
Marcelo Garnier Mota

EXPLORING STRUCTURED INFORMATION
RETRIEVAL FOR BUG LOCALIZATION

IN C# SOFTWARE PROJECTS

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação
em Informática, of the Departamento de Informática do
Centro Técnico Científico da PUC-Rio, as partial fulfillment
of the requirements for the degree of Mestre.

Advisor: Prof. Alessandro Fabrício Garcia

Rio de Janeiro
September 2016

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

Marcelo Garnier Mota

Exploring structured information retrieval for
bug localization in C# software projects

Dissertation presented to the Programa de Pós-Graduação
em Informática, of the Departamento de Informática do
Centro Técnico Científico da PUC-Rio, as partial fulfillment
of the requirements for the degree of Mestre.

Prof. Alessandro Fabrício Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Arndt von Staa
Departamento de Informática – PUC-Rio

Prof. Carlos José Pereira de Lucena
Departamento de Informática – PUC-Rio

Prof. Márcio da Silveira Carvalho
Coordinator of the Centro Técnico Científico – PUC-Rio

Rio de Janeiro, September 16th, 2016

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

All rights reserved.

Marcelo Garnier Mota

Marcelo Garnier received a Technologist degree in Informatics
from the Federal Center of Technological Education (CEFET) in
2002 and a BSc degree in Civil Engineering from the State
University of Northern Rio de Janeiro (UENF) in 2005. He
currently works as a software architect for Petróleo Brasileiro
S.A. (Petrobras), where he works since 2004. During this period,
he occupied various positions in the software development field,
such as quality assurance analyst, scrum master, and development
team lead. His research interests include software maintainability,
code quality, static analysis, and software metrics.

Mota, Marcelo Garnier

Exploring structured information retrieval for bug
localization in C# software projects / Marcelo Garnier Mota;
advisor: Alessandro Fabrício Garcia. – 2016.

91 f. : il. color. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática,
2016.

Inclui bibliografia.

1. Informática – Teses. 2. Defeitos. 3. Localização de
defeitos. 4. Recuperação de informação. I. Garcia,
Alessandro Fabrício. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Bibliographic data

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

To Cibele, for her love and continued support.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

Acknowledgments

I thank all the professors from the Informatics Department at PUC-Rio for

their contribution to my education. I also thank Prof. Clevi Rapkiewicz, Prof.

Marcelo Feres, and Prof. Rogério Atem, for their contributions during my

graduation.

I thank Petróleo Brasileiro S.A. (Petrobras), for financially supporting my

studies. I specially thank my teammates at Petrobras for assuming my tasks during

my absences.

I warmly thank my colleagues at the Opus Research Group, for their valuable

contributions during our meetings and rehearsals. Moreover, I thank for the

fellowship. I will fondly remember the good times spent at the lab.

I am enormously grateful to my advisor, Prof. Alessandro Garcia. I thank, in

first place, for the opportunity to join his research group, in spite of my schedule

limitations. In addition, I thank for his enthusiasm, which helped me to keep

motivated. I also thank him for his tireless pursuit for excellence, which raised the

quality of my work to a higher level. Finally, I thank for his understanding and

patience, particularly when I could not keep up with his breathtaking pace.

I thank my parents, José Carlos and Maria Elena, for supporting me and for

having strived to provide me the best possible education since my childhood.

I thank my children, Lara, Guilherme, Lucas, and Felipe. They are sources of

inspiration, motivation, and happiness. I thank Lara for her precious help, taking

good care of Felipe while I was busy. Moreover, I immensely thank Guilherme and

Lucas for understanding when their dad could not play with them.

Finally, I thank my wife, Cibele, for… everything. It is hard to find the right

words to express how much I owe to her. Without her support, this work would not

be possible. Thank you for finding strength to endure these troubled times, and for

always being there for me.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

Abstract

Mota, Marcelo Garnier; Garcia, Alessandro Fabrício (Advisor). Exploring
structured information retrieval for bug localizati on in C# software
projects. Rio de Janeiro, 2016. 91p. MSc. Dissertation – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Software projects can grow very rapidly, reaching hundreds or thousands of

files in a relatively short time span. Therefore, manually finding the source code

parts that should be changed in order to fix a bug is a difficult task. Static bug

localization techniques provide effective means of finding files related to a bug.

Recently, structured information retrieval has been used to improve the

effectiveness of static bug localization, being successfully applied by techniques

such as BLUiR, BLUiR+, and AmaLgam. However, there are significant

shortcomings on how these techniques were evaluated. BLUiR, BLUiR+, and

AmaLgam were tested only with four projects, all of them structured with the same

language, namely, Java. Moreover, the evaluations of these techniques (i) did not

consider appropriate program versions, (ii) included bug reports that already

mentioned the bug location, and (iii) did not exclude spurious files, such as test

files. These shortcomings suggest the actual effectiveness of these techniques may

be lower than reported in recent studies. Furthermore, there is limited knowledge

on whether and how the effectiveness of these state-of-the-art techniques can be

improved. In this dissertation, we evaluate the three aforementioned techniques on

20 open-source C# software projects, providing a rigorous assessment of the

effectiveness of these techniques on a previously untested object-oriented language.

Moreover, we address the simplistic assumptions commonly present in bug

localization studies, thereby providing evidence on how their findings may be

biased. Finally, we study the contribution of different program construct types to

bug localization. This is a key aspect of how structured information retrieval is

applied in bug localization. Therefore, understanding how each construct type

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

influences bug localization may lead to effectiveness improvements in projects

structured with a specific programming language, such as C#.

Keywords

Bugs; bug localization; information retrieval.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

Resumo

Mota, Marcelo Garnier; Garcia, Alessandro Fabrício. Explorando
recuperação de informação estruturada para localização de defeitos em
projetos de software C#. Rio de Janeiro, 2016. 91p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Projetos de software podem crescer rapidamente, alcançando centenas ou

milhares de arquivos num período relativamente curto. Portanto, torna-se difícil a

tarefa de encontrar partes do código-fonte que devem ser modificadas para

consertar um defeito. Técnicas de análise estática para localização de defeitos

fornecem um meio eficaz de encontrar arquivos relacionados a um defeito.

Recentemente, recuperação de informação estruturada vem sendo usada para

aumentar a eficácia de localização estática de defeitos, sendo aplicada com sucesso

por técnicas como BLUiR, BLUiR+ e AmaLgam. No entanto, existem limitações

significativas na maneira como essas técnicas foram avaliadas. BLUiR, BLUiR+ e

AmaLgam foram testadas em apenas quatro projetos, todos eles estruturados com

a mesma linguagem, Java. Adicionalmente, as avaliações dessas técnicas (i) não

consideraram versões apropriadas dos programas, (ii) incluíram relatórios de falhas

que já mencionavam a localização do defeito, e (iii) não excluíram arquivos

espúrios, como arquivos de teste. Essas limitações sugerem que a eficácia real

dessas técnicas seja menor do que o informado em estudos recentes. Além do mais,

há limitações no conhecimento sobre se e como a eficácia dessas técnicas do estado-

da-arte pode ser aumentada. Nesta dissertação, nós avaliamos as três técnicas

supracitadas em 20 projetos C# de código aberto, fornecendo uma avaliação

rigorosa da eficácia dessas técnicas numa linguagem orientada a objetos não testada

anteriormente. Além disso, nós endereçamos os pressupostos simplistas

comumente presentes em estudos de localização de defeitos, fornecendo assim

evidências sobre como seus achados podem ser enviesados. Finalmente, nós

estudamos a contribuição de diferentes tipos de construtos de programa para a

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

localização de defeitos. Este é um aspecto-chave na forma como recuperação de

informação estruturada é aplicada em localização de defeitos. Portanto, entender

como cada tipo de construto influencia a localização de defeitos pode levar a

melhorias na eficácia em projetos estruturados com linguagens de programação

específicas, como C#.

Palavras-chave

Defeitos; localização de defeitos; recuperação de informação.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

Summary

1 Introduction 15

1.1 Problem statement 17

1.2 Limitations of related work 18

1.2.1 Biased evaluations 18

1.2.2 Limited effectiveness 20

1.2.3 Unknown contribution of constructs 21

1.3 Goals and research questions 22

1.4 Dissertation outline 24

2 Background 25

2.1 Bug localization 25

2.1.1 Overview 25

2.1.2 Dynamic techniques 27

2.1.3 Static techniques 28

2.2 Information retrieval 28

2.2.1 Overview 28

2.2.2 Vector Space Model 29

2.2.3 Effectiveness metrics 31

2.3 Information retrieval-based bug localization techniques 32

2.3.1 BugLocator 34

2.3.2 BLUiR and BLUiR+ 35

2.3.3 AmaLgam 36

2.3.4 Discussion of the techniques 38

2.4 Conclusion 39

3 Evaluation of bug localization techniques 40

3.1 Goal and research questions 41

3.2 Evaluation metrics 43

3.3 Project selection 43

3.4 Dataset preparation 45

3.4.1 Version selection 45

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

3.4.2 Bug report selection 46

3.4.3 Source file selection 46

3.5 Model adaptation 47

3.6 Results 49

3.6.1 Effectiveness of structured IR-based bug localization in C#
projects 49

3.6.2 Usage of more constructs to improve bug localization
effectiveness 54

3.7 Threats to validity 56

3.7.1 Construct validity 56

3.7.2 External Validity 57

3.8 Conclusion 58

4 Analysis of the contribution of program constructs to bug localization 60

4.1 Motivation 61

4.2 Analysis setup 62

4.3 Contribution of program constructs 65

4.3.1 Variances of principal components 65

4.3.2 Constructs associated with principal components 67

4.4 Effects of constructs on bug localization results 71

4.4.1 Suppression of low-contributing constructs 71

4.4.2 Emphasis on most contributing constructs 72

4.5 Conclusion 75

5 Conclusion 77

5.1 Findings 78

5.1.1 Usage of constructs 79

5.1.2 Influence of constructs 79

5.1.3 Weighted similarity calculation 80

5.2 Contributions 81

5.2.1 Alternatives to increase bug localization effectiveness 81

5.2.2 First bug localization study using C# 82

5.2.3 Replication package 82

5.3 Future work 83

References 86

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

List of figures

Figure 1 – Effectiveness of the techniques with C# projects 51

Figure 2 – Effectiveness of techniques with C# projects – Non-
prepared vs. prepared data 53

Figure 3 – Effectiveness of construct mapping modes 55

Figure 4 – Variance corresponding to each principal component 65

Figure 5 – Correlation between variables and principal components 67

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

List of tables

Table 1 – TF-IDF calculation 31

Table 2 – Dataset comparison 44

Table 3 – List of C# constructs 47

Table 4 – Construct-mapping strategies 48

Table 5 – C# and Java results – Average MAP 50

Table 6 – C# and Java results – Minimum and maximum project
MAP 50

Table 7 – Effect of dataset preparation steps on bug localization –
MAP 52

Table 8 – AmaLgam effectiveness with dataset preparation steps 54

Table 9 – Effectiveness of AmaLgam using different construct-
mapping modes – MAP 55

Table 10 – Sample of the input for principal component analysis 63

Table 11 – Descriptive statistics for PCA input – MAP 64

Table 12 – Distribution of variance through the principal components 66

Table 13 – Effect of the suppression of interface names – MAP 72

Table 14 – Effect of applying higher weights to method and class
names – MAP 74

Table 15 – Effect of combining higher weights on method and class
names – MAP 75

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

But I still haven’t found
What I’m looking for…

U2, I Still Haven’t Found What I’m Looking For

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

1
Introduction

Software failures represent a serious concern for developers and maintainers.

A failure occurs when a system does not perform a required function according to

its specification [1]. It is widely known that the later a failure occurs, the higher the

cost to fix it. Software failures are caused by defects in the source code. A defect is

a problem in the source code that, if not corrected, could cause an application to

either fail or produce incorrect results [1]. Therefore, effectively identifying and

removing defects associated with failures is a routine activity to software

maintainers.

Despite their different meanings, both defects and failures are popularly

referred to as bugs [2] [3] [4] [5]. When bugs occur in a software system, they are

usually reported to a developer or development team. Each report, colloquially

called a bug report, contains information about the circumstances in which the bug

occurred (Section 2.1.1). This information is used by developers to investigate and

fix the bug. In order to fix a bug, one must first know where in the source code it is

located. The activity of locating the portion of the source code that must be modified

to fix a bug using information from a bug report is called bug localization [2].

Manual bug localization is a painstaking activity [3]. Therefore, effective

methods for automatically locating bugs from bug reports are highly desirable [4],

as they would reduce software maintenance effort [3]. Automated techniques for

static bug localization have been a popular research topic [3] [4] [5] [6] [7] and

attracted the attention of many well-known software companies, such as Google [8]

and Microsoft [9]. Static bug localization techniques have the benefit of being

applicable at any stage of the software development process [2]. Differently from

dynamic techniques, they do not require large test suites, which are often not

available [10] [11]. Thus, static bug localization techniques are more flexible, as

they can be applied to a wider range of scenarios, such as legacy software systems

where automated test suites were not originally implemented.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

16

To foster the process of effectively identifying source code that is relevant to

a particular bug report, a number of techniques have been developed using

information retrieval models, such as Latent Dirichlet Allocation (LDA) [2],

Vector Space Model (VSM) [3], Latent Semantic Analysis (LSA) [12],

Clustering [12], and various combinations. Information retrieval (IR) consists of

finding documents within a collection that match a search query [13]. The IR

approach to bug localization generally consists of treating source files as documents

and bug reports as queries. Source files that share more terms with the bug report

are ranked as having a higher probability of containing the bug. The effectiveness

of bug localization techniques is commonly measured by their ability to rank

potentially buggy files at the first positions of a list (Section 2.2.3).

Recently, structured information retrieval has also been used for bug

localization [4] [5]. Traditional information retrieval handles documents as a “bag

of words” [13], meaning that every term in the document is indistinctly computed,

regardless of its position, order, or function in the document. Conversely,

structured IR splits a document according to relevant fields or zones [13]. Applying

this principle to the bug localization domain, structured IR-based techniques map a

set of program constructs, such as class and variable names [4] [5], to document

fields. This principle allows the techniques to place different emphasis on different

program constructs in order to calculate textual similarity.

Bug localization techniques based on structured information retrieval, such

as BLUiR [4] and AmaLgam [5], have shown improvements over other traditional

IR approaches (Section 2.3). BLUiR [4] and AmaLgam [5] are currently the best-

performing IR-based bug localization techniques available (Section 2.3). In spite of

the promising results, these studies contain significant shortcomings. BLUiR and

AmaLgam have been evaluated in only four projects, implemented in a single

programming language (namely, Java), and under non-realistic experimental setups

(Section 3.4). For instance, these studies [4] [5] include in their effectiveness

evaluation bug reports that already mention the location of the bug in their

description. Developers are unlikely to benefit from the assistance of automated

techniques to localize this kind of bug. Moreover, such bug reports have been

shown to influence bug localization results [14]. Therefore, they should be removed

from effectiveness evaluations of bug localization techniques (Section 3.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

17

Additionally, these techniques need to be evaluated on a higher number of projects,

structured in languages other than Java.

1.1
Problem statement

Although IR-based bug localization has been an active research topic in

recent years (e.g., [2] [3] [4] [5] [6] [7] [10] [12] [14] [15]), techniques based on

this approach are still not widely used in practice [10]. A significant part of the

effort spent to contribute to the state-of-the-art in bug localization is concentrated

on the development of new, more effective techniques (e.g., [2] [3] [4] [5] [6] [7]

[12] [15]), although only a few of the mentioned studies are dedicated to structured

IR [4] [5] [15]. Another thread discusses practical aspects of incorporating such

techniques into developers’ workflows [10] [16]. In this dissertation, we focus on

the first thread, as there are significant shortcomings on how some of these

techniques [4] [5] were evaluated.

First, the experimental setups of these studies [4] [5] adopt non-realistic

assumptions, which add bias to the evaluation of the techniques (Section 1.2.1).

Thus, the techniques may be less effective than reported (Section 1.2.2).

Furthermore, there is still limited understanding on how structured information

retrieval can be used to further increase the techniques’ effectiveness

(Section 1.2.3). Particularly, we explore the influence of program constructs – a key

aspect of structured information retrieval applied to bug localization – on bug

localization effectiveness.

Next, we summarize the problem addressed in this dissertation in a single

statement, followed by further discussion in Section 1.2.

Bug localization techniques based on structured information retrieval

have been evaluated under non-realistic experimental setups,

which suggests they might be less effective than reported, and there is

limited knowledge on how to use structured information retrieval to

increase their effectiveness.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

18

1.2
Limitations of related work

This section discusses shortcomings of recent studies on IR-based bug

localization. First, we highlight important issues in the experimental setup of recent

evaluations that may be skewing reported results. Next, we discuss to which extent

current effectiveness of IR-based bug localization techniques allows them to be

used in practice. Finally, we discuss how specific characteristics of structured IR

could be applied to bug localization in order to improve bug localization

effectiveness.

1.2.1
Biased evaluations

The evaluation of a bug localization technique should aim to reproduce, to

the maximum possible extent, the actual scenario where the techniques might be

used in practice. This scenario involves the process followed by a development

team to fix a reported bug. The team would retrieve the source code from the version

of the program where the problem occurred and look for the bug, based on the

information provided by the bug report. If this information includes program

elements, such as a class or a method name, developers would probably start their

investigation by opening the file containing the mentioned element. However, if

such information is not present, developers might consider using an automated bug

localization technique to generate a list of files potentially related to the bug. We

will see, however, that current bug localization techniques fail to include these

premises in their experimental setup, thus biasing their evaluations.

Previous studies on IR-based bug localization provide little or no information

about the version of the project that is used as input to the bug localization

technique. In many studies, as Rao and Kak [17] point out, researchers have merely

chosen a single version of the project and run the localization algorithm for all

available bug reports on that same version. However, a rigorous evaluation of bug

localization effectiveness should consider the appropriate project version, i.e., the

version where the bug actually occurred, for every bug report under analysis [17].

Thus, the version where each bug occurred should be determined and corresponding

source code obtained before performing bug localization. Without this step, there

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

19

is a high chance that the bug is not even present on the code being analyzed. Any

result obtained in these cases would be random and, thus, useless.

Another shortcoming of previous studies involves what Kochhar et al. [14]

call localized bug reports, i.e., bug reports that already contain references to the

files containing the bug on its own description. These bug reports should not be

considered in the evaluation of bug localization techniques for the following

reasons. First, they artificially increase the effectiveness of the techniques [14].

Localized bug reports accounted for 54% of the bug reports studied in [14], and

49% in our own study (Section 3.4.2). Therefore, the incidence of localized bug

reports cannot be overlooked, as it significantly influences bug localization

results [14]. Second, it is unlikely that developers would even need assistance from

an automated technique to localize such bugs. As Wang et al. point out, when a bug

report mentions a program entity, developers use its name as a keyword for

searching source files [10]. This provides developers with a good starting point for

investigating the failure. Therefore, in order to generate relevant contributions, bug

localization techniques should focus on bug reports with no identifiable

information [10], i.e., non-localized bug reports [14].

Finally, test files should not be included in the bug localization scope, as they

might inappropriately influence bug localization results. This happens because the

oracle in bug localization studies [3] [4] [5] corresponds to the files modified to fix

the bug. These files are obtained from the source control, by determining which

commit was related to the resolution of the bug (Section 3.2). Such commits often

include test files, which might have been modified as part of the bug resolution.

However, test files rarely contain the code that triggered the bug (Section 3.4.3).

Therefore, test files constitute false positives in the context of bug localization

results. Thus, they should be removed from the search scope of bug localization

techniques.

In addition to all the shortcomings described above, there is the fact that the

techniques [3] [4] [5] were evaluated only on four Java projects. To the best of our

knowledge, structured IR has never been studied on software projects written on

any other object-oriented (OO) language. In fact, the only other language we could

find being used in similar studies was C [15], a procedural language. The lack of

studies applying bug localization to different OO languages threatens the

generalizability of the results, as the projects selected in [3] [4] [5] might be

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

20

particularly suitable for these bug localization techniques, whereas other projects

might not. Thus, it is important to assess the effectiveness of bug localization

techniques on a higher number of projects, structured in different programming

languages and encompassing different domains (Section 3.3). Providing evidence

of effectiveness in different scenarios will increase confidence in the reported

results.

1.2.2
Limited effectiveness

Bug localization techniques return their results as a list of files ranked by the

probability of relationship with the bug (Section 2.2.1). The lists returned by bug

localization techniques are commonly evaluated up to the tenth position [3] [4] [5].

This convention acts as an implicit effectiveness threshold. In other words, bug

localization techniques should be able to return at least one buggy file among the

first ten positions, as it would not be reasonable to expect the developer to examine

more than ten files to localize a bug.

However, in spite of continuous improvement fostered by recent studies

(i.e., [2] [3] [4] [5] [6] [7] [12]), IR-based techniques are still not effective enough

to be widely used in practice. Consider, for example, AmaLgam [5], one of the best

performing bug localization techniques based on IR. According to [5], AmaLgam

was able to return a buggy file at the top of the list for up to 62% of the bugs.

Considering the 10 first positions of the list, AmaLgam was able to return a buggy

file in the top-10 positions up to 90% of the time. This means that, 10% of the time,

developers would have to inspect more than 10 files to find a buggy file. These are

the best results from an evaluation performed on only four projects [5]. However,

actual effectiveness may be even lower, due to experimental shortcomings

presented in the previous subsection (and further discussed in Section 3.4).

In order to increase effectiveness of IR-based bug localization, researchers

have been incorporating additional sources of information to bug localization

techniques, e.g., version history [5] [7], bug report history [3] [5], and source file

structure [4] [5] [15]. Results from BLUiR [4] and AmaLgam [5] suggest that

structured information retrieval applied to source file structure was the prominent

factor for the effectiveness increase reported by these studies. Unfortunately,

structured IR has not been explored enough within the bug localization domain. In

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

21

particular, it is unknown how specific program constructs contribute to structured

IR-based techniques. As the possibility of handling program constructs differently

is the key advantage provided by structured IR, knowledge about the influence of

different program constructs could be used to increase bug localization

effectiveness, as we will see in the next subsection.

1.2.3
Unknown contribution of constructs

Structured information retrieval has emerged as a prominent factor in

increasing bug localization effectiveness. The difference lies on how documents are

handled. Traditional IR-based techniques deal with all the terms contained in

documents without distinction. Conversely, bug localization techniques based on

structured IR break documents up according to their underlying structure. Source

files, for example, are split according to types of program constructs, e.g., classes

and methods (Section 2.3.2). Thus, a single source file would be handled as several

distinct documents, each containing exclusively terms corresponding to the

respective construct type. Consequently, the importance of terms in a document is

modeled not only by the number of occurrences, but also by the number of construct

types in which they appear. Therefore, constructs are central features to the

functioning of bug localization based on structured information retrieval.

It has been preliminarily observed that considering source file structure

improves bug localization effectiveness [4] [5]. However, few studies have

investigated structured IR so far [4] [5] [15], leaving a number of questions

regarding usage of program constructs remain unanswered. For instance, should

every available construct type be considered? Constructs not explored in existing

techniques may also be able to improve effectiveness. Is there any construct type

whose contribution is negative? If so, effectiveness could be improved even further

by ignoring these specific constructs. Are the contributions from every type of

construct equivalent? If they are not, the relevance of most contributing ones could

be highlighted by assigning higher weights to these constructs. Pondering the

effectiveness improvement brought by the usage of structured IR, we consider that

investigating such questions in detail have the potential to contribute to the state-

of-the-art in structured IR-based bug localization.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

22

1.3
Goals and research questions

The shortcomings regarding the evaluation of structured IR-based bug

localization techniques [4] [5] have been discussed in Section 1.2.1. Addressing

these shortcomings is also an opportunity to evaluate them on different scenarios.

An initial step in that direction is to understand the behavior of bug localization

techniques applied to an object-oriented programming language that is slightly

different from Java. Java has been the focus of previous studies of structured IR-

based techniques for bug localization (Section 2.3). Nonetheless, software

engineers remain unaware to what extent they can rely on these techniques to

perform bug localization activities in projects structured with other programming

languages.

Thus, as an alternative to Java, we have selected projects written in C#

(pronounced as see sharp). C# is a general-purpose, object-oriented language that

shares many traits with the Java language, but also have some distinct programming

features. For example, some widely used C# constructs, like properties and

structures (“structs”), are inexistent in Java. Moreover, C# is a popular

language [18] that figures within the top 10 languages in number of GitHub

repositories [19]. To the best of our knowledge, neither of these techniques have

been previously evaluated on other object-oriented programming languages, such

as C#.

Considering the problem stated in the Section 1.1 and further discussed in

Section 1.2, the goal of this dissertation can be stated as follows.

Perform a realistic, in-depth effectiveness evaluation

of state-of-the-art bug localization techniques

on a previously untested programming language.

The limitations discussed in Section 1.2.1 undermine the results obtained by

state-of-the-art bug localization techniques based on structured information

retrieval [4] [5]. Consequently, there is a need to address those shortcomings and

perform a realistic evaluation of those techniques. Moreover, in spite of the

potential brought by structured information retrieval, the limited effectiveness of

current techniques (Section 1.2.2) encourages an in-depth evaluation of which

structured IR aspects can be explored to increase bug localization effectiveness

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

23

further. These aspects are directly related with how bug localization uses

programming language constructs (Section 1.2.3).

The proposed goal unfolds in the following research questions:

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective

to locate bugs in C# projects?

This research question aims to provide a first evaluation of state-of-the-art

bug localization techniques on C# software projects (Section 3.6.1). Results for this

research question cannot be compared with results from Java studies due to the

distinct nature and quantity of selected projects (Section 3.3). Nevertheless, this

evaluation will include preparation steps (Section 3.4) needed to mitigate biases

that are commonly found in bug localization evaluations (Section 1.2.1), thus

providing evidence on how these steps cannot be omitted from the experimental

setup of bug localization studies.

RQ2: Does the addition of more program constructs increase the

effectiveness of bug localization on C# projects?

To answer this research question, a first attempt of exploring structured IR to

increase bug localization effectiveness is made. Initially, we adapt a bug

localization technique to explicitly consider all C# constructs available

(Section 3.5). Then, we run the adaptations on the selected projects, and compare

the results with those obtained in the first research question (Section 3.6.2).

RQ3: Which program constructs contribute more to the effectiveness

of bug localization on C# projects?

This question aims to quantify the contribution of different program

constructs to bug localization effectiveness. A statistical procedure called principal

component analysis (PCA) is used for this purpose (Section 4.3). This procedure

extracts components from the data, sorted by relevance, and identifies the

correlation of each construct to the most relevant components. The answer to this

RQ will enable further experimentation with program constructs, formalized in the

next two questions.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

24

RQ4: Does the effectiveness of bug localization increase with the

suppression of constructs with the lowest contributions?

Data from RQ3 may reveal that some construct correlate negatively to the

more relevant components, suggesting they may be contributing negatively to bug

localization effectiveness. In this case, the technique will be applied again with

these constructs suppressed, in order to verify if the suppression of these constructs

causes the effectiveness of the technique to increase.

RQ5: Does the effectiveness of bug localization increase with the

emphasis on constructs with the highest contributions?

RQ3 will also reveal which construct correlate positively to the more relevant

components, i.e., which ones contribute more to bug localization effectiveness.

Knowing which constructs fall in this category will allow us to modify the structural

similarity scores (Section 2.3.2) by assigning higher weights to the similarity

associated with these constructs. The goal of RQ5 is to verify if this modification

is able to increase the effectiveness of bug localization.

1.4
Dissertation outline

This dissertation is organized as follows. Chapter 2 contains background

information, providing an overview about bug localization and information

retrieval. Chapter 3 adapts the selected bug localization technique and compares the

adaptation against the original techniques in terms of effectiveness. This chapter

also discusses commonly neglected issues in the experimental setup of previous bug

localization studies, detailing how we solved them in our experiments. Chapter 4

builds on the findings from previous chapter to measure the contribution of different

program constructs in order to improve bug localization effectiveness further.

Chapter 5 concludes.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

2
Background

Bug localization is a complex process, which can be carried out through

distinct approaches. Each approach to bug localization encompasses its own set of

concepts, borrowed from different areas of knowledge. For instance, information

retrieval is an area closely related to static bug localization, as information retrieval

is a key technology applied by techniques that follow a static analysis approach [3]

[4] [5] [15]. Thus, it becomes necessary to provide some background information

for a complete understanding of the process and the technologies employed by bug

localization techniques.

In this chapter, we describe the main concepts involved in bug localization.

We summarize the main characteristics of dynamic and static approaches to bug

localization, and we discuss the motivation for focusing on static analysis

techniques. Afterwards, we provide an overview of information retrieval. We

describe the underlying information retrieval model used by most static bug

localization techniques, the vector space model (VSM). Then, we demonstrate how

VSM works, providing an example using a term weighting scheme based on term

frequency statistics, popularly known as TF-IDF (term frequency – inverse

document frequency). Finally, we present the bug localization techniques that will

be used throughout this dissertation. These techniques represent the state-of-the-art

on bug localization based on structured information retrieval.

2.1
Bug localization

2.1.1
Overview

In spite of all the effort invested by developers and testers to produce bug-

free software, in practice every program contains bugs. Maintainers must be warned

about the occurrence of bugs so they can fix them. Communication between project

members is usually supported by issue tracking systems. Issue trackers may be

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

26

integrated in code hosting services, such as GitHub1 and BitBucket2, or stand-alone

applications, such as Jira3. Issue trackers allow the creation of issues, which can

represent distinct concepts from software development lifecycle, such as tasks,

features, and bugs. The concept represented by an issue (e.g., task, feature, bug) can

be identified by labels (or tags). Labels may also be used to classify issues

according to other criteria, such as module or severity, for example. Some systems,

such as Bugzilla4, are bug trackers. They are similar to issue trackers, however

focusing only on tracking bugs.

When a team uses an issue tracker, the occurrence of a bug is commonly

reported by creating an issue and labeling it as “bug”. We will refer to issues that

report bugs as bug reports, in order to differentiate these issues from those related

to other concepts or events.

Although the contents of bug reports may vary, depending on the tracking

system being used, most of them contain a few common attributes [20] [21]: an

identification number (id); a short summary (or title); a full description; a creation

date; a status; a reporter, the user who created the report; and an assignee, the

person currently working on the bug.

Bug reports can be created by different stakeholders, such as developers,

testers, end users, or help desk operators. Typically, the person who creates a bug

report is not responsible for fixing it. The report serves to communicate information

about the bug to maintainers, who rely on this report to perform the necessary

activities for identifying and removing the cause of the bug. Before actually

modifying source code in order to fix the bug, developers need to find the defective

source code based on the information provided in the bug report. This activity is

called bug localization.

Perhaps one of the most common forms of bug localization is debugging with

the aid of an integrated development environment (IDE). Developers may load the

source code and run an application statement by statement until they reach the part

of the code that triggers the bug. This approach is costly, especially for large

projects, because the number of files and statements that need to be inspected until

the bug is reproduced can be very high. Moreover, there might be no information

1 https://github.com/
2 https://bitbucket.org/
3 https://www.atlassian.com/software/jira
4 https://www.bugzilla.org/

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

27

available about the parts of a program that would possibly trigger the bug. Thus,

debugging would still benefit from the use of complementary techniques that could

narrow the search space where the developer has to find the bug.

Automated bug localization techniques fulfill this role, by helping developers

to locate defective source code. These techniques take as input information about a

subject software system and produce as output a list of files potentially related to

each bug [22]. Automatic bug localization techniques are mainly divided into

dynamic and static techniques [4]. The next subsections briefly discuss the main

characteristics of each type of technique.

2.1.2
Dynamic techniques

Dynamic bug localization refers to techniques that rely on program execution

to localize bugs. A common approach uses program spectra, i.e., collections of data

that provide a specific view on the dynamic behavior of software [23]. Spectrum-

based techniques (e.g., [24] [25]) use program execution information to track

program behavior [26]. When an execution fails, this information can be used to

identify suspicious code that is responsible for the failure. By identifying parts of

the program covered during an execution, it is possible to identify the components

involved in a failure. Spectrum-based techniques rely on the contrast between the

passing and failing executions to localize bugs effectively [26]. For this reason,

numerous test cases must be available [27].

Other approaches to dynamic bug localization include model-based [28],

program state-based [29] [30], and mutation-based [31] techniques. Note this list is

by no means complete. Regardless of the approach, dynamic techniques share a set

of common advantages and drawbacks. The main advantage is precision: dynamic

techniques are often capable of locating bugs at statement level [4]. However, as

aforementioned, they usually require large test suites. In fact, as several passing and

failing test cases need to be provided, dynamic techniques are only viable in projects

where a comprehensive test suite is previously available. Nonetheless, this is not

the case in most software projects [10] [11]. Thus, the applicability of dynamic

techniques is severely reduced.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

28

2.1.3
Static techniques

Static bug localization techniques are largely based on information retrieval

(e.g., [2] [3] [4] [5] [7] [12] [15]). Information retrieval-based techniques aim to

locate a bug from its textual description [12]. Therefore, these techniques require

only source code and bug reports in order to operate [4]. Nevertheless, static

techniques are frequently combined with additional information in order to improve

their effectiveness. Examples include change history [5] [7], bug report history [3]

[5], source code structure [4] [5] [15], and file authorship information [32].

Static techniques usually do not reach the same effectiveness delivered by

dynamic techniques. However, contrary to dynamic techniques, static bug

localization techniques do not require program execution. Thus, they do not need a

working subject system, which allows them to be applied at any stage of the

software development process [2]. For the same reason, static techniques do not

require test cases as well. Having less prerequisites grants flexibility to static

techniques, which enables them to be applied on a wider range of scenarios,

compared to their dynamic counterparts. This flexibility is particularly important in

the case of legacy software systems, where automated tests might not have been

originally implemented.

We discuss static, information retrieval-based bug localization techniques

individually in Section 2.3. Before that, in the next section, we present a brief

overview of information retrieval.

2.2
Information retrieval

2.2.1
Overview

Information retrieval (IR) consists of finding documents within a collection

that match a search query [13]. When applying IR to bug localization, source code

files become the collection of documents, and the bug report represents the query.

Then, the task of finding buggy files is reduced to the IR problem of determining

the relevance of a document to a query. Relevance is determined by preprocessing

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

29

the query and the set of documents and then calculating the textual similarity

between each document and the query.

Preprocessing consists of three steps: text normalization, stop word removal

and stemming. Text normalization extracts a list of terms that represents the

documents and the query by removing punctuation marks and performing case

folding. In the bug localization domain, normalization steps usually include

identifier splitting. Many identifiers are made by concatenating words, either

separated_by_underscores or using mixed case, such as camelCase or PascalCase.

For example, an identifier named MemoryMappedFile would be split as “memory”,

“mapped” and “file”. Therefore, splitting identifiers improves recall [4], by adding

terms that represent conceptual information encoded in compound identifiers [33].

After normalization, common words, which usually add little value to a

retrieval operation, are removed from the list of terms. These words (e.g., “the”,

“to”, “get”) are called stop words [13]. The final preprocessing step is to reduce

inflectional forms to a common base form in order to improve term matching by

representing similar words with the same term. This can be accomplished via

stemming or lemmatization. Stemming usually refers to a heuristic process that

strips off derivational suffixes from words [13]. Lemmatization, on the other hand, uses

a vocabulary and performs morphological analysis of words, aiming to return the base or

dictionary form of a word (i.e., its lemma) [13]. Although lemmatization is more accurate

than stemming, the latter is usually the preferred alternative for bug localization

applications [2] [3] [4] [5] due to its simplicity. An ubiquitous stemming algorithm is

the Porter Stemmer [34], used in [2] [3] [5] and available online [35].

After preprocessing, the similarity between documents and the query must be

calculated. The most common approach is based on the vector space model

(VSM) [3] [4] [5] [15]. Next subsection explains how documents and queries are

represented in VSM, in order to allow similarity calculation.

2.2.2
Vector Space Model

In the vector space model, each document is expressed as a vector of term

weights. These weights are typically the product of term frequency and inverse

document frequency (TF-IDF) of each term. Therefore, if a collection of documents

contains terms ���, … , ���, a document from this collection is represented as:

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

30

�	 = ������, ��
������, … , �����, ��
�������

Equation 1 – Vector representation of a document in VSM

����� = log �
���

Equation 2 – Inverse document frequency

In Equation 1, ������ is the number of occurrences of �� in � and
������ is

given by Equation 2, where � is the total number of documents in the collection

and ��� is the document frequency, i.e., the number of documents that contain

term �. Inverse document frequency serves to increase the weight of rare terms, i.e.,

terms that occur in few documents from the collection. If a term occurs in most of

the documents, it has little discriminating power in determining relevance of a

document [13]. Thus, terms that occur many times in a small number of documents

are those that are assigned higher weights.

Given two documents, their similarity can be measured by computing the

cosine similarity of their vector representations [13]:

�
����, ��� = ��	���� ∙ ��	����
���	��������	�����

Equation 3 – Cosine similarity

In Equation 3, the numerator represents the dot product (or inner product) of

vectors ��	���� and ��	����, while the denominator is the product of their lengths [13].

To illustrate how cosine similarity works, we provide a simplified bug localization

example. Consider a bug report that reads “Error placing new customer order”.

Assume after applying all preprocessing steps (normalization, stop word removal,

and stemming), the bug report content becomes “place custom order”. This will be

the query used to localize similar source files, possibly related to this bug. Consider

the subject system contains three files, which, after preprocessing, have the

following content: “customer”, “customer detail”, and “place order controller”.

Table 1 summarizes term and document frequencies for the terms in this example.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

31

Table 1 – TF-IDF calculation

Term
Term frequency

Document
frequency

Inverse
document
frequency Query File 1 File 2 File 3

place 1 0 0 1 2 0.301
customer 1 1 1 0 3 0.125
order 1 0 0 1 2 0.301
detail 0 0 1 0 1 0.602
controller 0 0 0 1 1 0.602

Table 1 displays term frequency statistics need to be computed in order to

represent the bug report and source files from the example as vectors. The set

containing every term from all the documents is called a corpus. The rows from

Table 1 represent each term from the corpus. The columns under Term frequency

count the number of occurrences of each term on each document (the query and the

source files). The column Document frequency counts the number of documents

where the term occurs. This value is applied to Equation 2 and displayed in the

column Inverse document frequency. Then, applying Equation 1 to the bug report

and the three files yields the vectors below:

��	 = �0.301, 0.125,0.301,0.0,0.0�

�����	 = �0.0, 0.125,0.0,0.0,0.0�

�����	 = �0.0, 0.125,0.0,0.602,0.0�

�$���	 = �0.301, 0.0,0.301,0.0,0.602�

Thus, from Equation 3, the similarities between the bug report and files 1

through 3 are, respectively, 0.282, 0.057, and 0.554. Therefore, file #3 would be the

one more similar to the given bug report.

2.2.3
Effectiveness metrics

Information retrieval results are usually presented as a list of documents

sorted by relevance (similarity) to the query. It is often enough to present a small

set of documents that a user can browse to locate the needed information. For this

reason, the effectiveness of IR models is commonly measured by the ability of the

models to retrieve relevant documents at the first positions of a list. A common

effectiveness metric is called precision at k [13], also referred to as Top N [3] [4]

[15] or Hit@N [5]. Given a set of queries, the precision at k is the percentage of the

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

32

queries where the model was able to retrieve a relevant document ranked on the

first k positions. Common practice in bug localization studies is to consider up to

the 10 first positions of the resulting list [3] [4] [5] [15].

Another widely used metric for the effectiveness of IR models is the mean

average precision (MAP). MAP provides a single-figure measure of the quality of

information retrieval when a query may have multiple relevant documents [13]. The

MAP for a set of queries is the arithmetic mean of the average precision (AP) of

individual queries [13]. Let %��, … , �&' be the set of the m documents that are

relevant to a query, and () the set of ranked results from the top result until one

reaches document �). Then, the average precision of a query q is given by:

*+�,� = 1
� - +./0
�
12�()�

&

)3�

Equation 4 – Average precision for an information retrieval query

+./0
�
12�(� = #�./5/672�
�/�� ./�.
/6/�� #�./�.
/6/�
�/���⁄

Equation 5 – Precision of a retrieval

For example, consider a query where the three relevant documents are ranked

in 1st, 4th, and 10th positions. Then, precision for each document would be 1 1⁄ =
1.0, 2 4⁄ = 0.5, and 3 10⁄ = 0.3, yielding an average precision of 0.6. Note that a

perfect average precision score (1.0) would only be obtained if the m relevant

documents were ranked on the m first positions. If only the k first positions are

being evaluated, it may be possible that a query does not retrieve a relevant

document at all. For example, if we are interested only in the 10 first results, but the

first relevant file is ranked in the 11th position, the precision of the query is

considered zero [13].

2.3
Information retrieval-based bug localization techni ques

Bug localization techniques built around information retrieval (IR) models

have been available for a while. We present a brief summary of IR-based bug

localization studies conducted in recent years.

In 2011, Rao and Kak [12] compared five information retrieval models for

bug localization: vector space model (VSM), latent semantic analysis model (LSA),

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

33

unigram model (UM), latent Dirichlet allocation model (LDA) and cluster-based

document model (CBDM). Their evaluation used iBUGS [36], a benchmarked

dataset created to evaluate automated bug detection and localization tools [37],

mainly composed of AspectJ bugs [36]. The authors show that IR-based bug

localization techniques were at least as effective as other static and dynamic bug

localization techniques developed until then. They also conclude that sophisticated

models like LDA, LSA and CBDM do not outperform simpler models like Unigram

or VSM for IR-based bug localization on large software systems.

Sisman and Kak [7] incorporated history information into retrieval models to

improve bug localization accuracy. They proposed two base models to determine,

from version history, the prior defect and modification probabilities associated with

the files in a software project. These models were also extended to incorporate a

time decay factor. This strategy reflects the expectation that if a file had been

modified in the past but has not been modified recently the modification probability

should decrease. Similarly, bug fixes that are more recent should have a stronger

influence in estimation of prior defect probabilities. Each probability estimation

model was incorporated into six baseline retrieval models [7]. All of the four

probability models improved retrieval performance when compared with the

baseline results of the retrieval models used in isolation. Evaluation showed that the

defect history based model performed consistently better than the modification

history based model. The inclusion of the time decay factor also improved results

for both modification and defect history models. Sisman and Kak also compared

their approach to other tools, namely Ample [37], FindBugs [38], and BugScout

(Nguyen et al. [39]), obtaining improvements over all of them.

Two key findings from these studies can be highlighted, as they influenced

upcoming work on IR-based bug localization. It was shown that (i) VSM provides

a simple and effective basis for IR-based bug localization techniques [12] and (ii)

incorporating additional information to bug localization techniques could improve

their effectiveness [7]. Following these studies, a sequence of IR-based bug

localization techniques contributed to the state-of-the-art by incorporating distinct

information into their models. Next subsections present these techniques.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

34

2.3.1
BugLocator

Zhou et al. proposed a bug localization method called BugLocator [3], which

ranks files based on the textual similarity between a bug report and the source code

using a revised Vector Space Model (rVSM). The authors modify classic VSM in

order to improve the ranking of large documents. The rationale is that larger source

files tend to have higher probability of containing a bug [3]. Therefore, these files

should be ranked higher in the context of bug localization [3].

BugLocator also considers information about similar bugs that have been

fixed before. It assumes that, in order to fix similar bugs, developers tend to modify

the same files. The relevance of a file f to a bug B, based on the involvement of f in

previous similar bugs, denoted by the authors as SimiScore, is given by the

following equation:

;
�
;01./��� = - �
��<, �� 2���⁄
=∈?@

Equation 6 – BugLocator’s score due to similarity to previous bugs

In Equation 6, ;A is the set of previous bugs related to f, i.e., bugs where f was

one of the files modified in order to fix them. The similarity between bug B and a

bug s that is related to f is denoted as �
��<, ��, and is calculated using Equation 3.

Finally, 2��� is the number of files modified in order to fix s, determined using

heuristics presented in [40]. The final score of a file is then combined with its own

similarity to the bug being located (rVSMScore), as follows:

B
275;01./��� = �1 − D� × .�;F;01./��� + D × ;
�;01./���
Equation 7 – BugLocator’s final score

In Equation 7, α is a weighting factor, valued between 0 and 1. The best results

reported by Zhou et al. were with α between 0.2 and 0.3. BugLocator was used to

find more than 3,000 bugs in four open source projects: Eclipse, SWT (open source

widget toolkit for Java), AspectJ, and ZXing (barcode image processing library for

Android applications). BugLocator was compared with other bug localization

techniques, namely VSM [12], LDA [22], LSI [41] [42] and SUM [12], and

outperformed all of them. BugLocator was approximately 10% more effective than

the second best performing technique, i.e., SUM [3].

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

35

BugLocator’s importance to IR-based bug localization is paramount. It

advanced the state-of-the-art substantially by outperforming various previous

approaches [12] [22] [41] [42]. Thus, it served as a baseline for evaluation of future

techniques, namely BLUiR [4] and AmaLgam [5], described in the next

subsections.

2.3.2
BLUiR and BLUiR+

Saha et al. [4] developed BLUiR (Bug Localization Using information

Retrieval), an automatic bug localization technique based on the concept of

structured information retrieval. In structured IR, fields from a bug report and

program constructs, such as class or method names, are separately modeled as

distinct documents. Consequently, bug reports and source files are not counted as

single documents, as they do in BugLocator. Instead, BLUiR breaks source files

into four parts: class names, method names, variable names and comments. Bug

reports are split in two parts: summary and description. BLUiR then calculates the

similarity between each file part and bug part separately, summing the eight

individual similarities in the end. This implicitly assigns greater weight to terms

that appear in multiple parts. The formula below represents the core of the BLUiR

approach.

�
���, �� = - - �
���H, �H�
IJ∈IAJ∈A

Equation 8 – Structural similarity between a file and a bug report in BLUiR

In Equation 8, f and b are a source file and a bug report, and fp and bp are its

respective parts. The similarity between a bug report b and a source file f is given

by the sum of the similarities of their parts, calculated according to Equation 3.

Saha et al. performed their evaluation on the same projects used by

BugLocator [3]. In addition to structured IR, Saha et al. investigated other variables

in order to assemble their own information retrieval model. For example, they

compared two different stemmers, Porter and Krovetz, without finding any

significant difference in effectiveness. Another investigated variable regards

identifier splitting. Recall from Section 2.2.1 that an identifier named

MemoryMappedFile would be split as “memory”, “mapped” and “file”. BLUiR

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

36

modifies this step by also including the full identifier name ("memorymappedfile")

to the list of terms, based on the observation that many bug reports mention code

elements. This modification increased bug localization effectiveness by up to 30%

in terms of MAP (0.20 to 0.26 for the Eclipse project [4]).

However, the key insight of BLUiR is, indeed, structured information

retrieval. Comparison of BLUiR results with and without modeling source code

structure revealed improvements for all evaluated projects when source code

structure is considered. Hit@1, i.e., bugs where a related file was ranked in the first

position, increased almost 46% (37 to 54) in the SWT project. As for MAP, it

increased up to 23% in the Eclipse project (0.26 to 0.32). Comparison to the

previous best performing technique, BugLocator, was also favorable. In the AspectJ

project, BLUiR was able to increase MAP by 41% (0.17 to 0.24). Note this

improvement refers to BugLocator with no similar bug information (i.e., D = 0).

A variant of BLUiR, called BLUiR+ [4], also leverages information from

previous similar bug reports, if available, similarly to BugLocator. The authors

compared both variations, BLUiR and BLUiR+, to BugLocator with bug similarity

data. The comparison between BLUiR+ and BugLocator with bug similarity data

showed a performance improvement in terms of MAP of up to 28% (0.45 to 0.58

in project SWT). Another interesting result is that BLUiR achieved results similar

or superior to those of BugLocator even when the latter did use bug similarity data

and the former did not. This finding indicates that the structured IR approach used

by BLUiR could compensate for the lack of previous bug report information.

2.3.3
AmaLgam

Another example of bug localization technique that combines structured IR

with other sources of information is AmaLgam [5]. AmaLgam is a technique for

locating buggy files that combines the analysis of: (i) version history, (ii) bug report

similarity, and (iii) structure of documents, i.e., bug reports and source code files.

AmaLgam has three components that produce suspiciousness scores for each source

file. The suspiciousness score represents how likely a source file is of containing

the searched bug. Each component uses a different source of information.

Individual scores are then combined by a fourth component (composer) into a single

score for each source file. AmaLgam components are described next.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

37

Version history component. Change history has been previously used to

predict which files are likely to contain defects in the future [6] [43]. Based on these

studies, Wang and Lo included change history into AmaLgam’s model through a

version history component. This component consists of Google’s adaptation [8] to

the algorithm from Rahman et al. [6], described by the following equation.

�01./K��, L, (� = - 1
1 + /����M��)M�N�)⁄ ��

O∈P⋀A∈O

Equation 9 – Version history component

In Equation 9, R refers to the set of relevant commits, i.e., commits associated

to the resolution of a bug [5]. �O is the number of days elapsed between a commit c

and the creation of the bug report. Parameter k was included by Wang and Lo to

restrict the version history period (in days) to be considered. It was observed by the

authors that considering only more recent commits provided a good trade-off

between precision and performance. The optimal value found by the authors was

L = 15 [5].

Report similarity and Structure components. AmaLgam’s report

similarity component is based on the SimiScore formula (Equation 6) from

BugLocator [3], also used by BLUiR+ [4]. The component considers the textual

similarity between bug reports and the number of files modified to fix each bug

report. The assumption is that, in order to fix similar bugs, developers tend to

modify the same files. AmaLgam’s structure component uses the same approach as

BLUiR (Section 2.3.2, [4]). It breaks bug reports and source files into smaller

documents, composed of summary and description (bug reports), and class names,

method names, variable names and comments (source files).

Composer component. The composer component takes the scores produced

by the three other components and combines them into a final suspiciousness score.

It first combines the results from the report similarity (�01./() and structure

(�01./;) components. This result is then combined with the score from version

history component (�01./K), according to the following equations:

�01./;(��� = �1 − 7� × �01./;��� + 7 × �01./(���

Equation 10 – Score combining structural and older bug report similarity scores

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

38

�01./;(K��� = R�1 − �� × �01./;(��� + � × �01./K���, �01./;(> 0
0, 1�ℎ/.U
�/

Equation 11 – Final score attributed to a file by AmaLgam

Parameters a and b in the previous equations determine the weight of the

contribution of each component to the final suspiciousness score. Based in their

own experiments and in results from [3] and [4], the authors adopted the default

values of 0.2 for parameter a and 0.3 for parameter b [5]. These parameter values

are equivalent to attributing weights of 30% for version history, 14% for bug report

similarity and 56% for structured IR from source files.

2.3.4
Discussion of the techniques

BugLocator [3], BLUiR [4], and AmaLgam [5] form a successful sequence

of bug localization techniques where each work contributed with a new insight.

BugLocator is based on textual similarity between an input bug report and (i) source

files and (ii) older bug reports. BLUiR extends BugLocator by considering source

file structure. AmaLgam aggregates version history, which has been previously

used in isolation [7], but not combined with information retrieval techniques.

BLUiR results highlighted the impact that structured IR brought upon bug

localization effectiveness. This is illustrated by the fact that even the less effective

variation of BLUiR was still able to outperform the best configuration of

BugLocator (Section 2.3.1). AmaLgam demonstrated that combining analyses of

additional sources of information could improve bug localization effectiveness even

further. However, even in that case, the optimal parameters found experimentally

for AmaLgam pointed to a stronger contribution of structured IR.

All the mentioned techniques [3] [4] [5] were evaluated on the same set of

four Java projects, namely, AspectJ, Eclipse, SWT, and ZXing. This strategy

allowed the authors of the previous studies to draw a direct comparison of the

techniques, highlighting the effectiveness improvement obtained with each

technique. On the other hand, it is desirable to replicate or extend experiments using

different datasets. Given the growing relevance of structured IR to bug localization

techniques, it is of paramount importance to start testing this approach on a higher

number of projects, encompassing different domains (Section 3.3).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

39

In addition, a better understanding of structured IR applied to bug localization

is needed. Object-oriented programming languages, such as C#, slightly differ from

Java in terms of key programming constructs, such as properties. Moreover, BLUiR

and AmaLgam did not consider certain programming constructs of Java, such as

interfaces and packages, which are relevant to C# programs as well. It remains

unaddressed what would be the contribution of such program constructs, ignored

by such state-of-art models, on the localization of bugs in slightly different

programming languages, such as C#. Consequently, software developers remain

uninformed if the amount of constructs in a programming language influence the

effectiveness of the technique. If so, we need to investigate whether structured IR-

based techniques are suitable for more expressive languages (i.e., with more

constructs available).

2.4
Conclusion

We can draw some conclusions from the aforementioned studies [3] [4] [5].

First, structured information retrieval, by leveraging the known structure of the

documents involved in the retrieval process, has been more effective than

traditional information retrieval. Second, hybrid approaches can improve the

effectiveness of bug localization even further by combining different sources of

information with different weights. However, even with hybrid approaches, the

contribution of structured IR to the effectiveness of the approach is still prominent,

as the comparison of BLUiR and AmaLgam to BugLocator demonstrates.

The potential of structured IR motivates us to investigate this approach to bug

localization further, in the context of other programming languages, such as C#.

Therefore, we selected some of the best performing techniques based on structured

IR, namely, BLUiR, BLUiR+, and AmaLgam, for our study. Our goal is to verify

the effectiveness of these techniques on another object-oriented programming

language, in order to assess if the change of language itself could cause a significant

impact on the techniques’ effectiveness. We also plan to verify if the effectiveness

of these techniques could be improved by using a different set of program constructs

than that used in previous studies [4] [5]. Next chapter formalizes our research

questions and describes the experiment conducted to answer them.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

3
Evaluation of bug localization techniques

Bug fixing is a routine, however complex, activity. Determining which parts

of the source code need to be modified to remove a bug can be a difficult task, as it

requires the inspection of a large amount of files. Automated bug localization

techniques aim to help developers in this task by providing a list of suspicious files

potentially related to the bug, thus narrowing the search space where the developer

must look for the bug.

The usage of source file structure has been the main responsible for increasing

the effectiveness of state-of-the-art, information retrieval-based bug localization

techniques. These techniques, namely, BLUiR [4], BLUiR+ [4], and

AmaLgam [5], were evaluated in four Java projects. However, the evaluations

performed on these techniques contain shortcomings that might have significantly

biased the reported effectiveness (Section 1.2.1). These shortcomings suggest their

effectiveness may be lower than reported (Section 1.2.2). In spite of these problems,

results from BLUiR [4], BLUiR+ [4], and AmaLgam [5] mention improvements of

up to 41%, 29%, and 32%, respectively (Sections 2.3.2 and 2.3.3). The evolution

brought by these techniques prompts us to explore the potential of structured

information retrieval.

In this chapter, we explore structured information retrieval aspects not

investigated in previous studies. In particular, we investigate how the usage of

different sets of program constructs influences the effectiveness of bug localization

(Section 1.2.3). For such, we evaluate BLUiR [4] and AmaLgam [5] on 20 C#

projects. C# is a popular language [18] [19], similar to Java, although with

significant differences, especially regarding the available constructs. The similarity

will allow us to draw a parallel with Java results. At the same time, the differences

will allow us to explore constructs inexistent in Java, such as properties and

structures.

We also discuss dataset preparation steps conducted to mitigate shortcomings

from previous studies (Section 3.4). These preparation steps include selection of

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

41

appropriate project versions, removal of bug reports that could influence the

evaluation, and removal of test files from the search scope. Results show that, with

the appropriate data preparation steps, effectiveness of bug localization is at least

34% lower, compared to the effectiveness without the data preparation steps

(Section 3.6.1).

After evaluating the techniques as they were conceived, we adapt them in

order to assess their sensitivity to the consideration of more constructs

(Section 3.5). We define three construct mapping modes, which represent different

forms of splitting source files, namely, Default, Complete, and Mixed modes. The

Default mode corresponds to the same mapping used by BLUiR [4], BLUiR+ [4],

and AmaLgam [5], where source files are splitted into four documents, consisting

of class names, method names, variable names, and comments. In the Complete

mode, all the available constructs are considered separately and every source file is

splitted in 12 parts, each one corresponding to each available C# construct. Finally,

the Mixed mode maps all C# constructs into four groups, similarly to the original

mapping used by BLUiR and AmaLgam. The Mixed and the Complete construct

mapping modes were able to increase bug localization effectiveness by 8% and

18%, on average (Section 3.6.2).

3.1
Goal and research questions

Recall our stated goal from Section 1.3:

Perform a realistic, in-depth effectiveness evaluation

of state-of-the-art bug localization techniques

on a previously untested programming language.

In order to perform a realistic evaluation of bug localization techniques based

on structured IR, we need to evaluate them on different scenarios. An initial step in

that direction is to understand the behavior of prominent bug localization techniques

applied to an object-oriented programming language that is slightly different from

Java. Java has been the focus of previous studies of structured IR-based techniques

for bug localization (Section 2.3). Nonetheless, software engineers remain unaware

to what extent they can rely on these techniques to perform bug localization

activities in projects structured with other programming languages. We have

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

42

selected C# as it is a general-purpose, object-oriented language that shares many

traits with the Java language, but also have some distinct programming features.

For example, some widely used C# constructs, like properties and structures

(“structs”), are inexistent in Java. Moreover, C# is a popular language [18] that

figures within the top 10 languages in number of GitHub repositories [19]. To the

best of our knowledge, neither of these techniques have been previously evaluated

on other object-oriented programming languages, such as C# (Section 1.2.1).

We unfold our general goal in the following research questions:

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective

to locate bugs in C# projects?

The effectiveness of current structured IR techniques, i.e., BLUiR, BLUiR+,

and AmaLgam, have been assessed and confirmed only for Java projects. However,

developers using many other languages could also benefit from such techniques. In

order to address this gap, we ran the selected techniques in their best performing

configurations (Section 2.3) on a set of C# projects. The results enabled us to

address RQ1 by assessing the effectiveness of these techniques on a previously

untested programming language.

RQ2: Does the addition of more program constructs increase the

effectiveness of bug localization on C# projects?

In order to understand the potential of structured IR techniques completely,

we need to analyze their sensibility to particular constructs of a programming

language. Therefore, we addressed RQ2 by focusing this analysis on program

constructs that were also not considered in previous studies [4] [5], such as string

literals, interfaces, and enumerations. In addition, there are language features from

C# that do not exist in Java, such as structures and properties. The effects of their

explicit consideration on state-of-the-art bug localization are not well understood.

Thus, we investigated to what extent the effectiveness of a structured IR technique

would benefit from the explicit consideration of these source code constructs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

43

3.2
Evaluation metrics

This section describes the metrics used to assess the effectiveness of the

techniques on selected projects. We focused on the use of two sets of metrics

typically used in recent studies [3] [4] [5] and presented in Section 2.2.3:

Hit@N: Percentage of bug reports that have at least one buggy file ranked by

the technique in the top N positions. Typical values for N are 1, 5, and 10 [3] [4]

[5].

Mean average precision (MAP): Mean of the average precision scores

(Equation 4) across all queries. Considers the ranks of all the buggy files, not only

the first one.

To measure the effectiveness of a technique, or one of its variations, the

average of the results for each project is taken. Finally, the effectiveness of a

technique, or one of its variations, corresponds to the average of the results for each

project. We use commit and bug report data obtained from the selected projects

(Section 3.3) as the oracle against which we compare the results of our

implementation. When a bug report explicitly contains a link to a commit, we

consider the files modified in the commit as the ones that solved the bug. This is a

common assumption in many bug localization studies [3] [4] [5]. When there is no

explicit link between a bug report and a commit, we use conventional

heuristics [40] to infer this relationship. These heuristics consist of looking for

commits that contain messages such as “Fixes issue 97” or “Closes #125”, which

usually denotes the ID number of the associated bug report. All these procedures

were also important to implement in our study given the lack of C# datasets, which

differs from the state-of-the-art on empirical studies of Java projects.

3.3
Project selection

For our experiment, we needed a number of C# projects with available

information on their source code, commits, and bug reports. We could not find a

bug dataset for C# projects, like iBUGS [36] or moreBugs [44]. Then, we used

GitHub search functionality5 to obtain a list of large C# projects, by searching for

 Integrated development environment.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

44

projects with 1,000 or more stars and 100 or more forks. These parameters

indirectly allowed us to satisfy the requirement for large projects. The query

returned almost 80 projects from various domains, including development tools,

compilers, frameworks, and games.

We used GitHub API to download commit and issue data from the projects.

We downloaded the 1,000 most recent issues for each project6, and then all the

commits that happened within the period covered by the issues. Next, we processed

the data in order to identify (i) issues that could be characterized as bugs and

(ii) files modified in order to fix the bug. For characterizing a GitHub issue as a

bug, we relied on the labels applied by the users. Issues with at least one label

containing terms such as “bug” or “defect” were considered a bug report. As for the

files modified to fix a bug, they are determined by the associated commit, as

explained in Section 3.2. Since we are focusing on C# code, we excluded from

evaluation bugs that do not touch at least one C# file.

After processing downloaded data, only those projects where we could find

at least 10 bugs whose resolution modified at least one C# file were kept for the

experiment. We processed the projects in the order returned by the query, until we

reached 20 projects that met our selection criteria. Table 2 presents a comparison

between the dataset of C# projects used in our study and the dataset of Java projects

used in recent studies [3] [4] [5] of the same techniques.

Table 2 – Dataset comparison

Dataset details Java C#
Projects 4 20
Files 20,223 46,752
Source files N/A 28,596
Issues N/A 16,630

Traceable to commits N/A 2,839
Classified as bugs 3,479 878

In the table above, we highlight various differences, including the differences

between the amount of files and amount of source files present in the corresponding

repositories. In our case, about 61% of the files contained in the repositories were

C# files, the ones we actually used to search for bugs. This happens because many

files represent: (i) configuration or HTML files, or (ii) source files structured with

other programming languages, in the case of multi-language projects. Actually, the

existence of multi-language projects also highlights the importance of evaluating

6 GitHub API limits issue searching to 1,000 results per query.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

45

bug localization techniques in different programming languages. For the Java

dataset, it was not clear whether the total referred only to Java source files or to all

repository files. Therefore, we assumed the latter.

As for the bugs, all of them are treated as issues in GitHub issue tracker,

although not all issues are bugs. After downloading all the available issues, we

associated them with a commit whenever possible, using the criteria explained in

Section 3.2. This step reduced the amount of available bugs to 17% of the original

issue count. Then we discarded issues that were not labeled as “bug”, which reduced

the number of available bug reports even further, down to 878 (5% of the initial

number of issues).

In the next section, we discuss additional preparation steps we applied on the

dataset, which were important to guarantee the construct validity of the experiment.

3.4
Dataset preparation

As mentioned in Section 1.2, previous studies suffer from a series of

shortcomings regarding their experimental setup. Next, we describe how we

handled these shortcomings in our evaluation.

3.4.1
Version selection

Previous studies on bug localization commonly selected only a single release

and ran the bug localization for all bugs on the same release. Results reported in

this manner cannot be fully trusted [17], because there is a high chance that the bug

is not even present on the code being analyzed. To overcome this problem, we

identified the version of the source code that was active by the time the bug was

reported by searching for the oldest commit that happened before the bug report

creation. The source code for every identified version was downloaded, and each

bug was localized on its corresponding version.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

46

3.4.2
Bug report selection

Some bug reports already inform the location of the defect in source code, by

mentioning the file where the bug was observed. Kochhar et al. [14] demonstrated

that including these bug reports on the evaluation of a bug localization technique

significantly influences the results by artificially increasing the reported

effectiveness. The authors classified bug reports in three categories: fully localized,

partially localized, and not localized, which mean that a bug report mentions all,

some or none of the files modified to fix a bug; respectively. We removed fully and

partially localized bug reports from our evaluation, meaning that we included only

those bug reports that contained no mention to the faulty files. Although this step

contributes to more realistic results, it reduced the number of available bug reports

in 51%, from the 878 reported in Table 2 to 450 (3% of the initial issue count).

3.4.3
Source file selection

Software projects often include test code. Test code may contain bugs, which,

in theory, may be reported just like production code. However, bug localization

algorithms should not include test code within their scope. Consider, for instance,

three bug reports, whose resolution involved the modification of (i) only production

code (no test code); (ii) production and test code; and (iii) only test code. In the first

case, it is obvious that localization does not benefit from considering test code.

When the resolution of a bug requires changing production and test code (second

case), it is usually because a test was added or modified in order to catch the referred

bug in the future. Test code was not the source of the failure, though. Therefore,

modified test files are not what developers expect as an answer from the localization

algorithm in this case. Finally, when a bug in the test code itself is caught (third

case), developers already have detailed information provided by the test framework,

which includes the location of the bug. Thus, even if a developer chooses to report

a test bug instead of fixing it immediately, it is likely that this report will include

the detailed information already provided by the test framework. Therefore, bug

reports on test code are rarer (because the developer may choose to fix the bug

instead of reporting it) and likely to be localized (because test frameworks already

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

47

indicate the buggy files). This rationale led us to restrict the localization to

production code.

We excluded test files from the scope of the analysis by ignoring all files that

contain the word “test” on its path. We confirmed with manual inspection on two

sample projects that this simple heuristic was able to accurately remove the

undesired files, since it reflects (in our sample) the common developer practices of

naming test files with a “Test” prefix of suffix, or placing test code in a separate

directory named “test”.

3.5
Model adaptation

Structured IR demands the extraction of identifiers from source code. For this

task, we used the .NET Compiler Platform, also known as Roslyn [45]. As C# is an

object-oriented language, similar to Java, it has the same four constructs considered

on BLUiR’s original evaluation: class names, method names, variable names, and

comments. However, C# also has constructs that either were not considered by

BLUiR (and, consequently, neither by BLUiR+ nor AmaLgam) or do not exist in

Java. Table 3 summarizes these differences.

Table 3 – List of C# constructs

C# construct Equivalent in
Java?

Considered by
BLUiR?

Classes Yes Yes
Comments Yes Yes
Enumerations Yes No
Fields Yes No
Interfaces Yes No
Methods Yes Yes
Namespaces Yes (packages) No
Parameters Yes No
Properties No No
String literals Yes No
Structures No No
Variables Yes Yes

BLUiR breaks a source file into parts. Each part contains identifiers from one

kind of construct. To deal with the different kinds of constructs, while keeping the

underlying philosophy of BLUiR, we devised three alternative configuration modes

to run the experiment:

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

48

• Default: Strictly uses only the same constructs used by BLUiR, ignoring any
other construct.

• Complete: Uses all constructs present in Table 3, with each construct
mapped to an exclusive file part.

• Mixed: All constructs are used, but they are mapped to one of the four file
parts corresponding to the constructs originally used by BLUiR.

Default mode is used as a baseline for the sake of comparing our results with

the original evaluation in Java projects [4]. Complete mode represents the simplest

way of including new constructs in BLUiR’s algorithm. Mixed mode represents an

alternate way of computing new constructs, by mapping them to one of the

preexisting categories. For example, interfaces, structures, and enumerations are

semantically close to classes. Therefore, for the purpose of bug localization, it could

be enough to consider code elements of any of these types as “classes”. In a similar

vein, string literals usually represent plain text inserted into source files, such as

comments do. Therefore, string literals and comments could be mapped together in

the same file part.

The difference between some constructs is negligible in practice. For

instance, variables and parameters are distinct constructs, strictly speaking.

However, from the developers’ point of view, they are both handled as variables.

Although it was not clear, this simplification might have been used in the BLUiR

evaluation. Thus, the Mixed mode addresses this possible ambiguity, by defining a

broader interpretation to the four constructs mentioned in [4]. The mapping strategy

for each mode is shown on Table 4.

Table 4 – Construct-mapping strategies

Mode Construct mapping
Default Classes, Methods, Variables, and Comments (one file part for each)
Complete All constructs from Table 3 (one file part for each)

Mixed

Part 1: Classes, Enumerations, Interfaces, Namespaces, and Structures
Part 2: Methods
Part 3: Fields, Parameters, Properties, and Variables
Part 4: Comments and String literals

Next section presents the results of the evaluation, thus answering the

research questions formulated in Section 3.1. For RQ1, Default mode will be

applied to the 20 selected projects (Section 3.6.1). In RQ2, Complete and Mixed

modes will also be applied to the same projects in order to compare their results

with those from Default mode (Section 3.6.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

49

3.6
Results

3.6.1
Effectiveness of structured IR-based bug localizati on in C# projects

Our goal includes performing “a realistic (…) evaluation of state-of-the-art

bug localization techniques on a previously untested programming language”

(Section 3.1). To reach this goal, we apply BLUiR, BLUiR+, and AmaLgam on 20

C# projects. To the best of our knowledge, the mentioned techniques have not been

evaluated on C# projects so far. To perform a realistic evaluation, we include the

dataset preparation steps discussed in Section 3.4. However, we also apply the

techniques without dataset preparation, in order to draw a parallel with results from

Java studies. The two sets of results will be presented next: first without dataset

preparation (Section 3.6.1.1) and then with dataset preparation (Section 3.6.1.2).

3.6.1.1
Effectiveness without dataset preparation

Initially, we questioned whether current state-of-the-art bug localization

techniques based on structured information retrieval, i.e., BLUiR, BLUiR+, and

AmaLgam, would effectively locate bugs in C# projects. Considering results for

Java, one would expect similar levels of effectiveness for C# as well, given the

apparent similarities between the languages. To answer our first research question,

we ran the bug localization techniques on downloaded projects using the reported

optimal configuration for each technique (Section 2.3) and the Default mode

(Table 4). For the sake of comparison, we initially run the algorithms without the

preparation steps discussed in Section 3.4, i.e., selection of appropriate source code

versions, exclusion of localized bug reports, and exclusion of test files. For each

technique, we took the average MAP, which consists of the arithmetic mean of the

MAPs from each project. Table 5 presents the average MAP values observed for

the set of evaluated projects, and the variation observed over the same measure from

Java projects. Considering all the techniques, the average MAP achieved by each

technique with C# projects was around 0.307.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

50

Table 5 – C# and Java results – Average MAP

Technique Java C# Variation
BLUiR 0.38 0.302 -21%
BLUiR+ 0.39 0.307 -21%
AmaLgam 0.43 0.312 -27%

Opposed to the previous findings in Java projects, the selected bug

localization techniques showed lower effectiveness in terms of average MAP. This

result should be interpreted carefully, as the projects are different and cannot be

compared. Nevertheless, the observed variation is explainable in part due to the

higher number of projects analyzed: 4 in the Java studies [4] [5] against 20 in our

C# study. Within projects in the same language, the techniques presented similar

behavior: AmaLgam performed better than BLUiR+, which outperformed BLUiR.

Recall from Section 2.3 that each technique uses a superset of the information used

by the previously proposed technique: BLUiR is based on the similarity of bug

reports and source code, BLUiR+ adds the similarity of previous bug reports to the

equation, while AmaLgam also considers version history. At first glance, this could

be considered an indication that, in fact, hybrid techniques which combine

additional sources of information tend to perform better than their predecessors do.

However, the average values are rather close. Thus, we analyzed additional

parameters, which are presented in Table 6.

Table 6 – C# and Java results – Minimum and maximum project MAP

Technique
Minimum MAP Maximum MAP

Java C# Java C#
BLUiR 0.24 0.103 0.56 0.596
BLUiR+ 0.25 0.125 0.58 0.596
AmaLgam 0.33 0.120 0.62 0.604

In contrast with data available from Java studies, we observed a high variation

on results from C# projects. Table 6 presents highest and lowest MAP scores for

each technique and language. The minimum MAPs from the C# group were lower

than minimum values from the Java group for all three techniques. The maximum

MAPs, on the other hand, were similar. In fact, there was one project where the

techniques reached even higher MAP values, but it was considered an outlier, as

seen on Figure 1. Average MAPs for the outlier were 0.770, 0.767, and 0.747 for

BLUiR, BLUiR+, and AmaLgam, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

51

Figure 1 – Effectiveness of the techniques with C# projects

The three techniques performed very similarly on the C# projects, as the

averages on Table 5 indicate. Another evidence of the similar performance is the

fact that each technique attained a higher score with a different metric: AmaLgam

had the higher average (0.312), BLUiR+, the higher median (0.269), and BLUiR,

the higher maximum (0.770). This suggests that, for this particular dataset, the

additional information considered by BLUiR+ and AmaLgam failed to increase the

effectiveness of the techniques significantly. Nevertheless, in spite of the lower

averages relative to the Java evaluation, six C# projects still have attained MAP

scores superior to the average of their Java counterparts in at least one technique.

This implies that, in principle, there is no impediment to the usage of bug

localization on C# projects due to features of the language itself, leaving room for

the investigation of alternatives to increase the effectiveness of the techniques. In

Section 3.6.2 we propose such alternatives by evaluating the effects of different

mappings of language constructs on the bug localization algorithm. However, we

must evaluate the effectiveness of these alternatives against an accurate baseline.

Hence, we also performed an evaluation of the techniques with the dataset

preparation steps discussed in Section 3.4, to be presented next.

AmaLgam BLUiR+ BLUiR

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Techniques comparison

Techniques

A
ve

ra
ge

 M
A

P

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

52

3.6.1.2
Effectiveness with dataset preparation

We remind the reader that results from the previous section were obtained

without considering the dataset preparation steps presented in Section 3.4. Those

results were compiled to reproduce the same conditions from the original

studies [4] [5]. A more realistic experiment, however, should incorporate these

steps. Thus, we have also performed an evaluation of the three techniques including

these steps. Table 7 presents minimum, maximum, and average values for each

technique, and the decrease relative to results with no preparation steps.

Table 7 – Effect of dataset preparation steps on bug localization – MAP

Technique Min Average Max
BLUiR 0.020 0.183 (-40%) 0.499
BLUiR+ 0.048 0.198 (-36%) 0.493
AmaLgam 0.044 0.206 (-34%) 0.565

Wilcoxon Signed-Rank tests with 95% confidence level confirmed that

additional preparation steps on the dataset significantly decreased the MAP scores

for the three techniques. Complete details about the tests, including p-values, are

available at the study website [46]. The maximum values indicate that some

projects were still able to achieve reasonable scores. However, compared to the

execution with no preparation steps, the effectiveness for all projects decreased, on

average, more than 30% for all the evaluated techniques. Figure 2 presents a

graphical comparison of the effectiveness with and without the preparation steps. It

becomes clear from the data that bug localization studies must not ignore these

steps, under the penalty of reporting results incorrectly higher than what would be

found in actual settings.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

53

Figure 2 – Effectiveness of techniques with C# projects – Non-prepared vs. prepared data

The importance of removing localized bug reports from this kind of

evaluation is not only a matter of construct validity of the experiment. It has indeed

practical importance, as non-localized bug reports are exactly the kind of report

where developers would need the assistance of a localization technique. Therefore,

the effectiveness of IR-based bug localization in terms of mean average precision

can still be considered too low for these techniques to be applied in practice.

On the other hand, the expectations for this kind of technique must also be

put into context. No matter how effective they are, bug localization techniques do

not eliminate the need for the developer to examine and fix the buggy file.

Therefore, instead of pinpointing the exact files where the bug is located, it may be

acceptable for the technique to provide a list featuring a few candidates. Table 8

shows that the best performing technique – AmaLgam – was able to return a buggy

file at the top of the list 20% of the times, and in 57% of the times there was a buggy

file among the 10 first files returned by the technique. Analyzing hundreds of files

and correctly placing at least one buggy file in a list of 10 candidates for almost

60% of the time, while not ideal, is not as discouraging as the average MAP of 0.206

suggests.

Am NoPrep Am Prep B+ NoPrep B+ Prep B NoPrep B Prep

0.
0

0.
2

0.
4

0.
6

0.
8

Non-prepared vs. Prepared data

Techniques

A
ve

ra
ge

 M
A

P

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

54

Table 8 – AmaLgam effectiveness with dataset preparation steps

Technique Hit@1 Hit@5 Hit@10
AmaLgam 20% 46% 57%

Nevertheless, these results reinforce that there is still room for improvement.

As discussed in Section 2.3, structured information retrieval is the component that

contributes the most to the effectiveness of state-of-the-art bug localization

techniques [4] [5]. This remains true even for techniques using multiple sources of

information, such as AmaLgam [5]. Thus, we extended the underlying algorithm of

AmaLgam’s structure component (Section 2.3) in order to assess its effectiveness

when using a different set of programming language constructs. We present the

results in the next section.

3.6.2
Usage of more constructs to improve bug localizatio n effectiveness

The set of constructs used by BLUiR, BLUiR+, and AmaLgam includes basic

constructs from object-orientated languages (classes and methods) and constructs

from programming languages in general (variables and comments). However, some

subtleties about construct selection were omitted or unaddressed in previous

studies. For instance, it is unclear how these techniques deal with interface names,

which could be considered equivalent to class names or simply ignored. As for

variable names, they might refer only to local variables or include class attributes

(or fields) and method parameters. In other words, there are additional types of

constructs that could be explicitly considered by bug localization techniques. When

considering a different programming language, with a different set of constructs,

these questions become more relevant.

To answer whether the consideration of more source code constructs could

improve effectiveness of bug localization, we designed the three construct-mapping

modes described in Table 4. We selected AmaLgam, the best performing technique

according to the evaluation from Section 3.6.1.2, adapted it to use the three

mentioned modes, and applied it to the set of C# projects. We present the average

MAPs (Table 9) and a box plot (Figure 3) summarizing the performance observed

for each mode.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

55

Table 9 – Effectiveness of AmaLgam using different construct-mapping modes – MAP

Mode Default Complete Mixed
Average MAP 0.206 0.244 0.222

The usage of all the 12 constructs associated with the Complete mode

increased the average MAP of AmaLgam to 0.244, an increase of 18%. Mixed

mode, which also uses the 12 constructs but maps them into four categories

(Table 4), showed a smaller increase on average, to 0.222 (near 8%). From these

results, only the improvement associated with Complete mode was statistically

significant, according to Wilcoxon Signed-Rank tests with 95% confidence

level [46]. The effect of the three construct-mapping modes on individual projects

was generally the same observed on average values: the higher increase was

associated with the Complete mode, while Mixed mode caused a more modest

increase, as shown in Figure 3.

Figure 3 – Effectiveness of construct mapping modes

The reason why Complete mode was able to produce better results can be

explained by BLUiR formula (also used by AmaLgam) for determining the

similarity of a bug report and a source file (Equation 8), which involves the

Default Complete Mixed

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Construct mapping modes comparison

Mapping modes

A
ve

ra
ge

 M
A

P

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

56

summation of the similarities of all pairs of bug-file parts. In Default mode, the total

number of similarities to be summed is 8 – two parts from the bug report multiplied

by four parts from the source code files. In Complete mode, the number of

similarities to be calculated increases to 24 (12 file parts × 2 bug parts). Similarity

results are normalized before the rank of files is generated, such that file scores are

always between 0 and 1. Therefore, the higher value that would result from the

summation of more terms in Complete mode is unlikely to be the reason this mode

produced better results. In addition, the Mixed mode restricts the number of terms

to be added up to 8, similarly to the Default mode. Since the Mixed mode has also

produced results higher than those of the Default mode, we conclude that the

consideration of more source constructs by itself contributed to increasing the bug

localization effectiveness.

3.7
Threats to validity

In this evaluation, we carefully handled experimental issues that are recurrent

in bug localization studies (Section 1.2.1). These issues are highly relevant, as

results from Section 3.6.1.2 demonstrates. We mitigated the threat to construct

validity posed by these issues with the dataset preparation steps described in

Section 3.4. Nevertheless, some threats to validity are still present. We discuss them

in the next subsections.

3.7.1
Construct validity

Given the originality of our study, we could not find an available bug

benchmark for C# projects. Instead, we downloaded issues from GitHub and used

the existence of a user-applied “bug” label as a criterion to identify bugs among

those issues. Even following this procedure, we are still subject to misclassified

issues, since not all bug reports could be manually verified. However, recent studies

suggest that this particular bias does not substantially influence bug localization

results [14]. Nevertheless, we make all our dataset available at our study

website [46] so that others can refine it and replicate our study. As there was no

dataset available for C# projects, one can consider our replication package also as

a contribution of our study.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

57

Studies involving retrospective evaluation of bugs should consider the

version of the software at the time the bug was found. We addressed this issue by

performing the localization on latest version available before the creation of each

bug report. Strictly speaking, this does not guarantee that the selected version

actually contains the bug reported. However, the selection of a previous version of

the code for each bug report is a close approximation. Moreover, this step mitigates

a threat ignored in many recent studies on bug localization, including [4] and [5].

Localized bug reports, i.e., reports that mention one or more code elements,

significantly influence the evaluation of bug localization techniques [14]. Thus, we

excluded such bug reports from the analysis. By performing this exclusion, we

remove an important bias that may have led previous studies to unrealistic results.

Finally, the presence of test files also influences bug localization results, since

bug reports related to these files are very likely to be localized (Section 3.4.3). We

eliminated this bias by excluding test files from the evaluation. The full rationale

for performing these exclusions was discussed in Sections 3.4 and 3.6.1.2. The

adoption of these dataset preparation steps argue for a strong construct validity in

our study.

3.7.2
External Validity

In an attempt to increase generalizability, we attempted to select a higher

number of projects compared to previous studies. Given the criteria defined in

Section 3.3, we were able to select 20 projects, a considerably higher number of

projects compared to other studies on bug localization (5 times more than [3], [4],

and [5]). The absence of a standardized bug database, however, greatly reduced the

amount of bug reports available for the experiment (Table 2). The relatively low

quantity of bug reports and the variation in quantity and quality of bug reports

observed on each project are threats to the external validity of our study. However,

we consider that bug localization techniques must be assessed under realistic

settings, where the amount of available bug reports widely varies from a project to

another. No relationship between the number of bug reports of a project and the

effectiveness of the technique could be observed. The complete list of evaluated

projects and the number of bug reports evaluated for each one is available at the

study website [46].

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

58

Another threat is the fact that all selected projects were open-source. This

kind of project has a characteristic workflow that differs from that found on

proprietary projects. Different policies on bug reporting, for example, may

significantly influence the results of bug localization techniques. Therefore, results

presented in this study are only representative of the workflow typically practiced

in open-source projects.

3.8
Conclusion

Structured information retrieval has been successfully applied to the bug

localization problem. Techniques based on structured IR have shown to be

considerably more effective than other IR-based approaches. However, these

techniques are language-specific, as they depend upon the structure of source files.

Considering the multi-language nature of most modern software [47], it is

important to have effective bug localization models for the different kinds of

languages and technologies used in software projects. This study is a step in that

direction, where structured information retrieval is evaluated on C# projects for the

first time, as far as we know.

The average effectiveness of the evaluated techniques on C# projects was

lower than the same metric reported in the original studies on Java. However, some

projects have individually yielded results above the average informed by the Java

studies. Therefore, we conclude that, in principle, there is no impediment to the

usage of bug localization on C# projects due to features of the language itself. The

lower average effectiveness compared to previous studies can be attributed to (i)

the 5x higher number of projects evaluated, and (ii) the discard of localized bug

reports, which artificially increased the effectiveness of bug localization techniques

in previous studies. We also demonstrated that using more program constructs,

which is a strategy that differs from previous studies [4] [5], increased bug

localization effectiveness by 18% on average.

To the best of our knowledge, this is the first bug localization study to

implement the experimental steps needed to solve the issue of different versions

raised by [17] and the localized bug report bias presented in [14]. Besides, we also

observed that test files should not be included in the scope of the localization

process. These steps are important because they demonstrate that the reported

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

59

effectiveness of current state-of-the-art bug localization techniques cannot be

achieved in realistic situations. Future studies in bug localization should not skip

such steps, as they produce an experimental setup closer to reality and to

developers’ expectations, increasing the chances of bug localization to become

more useful in practice.

In the next chapter, we address the remaining research questions (RQ3, RQ4,

and RQ5). These questions will be answered by performing an in-depth evaluation

of how bug localization techniques based on structured information retrieval use

program constructs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

4
Analysis of the contribution of program constructs to
bug localization

Structured information retrieval (IR) has been able to increase the

effectiveness of static bug localization techniques [4] [5]. The key feature of

structured IR-based techniques refers to how they break up source files, based on

constructs available in the adopted programming language. Bug localization

techniques based on traditional IR calculate the similarity between a source file and

a bug report considering the whole file (Section 2.3.1). Conversely, structured IR-

based techniques break source files into multiple parts, one for each construct

recognized by the technique (Section 2.3.2). Each of these parts contains only terms

that are instances of the corresponding construct in the original source file. Then,

instead of calculating similarity using the whole file, the final similarity between a

bug report and a source file is the sum of the similarities between each part of the

source file and the bug report (Equation 8). BLUiR [4] recognizes four Java

constructs: class names, method names, variable names, and comments

(Section 2.3.2). Thus, it breaks source files into four parts. The same approach is

followed by BLUiR+ [4] (Section 2.3.2) and AmaLgam [5] (Section 2.3.3).

However, structured IR has not been thoroughly explored yet. In addition to

the limitation of being evaluated only on four projects, the original models of

BLUiR [4], BLUiR+ [4], and AmaLgam [5] used only four constructs from the Java

language (Section 3.5). Thus, it is unknown whether other constructs, such as

interfaces or enumerations, could have influenced bug localization results. This

question becomes even more relevant when source files are written in other

programming languages, such as C#, which supports constructs inexistent in Java

(Table 3).

In this chapter, we investigate the influence of different program constructs

on the effectiveness of structured IR-based bug localization. In this investigation,

we use results obtained with the Complete mode (Section 3.5), as this construct

mapping mode increased bug localization effectiveness by including all available

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

61

C# constructs into the localization process (Section 3.6.2). Then, we use a statistical

procedure called Principal Component Analysis (PCA) to quantify the contribution

of each construct to the similarity score attributed to source files. This analysis will

reveal the extent of the correlation between those constructs and bug localization

results.

Finally, we explore the different contributions from each construct by further

modifying the bug localization algorithm. First, we evaluate whether suppressing

low-contributing constructs influences the result either positively or negatively.

Next, we evaluate whether bug localization effectiveness can be increased by

attributing higher weights the most influential constructs in the file score equation

(Equation 8), thus emphasizing their contribution.

4.1
Motivation

The key success factor for a bug localization technique based on information

retrieval lies on its ability to match terms from bug reports and source files

successfully. Once we have observed that using the full set of available program

constructs significantly increases bug localization effectiveness (Section 3.6.2), it

becomes important to understand in more depth how these constructs individually

contribute to bug localization. Such knowledge enables us to discard low

contributing constructs, as well as attribute higher weights to the most contributing

constructs, possibly increasing effectiveness. The contribution of each program

construct is the subject of our third research question, restated below.

RQ3: Which program constructs contribute more to the effectiveness

of bug localization on C# projects?

To answer this question, we use principal component analysis (PCA).

Principal component analysis is a statistical procedure that transforms a number of

possibly correlated variables into a smaller number of variables called principal

components [48]. According to Jolliffe [48]:

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

62

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in the
data set. This is achieved by transforming to a new set of variables, the
principal components (PCs), which are uncorrelated, and which are ordered
so that the first few retain most of the variation present in all of the original
variables [48].

Translating bug localization domain to PCA, the constructs are the variables

and the similarity scores are the variable values. As a result, PCA generates a set of

new variables – the principal components – with varying degrees of correlation with

the original variables. The PCs are presented in decreasing order of contribution to

the total variance of the dataset. Therefore, the degree of contribution from a

construct to the variance of the dataset can be measured by its correlation with the

first PCs.

The reasoning for using PCA to answer RQ3 is that such analysis may

indicate that the studied techniques may be more sensitive to a specific construct

subset. If this is true, most influential constructs will emerge as highly correlated

with the first few principal components (PCs). Furthermore, it is expected that the

influence exerted by these constructs could be exploited to increase bug localization

effectiveness.

Next section illustrates how the PCA was modeled in order to answer RQ3.

All the results presented in this chapter were generated using R version 3.3.0 [49],

with additional libraries for analysis [50] [51] and data visualization [52] [53].

4.2
Analysis setup

To perform the analysis, we organize relevant data in the form of a table:

variables are laid out in columns, while rows correspond to data points.

The 12 C# constructs (Table 3) are the variables. The data points correspond to

every buggy file ranked among the top ten positions for every available bug report.

The values for each variable are the summands that compose �01./; (Equation 8),

the similarity score attributed by AmaLgam’s structure component (Section 2.3.3).

These values were taken from the best performing construct mapping mode

(Complete mode, Sections 3.5 and 3.6.2). Table 10 illustrates how data is organized

as input to PCA. Afterwards, we discuss in detail the construction of the input table.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

63

Table 10 – Sample of the input for principal component analysis

Bug # / File rank7
Class
names

Comments
Enum
names

…
String
literals

Struct
names

Variable
names

Bug #375 / 6th file 0.000 0.141 0.000 … 0.224 0.000 0.354
Bug #535 / 1st file 0.473 0.523 0.000 … 0.148 0.000 0.270
Bug #535 / 3rd file 0.451 0.131 0.000 … 0.177 0.000 0.358
Bug #742 / 3rd file 0.345 0.410 0.282 … 0.085 0.000 0.135
Bug #850 / 1st file 0.514 0.427 0.000 … 0.532 0.000 0.569
Bug #850 / 2nd file 0.355 0.422 0.961 … 0.461 0.000 0.000
… … … … … … … …

Informally, PCA tries to “explain” a data set consisting of many variables

using a smaller number of variables. Since our assumption is that a subset of the

constructs is able to “explain” most of the bug localization results, the constructs

represent the variables for the analysis. The variable values are the scores attributed

by AmaLgam’s structure component with respect to each construct. Recall

Equation 8:

�01./; = �
���, �� = - - �
���H, �H�
IJ∈IAJ∈A

AmaLgam’s structure component breaks source files and bug reports into

parts: bug reports are split into summary and description, and source files are split

in parts that contain only constructs from a specific type. In the Complete mode

adaptation (Section 3.5), 12 C# constructs are considered (Table 4). The score

attributed by the structure component (�01./;) is the summation of the similarities

of each pair of file and bug parts. Thus, for each construct, there is a term from

�01./; that reflects its specific contribution to the structural similarity score. These

are the variable values used as input for the PCA (Table 10).

Since our goal is to understand the contributions of each construct to the

effectiveness of bug localization, we must select effective instances from the data

set. Therefore, we selected those files that were both buggy according to the oracle

(Section 3.2) and high-ranked by the technique, i.e., ranked among the top 10

positions. The number of positions, 10, is consistent with the Hit@10 metric

(Section 3.2). Thus, data points (rows in Table 10) correspond to every buggy file

ranked among the top 10 positions for every available bug report.

7 Sample taken from project akka.net.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

64

After applying the described selection criteria, 363 data points were selected

to compose the PCA input. Table 11 summarizes descriptive statistics for the

selected data points.

Table 11 – Descriptive statistics for PCA input – MAP

Variable Min Median Max Avg.
Std.
dev.

Class names 0.000 0.210 1.511 0.269 0.244
Comments 0.000 0.129 0.706 0.156 0.157
Enum names 0.000 0.000 1.208 0.109 0.254
Field names 0.000 0.121 1.204 0.169 0.193
Interface names 0.000 0.000 1.081 0.077 0.185
Method names 0.000 0.166 1.011 0.203 0.171
Namespace names 0.000 0.103 1.678 0.271 0.362
Parameter names 0.000 0.121 1.108 0.174 0.189
Property names 0.000 0.164 1.237 0.214 0.207
String literals 0.000 0.132 1.316 0.190 0.216
Struct names 0.000 0.000 1.567 0.061 0.225
Variable names 0.000 0.138 1.617 0.183 0.198

Once again, we remind the reader that the values presented in Table 10 and

Table 11 refer to the scores attributed by the structure component to each file,

considering only constructs of a particular type. These scores are summed to

compose the structural similarity score (Equation 8), which is then used to calculate

the final similarity score for a file (Equation 11). Therefore, it is expected that

minimum values for all constructs are equal to zero. This means that, for every

construct, there has been at least one file with no construct of that particular type

matching any terms from the bug report. This is expected because source files do

not usually contain instances of every existing language feature or construct, let

alone instances that match terms from a specific bug report.

Some constructs, namely enums, interfaces, and structs, had median values

equal to zero. This means that, within the selected sample (which consists of high-

ranked buggy files), these were the constructs that matched bug report terms for

fewer occasions. This is an indicator of low contribution from these constructs.

However, we will proceed to the principal component analysis before formulating

a definitive answer to RQ3.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

65

4.3
Contribution of program constructs

This section answers RQ3, i.e., which C# constructs contribute more to the

effectiveness of bug localization. The answer is obtained by applying principal

component analysis (PCA) to the dataset prepared in Section 4.2. First, the analysis

will transform data and express it as a series of dimensions with varying degrees of

correlation with the original constructs (Section 4.3.1). Next step is to determine

the correlation of each construct with the returned dimensions (Section 4.3.2), thus

answering RQ3.

4.3.1
Variances of principal components

PCA transforms input data into a coordinate system such that the highest

variance lies on the axis corresponding to the first principal component. Remaining

components represent dimensions that account for a decreasing amount of variance.

In other words, the first components explain most of the variance of the data. In our

context, we explore PCA to understand which constructs better explain the data

variance on bug localization results.

Figure 4 – Variance corresponding to each principal component

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

66

Figure 4 presents the degree of variance explained by each of the 12 PCs.

While X-axis represents the 12 PCs, Y-axis indicates the percentage of explained

variances. Figure 4 shows that the first principal component (PC1) accounts for

20% of the variance in the data, twice as much as PC2. However, the difference in

the variance of the remaining PCs is much smaller. From PC2 through PC12,

percentage of variance smoothly decreases from 10% to 4.1%. Table 12 displays

the cumulative percentage of the variance from the first through the last component.

Table 12 – Distribution of variance through the principal components

Component % variance
Cumulative %

variance
PC1 20,5% 20,5%
PC2 10,0% 30,6%
PC3 9,7% 40,2%
PC4 9,5% 49,7%
PC5 8,6% 58,3%
PC6 8,0% 66,3%
PC7 6,7% 73,0%
PC8 6,6% 79,6%
PC9 6,0% 85,6%
PC10 5,7% 91,3%
PC11 4,6% 95,9%
PC12 4,1% 100,0%

As mentioned in Section 4.1, one of the main applications of PCA is to reduce

dimensionality from a dataset. This is possible when the first few components

account for a high percentage of the variance. What may be considered a high

percentage of variation is subjective, although the literature suggests a sensible

cutoff is very often in the range 70% to 90% [48]. Considering the distribution

presented in Table 12, it would be necessary to retain the seven first PCs to account

for 70% of the variance. Likewise, the ten first PCs would have to be retained to

account for 90% of the variance. From Figure 4, it becomes clear that, except for

PC1, all remaining components present comparable contributions to the structural

similarity scores. Although there is no strict rule, typical contributions that allow

components to be safely discarded are below 1% [48]. Hence, no component can

be confidently discarded due to a negligible contribution.

Although all construct types contribute to the final scores, analysis of the

variances (Figure 4) suggest that some constructs contribute more than others do.

These are probably associated with PC1, which by itself accounts for 20% of the

variance in the results. It remains to be investigated which constructs are associated

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

67

with the first few principal components and whether this association can be

exploited in order to increase bug localization effectiveness.

4.3.2
Constructs associated with principal components

The degree of relationship between original variables and principal

components created by the analysis can be measured by their correlation

coefficients. A positive correlation indicates that both values (original variable and

PC) increase simultaneously. Therefore, positive correlations reveal constructs that

positively contribute to the result. Conversely, negative correlations indicate that

while one of the values increases, the other one decreases. This situation could be

interpreted as a “wrong clue” to the technique, as the negatively correlated construct

would be assigning higher scores to files that, according to the rest of the constructs,

should have lower scores. Therefore, constructs with a negative correlation to the

PCs are likely to be negatively contributing, i.e., “disturbing” the results. Figure 5

depicts the correlation between constructs and principal components in the form of

a correlogram [54].

Figure 5 – Correlation between variables and principal components

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

68

In Figure 5, blue values represent positive correlations, while red values

indicate negative correlations. Higher absolute values indicate stronger

correlations. Thus, the closer to +1 the correlation is, the greater the contribution of

the construct. Similarly, constructs with correlations close to -1 are more likely

disturbing the effectiveness of the technique. The strength of the correlation is also

given by the intensity of the color: dark blue and dark red circles indicate strong

positive and negative correlations, respectively. Statistically insignificant

correlations are signaled with a dark “×”.

4.3.2.1
Positive correlations

It is possible to see that many constructs are positively correlated with the

first principal component (Dim.1). Method and class names are the ones with the

strongest positive correlation. This means that method and class names are the most

influential constructs regarding the first dimension extracted by the PCA. This

result was expected as classes and methods often represent the most important

domain abstractions realized in program files. They embrace some other inner

constructs in a file, were the bugs are often “located”. Given their importance in the

system domain, the names of such (class or method) abstractions naturally have to

be reasoned about when someone is either reporting or locating a bug.

The construct with the third highest correlation to the first PC is Properties.

Properties, alongside with Structures, is one of the two C# constructs that have no

equivalent in Java (Table 3). The contribution of Properties, though, was more

relevant than that of Structures. This can be explained by the fact that Structures

usually represent simple data structures, with little or no behavior, and therefore are

less prone to be associated with bugs. Moreover, Structures are independent

constructs, while Properties, on the other hand, are members of classes. Therefore,

it is expected that Properties be more closely related to domain abstractions already

represented by classes, increasing their chances to be mentioned in bug reports.

After Properties, the next constructs more correlated with PC1 are

Parameters and Variables. Variables represent a ubiquitous concept of

programming languages, and its relevance to IR-based bug localization is no

surprise. Parameters are used to pass values or variable references to methods [55].

Although Parameters are strictly different from Variables, their purposes are quite

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

69

similar. We have discussed the possibility of considering some constructs

equivalent, including Parameters and Variables, with the Mixed construct-mapping

mode (Section 3.5). However, we have observed the Complete mode, i.e.,

considering the constructs separately, yielded better results (Section 3.6.2). The

high correlation of these two constructs with PC1 may explain the advantage of the

Complete mode. As both constructs proved to be relevant (Figure 5), considering

them separately had the effect of raising the similarity score (Equation 8).

Each PC represents a different dimension of the original dataset. Notice that

PC1 is highly correlated to Methods, Classes, Properties, Parameters, and

Variables. In C#, methods and properties are class members. Likewise, parameters

and variables occur inside of methods. Therefore, as Methods and Classes are

containers of other constructs, such as Properties, Parameters, and Variables, it is

expected that they co-occur, hence their high correlation in the first PC. Notice,

however, that the container constructs, i.e., Methods and Classes, have the highest

correlation. This means that, although the inner constructs (Properties, Parameters,

and Variables) do contribute, their contribution is overshadowed by that of the

container ones (Methods and Classes).

The construct with the strongest positive correlation with the second

dimension is String literals. This construct had a negligible effect on the first

principal component. However, the strong correlation with the second component

indicates that, overall, it still has a significant contribution to bug localization

effectiveness, as Table 11 suggests. The importance of String literals may be

explained by the fact that many bug reports include error messages, which are often

included in the source code as string literals. This finding actually reinforces that

String literals should be explicitly considered in structured IR-based bug

localization models

Moreover, the fact that String literals were more correlated with the second

PC, rather than the first, is meaningful. As aforementioned, each PC represents a

different dimension of the data. Thus, the contribution of String literals occurs in a

different dimension than that represented by PC1. This means that files with high

scores due to similarity with String literals did not have high scores due to method

or class name similarity, for example. This fact can be interpreted as an indication

that some files would only be located due to the similarity of bug reports with String

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

70

literals. This is an interesting result, as String literals were not considered by

BLUiR [4] nor AmaLgam [5], despite being a frequently used construct.

Similar reasoning can be applied to the third PC, where Structures are the

most relevant construct, and so forth. However, as one advances into the subsequent

PCs, one must remember that the relevance of the PCs decreases (Figure 4).

Moreover, constructs with negative correlations become more common. Thus, an

analysis of the influence of negative correlations is also necessary.

4.3.2.2
Negative correlations

No construct showed negative correlation with the first principal component.

However, from the second PC onwards, negative correlations start to appear. The

highest negative correlations observed were for Methods, on PC12 (-0.5), followed

by Fields on PC7 (-0.47), and Interfaces on PC2 (-0.46). However, the percentage

of the variance explained by these components are 4.1%, 6.7%, and 10%,

respectively (Figure 4). Thus, the strong negative correlation displayed by

Interfaces represent a relevant concern.

Interfaces presented a strong negative correlation as early as the second

dimension. Although it was also responsible for a similar contribution on PC1, its

relative influence within that particular PC was lower than in PC2 and PC3: it has

the sixth largest absolute correlation value on PC1 and the third largest value on

PC2 and PC3. Apart from PC1, the positive contributions from Interfaces appear

only on PC8 (fourth largest) and PC10 (first largest). These dimensions, however,

account for 6.6% and 5.7% of the variance observed in the scores. Therefore, the

positive contribution from Interfaces are relatively low, compared to other

constructs.

Descriptive statistics presented in Table 11 points at Interfaces, alongside

with Enumerations and Structures, as the constructs with the lowest contribution to

bug localization effectiveness. This suggests that these constructs are less

frequently (i) mentioned in bug reports; or (ii) involved in bug-fixing commits.

These are plausible explanations due to the essentially static nature of these

construct types. From the three, only structs can contain some sort of dynamic

behavior (functions) [55]. Therefore, any bug that stems from these construct types

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

71

is likely to be detected at compile time, thus not living long enough to generate a

bug report.

PCA confirmed the low contribution from Enumerations and Structures

(enums and structs). As for Interfaces, however, it revealed a strong negative

correlation between this construct type and the second principal component. Such

observation prompts us to investigate whether bug localization effectiveness could

be improved by removing Interfaces from the analysis. In the next section, we

present the results of another AmaLgam execution, however this time using a

different construct-mapping mode. The Complete mode (Section 3.5) will be

adapted to consider all C# constructs (Table 3) except Interfaces, in order to

investigate the effects of removing a relatively low-contributing construct type on

bug localization effectiveness.

4.4
Effects of constructs on bug localization results

This section explores the effects of program constructs on bug localization.

Section 4.3.2 determined constructs of interest for such exploration, i.e., constructs

lowly and highly correlated with bugs effectively located by AmaLgam. RQ4 asks

whether the suppression of low-contributing constructs could increase bug

localization effectiveness. Interfaces emerged as the construct with higher negative

correlation – thus, less correlated – with effectively located bugs. Therefore, RQ4

will be answered in Section 4.4.1 by adapting AmaLgam to ignore interface names

and, then, applying this adapted version on the 20 C# projects that comprise the

experimental dataset (Section 3.3).

In contrast, RQ5 inquires about the effects of emphasizing constructs highly

correlated with bugs that were effectively located by AmaLgam, namely, Methods

and Classes (Section 4.3.2). RQ5 is answered in Section 4.4.2, which describes how

AmaLgam is adapted to emphasize method and class names and presents the results

obtained from applying it on the 20 C# projects.

4.4.1
Suppression of low-contributing constructs

The influence of each program construct on the similarity scores attributed by

AmaLgam is not homogeneous (Section 4.3). The correlation of these scores with

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

72

the dimensions revealed by principal component analysis (Figure 5) made it clear

that some constructs exert greater influence on bug localization effectiveness than

other constructs do. It is unclear, however, whether negative correlations can

disturb results. That is the subject of our fourth research question:

RQ4: Does the effectiveness of bug localization increase with the

suppression of constructs with the lowest contributions?

Principal component analysis results showed that the constructs with the

lowest contribution are Interfaces. In fact, Interfaces are the constructs with the

larger negative correlation with the principal components. Thus, while similarity

scores from positively correlated constructs increase together, scores from interface

names decrease. To assess whether this effect has any influence in bug localization

results, we used the dataset of 20 C# projects to run AmaLgam using a slightly

modified Complete mode (Section 3.5). This modified mode considers all the

12 available C# constructs except for Interfaces. Results are summarized in

Table 13.

Table 13 – Effect of the suppression of interface names – MAP

Mode Min Median Max Avg.
Std.
dev.

Complete 0.055 0.198 0.573 0.244 0.154
Without interfaces 0.055 0.200 0.582 0.245 0.158

Removing Interfaces from the localization process increased AmaLgam’s

average MAP from 0.244 to 0.245 (0.4%). Median and maximum MAPs were also

slightly increased, while minimum MAP was unchanged. This is a positive,

although negligible, increase on AmaLgam results, with no statistical significance.

Therefore, it is not possible to answer RQ4 positively based on our dataset. As it

cannot be said that Interfaces hamper bug localization, it is not needed to remove

this or any other low-contributing construct from a bug localization model based on

structured information retrieval.

4.4.2
Emphasis on most contributing constructs

One possible way of increasing effectiveness of bug localization based on

structured information retrieval is to assign different weights to the parts in which

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

73

source files are split [4]. PCA revealed that Methods and Classes are the constructs

with greater contribution to bug localization results (Section 4.3.2). Thus, our fifth

research question (repeated below) asks whether it is possible to increase the

effectiveness of a technique by emphasizing highly contributing constructs.

RQ5: Does the effectiveness of bug localization increase with the

emphasis on constructs with the highest contributions?

To perform this evaluation, we modify AmaLgam once more, by allowing it

to use different weights for each file part generated during source file splitting. The

formula originally defined in BLUiR [4], and also used by BLUiR+ [4] and

AmaLgam [5] (Equation 8) is replaced by:

�
���, �, U� = ∑ WU� ∑ �
���H�, �H�IJ∈I X��3�
∑ U���3�

Equation 12 – Weighted structural similarity between a file and a bug report

Equation 12 incorporates weights to the calculation performed by

AmaLgam’s structure component. Recall from Section 2.3.2 that structural

similarity is computed by splitting bug reports and source files in parts

corresponding to relevant fields. Bug reports are split into summary and description,

while source files are split into as many parts as the construct-mapping mode being

used (Section 3.5). Since we are using the Complete mode, where all the 12

constructs available in C# are used, 2 = 12 in the above equation.

To answer RQ5, we must choose one or more constructs with high

contributions to the results, assign them higher weights (Equation 12), and re-run

AmaLgam with this configuration. We selected the two constructs with the highest

contribution, Methods and Classes (Section 4.3.2), and assigned weights of 1.5, 2.0,

and 3.0 to each one. These values were arbitrarily chosen to promote a significant

variation in the weights, so we could observe to which extent the technique benefits

from using higher or lower weights. The results obtained with this execution are

displayed in Table 14. The first row repeats AmaLgam results with the Complete

mode (Table 9), while next rows (referenced by keys) represent the weighted

configurations being tested.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

74

Table 14 – Effect of applying higher weights to method and class names – MAP

Key Mode Min Median Max Avg.
Std.
dev.

p-value

– Complete 0.055 0.198 0.573 0.244 0.154 –
A Method weight = 1.5 0.055 0.200 0.574 0.246 0.160 0.0533
B Method weight = 2.0 0.056 0.195 0.574 0.246 0.160 0.1230
C Method weight = 3.0 0.050 0.171 0.574 0.238 0.162 0.6186
D Class weight = 1.5 0.055 0.207 0.582 0.248 0.155 0.0919
E Class weight = 2.0 0.055 0.207 0.582 0.265 0.168 0.2707
F Class weight = 3.0 0.055 0.194 0.582 0.256 0.171 0.6783

Table 14 shows that, in general, usage of higher weights was able to increase

AmaLgam’s effectiveness, measured in terms of mean average precision (MAP).

Class constructs (rows D – F) led to higher MAPs than Method constructs

(rows A – C) with the same weight for all statistics (minimum, median, maximum

and average MAP). As for the weight values selected, best average MAPs were

obtained when the emphasized construct had its weight doubled (rows B and E,

weight = 2.0).

We used Wilcoxon Signed-Rank tests to assess statistical significance.

Unfortunately, none of the results was statistically significant at 95% confidence

level, although configurations with weights = 1.5 (rows A and D) came close

(94.7% for Method and 90.8% for Class). The confidence levels decreased

drastically as the weights increased. For instance, result for the configuration with

the highest MAP, i.e., Class weight = 2.0 (row E), had a confidence level of 73%

(p-value = 0.2707). As for Class weight = 3.0 (row F), not only the MAP dropped,

but also the confidence level (32%, p-value = 0.6783). The same was observed for

Method weight = 3.0 (row C), which means 3.0 is a weight value beyond the

threshold both for effectiveness and for significance. Complete statistical analysis

is available in the online appendix [46].

The constructs Methods and Classes presented similar levels of influence to

bug localization results, as measured by their correlation to the main component

revealed by PCA analysis (Figure 5). Thus, we also tested AmaLgam

simultaneously changing the weights of these two constructs. We fixed Class

weight with a value of 2.0, as it was the best result obtained when constructs had

their weights changed individually (Table 14, row E). Then, we applied weights

of 1.5 and 2.0 to Method constructs. We did not set Method weight = 3.0, as this

weight value led to smaller MAPs for both constructs evaluated individually

(Table 14, rows C and F). Results are presented in Table 15.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

75

Table 15 – Effect of combining higher weights on method and class names – MAP

Key Mode Min Median Max Avg.
Std.
dev.

p-value

– Complete 0.055 0.198 0.573 0.244 0.154 –
E Class weight = 2.0 0.055 0.207 0.582 0.265 0.168 0.2707

G
Class weight = 2.0
Method weight = 1.5

0.055 0.198 0.571 0.266 0.168 0.0682

H
Class weight = 2.0
Method weight = 2.0

0.056 0.195 0.571 0.253 0.156 0.0412

In Table 15, previous results (in italics) are repeated for the sake of

comparison. The first row contains results from the Complete mode with equal

weights for all constructs (Table 9). The second row repeats the result obtained with

a weight of 2.0 attributed to Class constructs (Table 14, row E). It is possible to see

that average MAP increased from 0.244 (Complete mode) to 0.266 when Method

weight is set to 1.5 (row G), and to 0.253 when Method weight is 2.0 (row H).

Combining Method weight = 1.5 and Class weight = 2.0 (row G) even increased

average MAP compared to using only Class weight = 2.0 (row E), although by a

negligible amount (only 0.4% higher, from 0.265 to 0.266).

As with the first part of this evaluation, we used Wilcoxon Signed-Rank tests

to determine statistical significance. Results for combined weights were closer to

the selected 95% confidence threshold: 93% for row G and 96% for row H (p-

values of 0.0682 and 0.0412, respectively). Thus, it is possible to state that setting

Class and Method weights to 2.0 (row H) significantly increased bug localization

effectiveness, compared with Complete mode with equal weights for all constructs.

4.5
Conclusion

In this chapter, we investigated the influence of different program constructs

on the effectiveness of structured IR-based bug localization. Initially, we applied

principal component analysis (PCA) on results from AmaLgam in the Complete

mode. This analysis intended to reveal which constructs from the C# language

exerted more or less influence on bug localization results.

PCA data suggested that all constructs exerted a significant level of influence

on the results (Section 4.3.1). Thus, it was not possible to identify irrelevant

constructs just by inspecting PCA data. The analysis also revealed that Methods and

Classes were the constructs with more influence on the results (Section 4.3.2).

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

76

In spite of PCA data not having revealed constructs that could be considered

irrelevant, some constructs emerged as negatively correlated with bug localization

results. The most striking example was Interfaces (Figure 5). This negative

correlation caused us to investigate what would be the effect of suppressing

Interfaces from bug localization (Section 4.4.1). Compared to Complete mode,

results were practically unchanged (Table 13). Thus, we conclude that suppression

of low-contributing constructs does not increase bug localization effectiveness.

Another possible way of increasing effectiveness of bug localization is by

emphasizing constructs that are more influential, i.e., Methods and Classes

(Section 4.3.2). We investigated that possibility by running AmaLgam with

alternative configurations, where different weights were assigned to these two

constructs, one at a time (Section 4.4.2). Practically all of these configurations

caused the average MAP to increase (Table 14), although none of these

improvements reached our statistical significance threshold. Nonetheless, we also

tested AmaLgam assigning higher weights to both Methods and Classes,

simultaneously. In this case, a statistically significant improvement was attained

when Methods and Classes were assigned a weight of 2.0 (Table 15). Compared to

Complete mode, MAP increased from 0.244 to 0.253 (3.7%).

It was previously demonstrated that bug localization based on structured

information retrieval benefits from the usage of more program constructs (RQ2,

Section 3.6.2). This finding is reinforced by the thorough analysis of the

contribution of program constructs performed in this chapter. The answer to RQ3

suggested that all constructs significantly influence bug localization results. RQ4

confirmed this suspicion, by showing there was no significant effectiveness

increase when the technique ignored the construct with the smallest contribution.

The usage of weights in the calculation of structural similarity increased bug

localization effectiveness. The weight values used in this experiment (1.5, 2.0, and

3.0) were selected empirically. Thus, a possible improvement to this evaluation

involves determining optimal weights for each construct. Likewise, we only

evaluated the assignment of higher weights to the two most influential constructs,

i.e., Methods and Classes. However, the effect of weighing more than two

constructs is still unknown, and could be the subject of future studies. Nonetheless,

weighing constructs proved to be a promising way of increasing the effectiveness

of bug localization techniques based on structured information retrieval.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

5
Conclusion

Determining which parts of the source code need to be modified to remove a

bug can be a difficult task. Automated bug localization techniques aim to help

developers in this task by providing a list of suspicious files potentially related to

the bug. Such techniques can be dynamic or static. Dynamic techniques depend on

program execution. Therefore, numerous test cases must be available

(Section 2.1.2). Conversely, static bug localization techniques require only source

files and a bug report to be applied. Thus, static techniques can be applied to a wider

range of scenarios, such as legacy systems where comprehensive test suites are rare

or not available (Section 2.1.3).

In recent years, structured information retrieval has been successfully

employed by static bug localization techniques, such as BLUiR [4], BLUiR+ [4],

and AmaLgam [5]. Some of these techniques incorporate additional data into the

localization process, such as bug history (BLUiR+ [4] and AmaLgam [5]) and

change history (AmaLgam [5]). Nonetheless, structured information retrieval was

still the main responsible for the improvement brought by these techniques

(Section 2.3.4).

In spite of the improvements, these techniques are still not effective enough

to be widely used in practice. To make matters worse, problems in the dataset

preparation (Section 3.4) led these studies [4] [5] to achieve an artificial

effectiveness (Section 3.6.1). The lack of realism in empirical studies of the field is

likely to become a bottleneck for their adoption. Furthermore, there was a lack of a

thorough evaluation of how structured information retrieval could be further

explored to increase bug localization effectiveness. These shortcomings motivated

us to perform “a realistic, in-depth effectiveness evaluation of state-of-the-art bug

localization techniques”, as stated in our goal (Section 1.3). Our main findings are

summarized in the next section.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

78

5.1
Findings

State-of-the-art bug localization techniques are commonly tested in Java

software systems only [3] [4] [5]. Thus, in order to contribute to the body of

knowledge on bug localization, we decided to conduct our studies in a previously

untested OO language. We have selected C#, as it is similar, however significantly

different from Java (Section 3.1). In particular, the set of constructs available in

both languages is different (Table 3), which enhances the relevance of selecting a

different language to evaluate structured IR-based bug localization techniques.

The lack of previous evaluations using C# software systems obliged us to

establish a baseline for further comparisons. Thus, we formulated RQ1:

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective

to locate bugs in C# projects?

To answer this question, we applied the three techniques on the 20 selected

C# projects (Section 3.3). Effectiveness, measured in terms of mean average

precision (MAP), was close to the values reported in Java studies, indicating the

techniques could be successfully applied to C# projects (Section 3.6.1.1). There was

a significant MAP variation across the projects in our sample, which is commonly

omitted in previous empirical studies. In certain cases, MAP was even higher than

0.5, while MAP was close to 0.1 in others. This high variation shows that structured

IR has already potential to be applied in certain industry C# projects, where: (i) bug

reports are used with proper discipline, and (ii) the text produced by bug report

authors share some vocabulary with the program itself.

However, a comparison of results obtained in different sets of projects would

not be appropriate. Moreover, being aware of the experimental shortcomings of

previous studies (Section 1.2.1), we needed to establish a reliable baseline against

which subsequent results would be compared. Then, we ran the same techniques on

a dataset that implemented the preparation steps necessary to mitigate the

mentioned shortcomings (Section 3.4). Results indicated that effectiveness with the

dataset preparation steps was, on average, 37% smaller than the effectiveness

without those steps (Table 7).

In the original studies, AmaLgam was the most effective from the three

techniques [5]. The same happened in our study, both without (Table 5) and with

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

79

(Table 7) dataset preparation steps implemented. Thus, we restricted subsequent

evaluations to AmaLgam only.

Some of the experimental shortcomings handled in this evaluation had been

pointed out by other studies [14] [17]. Our evaluation reinforces findings from these

studies, by providing evidence of the effect of those biases on a different

programming language, which was not addressed in previous studies. Furthermore,

it served as a realistic parameter against which it was possible to compare

subsequent results, described in the next subsections.

5.1.1
Usage of constructs

The set of constructs explicitly considered by BLUiR [4] comprises class

names, method names, variable names, and comments (Section 2.3.2). Considering

that some Java constructs were left out by BLUiR, as well as the fact that C# has a

different set of constructs, we formulated RQ2:

RQ2: Does the addition of more program constructs increase the

effectiveness of bug localization on C# projects?

We devised two construct mapping modes in addition to the default mapping

used by the Java studies (Table 4). Results showed that Complete mode, where

source files are split in one part for each available C# construct, was the most

effective mode, increasing MAP in 18%, from 0.206 to 0.244. This result suggests

that structured IR techniques should leverage the usage of program constructs to

the maximum possible extent, explicitly including all the available constructs into

their process.

5.1.2
Influence of constructs

We became aware that the inclusion of all available constructs increased bug

localization effectiveness (Section 3.6.2). However, it was not clear to which extent

each construct contributed to the effectiveness increase. To investigate this matter,

we formulated RQ3:

RQ3: Which program constructs contribute more to the effectiveness

of bug localization on C# projects?

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

80

We answered this question using principal component analysis (PCA). The

analysis focused on the similarity scores attributed to effectively localized buggy

files. These scores were tabulated and transformed into a different dataset,

composed of dimensions (or principal components) sorted in decreasing order of

relevance to the original dataset. The correlation of each construct to the most

relevant dimensions (Figure 5) determines the degree of influence of the constructs.

Thus, it was possible to verify that Methods and Classes were the most influential

constructs regarding bug localization results.

PCA also revealed some constructs negatively correlated with the principal

components. In particular, Interfaces showed a strong negative correlation in the

second dimension of the data (Figure 5). This negative correlation led us to

formulate RQ4, questioning whether there would be any construct disturbing bug

localization.

RQ4: Does the effectiveness of bug localization increase with the

suppression of constructs with the lowest contributions?

To address this question, AmaLgam was adapted to consider all the 12 C#

constructs (Table 3), except Interfaces. In fact, MAP increased without considering

interfaces (Table 13). However, the improvement was negligible, and not

statistically significant. Therefore, we conclude there is little gain in removing

constructs from bug localization techniques based in structured IR.

5.1.3
Weighted similarity calculation

The suppressing of constructs with little influence on bug localization results

did not significantly increase bug localization effectiveness. However, we still

needed to evaluate how the most relevant constructs could influence bug

localization. This was the subject of RQ5:

RQ5: Does the effectiveness of bug localization increase with the

emphasis on constructs with the highest contributions?

This question was answered by performing another adaptation to AmaLgam

and allowing it to run with different weights assigned to each program construct.

Similarity calculation splits source files into parts that contain only constructs from

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

81

a specific type. Then, the final similarity score of a file is the sum of the similarities

of its parts (Equation 8). In the weighted variation, the final similarity score is a

weighted average of the similarities of its parts (Equation 12).

We assigned various weight values to Method and Class constructs, both in

isolation (Table 14) and combined (Table 15). Most of the values tested increased

bug localization effectiveness. However, a statistically significant improvement

was achieved with weight values of 2.0 for both Classes and Methods. The weight

values were empirically determined, suggesting there might be optimal values that

lead to even better results. Nonetheless, this result shows that structured IR-based

techniques can be fine-tuned to increase effectiveness even further.

5.2
Contributions

Structured information retrieval allows bug localization techniques to exploit

language features – constructs – in order to increase their effectiveness. Java is the

programming language that more often appears in bug localization

studies [2] [3] [4] [5] [6] [7]. Our study contributes by performing an evaluation of

state-of-the-art bug localization techniques on a set of programs written in a

previously untested language, namely C#. This evaluation provides evidence of the

effectiveness of bug localization techniques on another important and widely used

language [18] [19]. Nonetheless, while the evidence we provide is language-

specific, the findings of our study may as well be applied to different programming

languages, including Java.

Next subsections discuss our contributions in further detail.

5.2.1
Alternatives to increase bug localization effective ness

We have evaluated structured information retrieval aspects that were

unexplored in previous bug localization studies. Particularly, we performed an in-

depth study on the influence of program constructs on bug localization

effectiveness. In summary, our findings indicate that bug localization techniques

should (i) consider the entire set of program constructs that can be extracted from

source files and (ii) attribute higher weights to constructs that are more relevant.

We provided evidence of the effectiveness of these measures on a set of 20 C#

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

82

projects. Nevertheless, these measures could be applied in future techniques

designed to work with different programming languages as well.

Studies on bug localization have been trending towards the adoption of hybrid

models, which aggregate multiple sources of information as a strategy to increase

bug localization effectiveness [3] [4] [5] [7] [32]. Literature indicates that the usage

of hybrid models is an assured way to evolve bug localization techniques. However,

structured IR-based techniques can still benefit from the improvements brought by

our study, regardless of how much additional information their models incorporate.

Therefore, it is important to exhaust the possibility of improvement associated

exclusively with structured information retrieval. Our study contributes to this goal,

by providing alternatives to increase the effectiveness of techniques based on

structured IR.

5.2.2
First bug localization study using C#

Most bug localization techniques have been tested on software projects

written in Java [2] [3] [4] [5] [6] [7] or C [6] [15]. We were unable to find studies

applying bug localization to other object-oriented languages. In particular, this is

the first bug localization study involving the C# language, to the best of our

knowledge.

Preparation steps (Section 3.4) were applied to the experimental dataset in

order to mitigate bias (Section 1.2.1), therefore ensuring the realistic evaluation

which was part of our goal (Section 1.3). In addition to these preparation steps,

developing the study in a language other than Java can also be considered a decision

that favors realism. While structured IR techniques are language-specific, the

structured IR approach itself is not. Therefore, implementing techniques that apply

the principles of a structured IR technique to different programming languages

helps to strengthen the confidence in their results.

5.2.3
Replication package

Since we could not find other similar studies applied to the C# language, we

had to develop a set of tools to support the experiments. These tools are described

in the next paragraphs.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

83

GitHub data extractor. It uses the GitHub public API to download issue and

commit data. It saves downloaded data in JavaScript Object Notation (JSON)

format. It also downloads the appropriate program version according to issue

creation dates (Section 3.4.1).

Preprocessor. It performs the text preprocessing steps (Section 2.2.1) on

downloaded issues and source code and generates some term frequency statistics

(Section 2.2.2). It saves the result in XML files, in order to avoid repeated

computation on each execution of the bug localization.

Bug localizer. It applies one of the bug localization techniques to a list of

preprocessed bug reports, generating lists of suspicious files. The technique to be

applied (BLUiR, BLUiR+, or AmaLgam) is determined by parameters a and b,

which determine weights of the scores generated by each component

(Section 2.3.3). Results – such as file names, rank, and suspiciousness scores – are

saved to CSV files (comma-separated values). The program also generates

evaluation metrics (Section 3.2) and save them to CSV files as well.

In addition to the aforementioned tools, resources used in this study –

downloaded issues, commits, preprocessed source code, raw results and statistical

analysis – are available online [46].

5.3
Future work

To conclude our study, we highlight possibilities for future work that might

develop some of our findings, thus advancing the bug localization field.

Weighted similarity calculation was shown to increase bug localization

effectiveness (Section 4.4.2). However, our evaluation selected weight values

empirically. The effectiveness could be further increased if an optimal set of

weights could be found. The calculation of the weights could be automated and

performed on a per project basis, which might lead to even better results.

In fact, project characteristics significantly influence bug localization

effectiveness. We have observed in our dataset a wide variation on effectiveness

across different projects. In some projects, the average MAP was above 0.5, while

in others it was below 0.1 [46], suggesting that, for particular projects, IR-based

bug localization is feasible. However, there is a need to perform further analysis of

project characteristics that affect bug localization effectiveness. A key success

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

84

factor for the success of IR-based bug localization is that both bug reports and

source files contain terms that relate to the domain of the application. Therefore,

practices followed by developers may have a significant influence on bug

localization. Projects with stricter policies regarding naming conventions in source

code and bug reporting might be those where IR-based bug localization is more

effective.

Therefore, to be successfully applied, IR-based bug localization techniques

require the adoption of practices that encourage developers and users to share the

same vocabulary. These practices could be supported through recommendation

systems, which could analyze the code to identify relevant terms and suggest the

use of these terms to the author while the bug report is being written. Likewise,

IDEs could be improved to advise programmers to use a consistent set of terms. For

instance, if a software project uses the term customer to represent a domain concept,

when a developer creates a class named Client, the IDE could recommend the usage

of the first term. This consistency would improve term matching, which is vital to

the success of information retrieval models.

We focused our exploration of structured IR-based bug localization on source

files – specifically, on program constructs. Nevertheless, similar exploration could

be carried out with bug reports. Regarding bug report contents, the same kind of

recommendation for ensuring terminological consistency that was suggested for

programmers could also be directed to users writing bug reports. As for bug report

structure, we followed the approach defined in [3] [4] [5] and considered only bug

report summary and description. However, additional information could be

considered. For example, many platforms, such as GitHub, allow developers to

carry out a discussion about the bug, saving the exchanged messages within the bug

report. These discussions could become a third part in which bug reports are split

(Section 2.3.2). As these discussions can become lengthy, bug report

summarization could be applied to restrict discussion contents to more meaningful

terms.

Regarding C#, future work includes the creation of a standard bug dataset,

similar to iBUGS [36] or moreBugs [44], containing bugs from C# projects. This

would allow studies with better potential for generalizability involving the C#

language. Although we have made downloaded issues available online [46], only

raw data is available. Ideally, a standard dataset would have all or most of its

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

85

constituent bug reports manually verified in order to avoid misclassification, i.e.,

regular issues wrongly classified as bugs. Other desirable features of a bug dataset

include online search and visualization functionalities and the possibility of

downloading parts of the dataset according to some criteria, e.g., bugs opened after

a specific date, bugs closed more than 30 days after being opened, bugs opened and

closed by the same person.

Another possible line of work involves conducting analytical studies to

improve bug localization knowledge on different languages and different types of

files. For instance, bugs are not always located in source files. Sometimes they can

be found in different kinds of files, such as configuration files. Developers could

benefit from having specific localization techniques for these kinds of bugs.

Finally, it is also important to assess the usefulness of bug localization when

actually applied by developers. This is a fundamental step to promote the adoption

of bug localization techniques. Therefore, these techniques should be assessed via

controlled experiments involving developers, such as the one reported in [10].

Controlled experiments would reveal how developers use bug localization results

to locate buggy files. Nevertheless, the bug localization field still demands

effectiveness increase of existing techniques, as observed in this dissertation.

Otherwise, developers would not be confident enough in the techniques to use them,

even in controlled experiments. Thus, increasing the effectiveness of the techniques

is an important first step towards widespread adoption of automated bug

localization.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

86

References

1. ISO/IEC/IEEE. Systems and software engineering – Vocabulary.
ISO/IEC/IEEE 24765:2010. Switzerland: ISO/IEC/IEEE. 2010. p. 1-418.

2. LUKINS, S. K.; KRAFT, N. A.; ETZKORN, L. H. Bug Localization Using
Latent Dirichlet Allocation. Information and Software Technology, 52, n.
9, September 2010. 972-990. Available:
<http://dx.doi.org/10.1016/j.infsof.2010.04.002>.

3. ZHOU, J.; ZHANG, H.; LO, D. Where Should the Bugs Be Fixed? - More
Accurate Information Retrieval-based Bug Localization Based on Bug
Reports. 34th International Conference on Software Engineering (ICSE).
Zurich, Switzerland: IEEE. 2012. p. 14-24.

4. SAHA, R. K. et al. Impro ving bug localization using structured
information retrieval . 28th International Conference on Automated
Software Engineering (ASE). Palo Alto, California, USA: IEEE. 2013. p.
345-355.

5. WANG, S.; LO, D. Version History, Similar Report, and Structure:
Putting Them Together for Improved Bug Localization. 22nd International
Conference on Program Comprehension (ICPC). Hyderabad, India: ACM.
2014. p. 53-63.

6. RAHMAN, F. et al. BugCache for Inspections: Hit or Miss? 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE). Szeged, Hungary: ACM. 2011. p. 322-
331.

7. SISMAN, B.; KAK, A. C. Incorporating Version Histories in Information
Retrieval Based Bug Localization. 9th Working Conference on Mining
Software Repositories (MSR). Zurich, Switzerland: IEEE. 2012. p. 50-59.

8. LEWIS, C.; OU, R. Bug Prediction at Google, 14 December 2011. Available:
<http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.html>.
Accessed: 05 September 2015.

9. MURPHY-HILL, E. et al. The Design of Bug Fixes. 35th International
Conference on Software Engineering (ICSE). San Francisco, California,
USA: IEEE. 2013. p. 332-341.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

87

10. WANG, Q.; PARNIN, C.; ORSO, A. Evaluating the Usefulness of IR-
based Fault Localization Techniques. 2015 International Symposium on
Software Testing and Analysis (ISSTA). Baltimore, Maryland, USA: ACM.
2015. p. 1-11.

11. KOCHHAR, P. S. et al. An Empirical Study of Adoption of Software
Testing in Open Source Projects. 13th International Conference on Quality
Software (QSIC). Nanjing, China: IEEE. 2013. p. 103-112.

12. RAO, S.; KAK, A. Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Text Models.
8th Working Conference on Mining Software Repositories (MSR). Waikiki,
Honolulu, HI, USA: ACM. 2011. p. 43-52.

13. MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. Introduction to
Information Retrieval . New York, NY, USA: Cambridge University Press,
2008. ISBN 0521865719, 9780521865715. Available:
<http://dl.acm.org/citation.cfm?id=1394399>.

14. KOCHHAR, P. S.; TIAN, Y.; LO, D. Potential Biases in Bug Localization:
Do They Matter? 29th International Conference on Automated Software
Engineering (ASE). Vasteras, Sweden: ACM. 2014. p. 803-814.

15. SAHA, R. K. et al. On the Effectiveness of Information Retrieval Based
Bug Localization for C Programs. 30th International Conference on
Software Maintenance and Evolution (ICSME). Victoria, British Columbia,
Canada: IEEE. 2014. p. 161-170.

16. PARNIN, C.; ORSO, A. Are Automated Debugging Techniques Actually
Helping Programmers? 2011 International Symposium on Software Testing
and Analysis (ISSTA). Toronto, Ontario, Canada: ACM. 2011. p. 199-209.

17. RAO, S.; KAK, A. A Serious Issue with Some Current Publications on IR-
Based Approaches to Automatic Bug Localization. moreBugs, 2013.
Available: <https://engineering.purdue.edu/RVL/Database/moreBugs/#C5>.
Accessed: 14 May 2016.

18. TIOBE SOFTWARE BV. TIOBE Index for April 2016, April 2016.
Available: <http://www.tiobe.com/tiobe_index>. Accessed: 19 April 2016.

19. GITHUB, INC. Language Trends on GitHub. The GitHub Blog, 19 Aug.
2015. Available: <https://github.com/blog/2047-language-trends-on-github>.
Accessed: 19 April 2016.

20. GITHUB, INC. Mastering Issues. GitHub Guides, 2014. Available:
<https://guides.github.com/features/issues/>. Accessed: 03 July 2016.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

88

21. ATLASSIAN. What is an Issue. JIRA User's Guide, 2015. Available:
<https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html>.
Accessed: 03 July 2016.

22. LUKINS, S. K.; KRAFT, N. A.; ETZKORN, L. H. Source Code Retrieval
for Bug Localization Using Latent Dirichlet Allocation. 15th Working
Conference on Reverse Engineering (WCRE). Antwerp, Belgium: [s.n.].
2008. p. 155-164.

23. ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. V. On the Accuracy of
Spectrum-based Fault Localization. Testing: Academic and Industrial
Conference Practice And Research Techniques - MUTATION (TAICPART-
MUTATION). Windsor, UK: IEEE. 2007. p. 89-98.

24. JONES, J. A.; HARROLD, M. J.; STASKO, J. Visualization of Test
Information to Assist Fault Localization. 24th International Conference on
Software Engineering (ICSE). Orlando, Florida, USA: ACM. 2002. p. 467-
477.

25. ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. V. An Evaluation of
Similarity Coefficients for Software Fault Localization. 12th Pacific Rim
International Symposium on Dependable Computing (PRDC). Riverside, CA,
USA: IEEE. 2006. p. 39-46.

26. WONG, W. E. et al. A Survey on Software Fault Localization. IEEE
Transactions on Software Engineering, 42, n. 8, 1 August 2016. 707-740.
Available: <http://dx.doi.org/10.1109/TSE.2016.2521368>.

27. JIN, W.; ORSO, A. F3: Fault Localization for Field Failures. 2013
International Symposium on Software Testing and Analysis (ISSTA).
Lugano, Switzerland: ACM. 2013. p. 213-223.

28. WOTAWA, F.; STUMPTNER, M.; MAYER, W. Model-Based Debugging
or How to Diagnose Programs Automatically. In: HENDTLASS, T.; ALI, M.
Developments in Applied Artificial Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002. p. 746-757. ISBN 978-3-540-48035-8.
Available: <http://link.springer.com/chapter/10.1007/3-540-48035-8_72>.

29. ZELLER, A. Isolating Cause-effect Chains from Computer Programs.
10th Symposium on Foundations of Software Engineering (FSE). Charleston,
South Carolina, USA: ACM. 2002. p. 1-10.

30. ZELLER, A.; HILDEBRANDT, R. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 28, n. 2,
February 2002. 183-200.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

89

31. PAPADAKIS, M.; LE TRAON, Y. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability, 25, n. 5-7, 1
August 2015. 605-628. Available:
<http://onlinelibrary.wiley.com/doi/10.1002/stvr.1509/abstract>.

32. CHAPARRO, O. et al. Improving Text Retrieval Based Bug Localization
Using Code Authorship Information. 32nd International Conference on
Software Maintenance and Evolution (ICSME). Raleigh, North Carolina,
USA: In press.

33. DIT, B. et al. Can Better Identifier Splitti ng Techniques Help Feature
Location? 19th International Conference on Program Comprehension
(ICPC). Kingston, Ontario, Canada: IEEE. 2011. p. 11-20.

34. PORTER, M. F. An algorithm for suffix stripping. Program, 14, n. 3, 1980.
130-137. Available:
<http://www.emeraldinsight.com/doi/abs/10.1108/eb046814>.

35. PORTER, M. F. The Porter Stemming Algorithm, 2006. Available:
<https://tartarus.org/martin/PorterStemmer/>. Accessed: July 2016.

36. DALLMEIER, V.; ZIMMERMANN, T. iBUGS. Available:
<https://www.st.cs.uni-saarland.de/ibugs/>. Accessed: July 2016.

37. DALLMEIER, V.; ZIMMERMANN, T. Extraction of Bug Localization
Benchmarks from History. 22nd International Conference on Automated
Software Engineering (ASE). Atlanta, Georgia, USA: ACM. 2007. p. 433-
436.

38. HOVEMEYER, D.; PUGH, W. Finding Bugs is Easy. ACM SIGPLAN
Notices, December 2004. 92-106. Available:
<http://doi.acm.org/10.1145/1052883.1052895>.

39. NGUYEN, A. T. et al. A topic-based approach for narrowing the search
space of buggy files from a bug report. 26th International Conference on
Automated Software Engineering (ASE). Lawrence, Kansas, USA: IEEE.
2011. p. 263-272.

40. BACHMANN, A.; BERNSTEIN, A. Data Retrieval, Processing and
Linking for Software Process Data Analysis. University of Zurich. Zürich,
Switzerland, p. 11. December 2009. (IFI-2009.0003b).

41. POSHYVANYK, D. et al. Combining Probabilistic Ranking and Latent
Semantic Indexing for Feature Identification. 14th International
Conference on Program Comprehension (ICPC). Athens, Greece: IEEE.
2006. p. 137-148.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

90

42. POSHYVANYK, D. et al. Feature Location Using Probabilistic Ranking of
Methods Based on Execution Scenarios and Information Retrieval.
Transactions on Software Engineering, 33, n. 6, June 2007. 420-432.
Available: <http://dx.doi.org/10.1109/TSE.2007.1016>.

43. KIM, S. et al. Predicting Faults from Cached History. 29th International
Conference on Software Engineering (ICSE). Minneapolis, Minnesota, USA:
IEEE. 2007. p. 489-498.

44. RAO, S.; KAK, A. moreBugs: A New Dataset for Benchmarking
Algorithms for Information Retrieval from Software Repositories.
Purdue University. West Lafayette, IN. 2013.

45. MICROSOFT..NET Compiler Platform ("Roslyn"). GitHub , 2014.
Available: <https://github.com/dotnet/roslyn>. Accessed: 14 May 2016.

46. GARNIER, M. Bug localization in C#, 2016. Available:
<http://www.inf.puc-rio.br/~mgarnier/bug_localization/>.

47. KARUS, S.; GALL, H. A Study of Language Usage Evolution in Open
Source Software. 8th Working Conference on Mining Software Repositories
(MSR). Waikiki, Honolulu, HI, USA: ACM. 2011. p. 13-22.

48. JOLLIFFE, I. T. Principal Component Analysis. Secaucus, NJ, USA:
Springer, 2002. 518 p. ISBN 978-0-387-22440-4. Available:
<http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10047693>.

49. R CORE TEAM. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Vienna, Austria. 2015.

50. KORKMAZ, S.; GOKSULUK, D.; ZARARSIZ, G. MVN: An R Package for
Assessing Multivariate Normality. The R Journal, 6, n. 2, 2014. 151-162.
Available: <http://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-
zararsiz.pdf>.

51. LÊ, S.; JOSSE, J.; HUSSON, F. FactoMineR: An R Package for Multivariate
Analysis. Journal of Statistical Software, 25, n. 1, 2008. 1-18.

52. WEI, T.; SIMKO, V. corrplot: Visualization of a Correlation Matrix .
[S.l.]. 2016. R package version 0.77.

53. KASSAMBARA, A.; MUNDT, F. factoextra: Extract and Visualize the
Results of Multivariate Data Analyses. [S.l.]. 2016. R package version
1.0.3.

54. FRIENDLY, M. Corrgrams: Exploratory displays for correlation matrices.
The American Statistician, 56, n. 4, 2002. 316-324. Available:
<http://dx.doi.org/10.1198/000313002533>.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

91

55. MICROSOFT CORPORATION. C# Language Specification 5.0. Microsoft
Download Center, 2012. Available:
<https://www.microsoft.com/download/details.aspx?id=7029>. Accessed: 06
July 2016.

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA

