1.1
Effectiveness without dataset preparation

Initially, we questioned whether current statetwd-tirt bug localization
techniques based on structured information rettjevea, BLUIR, BLUIR+, and
AmalLgam, would effectively locate bugs in C# prégecConsidering results for
Java, one would expect similar levels of effecte@nfor C# as well, given the
apparent similarities between the languages. Ta@ngur first research question,
we ran the bug localization techniques on downldautejects using the reported
optimal configuration for each technique (Sectid®)2and theDefault mode
(Table 4). For the sake of comparison, we initiallp the algorithms without the
preparation steps discussed in Section 3.4, ekectson of appropriate source code
versions, exclusion of localized bug reports, andusion of test files. For each
technique, we took the average MAP, which consikthe arithmetic mean of the
MAPs from each project. Table 5 presents the aecMgP values observed for
the set of evaluated projects, and the variatiaeohed over the same measure from
Java projects. Considering all the techniquesatlegage MAP achieved by each

technique with C# projects was around 0.307.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

Table 5 — C# and Java results — Average MAP

Technique Java C# Variation
BLUIR 0.38 0.302 -21%
BLUIR+ 0.39 0.307 -21%
Amalgam 0.43 0.312 -27%

50

Opposed to the previous findings in Java projetie selected bug
localization techniques showed lower effectivenegserms of average MAP. This
result should be interpreted carefully, as the quigj are different and cannot be
compared. Nevertheless, the observed variatioxptaimable in part due to the
higher number of projects analyzed: 4 in the Jawdiss [4] [5] against 20 in our
C# study. Within projects in the same language télcaniques presented similar
behavior: AmaLgam performed better than BLUIR+, ethoutperformed BLUIR.
Recall from Section 2.3 that each technique usegparset of the information used
by the previously proposed technique: BLUIR is ldasa the similarity of bug
reports and source code, BLUIR+ adds the similafifgrevious bug reports to the
equation, while AmalLgam also considers versioronystAt first glance, this could
be considered an indication that, in fact, hybmrathhiques which combine
additional sources of information tend to perforettér than their predecessors do.
However, the average values are rather close. Thesanalyzed additional

parameters, which are presented in Table 6.

Table 6 — C# and Java results — Minimum and maximtoject MAP

Technique Minimum MAP Maximum MAP

Java C# Java C#
BLUIR 0.24 0.103 0.56 0.596
BLUIR+ 0.25 0.125 0.58 0.596
Amalgam 0.33 0.120 0.62 0.604

In contrast with data available from Java studsespbserved a high variation
on results from C# projects. Table 6 presents lsighad lowest MAP scores for
each technique and language. The minimum MAPs fr@arC# group were lower
than minimum values from the Java group for akkéhtechniques. The maximum
MAPs, on the other hand, were similar. In factr¢heas one project where the
techniques reached even higher MAP values, buag gonsidered an outlier, as
seen on Figure 1. Average MAPs for the outlier wei# 0, 0.767, and 0.747 for
BLUIR, BLUIR+, and AmalLgam, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

51

Technigues comparison

o o
o
~
o
S - . — —
Yo}
% S
=
]
g
= <
$ o7
<
@
o
N
o
- — :
= _
o
T T T
AmalLgam BLUIR+ BLUIR
Techniques

Figure 1 — Effectiveness of the techniques withp@dfects

The three techniques performed very similarly oa @¥# projects, as the
averages on Table 5 indicate. Another evidencéefstmilar performance is the
fact that each technique attained a higher scaife avdifferent metric: AmalLgam
had the higher average (0.312), BLUIR+, the highedian (0.269), and BLUIR,
the higher maximum (0.770). This suggests that,tlics particular dataset, the
additional information considered by BLUIR+ and Algam failed to increase the
effectiveness of the techniques significantly. Néwaess, in spite of the lower
averages relative to the Java evaluation, six ©fepts still have attained MAP
scores superior to the average of their Java cparts in at least one technique.
This implies that, in principle, there is no impaeint to the usage of bug
localization on C# projects due to features oflimguage itself, leaving room for
the investigation of alternatives to increase tiiecéveness of the techniques. In
Section 3.6.2 we propose such alternatives by atialy the effects of different
mappings of language constructs on the bug lodaizalgorithm. However, we
must evaluate the effectiveness of these altemmtgainst an accurate baseline.
Hence, we also performed an evaluation of the figcles with the dataset

preparation steps discussed in Section 3.4, todsepted next.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

52

3.6.1.2
Effectiveness with dataset preparation

We remind the reader that results from the prevergtion were obtained
without considering the dataset preparation stepsemted in Section 3.4. Those
results were compiled to reproduce the same caomditifrom the original
studies [4] [5]. A more realistic experiment, howgvshould incorporate these
steps. Thus, we have also performed an evaluatithe ¢hree techniques including
these steps. Table 7 presents minimum, maximum,agadage values for each

technique, and the decrease relative to resultswatpreparation steps.

Table 7 — Effect of dataset preparation steps gnldcalization — MAP

Technique Min Average Max

BLUIR 0.020 0.183 (-40%) 0.499
BLUIR+ 0.048 0.198 (-36%) 0.493
Amalgam 0.044 0.206 (-34%) 0.565

Wilcoxon Signed-Rank tests with 95% confidence llesenfirmed that
additional preparation steps on the dataset sggmfly decreased the MAP scores
for the three techniques. Complete details abauteits, including p-values, are
available at the study website [46]. The maximuniues indicate that some
projects were still able to achieve reasonableescddowever, compared to the
execution with no preparation steps, the effecegsrfor all projects decreased, on
average, more than 30% for all the evaluated teclas. Figure 2 presents a
graphical comparison of the effectiveness withaitiout the preparation steps. It
becomes clear from the data that bug localizatiadies must not ignore these
steps, under the penalty of reporting results ire@ly higher than what would be

found in actual settings.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

53

Non-prepared vs. Prepared data

0.8

0.6
=
+

Average MAP

0.2

|
H —_
—_

0.0
|

T T T T T T
Am NoPrep AmPrep B+ NoPrep B+Prep B NoPrep B Prep

Techniques

Figure 2 — Effectiveness of techniques with C# gct§ — Non-prepared vs. prepared data

The importance of removing localized bug reportsmirthis kind of
evaluation is not only a matter of construct vajidif the experiment. It has indeed
practical importance, as non-localized bug reparés exactly the kind of report
where developers would need the assistance ob#idation technique. Therefore,
the effectiveness of IR-based bug localizationemmis of mean average precision
can still be considered too low for these techrscioebe applied in practice.

On the other hand, the expectations for this kihteohnique must also be
put into context. No matter how effective they dneg localization techniques do
not eliminate the need for the developer to exanand fix the buggy file.
Therefore, instead of pinpointing the exact fildseve the bug is located, it may be
acceptable for the technique to provide a listuieay) a few candidates. Table 8
shows that the best performing technique — AmalLgawvas able to return a buggy
file at the top of the list 20% of the times, andi% of the times there was a buggy
file among the 10 first files returned by the teciue. Analyzing hundreds of files
and correctly placing at least one buggy file ikisaof 10 candidates for almost
60% of the time, while not ideal, is not as diseming as the average MAP of 0.206

suggests.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

54

Table 8 — AmalLgam effectiveness with dataset pedjmar steps

Technique Hit@1 Hit@5 Hit@10
Amalgam 20% 46% 57%

Nevertheless, these results reinforce that thestlisoom for improvement.
As discussed in Section 2.3, structured informategrieval is the component that
contributes the most to the effectiveness of stétide-art bug localization
techniques [4] [5]. This remains true even for teégbes using multiple sources of
information, such as AmalLgam [5]. Thus, we extentthedunderlying algorithm of
Amalgam’s structure component (Section 2.3) in otdeassess its effectiveness
when using a different set of programming languegmestructs. We present the

results in the next section.

3.6.2
Usage of more constructs to improve bug localizatio n effectiveness

The set of constructs used by BLUIR, BLUIR+, andalgam includes basic
constructs from object-orientated languages (ctaasel methods) and constructs
from programming languages in general (variablescamments). However, some
subtleties about construct selection were omittedurmaddressed in previous
studies. For instance, it is unclear how thesenigcies deal with interface names,
which could be considered equivalent to class nabnesmply ignored. As for
variable names, they might refer only to local &hles or include class attributes
(or fields) and method parameters. In other wotksre are additional types of
constructs that could be explicitly considered by bcalization techniques. When
considering a different programming language, \aittlifferent set of constructs,
these questions become more relevant.

To answer whether the consideration of more socode constructs could
improve effectiveness of bug localization, we desijthe three construct-mapping
modes described in Table 4. We selected Amalgaaelkt performing technique
according to the evaluation from Section 3.6.1.@apéed it to use the three
mentioned modes, and applied it to the set of ©fepts. We present the average
MAPSs (Table 9) and a box plot (Figure 3) summagzime performance observed

for each mode.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

55

Table 9 — Effectiveness of Amalgam using differemtistruct-mapping modes — MAP

Mode Default Complete Mixed
Average MAP 0.206 0.244 0.222

The usage of all the 12 constructs associated thighComplete mode
increased the average MAP of AmalLgam to 0.244,narease of 18%Mixed
mode, which also uses the 12 constructs but mag® timto four categories
(Table 4), showed a smaller increase on average.2&? (near 8%). From these
results, only the improvement associated withmpletemode was statistically
significant, according to Wilcoxon Signed-Rank s$estith 95% confidence
level [46]. The effect of the three construct-maygpimodes on individual projects
was generally the same observed on average valueshigher increase was
associated with th€ompletemode, whileMixed mode caused a more modest

increase, as shown in Figure 3.

Construct mapping modes comparison

=

04

Average MAP
0.3
|

0.2

0.1

o | i -
IS

T T T
Default Complete Mixed

Mapping modes

Figure 3 — Effectiveness of construct mapping modes

The reason why ompletemode was able to produce better results can be
explained by BLUIR formula (also used by Amalgano)y determining the

similarity of a bug report and a source file (Equat), which involves the

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

56

summation of the similarities of all pairs of bubpparts. InDefaultmode, the total
number of similarities to be summed is 8 — two p&xam the bug report multiplied
by four parts from the source code files. @ompletemode, the number of
similarities to be calculated increases to 24 (E2parts x 2 bug parts). Similarity
results are normalized before the rank of filegaserated, such that file scores are
always between 0 and 1. Therefore, the higher védaewould result from the
summation of more terms @ompletemode is unlikely to be the reason this mode
produced better results. In addition, M&ed mode restricts the number of terms
to be added up to 8, similarly to tBefault mode. Since thMixed mode has also
produced results higher than those of Default mode, we conclude that the
consideration of more source constructs by itsatfiticbuted to increasing the bug

localization effectiveness.

3.7
Threats to validity

In this evaluation, we carefully handled experina¢rgsues that are recurrent
in bug localization studies (Section 1.2.1). Thesseies are highly relevant, as
results from Section 3.6.1.2 demonstrates. We aidid) the threat to construct
validity posed by these issues with the datasepgvetion steps described in
Section 3.4. Nevertheless, some threats to vakdéstill present. We discuss them

in the next subsections.

3.7.1
Construct validity

Given the originality of our study, we could nohdi an available bug
benchmark for C# projects. Instead, we downloadsdés from GitHub and used
the existence of a user-applieoug’ label as a criterion to identify bugs among
those issues. Even following this procedure, weséitesubject to misclassified
issues, since not all bug reports could be manuellified. However, recent studies
suggest that this particular bias does not subathninfluence bug localization
results [14]. Nevertheless, we make all our datematilable at our study
website [46] so that others can refine it and ogpé our study. As there was no
dataset available for C# projects, one can considereplication package also as

a contribution of our study.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

57

Studies involving retrospective evaluation of bugsould consider the
version of the software at the time the bug wasdoWe addressed this issue by
performing the localization on latest version aafalié before the creation of each
bug report. Strictly speaking, this does not gute@rthat the selected version
actually contains the bug reported. However, tiectien of a previous version of
the code for each bug report is a close approxanaloreover, this step mitigates
a threat ignored in many recent studies on budifateon, including [4] and [5].

Localized bug reports, i.e., reports that mentioe or more code elements,
significantly influence the evaluation of bug lazation techniques [14]. Thus, we
excluded such bug reports from the analysis. Byopming this exclusion, we
remove an important bias that may have led prevstudies to unrealistic results.

Finally, the presence of test files also influenwag localization results, since
bug reports related to these files are very likelpe localized (Section 3.4.3). We
eliminated this bias by excluding test files frone tevaluation. The full rationale
for performing these exclusions was discussed iti@e 3.4 and 3.6.1.2. The
adoption of these dataset preparation steps agyue strong construct validity in

our study.

3.7.2
External Validity

In an attempt to increase generalizability, wenafteed to select a higher
number of projects compared to previous studieselGithe criteria defined in
Section 3.3, we were able to select 20 projectnresiderably higher number of
projects compared to other studies on bug locazgb times more than [3], [4],
and [5]). The absence of a standardized bug daabawever, greatly reduced the
amount of bug reports available for the experin(@iatle 2). The relatively low
quantity of bug reports and the variation in qugnénd quality of bug reports
observed on each project are threats to the exteathdity of our study. However,
we consider that bug localization techniques muestabsessed under realistic
settings, where the amount of available bug repoidgly varies from a project to
another. No relationship between the number of tepgrts of a project and the
effectiveness of the technique could be observead. domplete list of evaluated
projects and the number of bug reports evaluate@doh one is available at the
study website [46].

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

58

Another threat is the fact that all selected prgjegere open-source. This
kind of project has a characteristic workflow thditfers from that found on
proprietary projects. Different policies on bug edgmg, for example, may
significantly influence the results of bug locatipa techniques. Therefore, results
presented in this study are only representativihefvorkflow typically practiced

In open-source projects.

3.8
Conclusion

Structured information retrieval has been succdgsépplied to the bug
localization problem. Techniques based on strudtufR® have shown to be
considerably more effective than other IR-basedra@gghes. However, these
technigues are language-specific, as they depeonl tine structure of source files.
Considering the multi-language nature of most modsoftware [47], it is
important to have effective bug localization mod#ds the different kinds of
languages and technologies used in software psojé&bis study is a step in that
direction, where structured information retriesakvaluated on C# projects for the
first time, as far as we know.

The average effectiveness of the evaluated techsigm C# projects was
lower than the same metric reported in the origstadlies on Java. However, some
projects have individually yielded results above #verage informed by the Java
studies. Therefore, we conclude that, in principhere is no impediment to the
usage of bug localization on C# projects due ttufea of the language itself. The
lower average effectiveness compared to previoudies can be attributed to (i)
the 5x higher number of projects evaluated, andl{e discard of localized bug
reports, which artificially increased the effectiess of bug localization techniques
in previous studies. We also demonstrated thatgusiore program constructs,
which is a strategy that differs from previous $sd4][5], increased bug
localization effectiveness by 18% on average.

To the best of our knowledge, this is the first Hogalization study to
implement the experimental steps needed to solasgue of different versions
raised by [17] and thiecalized bug reporbias presented in [14]. Besides, we also
observed that test files should not be includedhm scope of the localization
process. These steps are important because thegndeate that the reported

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

59

effectiveness of current state-of-the-art bug laesion techniques cannot be
achieved in realistic situations. Future studiebug localization should not skip
such steps, as they produce an experimental sdagercto reality and to
developers’ expectations, increasing the chancdsugflocalization to become
more useful in practice.

In the next chapter, we address the remaining reflsegestions (RQ3, RQ4,
and RQ5). These questions will be answered by panfig an in-depth evaluation
of how bug localization techniques based on stredtunformation retrieval use

program constructs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

4
Analysis of the contribution of program constructs to
bug localization

Structured information retrieval (IR) has been alite increase the
effectiveness of static bug localization technigj4é$5]. The key feature of
structured IR-based techniques refers to how thmegkoup source files, based on
constructs available in the adopted programmingyuage. Bug localization
techniques based on traditional IR calculate timlarity between a source file and
a bug report considering the whole file (Sectidh . Conversely, structured IR-
based techniques break source files into multiglgsp one for each construct
recognized by the technique (Section 2.3.2). E&tihese parts contains only terms
that are instances of the corresponding construttté original source file. Then,
instead of calculating similarity using the whale fthe final similarity between a
bug report and a source file is the sum of thelanities between eagbart of the
source file and the bug report (Equation 8). BLUAR recognizes four Java
constructs: class names, method names, variableesyarand comments
(Section 2.3.2). Thus, it breaks source files fiotar parts. The same approach is
followed by BLUIR+ [4] (Section 2.3.2) and AmalLgdbj (Section 2.3.3).

However, structured IR has not been thoroughly @egl yet. In addition to
the limitation of being evaluated only on four s, the original models of
BLUIR [4], BLUIR+ [4], and AmaLgam [5] used only@m constructs from the Java
language (Section 3.5). Thus, it is unknown whetbigver constructs, such as
interfaces or enumerations, could have influencegd localization results. This
guestion becomes even more relevant when soures &ite written in other
programming languages, such as C#, which supporstrcts inexistent in Java
(Table 3).

In this chapter, we investigate the influence dfedent program constructs
on the effectiveness of structured IR-based buglilattion. In this investigation,
we use results obtained with t@®mpletemode (Section 3.5), as this construct

mapping mode increased bug localization effectiger®y including all available

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

61

C# constructs into the localization process (Sacdi®.2). Then, we use a statistical
procedure called Principal Component Analysis (P@Auantify the contribution
of each construct to the similarity score attriloutie source files. This analysis will
reveal the extent of the correlation between themsestructs and bug localization
results.

Finally, we explore the different contributionsriieeach construct by further
modifying the bug localization algorithm. First, wealuate whether suppressing
low-contributing constructs influences the resuther positively or negatively.
Next, we evaluate whether bug localization effemtiess can be increased by
attributing higher weights the most influential stnucts in the file score equation

(Equation 8), thus emphasizing their contribution.

4.1
Motivation

The key success factor for a bug localization tepiebased on information
retrieval lies on its ability to match terms fronugoreports and source files
successfully. Once we have observed that usindutheet of available program
constructs significantly increases bug localiza@dfectiveness (Section 3.6.2), it
becomes important to understand in more depth heget constructs individually
contribute to bug localization. Such knowledge éesmbus to discard low
contributing constructs, as well as attribute hrgleights to the most contributing
constructs, possibly increasing effectiveness. @trtribution of each program

construct is the subject of our third research toesrestated below.

RQ3: Which program constructs contribute more @ éffectiveness
of bug localization on C# projects?

To answer this question, we use principal comporamlysis (PCA).
Principal component analysis is a statistical pdoce that transforms a number of
possibly correlated variables into a smaller nundfevariables callegbrincipal

component$48]. According to Jolliffe [48]:

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

62

The central idea of principal component analysi€AP is to reduce the
dimensionality of a data set consisting of a langenber of interrelated
variables, while retaining as much as possiblénefvariation present in the
data set. This is achieved by transforming to a sewof variables, the
principal components (PCs), which are uncorreladed, which are ordered
so that the firstew retain most of the variation presentaith of the original
variables [48].

Translating bug localization domain to PCA, thestaicts are the variables
and the similarity scores are the variable valAssa result, PCA generates a set of
new variables — the principal components — witlywveay degrees of correlation with
the original variables. The PCs are presenteddnedsing order of contribution to
the total variance of the dataset. Therefore, tbgrek of contribution from a
construct to the variance of the dataset can besuned by its correlation with the
first PCs.

The reasoning for using PCA to answer RQ3 is th&hsanalysis may
indicate that the studied techniques may be marsitbee to a specific construct
subset. If this is true, most influential consteuatill emerge as highly correlated
with the first few principal components (PCs). [Rermore, it is expected that the
influence exerted by these constructs could beoéepl to increase bug localization
effectiveness.

Next section illustrates how the PCA was modeledrder to answer RQ3.
All the results presented in this chapter were gaed using R version 3.3.0 [49],
with additional libraries for analysis [50] [51] @xlata visualization [52] [53].

4.2
Analysis setup

To perform the analysis, we organize relevant datdne form of a table:
variables are laid out in columns, while rows cspend to data points.
The 12 C# constructs (Table 3) are the variablé® data points correspond to
every buggy file ranked among the top ten positfongvery available bug report.
The values for each variable are the summandsdmaposescoreS (Equation 8),
the similarity score attributed by AmalLgam’s sturetcomponent (Section 2.3.3).
These values were taken from the best performingstoact mapping mode
(Completemode, Sections 3.5 and 3.6.2). Table 10 illussratav data is organized

as input to PCA. Afterwards, we discuss in detald¢onstruction of the input table.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

63

Table 10 — Sample of the input for principal compairanalysis

Bug # / File rank Class Comments Enum _String Struct | Variable
names names literals names @ nhames
Bug #375/ 6th file 0.000 0.141 0.000 ... 0.224 0.000 0.354
Bug #535 / 1st file 0.473 0.523 0.000 0.148 0.000 0.270
Bug #535 / 3rd file 0.451 0.131 0.000 ... 0.177 0.000 0.358
Bug #742 / 3rd file 0.345 0.410 0.282 0.085 0.000 0.135
Bug #850 / 1st file 0.514 0.427 0.000 ... 0.532 0.000 0.569

Bug #850 / 2nd file 0.355 0.422 0961 ... 0461 0.000 0.000

Informally, PCA tries to “explain” a data set casisig of many variables
using a smaller number of variables. Since ourrapsion is that a subset of the
constructs is able to “explain” most of the bugalmation results, the constructs
represent the variables for the analysis. The bbai@alues are the scores attributed
by AmalLgam’s structure component with respect teheaonstruct. Recall
Equation 8:

scoreS = sim(f,b) = Z Z sim(fp, bp)

fpPEf bpeb

AmalLgam’s structure component breaks source fites lzug reports into
parts: bug reports are split into summary and detsen, and source files are split
in parts that contain only constructs from a spediyfpe. In theCompletemode
adaptation (Section 3.5), 12 C# constructs are iderexd (Table 4). The score
attributed by the structure componestoeS) is the summation of the similarities
of each pair of file and bug parts. Thus, for eachstruct, there is a term from
scoreS that reflects its specific contribution to theustiural similarity score. These
are the variable values used as input for the Plahlé 10).

Since our goal is to understand the contributiohgazh construct to the
effectiveness of bug localization, we must seldfeiciive instances from the data
set. Therefore, we selected those files that wetiellggyaccording to the oracle
(Section 3.2) andhigh-rankedby the technique, i.e., ranked among the top 10
positions. The number of positions, 10, is consisteith the Hit@10 metric
(Section 3.2). Thus, data points (rows in Tabledd)yespond to every buggy file

ranked among the top 10 positions for every avhilabg report.

7 Sample taken from project akka.net.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

64

After applying the described selection criteria3 8ta points were selected
to compose the PCA input. Table 11 summarizes géser statistics for the

selected data points.

Table 11 — Descriptive statistics for PCA input AM

Variable Min Median Max Avg. géc\j/
Class names 0.000 0.210 1.511 0.269 0.244
Comments 0.000 0.129 0.706 0.156 0.157
Enum names 0.000 0.000 1.208 0.109 0.254
Field names 0.000 0.121 1.204 0.169 0.193
Interface names 0.000 0.000 1.081 0.077 0.185
Method names 0.000 0.166 1.011 0.203 0.171
Namespace names 0.000 0.103 1.678 0.271 0.362
Parameter names 0.000 0.121 1.108 0.174 0.189
Property names 0.000 0.164 1.237 0.214 0.207
String literals 0.000 0.132 1.316 0.190 0.216
Struct names 0.000 0.000 1.567 0.061 0.225
Variable names 0.000 0.138 1.617 0.183 0.198

Once again, we remind the reader that the valuesepted in Table 10 and
Table 11 refer to the scores attributed by thectire component to each file,
considering only constructs of a particular typée3e scores are summed to
compose the structural similarity score (Equatipm@ich is then used to calculate
the final similarity score for a file (Equation 1I)herefore, it is expected that
minimum values for all constructs are equal to zdius means that, for every
construct, there has been at least one file witborstruct of that particular type
matching any terms from the bug report. This iseex@d because source files do
not usually contain instances of every existingglaage feature or construct, let
alone instances that match terms from a specificrbport.

Some constructs, namely enums, interfaces, andtstiobad median values
equal to zero. This means that, within the selessedple (which consists of high-
ranked buggy files), these were the constructs rtietthed bug report terms for
fewer occasions. This is an indicator of low cdmnition from these constructs.
However, we will proceed to the principal componanalysis before formulating

a definitive answer to RQ3.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-Rio - Certificacdo Digital N° 1312388/CA

65

4.3
Contribution of program constructs

This section answers RQ3, i.e., which C# constrootgribute more to the
effectiveness of bug localization. The answer itamed by applying principal
component analysis (PCA) to the dataset prepar8eédtion 4.2. First, the analysis
will transform data and express it as a seriesroédsions with varying degrees of
correlation with the original constructs (Sectio.4). Next step is to determine
the correlation of each construct with the returdedensions (Section 4.3.2), thus

answering RQ3.

4.3.1
Variances of principal components

PCA transforms input data into a coordinate sysseich that the highest
variance lies on the axis corresponding to th¢ pinsicipal component. Remaining
components represediiimensionghat account for a decreasing amount of variance.
In other words, the first components explain mdshe variance of the data. In our
context, we explore PCA to understand which coetdrbetter explain the data

variance on bug localization results.

10%
z

Figure 4 — Variance corresponding to each prinapahponent

Scree plot

20.5%

-

-

87% 0.5%
5.7% BE%

B.6%
&%
IIII E%
i 4 5 & 7 & g

Dimensions

Percentage of explained variances

1

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

66

Figure 4 presents the degree of variance expldnyedach of the 12 PCs.
While X-axis represents the 12 PCs, Y-axis indgdle percentage of explained
variances. Figure 4 shows that the first principainponent (PC1) accounts for
20% of the variance in the data, twice as muchG. Plowever, thelifferencein
the variance of the remaining PCs is much smabesm PC2 through PC12,
percentage of variance smoothly decreases fromtb084l%. Table 12 displays

the cumulative percentage of the variance fronfiteethrough the last component.
Table 12 — Distribution of variance through thenpippal components

o . Cumulative %
Component % variance

variance
PC1 20,5% 20,5%
PC2 10,0% 30,6%
PC3 9,7% 40,2%
PC4 9,5% 49,7%
PC5 8,6% 58,3%
PC6 8,0% 66,3%
PC7 6,7% 73,0%
PC8 6,6% 79,6%
PC9 6,0% 85,6%
PC10 5,7% 91,3%
PC11 4,6% 95,9%
PC12 4,1% 100,0%

As mentioned in Section 4.1, one of the main apgibnis of PCA is to reduce
dimensionality from a dataset. This is possible nviige first few components
account for a high percentage of the variance. Wiy be considered a high
percentage of variation is subjective, although litezature suggests a sensible
cutoff is very often in the range 70% to 90% [48pnsidering the distribution
presented in Table 12, it would be necessary toré¢tie seven first PCs to account
for 70% of the variance. Likewise, the ten firstsP@ould have to be retained to
account for 90% of the variance. From Figure dgeitomes clear that, except for
PC1, all remaining components present comparaligibations to the structural
similarity scores. Although there is no strict ruigpical contributions that allow
components to be safely discarded are below 1% H&hce, no component can
be confidently discarded due to a negligible céwition.

Although all construct types contribute to the fisaores, analysis of the
variances (Figure 4) suggest that some constractsilsute more than others do.
These are probably associated with PC1, whichdgffiaccounts for 20% of the

variance in the results. It remains to be investigavhich constructs are associated

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

67

with the first few principal components and whethkis association can be
exploited in order to increase bug localizatioreefifveness.

4.3.2
Constructs associated with principal components

The degree of relationship between original vadabland principal
components created by the analysis can be meadwetheir correlation
coefficients. A positive correlation indicates thath values (original variable and
PC) increase simultaneously. Therefore, positiveetations reveal constructs that
positively contribute to the result. Converselygateve correlations indicate that
while one of the values increases, the other opeedses. This situation could be
interpreted as a “wrong clue” to the techniquehasegatively correlated construct
would be assigning higher scores to files thatpetiog to the rest of the constructs,
should have lower scores. Therefore, constructis avihegative correlation to the
PCs are likely to be negatively contributing, i‘eisturbing” the results. Figure 5
depicts the correlation between constructs ancip@h components in the form of
a correlogram [54].

"S“’\ "S“q, @rb 6} 6‘ 6‘ 6‘ 6‘ -‘S‘ -‘S‘J\Q -‘S‘J\J\ @\W
FFFTFTFTFTFTFTFTFTNTS 1
ClassMames 063 X x ><
Zomments X X "
EnumMames X >< >< X X ne
FieldNames X X X X ftos
InterfaceMames X >< >< >< >< X L 02
IMethodMames 0.69 x x >< >< >< >< X
MamespacelMameas >< >< X [
ParameterMames >< >< o
PropertyMNarmes XX X X X X | o4
StringLiterals M 0.69 X X Btas
StructMames 052 X X 08
VariableNames X X

Figure 5 — Correlation between variables and ppmloctomponents

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

68

In Figure 5, blue values represent positive cotieia, while red values
indicate negative correlations. Higher absolute ueal indicate stronger
correlations. Thus, the closer to +1 the correfai$y the greater the contribution of
the construct. Similarly, constructs with corredas close to -1 are more likely
disturbing the effectiveness of the technique. 3thength of the correlation is also
given by the intensity of the color: dark blue atatk red circles indicate strong
positive and negative correlations, respectivelyatiically insignificant

correlations are signaled with a dark “x”.

4321
Positive correlations

It is possible to see that many constructs aretigeli correlated with the
first principal component (Dim.1). Method and classnes are the ones with the
strongest positive correlation. This means thahoand class names are the most
influential constructs regarding the first dimemsiextracted by the PCA. This
result was expected as classes and methods ofteesemt the most important
domain abstractions realized in program files. Tleaeybrace some other inner
constructs in a file, were the bugs are often “leda Given their importance in the
system domain, the names of such (class or metimsd)actions naturally have to
be reasoned about when someone is either repartilogating a bug.

The construct with the third highest correlatiorthe first PC idProperties.
Properties alongside witlStructuresis one of the two C# constructs that have no
equivalent in Java (Table 3). The contributionRsbperties though, was more
relevant than that dbtructures This can be explained by the fact tidtuctures
usually represent simple data structures, witle ldat no behavior, and therefore are
less prone to be associated with bugs. Moreo8é&mcturesare independent
constructs, whilé€roperties on the other hand, are members of classes. Theref
it is expected tharopertiesbe more closely related to domain abstractioreadly
represented by classes, increasing their chandss neentioned in bug reports.

After Properties the next constructs more correlated with PC1l are
Parameters and Variables Variables represent a ubiquitous concept of
programming languages, and its relevance to IRebdmey localization is no
surprise Parametersare used to pass values or variable referenaastioods [55].
Although Parametersare strictly different fronVariables their purposes are quite

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

69

similar. We have discussed the possibility of cdesng some constructs
equivalent, includingarametersaandVariables with theMixedconstruct-mapping
mode (Section 3.5). However, we have observed Gloenplete mode, i.e.,
considering the constructs separately, yieldedebetsults (Section 3.6.2). The
high correlation of these two constructs with PClyraxplain the advantage of the
Completemode. As both constructs proved to be relevargu(féi 5), considering
them separately had the effect of raising the sirityl score (Equation 8).

Each PC represents a different dimension of thgirai dataset. Notice that
PC1 is highly correlated tdvVlethods Classes Properties Parameters and
Variables In C#, methods and properties are class membi&ewise, parameters
and variables occur inside of methods. TherefoseMathodsand Classesare
containers of other constructs, suchiPagperties ParametersandVariables it is
expected that they co-occur, hence their high tadrom in the first PC. Notice,
however, that the container constructs, MethodsandClasseshave the highest
correlation. This means that, although the innestroicts Properties Parameters
and Variableg do contribute, their contribution is overshadowedtbgt of the
container onesMethodsandClasses

The construct with the strongest positive correlatiwith the second
dimension isString literals This construct had a negligible effect on thestfir
principal component. However, the strong correlatioth the second component
indicates that, overall, it still has a significactntribution to bug localization
effectiveness, as Table 11 suggests. The importahc&ring literals may be
explained by the fact that many bug reports inclelder messages, which are often
included in the source code as string literalssTimding actually reinforces that
String literals should be explicitly considered in structured IR&@ bug
localization models

Moreover, the fact thabtring literalswere more correlated with the second
PC, rather than the first, is meaningful. As afoeetioned, each PC represents a
different dimension of the data. Thus, the contidyuof String literalsoccurs in a
different dimension than that represented by PQis means that files with high
scores due to similarity witString literalsdid not have high scores due to method
or class name similarity, for example. This faat b& interpreted as an indication

that some files would only be located due to th@larity of bug reports witlstring

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

70

literals. This is an interesting result, &ring literals were not considered by
BLUIR [4] nor AmalLgam [5], despite being a frequgnised construct.

Similar reasoning can be applied to the third P@eneStructuresare the
most relevant construct, and so forth. Howeveoresadvances into the subsequent
PCs, one must remember that the relevance of the d@Creases (Figure 4).
Moreover, constructs with negative correlationsdoee more common. Thus, an

analysis of the influence of negative correlatiealso necessary.

4.3.2.2
Negative correlations

No construct showed negative correlation with thet principal component.
However, from the second PC onwards, negative letiwas start to appear. The
highest negative correlations observed weréfethods on PC12 (-0.5), followed
by Fieldson PC7 (-0.47), anbhterfaceson PC2 (-0.46). However, the percentage
of the variance explained by these components at&0,46.7%, and 10%,
respectively (Figure 4). Thus, the strong negatoarelation displayed by
Interfacesrepresent a relevant concern.

Interfacespresented a strong negative correlation as earlyha second
dimension. Although it was also responsible fomailar contribution on PC1, its
relative influence within that particular PC wasver than in PC2 and PC3: it has
the sixth largest absolute correlation value on R@Ed the third largest value on
PC2 and PC3. Apart from PC1, the positive contrdms fromInterfacesappear
only on PC8 (fourth largest) and PC10 (first latyeEhese dimensions, however,
account for 6.6% and 5.7% of the variance obsemveale scores. Therefore, the
positive contribution frominterfaces are relatively low, compared to other
constructs.

Descriptive statistics presented in Table 11 poattkiterfaces alongside
with EnumerationgindStructuresas the constructs with the lowest contribution to
bug localization effectiveness. This suggests tthese constructs are less
frequently (i) mentioned in bug reports; or (iiyalved in bug-fixing commits.
These are plausible explanations due to the eaflgnsitatic nature of these
construct types. From the three, only structs aamain some sort of dynamic

behavior (functions) [55]. Therefore, any bug tht@ims from these construct types

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

71

is likely to be detected at compile time, thus Inohg long enough to generate a
bug report.

PCA confirmed the low contribution frorBnumerationsand Structures
(enums and structs). As for Interfaces however, it revealed a strong negative
correlation between this construct type and thersggrincipal component. Such
observation prompts us to investigate whether baglization effectiveness could
be improved by removingnterfacesfrom the analysis. In the next section, we
present the results of another AmalLgam executiomweler this time using a
different construct-mapping mode. Th@ompletemode (Section 3.5) will be
adapted to consider all C# constructs (Table 3)epixinterfaces in order to
investigate the effects of removing a relativelywioontributing construct type on

bug localization effectiveness.

4.4
Effects of constructs on bug localization results

This section explores the effects of program caestron bug localization.
Section 4.3.2 determined constructs of interessfich exploration, i.e., constructs
lowly and highly correlated with bugs effectivebchted by AmaLgam. RQ4 asks
whether the suppression of low-contributing corgucould increase bug
localization effectivenessnterfacesemerged as the construct with higher negative
correlation — thus, less correlated — with effesljnMocated bugs. Therefore, RQ4
will be answered in Section 4.4.1 by adapting Amahgo ignore interface names
and, then, applying this adapted version on th&€2@rojects that comprise the
experimental dataset (Section 3.3).

In contrast, RQ5 inquires about the effects of easpting constructs highly
correlated with bugs that were effectively locabgdAmalLgam, namelyyethods
andClassegSection 4.3.2). RQ5 is answered in Section 4wih;h describes how
Amalgam is adapted to emphasize method and classsand presents the results

obtained from applying it on the 20 C# projects.

4.4.1
Suppression of low-contributing constructs

The influence of each program construct on thelanity scores attributed by

Amalgam is not homogeneous (Section 4.3). The fative of these scores with

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

72

the dimensions revealed by principal componentyamal(Figure 5) made it clear
that some constructs exert greater influence onldcajization effectiveness than
other constructs do. It is unclear, however, whethegative correlations can

disturb results. That is the subject of our foudbearch question:

RQ4: Does the effectiveness of bug localizatiorea®e with the
suppression of constructs with the lowest contrins?

Principal component analysis results showed thatdbnstructs with the
lowest contribution arénterfaces In fact, Interfacesare the constructs with the
larger negativecorrelation with the principal components. Thusijles similarity
scores from positively correlated constructs insedagether, scores from interface
names decrease. To assess whether this effechpasflaence in bug localization
results, we used the dataset of 20 C# projectsinoAmalLgam using a slightly
modified Completemode (Section 3.5). This modified mode considdlsthe
12 available C# constructs except flmerfaces Results are summarized in
Table 13.

Table 13 — Effect of the suppression of interfagmas — MAP

Mode Min Median Max Avg. gé(\j/
Complete 0.055 0.198 0.573 0.244 0.154

Without interfaces 0.055 0.200 0.582 0.245 0.158

RemovingInterfacesfrom the localization process increased AmalLgam’s
average MAP from 0.244 to 0.245 (0.4%). Median m@imum MAPs were also
slightly increased, while minimum MAP was unchangdthis is a positive,
although negligible, increase on AmalLgam resulif) wo statistical significance.
Therefore, it is not possible to answer RQ4 posiyioased on our dataset. As it
cannot be said thamterfaceshamper bug localization, it is not needed to reenov
this or any other low-contributing constrdicim a bug localization model based on

structured information retrieval.

4.4.2
Emphasis on most contributing constructs

One possible way of increasing effectiveness of logglization based on

structured information retrieval is to assign diffiet weights to the parts in which

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

73

source files are split [4]. PCA revealed tMdthodsandClassesare the constructs
with greater contribution to bug localization résulSection 4.3.2). Thus, our fifth
research question (repeated below) asks whethisr ppssible to increase the

effectiveness of a technique by emphasizing higbhtributing constructs.

RQ5: Does the effectiveness of bug localizatiorea®e with the
emphasis on constructs with the highest contrilmstto

To perform this evaluation, we modify AmalLgam omeere, by allowing it
to use different weights for each file part genedlaturing source file splitting. The
formula originally defined in BLUIR [4], and alsosed by BLUIR+ [4] and
AmalLgam [5] (Equation 8) is replaced by:

Yiawi Ybpeb Sim(fp;, bp)|
m

i=1 Wi

sim(f,b,w) =

Equation 12 — Weighted structural similarity betweefile and a bug report

Equation 12 incorporates weights to the calculatiparformed by
Amalgam’s structure component. Recall from Sec#Bdh2 that structural
similarity is computed by splitting bug reports arsdurce files in parts
corresponding to relevant fields. Bug reports ati imto summary and description,
while source files are split into as many partthasconstruct-mapping mode being
used (Section 3.5). Since we are using @wnpletemode, where all the 12
constructs available in C# are useds 12 in the above equation.

To answer RQ5, we must choose one or more constrwdh high
contributions to the results, assign them higheghte (Equation 12), and re-run
Amalgam with this configuration. We selected the tonstructs with the highest
contribution,MethodsandClassegSection 4.3.2), and assigned weights of 1.5, 2.0,
and 3.0 to each one. These values were arbiti@ridgen to promote a significant
variation in the weights, so we could observe ticlvlextent the technique benefits
from using higher or lower weights. The resultsaoied with this execution are
displayed in Table 14. The first row repeats Amahgasults with th&Complete
mode (Table 9), while next rows (referenced by keypresent the weighted

configurations being tested.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

74

Table 14 — Effect of applying higher weights to hwet and class names — MAP

Std.

Key Mode Min Median Max Avg. dev p-value
— Complete 0.055 0.198 0.573 0.244 0.154 -
A | Method weight = 1.5 0.055 0.200 0.574 0.246 0.1600.0533
B Method weight=2.0 0.056 0.195 0.574 0.246 0.160 0.1230
C Method weight = 3.0 0.050 0.171 0.574 0.238 0.1620.6186
D Class weight=1.5 0.055 0.207 0.582 0.248 0.155 0.0919
E Class weight = 2.0 0.055 0.207 0.582 0.265 0.168 0.2707
F Class weight = 3.0 0.055 0.194 0582 0.256 0.171 0.6783

Table 14 shows that, in general, usage of highegh®was able to increase
AmalLgam’s effectiveness, measured in terms of nas@mage precision (MAP).
Class constructs (rows D — F) led to higher MAPs thitethod constructs
(rows A — C) with the same weight for all statist{ecninimum, median, maximum
and average MAP). As for the weight values seledbedt average MAPs were
obtained when the emphasized construct had itshiveigubled (rows B and E,
weight = 2.0).

We used Wilcoxon Signed-Rank tests to assess t&takisignificance.
Unfortunately, none of the results was statistycalgnificant at 95% confidence
level, although configurations with weights = 1/ws A and D) came close
(94.7% for Method and 90.8% forClasg. The confidence levels decreased
drastically as the weights increased. For instaresylt for the configuration with
the highest MAP, i.eClassweight = 2.0 (row E), had a confidence level o%/3
(p-value = 0.2707). As fa€lassweight = 3.0 (row F), not only the MAP dropped,
but also the confidence level (32%, p-value = 0378he same was observed for
Methodweight = 3.0 (row C), which means 3.0 is a weightue beyond the
threshold both for effectiveness and for signifm@anComplete statistical analysis
is available in the online appendix [46].

The constructd/lethodsandClassegresented similar levels of influence to
bug localization results, as measured by theiretation to the main component
revealed by PCA analysis (Figure5). Thus, we atested Amalgam
simultaneously changing the weights of these twostacts. We fixedClass
weight with a value of 2.0, as it was the best ltesitained when constructs had
their weights changed individually (Table 14, royv Ehen, we applied weights
of 1.5 and 2.0 tdMethodconstructs. We did not sktethodweight = 3.0, as this
weight value led to smaller MAPs for both constsuetvaluated individually
(Table 14, rows C and F). Results are presentéalite 15.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

75

Table 15 — Effect of combining higher weights ortimel and class names — MAP

Std.

Key Mode Min Median Max Avg. dev p-value
— Complete 0.055 0.198 0573 0244 0.154 _
E Class weight = 2.0 0.055 0207 0582 0265 0.168.2707
g | Classweight=2.0 0.055 0.198 0571 0266 0.168 0.0682

Method weight = 1.5
Class weight = 2.0

Method weight = 2.0 0.056 0.195 0.571 0.253 0.156 0.0412

In Table 15, previous results (iitalics) are repeated for the sake of
comparison. The first row contains results from @@ampletemode with equal
weights for all constructs (Table 9). The secomwd mepeats the result obtained with
a weight of 2.0 attributed Glassconstructs (Table 14, row E). It is possible te se
that average MAP increased from 0.2&binpletemode) to 0.266 whelethod
weight is set to 1.5 (row G), and to 0.253 whdathodweight is 2.0 (row H).
CombiningMethodweight = 1.5 andClassweight = 2.0 (row G) even increased
average MAP compared to using odlassweight = 2.0 (row E), although by a
negligible amount (only 0.4% higher, from 0.265t866).

As with the first part of this evaluation, we us&filcoxon Signed-Rank tests
to determine statistical significance. Resultsdombined weights were closer to
the selected 95% confidence threshold: 93% for @wand 96% for row H (p-
values of 0.0682 and 0.0412, respectively). Thus, possible to state that setting
ClassandMethodweights to 2.0 (row H) significantly increased Hogalization

effectiveness, compared wi@ompletemode with equal weights for all constructs.

4.5
Conclusion

In this chapter, we investigated the influenceiffedent program constructs
on the effectiveness of structured IR-based buglilwation. Initially, we applied
principal component analysis (PCA) on results framalLgam in theComplete
mode. This analysis intended to reveal which cotdrfrom the C# language
exerted more or less influence on bug localizatesults.

PCA data suggested that all constructs exertegh&fisant level of influence
on the results (Section 4.3.1). Thus, it was natspide to identify irrelevant
constructs just by inspecting PCA data. The anslisio revealed thitethodsand

Classeswvere the constructs with more influence on theltegSection 4.3.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

76

In spite of PCA data not having revealed constrtias could be considered
irrelevant, some constructs emerged as negatiwehglated with bug localization
results. The most striking example wasgerfaces (Figure 5). This negative
correlation caused us to investigate what wouldthee effect of suppressing
Interfacesfrom bug localization (Section 4.4.1). ComparedCompletemode,
results were practically unchanged (Table 13). Tiugsconclude that suppression
of low-contributing constructs does not increasg lmealization effectiveness.

Another possible way of increasing effectivenesdwg localization is by
emphasizing constructs that are more influentiad,, Methods and Classes
(Section 4.3.2). We investigated that possibility tunning AmalLgam with
alternative configurations, where different weiglisre assigned to these two
constructs, one at a time (Section 4.4.2). Prdbtial of these configurations
caused the average MAP to increase (Table 14)owdth none of these
improvements reached our statistical significaieeghold. Nonetheless, we also
tested Amalgam assigning higher weights to b&lkethods and Classes
simultaneously. In this case, a statistically digant improvement was attained
whenMethodsandClassesvere assigned a weight of 2.0 (Table 15). Comptared
Completemode, MAP increased from 0.244 to 0.253 (3.7%).

It was previously demonstrated that bug localizatimsed on structured
information retrieval benefits from the usage ofrenprogram constructs (RQ2,
Section 3.6.2). This finding is reinforced by theorough analysis of the
contribution of program constructs performed irs tthapter. The answer to RQ3
suggested that all constructs significantly infloerbug localization results. RQ4
confirmed this suspicion, by showing there was igniBcant effectiveness
increase when the technique ignored the constritlsttike smallest contribution.

The usage of weights in the calculation of struadtaimilarity increased bug
localization effectiveness. The weight values usetiis experiment (1.5, 2.0, and
3.0) were selected empirically. Thus, a possiblprovement to this evaluation
involves determining optimal weights for each comst Likewise, we only
evaluated the assignment of higher weights towlzenhost influential constructs,
I.e., Methods and Classes However, the effect of weighing more than two
constructs is still unknown, and could be the stutlpé future studies. Nonetheless,
weighing constructs proved to be a promising wainofeasing the effectiveness

of bug localization techniques based on structurg@mation retrieval.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

5
Conclusion

Determining which parts of the source code nedzktmodified to remove a
bug can be a difficult task. Automated bug locdlaa techniques aim to help
developers in this task by providing a list of domus files potentially related to
the bug. Such techniques can be dynamic or si2yicamic techniques depend on
program execution. Therefore, numerous test casest nbe available
(Section 2.1.2). Conversely, static bug localizatiechniques require only source
files and a bug report to be applied. Thus, statibniques can be applied to a wider
range of scenarios, such as legacy systems whemnerebensive test suites are rare
or not available (Section 2.1.3).

In recent years, structured information retrievas hbeen successfully
employed by static bug localization techniqueshsas BLUIR [4], BLUIR+ [4],
and AmalLgam [5]. Some of these techniques incotpaadditional data into the
localization process, such as bug history (BLUiR}F&nd AmalLgam [5]) and
change history (AmaLgam [5]). Nonetheless, strertunformation retrieval was
still the main responsible for the improvement Ilgtou by these techniques
(Section 2.3.4).

In spite of the improvements, these techniquestlienot effective enough
to be widely used in practice. To make matters @jopoblems in the dataset
preparation (Section 3.4) led these studies [4] {6] achieve an artificial
effectiveness (Section 3.6.1). The lack of realismpirical studies of the field is
likely to become a bottleneck for their adoptioartRermore, there was a lack of a
thorough evaluation of how structured informaticetrieval could be further
explored to increase bug localization effectiveng@sgse shortcomings motivated
us to perform & realistic, in-depth effectiveness evaluationtafesof-the-art bug
localization techniquésas stated in our goal (Section 1.3). Our mandlifigs are

summarized in the next section.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

78

5.1
Findings

State-of-the-art bug localization techniques arenmoonly tested in Java
software systems only [3] [4] [5]. Thus, in order tontribute to the body of
knowledge on bug localization, we decided to cohdue studies in a previously
untested OO language. We have selected C#, asiihilgr, however significantly
different from Java (Section 3.1). In particuldre tset of constructs available in
both languages is different (Table 3), which enlearntbe relevance of selecting a
different language to evaluate structured IR-bdmegllocalization techniques.

The lack of previous evaluations using C# softwaystems obliged us to

establish a baseline for further comparisons. Tivasformulated RQ1:

RQ1: Are BLUIR, BLUIR+, and AmaLgam effective

to locate bugs in C# projects?

To answer this question, we applied the three tgcles on the 20 selected
C# projects (Section 3.3). Effectiveness, measurederms of mean average
precision (MAP), was close to the values reportedava studies, indicating the
techniques could be successfully applied to C#eptsj(Section 3.6.1.1). There was
a significant MAP variation across the project®ur sample, which is commonly
omitted in previous empirical studies. In certa@rses, MAP was even higher than
0.5, while MAP was close to 0.1 in others. Thidtwgriation shows that structured
IR has already potential to be applied in certadustry C# projects, where: (i) bug
reports are used with proper discipline, and ig text produced by bug report
authors share some vocabulary with the prograrif.itse

However, a comparison of results obtained in défifieisets of projects would
not be appropriate. Moreover, being aware of thgeamental shortcomings of
previous studies (Section 1.2.1), we needed tdksttaa reliable baseline against
which subsequent results would be compared. Themawthe same techniques on
a dataset that implemented the preparation stepsssary to mitigate the
mentioned shortcomings (Section 3.4). Results atdit that effectiveness with the
dataset preparation steps was, on average, 37%esrttzn the effectiveness
without those steps (Table 7).

In the original studies, AmaLgam was the most ¢iffecfrom the three
techniques [5]. The same happened in our study Wwahout (Table 5) and with

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

79

(Table 7) dataset preparation steps implementeds,Tlwe restricted subsequent
evaluations to AmaLgam only.

Some of the experimental shortcomings handledigetaluation had been
pointed out by other studies [14] [17]. Our evalateinforces findings from these
studies, by providing evidence of the effect of sthobiases on a different
programming language, which was not addressecewiqus studies. Furthermore,
it served as a realistic parameter against whickvas possible to compare

subsequent results, described in the next subssctio

5.1.1
Usage of constructs

The set of constructs explicitly considered by BRU#] comprises class
names, method names, variable names, and comnSaatson 2.3.2). Considering
that some Java constructs were left out by BLUSRwall as the fact that C# has a

different set of constructs, we formulated RQ2:

RQ2: Does the addition of more program construstsease the
effectiveness of bug localization on C# projects?

We devised two construct mapping modes in additbahe default mapping
used by the Java studies (Table 4). Results sholaadCompletemode, where
source files are split in one part for each avédad# construct, was the most
effective mode, increasing MAP in 18%, from 0.20®t244. This result suggests
that structured IR techniques should leverage Hage of program constructs to
the maximum possible extent, explicitly includingthe available constructs into

their process.

5.1.2
Influence of constructs

We became aware that the inclusion of all availablestructs increased bug
localization effectiveness (Section 3.6.2). Howeitewas not clear to which extent
each construct contributed to the effectivenessase. To investigate this matter,

we formulated RQ3:

RQ3: Which program constructs contribute more @ éffectiveness
of bug localization on C# projects?

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

80

We answered this question using principal compoaeatysis (PCA). The
analysis focused on the similarity scores attridute effectively localized buggy
files. These scores were tabulated and transforinem a different dataset,
composed of dimensions (or principal componentgedan decreasing order of
relevance to the original dataset. The correlabbreach construct to the most
relevant dimensions (Figure 5) determines the a@egirenfluence of the constructs.
Thus, it was possible to verify thistethodsandClasseswvere the most influential
constructs regarding bug localization results.

PCA also revealed some constructs negatively aeaelwith the principal
components. In particulamterfacesshowed a strong negative correlation in the
second dimension of the data (Figure 5). This megatorrelation led us to
formulate RQ4, questioning whether there would img @nstruct disturbing bug

localization.

RQ4: Does the effectiveness of bug localizatioreexe with the

suppression of constructs with the lowest contrdms?

To address this question, AmalLgam was adaptedrisider all the 12 C#
constructs (Table 3), excepterfaces In fact, MAP increased without considering
interfaces (Table 13). However, the improvement weegligible, and not
statistically significant. Therefore, we concludere is little gain in removing

constructs from bug localization techniques basestructured IR.

5.1.3
Weighted similarity calculation

The suppressing of constructs with little influemcebug localization results
did not significantly increase bug localization eetiveness. However, we still
needed to evaluate how the most relevant constrootsd influence bug

localization. This was the subject of RQ5:

RQ5: Does the effectiveness of bug localizatioreame with the

emphasis on constructs with the highest contrilmstto

This question was answered by performing anothaptation to AmaLgam
and allowing it to run with different weights asségl to each program construct.

Similarity calculation splits source files into gathat contain only constructs from

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

81

a specific type. Then, the final similarity scofeadile is the sum of the similarities
of its parts (Equation 8). In the weighted variatithe final similarity score is a
weighted average of the similarities of its paEgqyation 12).

We assigned various weight valuesMethodandClassconstructs, both in
isolation (Table 14) and combined (Table 15). Mafsthe values tested increased
bug localization effectiveness. However, a staly significant improvement
was achieved with weight values of 2.0 for bGlassesandMethods The weight
values were empirically determined, suggestingetimeight be optimal values that
lead to even better results. Nonetheless, thidtrelsaws that structured IR-based

technigues can be fine-tuned to increase effeatiserven further.

5.2
Contributions

Structured information retrieval allows bug localibn techniques to exploit
language features — constructs — in order to iseréaeir effectiveness. Java is the
programming language that more often appears in Wagalization
studies [2] [3] [4] [5] [6] [7]. Our study contrilbes by performing an evaluation of
state-of-the-art bug localization techniques onet &f programs written in a
previously untested language, namely C#. This ex@ln provides evidence of the
effectiveness of bug localization techniques ortlagoimportant and widely used
language [18] [19]. Nonetheless, while the evidemee provide is language-
specific, the findings of our study may as welldpplied to different programming
languages, including Java.

Next subsections discuss our contributions in rrtletail.

5.2.1
Alternatives to increase bug localization effective ness

We have evaluated structured information retriesapects that were
unexplored in previous bug localization studiestiBalarly, we performed an in-
depth study on the influence of program construots bug localization
effectiveness. In summary, our findings indicatat thug localization techniques
should (i) consider the entire set of program amtcss that can be extracted from
source files and (ii) attribute higher weights tmstructs that are more relevant.

We provided evidence of the effectiveness of thasasures on a set of 20 C#

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

82

projects. Nevertheless, these measures could bke@dpp future techniques
designed to work with different programming langes@s well.

Studies on bug localization have been trending tdsvtne adoption of hybrid
models, which aggregate multiple sources of infdiomaas a strategy to increase
bug localization effectiveness [3] [4] [5] [7] [32literature indicates that the usage
of hybrid models is an assured way to evolve bagliration techniques. However,
structured IR-based techniques can still benadinfthe improvements brought by
our study, regardless of how much additional infation their models incorporate.
Therefore, it is important to exhaust the posdipibf improvement associated
exclusively with structured information retriev@lur study contributes to this goal,
by providing alternatives to increase the effectags of techniques based on

structured IR.

5.2.2
First bug localization study using C#

Most bug localization techniques have been testedsaftware projects
written in Java [2] [3] [4] [5] [6] [7] or C [6] [B]. We were unable to find studies
applying bug localization to other object-orientadguages. In particular, this is
the first bug localization study involving the C#&nbuage, to the best of our
knowledge.

Preparation steps (Section 3.4) were applied toeperimental dataset in
order to mitigate bias (Section 1.2.1), therefonsueing the realistic evaluation
which was part of our goal (Section 1.3). In aduditio these preparation steps,
developing the study in a language other than davalso be considered a decision
that favors realism. While structured HRchniquesare language-specific, the
structured IRapproachitself is not. Therefore, implementing techniqtiest apply
the principles of a structured IR technique to aetéht programming languages

helps to strengthen the confidence in their results

5.2.3
Replication package

Since we could not find other similar studies aggplio the C# language, we
had to develop a set of tools to support the erpants. These tools are described

in the next paragraphs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

83

GitHub data extractor. It uses the GitHub public API to download issud an
commit data. It saves downloaded data in JavaS@igect Notation (JSON)
format. It also downloads the appropriate prograension according to issue
creation dates (Section 3.4.1).

Preprocessor. It performs the text preprocessing steps (Se@&@iarl) on
downloaded issues and source code and generatestsomfrequency statistics
(Section 2.2.2). It saves the result in XML filag, order to avoid repeated
computation on each execution of the bug locabizati

Bug localizer. It applies one of the bug localization technigtes list of
preprocessed bug reports, generating lists of sioss files. The technique to be
applied (BLUIR, BLUiIR+, or AmalLgam) is determineq lparametera andb,
which determine weights of the scores generated dagh component
(Section 2.3.3). Results — such as file names,, ramtk suspiciousness scores — are
saved to CSV files (comma-separated values). Tlegram also generates
evaluation metrics (Section 3.2) and save them3¥ @les as well.

In addition to the aforementioned tools, resouraeed in this study —
downloaded issues, commits, preprocessed sourees a results and statistical
analysis — are available online [46].

5.3
Future work

To conclude our study, we highlight possibilities future work that might
develop some of our findings, thus advancing thgelboalization field.

Weighted similarity calculation was shown to in@eabug localization
effectiveness (Section 4.4.2). However, our evanaselected weight values
empirically. The effectiveness could be furtherr@ased if an optimal set of
weights could be found. The calculation of the w&gcould be automated and
performed on a per project basis, which might leaelven better results.

In fact, project characteristics significantly unince bug localization
effectiveness. We have observed in our dataseta wariation on effectiveness
across different projects. In some projects, trexagye MAP was above 0.5, while
in others it was below 0.1 [46], suggesting that, garticular projects, IR-based
bug localization is feasible. However, there iseadto perform further analysis of
project characteristics that affect bug localizatieffectiveness. A key success

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

84

factor for the success of IR-based bug localizatgothat both bug reports and
source files contain terms that relate to the danahithe application. Therefore,
practices followed by developers may have a sigaifi influence on bug

localization. Projects with stricter policies regjag haming conventions in source
code and bug reporting might be those where IRebaseg localization is more

effective.

Therefore, to be successfully applied, IR-based Ibaglization techniques
require the adoption of practices that encourageldpers and users to share the
same vocabulary. These practices could be supptiitedgh recommendation
systems, which could analyze the code to idengfgvant terms and suggest the
use of these terms to the author while the bugrtapdeing written. Likewise,
IDEs could be improved to advise programmers tcausansistent set of terms. For
instance, if a software project uses the teastometo represent a domain concept,
when a developer creates a class na@ieht, the IDE could recommend the usage
of the first term. This consistency would improeenht matching, which is vital to
the success of information retrieval models.

We focused our exploration of structured IR-basaglibcalization on source
files — specifically, on program constructs. Nekieless, similar exploration could
be carried out with bug reports. Regarding bug ntepontents, the same kind of
recommendation for ensuring terminological consisyethat was suggested for
programmers could also be directed to users wrhitngyreports. As for bug report
structure, we followed the approach defined inf3][5] and considered only bug
report summary and description. However, additiomdbrmation could be
considered. For example, many platforms, such aduBi allow developers to
carry out a discussion about the bug, saving tbbhanged messages within the bug
report. These discussions could become a thirdipavhich bug reports are split
(Section 2.3.2). As these discussions can becomegthye, bug report
summarization could be applied to restrict disaussiontents to more meaningful
terms.

Regarding C#, future work includes the creatioraaftandard bug dataset,
similar to iBUGS [36] or moreBugs [44], containibggs from C# projects. This
would allow studies with better potential for gemdeability involving the C#
language. Although we have made downloaded isstskalle online [46], only

raw data is available. Ideally, a standard datasmild have all or most of its

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

85

constituent bug reports manually verified in orttelavoid misclassification, i.e.,
regular issues wrongly classified as bugs. Othsiraele features of a bug dataset
include online search and visualization functianedi and the possibility of
downloading parts of the dataset according to stteria, e.g., bugs opened after
a specific date, bugs closed more than 30 daysladteg opened, bugs opened and
closed by the same person.

Another possible line of work involves conductingabstical studies to
improve bug localization knowledge on differentdaages and different types of
files. For instance, bugs are not always locatesbirrce files. Sometimes they can
be found in different kinds of files, such as cgafiation files. Developers could
benefit from having specific localization technigder these kinds of bugs.

Finally, it is also important to assess the usefsdnof bug localization when
actually applied by developers. This is a fundamlestep to promote the adoption
of bug localization techniques. Therefore, thesén&ues should be assessed via
controlled experiments involving developers, sushtl@e one reported in [10].
Controlled experiments would reveal how developsse bug localization results
to locate buggy files. Nevertheless, the bug laation field still demands
effectiveness increase of existing techniques, lz=emwed in this dissertation.
Otherwise, developers would not be confident enanigiine techniques to use them,
even in controlled experiments. Thus, increasiegetifiectiveness of the techniques
is an important first step towards widespread adaptof automated bug

localization.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

86

References

1. ISO/IEC/IEEE.Systems and software engineerin- VVocabulary.
ISO/IEC/IEEE 24765:2010. Switzerland: ISO/IEC/IEEB10. p. 1-418.

2.LUKINS, S. K.; KRAFT, N. A.; ETZKORN, L. H. Bug Laalization Using
Latent Dirichlet Allocationinformation and Software Technology 52, n.
9, September 2010. 972-990. Available:
<http://dx.doi.org/10.1016/j.infsof.2010.04.002>.

3.ZHOU, J.; ZHANG, H.; LO, DWhere Should the Bugs Be Fixed- More
Accurate Information Retrieval-based Bug Localizaton Based on Bug
Reports. 34th International Conference on Software EnginggqICSE).
Zurich, Switzerland: IEEE. 2012. p. 14-24.

4. SAHA, R. K. et allmpro ving bug localization using structured
information retrieval . 28th International Conference on Automated
Software Engineering (ASE). Palo Alto, Californid$A: IEEE. 2013. p.
345-355.

5.WANG, S.; LO, D.Version History, Similar Report, and Structure:
Putting Them Together for Improved Bug Localizatig@nd International
Conference on Program Comprehension (ICPC). Hyderdhdia: ACM.
2014. p. 53-63.

6. RAHMAN, F. et al.BugCache for Inspections Hit or Miss? 19th ACM
SIGSOFT Symposium and the 13th European Conferemé@®undations of
Software Engineering (ESEC/FSE). Szeged, HungaBMA2011. p. 322-
331.

7.SISMAN, B.; KAK, A. C.Incorporating Version Histories in Information
Retrieval Based Bug Localization 9th Working Conference on Mining
Software Repositories (MSR). Zurich, SwitzerlarEE. 2012. p. 50-59.

8.LEWIS, C.; OU, R. Bug Prediction at Google, 14 Daber 2011. Available
<http://google-engtools.blogspot.sg/2011/12/bugijmteon-at-google.html>.
Accessed: 05 September 2015.

9. MURPHY-HILL, E. et al.The Design of Bug Fixe. 35th International
Conference on Software Engineering (ICSE). Sandisaa, California,
USA: IEEE. 2013. p. 332-341.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

87

10.WANG, Q.; PARNIN, C.; ORSO, AEtvaluating the Usefulness of II-
based Fault Localization Techniques2015 International Symposium on
Software Testing and Analysis (ISSTA). Baltimoreadtyland, USA: ACM.
2015. p. 1-11.

11.KOCHHAR, P. S. et alAn Empirical Study of Adoption of Software
Testing in Open Source Projects13th International Conference on Quality
Software (QSIC). Nanjing, China: IEEE. 2013. p. 102.

12.RA0, S.; KAK, A.Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Madels.
8th Working Conference on Mining Software Repost®(MSR). Waikiki,
Honolulu, HI, USA: ACM. 2011. p. 43-52.

13.MANNING, C. D.; RAGHAVAN, P.; SCHUTZE, Hintroduction to
Information Retrieval . New York, NY, USA: Cambridge University Press,
2008. ISBN 0521865719, 9780521865715. Available:
<http://dl.acm.org/citation.cfm?id=1394399>.

14. KOCHHAR, P. S.; TIAN, Y.; LO, DPotential Biases in Bug Localizatior
Do They Matter? 29th International Conference otofmated Software
Engineering (ASE). Vasteras, Sweden: ACM. 201803-814.

15.SAHA, R. K. et alOn the Effectiveness of Information Retrieval Base!
Bug Localization for C Programs 30th International Conference on
Software Maintenance and Evolution (ICSME). VictpBritish Columbia,
Canada: IEEE. 2014. p. 161-170.

16.PARNIN, C.; ORSO, AAre Automated Debugging Techniques Actually
Helping Programmers?2011 International Symposium on Software Tes
and Analysis (ISSTA). Toronto, Ontario, Canada: AG@11. p. 199-209.

17.RAO, S.; KAK, A. A Serious Issue with Some Curréuiblications on IR-
Based Approaches to Automatic Bug LocalizatimoreBugs 2013.
Available: <https://engineering.purdue.edu/RVL/Detse/moreBugs/#C5>.
Accessed: 14 May 2016.

18. TIOBE SOFTWARE BV. TIOBE Index for April 2016, Apr2016.
Avalilable: <http://www.tiobe.com/tiobe_index>. Agsed: 19 April 2016.

19.GITHUB, INC. Language Trends on GitHubhe GitHub Blog, 19 Aug.
2015. Available: <https://github.com/blog/2047-laage-trends-on-github>.
Accessed: 19 April 2016.

20.GITHUB, INC. Mastering Issue$itHub Guides, 2014. Available:
<https://guides.github.com/features/issues/>. Aees03 July 2016.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

88

21.ATLASSIAN. What is an IssuellRA User's Guide, 2015. Available:
<https://confluence.atlassian.com/jira064/whatnsssue-720416138 /mi>.
Accessed: 03 July 2016.

22.LUKINS, S. K.; KRAFT, N. A.; ETZKORN, L. HSource Code Retrieva
for Bug Localization Using Latent Dirichlet Allocation. 15th Working
Conference on Reverse Engineering (WCRE). AntwBetgium: [s.n.].
2008. p. 155-164.

23.ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. @n the Accuracy of
Spectrum-based Fault Localization Testing: Academic and Industrial
Conference Practice And Research Techniques - MUDAIT{TAICPART-
MUTATION). Windsor, UK: IEEE. 2007. p. 89-98.

24.JONES, J. A.; HARROLD, M. J.; STASKO, Visualization of Test
Information to Assist Fault Localization. 24th International Conference on
Software Engineering (ICSE). Orlando, Florida, USCM. 2002. p. 467-
477.

25.ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. ¥An Evaluation of
Similarity Coefficients for Software Fault Localization. 12th Pacific Rim
International Symposium on Dependable Computingd@R Riverside, CA
USA: IEEE. 2006. p. 39-46.

26.WONG, W. E. et al. A Survey on Software Fault Lazation.|[EEE
Transactions on Software Engineering42, n. 8, 1 August 2016. 707-740.
Available: <http://dx.doi.org/10.1109/TSE.2016.28388>.

27.JIN, W.; ORSO, AF3: Fault Localization for Field Failures. 2013
International Symposium on Software Testing andlysia (ISSTA).
Lugano, Switzerland: ACM. 2013. p. 213-223.

28.WOTAWA, F.; STUMPTNER, M.; MAYER, W. Model-Based bagging
or How to Diagnose Programs Automatically. In: HENIASS, T.; ALI, M.
Developments in Applied Atrtificial Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002. p. 746-757. ISBMN-3-540-48035-8.
Avalilable: <http://link.springer.com/chapter/10.708-540-48035-8 72>.

29.ZELLER, A.Isolating Cause¢-effect Chains from Computer Programs.
10th Symposium on Foundations offt8@re Engineering (FSE). Charlest
South Carolina, USA: ACM. 2002. p. 1-10.

30.ZELLER, A.; HILDEBRANDT, R. Simplifying and isolatig failure-
inducing inputlEEE Transactions on Software Engineering28, n. 2,
February 2002. 183-200.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

89

31.PAPADAKIS, M.; LE TRAON, Y. Metallaxis-FL: mutatictvased fault
localization.Software Testing, Verification and Reliability, 25, n. 5-7, 1
August 2015. 605-628. Available:
<http://onlinelibrary.wiley.com/doi/10.1002/stvr Q%/abstract>.

32.CHAPARRO, O. et allmproving Text Retrieval Based Bug Localization
Using Code Authorship Information. 32nd International Conference on
Software Maintenance and Evolution (ICSME). Raleigbrth Carolina,
USA: In press.

33.DIT, B. et al.Can Better Identifier Splitti ng Techniques Help Feature
Location? 19th International Conference on Program Compr&ban
(ICPC). Kingston, Ontario, Canada: IEEE. 2011.120.

34.PORTER, M. F. An algorithm for suffix strippingrogram, 14, n. 3, 1980.
130-137. Available:
<http://www.emeraldinsight.com/doi/abs/10.1108/e&fI/4>.

35.PORTER, M. FThe Porter Stemming Algorithm, 2006. Available:
<https://tartarus.org/martin/PorterStemmer/>. Asees July 2016.

36.DALLMEIER, V.; ZIMMERMANN, T. iBUGS. Available:
<https://www.st.cs.uni-saarland.de/ibugs/>. Accdssaly 2016.

37.DALLMEIER, V.; ZIMMERMANN, T. Extraction of Bug Localization
Benchmarks from History. 22nd International Conference on Automated
Software Engineering (ASE). Atlanta, Georgia, US&M. 2007. p. 433-
436.

38.HOVEMEYER, D.; PUGH, W. Finding Bugs is Ea®yCM SIGPLAN
Notices December 2004. 92-106. Available:
<http://doi.acm.org/10.1145/1052883.1052895>.

39.NGUYEN, A. T. et al A topic-based approach for narrowing the searct
space of buggy files from a bug report26th International Conference on
Automated Software Engineering (ASE). Lawrence, 3&an USA: IEEE.
2011. p. 263-272.

40.BACHMANN, A.; BERNSTEIN, A.Data Retrieval, Processing ant
Linking for Software Process Data AnalysisUniversity of Zurich. Zurich,
Switzerland, p. 11. December 2009. (IFI-2009.0003b)

41.POSHYVANYK, D. et al.Combining Probabilistic Ranking and Latent
Semantic Indexing for Feature Identification 14th International
Conference on Program Comprehension (ICPC). Atlerexce: IEEE.
2006. p. 137-148.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

90

42.POSHYVANYK, D. et al. Feature Location Using Prollisbic Ranking of
Methods Based on Execution Scenarios and Informé&etrieval.
Transactions on Software Engineering33, n. 6, June 2007. 420-432.
Available: <http://dx.doi.org/10.1109/TSE.2007.1616

43.KIM, S. et al.Predicting Faults from Cached History. 29th International
Conference on Software Engineering (ICSE). Minnéapblinnesota, USA:
IEEE. 2007. p. 489-498.

44.RAO, S.; KAK, A.moreBugs: A New Dataset for Benchmarking
Algorithms for Information Retrieval from Software Repositories
Purdue University. West Lafayette, IN. 2013.

45. MICROSOFT..NET Compiler Platform ("Roslyn'GitHub , 2014.
Available: <https://github.com/dotnet/roslyn>. Assed: 14 May 2016.

46.GARNIER, M. Bug localization in C#, 2016. Available
<http://www.inf.puc-rio.br/~mgarnier/bug_localizati/>.

47.KARUS, S.; GALL, H.A Study of Language Usage Evolution in Ope
Source Software 8th Working Conference on Mining Sefire Repositorie
(MSR). Waikiki, Honolulu, HI, USA: ACM. 2011. p. 122.

48.JOLLIFFE, I. T.Principal Component Analysis. Secaucus, NJ, USA:
Springer, 2002. 518 p. ISBN 978-0-387-22440-4. falde:
<http://site.ebrary.com/lib/alltitles/docDetail.ext?docID=10047693>.

49.R CORE TEAM.R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Viennaisiia. 2015.

50.KORKMAZ, S.; GOKSULUK, D.; ZARARSIZ, G. MVN: An R Rckage for
Assessing Multivariate Normalityfthe R Journal, 6, n. 2, 2014. 151-162.
Avalilable: <http://journal.r-project.org/archive/PD-2/korkmaz-goksuluk-
zararsiz.pdf>.

51.LE, S.; JOSSE, J.; HUSSON, F. FactoMineR: An R Bgekor Multivariate
Analysis.Journal of Statistical Software 25, n. 1, 2008. 1-18.

52.WElI, T.; SIMKO, V.corrplot: Visualization of a Correlation Matrix .
[S.l.]. 2016. R package version 0.77.

53.KASSAMBARA, A.; MUNDT, F.factoextra: Extract and Visualize the
Results of Multivariate Data Analyses[S.l.]. 2016. R package version
1.0.3.

54.FRIENDLY, M. Corrgrams: Exploratory displays forreelation matrices.
The American Statistician, 56, n. 4, 2002. 316-324. Available:
<http://dx.doi.org/10.1198/000313002533>.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

PUC-RIo - Certificacdo Digital N° 1312388/CA

91

55.MICROSOFT CORPORATION. C# Language Specificatidh Blicrosoft
Download Center, 2012. Available:
<https://www.microsoft.com/download/details.aspx7@29>. Accessed: 06
July 2016.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

