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Abstract 

Mota, Marcelo Garnier; Garcia, Alessandro Fabrício (Advisor). Exploring 
structured information retrieval for bug localizati on in C# software 
projects. Rio de Janeiro, 2016. 91p. MSc. Dissertation – Departamento de 
Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

Software projects can grow very rapidly, reaching hundreds or thousands of 

files in a relatively short time span. Therefore, manually finding the source code 

parts that should be changed in order to fix a bug is a difficult task. Static bug 

localization techniques provide effective means of finding files related to a bug. 

Recently, structured information retrieval has been used to improve the 

effectiveness of static bug localization, being successfully applied by techniques 

such as BLUiR, BLUiR+, and AmaLgam. However, there are significant 

shortcomings on how these techniques were evaluated. BLUiR, BLUiR+, and 

AmaLgam were tested only with four projects, all of them structured with the same 

language, namely, Java. Moreover, the evaluations of these techniques (i) did not 

consider appropriate program versions, (ii) included bug reports that already 

mentioned the bug location, and (iii) did not exclude spurious files, such as test 

files. These shortcomings suggest the actual effectiveness of these techniques may 

be lower than reported in recent studies. Furthermore, there is limited knowledge 

on whether and how the effectiveness of these state-of-the-art techniques can be 

improved. In this dissertation, we evaluate the three aforementioned techniques on 

20 open-source C# software projects, providing a rigorous assessment of the 

effectiveness of these techniques on a previously untested object-oriented language. 

Moreover, we address the simplistic assumptions commonly present in bug 

localization studies, thereby providing evidence on how their findings may be 

biased. Finally, we study the contribution of different program construct types to 

bug localization. This is a key aspect of how structured information retrieval is 

applied in bug localization. Therefore, understanding how each construct type 
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influences bug localization may lead to effectiveness improvements in projects 

structured with a specific programming language, such as C#. 

Keywords 

Bugs; bug localization; information retrieval. 
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Resumo 

Mota, Marcelo Garnier; Garcia, Alessandro Fabrício. Explorando 
recuperação de informação estruturada para localização de defeitos em 
projetos de software C#. Rio de Janeiro, 2016. 91p. Dissertação de Mestrado 
– Departamento de Informática, Pontifícia Universidade Católica do Rio de 
Janeiro. 

Projetos de software podem crescer rapidamente, alcançando centenas ou 

milhares de arquivos num período relativamente curto. Portanto, torna-se difícil a 

tarefa de encontrar partes do código-fonte que devem ser modificadas para 

consertar um defeito. Técnicas de análise estática para localização de defeitos 

fornecem um meio eficaz de encontrar arquivos relacionados a um defeito. 

Recentemente, recuperação de informação estruturada vem sendo usada para 

aumentar a eficácia de localização estática de defeitos, sendo aplicada com sucesso 

por técnicas como BLUiR, BLUiR+ e AmaLgam. No entanto, existem limitações 

significativas na maneira como essas técnicas foram avaliadas. BLUiR, BLUiR+ e 

AmaLgam foram testadas em apenas quatro projetos, todos eles estruturados com 

a mesma linguagem, Java. Adicionalmente, as avaliações dessas técnicas (i) não 

consideraram versões apropriadas dos programas, (ii) incluíram relatórios de falhas 

que já mencionavam a localização do defeito, e (iii) não excluíram arquivos 

espúrios, como arquivos de teste. Essas limitações sugerem que a eficácia real 

dessas técnicas seja menor do que o informado em estudos recentes. Além do mais, 

há limitações no conhecimento sobre se e como a eficácia dessas técnicas do estado-

da-arte pode ser aumentada. Nesta dissertação, nós avaliamos as três técnicas 

supracitadas em 20 projetos C# de código aberto, fornecendo uma avaliação 

rigorosa da eficácia dessas técnicas numa linguagem orientada a objetos não testada 

anteriormente. Além disso, nós endereçamos os pressupostos simplistas 

comumente presentes em estudos de localização de defeitos, fornecendo assim 

evidências sobre como seus achados podem ser enviesados. Finalmente, nós 

estudamos a contribuição de diferentes tipos de construtos de programa para a 
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localização de defeitos. Este é um aspecto-chave na forma como recuperação de 

informação estruturada é aplicada em localização de defeitos. Portanto, entender 

como cada tipo de construto influencia a localização de defeitos pode levar a 

melhorias na eficácia em projetos estruturados com linguagens de programação 

específicas, como C#. 

Palavras-chave 

Defeitos; localização de defeitos; recuperação de informação. 
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1  
Introduction 

Software failures represent a serious concern for developers and maintainers. 

A failure occurs when a system does not perform a required function according to 

its specification [1]. It is widely known that the later a failure occurs, the higher the 

cost to fix it. Software failures are caused by defects in the source code. A defect is 

a problem in the source code that, if not corrected, could cause an application to 

either fail or produce incorrect results [1]. Therefore, effectively identifying and 

removing defects associated with failures is a routine activity to software 

maintainers. 

Despite their different meanings, both defects and failures are popularly 

referred to as bugs [2] [3] [4] [5]. When bugs occur in a software system, they are 

usually reported to a developer or development team. Each report, colloquially 

called a bug report, contains information about the circumstances in which the bug 

occurred (Section 2.1.1). This information is used by developers to investigate and 

fix the bug. In order to fix a bug, one must first know where in the source code it is 

located. The activity of locating the portion of the source code that must be modified 

to fix a bug using information from a bug report is called bug localization [2]. 

Manual bug localization is a painstaking activity [3]. Therefore, effective 

methods for automatically locating bugs from bug reports are highly desirable [4], 

as they would reduce software maintenance effort [3]. Automated techniques for 

static bug localization have been a popular research topic [3] [4] [5] [6] [7] and 

attracted the attention of many well-known software companies, such as Google [8] 

and Microsoft [9]. Static bug localization techniques have the benefit of being 

applicable at any stage of the software development process [2]. Differently from 

dynamic techniques, they do not require large test suites, which are often not 

available [10] [11]. Thus, static bug localization techniques are more flexible, as 

they can be applied to a wider range of scenarios, such as legacy software systems 

where automated test suites were not originally implemented. 
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To foster the process of effectively identifying source code that is relevant to 

a particular bug report, a number of techniques have been developed using 

information retrieval models, such as Latent Dirichlet Allocation (LDA) [2], 

Vector Space Model (VSM) [3], Latent Semantic Analysis (LSA) [12], 

Clustering [12], and various combinations. Information retrieval (IR) consists of 

finding documents within a collection that match a search query [13]. The IR 

approach to bug localization generally consists of treating source files as documents 

and bug reports as queries. Source files that share more terms with the bug report 

are ranked as having a higher probability of containing the bug. The effectiveness 

of bug localization techniques is commonly measured by their ability to rank 

potentially buggy files at the first positions of a list (Section 2.2.3). 

Recently, structured information retrieval has also been used for bug 

localization [4] [5]. Traditional information retrieval handles documents as a “bag 

of words” [13], meaning that every term in the document is indistinctly computed, 

regardless of its position, order, or function in the document. Conversely, 

structured IR splits a document according to relevant fields or zones [13]. Applying 

this principle to the bug localization domain, structured IR-based techniques map a 

set of program constructs, such as class and variable names [4] [5], to document 

fields. This principle allows the techniques to place different emphasis on different 

program constructs in order to calculate textual similarity. 

Bug localization techniques based on structured information retrieval, such 

as BLUiR [4] and AmaLgam [5], have shown improvements over other traditional 

IR approaches (Section 2.3). BLUiR [4] and AmaLgam [5] are currently the best-

performing IR-based bug localization techniques available (Section 2.3). In spite of 

the promising results, these studies contain significant shortcomings. BLUiR and 

AmaLgam have been evaluated in only four projects, implemented in a single 

programming language (namely, Java), and under non-realistic experimental setups 

(Section 3.4). For instance, these studies [4] [5] include in their effectiveness 

evaluation bug reports that already mention the location of the bug in their 

description. Developers are unlikely to benefit from the assistance of automated 

techniques to localize this kind of bug. Moreover, such bug reports have been 

shown to influence bug localization results [14]. Therefore, they should be removed 

from effectiveness evaluations of bug localization techniques (Section 3.4.2). 
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Additionally, these techniques need to be evaluated on a higher number of projects, 

structured in languages other than Java. 

1.1  
Problem statement 

Although IR-based bug localization has been an active research topic in 

recent years (e.g., [2] [3] [4] [5] [6] [7] [10] [12] [14] [15]), techniques based on 

this approach are still not widely used in practice [10]. A significant part of the 

effort spent to contribute to the state-of-the-art in bug localization is concentrated 

on the development of new, more effective techniques (e.g., [2] [3] [4] [5] [6] [7] 

[12] [15]), although only a few of the mentioned studies are dedicated to structured 

IR [4] [5] [15]. Another thread discusses practical aspects of incorporating such 

techniques into developers’ workflows [10] [16]. In this dissertation, we focus on 

the first thread, as there are significant shortcomings on how some of these 

techniques [4] [5] were evaluated. 

First, the experimental setups of these studies [4] [5] adopt non-realistic 

assumptions, which add bias to the evaluation of the techniques (Section 1.2.1). 

Thus, the techniques may be less effective than reported (Section 1.2.2). 

Furthermore, there is still limited understanding on how structured information 

retrieval can be used to further increase the techniques’ effectiveness 

(Section 1.2.3). Particularly, we explore the influence of program constructs – a key 

aspect of structured information retrieval applied to bug localization – on bug 

localization effectiveness. 

Next, we summarize the problem addressed in this dissertation in a single 

statement, followed by further discussion in Section 1.2. 

Bug localization techniques based on structured information retrieval 

have been evaluated under non-realistic experimental setups,  

which suggests they might be less effective than reported, and there is 

limited knowledge on how to use structured information retrieval to 

increase their effectiveness. 
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1.2  
Limitations of related work 

This section discusses shortcomings of recent studies on IR-based bug 

localization. First, we highlight important issues in the experimental setup of recent 

evaluations that may be skewing reported results. Next, we discuss to which extent 

current effectiveness of IR-based bug localization techniques allows them to be 

used in practice. Finally, we discuss how specific characteristics of structured IR 

could be applied to bug localization in order to improve bug localization 

effectiveness. 

1.2.1  
Biased evaluations 

The evaluation of a bug localization technique should aim to reproduce, to 

the maximum possible extent, the actual scenario where the techniques might be 

used in practice. This scenario involves the process followed by a development 

team to fix a reported bug. The team would retrieve the source code from the version 

of the program where the problem occurred and look for the bug, based on the 

information provided by the bug report. If this information includes program 

elements, such as a class or a method name, developers would probably start their 

investigation by opening the file containing the mentioned element. However, if 

such information is not present, developers might consider using an automated bug 

localization technique to generate a list of files potentially related to the bug. We 

will see, however, that current bug localization techniques fail to include these 

premises in their experimental setup, thus biasing their evaluations. 

Previous studies on IR-based bug localization provide little or no information 

about the version of the project that is used as input to the bug localization 

technique. In many studies, as Rao and Kak [17] point out, researchers have merely 

chosen a single version of the project and run the localization algorithm for all 

available bug reports on that same version. However, a rigorous evaluation of bug 

localization effectiveness should consider the appropriate project version, i.e., the 

version where the bug actually occurred, for every bug report under analysis [17]. 

Thus, the version where each bug occurred should be determined and corresponding 

source code obtained before performing bug localization. Without this step, there 
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is a high chance that the bug is not even present on the code being analyzed. Any 

result obtained in these cases would be random and, thus, useless. 

Another shortcoming of previous studies involves what Kochhar et al. [14] 

call localized bug reports, i.e., bug reports that already contain references to the 

files containing the bug on its own description. These bug reports should not be 

considered in the evaluation of bug localization techniques for the following 

reasons. First, they artificially increase the effectiveness of the techniques [14]. 

Localized bug reports accounted for 54% of the bug reports studied in [14], and 

49% in our own study (Section 3.4.2). Therefore, the incidence of localized bug 

reports cannot be overlooked, as it significantly influences bug localization 

results [14]. Second, it is unlikely that developers would even need assistance from 

an automated technique to localize such bugs. As Wang et al. point out, when a bug 

report mentions a program entity, developers use its name as a keyword for 

searching source files [10]. This provides developers with a good starting point for 

investigating the failure. Therefore, in order to generate relevant contributions, bug 

localization techniques should focus on bug reports with no identifiable 

information [10], i.e., non-localized bug reports [14]. 

Finally, test files should not be included in the bug localization scope, as they 

might inappropriately influence bug localization results. This happens because the 

oracle in bug localization studies [3] [4] [5] corresponds to the files modified to fix 

the bug. These files are obtained from the source control, by determining which 

commit was related to the resolution of the bug (Section 3.2). Such commits often 

include test files, which might have been modified as part of the bug resolution. 

However, test files rarely contain the code that triggered the bug (Section 3.4.3). 

Therefore, test files constitute false positives in the context of bug localization 

results. Thus, they should be removed from the search scope of bug localization 

techniques. 

In addition to all the shortcomings described above, there is the fact that the 

techniques [3] [4] [5] were evaluated only on four Java projects. To the best of our 

knowledge, structured IR has never been studied on software projects written on 

any other object-oriented (OO) language. In fact, the only other language we could 

find being used in similar studies was C [15], a procedural language. The lack of 

studies applying bug localization to different OO languages threatens the 

generalizability of the results, as the projects selected in [3] [4] [5] might be 
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particularly suitable for these bug localization techniques, whereas other projects 

might not. Thus, it is important to assess the effectiveness of bug localization 

techniques on a higher number of projects, structured in different programming 

languages and encompassing different domains (Section 3.3). Providing evidence 

of effectiveness in different scenarios will increase confidence in the reported 

results. 

1.2.2  
Limited effectiveness 

Bug localization techniques return their results as a list of files ranked by the 

probability of relationship with the bug (Section 2.2.1). The lists returned by bug 

localization techniques are commonly evaluated up to the tenth position [3] [4] [5]. 

This convention acts as an implicit effectiveness threshold. In other words, bug 

localization techniques should be able to return at least one buggy file among the 

first ten positions, as it would not be reasonable to expect the developer to examine 

more than ten files to localize a bug. 

However, in spite of continuous improvement fostered by recent studies 

(i.e., [2] [3] [4] [5] [6] [7] [12]), IR-based techniques are still not effective enough 

to be widely used in practice. Consider, for example, AmaLgam [5], one of the best 

performing bug localization techniques based on IR. According to [5], AmaLgam 

was able to return a buggy file at the top of the list for up to 62% of the bugs. 

Considering the 10 first positions of the list, AmaLgam was able to return a buggy 

file in the top-10 positions up to 90% of the time. This means that, 10% of the time, 

developers would have to inspect more than 10 files to find a buggy file. These are 

the best results from an evaluation performed on only four projects [5]. However, 

actual effectiveness may be even lower, due to experimental shortcomings 

presented in the previous subsection (and further discussed in Section 3.4). 

In order to increase effectiveness of IR-based bug localization, researchers 

have been incorporating additional sources of information to bug localization 

techniques, e.g., version history [5] [7], bug report history [3] [5], and source file 

structure [4] [5] [15]. Results from BLUiR [4] and AmaLgam [5] suggest that 

structured information retrieval applied to source file structure was the prominent 

factor for the effectiveness increase reported by these studies. Unfortunately, 

structured IR has not been explored enough within the bug localization domain. In 
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particular, it is unknown how specific program constructs contribute to structured 

IR-based techniques. As the possibility of handling program constructs differently 

is the key advantage provided by structured IR, knowledge about the influence of 

different program constructs could be used to increase bug localization 

effectiveness, as we will see in the next subsection. 

1.2.3  
Unknown contribution of constructs 

Structured information retrieval has emerged as a prominent factor in 

increasing bug localization effectiveness. The difference lies on how documents are 

handled. Traditional IR-based techniques deal with all the terms contained in 

documents without distinction. Conversely, bug localization techniques based on 

structured IR break documents up according to their underlying structure. Source 

files, for example, are split according to types of program constructs, e.g., classes 

and methods (Section 2.3.2). Thus, a single source file would be handled as several 

distinct documents, each containing exclusively terms corresponding to the 

respective construct type. Consequently, the importance of terms in a document is 

modeled not only by the number of occurrences, but also by the number of construct 

types in which they appear. Therefore, constructs are central features to the 

functioning of bug localization based on structured information retrieval. 

It has been preliminarily observed that considering source file structure 

improves bug localization effectiveness [4] [5]. However, few studies have 

investigated structured IR so far [4] [5] [15], leaving a number of questions 

regarding usage of program constructs remain unanswered. For instance, should 

every available construct type be considered? Constructs not explored in existing 

techniques may also be able to improve effectiveness. Is there any construct type 

whose contribution is negative? If so, effectiveness could be improved even further 

by ignoring these specific constructs. Are the contributions from every type of 

construct equivalent? If they are not, the relevance of most contributing ones could 

be highlighted by assigning higher weights to these constructs. Pondering the 

effectiveness improvement brought by the usage of structured IR, we consider that 

investigating such questions in detail have the potential to contribute to the state-

of-the-art in structured IR-based bug localization. 
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1.3  
Goals and research questions 

The shortcomings regarding the evaluation of structured IR-based bug 

localization techniques [4] [5] have been discussed in Section 1.2.1. Addressing 

these shortcomings is also an opportunity to evaluate them on different scenarios. 

An initial step in that direction is to understand the behavior of bug localization 

techniques applied to an object-oriented programming language that is slightly 

different from Java. Java has been the focus of previous studies of structured IR-

based techniques for bug localization (Section 2.3). Nonetheless, software 

engineers remain unaware to what extent they can rely on these techniques to 

perform bug localization activities in projects structured with other programming 

languages. 

Thus, as an alternative to Java, we have selected projects written in C# 

(pronounced as see sharp). C# is a general-purpose, object-oriented language that 

shares many traits with the Java language, but also have some distinct programming 

features. For example, some widely used C# constructs, like properties and 

structures (“structs”), are inexistent in Java. Moreover, C# is a popular 

language [18] that figures within the top 10 languages in number of GitHub 

repositories [19]. To the best of our knowledge, neither of these techniques have 

been previously evaluated on other object-oriented programming languages, such 

as C#. 

Considering the problem stated in the Section 1.1 and further discussed in 

Section 1.2, the goal of this dissertation can be stated as follows. 

Perform a realistic, in-depth effectiveness evaluation  

of state-of-the-art bug localization techniques  

on a previously untested programming language. 

The limitations discussed in Section 1.2.1 undermine the results obtained by 

state-of-the-art bug localization techniques based on structured information 

retrieval [4] [5]. Consequently, there is a need to address those shortcomings and 

perform a realistic evaluation of those techniques. Moreover, in spite of the 

potential brought by structured information retrieval, the limited effectiveness of 

current techniques (Section 1.2.2) encourages an in-depth evaluation of which 

structured IR aspects can be explored to increase bug localization effectiveness 
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further. These aspects are directly related with how bug localization uses 

programming language constructs (Section 1.2.3). 

The proposed goal unfolds in the following research questions: 

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective  

to locate bugs in C# projects? 

This research question aims to provide a first evaluation of state-of-the-art 

bug localization techniques on C# software projects (Section 3.6.1). Results for this 

research question cannot be compared with results from Java studies due to the 

distinct nature and quantity of selected projects (Section 3.3). Nevertheless, this 

evaluation will include preparation steps (Section 3.4) needed to mitigate biases 

that are commonly found in bug localization evaluations (Section 1.2.1), thus 

providing evidence on how these steps cannot be omitted from the experimental 

setup of bug localization studies. 

RQ2: Does the addition of more program constructs increase the 

effectiveness of bug localization on C# projects? 

To answer this research question, a first attempt of exploring structured IR to 

increase bug localization effectiveness is made. Initially, we adapt a bug 

localization technique to explicitly consider all C# constructs available 

(Section 3.5). Then, we run the adaptations on the selected projects, and compare 

the results with those obtained in the first research question (Section 3.6.2). 

RQ3: Which program constructs contribute more to the effectiveness 

of bug localization on C# projects? 

This question aims to quantify the contribution of different program 

constructs to bug localization effectiveness. A statistical procedure called principal 

component analysis (PCA) is used for this purpose (Section 4.3). This procedure 

extracts components from the data, sorted by relevance, and identifies the 

correlation of each construct to the most relevant components. The answer to this 

RQ will enable further experimentation with program constructs, formalized in the 

next two questions. 
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RQ4: Does the effectiveness of bug localization increase with the 

suppression of constructs with the lowest contributions? 

Data from RQ3 may reveal that some construct correlate negatively to the 

more relevant components, suggesting they may be contributing negatively to bug 

localization effectiveness. In this case, the technique will be applied again with 

these constructs suppressed, in order to verify if the suppression of these constructs 

causes the effectiveness of the technique to increase. 

RQ5: Does the effectiveness of bug localization increase with the 

emphasis on constructs with the highest contributions? 

RQ3 will also reveal which construct correlate positively to the more relevant 

components, i.e., which ones contribute more to bug localization effectiveness. 

Knowing which constructs fall in this category will allow us to modify the structural 

similarity scores (Section 2.3.2) by assigning higher weights to the similarity 

associated with these constructs. The goal of RQ5 is to verify if this modification 

is able to increase the effectiveness of bug localization. 

1.4  
Dissertation outline 

This dissertation is organized as follows. Chapter 2 contains background 

information, providing an overview about bug localization and information 

retrieval. Chapter 3 adapts the selected bug localization technique and compares the 

adaptation against the original techniques in terms of effectiveness. This chapter 

also discusses commonly neglected issues in the experimental setup of previous bug 

localization studies, detailing how we solved them in our experiments. Chapter 4 

builds on the findings from previous chapter to measure the contribution of different 

program constructs in order to improve bug localization effectiveness further. 

Chapter 5 concludes. 
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Background 

Bug localization is a complex process, which can be carried out through 

distinct approaches. Each approach to bug localization encompasses its own set of 

concepts, borrowed from different areas of knowledge. For instance, information 

retrieval is an area closely related to static bug localization, as information retrieval 

is a key technology applied by techniques that follow a static analysis approach [3] 

[4] [5] [15]. Thus, it becomes necessary to provide some background information 

for a complete understanding of the process and the technologies employed by bug 

localization techniques. 

In this chapter, we describe the main concepts involved in bug localization. 

We summarize the main characteristics of dynamic and static approaches to bug 

localization, and we discuss the motivation for focusing on static analysis 

techniques. Afterwards, we provide an overview of information retrieval. We 

describe the underlying information retrieval model used by most static bug 

localization techniques, the vector space model (VSM). Then, we demonstrate how 

VSM works, providing an example using a term weighting scheme based on term 

frequency statistics, popularly known as TF-IDF (term frequency – inverse 

document frequency). Finally, we present the bug localization techniques that will 

be used throughout this dissertation. These techniques represent the state-of-the-art 

on bug localization based on structured information retrieval. 

2.1  
Bug localization 

2.1.1  
Overview 

In spite of all the effort invested by developers and testers to produce bug-

free software, in practice every program contains bugs. Maintainers must be warned 

about the occurrence of bugs so they can fix them. Communication between project 

members is usually supported by issue tracking systems. Issue trackers may be 
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integrated in code hosting services, such as GitHub1 and BitBucket2, or stand-alone 

applications, such as Jira3. Issue trackers allow the creation of issues, which can 

represent distinct concepts from software development lifecycle, such as tasks, 

features, and bugs. The concept represented by an issue (e.g., task, feature, bug) can 

be identified by labels (or tags). Labels may also be used to classify issues 

according to other criteria, such as module or severity, for example. Some systems, 

such as Bugzilla4, are bug trackers. They are similar to issue trackers, however 

focusing only on tracking bugs. 

When a team uses an issue tracker, the occurrence of a bug is commonly 

reported by creating an issue and labeling it as “bug”. We will refer to issues that 

report bugs as bug reports, in order to differentiate these issues from those related 

to other concepts or events. 

Although the contents of bug reports may vary, depending on the tracking 

system being used, most of them contain a few common attributes [20] [21]: an 

identification number (id); a short summary (or title); a full description; a creation 

date; a status; a reporter, the user who created the report; and an assignee, the 

person currently working on the bug. 

Bug reports can be created by different stakeholders, such as developers, 

testers, end users, or help desk operators. Typically, the person who creates a bug 

report is not responsible for fixing it. The report serves to communicate information 

about the bug to maintainers, who rely on this report to perform the necessary 

activities for identifying and removing the cause of the bug. Before actually 

modifying source code in order to fix the bug, developers need to find the defective 

source code based on the information provided in the bug report. This activity is 

called bug localization. 

Perhaps one of the most common forms of bug localization is debugging with 

the aid of an integrated development environment (IDE). Developers may load the 

source code and run an application statement by statement until they reach the part 

of the code that triggers the bug. This approach is costly, especially for large 

projects, because the number of files and statements that need to be inspected until 

the bug is reproduced can be very high. Moreover, there might be no information 

                                                 
1 https://github.com/ 
2 https://bitbucket.org/ 
3 https://www.atlassian.com/software/jira 
4 https://www.bugzilla.org/ 
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available about the parts of a program that would possibly trigger the bug. Thus, 

debugging would still benefit from the use of complementary techniques that could 

narrow the search space where the developer has to find the bug. 

Automated bug localization techniques fulfill this role, by helping developers 

to locate defective source code. These techniques take as input information about a 

subject software system and produce as output a list of files potentially related to 

each bug [22]. Automatic bug localization techniques are mainly divided into 

dynamic and static techniques [4]. The next subsections briefly discuss the main 

characteristics of each type of technique. 

2.1.2  
Dynamic techniques 

Dynamic bug localization refers to techniques that rely on program execution 

to localize bugs. A common approach uses program spectra, i.e., collections of data 

that provide a specific view on the dynamic behavior of software [23]. Spectrum-

based techniques (e.g., [24] [25]) use program execution information to track 

program behavior [26]. When an execution fails, this information can be used to 

identify suspicious code that is responsible for the failure. By identifying parts of 

the program covered during an execution, it is possible to identify the components 

involved in a failure. Spectrum-based techniques rely on the contrast between the 

passing and failing executions to localize bugs effectively [26]. For this reason, 

numerous test cases must be available [27]. 

Other approaches to dynamic bug localization include model-based [28], 

program state-based [29] [30], and mutation-based [31] techniques. Note this list is 

by no means complete. Regardless of the approach, dynamic techniques share a set 

of common advantages and drawbacks. The main advantage is precision: dynamic 

techniques are often capable of locating bugs at statement level [4]. However, as 

aforementioned, they usually require large test suites. In fact, as several passing and 

failing test cases need to be provided, dynamic techniques are only viable in projects 

where a comprehensive test suite is previously available. Nonetheless, this is not 

the case in most software projects [10] [11]. Thus, the applicability of dynamic 

techniques is severely reduced. 
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2.1.3  
Static techniques 

Static bug localization techniques are largely based on information retrieval 

(e.g., [2] [3] [4] [5] [7] [12] [15]). Information retrieval-based techniques aim to 

locate a bug from its textual description [12]. Therefore, these techniques require 

only source code and bug reports in order to operate [4]. Nevertheless, static 

techniques are frequently combined with additional information in order to improve 

their effectiveness. Examples include change history [5] [7], bug report history [3] 

[5], source code structure [4] [5] [15], and file authorship information [32]. 

Static techniques usually do not reach the same effectiveness delivered by 

dynamic techniques. However, contrary to dynamic techniques, static bug 

localization techniques do not require program execution. Thus, they do not need a 

working subject system, which allows them to be applied at any stage of the 

software development process [2]. For the same reason, static techniques do not 

require test cases as well. Having less prerequisites grants flexibility to static 

techniques, which enables them to be applied on a wider range of scenarios, 

compared to their dynamic counterparts. This flexibility is particularly important in 

the case of legacy software systems, where automated tests might not have been 

originally implemented. 

We discuss static, information retrieval-based bug localization techniques 

individually in Section 2.3. Before that, in the next section, we present a brief 

overview of information retrieval. 

2.2  
Information retrieval 

2.2.1  
Overview 

Information retrieval (IR) consists of finding documents within a collection 

that match a search query [13]. When applying IR to bug localization, source code 

files become the collection of documents, and the bug report represents the query. 

Then, the task of finding buggy files is reduced to the IR problem of determining 

the relevance of a document to a query. Relevance is determined by preprocessing 
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the query and the set of documents and then calculating the textual similarity 

between each document and the query. 

Preprocessing consists of three steps: text normalization, stop word removal 

and stemming. Text normalization extracts a list of terms that represents the 

documents and the query by removing punctuation marks and performing case 

folding. In the bug localization domain, normalization steps usually include 

identifier splitting. Many identifiers are made by concatenating words, either 

separated_by_underscores or using mixed case, such as camelCase or PascalCase. 

For example, an identifier named MemoryMappedFile would be split as “memory”, 

“mapped” and “file”. Therefore, splitting identifiers improves recall [4], by adding 

terms that represent conceptual information encoded in compound identifiers [33]. 

After normalization, common words, which usually add little value to a 

retrieval operation, are removed from the list of terms. These words (e.g., “the”, 

“to”, “get”) are called stop words [13]. The final preprocessing step is to reduce 

inflectional forms to a common base form in order to improve term matching by 

representing similar words with the same term. This can be accomplished via 

stemming or lemmatization. Stemming usually refers to a heuristic process that 

strips off derivational suffixes from words [13]. Lemmatization, on the other hand, uses 

a vocabulary and performs morphological analysis of words, aiming to return the base or 

dictionary form of a word (i.e., its lemma) [13]. Although lemmatization is more accurate 

than stemming, the latter is usually the preferred alternative for bug localization 

applications [2] [3] [4]  [5] due to its simplicity. An ubiquitous stemming algorithm is 

the Porter Stemmer [34], used in [2] [3] [5] and available online [35]. 

After preprocessing, the similarity between documents and the query must be 

calculated. The most common approach is based on the vector space model 

(VSM) [3] [4]  [5] [15]. Next subsection explains how documents and queries are 

represented in VSM, in order to allow similarity calculation. 

2.2.2  
Vector Space Model 

In the vector space model, each document is expressed as a vector of term 

weights. These weights are typically the product of term frequency and inverse 

document frequency (TF-IDF) of each term. Therefore, if a collection of documents 

contains terms ���, … , ���, a document from this collection is represented as: 

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA



30 

�	 = ������, ��������, … , �����, ��������� 

Equation 1 – Vector representation of a document in VSM 

����� = log �
���

 

Equation 2 – Inverse document frequency 

In Equation 1, ������ is the number of occurrences of �� in � and ������ is 

given by Equation 2, where � is the total number of documents in the collection 

and ��� is the document frequency, i.e., the number of documents that contain 

term �. Inverse document frequency serves to increase the weight of rare terms, i.e., 

terms that occur in few documents from the collection. If a term occurs in most of 

the documents, it has little discriminating power in determining relevance of a 

document [13]. Thus, terms that occur many times in a small number of documents 

are those that are assigned higher weights. 

Given two documents, their similarity can be measured by computing the 

cosine similarity of their vector representations [13]: 

�����, ��� = ��	���� ∙ ��	����
���	��������	����� 

Equation 3 – Cosine similarity 

In Equation 3, the numerator represents the dot product (or inner product) of 

vectors ��	���� and ��	����, while the denominator is the product of their lengths [13]. 

To illustrate how cosine similarity works, we provide a simplified bug localization 

example. Consider a bug report that reads “Error placing new customer order”. 

Assume after applying all preprocessing steps (normalization, stop word removal, 

and stemming), the bug report content becomes “place custom order”. This will be 

the query used to localize similar source files, possibly related to this bug. Consider 

the subject system contains three files, which, after preprocessing, have the 

following content: “customer”, “customer detail”, and “place order controller”. 

Table 1 summarizes term and document frequencies for the terms in this example. 
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Table 1 – TF-IDF calculation 

Term 
Term frequency 

Document 
frequency 

Inverse 
document 
frequency Query File 1 File 2 File 3 

place 1 0 0 1 2 0.301 
customer 1 1 1 0 3 0.125 
order 1 0 0 1 2 0.301 
detail 0 0 1 0 1 0.602 
controller 0 0 0 1 1 0.602 

 

Table 1 displays term frequency statistics need to be computed in order to 

represent the bug report and source files from the example as vectors. The set 

containing every term from all the documents is called a corpus. The rows from 

Table 1 represent each term from the corpus. The columns under Term frequency 

count the number of occurrences of each term on each document (the query and the 

source files). The column Document frequency counts the number of documents 

where the term occurs. This value is applied to Equation 2 and displayed in the 

column Inverse document frequency. Then, applying Equation 1 to the bug report 

and the three files yields the vectors below: 

��	 = �0.301, 0.125,0.301,0.0,0.0� 

�����	 = �0.0, 0.125,0.0,0.0,0.0� 

�����	 = �0.0, 0.125,0.0,0.602,0.0� 

�$���	 = �0.301, 0.0,0.301,0.0,0.602� 

Thus, from Equation 3, the similarities between the bug report and files 1 

through 3 are, respectively, 0.282, 0.057, and 0.554. Therefore, file #3 would be the 

one more similar to the given bug report. 

2.2.3  
Effectiveness metrics 

Information retrieval results are usually presented as a list of documents 

sorted by relevance (similarity) to the query. It is often enough to present a small 

set of documents that a user can browse to locate the needed information. For this 

reason, the effectiveness of IR models is commonly measured by the ability of the 

models to retrieve relevant documents at the first positions of a list. A common 

effectiveness metric is called precision at k [13], also referred to as Top N [3] [4] 

[15] or Hit@N [5]. Given a set of queries, the precision at k is the percentage of the 
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queries where the model was able to retrieve a relevant document ranked on the 

first k positions. Common practice in bug localization studies is to consider up to 

the 10 first positions of the resulting list [3] [4]  [5] [15]. 

Another widely used metric for the effectiveness of IR models is the mean 

average precision (MAP). MAP provides a single-figure measure of the quality of 

information retrieval when a query may have multiple relevant documents [13]. The 

MAP for a set of queries is the arithmetic mean of the average precision (AP) of 

individual queries [13]. Let %��, … , �&' be the set of the m documents that are 

relevant to a query, and () the set of ranked results from the top result until one 

reaches document �). Then, the average precision of a query q is given by: 

*+�,� = 1
� - +./0�12�()�

&

)3�
 

Equation 4 – Average precision for an information retrieval query 

+./0�12�(� = #�./5/672� �/�� ./�./6/�� #�./�./6/� �/���⁄  

Equation 5 – Precision of a retrieval 

For example, consider a query where the three relevant documents are ranked 

in 1st, 4th, and 10th positions. Then, precision for each document would be 1 1⁄ =
1.0, 2 4⁄ = 0.5, and 3 10⁄ = 0.3, yielding an average precision of 0.6. Note that a 

perfect average precision score (1.0) would only be obtained if the m relevant 

documents were ranked on the m first positions. If only the k first positions are 

being evaluated, it may be possible that a query does not retrieve a relevant 

document at all. For example, if we are interested only in the 10 first results, but the 

first relevant file is ranked in the 11th position, the precision of the query is 

considered zero [13]. 

2.3  
Information retrieval-based bug localization techni ques 

Bug localization techniques built around information retrieval (IR) models 

have been available for a while. We present a brief summary of IR-based bug 

localization studies conducted in recent years. 

In 2011, Rao and Kak [12] compared five information retrieval models for 

bug localization: vector space model (VSM), latent semantic analysis model (LSA), 
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unigram model (UM), latent Dirichlet allocation model (LDA) and cluster-based 

document model (CBDM). Their evaluation used iBUGS [36], a benchmarked 

dataset created to evaluate automated bug detection and localization tools [37], 

mainly composed of AspectJ bugs [36]. The authors show that IR-based bug 

localization techniques were at least as effective as other static and dynamic bug 

localization techniques developed until then. They also conclude that sophisticated 

models like LDA, LSA and CBDM do not outperform simpler models like Unigram 

or VSM for IR-based bug localization on large software systems. 

Sisman and Kak [7] incorporated history information into retrieval models to 

improve bug localization accuracy. They proposed two base models to determine, 

from version history, the prior defect and modification probabilities associated with 

the files in a software project. These models were also extended to incorporate a 

time decay factor. This strategy reflects the expectation that if a file had been 

modified in the past but has not been modified recently the modification probability 

should decrease. Similarly, bug fixes that are more recent should have a stronger 

influence in estimation of prior defect probabilities. Each probability estimation 

model was incorporated into six baseline retrieval models [7]. All of the four 

probability models improved retrieval performance when compared with the 

baseline results of the retrieval models used in isolation. Evaluation showed that the 

defect history based model performed consistently better than the modification 

history based model. The inclusion of the time decay factor also improved results 

for both modification and defect history models. Sisman and Kak also compared 

their approach to other tools, namely Ample [37], FindBugs [38], and BugScout 

(Nguyen et al. [39]), obtaining improvements over all of them. 

Two key findings from these studies can be highlighted, as they influenced 

upcoming work on IR-based bug localization. It was shown that (i) VSM provides 

a simple and effective basis for IR-based bug localization techniques [12] and (ii) 

incorporating additional information to bug localization techniques could improve 

their effectiveness [7]. Following these studies, a sequence of IR-based bug 

localization techniques contributed to the state-of-the-art by incorporating distinct 

information into their models. Next subsections present these techniques. 
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2.3.1  
BugLocator 

Zhou et al. proposed a bug localization method called BugLocator [3], which 

ranks files based on the textual similarity between a bug report and the source code 

using a revised Vector Space Model (rVSM). The authors modify classic VSM in 

order to improve the ranking of large documents. The rationale is that larger source 

files tend to have higher probability of containing a bug [3]. Therefore, these files 

should be ranked higher in the context of bug localization [3]. 

BugLocator also considers information about similar bugs that have been 

fixed before. It assumes that, in order to fix similar bugs, developers tend to modify 

the same files. The relevance of a file f to a bug B, based on the involvement of f in 

previous similar bugs, denoted by the authors as SimiScore, is given by the 

following equation: 

;�;01./��� = - ���<, �� 2���⁄
=∈?@

 

Equation 6 – BugLocator’s score due to similarity to previous bugs 

In Equation 6, ;A is the set of previous bugs related to f, i.e., bugs where f was 

one of the files modified in order to fix them. The similarity between bug B and a 

bug s that is related to f is denoted as ���<, ��, and is calculated using Equation 3. 

Finally, 2��� is the number of files modified in order to fix s, determined using 

heuristics presented in [40]. The final score of a file is then combined with its own 

similarity to the bug being located (rVSMScore), as follows: 

B275;01./��� = �1 − D� × .�;F;01./��� + D × ;�;01./��� 
Equation 7 – BugLocator’s final score 

In Equation 7, α is a weighting factor, valued between 0 and 1. The best results 

reported by Zhou et al. were with α between 0.2 and 0.3. BugLocator was used to 

find more than 3,000 bugs in four open source projects: Eclipse, SWT (open source 

widget toolkit for Java), AspectJ, and ZXing (barcode image processing library for 

Android applications). BugLocator was compared with other bug localization 

techniques, namely VSM [12], LDA [22], LSI [41] [42] and SUM [12], and 

outperformed all of them. BugLocator was approximately 10% more effective than 

the second best performing technique, i.e., SUM [3]. 

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA



35 

BugLocator’s importance to IR-based bug localization is paramount. It 

advanced the state-of-the-art substantially by outperforming various previous 

approaches [12] [22] [41] [42]. Thus, it served as a baseline for evaluation of future 

techniques, namely BLUiR [4] and AmaLgam [5], described in the next 

subsections. 

2.3.2  
BLUiR and BLUiR+ 

Saha et al. [4] developed BLUiR (Bug Localization Using information 

Retrieval), an automatic bug localization technique based on the concept of 

structured information retrieval. In structured IR, fields from a bug report and 

program constructs, such as class or method names, are separately modeled as 

distinct documents. Consequently, bug reports and source files are not counted as 

single documents, as they do in BugLocator. Instead, BLUiR breaks source files 

into four parts: class names, method names, variable names and comments. Bug 

reports are split in two parts: summary and description. BLUiR then calculates the 

similarity between each file part and bug part separately, summing the eight 

individual similarities in the end. This implicitly assigns greater weight to terms 

that appear in multiple parts. The formula below represents the core of the BLUiR 

approach. 

����, �� = - - ����H, �H�
IJ∈IAJ∈A

 

Equation 8 – Structural similarity between a file and a bug report in BLUiR 

In Equation 8, f and b are a source file and a bug report, and fp and bp are its 

respective parts. The similarity between a bug report b and a source file f is given 

by the sum of the similarities of their parts, calculated according to Equation 3. 

Saha et al. performed their evaluation on the same projects used by 

BugLocator [3]. In addition to structured IR, Saha et al. investigated other variables 

in order to assemble their own information retrieval model. For example, they 

compared two different stemmers, Porter and Krovetz, without finding any 

significant difference in effectiveness. Another investigated variable regards 

identifier splitting. Recall from Section 2.2.1 that an identifier named 

MemoryMappedFile would be split as “memory”, “mapped” and “file”. BLUiR 
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modifies this step by also including the full identifier name ("memorymappedfile") 

to the list of terms, based on the observation that many bug reports mention code 

elements. This modification increased bug localization effectiveness by up to 30% 

in terms of MAP (0.20 to 0.26 for the Eclipse project [4]). 

However, the key insight of BLUiR is, indeed, structured information 

retrieval. Comparison of BLUiR results with and without modeling source code 

structure revealed improvements for all evaluated projects when source code 

structure is considered. Hit@1, i.e., bugs where a related file was ranked in the first 

position, increased almost 46% (37 to 54) in the SWT project. As for MAP, it 

increased up to 23% in the Eclipse project (0.26 to 0.32). Comparison to the 

previous best performing technique, BugLocator, was also favorable. In the AspectJ 

project, BLUiR was able to increase MAP by 41% (0.17 to 0.24). Note this 

improvement refers to BugLocator with no similar bug information (i.e., D = 0). 

A variant of BLUiR, called BLUiR+ [4], also leverages information from 

previous similar bug reports, if available, similarly to BugLocator. The authors 

compared both variations, BLUiR and BLUiR+, to BugLocator with bug similarity 

data. The comparison between BLUiR+ and BugLocator with bug similarity data 

showed a performance improvement in terms of MAP of up to 28% (0.45 to 0.58 

in project SWT). Another interesting result is that BLUiR achieved results similar 

or superior to those of BugLocator even when the latter did use bug similarity data 

and the former did not. This finding indicates that the structured IR approach used 

by BLUiR could compensate for the lack of previous bug report information. 

2.3.3  
AmaLgam 

Another example of bug localization technique that combines structured IR 

with other sources of information is AmaLgam [5]. AmaLgam is a technique for 

locating buggy files that combines the analysis of: (i) version history, (ii) bug report 

similarity, and (iii) structure of documents, i.e., bug reports and source code files. 

AmaLgam has three components that produce suspiciousness scores for each source 

file. The suspiciousness score represents how likely a source file is of containing 

the searched bug. Each component uses a different source of information. 

Individual scores are then combined by a fourth component (composer) into a single 

score for each source file. AmaLgam components are described next. 
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Version history component. Change history has been previously used to 

predict which files are likely to contain defects in the future [6] [43]. Based on these 

studies, Wang and Lo included change history into AmaLgam’s model through a 

version history component. This component consists of Google’s adaptation [8] to 

the algorithm from Rahman et al. [6], described by the following equation. 

�01./K��, L, (� = - 1
1 + /����M��)M�N� )⁄ ��

O∈P⋀A∈O
 

Equation 9 – Version history component 

In Equation 9, R refers to the set of relevant commits, i.e., commits associated 

to the resolution of a bug [5]. �O is the number of days elapsed between a commit c 

and the creation of the bug report. Parameter k was included by Wang and Lo to 

restrict the version history period (in days) to be considered. It was observed by the 

authors that considering only more recent commits provided a good trade-off 

between precision and performance. The optimal value found by the authors was 

L = 15 [5]. 

Report similarity and Structure components. AmaLgam’s report 

similarity component is based on the SimiScore formula (Equation 6) from 

BugLocator [3], also used by BLUiR+ [4]. The component considers the textual 

similarity between bug reports and the number of files modified to fix each bug 

report. The assumption is that, in order to fix similar bugs, developers tend to 

modify the same files. AmaLgam’s structure component uses the same approach as 

BLUiR (Section 2.3.2, [4]). It breaks bug reports and source files into smaller 

documents, composed of summary and description (bug reports), and class names, 

method names, variable names and comments (source files). 

Composer component. The composer component takes the scores produced 

by the three other components and combines them into a final suspiciousness score. 

It first combines the results from the report similarity (�01./() and structure 

(�01./;) components. This result is then combined with the score from version 

history component (�01./K), according to the following equations: 

�01./;(��� = �1 − 7� × �01./;��� + 7 × �01./(��� 

Equation 10 – Score combining structural and older bug report similarity scores 

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA



38 

�01./;(K��� = R�1 − �� × �01./;(��� + � × �01./K���, �01./;( > 0
0, 1�ℎ/.U�/  

Equation 11 – Final score attributed to a file by AmaLgam 

Parameters a and b in the previous equations determine the weight of the 

contribution of each component to the final suspiciousness score. Based in their 

own experiments and in results from [3] and [4], the authors adopted the default 

values of 0.2 for parameter a and 0.3 for parameter b [5]. These parameter values 

are equivalent to attributing weights of 30% for version history, 14% for bug report 

similarity and 56% for structured IR from source files. 

2.3.4  
Discussion of the techniques 

BugLocator [3], BLUiR [4], and AmaLgam [5] form a successful sequence 

of bug localization techniques where each work contributed with a new insight. 

BugLocator is based on textual similarity between an input bug report and (i) source 

files and (ii) older bug reports. BLUiR extends BugLocator by considering source 

file structure. AmaLgam aggregates version history, which has been previously 

used in isolation [7], but not combined with information retrieval techniques. 

BLUiR results highlighted the impact that structured IR brought upon bug 

localization effectiveness. This is illustrated by the fact that even the less effective 

variation of BLUiR was still able to outperform the best configuration of 

BugLocator (Section 2.3.1). AmaLgam demonstrated that combining analyses of 

additional sources of information could improve bug localization effectiveness even 

further. However, even in that case, the optimal parameters found experimentally 

for AmaLgam pointed to a stronger contribution of structured IR. 

All the mentioned techniques [3] [4] [5] were evaluated on the same set of 

four Java projects, namely, AspectJ, Eclipse, SWT, and ZXing. This strategy 

allowed the authors of the previous studies to draw a direct comparison of the 

techniques, highlighting the effectiveness improvement obtained with each 

technique. On the other hand, it is desirable to replicate or extend experiments using 

different datasets. Given the growing relevance of structured IR to bug localization 

techniques, it is of paramount importance to start testing this approach on a higher 

number of projects, encompassing different domains (Section 3.3). 
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In addition, a better understanding of structured IR applied to bug localization 

is needed. Object-oriented programming languages, such as C#, slightly differ from 

Java in terms of key programming constructs, such as properties. Moreover, BLUiR 

and AmaLgam did not consider certain programming constructs of Java, such as 

interfaces and packages, which are relevant to C# programs as well. It remains 

unaddressed what would be the contribution of such program constructs, ignored 

by such state-of-art models, on the localization of bugs in slightly different 

programming languages, such as C#. Consequently, software developers remain 

uninformed if the amount of constructs in a programming language influence the 

effectiveness of the technique. If so, we need to investigate whether structured IR-

based techniques are suitable for more expressive languages (i.e., with more 

constructs available). 

2.4  
Conclusion 

We can draw some conclusions from the aforementioned studies [3] [4] [5]. 

First, structured information retrieval, by leveraging the known structure of the 

documents involved in the retrieval process, has been more effective than 

traditional information retrieval. Second, hybrid approaches can improve the 

effectiveness of bug localization even further by combining different sources of 

information with different weights. However, even with hybrid approaches, the 

contribution of structured IR to the effectiveness of the approach is still prominent, 

as the comparison of BLUiR and AmaLgam to BugLocator demonstrates. 

The potential of structured IR motivates us to investigate this approach to bug 

localization further, in the context of other programming languages, such as C#. 

Therefore, we selected some of the best performing techniques based on structured 

IR, namely, BLUiR, BLUiR+, and AmaLgam, for our study. Our goal is to verify 

the effectiveness of these techniques on another object-oriented programming 

language, in order to assess if the change of language itself could cause a significant 

impact on the techniques’ effectiveness. We also plan to verify if the effectiveness 

of these techniques could be improved by using a different set of program constructs 

than that used in previous studies [4] [5]. Next chapter formalizes our research 

questions and describes the experiment conducted to answer them. 

 

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA



3  
Evaluation of bug localization techniques 

Bug fixing is a routine, however complex, activity. Determining which parts 

of the source code need to be modified to remove a bug can be a difficult task, as it 

requires the inspection of a large amount of files. Automated bug localization 

techniques aim to help developers in this task by providing a list of suspicious files 

potentially related to the bug, thus narrowing the search space where the developer 

must look for the bug. 

The usage of source file structure has been the main responsible for increasing 

the effectiveness of state-of-the-art, information retrieval-based bug localization 

techniques. These techniques, namely, BLUiR [4], BLUiR+ [4], and 

AmaLgam [5], were evaluated in four Java projects. However, the evaluations 

performed on these techniques contain shortcomings that might have significantly 

biased the reported effectiveness (Section 1.2.1). These shortcomings suggest their 

effectiveness may be lower than reported (Section 1.2.2). In spite of these problems, 

results from BLUiR [4], BLUiR+ [4], and AmaLgam [5] mention improvements of 

up to 41%, 29%, and 32%, respectively (Sections 2.3.2 and 2.3.3). The evolution 

brought by these techniques prompts us to explore the potential of structured 

information retrieval. 

In this chapter, we explore structured information retrieval aspects not 

investigated in previous studies. In particular, we investigate how the usage of 

different sets of program constructs influences the effectiveness of bug localization 

(Section 1.2.3). For such, we evaluate BLUiR [4] and AmaLgam [5] on 20 C# 

projects. C# is a popular language [18] [19], similar to Java, although with 

significant differences, especially regarding the available constructs. The similarity 

will allow us to draw a parallel with Java results. At the same time, the differences 

will allow us to explore constructs inexistent in Java, such as properties and 

structures. 

We also discuss dataset preparation steps conducted to mitigate shortcomings 

from previous studies (Section 3.4). These preparation steps include selection of 
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appropriate project versions, removal of bug reports that could influence the 

evaluation, and removal of test files from the search scope. Results show that, with 

the appropriate data preparation steps, effectiveness of bug localization is at least 

34% lower, compared to the effectiveness without the data preparation steps 

(Section 3.6.1). 

After evaluating the techniques as they were conceived, we adapt them in 

order to assess their sensitivity to the consideration of more constructs 

(Section 3.5). We define three construct mapping modes, which represent different 

forms of splitting source files, namely, Default, Complete, and Mixed modes. The 

Default mode corresponds to the same mapping used by BLUiR [4], BLUiR+ [4], 

and AmaLgam [5], where source files are splitted into four documents, consisting 

of class names, method names, variable names, and comments. In the Complete 

mode, all the available constructs are considered separately and every source file is 

splitted in 12 parts, each one corresponding to each available C# construct. Finally, 

the Mixed mode maps all C# constructs into four groups, similarly to the original 

mapping used by BLUiR and AmaLgam. The Mixed and the Complete construct 

mapping modes were able to increase bug localization effectiveness by 8% and 

18%, on average (Section 3.6.2). 

3.1  
Goal and research questions 

Recall our stated goal from Section 1.3: 

Perform a realistic, in-depth effectiveness evaluation  

of state-of-the-art bug localization techniques  

on a previously untested programming language. 

In order to perform a realistic evaluation of bug localization techniques based 

on structured IR, we need to evaluate them on different scenarios. An initial step in 

that direction is to understand the behavior of prominent bug localization techniques 

applied to an object-oriented programming language that is slightly different from 

Java. Java has been the focus of previous studies of structured IR-based techniques 

for bug localization (Section 2.3). Nonetheless, software engineers remain unaware 

to what extent they can rely on these techniques to perform bug localization 

activities in projects structured with other programming languages. We have 
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selected C# as it is a general-purpose, object-oriented language that shares many 

traits with the Java language, but also have some distinct programming features. 

For example, some widely used C# constructs, like properties and structures 

(“structs”), are inexistent in Java. Moreover, C# is a popular language [18] that 

figures within the top 10 languages in number of GitHub repositories [19]. To the 

best of our knowledge, neither of these techniques have been previously evaluated 

on other object-oriented programming languages, such as C# (Section 1.2.1). 

We unfold our general goal in the following research questions: 

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective  

to locate bugs in C# projects? 

The effectiveness of current structured IR techniques, i.e., BLUiR, BLUiR+, 

and AmaLgam, have been assessed and confirmed only for Java projects. However, 

developers using many other languages could also benefit from such techniques. In 

order to address this gap, we ran the selected techniques in their best performing 

configurations (Section 2.3) on a set of C# projects. The results enabled us to 

address RQ1 by assessing the effectiveness of these techniques on a previously 

untested programming language. 

RQ2: Does the addition of more program constructs increase the 

effectiveness of bug localization on C# projects? 

In order to understand the potential of structured IR techniques completely, 

we need to analyze their sensibility to particular constructs of a programming 

language. Therefore, we addressed RQ2 by focusing this analysis on program 

constructs that were also not considered in previous studies [4] [5], such as string 

literals, interfaces, and enumerations. In addition, there are language features from 

C# that do not exist in Java, such as structures and properties. The effects of their 

explicit consideration on state-of-the-art bug localization are not well understood. 

Thus, we investigated to what extent the effectiveness of a structured IR technique 

would benefit from the explicit consideration of these source code constructs. 
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3.2  
Evaluation metrics 

This section describes the metrics used to assess the effectiveness of the 

techniques on selected projects. We focused on the use of two sets of metrics 

typically used in recent studies [3] [4] [5] and presented in Section 2.2.3: 

Hit@N:  Percentage of bug reports that have at least one buggy file ranked by 

the technique in the top N positions. Typical values for N are 1, 5, and 10 [3] [4] 

[5]. 

Mean average precision (MAP): Mean of the average precision scores 

(Equation 4) across all queries. Considers the ranks of all the buggy files, not only 

the first one. 

To measure the effectiveness of a technique, or one of its variations, the 

average of the results for each project is taken. Finally, the effectiveness of a 

technique, or one of its variations, corresponds to the average of the results for each 

project. We use commit and bug report data obtained from the selected projects 

(Section 3.3) as the oracle against which we compare the results of our 

implementation. When a bug report explicitly contains a link to a commit, we 

consider the files modified in the commit as the ones that solved the bug. This is a 

common assumption in many bug localization studies [3] [4] [5]. When there is no 

explicit link between a bug report and a commit, we use conventional 

heuristics [40] to infer this relationship. These heuristics consist of looking for 

commits that contain messages such as “Fixes issue 97” or “Closes #125”, which 

usually denotes the ID number of the associated bug report. All these procedures 

were also important to implement in our study given the lack of C# datasets, which 

differs from the state-of-the-art on empirical studies of Java projects. 

3.3  
Project selection 

For our experiment, we needed a number of C# projects with available 

information on their source code, commits, and bug reports. We could not find a 

bug dataset for C# projects, like iBUGS [36] or moreBugs [44]. Then, we used 

GitHub search functionality5 to obtain a list of large C# projects, by searching for 

                                                 
 Integrated development environment. 
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projects with 1,000 or more stars and 100 or more forks. These parameters 

indirectly allowed us to satisfy the requirement for large projects. The query 

returned almost 80 projects from various domains, including development tools, 

compilers, frameworks, and games. 

We used GitHub API to download commit and issue data from the projects. 

We downloaded the 1,000 most recent issues for each project6, and then all the 

commits that happened within the period covered by the issues. Next, we processed 

the data in order to identify (i) issues that could be characterized as bugs and 

(ii) files modified in order to fix the bug. For characterizing a GitHub issue as a 

bug, we relied on the labels applied by the users. Issues with at least one label 

containing terms such as “bug” or “defect” were considered a bug report. As for the 

files modified to fix a bug, they are determined by the associated commit, as 

explained in Section 3.2. Since we are focusing on C# code, we excluded from 

evaluation bugs that do not touch at least one C# file. 

After processing downloaded data, only those projects where we could find 

at least 10 bugs whose resolution modified at least one C# file were kept for the 

experiment. We processed the projects in the order returned by the query, until we 

reached 20 projects that met our selection criteria. Table 2 presents a comparison 

between the dataset of C# projects used in our study and the dataset of Java projects 

used in recent studies [3] [4] [5] of the same techniques. 

Table 2 – Dataset comparison 

Dataset details Java C# 
Projects 4 20 
Files 20,223 46,752 
Source files N/A 28,596 
Issues N/A 16,630 

Traceable to commits N/A 2,839 
Classified as bugs 3,479 878 

 

In the table above, we highlight various differences, including the differences 

between the amount of files and amount of source files present in the corresponding 

repositories. In our case, about 61% of the files contained in the repositories were 

C# files, the ones we actually used to search for bugs. This happens because many 

files represent: (i) configuration or HTML files, or (ii) source files structured with 

other programming languages, in the case of multi-language projects. Actually, the 

existence of multi-language projects also highlights the importance of evaluating 

                                                 
6 GitHub API limits issue searching to 1,000 results per query. 
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bug localization techniques in different programming languages. For the Java 

dataset, it was not clear whether the total referred only to Java source files or to all 

repository files. Therefore, we assumed the latter. 

As for the bugs, all of them are treated as issues in GitHub issue tracker, 

although not all issues are bugs. After downloading all the available issues, we 

associated them with a commit whenever possible, using the criteria explained in 

Section 3.2. This step reduced the amount of available bugs to 17% of the original 

issue count. Then we discarded issues that were not labeled as “bug”, which reduced 

the number of available bug reports even further, down to 878 (5% of the initial 

number of issues). 

In the next section, we discuss additional preparation steps we applied on the 

dataset, which were important to guarantee the construct validity of the experiment. 

3.4  
Dataset preparation 

As mentioned in Section 1.2, previous studies suffer from a series of 

shortcomings regarding their experimental setup. Next, we describe how we 

handled these shortcomings in our evaluation. 

3.4.1  
Version selection 

Previous studies on bug localization commonly selected only a single release 

and ran the bug localization for all bugs on the same release. Results reported in 

this manner cannot be fully trusted [17], because there is a high chance that the bug 

is not even present on the code being analyzed. To overcome this problem, we 

identified the version of the source code that was active by the time the bug was 

reported by searching for the oldest commit that happened before the bug report 

creation. The source code for every identified version was downloaded, and each 

bug was localized on its corresponding version. 
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3.4.2  
Bug report selection 

Some bug reports already inform the location of the defect in source code, by 

mentioning the file where the bug was observed. Kochhar et al. [14] demonstrated 

that including these bug reports on the evaluation of a bug localization technique 

significantly influences the results by artificially increasing the reported 

effectiveness. The authors classified bug reports in three categories: fully localized, 

partially localized, and not localized, which mean that a bug report mentions all, 

some or none of the files modified to fix a bug; respectively. We removed fully and 

partially localized bug reports from our evaluation, meaning that we included only 

those bug reports that contained no mention to the faulty files. Although this step 

contributes to more realistic results, it reduced the number of available bug reports 

in 51%, from the 878 reported in Table 2 to 450 (3% of the initial issue count). 

3.4.3  
Source file selection 

Software projects often include test code. Test code may contain bugs, which, 

in theory, may be reported just like production code. However, bug localization 

algorithms should not include test code within their scope. Consider, for instance, 

three bug reports, whose resolution involved the modification of (i) only production 

code (no test code); (ii) production and test code; and (iii) only test code. In the first 

case, it is obvious that localization does not benefit from considering test code. 

When the resolution of a bug requires changing production and test code (second 

case), it is usually because a test was added or modified in order to catch the referred 

bug in the future. Test code was not the source of the failure, though. Therefore, 

modified test files are not what developers expect as an answer from the localization 

algorithm in this case. Finally, when a bug in the test code itself is caught (third 

case), developers already have detailed information provided by the test framework, 

which includes the location of the bug. Thus, even if a developer chooses to report 

a test bug instead of fixing it immediately, it is likely that this report will include 

the detailed information already provided by the test framework. Therefore, bug 

reports on test code are rarer (because the developer may choose to fix the bug 

instead of reporting it) and likely to be localized (because test frameworks already 
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indicate the buggy files). This rationale led us to restrict the localization to 

production code. 

We excluded test files from the scope of the analysis by ignoring all files that 

contain the word “test” on its path. We confirmed with manual inspection on two 

sample projects that this simple heuristic was able to accurately remove the 

undesired files, since it reflects (in our sample) the common developer practices of 

naming test files with a “Test” prefix of suffix, or placing test code in a separate 

directory named “test”. 

3.5  
Model adaptation 

Structured IR demands the extraction of identifiers from source code. For this 

task, we used the .NET Compiler Platform, also known as Roslyn [45]. As C# is an 

object-oriented language, similar to Java, it has the same four constructs considered 

on BLUiR’s original evaluation: class names, method names, variable names, and 

comments. However, C# also has constructs that either were not considered by 

BLUiR (and, consequently, neither by BLUiR+ nor AmaLgam) or do not exist in 

Java. Table 3 summarizes these differences. 

Table 3 – List of C# constructs 

C# construct Equivalent in 
Java? 

Considered by 
BLUiR? 

Classes Yes Yes 
Comments Yes Yes 
Enumerations Yes No 
Fields Yes No 
Interfaces Yes No 
Methods Yes Yes 
Namespaces Yes (packages) No 
Parameters Yes No 
Properties No No 
String literals Yes No 
Structures No No 
Variables Yes Yes 

 

BLUiR breaks a source file into parts. Each part contains identifiers from one 

kind of construct. To deal with the different kinds of constructs, while keeping the 

underlying philosophy of BLUiR, we devised three alternative configuration modes 

to run the experiment: 
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• Default: Strictly uses only the same constructs used by BLUiR, ignoring any 
other construct. 

• Complete: Uses all constructs present in Table 3, with each construct 
mapped to an exclusive file part. 

• Mixed: All constructs are used, but they are mapped to one of the four file 
parts corresponding to the constructs originally used by BLUiR. 

Default mode is used as a baseline for the sake of comparing our results with 

the original evaluation in Java projects [4]. Complete mode represents the simplest 

way of including new constructs in BLUiR’s algorithm. Mixed mode represents an 

alternate way of computing new constructs, by mapping them to one of the 

preexisting categories. For example, interfaces, structures, and enumerations are 

semantically close to classes. Therefore, for the purpose of bug localization, it could 

be enough to consider code elements of any of these types as “classes”. In a similar 

vein, string literals usually represent plain text inserted into source files, such as 

comments do. Therefore, string literals and comments could be mapped together in 

the same file part. 

The difference between some constructs is negligible in practice. For 

instance, variables and parameters are distinct constructs, strictly speaking. 

However, from the developers’ point of view, they are both handled as variables. 

Although it was not clear, this simplification might have been used in the BLUiR 

evaluation. Thus, the Mixed mode addresses this possible ambiguity, by defining a 

broader interpretation to the four constructs mentioned in [4]. The mapping strategy 

for each mode is shown on Table 4. 

Table 4 – Construct-mapping strategies 

Mode Construct mapping 
Default Classes, Methods, Variables, and Comments (one file part for each) 
Complete All constructs from Table 3 (one file part for each) 

Mixed 

Part 1:  Classes, Enumerations, Interfaces, Namespaces, and Structures 
Part 2:  Methods 
Part 3:  Fields, Parameters, Properties, and Variables 
Part 4:  Comments and String literals 

 

Next section presents the results of the evaluation, thus answering the 

research questions formulated in Section 3.1. For RQ1, Default mode will be 

applied to the 20 selected projects (Section 3.6.1). In RQ2, Complete and Mixed 

modes will also be applied to the same projects in order to compare their results 

with those from Default mode (Section 3.6.2). 
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3.6  
Results 

3.6.1  
Effectiveness of structured IR-based bug localizati on in C# projects 

Our goal includes performing “a realistic (…) evaluation of state-of-the-art 

bug localization techniques on a previously untested programming language” 

(Section 3.1). To reach this goal, we apply BLUiR, BLUiR+, and AmaLgam on 20 

C# projects. To the best of our knowledge, the mentioned techniques have not been 

evaluated on C# projects so far. To perform a realistic evaluation, we include the 

dataset preparation steps discussed in Section 3.4. However, we also apply the 

techniques without dataset preparation, in order to draw a parallel with results from 

Java studies. The two sets of results will be presented next: first without dataset 

preparation (Section 3.6.1.1) and then with dataset preparation (Section 3.6.1.2). 

3.6.1.1  
Effectiveness without dataset preparation 

Initially, we questioned whether current state-of-the-art bug localization 

techniques based on structured information retrieval, i.e., BLUiR, BLUiR+, and 

AmaLgam, would effectively locate bugs in C# projects. Considering results for 

Java, one would expect similar levels of effectiveness for C# as well, given the 

apparent similarities between the languages. To answer our first research question, 

we ran the bug localization techniques on downloaded projects using the reported 

optimal configuration for each technique (Section 2.3) and the Default mode 

(Table 4). For the sake of comparison, we initially run the algorithms without the 

preparation steps discussed in Section 3.4, i.e., selection of appropriate source code 

versions, exclusion of localized bug reports, and exclusion of test files. For each 

technique, we took the average MAP, which consists of the arithmetic mean of the 

MAPs from each project. Table 5 presents the average MAP values observed for 

the set of evaluated projects, and the variation observed over the same measure from 

Java projects. Considering all the techniques, the average MAP achieved by each 

technique with C# projects was around 0.307. 
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Table 5 – C# and Java results – Average MAP 

Technique Java C# Variation 
BLUiR 0.38 0.302 -21% 
BLUiR+ 0.39 0.307 -21% 
AmaLgam 0.43 0.312 -27% 

 

Opposed to the previous findings in Java projects, the selected bug 

localization techniques showed lower effectiveness in terms of average MAP. This 

result should be interpreted carefully, as the projects are different and cannot be 

compared. Nevertheless, the observed variation is explainable in part due to the 

higher number of projects analyzed: 4 in the Java studies [4] [5] against 20 in our 

C# study. Within projects in the same language, the techniques presented similar 

behavior: AmaLgam performed better than BLUiR+, which outperformed BLUiR. 

Recall from Section 2.3 that each technique uses a superset of the information used 

by the previously proposed technique: BLUiR is based on the similarity of bug 

reports and source code, BLUiR+ adds the similarity of previous bug reports to the 

equation, while AmaLgam also considers version history. At first glance, this could 

be considered an indication that, in fact, hybrid techniques which combine 

additional sources of information tend to perform better than their predecessors do. 

However, the average values are rather close. Thus, we analyzed additional 

parameters, which are presented in Table 6. 

Table 6 – C# and Java results – Minimum and maximum project MAP 

Technique 
Minimum MAP Maximum MAP 

Java C# Java C# 
BLUiR 0.24 0.103 0.56 0.596 
BLUiR+ 0.25 0.125 0.58 0.596 
AmaLgam 0.33 0.120 0.62 0.604 

 

In contrast with data available from Java studies, we observed a high variation 

on results from C# projects. Table 6 presents highest and lowest MAP scores for 

each technique and language. The minimum MAPs from the C# group were lower 

than minimum values from the Java group for all three techniques. The maximum 

MAPs, on the other hand, were similar. In fact, there was one project where the 

techniques reached even higher MAP values, but it was considered an outlier, as 

seen on Figure 1. Average MAPs for the outlier were 0.770, 0.767, and 0.747 for 

BLUiR, BLUiR+, and AmaLgam, respectively. 
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Figure 1 – Effectiveness of the techniques with C# projects 

The three techniques performed very similarly on the C# projects, as the 

averages on Table 5 indicate. Another evidence of the similar performance is the 

fact that each technique attained a higher score with a different metric: AmaLgam 

had the higher average (0.312), BLUiR+, the higher median (0.269), and BLUiR, 

the higher maximum (0.770). This suggests that, for this particular dataset, the 

additional information considered by BLUiR+ and AmaLgam failed to increase the 

effectiveness of the techniques significantly. Nevertheless, in spite of the lower 

averages relative to the Java evaluation, six C# projects still have attained MAP 

scores superior to the average of their Java counterparts in at least one technique. 

This implies that, in principle, there is no impediment to the usage of bug 

localization on C# projects due to features of the language itself, leaving room for 

the investigation of alternatives to increase the effectiveness of the techniques. In 

Section 3.6.2 we propose such alternatives by evaluating the effects of different 

mappings of language constructs on the bug localization algorithm. However, we 

must evaluate the effectiveness of these alternatives against an accurate baseline. 

Hence, we also performed an evaluation of the techniques with the dataset 

preparation steps discussed in Section 3.4, to be presented next. 
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3.6.1.2  
Effectiveness with dataset preparation 

We remind the reader that results from the previous section were obtained 

without considering the dataset preparation steps presented in Section 3.4. Those 

results were compiled to reproduce the same conditions from the original 

studies [4] [5]. A more realistic experiment, however, should incorporate these 

steps. Thus, we have also performed an evaluation of the three techniques including 

these steps. Table 7 presents minimum, maximum, and average values for each 

technique, and the decrease relative to results with no preparation steps. 

Table 7 – Effect of dataset preparation steps on bug localization – MAP 

Technique Min Average Max 
BLUiR 0.020 0.183 (-40%) 0.499 
BLUiR+ 0.048 0.198 (-36%) 0.493 
AmaLgam 0.044 0.206 (-34%) 0.565 

 

Wilcoxon Signed-Rank tests with 95% confidence level confirmed that 

additional preparation steps on the dataset significantly decreased the MAP scores 

for the three techniques. Complete details about the tests, including p-values, are 

available at the study website [46]. The maximum values indicate that some 

projects were still able to achieve reasonable scores. However, compared to the 

execution with no preparation steps, the effectiveness for all projects decreased, on 

average, more than 30% for all the evaluated techniques. Figure 2 presents a 

graphical comparison of the effectiveness with and without the preparation steps. It 

becomes clear from the data that bug localization studies must not ignore these 

steps, under the penalty of reporting results incorrectly higher than what would be 

found in actual settings. 
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Figure 2 – Effectiveness of techniques with C# projects – Non-prepared vs. prepared data 

The importance of removing localized bug reports from this kind of 

evaluation is not only a matter of construct validity of the experiment. It has indeed 

practical importance, as non-localized bug reports are exactly the kind of report 

where developers would need the assistance of a localization technique. Therefore, 

the effectiveness of IR-based bug localization in terms of mean average precision 

can still be considered too low for these techniques to be applied in practice. 

On the other hand, the expectations for this kind of technique must also be 

put into context. No matter how effective they are, bug localization techniques do 

not eliminate the need for the developer to examine and fix the buggy file. 

Therefore, instead of pinpointing the exact files where the bug is located, it may be 

acceptable for the technique to provide a list featuring a few candidates. Table 8 

shows that the best performing technique – AmaLgam – was able to return a buggy 

file at the top of the list 20% of the times, and in 57% of the times there was a buggy 

file among the 10 first files returned by the technique. Analyzing hundreds of files 

and correctly placing at least one buggy file in a list of 10 candidates for almost 

60% of the time, while not ideal, is not as discouraging as the average MAP of 0.206 

suggests. 

Am NoPrep Am Prep B+ NoPrep B+ Prep B NoPrep B Prep

0.
0

0.
2

0.
4

0.
6

0.
8

Non-prepared vs. Prepared data

Techniques

A
ve

ra
ge

 M
A

P

DBD
PUC-Rio - Certificação Digital Nº 1312388/CA



54 

Table 8 – AmaLgam effectiveness with dataset preparation steps 

Technique Hit@1 Hit@5 Hit@10 
AmaLgam 20% 46% 57% 

 

Nevertheless, these results reinforce that there is still room for improvement. 

As discussed in Section 2.3, structured information retrieval is the component that 

contributes the most to the effectiveness of state-of-the-art bug localization 

techniques [4] [5]. This remains true even for techniques using multiple sources of 

information, such as AmaLgam [5]. Thus, we extended the underlying algorithm of 

AmaLgam’s structure component (Section 2.3) in order to assess its effectiveness 

when using a different set of programming language constructs. We present the 

results in the next section. 

3.6.2  
Usage of more constructs to improve bug localizatio n effectiveness 

The set of constructs used by BLUiR, BLUiR+, and AmaLgam includes basic 

constructs from object-orientated languages (classes and methods) and constructs 

from programming languages in general (variables and comments). However, some 

subtleties about construct selection were omitted or unaddressed in previous 

studies. For instance, it is unclear how these techniques deal with interface names, 

which could be considered equivalent to class names or simply ignored. As for 

variable names, they might refer only to local variables or include class attributes 

(or fields) and method parameters. In other words, there are additional types of 

constructs that could be explicitly considered by bug localization techniques. When 

considering a different programming language, with a different set of constructs, 

these questions become more relevant. 

To answer whether the consideration of more source code constructs could 

improve effectiveness of bug localization, we designed the three construct-mapping 

modes described in Table 4. We selected AmaLgam, the best performing technique 

according to the evaluation from Section 3.6.1.2, adapted it to use the three 

mentioned modes, and applied it to the set of C# projects. We present the average 

MAPs (Table 9) and a box plot (Figure 3) summarizing the performance observed 

for each mode. 
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Table 9 – Effectiveness of AmaLgam using different construct-mapping modes – MAP 

Mode Default Complete Mixed 
Average MAP 0.206 0.244 0.222 

 

The usage of all the 12 constructs associated with the Complete mode 

increased the average MAP of AmaLgam to 0.244, an increase of 18%. Mixed 

mode, which also uses the 12 constructs but maps them into four categories 

(Table 4), showed a smaller increase on average, to 0.222 (near 8%). From these 

results, only the improvement associated with Complete mode was statistically 

significant, according to Wilcoxon Signed-Rank tests with 95% confidence 

level [46]. The effect of the three construct-mapping modes on individual projects 

was generally the same observed on average values: the higher increase was 

associated with the Complete mode, while Mixed mode caused a more modest 

increase, as shown in Figure 3. 

 

Figure 3 – Effectiveness of construct mapping modes 

The reason why Complete mode was able to produce better results can be 

explained by BLUiR formula (also used by AmaLgam) for determining the 

similarity of a bug report and a source file (Equation 8), which involves the 
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summation of the similarities of all pairs of bug-file parts. In Default mode, the total 

number of similarities to be summed is 8 – two parts from the bug report multiplied 

by four parts from the source code files. In Complete mode, the number of 

similarities to be calculated increases to 24 (12 file parts × 2 bug parts). Similarity 

results are normalized before the rank of files is generated, such that file scores are 

always between 0 and 1. Therefore, the higher value that would result from the 

summation of more terms in Complete mode is unlikely to be the reason this mode 

produced better results. In addition, the Mixed mode restricts the number of terms 

to be added up to 8, similarly to the Default mode. Since the Mixed mode has also 

produced results higher than those of the Default mode, we conclude that the 

consideration of more source constructs by itself contributed to increasing the bug 

localization effectiveness. 

3.7  
Threats to validity 

In this evaluation, we carefully handled experimental issues that are recurrent 

in bug localization studies (Section 1.2.1). These issues are highly relevant, as 

results from Section 3.6.1.2 demonstrates. We mitigated the threat to construct 

validity posed by these issues with the dataset preparation steps described in 

Section 3.4. Nevertheless, some threats to validity are still present. We discuss them 

in the next subsections. 

3.7.1  
Construct validity 

Given the originality of our study, we could not find an available bug 

benchmark for C# projects. Instead, we downloaded issues from GitHub and used 

the existence of a user-applied “bug” label as a criterion to identify bugs among 

those issues. Even following this procedure, we are still subject to misclassified 

issues, since not all bug reports could be manually verified. However, recent studies 

suggest that this particular bias does not substantially influence bug localization 

results [14]. Nevertheless, we make all our dataset available at our study 

website [46] so that others can refine it and replicate our study. As there was no 

dataset available for C# projects, one can consider our replication package also as 

a contribution of our study. 
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Studies involving retrospective evaluation of bugs should consider the 

version of the software at the time the bug was found. We addressed this issue by 

performing the localization on latest version available before the creation of each 

bug report. Strictly speaking, this does not guarantee that the selected version 

actually contains the bug reported. However, the selection of a previous version of 

the code for each bug report is a close approximation. Moreover, this step mitigates 

a threat ignored in many recent studies on bug localization, including [4] and [5]. 

Localized bug reports, i.e., reports that mention one or more code elements, 

significantly influence the evaluation of bug localization techniques [14]. Thus, we 

excluded such bug reports from the analysis. By performing this exclusion, we 

remove an important bias that may have led previous studies to unrealistic results. 

Finally, the presence of test files also influences bug localization results, since 

bug reports related to these files are very likely to be localized (Section 3.4.3). We 

eliminated this bias by excluding test files from the evaluation. The full rationale 

for performing these exclusions was discussed in Sections 3.4 and 3.6.1.2. The 

adoption of these dataset preparation steps argue for a strong construct validity in 

our study. 

3.7.2  
External Validity 

In an attempt to increase generalizability, we attempted to select a higher 

number of projects compared to previous studies. Given the criteria defined in 

Section 3.3, we were able to select 20 projects, a considerably higher number of 

projects compared to other studies on bug localization (5 times more than [3], [4], 

and [5]). The absence of a standardized bug database, however, greatly reduced the 

amount of bug reports available for the experiment (Table 2). The relatively low 

quantity of bug reports and the variation in quantity and quality of bug reports 

observed on each project are threats to the external validity of our study. However, 

we consider that bug localization techniques must be assessed under realistic 

settings, where the amount of available bug reports widely varies from a project to 

another. No relationship between the number of bug reports of a project and the 

effectiveness of the technique could be observed. The complete list of evaluated 

projects and the number of bug reports evaluated for each one is available at the 

study website [46]. 
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Another threat is the fact that all selected projects were open-source. This 

kind of project has a characteristic workflow that differs from that found on 

proprietary projects. Different policies on bug reporting, for example, may 

significantly influence the results of bug localization techniques. Therefore, results 

presented in this study are only representative of the workflow typically practiced 

in open-source projects. 

3.8  
Conclusion 

Structured information retrieval has been successfully applied to the bug 

localization problem. Techniques based on structured IR have shown to be 

considerably more effective than other IR-based approaches. However, these 

techniques are language-specific, as they depend upon the structure of source files. 

Considering the multi-language nature of most modern software [47], it is 

important to have effective bug localization models for the different kinds of 

languages and technologies used in software projects. This study is a step in that 

direction, where structured information retrieval is evaluated on C# projects for the 

first time, as far as we know. 

The average effectiveness of the evaluated techniques on C# projects was 

lower than the same metric reported in the original studies on Java. However, some 

projects have individually yielded results above the average informed by the Java 

studies. Therefore, we conclude that, in principle, there is no impediment to the 

usage of bug localization on C# projects due to features of the language itself. The 

lower average effectiveness compared to previous studies can be attributed to (i) 

the 5x higher number of projects evaluated, and (ii) the discard of localized bug 

reports, which artificially increased the effectiveness of bug localization techniques 

in previous studies. We also demonstrated that using more program constructs, 

which is a strategy that differs from previous studies [4] [5], increased bug 

localization effectiveness by 18% on average. 

To the best of our knowledge, this is the first bug localization study to 

implement the experimental steps needed to solve the issue of different versions 

raised by [17] and the localized bug report bias presented in [14]. Besides, we also 

observed that test files should not be included in the scope of the localization 

process. These steps are important because they demonstrate that the reported 
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effectiveness of current state-of-the-art bug localization techniques cannot be 

achieved in realistic situations. Future studies in bug localization should not skip 

such steps, as they produce an experimental setup closer to reality and to 

developers’ expectations, increasing the chances of bug localization to become 

more useful in practice. 

In the next chapter, we address the remaining research questions (RQ3, RQ4, 

and RQ5). These questions will be answered by performing an in-depth evaluation 

of how bug localization techniques based on structured information retrieval use 

program constructs. 
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Analysis of the contribution of program constructs to 
bug localization 

Structured information retrieval (IR) has been able to increase the 

effectiveness of static bug localization techniques [4] [5]. The key feature of 

structured IR-based techniques refers to how they break up source files, based on 

constructs available in the adopted programming language. Bug localization 

techniques based on traditional IR calculate the similarity between a source file and 

a bug report considering the whole file (Section 2.3.1). Conversely, structured IR-

based techniques break source files into multiple parts, one for each construct 

recognized by the technique (Section 2.3.2). Each of these parts contains only terms 

that are instances of the corresponding construct in the original source file. Then, 

instead of calculating similarity using the whole file, the final similarity between a 

bug report and a source file is the sum of the similarities between each part of the 

source file and the bug report (Equation 8). BLUiR [4] recognizes four Java 

constructs: class names, method names, variable names, and comments 

(Section 2.3.2). Thus, it breaks source files into four parts. The same approach is 

followed by BLUiR+ [4] (Section 2.3.2) and AmaLgam [5] (Section 2.3.3). 

However, structured IR has not been thoroughly explored yet. In addition to 

the limitation of being evaluated only on four projects, the original models of 

BLUiR [4], BLUiR+ [4], and AmaLgam [5] used only four constructs from the Java 

language (Section 3.5). Thus, it is unknown whether other constructs, such as 

interfaces or enumerations, could have influenced bug localization results. This 

question becomes even more relevant when source files are written in other 

programming languages, such as C#, which supports constructs inexistent in Java 

(Table 3). 

In this chapter, we investigate the influence of different program constructs 

on the effectiveness of structured IR-based bug localization. In this investigation, 

we use results obtained with the Complete mode (Section 3.5), as this construct 

mapping mode increased bug localization effectiveness by including all available 
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C# constructs into the localization process (Section 3.6.2). Then, we use a statistical 

procedure called Principal Component Analysis (PCA) to quantify the contribution 

of each construct to the similarity score attributed to source files. This analysis will 

reveal the extent of the correlation between those constructs and bug localization 

results. 

Finally, we explore the different contributions from each construct by further 

modifying the bug localization algorithm. First, we evaluate whether suppressing 

low-contributing constructs influences the result either positively or negatively. 

Next, we evaluate whether bug localization effectiveness can be increased by 

attributing higher weights the most influential constructs in the file score equation 

(Equation 8), thus emphasizing their contribution. 

4.1  
Motivation 

The key success factor for a bug localization technique based on information 

retrieval lies on its ability to match terms from bug reports and source files 

successfully. Once we have observed that using the full set of available program 

constructs significantly increases bug localization effectiveness (Section 3.6.2), it 

becomes important to understand in more depth how these constructs individually 

contribute to bug localization. Such knowledge enables us to discard low 

contributing constructs, as well as attribute higher weights to the most contributing 

constructs, possibly increasing effectiveness. The contribution of each program 

construct is the subject of our third research question, restated below. 

RQ3: Which program constructs contribute more to the effectiveness 

of bug localization on C# projects? 

To answer this question, we use principal component analysis (PCA). 

Principal component analysis is a statistical procedure that transforms a number of 

possibly correlated variables into a smaller number of variables called principal 

components [48]. According to Jolliffe [48]: 
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The central idea of principal component analysis (PCA) is to reduce the 
dimensionality of a data set consisting of a large number of interrelated 
variables, while retaining as much as possible of the variation present in the 
data set. This is achieved by transforming to a new set of variables, the 
principal components (PCs), which are uncorrelated, and which are ordered 
so that the first few retain most of the variation present in all of the original 
variables [48]. 

Translating bug localization domain to PCA, the constructs are the variables 

and the similarity scores are the variable values. As a result, PCA generates a set of 

new variables – the principal components – with varying degrees of correlation with 

the original variables. The PCs are presented in decreasing order of contribution to 

the total variance of the dataset. Therefore, the degree of contribution from a 

construct to the variance of the dataset can be measured by its correlation with the 

first PCs. 

The reasoning for using PCA to answer RQ3 is that such analysis may 

indicate that the studied techniques may be more sensitive to a specific construct 

subset. If this is true, most influential constructs will emerge as highly correlated 

with the first few principal components (PCs). Furthermore, it is expected that the 

influence exerted by these constructs could be exploited to increase bug localization 

effectiveness. 

Next section illustrates how the PCA was modeled in order to answer RQ3. 

All the results presented in this chapter were generated using R version 3.3.0 [49], 

with additional libraries for analysis [50] [51] and data visualization [52] [53]. 

4.2  
Analysis setup 

To perform the analysis, we organize relevant data in the form of a table: 

variables are laid out in columns, while rows correspond to data points. 

The 12 C# constructs (Table 3) are the variables. The data points correspond to 

every buggy file ranked among the top ten positions for every available bug report. 

The values for each variable are the summands that compose �01./; (Equation 8), 

the similarity score attributed by AmaLgam’s structure component (Section 2.3.3). 

These values were taken from the best performing construct mapping mode 

(Complete mode, Sections 3.5 and 3.6.2). Table 10 illustrates how data is organized 

as input to PCA. Afterwards, we discuss in detail the construction of the input table. 
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Table 10 – Sample of the input for principal component analysis 

Bug # / File rank7 
Class 
names 

Comments 
Enum 
names 

… 
String 
literals 

Struct 
names 

Variable 
names 

Bug #375 / 6th file 0.000 0.141 0.000 … 0.224 0.000 0.354 
Bug #535 / 1st file 0.473 0.523 0.000 … 0.148 0.000 0.270 
Bug #535 / 3rd file 0.451 0.131 0.000 … 0.177 0.000 0.358 
Bug #742 / 3rd file 0.345 0.410 0.282 … 0.085 0.000 0.135 
Bug #850 / 1st file 0.514 0.427 0.000 … 0.532 0.000 0.569 
Bug #850 / 2nd file 0.355 0.422 0.961 … 0.461 0.000 0.000 
… … … … … … … … 

 

Informally, PCA tries to “explain” a data set consisting of many variables 

using a smaller number of variables. Since our assumption is that a subset of the 

constructs is able to “explain” most of the bug localization results, the constructs 

represent the variables for the analysis. The variable values are the scores attributed 

by AmaLgam’s structure component with respect to each construct. Recall 

Equation 8: 

�01./; = ����, �� = - - ����H, �H�
IJ∈IAJ∈A

 

AmaLgam’s structure component breaks source files and bug reports into 

parts: bug reports are split into summary and description, and source files are split 

in parts that contain only constructs from a specific type. In the Complete mode 

adaptation (Section 3.5), 12 C# constructs are considered (Table 4). The score 

attributed by the structure component (�01./;) is the summation of the similarities 

of each pair of file and bug parts. Thus, for each construct, there is a term from 

�01./; that reflects its specific contribution to the structural similarity score. These 

are the variable values used as input for the PCA (Table 10). 

Since our goal is to understand the contributions of each construct to the 

effectiveness of bug localization, we must select effective instances from the data 

set. Therefore, we selected those files that were both buggy according to the oracle 

(Section 3.2) and high-ranked by the technique, i.e., ranked among the top 10 

positions. The number of positions, 10, is consistent with the Hit@10 metric 

(Section 3.2). Thus, data points (rows in Table 10) correspond to every buggy file 

ranked among the top 10 positions for every available bug report. 

                                                 
7 Sample taken from project akka.net. 
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After applying the described selection criteria, 363 data points were selected 

to compose the PCA input. Table 11 summarizes descriptive statistics for the 

selected data points. 

Table 11 – Descriptive statistics for PCA input – MAP 

Variable Min Median Max Avg. 
Std. 
dev. 

Class names 0.000 0.210 1.511 0.269 0.244 
Comments 0.000 0.129 0.706 0.156 0.157 
Enum names 0.000 0.000 1.208 0.109 0.254 
Field names 0.000 0.121 1.204 0.169 0.193 
Interface names 0.000 0.000 1.081 0.077 0.185 
Method names 0.000 0.166 1.011 0.203 0.171 
Namespace names 0.000 0.103 1.678 0.271 0.362 
Parameter names 0.000 0.121 1.108 0.174 0.189 
Property names 0.000 0.164 1.237 0.214 0.207 
String literals 0.000 0.132 1.316 0.190 0.216 
Struct names 0.000 0.000 1.567 0.061 0.225 
Variable names 0.000 0.138 1.617 0.183 0.198 

 

Once again, we remind the reader that the values presented in Table 10 and 

Table 11 refer to the scores attributed by the structure component to each file, 

considering only constructs of a particular type. These scores are summed to 

compose the structural similarity score (Equation 8), which is then used to calculate 

the final similarity score for a file (Equation 11). Therefore, it is expected that 

minimum values for all constructs are equal to zero. This means that, for every 

construct, there has been at least one file with no construct of that particular type 

matching any terms from the bug report. This is expected because source files do 

not usually contain instances of every existing language feature or construct, let 

alone instances that match terms from a specific bug report. 

Some constructs, namely enums, interfaces, and structs, had median values 

equal to zero. This means that, within the selected sample (which consists of high-

ranked buggy files), these were the constructs that matched bug report terms for 

fewer occasions. This is an indicator of low contribution from these constructs. 

However, we will proceed to the principal component analysis before formulating 

a definitive answer to RQ3. 
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4.3  
Contribution of program constructs 

This section answers RQ3, i.e., which C# constructs contribute more to the 

effectiveness of bug localization. The answer is obtained by applying principal 

component analysis (PCA) to the dataset prepared in Section 4.2. First, the analysis 

will transform data and express it as a series of dimensions with varying degrees of 

correlation with the original constructs (Section 4.3.1). Next step is to determine 

the correlation of each construct with the returned dimensions (Section 4.3.2), thus 

answering RQ3. 

4.3.1  
Variances of principal components 

PCA transforms input data into a coordinate system such that the highest 

variance lies on the axis corresponding to the first principal component. Remaining 

components represent dimensions that account for a decreasing amount of variance. 

In other words, the first components explain most of the variance of the data. In our 

context, we explore PCA to understand which constructs better explain the data 

variance on bug localization results. 

 

Figure 4 – Variance corresponding to each principal component 
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Figure 4 presents the degree of variance explained by each of the 12 PCs. 

While X-axis represents the 12 PCs, Y-axis indicates the percentage of explained 

variances. Figure 4 shows that the first principal component (PC1) accounts for 

20% of the variance in the data, twice as much as PC2. However, the difference in 

the variance of the remaining PCs is much smaller. From PC2 through PC12, 

percentage of variance smoothly decreases from 10% to 4.1%. Table 12 displays 

the cumulative percentage of the variance from the first through the last component. 

Table 12 – Distribution of variance through the principal components 

Component % variance 
Cumulative % 

variance 
PC1 20,5% 20,5% 
PC2 10,0% 30,6% 
PC3 9,7% 40,2% 
PC4 9,5% 49,7% 
PC5 8,6% 58,3% 
PC6 8,0% 66,3% 
PC7 6,7% 73,0% 
PC8 6,6% 79,6% 
PC9 6,0% 85,6% 
PC10 5,7% 91,3% 
PC11 4,6% 95,9% 
PC12 4,1% 100,0% 

 

As mentioned in Section 4.1, one of the main applications of PCA is to reduce 

dimensionality from a dataset. This is possible when the first few components 

account for a high percentage of the variance. What may be considered a high 

percentage of variation is subjective, although the literature suggests a sensible 

cutoff is very often in the range 70% to 90% [48]. Considering the distribution 

presented in Table 12, it would be necessary to retain the seven first PCs to account 

for 70% of the variance. Likewise, the ten first PCs would have to be retained to 

account for 90% of the variance. From Figure 4, it becomes clear that, except for 

PC1, all remaining components present comparable contributions to the structural 

similarity scores. Although there is no strict rule, typical contributions that allow 

components to be safely discarded are below 1% [48]. Hence, no component can 

be confidently discarded due to a negligible contribution.  

Although all construct types contribute to the final scores, analysis of the 

variances (Figure 4) suggest that some constructs contribute more than others do. 

These are probably associated with PC1, which by itself accounts for 20% of the 

variance in the results. It remains to be investigated which constructs are associated 
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with the first few principal components and whether this association can be 

exploited in order to increase bug localization effectiveness. 

4.3.2  
Constructs associated with principal components 

The degree of relationship between original variables and principal 

components created by the analysis can be measured by their correlation 

coefficients. A positive correlation indicates that both values (original variable and 

PC) increase simultaneously. Therefore, positive correlations reveal constructs that 

positively contribute to the result. Conversely, negative correlations indicate that 

while one of the values increases, the other one decreases. This situation could be 

interpreted as a “wrong clue” to the technique, as the negatively correlated construct 

would be assigning higher scores to files that, according to the rest of the constructs, 

should have lower scores. Therefore, constructs with a negative correlation to the 

PCs are likely to be negatively contributing, i.e., “disturbing” the results. Figure 5 

depicts the correlation between constructs and principal components in the form of 

a correlogram [54]. 

 

Figure 5 – Correlation between variables and principal components 
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In Figure 5, blue values represent positive correlations, while red values 

indicate negative correlations. Higher absolute values indicate stronger 

correlations. Thus, the closer to +1 the correlation is, the greater the contribution of 

the construct. Similarly, constructs with correlations close to -1 are more likely 

disturbing the effectiveness of the technique. The strength of the correlation is also 

given by the intensity of the color: dark blue and dark red circles indicate strong 

positive and negative correlations, respectively. Statistically insignificant 

correlations are signaled with a dark “×”. 

4.3.2.1  
Positive correlations 

It is possible to see that many constructs are positively correlated with the 

first principal component (Dim.1). Method and class names are the ones with the 

strongest positive correlation. This means that method and class names are the most 

influential constructs regarding the first dimension extracted by the PCA. This 

result was expected as classes and methods often represent the most important 

domain abstractions realized in program files. They embrace some other inner 

constructs in a file, were the bugs are often “located”. Given their importance in the 

system domain, the names of such (class or method) abstractions naturally have to 

be reasoned about when someone is either reporting or locating a bug. 

The construct with the third highest correlation to the first PC is Properties. 

Properties, alongside with Structures, is one of the two C# constructs that have no 

equivalent in Java (Table 3). The contribution of Properties, though, was more 

relevant than that of Structures. This can be explained by the fact that Structures 

usually represent simple data structures, with little or no behavior, and therefore are 

less prone to be associated with bugs. Moreover, Structures are independent 

constructs, while Properties, on the other hand, are members of classes. Therefore, 

it is expected that Properties be more closely related to domain abstractions already 

represented by classes, increasing their chances to be mentioned in bug reports.  

After Properties, the next constructs more correlated with PC1 are 

Parameters and Variables. Variables represent a ubiquitous concept of 

programming languages, and its relevance to IR-based bug localization is no 

surprise. Parameters are used to pass values or variable references to methods [55]. 

Although Parameters are strictly different from Variables, their purposes are quite 
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similar. We have discussed the possibility of considering some constructs 

equivalent, including Parameters and Variables, with the Mixed construct-mapping 

mode (Section 3.5). However, we have observed the Complete mode, i.e., 

considering the constructs separately, yielded better results (Section 3.6.2). The 

high correlation of these two constructs with PC1 may explain the advantage of the 

Complete mode. As both constructs proved to be relevant (Figure 5), considering 

them separately had the effect of raising the similarity score (Equation 8). 

Each PC represents a different dimension of the original dataset. Notice that 

PC1 is highly correlated to Methods, Classes, Properties, Parameters, and 

Variables. In C#, methods and properties are class members. Likewise, parameters 

and variables occur inside of methods. Therefore, as Methods and Classes are 

containers of other constructs, such as Properties, Parameters, and Variables, it is 

expected that they co-occur, hence their high correlation in the first PC. Notice, 

however, that the container constructs, i.e., Methods and Classes, have the highest 

correlation. This means that, although the inner constructs (Properties, Parameters, 

and Variables) do contribute, their contribution is overshadowed by that of the 

container ones (Methods and Classes). 

The construct with the strongest positive correlation with the second 

dimension is String literals. This construct had a negligible effect on the first 

principal component. However, the strong correlation with the second component 

indicates that, overall, it still has a significant contribution to bug localization 

effectiveness, as Table 11 suggests. The importance of String literals may be 

explained by the fact that many bug reports include error messages, which are often 

included in the source code as string literals. This finding actually reinforces that 

String literals should be explicitly considered in structured IR-based bug 

localization models 

Moreover, the fact that String literals were more correlated with the second 

PC, rather than the first, is meaningful. As aforementioned, each PC represents a 

different dimension of the data. Thus, the contribution of String literals occurs in a 

different dimension than that represented by PC1. This means that files with high 

scores due to similarity with String literals did not have high scores due to method 

or class name similarity, for example. This fact can be interpreted as an indication 

that some files would only be located due to the similarity of bug reports with String 
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literals. This is an interesting result, as String literals were not considered by 

BLUiR [4] nor AmaLgam [5], despite being a frequently used construct. 

Similar reasoning can be applied to the third PC, where Structures are the 

most relevant construct, and so forth. However, as one advances into the subsequent 

PCs, one must remember that the relevance of the PCs decreases (Figure 4). 

Moreover, constructs with negative correlations become more common. Thus, an 

analysis of the influence of negative correlations is also necessary. 

4.3.2.2  
Negative correlations 

No construct showed negative correlation with the first principal component. 

However, from the second PC onwards, negative correlations start to appear. The 

highest negative correlations observed were for Methods, on PC12 (-0.5), followed 

by Fields on PC7 (-0.47), and Interfaces on PC2 (-0.46). However, the percentage 

of the variance explained by these components are 4.1%, 6.7%, and 10%, 

respectively (Figure 4). Thus, the strong negative correlation displayed by 

Interfaces represent a relevant concern. 

Interfaces presented a strong negative correlation as early as the second 

dimension. Although it was also responsible for a similar contribution on PC1, its 

relative influence within that particular PC was lower than in PC2 and PC3: it has 

the sixth largest absolute correlation value on PC1 and the third largest value on 

PC2 and PC3. Apart from PC1, the positive contributions from Interfaces appear 

only on PC8 (fourth largest) and PC10 (first largest). These dimensions, however, 

account for 6.6% and 5.7% of the variance observed in the scores. Therefore, the 

positive contribution from Interfaces are relatively low, compared to other 

constructs. 

Descriptive statistics presented in Table 11 points at Interfaces, alongside 

with Enumerations and Structures, as the constructs with the lowest contribution to 

bug localization effectiveness. This suggests that these constructs are less 

frequently (i) mentioned in bug reports; or (ii) involved in bug-fixing commits. 

These are plausible explanations due to the essentially static nature of these 

construct types. From the three, only structs can contain some sort of dynamic 

behavior (functions) [55]. Therefore, any bug that stems from these construct types 
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is likely to be detected at compile time, thus not living long enough to generate a 

bug report. 

PCA confirmed the low contribution from Enumerations and Structures 

(enums and structs). As for Interfaces, however, it revealed a strong negative 

correlation between this construct type and the second principal component. Such 

observation prompts us to investigate whether bug localization effectiveness could 

be improved by removing Interfaces from the analysis. In the next section, we 

present the results of another AmaLgam execution, however this time using a 

different construct-mapping mode. The Complete mode (Section 3.5) will be 

adapted to consider all C# constructs (Table 3) except Interfaces, in order to 

investigate the effects of removing a relatively low-contributing construct type on 

bug localization effectiveness. 

4.4  
Effects of constructs on bug localization results 

This section explores the effects of program constructs on bug localization. 

Section 4.3.2 determined constructs of interest for such exploration, i.e., constructs 

lowly and highly correlated with bugs effectively located by AmaLgam. RQ4 asks 

whether the suppression of low-contributing constructs could increase bug 

localization effectiveness. Interfaces emerged as the construct with higher negative 

correlation – thus, less correlated – with effectively located bugs. Therefore, RQ4 

will be answered in Section 4.4.1 by adapting AmaLgam to ignore interface names 

and, then, applying this adapted version on the 20 C# projects that comprise the 

experimental dataset (Section 3.3). 

In contrast, RQ5 inquires about the effects of emphasizing constructs highly 

correlated with bugs that were effectively located by AmaLgam, namely, Methods 

and Classes (Section 4.3.2). RQ5 is answered in Section 4.4.2, which describes how 

AmaLgam is adapted to emphasize method and class names and presents the results 

obtained from applying it on the 20 C# projects. 

4.4.1  
Suppression of low-contributing constructs 

The influence of each program construct on the similarity scores attributed by 

AmaLgam is not homogeneous (Section 4.3). The correlation of these scores with 
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the dimensions revealed by principal component analysis (Figure 5) made it clear 

that some constructs exert greater influence on bug localization effectiveness than 

other constructs do. It is unclear, however, whether negative correlations can 

disturb results. That is the subject of our fourth research question: 

RQ4: Does the effectiveness of bug localization increase with the 

suppression of constructs with the lowest contributions? 

Principal component analysis results showed that the constructs with the 

lowest contribution are Interfaces. In fact, Interfaces are the constructs with the 

larger negative correlation with the principal components. Thus, while similarity 

scores from positively correlated constructs increase together, scores from interface 

names decrease. To assess whether this effect has any influence in bug localization 

results, we used the dataset of 20 C# projects to run AmaLgam using a slightly 

modified Complete mode (Section 3.5). This modified mode considers all the 

12 available C# constructs except for Interfaces. Results are summarized in 

Table 13. 

Table 13 – Effect of the suppression of interface names – MAP 

Mode Min Median Max  Avg. 
Std. 
dev. 

Complete 0.055 0.198 0.573 0.244 0.154 
Without interfaces 0.055 0.200 0.582 0.245 0.158 

 

Removing Interfaces from the localization process increased AmaLgam’s 

average MAP from 0.244 to 0.245 (0.4%). Median and maximum MAPs were also 

slightly increased, while minimum MAP was unchanged. This is a positive, 

although negligible, increase on AmaLgam results, with no statistical significance. 

Therefore, it is not possible to answer RQ4 positively based on our dataset. As it 

cannot be said that Interfaces hamper bug localization, it is not needed to remove 

this or any other low-contributing construct from a bug localization model based on 

structured information retrieval. 

4.4.2  
Emphasis on most contributing constructs 

One possible way of increasing effectiveness of bug localization based on 

structured information retrieval is to assign different weights to the parts in which 
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source files are split [4]. PCA revealed that Methods and Classes are the constructs 

with greater contribution to bug localization results (Section 4.3.2). Thus, our fifth 

research question (repeated below) asks whether it is possible to increase the 

effectiveness of a technique by emphasizing highly contributing constructs. 

RQ5: Does the effectiveness of bug localization increase with the 

emphasis on constructs with the highest contributions? 

To perform this evaluation, we modify AmaLgam once more, by allowing it 

to use different weights for each file part generated during source file splitting. The 

formula originally defined in BLUiR [4], and also used by BLUiR+ [4] and 

AmaLgam [5] (Equation 8) is replaced by: 

����, �, U� = ∑ WU� ∑ ����H�, �H�IJ∈I X��3�
∑ U���3�

 

Equation 12 – Weighted structural similarity between a file and a bug report 

Equation 12 incorporates weights to the calculation performed by 

AmaLgam’s structure component. Recall from Section 2.3.2 that structural 

similarity is computed by splitting bug reports and source files in parts 

corresponding to relevant fields. Bug reports are split into summary and description, 

while source files are split into as many parts as the construct-mapping mode being 

used (Section 3.5). Since we are using the Complete mode, where all the 12 

constructs available in C# are used, 2 = 12 in the above equation. 

To answer RQ5, we must choose one or more constructs with high 

contributions to the results, assign them higher weights (Equation 12), and re-run 

AmaLgam with this configuration. We selected the two constructs with the highest 

contribution, Methods and Classes (Section 4.3.2), and assigned weights of 1.5, 2.0, 

and 3.0 to each one. These values were arbitrarily chosen to promote a significant 

variation in the weights, so we could observe to which extent the technique benefits 

from using higher or lower weights. The results obtained with this execution are 

displayed in Table 14. The first row repeats AmaLgam results with the Complete 

mode (Table 9), while next rows (referenced by keys) represent the weighted 

configurations being tested. 
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Table 14 – Effect of applying higher weights to method and class names – MAP 

Key Mode Min Median Max Avg. 
Std. 
dev. 

p-value 

– Complete 0.055 0.198 0.573 0.244 0.154 – 
A Method weight = 1.5 0.055 0.200 0.574 0.246 0.160 0.0533 
B Method weight = 2.0 0.056 0.195 0.574 0.246 0.160 0.1230 
C Method weight = 3.0 0.050 0.171 0.574 0.238 0.162 0.6186 
D Class weight = 1.5 0.055 0.207 0.582 0.248 0.155 0.0919 
E Class weight = 2.0 0.055 0.207 0.582 0.265 0.168 0.2707 
F Class weight = 3.0 0.055 0.194 0.582 0.256 0.171 0.6783 

 
Table 14 shows that, in general, usage of higher weights was able to increase 

AmaLgam’s effectiveness, measured in terms of mean average precision (MAP). 

Class constructs (rows D – F) led to higher MAPs than Method constructs 

(rows A – C) with the same weight for all statistics (minimum, median, maximum 

and average MAP). As for the weight values selected, best average MAPs were 

obtained when the emphasized construct had its weight doubled (rows B and E, 

weight = 2.0). 

We used Wilcoxon Signed-Rank tests to assess statistical significance. 

Unfortunately, none of the results was statistically significant at 95% confidence 

level, although configurations with weights = 1.5 (rows A and D) came close 

(94.7% for Method and 90.8% for Class). The confidence levels decreased 

drastically as the weights increased. For instance, result for the configuration with 

the highest MAP, i.e., Class weight = 2.0 (row E), had a confidence level of 73% 

(p-value = 0.2707). As for Class weight = 3.0 (row F), not only the MAP dropped, 

but also the confidence level (32%, p-value = 0.6783). The same was observed for 

Method weight = 3.0 (row C), which means 3.0 is a weight value beyond the 

threshold both for effectiveness and for significance. Complete statistical analysis 

is available in the online appendix [46]. 

The constructs Methods and Classes presented similar levels of influence to 

bug localization results, as measured by their correlation to the main component 

revealed by PCA analysis (Figure 5). Thus, we also tested AmaLgam 

simultaneously changing the weights of these two constructs. We fixed Class 

weight with a value of 2.0, as it was the best result obtained when constructs had 

their weights changed individually (Table 14, row E). Then, we applied weights 

of 1.5 and 2.0 to Method constructs. We did not set Method weight = 3.0, as this 

weight value led to smaller MAPs for both constructs evaluated individually 

(Table 14, rows C and F). Results are presented in Table 15. 
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Table 15 – Effect of combining higher weights on method and class names – MAP 

Key Mode Min Median Max Avg. 
Std. 
dev. 

p-value 

– Complete 0.055 0.198 0.573 0.244 0.154 – 
E Class weight = 2.0 0.055 0.207 0.582 0.265 0.168 0.2707 

G 
Class weight = 2.0 
Method weight = 1.5 

0.055 0.198 0.571 0.266 0.168 0.0682 

H 
Class weight = 2.0 
Method weight = 2.0 

0.056 0.195 0.571 0.253 0.156 0.0412 

 
In Table 15, previous results (in italics) are repeated for the sake of 

comparison. The first row contains results from the Complete mode with equal 

weights for all constructs (Table 9). The second row repeats the result obtained with 

a weight of 2.0 attributed to Class constructs (Table 14, row E). It is possible to see 

that average MAP increased from 0.244 (Complete mode) to 0.266 when Method 

weight is set to 1.5 (row G), and to 0.253 when Method weight is 2.0 (row H). 

Combining Method weight = 1.5 and Class weight = 2.0 (row G) even increased 

average MAP compared to using only Class weight = 2.0 (row E), although by a 

negligible amount (only 0.4% higher, from 0.265 to 0.266). 

As with the first part of this evaluation, we used Wilcoxon Signed-Rank tests 

to determine statistical significance. Results for combined weights were closer to 

the selected 95% confidence threshold: 93% for row G and 96% for row H (p-

values of 0.0682 and 0.0412, respectively). Thus, it is possible to state that setting 

Class and Method weights to 2.0 (row H) significantly increased bug localization 

effectiveness, compared with Complete mode with equal weights for all constructs. 

4.5  
Conclusion 

In this chapter, we investigated the influence of different program constructs 

on the effectiveness of structured IR-based bug localization. Initially, we applied 

principal component analysis (PCA) on results from AmaLgam in the Complete 

mode. This analysis intended to reveal which constructs from the C# language 

exerted more or less influence on bug localization results. 

PCA data suggested that all constructs exerted a significant level of influence 

on the results (Section 4.3.1). Thus, it was not possible to identify irrelevant 

constructs just by inspecting PCA data. The analysis also revealed that Methods and 

Classes were the constructs with more influence on the results (Section 4.3.2). 
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In spite of PCA data not having revealed constructs that could be considered 

irrelevant, some constructs emerged as negatively correlated with bug localization 

results. The most striking example was Interfaces (Figure 5). This negative 

correlation caused us to investigate what would be the effect of suppressing 

Interfaces from bug localization (Section 4.4.1). Compared to Complete mode, 

results were practically unchanged (Table 13). Thus, we conclude that suppression 

of low-contributing constructs does not increase bug localization effectiveness. 

Another possible way of increasing effectiveness of bug localization is by 

emphasizing constructs that are more influential, i.e., Methods and Classes 

(Section 4.3.2). We investigated that possibility by running AmaLgam with 

alternative configurations, where different weights were assigned to these two 

constructs, one at a time (Section 4.4.2). Practically all of these configurations 

caused the average MAP to increase (Table 14), although none of these 

improvements reached our statistical significance threshold. Nonetheless, we also 

tested AmaLgam assigning higher weights to both Methods and Classes, 

simultaneously. In this case, a statistically significant improvement was attained 

when Methods and Classes were assigned a weight of 2.0 (Table 15). Compared to 

Complete mode, MAP increased from 0.244 to 0.253 (3.7%). 

It was previously demonstrated that bug localization based on structured 

information retrieval benefits from the usage of more program constructs (RQ2, 

Section 3.6.2). This finding is reinforced by the thorough analysis of the 

contribution of program constructs performed in this chapter. The answer to RQ3 

suggested that all constructs significantly influence bug localization results. RQ4 

confirmed this suspicion, by showing there was no significant effectiveness 

increase when the technique ignored the construct with the smallest contribution. 

The usage of weights in the calculation of structural similarity increased bug 

localization effectiveness. The weight values used in this experiment (1.5, 2.0, and 

3.0) were selected empirically. Thus, a possible improvement to this evaluation 

involves determining optimal weights for each construct. Likewise, we only 

evaluated the assignment of higher weights to the two most influential constructs, 

i.e., Methods and Classes. However, the effect of weighing more than two 

constructs is still unknown, and could be the subject of future studies. Nonetheless, 

weighing constructs proved to be a promising way of increasing the effectiveness 

of bug localization techniques based on structured information retrieval. 
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Conclusion 

Determining which parts of the source code need to be modified to remove a 

bug can be a difficult task. Automated bug localization techniques aim to help 

developers in this task by providing a list of suspicious files potentially related to 

the bug. Such techniques can be dynamic or static. Dynamic techniques depend on 

program execution. Therefore, numerous test cases must be available 

(Section 2.1.2). Conversely, static bug localization techniques require only source 

files and a bug report to be applied. Thus, static techniques can be applied to a wider 

range of scenarios, such as legacy systems where comprehensive test suites are rare 

or not available (Section 2.1.3). 

In recent years, structured information retrieval has been successfully 

employed by static bug localization techniques, such as BLUiR [4], BLUiR+ [4], 

and AmaLgam [5]. Some of these techniques incorporate additional data into the 

localization process, such as bug history (BLUiR+ [4] and AmaLgam [5]) and 

change history (AmaLgam [5]). Nonetheless, structured information retrieval was 

still the main responsible for the improvement brought by these techniques 

(Section 2.3.4). 

In spite of the improvements, these techniques are still not effective enough 

to be widely used in practice. To make matters worse, problems in the dataset 

preparation (Section 3.4) led these studies [4] [5] to achieve an artificial 

effectiveness (Section 3.6.1). The lack of realism in empirical studies of the field is 

likely to become a bottleneck for their adoption. Furthermore, there was a lack of a 

thorough evaluation of how structured information retrieval could be further 

explored to increase bug localization effectiveness. These shortcomings motivated 

us to perform “a realistic, in-depth effectiveness evaluation of state-of-the-art bug 

localization techniques”, as stated in our goal (Section 1.3). Our main findings are 

summarized in the next section. 
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5.1  
Findings 

State-of-the-art bug localization techniques are commonly tested in Java 

software systems only [3] [4] [5]. Thus, in order to contribute to the body of 

knowledge on bug localization, we decided to conduct our studies in a previously 

untested OO language. We have selected C#, as it is similar, however significantly 

different from Java (Section 3.1). In particular, the set of constructs available in 

both languages is different (Table 3), which enhances the relevance of selecting a 

different language to evaluate structured IR-based bug localization techniques. 

The lack of previous evaluations using C# software systems obliged us to 

establish a baseline for further comparisons. Thus, we formulated RQ1: 

RQ1: Are BLUiR, BLUiR+, and AmaLgam effective  

to locate bugs in C# projects? 

To answer this question, we applied the three techniques on the 20 selected 

C# projects (Section 3.3). Effectiveness, measured in terms of mean average 

precision (MAP), was close to the values reported in Java studies, indicating the 

techniques could be successfully applied to C# projects (Section 3.6.1.1). There was 

a significant MAP variation across the projects in our sample, which is commonly 

omitted in previous empirical studies. In certain cases, MAP was even higher than 

0.5, while MAP was close to 0.1 in others. This high variation shows that structured 

IR has already potential to be applied in certain industry C# projects, where: (i) bug 

reports are used with proper discipline, and (ii) the text produced by bug report 

authors share some vocabulary with the program itself. 

However, a comparison of results obtained in different sets of projects would 

not be appropriate. Moreover, being aware of the experimental shortcomings of 

previous studies (Section 1.2.1), we needed to establish a reliable baseline against 

which subsequent results would be compared. Then, we ran the same techniques on 

a dataset that implemented the preparation steps necessary to mitigate the 

mentioned shortcomings (Section 3.4). Results indicated that effectiveness with the 

dataset preparation steps was, on average, 37% smaller than the effectiveness 

without those steps (Table 7). 

In the original studies, AmaLgam was the most effective from the three 

techniques [5]. The same happened in our study, both without (Table 5) and with 
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(Table 7) dataset preparation steps implemented. Thus, we restricted subsequent 

evaluations to AmaLgam only. 

Some of the experimental shortcomings handled in this evaluation had been 

pointed out by other studies [14] [17]. Our evaluation reinforces findings from these 

studies, by providing evidence of the effect of those biases on a different 

programming language, which was not addressed in previous studies. Furthermore, 

it served as a realistic parameter against which it was possible to compare 

subsequent results, described in the next subsections. 

5.1.1  
Usage of constructs 

The set of constructs explicitly considered by BLUiR [4] comprises class 

names, method names, variable names, and comments (Section 2.3.2). Considering 

that some Java constructs were left out by BLUiR, as well as the fact that C# has a 

different set of constructs, we formulated RQ2: 

RQ2: Does the addition of more program constructs increase the 

effectiveness of bug localization on C# projects? 

We devised two construct mapping modes in addition to the default mapping 

used by the Java studies (Table 4). Results showed that Complete mode, where 

source files are split in one part for each available C# construct, was the most 

effective mode, increasing MAP in 18%, from 0.206 to 0.244. This result suggests 

that structured IR techniques should leverage the usage of program constructs to 

the maximum possible extent, explicitly including all the available constructs into 

their process. 

5.1.2  
Influence of constructs 

We became aware that the inclusion of all available constructs increased bug 

localization effectiveness (Section 3.6.2). However, it was not clear to which extent 

each construct contributed to the effectiveness increase. To investigate this matter, 

we formulated RQ3: 

RQ3: Which program constructs contribute more to the effectiveness 

of bug localization on C# projects? 
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We answered this question using principal component analysis (PCA). The 

analysis focused on the similarity scores attributed to effectively localized buggy 

files. These scores were tabulated and transformed into a different dataset, 

composed of dimensions (or principal components) sorted in decreasing order of 

relevance to the original dataset. The correlation of each construct to the most 

relevant dimensions (Figure 5) determines the degree of influence of the constructs. 

Thus, it was possible to verify that Methods and Classes were the most influential 

constructs regarding bug localization results. 

PCA also revealed some constructs negatively correlated with the principal 

components. In particular, Interfaces showed a strong negative correlation in the 

second dimension of the data (Figure 5). This negative correlation led us to 

formulate RQ4, questioning whether there would be any construct disturbing bug 

localization. 

RQ4: Does the effectiveness of bug localization increase with the 

suppression of constructs with the lowest contributions? 

To address this question, AmaLgam was adapted to consider all the 12 C# 

constructs (Table 3), except Interfaces. In fact, MAP increased without considering 

interfaces (Table 13). However, the improvement was negligible, and not 

statistically significant. Therefore, we conclude there is little gain in removing 

constructs from bug localization techniques based in structured IR. 

5.1.3  
Weighted similarity calculation 

The suppressing of constructs with little influence on bug localization results 

did not significantly increase bug localization effectiveness. However, we still 

needed to evaluate how the most relevant constructs could influence bug 

localization. This was the subject of RQ5: 

RQ5: Does the effectiveness of bug localization increase with the 

emphasis on constructs with the highest contributions? 

This question was answered by performing another adaptation to AmaLgam 

and allowing it to run with different weights assigned to each program construct. 

Similarity calculation splits source files into parts that contain only constructs from 
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a specific type. Then, the final similarity score of a file is the sum of the similarities 

of its parts (Equation 8). In the weighted variation, the final similarity score is a 

weighted average of the similarities of its parts (Equation 12). 

We assigned various weight values to Method and Class constructs, both in 

isolation (Table 14) and combined (Table 15). Most of the values tested increased 

bug localization effectiveness. However, a statistically significant improvement 

was achieved with weight values of 2.0 for both Classes and Methods. The weight 

values were empirically determined, suggesting there might be optimal values that 

lead to even better results. Nonetheless, this result shows that structured IR-based 

techniques can be fine-tuned to increase effectiveness even further. 

5.2  
Contributions 

Structured information retrieval allows bug localization techniques to exploit 

language features – constructs – in order to increase their effectiveness. Java is the 

programming language that more often appears in bug localization 

studies [2] [3] [4] [5] [6] [7]. Our study contributes by performing an evaluation of 

state-of-the-art bug localization techniques on a set of programs written in a 

previously untested language, namely C#. This evaluation provides evidence of the 

effectiveness of bug localization techniques on another important and widely used 

language [18] [19]. Nonetheless, while the evidence we provide is language-

specific, the findings of our study may as well be applied to different programming 

languages, including Java. 

Next subsections discuss our contributions in further detail. 

5.2.1  
Alternatives to increase bug localization effective ness 

We have evaluated structured information retrieval aspects that were 

unexplored in previous bug localization studies. Particularly, we performed an in-

depth study on the influence of program constructs on bug localization 

effectiveness. In summary, our findings indicate that bug localization techniques 

should (i) consider the entire set of program constructs that can be extracted from 

source files and (ii) attribute higher weights to constructs that are more relevant. 

We provided evidence of the effectiveness of these measures on a set of 20 C# 
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projects. Nevertheless, these measures could be applied in future techniques 

designed to work with different programming languages as well. 

Studies on bug localization have been trending towards the adoption of hybrid 

models, which aggregate multiple sources of information as a strategy to increase 

bug localization effectiveness [3] [4] [5] [7] [32]. Literature indicates that the usage 

of hybrid models is an assured way to evolve bug localization techniques. However, 

structured IR-based techniques can still benefit from the improvements brought by 

our study, regardless of how much additional information their models incorporate. 

Therefore, it is important to exhaust the possibility of improvement associated 

exclusively with structured information retrieval. Our study contributes to this goal, 

by providing alternatives to increase the effectiveness of techniques based on 

structured IR. 

5.2.2  
First bug localization study using C# 

Most bug localization techniques have been tested on software projects 

written in Java [2] [3] [4] [5] [6] [7] or C [6] [15]. We were unable to find studies 

applying bug localization to other object-oriented languages. In particular, this is 

the first bug localization study involving the C# language, to the best of our 

knowledge. 

Preparation steps (Section 3.4) were applied to the experimental dataset in 

order to mitigate bias (Section 1.2.1), therefore ensuring the realistic evaluation 

which was part of our goal (Section 1.3). In addition to these preparation steps, 

developing the study in a language other than Java can also be considered a decision 

that favors realism. While structured IR techniques are language-specific, the 

structured IR approach itself is not. Therefore, implementing techniques that apply 

the principles of a structured IR technique to different programming languages 

helps to strengthen the confidence in their results. 

5.2.3  
Replication package 

Since we could not find other similar studies applied to the C# language, we 

had to develop a set of tools to support the experiments. These tools are described 

in the next paragraphs. 
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GitHub data extractor. It uses the GitHub public API to download issue and 

commit data. It saves downloaded data in JavaScript Object Notation (JSON) 

format. It also downloads the appropriate program version according to issue 

creation dates (Section 3.4.1). 

Preprocessor. It performs the text preprocessing steps (Section 2.2.1) on 

downloaded issues and source code and generates some term frequency statistics 

(Section 2.2.2). It saves the result in XML files, in order to avoid repeated 

computation on each execution of the bug localization. 

Bug localizer. It applies one of the bug localization techniques to a list of 

preprocessed bug reports, generating lists of suspicious files. The technique to be 

applied (BLUiR, BLUiR+, or AmaLgam) is determined by parameters a and b, 

which determine weights of the scores generated by each component 

(Section 2.3.3). Results – such as file names, rank, and suspiciousness scores – are 

saved to CSV files (comma-separated values). The program also generates 

evaluation metrics (Section 3.2) and save them to CSV files as well. 

In addition to the aforementioned tools, resources used in this study – 

downloaded issues, commits, preprocessed source code, raw results and statistical 

analysis – are available online [46]. 

5.3  
Future work 

To conclude our study, we highlight possibilities for future work that might 

develop some of our findings, thus advancing the bug localization field. 

Weighted similarity calculation was shown to increase bug localization 

effectiveness (Section 4.4.2). However, our evaluation selected weight values 

empirically. The effectiveness could be further increased if an optimal set of 

weights could be found. The calculation of the weights could be automated and 

performed on a per project basis, which might lead to even better results. 

In fact, project characteristics significantly influence bug localization 

effectiveness. We have observed in our dataset a wide variation on effectiveness 

across different projects. In some projects, the average MAP was above 0.5, while 

in others it was below 0.1 [46], suggesting that, for particular projects, IR-based 

bug localization is feasible. However, there is a need to perform further analysis of 

project characteristics that affect bug localization effectiveness. A key success 
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factor for the success of IR-based bug localization is that both bug reports and 

source files contain terms that relate to the domain of the application. Therefore, 

practices followed by developers may have a significant influence on bug 

localization. Projects with stricter policies regarding naming conventions in source 

code and bug reporting might be those where IR-based bug localization is more 

effective. 

Therefore, to be successfully applied, IR-based bug localization techniques 

require the adoption of practices that encourage developers and users to share the 

same vocabulary. These practices could be supported through recommendation 

systems, which could analyze the code to identify relevant terms and suggest the 

use of these terms to the author while the bug report is being written. Likewise, 

IDEs could be improved to advise programmers to use a consistent set of terms. For 

instance, if a software project uses the term customer to represent a domain concept, 

when a developer creates a class named Client, the IDE could recommend the usage 

of the first term. This consistency would improve term matching, which is vital to 

the success of information retrieval models. 

We focused our exploration of structured IR-based bug localization on source 

files – specifically, on program constructs. Nevertheless, similar exploration could 

be carried out with bug reports. Regarding bug report contents, the same kind of 

recommendation for ensuring terminological consistency that was suggested for 

programmers could also be directed to users writing bug reports. As for bug report 

structure, we followed the approach defined in [3] [4] [5] and considered only bug 

report summary and description. However, additional information could be 

considered. For example, many platforms, such as GitHub, allow developers to 

carry out a discussion about the bug, saving the exchanged messages within the bug 

report. These discussions could become a third part in which bug reports are split 

(Section 2.3.2). As these discussions can become lengthy, bug report 

summarization could be applied to restrict discussion contents to more meaningful 

terms. 

Regarding C#, future work includes the creation of a standard bug dataset, 

similar to iBUGS [36] or moreBugs [44], containing bugs from C# projects. This 

would allow studies with better potential for generalizability involving the C# 

language. Although we have made downloaded issues available online [46], only 

raw data is available. Ideally, a standard dataset would have all or most of its 
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constituent bug reports manually verified in order to avoid misclassification, i.e., 

regular issues wrongly classified as bugs. Other desirable features of a bug dataset 

include online search and visualization functionalities and the possibility of 

downloading parts of the dataset according to some criteria, e.g., bugs opened after 

a specific date, bugs closed more than 30 days after being opened, bugs opened and 

closed by the same person. 

Another possible line of work involves conducting analytical studies to 

improve bug localization knowledge on different languages and different types of 

files. For instance, bugs are not always located in source files. Sometimes they can 

be found in different kinds of files, such as configuration files. Developers could 

benefit from having specific localization techniques for these kinds of bugs. 

Finally, it is also important to assess the usefulness of bug localization when 

actually applied by developers. This is a fundamental step to promote the adoption 

of bug localization techniques. Therefore, these techniques should be assessed via 

controlled experiments involving developers, such as the one reported in [10]. 

Controlled experiments would reveal how developers use bug localization results 

to locate buggy files. Nevertheless, the bug localization field still demands 

effectiveness increase of existing techniques, as observed in this dissertation. 

Otherwise, developers would not be confident enough in the techniques to use them, 

even in controlled experiments. Thus, increasing the effectiveness of the techniques 

is an important first step towards widespread adoption of automated bug 

localization. 
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