

 Rômulo de Carvalho Magalhães

Operations over Lightweight Ontologies

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de In-
formática da PUC-Rio as partial fulfillment of the require-
ments for the degree of Mestre.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
January 2015

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

 Rômulo de Carvalho Magalhães

Operations over Lightweight Ontologies

Dissertation presented to the Programa de Pós-

Graduação em Informática of the Departamento de In-

formática do Centro Técnico Científico da PUC-Rio, as

partial fulfillment of the requirements for the degree of

Mestre.

Prof. Marco Antonio Casanova

Advisor
Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado
Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática - PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro

Técnico Científico – PUC-Rio

 Rio de Janeiro, January 30th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

All rights reserved

Rômulo de Carvalho Magalhães

Graduated in Computer Engineering from Pontifical Catholic Uni-

versity of Rio de Janeiro (PUC-Rio), Rio de Janeiro - Brazil in

2009. He joined the Master in Informatics at Pontifical Catholic

University of Rio de Janeiro (PUC-Rio) in 2013.

Bibliographic data

de Carvalho Magalhães, Rômulo

 Operations over Lightweight Ontologies/ Rômulo de Car-

valho Magalhães; advisor: Marco Antonio Casanova. – 2015.

 106 f. : il. (color) ; 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do

Rio de Janeiro, Departamento de Informática, 2015.

 Inclui bibliografia

 1. Informática – Teses. 2. Dados ligados. 3. Ontologias. 4.

OWL. 5. RDF. 6. Grafos. 7. Lógica Descritiva (DL) I. Casanova,

Marco Antonio. II. Pontifícia Universidade Católica do Rio de

Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

Acknowledgments

I would like to say a special thank you to my parents, Cristina and Walter, for

their support and encouragement during all these years of hard study. For raising

me and being there when I needed.

To my sister, Amanda, who has always been a great friend even when we both

were too busy to be together.

To my advisor, Marco Antonio Casanova, for sharing his knowledge and helping

me develop this wonderful work.

To my girlfriend, Patricia, for her support, comprehension, for always listening to

me and being always ready to distract me for a while.

To my friend, Daniel, for all his support and for always remembering me to take a

break. To all the friends I made during this years of study. Thanks for the support,

for sharing your ideas, experiences and always trying to help.

To all the professors and staff from the Computer Science Department. Thanks for

all your help and for always being so accommodating.

To PUC-Rio and CAPES for funding my research.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

Abstract

Magalhães, Rômulo; Casanova, Marco Antonio (Advisor). Operations over
Lightweight Ontologies. Rio de Janeiro, 2015. 106p. MSc. Dissertation –
Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

This work addresses ontology design problems by treating ontologies as

theories and by defining a set of operations that map ontologies into ontologies,

including their constraints. The work first summarizes the base knowledge needed

to define the class of ontologies used and proposes four operations to manipulate

them. It then shows how the operations work and how they may help design new

ontologies. The core of this work is describing the implementation of the opera-

tions over a Protégé plug-in, detailing the architecture and including case-use ex-

amples.

Keywords

Description Logics; Linked Data; Ontologies; OWL; RDF

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

Resumo

Magalhães, Rômulo; Casanova, Marco Antonio. Operações sobre Ontolo-
gias Leves. Rio de Janeiro, 2015. 106p. Dissertação de Mestrado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho aborda problemas de projeto de ontologias tratando-as como

teorias e definindo um conjunto de operações que mapeiam ontologias em ontolo-

gias, incluindo suas restrições. Inicialmente, o trabalho resume o conhecimento

básico necessário para definir a classe de ontologias utilizada e propõe quatro

operações para manipular ontologias. Em seguida, mostra o funcionamento destas

operações e como elas podem ajudar na criação de novas ontologias. O cerne do

trabalho mostra a implementação destas operações em um plug-in do Protégé,

detalhando sua arquitetura e incluindo casos de uso.

Palavras-chave

Lógica de Descrição; Dados Interligados; Ontologias; OWL; RDF

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

Table of Contents

1 Introduction __ 12

1.1 Web of Data ______________________________________ 12

1.2 Motivation _______________________________________ 12

1.3 Goal and Contributions _____________________________ 13

1.4 Dissertation Structure ______________________________ 15

2 Theoretical Basis __ 16

2.1 Linked Data Technology ____________________________ 16

2.2 A Brief Review of Description Logic ____________________ 20

2.3 Lightweight Languages _____________________________ 22

2.4 Example ___ 23

2.5 Summary __ 25

3 Related Work __ 26

3.1 Overview __ 26

3.2 Ontology Reuse ___________________________________ 26

3.3 Ontology Versioning _______________________________ 28

3.4 Ontology-Based Data Integration _____________________ 29

3.5 Summary __ 33

4 Constraint Graphs _______________________________________ 34

4.1 Introduction ______________________________________ 34

4.2 Constraint Graph Representation _____________________ 34

4.3 Constraint Graph Basic Functions _____________________ 37

4.4 Summary __ 39

5 Implementation of the Operations ___________________________ 40

5.1 Introduction ______________________________________ 40

5.2 Definition of Operations over Lightweight Ontologies ______ 40

5.3 Implementation of Projection _________________________ 42

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

5.4 Implementation of Union ____________________________ 44

5.5 Implementation of Intersection ________________________ 47

5.6 Implementation of Difference _________________________ 49

5.7 Summary __ 52

6 OntologyManagerTab – an Ontology Manager Plug-in for Protégé _ 54

6.1 Introduction ______________________________________ 54

6.2 Class Architecture _________________________________ 55

6.3 Software Setup ___________________________________ 58

6.4 Software Usage ___________________________________ 65

6.4.1. Loading Ontologies ___________________________ 65

6.4.2. The Union Procedure _________________________ 70

6.4.3. The Intersection procedure _____________________ 75

6.4.4. The Projection procedure ______________________ 79

6.4.5. The Difference procedure ______________________ 83

6.4.6. Minimizing Ontologies _________________________ 85

6.4.7. Saving Resulting Ontologies ____________________ 92

6.5 Experiments ______________________________________ 97

6.6 Summary __ 99

7 Conclusion ___ 100

7.1 Contributions ____________________________________ 100

7.2 Limitations ______________________________________ 100

7.3 Future Work _____________________________________ 101

8 Bibliographical References _______________________________ 102

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

List of Figures

Figure 1. Small piece of FOAF ontology. ________________________ 24

Figure 2. Basic Procedures __________________________________ 39

Figure 3. Packages Interactions _______________________________ 56

Figure 4. Ontology Package interaction with Main Package _________ 58

Figure 5. Launching Protégé _________________________________ 60

Figure 6. Opening Protégé Project _____________________________ 61

Figure 7. Configuring Protégé Widgets __________________________ 62

Figure 8. Selecting OntologyManagerTab _______________________ 63

Figure 9. OntologyManagerTab _______________________________ 64

Figure 10. Loading version of FOAF Ontology ____________________ 66

Figure 11. Version of FOAF Loaded ____________________________ 67

Figure 12. Hiding FOAF IRIs _________________________________ 68

Figure 13. FOAF normalized file created ________________________ 69

Figure 14. O1 loaded as Ontology 1 ____________________________ 71

Figure 15. O2 loaded as Ontology 2 ____________________________ 72

Figure 16. Resulting Ontology for the Union of O1 and O2 ___________ 73

Figure 17. OntologyManagerTab asking for second ontology ________ 74

Figure 18. OPhoneCompany1 loaded as Ontology 1 ___________________ 76

Figure 19. OPhoneCompany2 loaded as Ontology 2 ___________________ 77

Figure 20. Resulting Ontology for the Intersection of OPhoneCompany1 and

OPhoneCompany2 _____________________________________ 78

Figure 21. FOAF Ontology loaded as Ontology 1 __________________ 80

Figure 22. Selection of VFF for the Projection procedure ____________ 81

Figure 23. Resulting Ontology for the Projection of VFF over the FOAF

ontology ___ 82

Figure 24. Resulting Ontology for the Difference of OPhoneCompany1 and

OPhoneCompany2 _____________________________________ 84

Figure 25. O1 loaded as Ontology 1 and O2 loaded as Ontology 2 _____ 86

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

Figure 26. result of said Intersection between O1 and O2 ____________ 87

Figure 27. Minimize Graph function over Intersection between O1 and

O2 ___ 88

Figure 28. Union between O3 and O4 ___________________________ 90

Figure 29. Graph Minimization for the Union between O3 and O4 _____ 91

Figure 30. Saving the Resulting Ontology for the Projection of VFF over

the FOAF ontology ________________________________ 93

Figure 31. Ontology saved as “FoafFacebookOntologyNormalized.owl” 94

Figure 32. Loading saved ontology _____________________________ 95

Figure 33. Recently saved ontology loaded ______________________ 96

Figure 34. Generated OWL file,

“FoafFacebookOntologyNormalized.owl”, in a text editor ___ 97

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

List of Tables

Table 1. Common constraints used and their tautologies ____________ 23

Table 2. Constraints for FOAF ontology on Figure 1. _______________ 24

Table 3. Comparative analysis between the applications for ontology

integration. ______________________________________ 33

Table 4. Constraints of Ontology FF ____________________________ 44

Table 5. Constraints ΣU of Ontology OU. _________________________ 45

Table 6. Constraints for OPhoneCompany1, OPhoneCompany2 and their Union

OPhoneCompany3 _____________________________________ 46

Table 7. Constraints Σint of Ontology Oint ________________________ 48

Table 8. Constraints for OPhoneCompany1, OPhoneCompany2 and their

Intersection OPhoneCompany3 ___________________________ 49

Table 9. Constraints ΣD of Ontology OD _________________________ 51

Table 10. Constraints for OPhoneCompany1, OPhoneCompany2 and their

Difference OPhoneCompany3 ____________________________ 52

Table 11. Experiments Processing Times in seconds ______________ 98

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

1
Introduction

1.1 Web of Data

Currently, the World Wide Web contains an almost immeasurable amount of in-

formation, which grows daily as its popularity increases throughout the world,

thus becoming increasingly composed of heterogeneous data sources, bearing in

mind that there is no standard for their publication. It is in this context that arises

the concept of Web of Data, which defines an approach to publish, retrieve and

describe distributed data on the Web.

 The Web of Data is based on the principles of Linked Data proposed by

(Tim Berners-Lee, 2006), which defines a group of best practices to publish and

connect structured data on the Web. For this purpose, the Linked Data principles

use Semantic Web technologies such as URI (Unified Resource Identification),

RDF triples (Resource Description Framework) (Klyne, G. Et al., 2010) and OWL

(Web Ontology Language) (McGuinness, DL, Harmelen, F ., 2010), which will be

explained in depth in Chapter 2.

From a broader perspective, the Linked Data principles suggest a way to

publish databases on the Web that facilitates interoperability. In fact, the problem

of interoperability between databases has persisted since the 80’s, if not earlier,

without appropriate approaches (Haas and Carey, 2003). Furthermore, these prin-

ciples emphasize the definition of the conceptual structure of the data through the

reuse of known ontologies, thus minimizing the need for alignment between con-

ceptual schemas, a difficult and error proned task, which lies at the core of the

interoperability issue.

1.2 Motivation

The purpose of this dissertation is to develop a tool to assist the domain specialist

in the process of managing ontologies for data publication.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

13

Many tools have been developed with the aim of assisting the process of de-

veloping an ontology based on others, by heuristics or techniques for ontology

alignment. However, such tools do not properly assist the user in developing a

new ontology that represents a correct understanding of the semantics of the in-

volved data sources, expressed by the logical constraints of the original ontolo-

gies. As a matter of fact, this requires propagating the original constraints to the

new ontology.

In the Web of Data, the main obstacle to the integration and interoperability

of existing data sources emerges from the fact that these sources are described by

ontologies developed independently. This happens most often because of a lack of

concern while reusing terminologies of the most popular and widely disseminated

ontologies on the Web, which in turn hinders the recognition of connections be-

tween distinct data sources.

Furthermore, we must consider semantic conflicts that occur when the same

term represents different concepts (Noy, NS, 2004), in other words, when the

same symbol accounts for two distinct concepts. As an example, we may consider

the term foot in two distinct data sources, one of the healthcare domain and the

other of the measurement units domain, representing completely different con-

cepts. In the first source, “foot” represents a human body part, whereas in the se-

cond “foot” is a measurement unit, mostly used in countries that were British col-

onies.

1.3 Goal and Contributions

In order to address the problems outlined in Section 1.2, this work will consider

ontologies as logical theories, composed of vocabularies and constraints, and will

define algebraic operations (Projection, Union, Intersection and Difference)

over one or two ontologies, as proposed in (Casanova et al., 2012), using the con-

cept of Constraint Graphs in order to enable the integration and interoperability of

the data sources that follow the Linked Data principles. These algebraic opera-

tions permit defining new ontologies out of existing ones and take into account

the semantics of the involved ontologies.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

14

In more detail, we define an ontology as a pair O=(V,Σ) such that V is a vo-

cabulary and Σ is a set of constraints in V. The theory of Σ is the set of all con-

straints that are logical consequences of Σ. We emphasize that the constraints in Σ

capture the semantics of the terms in V and must, therefore, be brought to the

foreground. The theory of Σ identifies the constraints that are implicitly defined,

but which must be considered when using the ontology.

Consider now the problem of comparing the expressive power of two ontol-

ogies, O1=(V1,Σ1) and O2=(V2,Σ2). If the designer wants to know what they have in

common, he should create a mapping between their vocabularies and detect which

constraints hold in both ontologies, after the terms are appropriately mapped. The

intersection operation answers this question.

On the other hand, if the designer wants to know what holds in O1=(V1,Σ1),

but not in O2=(V2,Σ2), he should again create a mapping between their vocabular-

ies and detect which constraints hold in the theory of Σ1, but not in the theory of

Σ2, after the terms are appropriately mapped. The difference operation answers

this question.

Another variant of ontology comparison is the problem of analyzing what

changed from one version of an ontology to the other. Difference is especially

useful here.

Also, if the designer wishes to use only part of a given ontology, he must

define a set W containing just a few terms from the vocabulary V and detect which

constraints in the theory of Σ references only to said terms. For that purpose we

have the Projection operation.

Finally, if the designer wants to combine O1=(V1,Σ1) and O2=(V2,Σ2), he

should again create a mapping between their vocabularies and detect which con-

straints hold in both theories and afterwards create a new ontology with all terms

and constraints of the originals, taking into account the mapping not to add dupli-

cates. To that end we have the Union operation.

The main contribution of this work is the development of a software tool as

a plug-in for Protégé, the most popular platform for editing ontologies, which will

implement the algebraic operations to assist the domain specialist in managing

ontologies. However, this software tool will be completely independent from any

of the Protégé libraries, using it as a graphical user interface (GUI) Front-End

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

15

only. Thus, it will be possible to adapt the tool to any other ontology editor in the

future, provided that the necessary integration procedures are correctly performed.

1.4 Dissertation Structure

This dissertation is structured as follows. Chapter 2 presents the basic concepts

related to this work: Linked Data Technology, Description Logic and the concep-

tual schemas adopted. Chapter 3 describes related work, qualifying and comparing

the proposed tool with others. Chapter 4 presents the concept of constraint graph

and the algorithms developed to build it. Chapter 5 addresses the implementation

adopted for each operation (Projection, Union, Intersection and Difference).

Chapter 6 details the OntologyManagerTab with its class architecture, a Setup

Guide and use examples for its functionalities. Finally, Chapter 7 discusses the

limitations of this work and suggests possible future work.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

2
Theoretical Basis

This chapter provides an overview of the main concepts related to this disserta-

tion. Section 2.1 introduces the key concepts of the Linked Data Technology. Sec-

tion 2.2 presents a brief review of Description Logic. Section 2.3 describes the

family of Description Logic languages adopted in this work. Finally, Section 2.4

presents an example.

2.1 Linked Data Technology

Linked Data is a set of better practices for consumption and publication of struc-

tured data in the Web, with the goal to establish connections between items of

different data sets to form a single global space of data (Heath, T. and Bizer, C.,

2011). These better practices were initially proposed by (Berners-Lee, 2007) and

became known as the principles of Linked Data. They are:

1. The usage of URIs as names for objects.

2. The usage HTTP URIs in such a manner that applications and users can

follow them.

3. Provide useful information through standards (RDF, SPARQL), when a

URI is followed.

4. Include RDF declarations that Link URIs between themselves, allowing

the extraction of new relationships.

These are the principles that supply the basis for publishing and intercon-

necting structured data in the Web. The open standards adopted in Linked Data

are widely known and will be detailed below.

URI – Uniform Resource Identifier

A Uniform Resource Identifier (URI) is a sequence of characters that identifies a

physical or abstract resource (Berners-Lee T. et al., 2005). Since the most com-

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

17

mon form of URI is the Uniform Resource Locator (URL), also known as a Web

address, URLs can be used to identify things in the Web.

To differentiate between URIs that represent Web pages and those that rep-

resent things in the Web, two distinct forms of URI were defined: hash URI

(Berners-Lee, T., 1994) and slash URI (Berners-Lee, T., 2007). Usually, hash

URIs are used to identify things and are composed by: (document) # (term to be

introduced in the document), as an example we have

http://www.w3.org/2002/07/owl#Thing

On the other hand, the slash URI defines an URL, as in the following exam-

ple:

http://purl.org/dc/elements/1.1/title

Ontology

A widely used definition of ontology in the Web Semantics literature is (Gruber et

al, 1993): “An ontology is defined as a formal, explicit specification of a shared

conceptualization”.

According to (Breitman et al, 2006), in Gruber’s definition, the term “con-

ceptualization” expresses an abstract model; “explicit” means that the elements

must be clearly defined; and “formal” indicates that the specification must be pro-

cessable by a machine. Therefore, it is possible to conclude that, in Gruber’s defi-

nition, an ontology is a representation of a knowledge domain, where a set of ob-

jects and their relationships are described by vocabularies.

 Currently, ontologies can be textually represented in XML based lan-

guages, such as RDF, RDF Schema (RDF-S) and OWL.

RDF – Resource Description Framework

The Resource Description Framework (RDF) describes a “standard model” for

data exchange in the Web. RDF is used to represent metadata resources in the

Web. Most ontology definition languages are based on RDF.

RDF is based on the idea that resources are identified using URIs and are

described in terms of simple properties and property values, thereby creating sets

of triples, composed of a subject, a predicate and an object, where:

1. The subject denotes a resource (identified by a URI);

2. The predicate names a property of the resource;

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

18

3. The object indicates the property value, which can be a literal (repre-

sented by an integer or a string, for example), or even a URI identi-

fying another resource.

As an example, we have the following declaration:

where

- Subject: URL http://www.inf.puc-rio.br/

- Predicate: “hasProfessor”

- Object: “Marco A. Casanova”

RDF Schemas extend RDF to include constructors for classes, subclasses,

properties and sub-properties.

RDF Vocabulary

An RDF vocabulary supplies domain-specific terms to describe classes of re-

sources and the types of relationship between them. Depending on the expressive

power, vocabularies can be classified from taxonomies to ontologies (McGuin-

ness, D.L., 2002).

To increase the interoperability between applications, it is recommended to

reuse terms of RDF vocabularies, which are widely used. As examples of vocabu-

laries well diffused throughout the community, that should be used whenever pos-

sible, we can name:

• Dublin Core Metadata Initiative (DCMI)1 seeks to describe attributes of

general metadata, such as: creator, data, subject and description, among

others.

• Friend-of-Friend (FOAF)2 defines terms to describe people, their activi-

ties and their relationships with other people, objects and websites (Brick-

ley, D., Miller, L., 2010).

• Description of a Project (DOAP)3 defines terms to describe software pro-

jects, particularly Open Source ones.

1 https://github.com/edumbill/doap/
2 http://www.foaf-project.org/
3 http://semanticweb.org/wiki/DOAP

http://www.inf.puc-rio.br/ hasProfessor Marco A. Casanova

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

19

• Music Ontology4 defines terms to describe various concepts related to mu-

sic, such as: artists, albums, tracks and others.

OWL - Web Ontology Language

The Web Ontology Language (OWL), standardized by W3C, is a computational,

logic-based language such that knowledge expressed in it can be used to verify the

consistency of the knowledge or to make implicit knowledge, explicit.

OWL offers specific constructors for basic ontological concepts, such as

classes, instances, properties and cardinality restrictions, as well as constructors

for the formalization of more complex relationships, such as equivalency, union

and intersection. Originally, OWL had three sublanguages of increasing expres-

siveness:

1. OWL Lite – it supports the creation of classification hierarchies and some

simple constraints. It supports cardinality restrictions with values of 0 or 1.

The objective of this sublanguage is to offer support to the migration from

taxonomies to the format of ontologies.

2. OWL DL (Description Logic) – it supports all the constructors offered for

OWL language; it offers the maximum expressiveness within the bounds

of the computational completeness and decidability of Description Logic.

This sublanguage possesses constructors, which are more complex than

those of OWL Lite, enabling the modeling of classes by means of the op-

erators of union, intersection and complement, besides representing class

disjunctions.

3. OWL Full – allows the maximum expressiveness and the syntactic free-

dom of RDF, but with no computational guarantees.

These three sublanguages have distinct target audiences and the choice of

one of them is crucial to the success of the Linked Data application.

4 http://musicontology.com/

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

20

2.2 A Brief Review of Description Logic

A (Description Logic) language L is characterized by an alphabet A, consisting

of: a set of atomic concepts; a set of atomic roles; the universal concept, also

known as top, denoted by ⊤; the empty concept, also know as bottom, denoted by

⊥; and the universal role also denoted by ⊤; and the empty role, also denoted by

⊥.

The set of role descriptions of L is inductively defined as follows:

• An atomic role and the universal and empty roles are role descriptions.

• If p is a role description, then the following expressions are role descriptions:

 p¯ (the inverse of p)

 ¬p (the negation of p)

The set of concept descriptions of L is inductively defined as follows:

• The atomic concept, the universal and the empty concept are concept descrip-

tions.

• If e is a concept description, p is a role description and n is a positive integer,

then the following expressions are concept descriptions:

¬e (negation)

∃p (restricted existential quantification)

(≤ n p) (Maximum cardinality restriction)

(≥ n p) (Minimum cardinality restriction)

 An interpretation s for the symbols of the alphabet A consists of a non-

empty set Δs, the domain of s, whose elements are called individuals, and an inter-

pretation function, also denoted s, where:

s(⊤) = Δs, if ⊤ denotes the universal concept

s(⊤) = Δs × Δs , if ⊤ denotes the universal role

s(⊥) = ∅ , if ⊥ denotes the empty concept or the empty role

s(A) ⊆ Δs, for each atomic concept A in A

s(P) ⊆ Δs × Δs for each atomic role P in A

 The function s is extended for concept and role descriptions of L as fol-

lows (where e is a concept description and p is a role description):

s(p¯) = s(p)¯ (the inverse of s(p))

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

21

s(¬p) = Δs × Δs − s(p) (the complement of s(p) in relation to Δs × Δs)

s(¬e)= Δs − s(e) (the complement of s(e) in relation to Δs)

s(∃p) = {I ∈ Δs / (∃J ∈ Δs)((I,J) ∈ s(p)}

(the set of individuals I such as s(p) maps I to some individual J)

s(≥n p) = {I ∈ Δs / |{J ∈ Δs / (I,J) ∈ s(p)}| ≥ n}

(the set of individuals I such as s(p) maps I to at least n distinct indi-

viduals)

s(≤n p)={ I ∈ Δs / |{J ∈ Δs / (I,J) ∈ s(p)}| ≤ n}

(the set of individuals I such as s(p) maps I to at most n distinct indi-

viduals)

A formula of L is an expression of the form u ⊑ v, called an inclusion.

Other subtypes of formulas are: u ⊑ v is a concept inclusion iff u and v are both

concept descriptions, and u ⊑ v is a role inclusion iff u and v are both role de-

scriptions. We also define a formula of the form u | v, called a disjunction, or of

the form u ≡ v, called an equivalence, where u and v are either concept descrip-

tions or role descriptions of L. A disjunction formula u | v is logically equivalent

to the inclusion u ⊑ ¬v and an equivalence u ≡ v is logically equivalent to u ⊑ v

and v ⊑ u.

 An interpretation of s for L satisfies u ⊑ v iff s(u) ⊆ s(v); s satisfies u | v iff

s(u) ∩ s(v) = ∅ , in other words, if s(u) and s(v) are disjoint sets; and s satisfies

u ≡ v iff s(u) = s(v).

Let σ and σ’ be two inclusions of L and Σ be a set of inclusions of L. As-

sume that σ is of the form u ⊑ v. We say that:

• s satisfies σ or s is a model of σ, denoted s ⊨ σ, iff s(u) ⊆ s(v).

• s satisfies Σ or s is a model of Σ, denoted s ⊨ Σ, iff s satisfies all inclusions

in Σ.

• σ is valid, denoted ⊨ σ, iff any interpretation for V satisfies σ.

• σ and σ’ are tautologically equivalent iff any model of σ is a model of σ’

and vice-versa.

• Σ logically implies σ, or σ is a logical consequence of Σ, denoted Σ ⊨ σ, iff

any model of Σ satisfies σ.

• Σ is satisfiable or consistent iff there is a model of Σ.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

22

The theory of Σ in V, denoted τ[Σ], is the set of all inclusions in V that are

logical consequences of Σ. We say that two sets of inclusions, Γ and Θ, are equiv-

alent, denoted Γ ≡ Θ, iff τ[Γ]=τ[Θ].

Finally, an ontology is a pair O=(V,Σ) such that V is a finite alphabet, called

the vocabulary of O, whose atomic concepts and atomic roles are called classes

and properties of O, respectively, and Σ is a set of inclusions in V, called the con-

straints of O. Two ontologies O1 = (V1,Σ1) and O2 = (V2,Σ2) are equivalent, denot-

ed O1 ≡ O2, iff Σ1 and Σ2 are equivalent.

2.3 Lightweight Languages

In this dissertation, the family of lightweight languages was adopted, which is

equivalent to the family of DL-Lite core with number restrictions (Artale, A. et al,

2009). Lightweight languages are sufficiently expressive to capture the construc-

tors of the main data modeling languages, such as UML and ER (Borgida and

Brachman, 2003). They support classes, datatype properties, object properties,

minimum and maximum cardinality (minCardinalities and maxCardinalities), in-

verse functional property (InverseFunctionalProperties) that captures simple keys,

class subset and class disjointness. Furthermore, lightweight languages allow the

use of decision procedures that exploit the structure of constraint sets (Casanova

et al., 2011).

A lightweight language is defined in Section 2.2, except that the formula

types are listed in Table 1, called lightweight inclusions. All inclusions that appear

in the “Abbreviated form” column can be rewritten equivalently as shown in the

“Unabbreviated form” column, which indicates the normalized form of the inclu-

sion. As observed in (Casanova et al., 2011), the normalized form avoids the use

of the existential quantifier and maximum cardinality constraints. Furthermore,

negated descriptions appear only on the right side of the normal form.

Finally, a lightweight ontology is an ontology which constraints are light-

weight inclusions. From this point on, we will use interchangeably the terms

‘lightweight inclusion’ and ‘lightweight constraint’.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

23

Type Abbreviated
Form

Unabbreviated
Form

Informal semantics

Domain
Constraint

∃P ⊑ C (≥ 1 P) ⊑ C Property P has class C as domain, that is,
if (a,b) is a pair in P, then a is an individual in C

Range
Constraint

∃P¯ ⊑ C (≥ 1 P¯) ⊑ C Property P has class C as range, that is,
if (a,b) is a pair in P, then b is an individual in C

minCardinality
Constraint

 C ⊑ (≥ k P) or
C ⊑ (≥ k P¯)

Property P or its inverse P ¯ maps each individual
in class C to at least k distinct individuals

maxCardinality
Constraint

C ⊑ (≤ k P) or
C ⊑ (≤ k P¯)

C ⊑ ¬(≥ k+1 P) or
C ⊑ ¬(≥ k+1 P¯)

Property P or its inverse P¯ maps each individual
in class C to at most k distinct individuals

Subset
Constraint

 C ⊑ D Each individual in C is also in D, that is,
class C denotes a subset of class D

Disjointness
Constraint

 C | D C ⊑ ¬D and
D ⊑ ¬C

No individual is in both C and D, that is,
classes C and D are disjoint

Table 1. Common constraints used and their tautologies

2.4 Example

In this section, we exemplify the concepts defined so far, using the fragment of

the FOAF ontology shown in Figure 1. The Friend-of-a-Friend (FOAF) ontology

defines terms to describe people, their activities and their relationships with other

people, objects and websites. Figure 2 has the normalized constraints for this

fragment of FOAF, where the first column contains the image and domain con-

straints, the second column, the minimum and maximum cardinality restrictions

and the third, the subset and disjunction constraints.

For a better understanding of our representation, we now explain each con-

strain in Table 2. From the first column we have:

• ∃name ⊑ Person – name is an atomic role which is a property of Person

(the domain of name).

• ∃name¯ ⊑ String – name¯ has String as its domain, thus the property name

has String as its range.

From the second column, we have the minimum and maximum cardinalities

for the property name:

• Person ⊑	 (≤1 name) – maximum cardinality restriction for the property

name in Person with value 1.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

24

• Person ⊑	 (≥1 name) – minimum cardinality restriction for the property

name in Person with value 1.

From the third column, we have the subset and disjointness constraints:

• Person ⊑ ¬Organization – indicates that the classes Person and Organiza-

tion are disjoint.

• Organization ⊑ ¬Person – equivalently indicates that the classes Person

and Organization are disjoint.

• Group ⊑ Agent – the class Group is a subset of the class Agent.

• Person ⊑ Agent – the class Person is a subset of the class Agent.

• Organization ⊑ Agent – the class Organization is a subset of the class

Agent.

Figure 1. Small piece of FOAF ontology.

Table 2. Constraints for FOAF ontology on Figure 1.

Domain and Range
Constraints

Cardinality
Constraints

Subset and Disjunction
Constraints

∃name ⊑ Person

∃name¯ ⊑ String

Person ⊑(≤1 name)

Person ⊑(≥1 name)

Person ⊑ ¬Organization

Organization ⊑ ¬Person
(equivalent to the previous constraint)

Group ⊑ Agent

Person ⊑ Agent

Organization ⊑ Agent

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

25

2.5 Summary

This chapter presented the main concepts related to this dissertation. Section 2.1

introduced the key concepts of the Linked Data Technology. Section 2.2 present-

ed a brief review of Description Logic. Section 2.3 described the family of De-

scription Logic languages adopted in this work. Finally, Section 2.4 presented a

simple example.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

26

3
Related Work

3.1 Overview

Ontology management is an essential aspect for the development of applications

using Linked Data technologies. It can be defined as a set of methods and tech-

niques required to effectively handle multiple ontologies derived from heteroge-

neous and defined data sources to comply with the most diverse purposes (Peter

Haase et al, 2003).

There are several studies about this particular topic. In this chapter, we will

separate them in areas of focus and address their relationship with the current

work. Furthermore, we will discuss other works related to the areas of ontology

reuse, ontology versioning and ontology-based data integration. Each area corre-

sponds to a section. The final section contains considerations about the work pre-

sented in this dissertation.

3.2 Ontology Reuse

According to Bizer et al. (2009), ontology reuse can be defined as the process in

which a reference ontology, namely a widely used, consolidated and tested ontol-

ogy is used as an input to generate a new one. This process can take two ap-

proaches, the syntactic reuse and the semantic reuse. The syntactic reuse consists

of importing a set of terms of an existing ontology vocabulary to the new ontolo-

gy. The semantic reuse consists of applying the constraints of an existing ontology

to the terms of a new one.

The syntactic approach is easily handled by various ontology management

programs, including the Protégé (Gennari J. H. et al., 2003) for which we built our

plug-in. Such programs simply import the needed OWL ontologies by using the

declaration tag <owl:import> from the OWL Language.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

27

This approach is quite simple but has its disadvantages. By using

<owl:import>, the user is importing the whole ontology, even if he wishes to use

only a small part of it, which can cause inconsistencies between the terms of the

imported ontology and the current one.

When an ontology imports another one, it effectively dictates that all seman-

tic conditions of the imported ontology are held in the importing ontology. As a

result, the imports relationship is transitive: if an ontology A imports an ontology

B and B imports an ontology C, then A also imports C. Thus, we must be careful

with this import closure as not to generate any inconsistencies.

Frequently, the size and complexity of available ontologies exceed the needs

of an application, which may need only part of the domain described by the ontol-

ogy. By using complete ontologies, an application ends up creating computational

penalties such as issues in performance, space and processing time, primarily in

the use of inference mechanisms.

Hence, if the user wishes to import only a small subset of an ontology, he

must perform the costly procedure of carefully identifying which set of axioms

represents the knowledge base he wants to import. This is not always a trivial

matter, since we have to consider the size of an ontology as well as its number of

concepts and constraints, and we must also take into account the relevance of the-

se concepts and constraints to the knowledge base the user wants to import.

Ontology reuse is highly recommended in the development of new ontolo-

gies and is part of the best practices in Web Semantics. It reduces duplication ef-

forts, the cost and complexity of creating a new ontology from the ground up;

Furthermore, since ontologies are understood as means for shared knowledge

conceptualization, reusing existing ontological sources increases application in-

teroperability both at the syntactic and at the semantic level.

There are several tools that manage ontology reuse through the extraction of

a fragment of an ontology to create a new one. In (Volz R. et al., 2003), this issue

is treated similarly to the definition of a database view, described by a query over

the underlying database. However, other approaches consider that the extraction

of a fragment of an ontology is conceptually different from the definition of a da-

tabase view, since an ontology may contain other types of elements, such as clas-

ses, relationships and constraints, that cannot be defined in a query.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

28

Considering this last case, Noy and Musen (2004) presented the concept of

traversal view, which is a view defined by the user where he specifies the central

concept or the relevant concepts, the relationships employed to find concepts to be

included, as well as the depth of the traversal. Based on this approach, they devel-

oped a Protégé plug-in.

In our work, we adopted the approach of supporting ontology reuse by ex-

tracting fragments of an ontology using the projection operation based on a selec-

tion of vocabulary terms from the original ontology.

3.3 Ontology Versioning

Ontology versioning relates to the fact that there might be multiple variants of an

ontology, since the ontologies may be developed in a collaborative manner by

several users that improve and perfect them according to the latest needs and uses,

thus forming a derivation tree.

In this scenario, the applications and users need to handle the different ver-

sions of a particular ontology over time. Klein et al. (2002) developed an ontology

versioning control tool that supports ontology updates and their effects through

the creation and maintenance of its various versions.

Usually, older and newer versions of the same ontology are provided by de-

velopers, but with no efficient way to highlight the differences between the ver-

sions. To detect the differences, in most cases, one compares two versions of the

same ontology, identifying existing differences between them. Simple differences

are those that do not affect the ontology structure, such as changing class and

property names. Complex differences include updating the class hierarchy or the

semantic concepts (constraint modification).

There are several tools and mechanisms that address the detection of ontol-

ogy updating in an automatic or semi-automatic manner (with or without user

intervention). Among these, we have PROMPTDIFF (Noy N.F. et al, 2004),

which identifies structural changes in the ontology and allows users to accept or

reject each alteration. This helps versioning control in an ontology collaborative

development process.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

29

We also have the OntoDiff tool (Tury, M. e Bieliková. M., 2006), which au-

tomatically detects modifications between the structure and the contents of two

versions of an ontology. This tool uses relative text comparison to identify terms

that were added, removed and modified.

The approach presented in our work to handle ontology versioning is based

on the difference operation. This operation detects which constraints are held in

the first ontology, but not in the second.

3.4 Ontology-Based Data Integration

Ontology-based data integration involves the use of ontologies to effectively

combine data or information from multiple heterogeneous sources.

Data integration systems provide integrated access to heterogeneous and

distributed sources of data (Langegger, A.A., 2010). The primary advantage of

these systems is to enable the user to obtain a complete and consistent view of all

existing data without the need to access each source separately. According to

(Lenzerini, 2002), the data integration frameworks usually follow two classical

approaches, materialized or virtual.

In the materialized approach, the data is retrieved from multiple sources and

imported into local data repositories also known as data warehouses. In this ap-

proach, the queries are performed over a materialized database thus performing

better in relation to the virtual approach. However, considering that the data re-

positories are dynamic and autonomous, it is extremely costly to keep a data

warehouse up to date. Thus, several algorithms are required in order to constantly

update and extract relevant information from distributed databases. The primary

disadvantage of this approach is the need to keep the data warehouse always up to

date, which is costly in terms of processing.

In the virtual approach, the data is retrieved directly from the source when

the integration system needs to answer a query. In other words, the integration

systems send queries directly to the data sources and then the individual results

obtained are integrated to compose the answer to the submitted query. The main

advantage of this approach is to ensure that the accessed data is always up to date,

however, it is known that the costs of query processing and constant access to the

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

30

data sources are very high and must be considered as critical to any applications

using said approach.

 Therefore, it is extremely important that the data integration application

uses the most suitable approach to its means, considering its architecture and fea-

tures. Most of the current data integration systems adopt a virtual approach with

the objective of providing integrated sharing of information presented across mul-

tiple data sources. In the virtual approach, each independent data source is repre-

sented by its own ontology, thus we have several ontologies being integrated to

form a global one, which is obtained by the mapping between these various ontol-

ogies.

This approach to ontology integration, also known as union of ontologies,

identifies identical entities among the ontologies that describe the data sources.

Then, it builds a new consistent and minimal ontology that corresponds to the

representation of the union of all the information from the original data sources.

Considering this integration, schema matching techniques become necessary

in order to identify the singular entities amongst the ontologies. Several studies

and applications have been developed over these techniques (Rahm and Bernstein,

2001). According to (Shvaiko, P. and Euzenat., J., 2004), there are two main clas-

sifications for schema matching techniques: those based on the schema elements

and those based on the structure of the schemas.

Matching techniques based on schema elements perform the alignment of

the elements by separately analyzing entities, ignoring their relationships with

other entities. In this category, the following techniques are introduced:

• String based techniques - use the similarity of the names and descrip-

tions of schema elements; the more similar the strings, the greater the

possibility that they represent the same entity.

• Language based techniques - consider strings as words in some natu-

ral language and exploit the morphological properties of the terms, as

the identification of basic word forms and the deletion of articles,

prepositions and conjunctions.

• Constraints based techniques - analyze the constraints applied to the

definitions of the entities, such as their data types, cardinality of the at-

tributes and their declared instances. These techniques are applicable

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

31

even if the entities have the same declared instances and the same car-

dinality for some attributes.

• Linguistic resources based techniques - use common knowledge or

domain specific thesauri to analyze linguistic relations in the word

matching process.

Matching techniques based on the schema structure perform the alignment

of elements by analyzing the structure of the entities. In this category, the follow-

ing techniques are introduced:

• Graph based techniques – treat the schemas as a graph structure and

identify similar structures between the schemas by analyzing their

equivalent parts. Graph matching is a combinatorial problem that can

be computationally very expensive and is usually solved by approxi-

mated methods (Rahm e Bernstein, 2001).

• Taxonomy based techniques - are graph algorithms that consider on-

ly specialization, which is used to match concepts that are already sim-

ilar to try to establish new matches using their neighbors.

• Logic models based techniques - are algorithms that consider the se-

mantic interpretation of the model, using deductive methods, such as

propositional satisfiability and Description Logic. This approach pro-

poses the decomposition of the graph-matching problem in node

matching problems. It uses propositional satisfiability to translate the

matching nodes and their possible relations into propositional formu-

las, with logical operators such as ⊑ and ≡. However, the proposi-

tional language used in deduction techniques based on propositional

satisfiability is limited in its expressiveness, because it treats only

unary predicates. Using description logic, it is possible to treat the bi-

nary relationships, such as properties and roles, as well as equivalence

(≡) and subsumption (⊑).

There are several applications for schema integration developed using these

techniques. Most of them are integrated with ontology management software such

as Protégé and Ontolingua. Among these, we have Chimaera (McGuinness, D. L.

2000), ODEMerge (Ramos, J. A., 2001) and Prompt (Noy, N. F. and Musen, M.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

32

A., 2000). The ODEMerge tool performs its procedures automatically and uses a

simple dictionary to identify synonyms and hypernym concepts.

The disadvantage of tools that perform the integration in an automatic man-

ner is the inaccuracy of the mappings. As a matter of fact, sometimes they gener-

ate incorrect mappings. On the other hand, those that perform the integration in-

teractively, also have a disadvantage, since they usually overwhelm the user with

the verification of all the mappings found.

Another aspect related to schema integration consists of the fusion of data

from different data sources into a consistent representation. Thus, it becomes nec-

essary to solve the conflicts that arise from the different modes of representation

of the same real world objects in multiple data sources. Bleiholder and Naumann

(2006) describe and classify different strategies to handle inconsistent data, as

follows:

• Conflict ignoring – consists of describing strategies that perform no

decision whatsoever regarding conflicts. By employing this strategy,

the system does not need to be aware of the conflicts in the data, as this

information is not needed or used. These strategies are viable in any

situation of integration, are easily implemented and have two repre-

sentatives “Pass It On” and “Consider All Possibilities”. In the “Pass It

On” approach, all values are presented and the conflict resolution is

deferred to the user. By contrast, the “Consider All Possibilities” ap-

proach tries to be the most complete possible, enumerating all eventu-

alities and presenting the user with all possible combinations of attrib-

ute values and occasionally creates combinations that are not yet pre-

sent in the sources.

• Conflict avoiding – these strategies acknowledge the existence of pos-

sible conflicts, but do not solve them.

In our work, the proposed management mechanism allows the user not only

to obtain an ontology that represents the union of two ontologies, but it also sup-

ports the construction of an ontology that represents the intersection between two

ontologies. The OntologyManagerTab application allows the user to save each

resulting ontology so that it can be loaded and reworked as many times as it is

necessary to achieve the desired result.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

33

Table 3 presents a comparative analysis between the applications for ontol-

ogy integration described in this chapter, as well as the OntologyManagerTab

tool proposed in this dissertation.

Application Chimaera PROMP ODEMerge OntologyManagerTab

Matching
Technique

Taxonomy and
String based

Taxonomy,
String and

Graph based

Linguistic
Resources based

String based

Ontology
Language

Ontolingua,
XOL

RDFS RDFS,
DAML + OIL

RDF(S)

Management
Environment

Ontolingua Protégé WebODE Protégé

Automation
Level

Semi-automatic Manual Automatic Automatic

Type of
Integrated
Elements

Classes and
Properties

Classes,
Properties and

Instances

Classes and
Properties

Classes, Properties and
Restrictions

Conflict
Handling
Strategy

Conflict
Ignoring

Conflict
Ignoring

Conflict
Ignoring

Conflict
Avoiding

Table 3. Comparative analysis between the applications for ontology integration.

3.5 Summary

In this chapter, we presented work related to ontology management, separating

them into areas of focus. We also explained why these areas are important to the

ontology management process, addressing the existing approaches developed so

far for each of them. We also enumerated what features our application, the On-

tologyManagerTab, has to contribute to this process in each area.

 Although ontology management strategies, proposed in the literature, use

different approaches and processes, it is clear that none of them provide the user

with an integrated tool for maintaining multiple ontologies, developing new ones,

covering the areas of ontology reuse, ontology versioning and ontology-based

data integration.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

4
Constraint Graphs

4.1 Introduction

In this chapter, we will explain how to represent a finite set of lightweight con-

straints as a constraint graph (Casanova et al., 2011) that captures the structure of

the logical implication. Constraint graphs lead to a procedure for checking incon-

sistencies in polynomial time relative to the size restrictions (Casanova et al.,

2011).

 We stress that the concepts introduced in this section refer only to light-

weight inclusions. Therefore, we often omit explicit reference to this DL family in

what follows, a simplification that the reader must bear in mind.

4.2 Constraint Graph Representation

Let Σ be a set of normalized lightweight constraints and Ω a finite set of light-

weight expressions, in other words, expressions that may occur in the right or left

side of a normalized constraint (see Section 2.3). The alphabet of Σ and Ω is de-

fined as a finite set of atomic concepts and properties that occur in Σ and Ω .

 We say that the complement of a basic concept description b is ¬b, and

vice-versa. If e is a basic concept description, or the negation of a basic concept

description, then e denotes the complement of e (Casanova et al., 2012).

Definition 1:

A. The labeled graph g(Σ,Ω)=(γ,δ,κ) that captures Σ and Ω, where κ labels each

node with a concept description, is defined as follows:

(i) For each concept description e that occurs on the right- or left-hand

side of an inclusion in Σ, or that occurs in Ω, there is exactly one

node in γ labeled with e.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

35

(ii) If there is a node in γ labeled with a concept description e, then there

must be exactly one node in γ labeled with e.

(iii) For each inclusion e ⊑ f in Σ, there is an arc (M,N) in δ, where M and

N are the nodes labeled with e and f, respectively.

(iv) If there are nodes M and N in γ labeled with (≥m p) and (≥n p) such

that m<n, where p is either P or P¯, then there is an arc (N,M) in δ.

Such arc are called tautological arcs.

(v) If there are nodes M and N in γ labeled with ¬(≥m p) and ¬(≥n p)

such that m<n, where p is either P or P¯, then there is an arc (M,N)

in δ. Such arc are called tautological arcs.

(vi) If there is an arc (M,N) in δ such that M and N are labeled with e and

f, respectively, then there is an arc (K,L) in δ such that K and L are

the nodes labeled with f and e, respectively

(vii) These are the only nodes and arcs of g(Σ,Ω).

B. The constraint graph for Σ and Ω is the labeled graph G(Σ,Ω)=(η,ε,λ), where

λ labels each node with a set of concept descriptions. The graph G(Σ,Ω) is de-

fined by collapsing each strongly connected component of g(Σ,Ω) into a single

node, labeled with the set of concept descriptions that previously labeled the

nodes in the strongly connected component.

When Ω is the empty set, we simply write g(Σ) and say that g(Σ) is the

graph that captures Σ. In what follows, we use K→M to indicate that there is a

path in G(Σ,Ω) from K to M. In addition, as a convenience, a path of length 0 is a

path consisting of a single node. We now introduce the notion of constraint graph

as follows.

Definition 2: Let G(Σ,Ω)=(η,ε,λ) be the constraint graph for Σ and Ω.

(i) We say that a node K of G(Σ,Ω) is a ⊥-node of rank 0 if

(a) K is labeled with ⊥, or

(b) K is not labeled with ⊥, there is no ⊥-node L of rank 0 such that

(K,L) is an arc of G(Σ,Ω), and there are nodes M and N, not neces-

sarily distinct from K, and a basic concept description b such that

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

36

M and N are labeled with b and ¬b, respectively, and K→M and

K→N, or

(c) K is not labeled with ⊥, there is no ⊥-node L of rank 0 such that

(K,L) is an arc of G(Σ,Ω), and there are nodes M and N, M is la-

beled with ¬(≥m p) and N is labeled with (≥m p), or M is labeled

with (≥m p) and N is labeled with ¬(≥m p) , where p is either P or

P¯, and K→M and K→N.

(ii) For a positive integer n, we say that a node K of G(Σ,Ω) is a ⊥-node of

rank n if K is not a ⊥-node of rank m, with m<n, and there is a ⊥-node L

of rank n-1 such that

(a) (K,L) is an arc of G(Σ,Ω), or

(b) L is labeled with (≥1 P¯) and K is labeled with (≥1 P), or

(c) L is labeled with (≥1 P) and K is labeled with (≥1 P¯).

Case (ii-b) captures the fact that, given an interpretation s, if

s((≥1 P¯))=∅, then s(P)=s((≥1 P))=∅. Case (ii-c) follows likewise, when

s((≥1 P))=∅. In view of these cases, the notion of rank is necessary to avoid a

circular definition.

Definition 3: Let G(Σ,Ω)=(η,ε,λ) be the constraint graph for Σ and Ω. Let K be a

node of G(Σ,Ω). We say that K is a ⊥-node iff K is a ⊥-node with rank n, for some

non-negative integer n. We also say that K is a ⊤-node iff K is a ⊥-node.

As a convenience, each node of a constraint graph will have Boolean tags

corresponding to ⊤-node and ⊥-node, and also an integer that marks its rank n in

case of a ⊥-node. These tags are completely independent from the node labels and

are initialized as false when nodes are created.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

37

4.3 Constraint Graph Basic Functions

The OntologyManagerTab tool uses constraint graphs as defined in Section 4.2.

The generation of constraint graphs includes a normalization step, as discussed in

Section 2.3. Furthermore, the normalization procedure uses a given base ontology

to create a new ontology ignoring any elements that are not lightweight; this new

ontology is then used to build the constraint graph.

Briefly, the construction of a constraint graph for a given ontology

O1=(V1,Σ1) goes as follows:

1. Create a new ontology O2=(V2,Σ2) such that Σ2 contains only the

lightweight constraints of O1 and V2 contains only the symbols that

occur in Σ2.

2. Normalize the constraints in Σ2, creating a new ontology O3=(V3,Σ3)

such that V3=V2 and Σ3 are the normalized versions of the con-

straints in Σ2.

3. Create the constraint graph G(Σ3) for Σ3 using Definition 1.

4. Tag G(Σ3) to indicate the ⊤-node and ⊥-node using Definition 2

and Definition 3, in this order.

The procedures that implement each of the operations, discussed in Section

5, return a set of constraints that may contain redundancies. Therefore, a graph

minimization function is implemented to compute the minimal equivalent graph

(MEG) of a constraint graph G. However, this function is not triggered automati-

cally after every operation in case the user wishes to check the transitive closure

obtained.

The MEG of a graph is defined as a graph H with a minimal set of edges

such that the transitive closure of G and H are equal. This problem has a polyno-

mial solution when G is acyclic and is NP-hard for strongly connected graphs

(Aho, Garey and Ullman, 1972; Hsu, 1975; Khuller, Raghavachari and Young,

1975).

Figure 2 contains all basic procedures used in the graph construction, in-

cluding the graph minimization procedure. These procedures will be referenced in

the next section when describing the implementation of each operation.
SearchForInconsistencies:

Input: a tagged constraint graph G(Σ1,Ω).

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

38

Output: a tagged constraint graph G(Σ2,Ω).

(1) Initialize Σ2 to be the empty set.
(2) Uses Definition 2 over the set Σ1 to populate Σ2
(3) Uses Definition 3 over Σ2
(4) Return G(Σ2,Ω).

LinkCardinalityRestrictions:

Input: a tagged constraint graph G(Σ,Ω).
Output: a tagged constraint graph G(Σ,Ω).

(1) If there are nodes M and N in G labeled with (≥m p) and (≥n p) such that m<n,
where p is either P or P¯, then add an arc (N,M) to Σ

(2) If there are nodes M and N in G labeled with ¬(≥m p) and ¬(≥n p) such that m<n,
where p is either P or P¯, then add an arc (M,N) to Σ

(3) G(Σ,Ω)=SearchForInconsistencies(G(Σ,Ω))
(4) Return G(Σ,Ω).

ConstructGraph:

Input: a normalized lightweight ontology O.

Output: the tagged constraint graph G(Σ,Ω)

(1) Construct the constraint graph G(Σ,Ω) for Σ and Ω , using Definition 1.
(2) G(Σ2,Ω)=SearchForInconsistencies(G(Σ,Ω))
(3) Return G(Σ2,Ω).

MinimizeGraph:

Input: a tagged constraint graph G
Output: a MEG H of G

(1) Initialize H with the same nodes, arcs, labels and tags as G.
(2) For each node L of H labeled only with atomic concepts and at-least restrictions,

for each arc (L,M) in H,
for each node N in H, do:

if there are arcs (M,N) and (L,N) in H such that (L,N) is not a tautological arc,
drop from H both the arc (L,N) and the arc (𝑁, 𝐿) connecting the dual nodes of
L and M.

SaveOntology:

Input: a tagged constraint graph G(Σ1,Ω)
Output: an OWL file

(1) Initialize Σ2 to be the empty set.
(2) Mark all arcs of H as unprocessed.
(3) For each node M of H labeled only with atomic concepts and at-least restrictions, do:
(4) If M is tagged as a “⊥-node”, then
(5) For each label e of M,
(6) Add to Σ2 a constraint of the form e ⊑ ⊥.
(7) If M is not tagged as “⊥-node”, then
(8) Order the labels of M, creating a list e1,…,en, and
(9) Add to Σ2 the constraints e1 ⊑ e2, e2 ⊑ e3 ,…, en-1 ⊑ en and en ⊑ e1.
(10) For each arc (M,N) of H such that (M,N) is unprocessed, do:
(11) Select a label e of M and a label f of N and
(12) Add to Σ2 a constraint of the form e ⊑ f.
(13) Mark both (M,N) and (𝑁,𝑀) as processed.
(14) Composes G as G(Σ2,Ω)
(15) For each node L of G labeled only with atomic concepts and at-least restrictions,
(16) If the node is not a complement of class or complement of property
(17) Save its description and if there are arcs (L,N)
(18) For each node N in G, do:

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

39

(19) Obtain the description of N and save a constraint (L,N) to the file
(20) using the description of both nodes

Figure 2. Basic Procedures

Regarding the complexity of the operations in Figure 2 we can evaluate

each one in terms of the number of nodes n and the number of edges m of the

graph G. SearchForInconsistencies searches G for bottom nodes, starting from

each node of G; therefore it has complexity O(n(n+m)). Similarly, LinkCardinal-

ityRestrictions and ConstructGraph have complexity O(n(n+m)). Mini-

mizeGraph is implemented with complexity O(mn2). Finally, SaveOntology goes

through the graph of the resulting ontology saving its terms and constraints and is

implemented with complexity O(n+m).

4.4 Summary

In this chapter, we presented the definition of the constraint graph G(Σ,Ω) with its

specification and implementation. We also included basic procedures to manipu-

late this graph, which will be referenced in the specification of the proposed oper-

ations in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

5
Implementation of the Operations

5.1 Introduction

In this chapter, we will first define the operations over lightweight ontologies con-

sidered in this dissertation: Projection, Union, Intersection and Difference.

Then, we will describe the algorithms that implement each operation; all based on

the notion of constraint graph introduced in Chapter 4.

This chapter is structured as follows. Section 5.2 will define the operations.

Then, Sections 5.3 to 5.6 describe the algorithms that implement each operation.

Section 5.7 contains the final considerations.

5.2 Definition of Operations over Lightweight Ontologies

Recall that an ontology is a pair O=(V,Σ) such that V is a finite alphabet, called

the vocabulary of O, whose atomic concepts and atomic roles are called classes

and properties of O, respectively, and Σ is a set of inclusions in V, called the con-

straints of O. In particular, lightweight ontologies are ontologies whose con-

straints are lightweight inclusions (see Table 1 on Chapter 2). Also, recall that the

theory of Σ in V, denoted τ[Σ], is the set of all inclusions in V that are logical con-

sequence of Σ.

Definition 4 introduces the operations over lightweight ontologies. It is im-

portant to highlight that the new ontology, obtained from the execution of these

operations, presents a set of constraints that considers the semantics of the con-

straints of the ontologies involved.

Definition 4: Let O1 = (V1, Σ1) and O2 = (V2, Σ2) be two lightweight ontologies, W

a subset of V1, Σ1 is the constraint set over V1 and Σ2 is the constraint set over V2.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

41

(i) The projection of O1 = (V1,Σ1) over W, denoted π[W](O1), returns the on-

tology OP = (VP,ΣP), where VP = W and ΣP is a set of constraints in

ΣP = τ[Σ1] that uses only symbols from W.

(ii) The union of O1 = (V1,Σ1) and O2 = (V2 ,Σ2), denoted O1 ∪ O2, returns the

ontology OU = (VU ,ΣU), where VU = V1 ∪ V2 and ΣU = Σ1 ∪ Σ2.

(iii) The intersection of O1 = (V1,Σ1) and O2 = (V2 ,Σ2), denoted O1 ∩ O2, re-

turns the ontology OInt=(VInt,ΣInt), where VInt = V1 ∩ V2 and

ΣInt = τ[Σ1] ∩ τ[Σ2].

(iv) The difference of O1 = (V1,Σ1) and O2 = (V2 ,Σ2), denoted by O1 − O2, re-

turns the ontology OD = (VD,ΣD), where VD = V1 − V2 and ΣD = τ[Σ1] −

τ[Σ2].

Also, when comparing distinct constraint graphs, the equivalent nodes and

constraints between these graphs need to be mapped; these are discovered accord-

ing to Definition 5.

Definition 5: Let G1(V1,Σ1) and G2(V2,Σ2) be two distinct constraint graphs.

(i) We say that a node K of G1(V1,Σ1) is equivalent to a node M of G2(V2,Σ2)

iff K is tagged with the same terms as M. In case of cardinality constraints,

the equivalency treats the cardinality value differently according to which

operation is being processed.

(ii) We say that a constraint C of G1(V1,Σ1) is equivalent to a constraint D of

G2(V2,Σ2) iff the nodes K and L related by C are equivalent to the nodes Q

and P related by D, respectively.

The projection operation allows the designer to define a set W containing

just a few terms from the vocabulary of an ontology. This set retains the semantics

of the terms from the original vocabulary in W through the constraints derived

from those of the original ontology. It is also the only operation among those im-

plemented in this dissertation that has a single ontology as argument. The main

advantage of the Projection procedure is to automate the onerous task of the do-

main specialist in the formalization of new ontologies by extracting the needed

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

42

concepts and their dependencies, allowing the reuse of widely consolidated terms

with little work.

 The applications that adopt the principles of Linked Data have the chal-

lenge of providing its users with integrated information from multiple data

sources that may or may not contain overlapping data, hence the importance of the

Union and Intersection operations.

Usually, the process of integrating multiple ontologies consists in the union

of two versions of ontologies unbeknownst whether there was a common ontology

that originated them (Hepp M. et al., 2008). Also, the union between data from

distinct domains may generate conflicts and inconsistencies depending on the ver-

sions of the ontologies used by each domain.

Similarly to the Union operation, the domain specialist may want to extract

only the overlapping information while consulting multiple data sources. This is

achieved by the Intersection operation.

Ontologies evolve over time due to changes in the domain they represent or

due to the fact that they have been built in a collaborative way and, therefore, need

to be updated to represent a common understanding to different users. To detect

modifications between two versions of the same ontology, we have the Difference

operation, that compares two ontologies and returns the terms and constraints that

are present in the first, but not in the second.

According to (M. Klein, 2004), the differences between two ontologies can

be classified as simple or complex. The simple differences are those that do not

affect the structure of the ontology, such as the change of names of classes, prop-

erties or data types. On the other hand, complex differences are those that affect

the ontology structure, include modifications in the class hierarchy or in con-

straints, such as disjunction and cardinality restrictions. The Difference operation

addresses both types of differences.

5.3 Implementation of Projection

Let O1 = (V1,Σ1) be a lightweight ontology and W be a subset of V1. The Projec-

tion procedure computes ΓP so that τ[ΓP] = τ[ΣP]. That is, given any lightweight

inclusion e ⊑ f that involves only classes and properties in W, e ⊑ f is a logical

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

43

consequence of ΓP iff e ⊑ f is a logical consequence of Σ1. Note that this does not

mean that e ⊑ f is a logical consequence of the subset of Σ1 whose inclusions in-

volve only classes and properties in W.

Example 1 illustrates how Projection operates.

Let O1 = (V1,Σ1) and O2 = (V2,Σ2) be lightweight ontologies. The Union procedure

returns the ontology OU = (VU , ΣU), where VU = V1 ∪ V2 and ΣU = Σ1 ∪ Σ2. The

Union procedure uses a node list Le = V1 ∩ V2.

Example 1: Consider the following vocabulary:

VFF = {foaf:Agent, foaf:Person, foaf:Organization, foaf:account }

The projection of the FOAF ontology over VFF is the Foaf Facebook ontol-

ogy, FF = (VFF,ΣFF), where ΣFF is the set of constraints shown in Table 4.

Constraint Informal specification

1. foaf:Person ⊑ foaf:Agent
foaf:Organization ⊑ foaf:Agent

foaf:Person is a subset of foaf:Agent
foaf:Organization is a subset of foaf:Agent

2. (≥1 foaf:account) ⊑ foaf:Agent The range of foaf:account is foaf:Agent

3. foaf:Person ⊑ ¬foaf:Organization

G(ΣFOAF) has a path from
the node labeled with foaf:Person to
the node labeled with ¬foaf:Organization,
which indicates that foaf:Organization and

Projection procedure:

1. Construct G(V1,Σ1), the normalized tagged constraint graph for O1=(V1,Σ1).

2. Construct G*(V1,Σ1*), the transitive closure of G(V1,Σ1). The nodes of

G*(V1,Σ1*) retain all labels and tags as in G(V1,Σ1).

3. Use G*(V1,Σ1*) to create a graph GW by discarding all concept descriptions

that label nodes of G*(V1,Σ1*) and that involve classes and properties which

are not in W; nodes that end up with no labels are discarded, as well as their

adjacent arcs. The nodes of GW retain all tags as in G*(V1,Σ1*).

5. Call LinkCardinalityRestrictions with GW to generate GW1.

6. Call SaveOntology with GW1 to generate ΓP.

7. Return OP = (W, ΓP).

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

44

foaf:Person are disjoint
 Table 4. Constraints of Ontology FF

The complexity of this operation can be estimated as O(n3) regarding the

original ontology O1. The key factor to achieve this processing time is the use of

the Transitive Closure, which in this software is implemented with such com-

plexity.

5.4 Implementation of Union

Let O1 = (V1,Σ1) and O2 = (V2,Σ2) be lightweight ontologies. The Union procedure

returns the ontology OU = (VU , ΣU), where VU = V1 ∪ V2 and ΣU = Σ1 ∪ Σ2. The

Union procedure uses a node list Le = V1 ∩ V2.

Example 2 illustrates how Union operates.

Example 2: Consider the following ontologies:

Union procedure:

1. Construct G1(V1,Σ1), the normalized tagged constraint graph for O1=(V1,Σ1).

2. Construct G2(V2,Σ2), the normalized tagged constraint graph for O2=(V2,Σ2).

3. Initialize GU as a copy of G1, which gives us GU(V1,Σ1).

4. For each node e in V2, search GU for an equivalent node:

• If the node e is equivalent to the node f in VU , add the reference e, f to Le .

• Otherwise add e to VU, adding the reference between the node e in V2 and

the new node n in VU to Le.

5. For each constraint c in Σ2, search GU for an equivalent constraint:

• If the constraint c is not equivalent to any constraint in VU, add c to ΣU,

remembering to query Le for the equivalent nodes when adding the con-

straint.

6. Call LinkCardinalityRestrictions with GU to generate GU1.

7. Call SaveOntology with GU1 to generate ΓU.

8. Return OU = (VU , ΓU).

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

45

 O1 = (V1,Σ1) with:

V1 = {foaf:Agent, foaf:homepage}

Σ1 = {(≥1 foaf:homepage) ⊑ foaf:Agent}

O2 = (V2,Σ2) with:

V2 = {foaf:Agent, foaf:homepage}

Σ2 = {(≥10 foaf:homepage) ⊑ foaf:Agent}

The union of O1 and O2 is the ontology OU = (VU,ΣU), where VU = V1 = V2

and ΣU is the set of constraints shown in Table 5.

If the user chooses to minimize the graph GU that corresponds to the ontol-

ogy OU, constraints 2 and 3 from Table 5 will be eliminated, leaving OU with the

same terms and constraints as O1.

 The Union procedure also tests if the resulting ontology has constraints

that force a class to be always empty (that is, equivalent to the bottom concept).

Example 3 illustrates this case.

Example 3: Consider the following ontologies of two distinct phone com-

panies, both based on a simpler and older ontology:

 OPhoneCompany1 = (V PhoneCompany1,ΣPhoneCompany1) with:

VPhoneCompany1 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall}

ΣPhoneCompany1 = {pc:MobilePhone ⊑ pc:Phone,

Constraint Informal specification

1. (≥1 foaf:homepage) ⊑ foaf:Agent

As in O1, the range of
foaf:homepage is foaf:Agent

2. (≥10 foaf:homepage) ⊑ foaf:Agent

As in O2, the range of
foaf:account is foaf:Agent
with minimum cardinality 10

3. (≥10 foaf:homepage) ⊑ (≥1 foaf:homepage) The resulting ontology O3
generates this constraint.

 Table 5. Constraints ΣU of Ontology OU.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

46

pc:FixedPhone ⊑ pc:Phone, pc:MobilePhone ⊑ pc:FixedPhone,

pc:FixedPhone ⊑ ¬pc:MobilePhone, pc:Call ⊑ ¬pc:MobileCall,

pc:MobileCall ⊑ ¬pc:Call }

OPhoneCompany2 = (VPhoneCompany2,ΣPhoneCompany2) with:

VPhoneCompany2 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall }

ΣPhoneCompany2 = { pc:MobilePhone ⊑ pc:Phone,

pc:FixedPhone ⊑ pc:Phone, pc:MobileCall ⊑ pc:Call }

The Union of OPhoneCompany1 and OPhoneCompany2 is the ontology OPhoneCompany3,

which has the same vocabulary as the original ontologies and the set of constraints

ΣU shown in Table 6. We note that Table 6 shows the constraints as they are

computed by our application, where the expression in the first column is con-

tained (⊑) in the expression that appears in the second column.

However, OPhoneCompany3 has a class which is always empty since classes

pc:Call and pc:MobileCall are disjoint in OPhoneCompany1 and class pc:MobileCall is

a subset of class pc:Call in OPhoneCompany2. This may typically happen when ontolo-

gies are separately developed using the same ontology as origin.

 (a) OPhoneCompany1 (b) OPhoneCompany2 (c) OPhoneCompany3
1 Mobile
Phone Phone MobilePhone Phone MobilePhone Phone

2 FixedPhone Phone FixedPhone Phone FixedPhone Phone

3 MobilePhone ¬FixedPhone MobileCall Call MobilePhone ¬FixedPhone

5 FixedPhone ¬MobilePhone FixedPhone ¬MobilePhone

6 Call ¬MobileCall Call ¬MobileCall

7 MobileCall ¬Call MobileCall ⊥

 Table 6. Constraints for OPhoneCompany1, OPhoneCompany2 and their Union OPhoneCompany3

The complexity of this operation can be estimated as O(n3) regarding the

resulting ontology OU. The key factor to achieve this processing time is the use of

the LinkCardinalityRestrictions, which in this software is implemented with

such complexity as shown in Section 4.3.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

47

5.5 Implementation of Intersection

Let O1 = (V1,Σ1) and O2 = (V2,Σ2) be lightweight ontologies. The Intersection pro-

cedure returns the ontology OInt = (VInt , ΣInt), where VInt = V1 ∩ V2 and ΣInt = τ[Σ1]

∩ τ[Σ2]. As the Union procedure, Intersection also uses a node list Le = V1 ∩ V2,

which will help compute ΣInt = τ[Σ1] ∩ τ[Σ2].

Example 4 illustrates how Intersection operates.

Example 4: Consider the following ontologies:

O1 = (V1,Σ1) with:

V1 = {foaf:Agent, foaf:homepage}

Σ1 = {(≥1 foaf:homepage) ⊑ foaf:Agent}

The Intersection procedure

1. Construct G1(V1,Σ1), the normalized tagged constraint graph for O1=(V1,Σ1).

2. Construct G2(V2,Σ2), the normalized tagged constraint graph for O2=(V2,Σ2).

3. Construct G1*(V1,Σ1*), the transitive closure of G1(V1,Σ1). The nodes of

G1*(V1,Σ1*) retain all labels and tags as in G1(V1,Σ1).

5. Construct G2*(V2,Σ2*), the transitive closure of G2(V2,Σ2). The nodes of

G2*(V2,Σ2*) retain all labels and tags as in G2(V2,Σ2).

6. Initialize GInt (VInt , ΣInt) as an empty graph.

4. For each node e in V1, search G2* for an equivalent node:

• If the node e is equivalent to the node f in V2 , add the node to GInt and add

the reference e, f, n to Le, where n the new node in VInt .

5. For each constraint c in Σ1*, search Σ2* for an equivalent constraint:

• If the constraint c is equivalent to the constraint d in Σ2* add c to ΣInt ,

remembering to query Le for the equivalent terms when adding the con-

straint.

6. Call LinkCardinalityRestrictions with GInt to generate GInt1.

7. Call SaveOntology with GInt1 to generate ΓInt.

8. Return OInt = (VInt , ΓInt).

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

48

O2 = (V2,Σ2) with:

V2 = {foaf:Agent, foaf:homepage}

Σ2 = {(≥10 foaf:homepage) ⊑ foaf:Agent}

The intersection of O1 and O2 is the ontology Oint = (Vint, Σint), where Vint =

V1 = V2 and Σint is the set of constraints shown in Table 7.

Example 5 illustrates a case analogous to that discussed in Example 3.

Example 5: Consider the following ontologies of two distinct phone companies,

both based on a simpler and older ontology:

 OPhoneCompany1 = (V PhoneCompany1,ΣPhoneCompany1) with:

VPhoneCompany1 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall}

ΣPhoneCompany1 = {pc:MobilePhone ⊑ pc:Phone,

pc:FixedPhone ⊑ pc:Phone, pc:MobilePhone ⊑ pc:FixedPhone,

pc:FixedPhone ⊑ ¬pc:MobilePhone, pc:Call ⊑ ¬pc:MobileCall,

pc:MobileCall ⊑ ¬pc:Call }

OPhoneCompany2 = (VPhoneCompany2,ΣPhoneCompany2) with:

VPhoneCompany2 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall }

ΣPhoneCompany2 = { pc:MobilePhone ⊑ pc:Phone,

pc:FixedPhone ⊑ pc:Phone, pc:MobileCall ⊑ pc:Call }

The Intersection of OPhoneCompany1 and OPhoneCompany2 is the ontology OPhone-

Company4, which has the same vocabulary as the original ontologies and the set of

constraints ΣU shown in Table 8. Again, we note that Table 8 shows the con-

straints as they are computed by our application, where the expression in the first

column is contained (⊑) in the expression that appears in the second column.

 (a) OPhoneCompany1 (b) OPhoneCompany2 (c) OPhoneCompany3

Constraint Informal specification

1. (≥10 foaf:homepage) ⊑ foaf:Agent

As in O2, the range of foaf:homepage is
foaf:Agent with minimum cardinality 10

 Table 7. Constraints Σ int of Ontology Oint

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

49

1 MobilePhone Phone MobilePhone Phone MobilePhone Phone

2 FixedPhone Phone FixedPhone Phone FixedPhone Phone

3 MobilePhone ¬FixedPhone MobileCall Call

5
FixedPhone ¬MobilePhon

e

6 Call ¬MobileCall

7 MobileCall ¬Call

 Table 8. Constraints for OPhoneCompany1, OPhoneCompany2 and their Intersection OPhoneCompany3

The complexity of this operation can be estimated as O(n3) regarding the

original ontology with greater number of nodes and edges, O1 or O2 . The key

factor to achieve this processing time is the use of the Transitive Closure, which

in this software is implemented with such complexity.

5.6 Implementation of Difference

Let O1 = (V1,Σ1) and O2 = (V2,Σ2) be lightweight ontologies that represent two ver-

sions for the same ontology. The Difference of O1 = (V1, Σ1) and O2 = (V2 , Σ2),

represented by O1 − O2, returns the ontology OD = (VD , ΣD), where VD = V1 − V2

and ΣD = τ[Σ1] − τ[Σ2].

The problem of creating a procedure to compute the difference between two

ontologies, O1=(V1,Σ1) and O2=(V2,Σ2), lies in the fact that it might not be possible

to obtain a finite set of inclusions ΔN in such a way that

(1) τ[ΔN] = τ[Σ1] − τ[Σ2]

This invalidates the effort to create a procedure to obtain a finite set of inclusions

ΔN satisfying (1), along the lines of those exhibited in Sections 5.2 and 5.3. This

remark in fact puts in doubt the usefulness of a (generic) difference operation.

For example, consider the following two sets of inclusions:

(2) Σ1 = { e ⊑ g, g ⊑ f }

(3) Σ2 = { e ⊑ f }

Then, ignoring tautologies when computing τ[Σj], j=1,2, we have:

(4) τ[Σ1] = { e ⊑ g, g ⊑ f, e ⊑ f }

(5) τ[Σ2] = { e ⊑ f }

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

50

(6) ΔN = τ[Σ1] − τ[Σ2] = { e ⊑ g, g ⊑ f } = Σ1

But this definition of ΔN is not satisfactory, since we have

(7) τ[ΔN] = τ[Σ1] = { e ⊑ g, g ⊑ f, e ⊑ f }

That is, to compute the difference ΔN = τ[Σ1] − τ[Σ2], we remove “e ⊑ f” from

τ[Σ1], only to get “e ⊑ f” back by logical implication from ΔN. In fact, in this ra-

ther obvious example, we cannot obtain a set of inclusions ΔN such that

τ[ΔN] = τ[Σ1] − τ[Σ2]. Indeed, since set of inclusions must not logically imply “e

⊑ f”, the only candidates are:

(8) Δ1 = { e ⊑ g }

(9) Δ2 = { g ⊑ f }

In both cases, we have that (again ignoring tautologies when computing τ[Δk],

k=1,2): τ[Δk] = Δk ⊂ τ[Σ1] − τ[Σ2]

The Difference procedure

1. Construct G1(V1,Σ1), the normalized tagged constraint graph for

O1=(V1,Σ1).

2. Construct G2(V2,Σ2), the normalized tagged constraint graph for O2=(V2,Σ2).

3. Construct G1*(V1,Σ1*), the transitive closure of G1(V1,Σ1). The nodes of

G1*(V1,Σ1*) retain all labels and tags as in G1(V1,Σ1).

4. Construct G2*(V2,Σ2*), the transitive closure of G2(V2,Σ2). The nodes of

G2*(V2,Σ2*) retain all labels and tags as in G2(V2,Σ2).

5. Initialize GD (VD , ΣD) as an empty graph.

6. For each node e in V1, search G2* for an equivalent node:

• If the node e is not equivalent to any node in V2, add the node to GD with

its constraints from Σ1*.

7. For each constraint c in Σ1*, search Σ2* for an equivalent constraint:

• If the constraint c is not equivalent to any constraint in Σ2* , add c to ΣD,

adding the nodes in the constraint to GD, if they are not already in VD.

8. Call LinkCardinalityRestrictions with GD to generate GD1.

9. Call SaveOntology with GD1 to generate ΓD.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

51

Examples 6 and 7 illustrate how Difference operates.

Example 6: Consider the following ontologies:

O1 = (V1,Σ1) with:

V1 = { A, B, C, D }

Σ1 = { A ⊑ B , B ⊑ C, C ⊑ D }

O2 = (V2,Σ2) with:

V2 = { A, B, C }

Σ2 = { A ⊑ B , B ⊑ C }

The Difference between O1 and O2, is the ontology OD, which has the vocabulary

VD = V1 and the set of constraints ΣD shown in Table 9.

Example 7: Consider the following ontologies of two distinct phone companies,

both based on a simpler and older ontology:

 OPhoneCompany1 = (V PhoneCompany1,ΣPhoneCompany1) with:

VPhoneCompany1 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall}

ΣPhoneCompany1 = {pc:MobilePhone ⊑ pc:Phone,

pc:FixedPhone ⊑ pc:Phone, pc:MobilePhone ⊑ pc:FixedPhone,

pc:FixedPhone ⊑ ¬pc:MobilePhone, pc:Call ⊑ ¬pc:MobileCall,

pc:MobileCall ⊑ ¬pc:Call }

OPhoneCompany2 = (VPhoneCompany2,ΣPhoneCompany2) with:

VPhoneCompany2 = {pc:Phone, pc:MobilePhone, pc:FixedPhone, pc:Call,

pc:MobileCall }

ΣPhoneCompany2 = { pc:MobilePhone ⊑ pc:Phone,

10. Return OD = (VD , ΓD).

Constraint Informal specification

1. A ⊑ D As in O1, A is a subset of D and this inclusion is not in τ[Σ2]

2. B ⊑ D As in O1, B is a subset of D and this inclusion is not in τ[Σ2]

3. C ⊑ D As in O1, C is a subset of D and this inclusion is not in τ[Σ2]
Table 9. Constraints ΣD of Ontology OD

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

52

pc:FixedPhone ⊑ pc:Phone, pc:MobileCall ⊑ pc:Call }

The Difference between OPhoneCompany1 and OPhoneCompany2 is the ontology

OPhoneCompany5 , which has the same vocabulary as OPhoneCompany1 and the set of con-

straints ΣD shown in Table 10.

 (a) OPhoneCompany1 (b) OPhoneCompany2 (c) OPhoneCompany3
1 MobilePhone Phone MobilePhone Phone MobilePhone ¬FixedPhone

2 FixedPhone Phone FixedPhone Phone FixedPhone ¬MobilePhone

3 MobilePhone ¬FixedPhone MobileCall Call Call ¬MobileCall

5 FixedPhone ¬MobilePhone MobileCall ¬Call

6 Call ¬MobileCall

7 MobileCall ¬Call

Table 10. Constraints for OPhoneCompany1, OPhoneCompany2 and their Difference OPhoneCompany3

The complexity of this operation can also be estimated as O(n3) regarding

the original ontology with greater number of nodes and edges, O1 or O2 . The key

factor to achieve this processing time is the use of the Transitive Closure, which

in this software is implemented with such complexity.

5.7 Summary

In this chapter, we first defined operations over lightweight ontologies and then

presented the procedures that compute the operations. The application described

in Chapter 6 implements all such procedures, with the intention of assisting the

domain specialist in choosing or creating a new ontology to publish data on the

Web.

Projection allows the domain specialist to retrieve only the fragment of an

ontology needed for his application. Union merges two different ontologies. In-

tersection compares two ontologies and retrieves only the common terms and

axioms. Difference compares two ontologies and retrieves only the axioms that

are contained in the first, but not in the second.

These operations are meant to encourage and help the user follow the

Linked Data Principles, allowing him to obtain new consistent ontologies using

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

53

others as base, thereby automating the onerous task of creating ontologies from

scratch.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

54

6
OntologyManagerTab – an Ontology Manager Plug-in for
Protégé

6.1 Introduction

There are a wide variety of tools available, with different approaches and process-

es, which provide ontology management. However, few tools assist the domain

specialist in the development of an ontology that represents a correct understand-

ing of the semantics of the involved ontologies, since this requires taking into ac-

count not only the terms from the original ontologies but also their logical con-

straints. Furthermore, the use of several tools during the process of managing on-

tologies increases the manual work that must be performed by the domain special-

ist, making it even more onerous.

The OntologyManagerTab, presented in this chapter, offers the ontology

operations described in Chapter 5, integrated with traditional ontology manage-

ment features. OntologyManagerTab was developed in Java as a tab plug-in over

Protégé 3.4.8 (the implementation might require minor modifications to work with

other versions of Protégé).

Despite the fact that OntologyManagerTab was developed as a Protégé

plug-in, it works in a completely independent manner from the main framework,

using Protégé only as a Graphical User Interface (GUI) enclosure. In other words,

all the functionalities provided by OntologyManagerTab do not rely on any of the

Protégé libraries, making the tool easier to adapt as a plug-in for any other frame-

work or as a stand-alone software.

This chapter provides an overview of the developed software and is struc-

tured in the following manner. Section 6.2 gives a brief overview of the classes in

the software and how they interact. Section 6.3 explains how to compile and setup

OntologyManagerTab. Section 6.4 explains, with the help of examples, how to

use each operation implemented in the OntologyManagerTab. Finally, Section

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

55

6.5 discusses the ontologies used in the experiments and the complexity of the

operations.

6.2 Class Architecture

In this section, a brief overview of the class architecture of OntologyManagerTab

is presented. The software source code is divided into three packages, containing

a total of sixteen classes and two enumeration interfaces. The package specifica-

tions are:

1. Main – this package contains the OntologyManagerTab class, which

is the main class in the project, that implements all operations dis-

cussed in Section 5 and integrates the software with the Protégé

framework.

2. Application – this package contains classes that implement the Java

interfaces required for the application to run.

3. Ontology – this package contains classes that implement the con-

straint graph, including the normalization and creation procedures.

Figure 3 shows how the packages interact. The Main package contains a

single class, the OntologyManagerTab class, which creates the interface with the

Protégé framework, sets the software as a tab in the program, treats the GUI

events sent by the user and manipulates the classes from the Application and On-

tology packages to run the required procedures. In addition, Projection, Union,

Intersection and Difference operations are all implemented to run in separate

threads from the user interface in order not to freeze in case of longer computa-

tions.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

56

Figure 3. Packages Interactions

The Application package contains one enumeration interface and two clas-

ses:

• The Enumeration Interface OSType – classifies the Operating System that is

running our software between a Windows, Linux or Mac type. This is ex-

tremely important since our tool opens and saves ontology files and must

know which type of file system is being used.

• The ProjectionTableModel Class – extends the AbstractTableModel Java class

to implement a different sort of table for the Projection operation, including

among other things the checkbox used by the GUI in the procedure.

• The ProjectionItem Class – implements the objects that are used in each row

of the ProjectionTableModel class and contain the details of the possible

nodes for the Projection operation.

The Ontology package contains one enumeration interface and fourteen

classes:

• The UsefulOWL Class – is an auxiliary class that contains small func-

tions to handle OWL elements, includes mostly functions for the search

and extraction of strings from the OWL elements that are widely used

throughout the software.

• The Normalization Class – implements the procedures to normalize and

extract the lightweight constraints from an OWL ontology, according to

the rules defined in Table 1 in Section 2.5, saving this new normalized

ontology in the same folder as the original.

• The Graph Class – implements a graph representation for an OWL on-

tology; it contains a list of nodes to represent the atomic concepts,

properties and cardinality restrictions, as well as an adjacency list to

represent the ontology constraints.

• The Graph.Edge Class – is a class contained in the graph class that im-

plements edges between graph nodes, these edges are obtained from the

adjacency list in the graph class.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

57

• The Node Class – is the basic class of graph node, that is extended to

characterize each specific type of object found in an OWL ontology.

• The NodeClass Class – specificies the class Node to represent an OWL

Class Object.

• The NodeProperty Class – specificies the class Node to represent an

OWL Property Object.

• The NodeRestrictionCardinality Class – specifies the class Node to rep-

resent an OWL Minimum Cardinality Object.

• The NodeRestrictionComplementOfClass Class – specifies the class

Node to represent the complement of an OWL Class Object.

• The NodeRestrictionComplementOfProperty Class – specifies the class

Node to represent the complement of an OWL Property Object.

• The NodeRestrictionComplementOfRestrictionCardinality Class –

specifies the class Node to represent an OWL Maximum Cardinality

Object.

• The Enumeration Interface NodeType – classifies the Node class as

NodeClass, NodeProperty, NodeRestrictionCardinality, NodeRe-

strictionComplementOfClass, NodeRestrictionComplementOfProperty

and NodeRestrictionComplementOfRestrictionCardinality.

• The ConstraintGraph Class – implements the procedures described in

Figure 2, except for the SaveOntology procedure, to create the con-

straint graph, over which all the operations are realized.

• The BreadthFirstSearch Class – implements a breadth first search algo-

rithm over the Graph class and also a transitive closure.

• The SaveOntology Class – implements the SaveOntology procedure

from Figure 2.

The Graph and Node classes, as well as their specializations, are used to

store the OWL ontologies over which the Projection, Union, Intersection and

Difference operations are executed. The classes from the Ontology package inter-

act with the Main package as shown in Figure 4.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

58

Figure 4. Ontology Package interaction with Main Package

6.3 Software Setup

The OntologyManagerTab software was developed entirely in Java using the

Eclipse IDE. It has been implemented and tested with Protégé 3.4.8, running in

Mac OSX 10.9. Although it has been only tested with this environment, the On-

tologyManagerTab was developed to run in any operating system as long as it

supports the Protégé framework. To execute the project, the following steps must

be followed:

1. Install Protégé 3.4.8.

2. Import the Eclipse Project.

3. In the Project Properties inside Eclipse, follow the path “Java Build

Path è Libraries” and add the three “External JARs” that accompa-

ny the project: looks.jar, protege.jar, owlapi-distribution-3.5.0.jar.

4. Compile and run the project.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

59

The external JARs looks.jar and protege.jar provided in the project are spe-

cifically for Protégé version 3.4.8. To use any other version of the Protégé frame-

work, both of these external JARs should be imported from the Protégé installa-

tion folder.

After compiling and running the project, Protégé will be launched. To exe-

cute the OntologyManagerTab, the user must then open any project as in the se-

quence shown in Figures 5 and 6.

The user must then enable the OntologyManagerTab on the current project.

To do so, he must follow the path “Project è Configure”, select the Ontology-

ManagerTab to run as a Tab Widget and click “OK”. This sequence is shown in

Figures 7, 8 and 9.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

60

Figure 5. Launching Protégé

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

61

Figure 6. Opening Protégé Project

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

62

Figure 7. Configuring Protégé Widgets

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

63

Figure 8. Selecting OntologyManagerTab

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

64

Figure 9. OntologyManagerTab

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

65

6.4 Software Usage

In this section, we will explain how the software works using examples. This sec-

tion covers the basic functionalities of OntologyManagerTab: loading ontologies;

the Union procedure; the Intersection procedure; the Projection procedure; the

Difference procedure; minimizing ontologies; and finally saving the resulting on-

tology.

 Furthermore, we must keep in mind that in contrast to what is presented in

the examples in Section 5 the OntologyManagerTab will also show the “mirror”

of the ontologies as specified in Definition 1.

6.4.1. Loading Ontologies

To load an OWL ontology, the user must simply click on one of the loading but-

tons – “Load Ontology 1”, “Load Ontology 2” or “Load Ontology Projection” (in

the case of the Projection operation) – and select the target ontology. The soft-

ware will normalize this ontology, according to the rules in Table 1 of Section

2.5, save this normalized lightweight core of the ontology in a file, with the same

name as the original, minus the extension, concatenated with “Normalized.owl”,

and load the normalization result.

As an example, we will load a version of the FOAF ontology as Ontology 1,

as shown in Figures 10 and 11. The representation adopted to display an ontology

to the user utilizes a table format (see Figure 11), where:

• Each lightweight term used in a constraint of the ontology appears

at least once in the first column of the table; and

• Each constraint of the form e ⊑	 f	 appears in a separate row, where e

appears in column 1 and f in column 2.

 By default, each term is displayed with their full URI. However, to facili-

tate their visualization, each ontology table has a “Show/Hide Ontology IRIs”

button, whose functionality is exemplified in Figures 11 and 12.

After one ontology is loaded we can also see that the normalized file for

said ontology is created as specified earlier. This can be seen for the FOAF ontol-

ogy loaded in Figure 13.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

66

Figure 10. Loading version of FOAF Ontology

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

67

Figure 11. Version of FOAF Loaded

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

68

Figure 12. Hiding FOAF IRIs

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

69

Figure 13. FOAF normalized file created

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

70

6.4.2. The Union Procedure

The Union procedure uses the algorithm specified in Sub-Section 5.4 and is the

default operation for the OntologyManagerTab. The Union is the first option in

the software operation combo box. To exemplify its usage, we will simulate the

Union from Example 2 that appears in Section 5.4 and uses two fragments of the

FOAF ontology. All figures in this example will be shown without full URIs to

facilitate the visualization.

First, we load O1 as Ontology 1, as shown in Figure 14. Next, we load O2 as

Ontology 2, as shown in Figure 15. Finally, we click the Run button to execute

the Union procedure. The resulting ontology is shown in Figure 16, as seen in

Example 2. If the user tries to execute the Union operation without loading two

ontologies, the OntologyManagerTab will show a warning asking for the second

ontology, as shown in Figure 17.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

71

Figure 14. O1 loaded as Ontology 1

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

72

Figure 15. O2 loaded as Ontology 2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

73

Figure 16. Resulting Ontology for the Union of O1 and O2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

74

Figure 17. OntologyManagerTab asking for second ontology

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

75

6.4.3. The Intersection procedure

The Intersection procedure uses the algorithm specified in Section 5.5 and is the

second option in the software operation combo box. To exemplify its usage, we

will simulate the Intersection from Example 5 that appears in Section 5.5 and

uses two ontologies based on phone companies, OPhoneCompany1 and OPhoneCompany2.

Again all figures in this example will be shown without full URIs to facilitate the

visualization.

First, we load OPhoneCompany1 as Ontology 1, as shown in Figure 18. Next, we

load OPhoneCompany2 as Ontology 2, as shown in Figure 19. Then, we select the In-

tersection operation in the combo box. Finally, we click the Run button to exe-

cute the Intersection procedure. The resulting ontology is shown in Figure 20, as

seen in Example 5. As in the Union procedure, if the user tries to execute the

Intersection operation without loading two ontologies, the OntologyManagerTab

will show a warning asking for the second ontology, as shown in Figure 17.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

76

Figure 18. OPhoneCompany1 loaded as Ontology 1

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

77

Figure 19. OPhoneCompany2 loaded as Ontology 2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

78

Figure 20. Resulting Ontology for the Intersection of OPhoneCompany1 and OPhoneCompany2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

79

6.4.4. The Projection procedure

The Projection procedure uses the algorithm specified in Section 5.3 and is the

third option in the software operation combo box. To exemplify its usage, we will

simulate the Projection from Example 1 that appears in Section 5.3 and executes

the projection of the FOAF ontology over VFF = {foaf:Agent, foaf:Person,

foaf:Organization, foaf:account }. Again all figures in this example will be shown

without full URIs to facilitate the visualization.

First, we load the FOAF ontology as Ontology 1, as shown in Figure 21.

Next, we select the Projection operation in the combo box. Then, we select the

terms from VFF that will be used in the projection, as shown in Figure 22. Finally,

we click the Run button to execute the Projection procedure. The resulting ontol-

ogy is shown in Figure 23, as seen in Example 1.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

80

Figure 21. FOAF Ontology loaded as Ontology 1

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

81

Figure 22. Selection of VFF for the Projection procedure

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

82

Figure 23. Resulting Ontology for the Projection of VFF over the FOAF ontology

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

83

6.4.5. The Difference procedure

The Difference procedure uses the algorithm specified in Section 5.6 and it is the

fourth and last option in the software operation combo box. To exemplify its us-

age, we will simulate the Difference from Example 7 that appears in Section 5.6

and uses two ontologies based on phone companies, OPhoneCompany1 and OPhoneCompa-

ny2. Again all figures in this example will be shown without full URIs to facilitate

the visualization.

First, we load OPhoneCompany1 as Ontology 1, as shown in Figure 18. Next, we

load OPhoneCompany2 as Ontology 2, as shown in Figure 19. Then, we select the dif-

ference operation in the combo box. Finally, we click the Run button to execute

the Difference procedure. The resulting ontology is shown in Figure 24, as seen

in Example 7. As in the Union procedure, if the user tries to execute the Inter-

section operation without loading two ontologies, the OntologyManagerTab will

show a warning asking for the second ontology, as shown in Figure 17.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

84

Figure 24. Resulting Ontology for the Difference of OPhoneCompany1 and OPhoneCompany2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

85

6.4.6. Minimizing Ontologies

Our software provides a button to call the graph minimization function, as dis-

cussed in Section 4.3. This function is not automatically called, so that the user

can follow the construction of the transitive closure of the resulting constraint

graph when necessary.

 To exemplify the use of the graph minimization function, we will consider

the Intersection of two trivial ontologies O1 and O2, where O1 represents A ⊑ B,

B ⊑ C, C ⊑ D and O2 represents A ⊑ B, B ⊑ C. Figure 25 shows O1 loaded as

Ontology 1 and O2 loaded as Ontology 2. Figure 26 exhibits the result of the in-

tersection, whose constraints are depicted in the bottom left table; note that this

table contains a redundant constraint, A ⊑ C, which appears in Line 3. Figure 27

shows the result of calling the graph minimization function; note that the bottom

left table does not contain a line for the constraint A ⊑ C.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

86

Figure 25. O1 loaded as Ontology 1 and O2 loaded as Ontology 2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

87

Figure 26. result of said Intersection between O1 and O2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

88

Figure 27. Minimize Graph function over Intersection between O1 and O2

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

89

The possibility of displaying all reachable nodes is very interesting when ⊥-

nodes occur. OntologyManagerTab shows all ⊥-nodes found with their respective

levels, as in Definitions 2 and 3. Every time the software finds ⊥-nodes, a warn-

ing is added to the log with the number of ⊥-nodes found in the last operation,

including the load of an ontology whose constraints force a class to be empty

(which is captured by ⊥-nodes).

If the graph minimization function was called after each operation, it would

take the domain specialist a lot of unnecessary work to find the root of the ⊥-

nodes. When the constraint graph has ⊥-nodes and is minimized, only the ⊥-node

tags remain with their corresponding level.

Consider, for example, an Union between two ontologies O3 and O4, where

O3 contains the constraints A ⊑ B, B ⊑ C, B ⊑ ¬C and O4 the constraints A ⊑ B,

B ⊑ C, C ⊑ D, C ⊑ ¬D. Figure 28 shows the result of their union and Figure 29

the minimized graph. In this case, O3 has two ⊥-nodes, where A is a ⊥-node of

level 1 and B is a ⊥-node of level 0. O4 has three ⊥-nodes, where A is a ⊥-node of

level 2, B is a ⊥-node of level 1; and C is a ⊥-node of level 0. The resulting ontol-

ogy will also have three ⊥-nodes, but in this case they will have different levels: A

will be a ⊥-node of level 1, B will be a ⊥-node of level 0 and C will be a ⊥-node

of level 0.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

90

Figure 28. Union between O3 and O4

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

91

Figure 29. Graph Minimization for the Union between O3 and O4

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

92

6.4.7. Saving Resulting Ontologies

The OntologyManagerTab also provides a way for the domain specialist to save

the ontologies obtained by applying the operations. The “Save Ontology” button

saves the resulting ontology described in the “Resulting Ontology” table. The tool

adds the string “Normalized.owl”, if the name provided does not already end with

it.

To illustrate this procedure, the resulting ontology for the Projection of

FOAF ontology over VFF, from Figure 23 in Section 6.4.4, will be used. Starting

from this resulting ontology, we click on the “Save Ontology” button; the file

browser will be shown; and the user must choose a name for the new OWL file, as

in Figure 30, where the name “FoafFacebookOntology” was chosen.

When choosing to save the ontology, the log will display that the resulting

ontology was saved as “FoafFacebookOntologyNormalized.owl”, as shown in

Figure 31. We can now go to the folder and load the saved ontology to work on it

with new functions, as shown in Figure 32 and Figure 33. In Figure 34, we can

see the recently saved “FoafFacebookOntologyNormalized.owl” file in a Text

Editor application.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

93

Figure 30. Saving the Resulting Ontology for the Projection of VFF over the FOAF ontology

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

94

Figure 31. Ontology saved as “FoafFacebookOntologyNormalized.owl”

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

95

Figure 32. Loading saved ontology

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

96

Figure 33. Recently saved ontology loaded

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

97

Figure 34. Generated OWL file, “FoafFacebookOntologyNormalized.owl”, in a text editor

6.5 Experiments

This section describes experiments that use full ontologies from several domains,

as well as consistent fragments of these ontologies and a few ontologies created

from scratch to test the base cases. Among the ontologies used, we can highlight:

the DBpedia5 Ontology, the FOAF6 Ontology, fragments extracted from the Mu-

sicOntology7, as well as the food8 and wine9 ontologies from the W3C OWL

Guide Page10.

5 http://wiki.dbpedia.org/Downloads2014#dbpedia-ontology
6 http://xmlns.com/foaf/spec/
7 http://musicontology.com/specification/
8 http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

98

It is also possible to execute chained procedures, such as UN-

ION(INTERSECTION(O1,O2), O3), if the resulting ontology for the first opera-

tion, in this case INTERSECTION(O1,O2), is saved and reloaded to execute the

second, UNION(OInt,O3).

The experiments with all the operations reached excellent results, not only

on the trivial cases but also on the experiments with the full ontologies listed be-

fore. The longest processing times were obtained with the operations using the

DBpedia ontology, since its latest version generates around 4000 nodes. For this

same reason, the test cases with the DBpedia ontology were also onerous to verify

and validate.

All of said experiments were performed in a machine with a 2 GHz Intel

Core 2 Duo processor, 8 GB 1067 MHz DDR3 of memory and using the Java

Virtual Machine default configuration. Table 11 shows 10 samples of processing

time obtained for the operations of loading, projection over 10 random terms and

union, considering the food11 and wine12 ontologies. All the measurements are in

seconds and the last two columns show the average and the standard deviation,

respectively.

All the ontologies used in the experiments are contained in the folder “On-

tologies” inside the project compressed file. If the user wants to do new experi-

9 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf
10 http://www.w3.org/TR/2004/REC-owl-guide-20040210/
11 http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
12 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

Food Ontology

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Avg Dev

Load 0,734 1,391 1,070 0,911 0,869 0,612 0,943 1,197 0,846 0,779 0,935 0,230

Projection 0,029 0,016 0,020 0,027 0,016 0,018 0,025 0,023 0,016 0,034 0,022 0,006

Wine Ontology

Load 0,230 0,728 0,436 0,458 0,724 0,792 0,589 0,335 0,289 0,256 0,484 0,212

Projection 0,012 0,016 0,012 0,011 0,013 0,011 0,014 0,013 0,011 0,012 0,013 0,002

Union 0,409 0,439 0,348 0,480 0,367 0,403 0,438 0,416 0,380 0,436 0,412 0,039

Table 11. Experiments Processing Times in seconds

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

99

ments, it is recommended to use the Projection procedure on larger ontologies in

order to extract smaller ones, that are easier to manually verify in any other tests.

6.6 Summary

In this chapter, we presented an overview of the software developed in this disser-

tation, called OntologyManagerTab, describing all of its features and use exam-

ples. Section 6.2 presented the class architecture, providing a brief overview of

the developed classes and how they interact. Section 6.3 explained how to com-

pile and setup the OntologyManagerTab for use. Section 6.4 contained examples

of how to use each operation in OntologyManagerTab. Finally, Section 6.5 dis-

cussed the experiments executed.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

7
Conclusion

7.1 Contributions

Few tools assist the domain specialist in the development of a new ontology that

represents a correct understanding of the semantics of the ontologies involved. To

this end, it is necessary to take into account not only the terms of the original on-

tologies but also their constraints. This is possible by considering ontologies as

logical theories, composed of vocabularies and constraints, and defining the alge-

braic operations of Projection, Union, Intersection and Difference over one or

two ontologies.

The OntologyManagerTab, presented in this dissertation, offers these on-

tology operations, integrated with traditional ontology management features. The

software was developed in Java as a tab plug-in over Protégé 3.4.8. However, it

works in a completely independent manner from the main framework, using Pro-

tégé only as a Graphical User Interface (GUI) enclosure. In other words, all the

functionalities provided by OntologyManagerTab do not rely on any of the Pro-

tégé libraries, making the tool easier to adapt as a plug-in for any other framework

or as a stand-alone software.

7.2 Limitations

One of the main challenges of this work was the integration with Protégé. Despite

the extensive documentation and the various guides for plug-in implementations,

the information provided was very case-specific or would not work as expected. It

took a combination of various guides and some experimentation to setup the envi-

ronment correctly.

Another limitation of this work is related to the URI manipulation, consider-

ing the existence of two standards: hash URI and slash URI. This problem be-

comes more evident when an ontology uses one standard and imports terms from

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

101

another ontology that uses the other standard. Our tool must treat every OWL on-

tology regardless of which standard it uses, hash URI or slash URI. It became

necessary to develop parsers that interpret both kinds of URI and store the terms

in the constraint graph in a consistent manner. The OntologyManagerTab stores

the terms without a standard, separating the term from the URI, and saves the re-

sulting ontologies in the hash URI standard.

Furthermore, there was some difficulty related to the validation of the pro-

posed operations for the more extensive ontologies, such as the DBpedia ontolo-

gy, which has around 4000 terms.

7.3 Future Work

The OntologyManagerTab could include a consistency check module that locates

empty classes, that is, classes which are equivalent to the bottom class. This mod-

ule would guide the domain specialist in the process of removing the inconsisten-

cies found, by showing the options of terms that could be removed, to end said

inconsistency instead of just pointing them out. In the current implementation, the

user is able to identify all bottom classes and find their root, but the current im-

plementation does not guide the user in this process nor does it helps him handle

them.

In addition, the interface could be more intuitive. In this dissertation, the

main focus was to provide a way for the user to visualize all the information con-

tained in each ontology, so that he could follow every term and axiom. The axiom

table could be replaced by a TreeView for each ontology, with the reachable

graph from each of the nodes as a tree that could be expanded in order to help the

visualization. The problem with this approach might be in the heavy renderization

needed for bigger and well-connected ontologies.

Furthermore, the OntologyManagerTab could be extended to execute

chained procedures of the proposed algebraic operations in a more intuitive and

direct manner, instead of requiring the user to save and load the results of the in-

termediary operations.

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

102

8
Bibliographical References

(Ahoy, A. V., Garey, M. R., Ullman, J. D., 1972) Ahoy, A. V., Garey, M. R.,
Ullman, J. D.. The Transitive Reduction of a Directed Graph. SIAM J. Comp.
1(2), 131–137 (1972)

(Antoniou, G. e van Harmelen, F., 2003). Antoniou, G. e van Harmelen, F.. Web
Ontology Language: OWL. In S. Staab and R. Studer, editors, Handbook on
Ontologies in Information Systems, pages 76–92.(2003)

(Artale, A. et al, 2009) Artale, A.; Calvanese, D.; Kontchakov, R.;
Zakharyaschev, M. “The DL-Lite family and relations”. J. of Artificial
Intelligence Research 36, pp. 1–69,(2009)

(Baader, F.; Nutt, W., 2003) Baader, F.; Nutt, W.. “Basic Description Logics”. In:
Baader, F.; Calvanese, D.; McGuiness, D.L.; Nardi, D.; Patel-Schneider, P.F.
(Eds) The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge U. Press, Cambridge, UK. (2003)

(Berners-Lee T. et al., 2005) Berners-Lee, T.; Fielding, R.; Masinter, L. RFC
3986 – Uniform Resource Identifier (URI): Generic Syntax.
http://tools.ietf.org/html/rfc3986 (2005)

(Berners-Lee, T., 1994) Berners-Lee, T. RFC 1630 – A Unifying Syntax for the
Expression of Names and Addresses of Objects on the Network as used in the
World-Wide Web. http://www.ietf.org/rfc/rfc1630.txt (1994)

(Berners-Lee, T., 2007) Berners-Lee, T.. Semantic Web URIs. Realizado o acesso
em fevereiro de 2013, a partir de http://dig.csail.mit.edu/2007/Talks/0108-swuri-
tbl/#(1) (2007)

(Berners-Lee, T., 2007) Berners-Lee, T. Linked Data: Design issues. Realizado o
acesso em fevereiro de 2013, a partir de
http://www.w3.org/DesignIssues/LinkedData.html (2007)

(Bizer, C. et al., 2009) Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The
Story So Far. Int. Journal on Semantic Web and Information Systems 5(3), 1–22
(2009)

(Bizer, C. et al., 2011) Bizer, C.; Jentzsch, A.; Cyganiak, R. State of the LOD
Cloud.http://www4.wiwiss.fu-berlin.de/lodcloud/state/. (2011)

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

103

(Bleiholder and Naumann, 2006) Bleiholder, J. e Naumann, F..Conflict handling
strategies in an integrated information system. In Proceedings of the IJCAI
Workshop on Information on the Web (IIWeb), (2006)

(Breitman et al, 2006) Breitman, K., M. A. Casanova e W. Truszkowski.
Semantic web: Concepts, technologies and applications (monografia da NASA em
sistemas e engenharia de software). Springer-Verlag, New York, Inc., Secaucus,
NJ, USA, (2006)

(Brickley,D., Miller, L., 2010) Brickley,D., Miller, L. Foaf vocabulary
specification 0.98. http://xmlns.com/foaf/spec/ (2010)

(Casanova et al., 2011) Casanova, M.A., Breitman, K. K., Furtado, A. L., Vidal,
V. M. P., Macêdo, J.A.F.: The Role of Constraints in Linked Data. Proc. 10th
International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE 2011). Lecture Notes in Computer Science 7045. Springer,
Heidelberg, pp. 781-799 (2011)

(Casanova et al., 2012) Casanova, M.A., Macêdo, J.A.F, Sacramento, E.R.,
Pinheiro, A.M.A, Vidal, V.M.P., Breitman, K.K. e Furtado, A.L.. Operations
over Lightweight Ontologies. OTM 2012, Part II, LNCS 7566, pp. 646–663
(2012)

(Das, S. et al., 2012) Das, S., Sundara, S., Cyganiak, R. R2rml: RDB to RDF
mapping language. W3C RDB2RDF working group.
http://www.w3.org/TR/r2rml/ (2012)

(Gennari J. H. et al., 2003) Gennari, J. H., Musen, M. A., Fergerson, R., Grosso,
W. E., Crubzy, M., Eriksson, H., Noy, N. F. e Tu, S.W.. The Evolution of
Protege: An Environment for Knowledge- Based Systems Development.
International Journal of Human-Computer Studies, 58(1):89–123, (2003)

(Goodrich, M.T. e Tamassia., R. 2001) Goodrich, M.T. e Tamassia, R..
Algorithm Design. IE-Wiley. (2001)

(Gruber, T.R. et al., 1993) Gruber, T.R. et al. A translation approach to portable
ontology specifications. Knowledge acquisition, 5: 199-199 (1993)

(H. W., T. V., U. V., H. S., G. S., H. N., S. H., 2001) H. Wache, T. Vögele, U.
Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, S. Hübner.. Ontology-
Based Integration of Information - A Survey of Existing Approaches. In IJCAI’01
Workshop. on Ontologies and Information Sharing (2001)

(Heath, T. e Bizer, C., 2011) Heath, T. e Bizer, C.. Linked Data: Evolving the
Web into a Global Data Space. 1st. ed.[S.l.]: Morgan & Claypool, 136 p. ISBN
9781608454303. (2011)

(Hepp M. et al., 2008) Ontology Management: Semantic Web, Semantic Web
Services, and Business Applications. Semantic Web And Beyond Computing for
Human Experience. ISBN 978-0-387-69900-4. (2008)

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

104

(Hsu, H.T, 1975) An Algorithm for Finding a Minimal Equivalent Graph of a
Digraph. Journal of the Association for Computing Machinery 22(1), 11–16
(1975)

(Jacobs e Walsh, 2004) Jacobs e Walsh. Architecture of the world wide web.
Obtido em março de 2013. http://www.w3.org/TR/webarch/ (2004)

(Klein, M., 2002) Klein, M. et al. “Ontology versioning and change detection on
the web”. In Proceedings of EKAW’02, 197–212, Siguenza, Spain, (2002)

(Klyne,G. et al.,2010) Klyne,G.,Carroll,J.J,McBride,B. Resource Description
Framework (RDF): Conceitos e sintaxe abstrata.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2010)

(Koubková, A. e Koubek, V.,2002). Koubková, A. e Koubek, V.. Algorithms for
transitive closure. Information processing letters, 81(6):289–296 (2002)

(Langegger, A.A., 2010) Langegger, A. A Flexible Architecture for Virtual
Information Integration based on Semantic Web Concepts. Tese (Doutorado) — J.
Kepler University Linz, (2010)

(Lenzerini, 2002) Lenzerini, M. Data Integration: A Theoretical Perspective. In
Proceedings of ACM Symposium on Principles of Database Systems, (2002)

(M. Klein et al., 2002) M. Klein et al. “Ontology versioning and change detection
on the web”. In Proceedings of EKAW’02, 197–212, Siguenza, Spain (2002)

(Maedche et al., 2003) Maedche et al., “Managing multiple and distributed
ontologies on the Semantic WEB”, VLBD Journal 12, Springer, Location, pp.
286-302 (2003)

(Manola, F. e Miller, E., 2004) Manola, F. e Miller, E.. Resource Description
Framework (RDF) Model and Syntax Specification, http://www.w3.org/TR/rdf-
primer/ (2004)

(McGuinness, D. L. et al , 2000) D. L. McGuinness, R. Fikes, J. Rice, and S.
Wilder. The Chimaera Ontology Environment. In Proc. of the 17th National
Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, pages 1123–1124, (2000)

(McGuinness, D.L., 2002) McGuinness, D.L. .Ontologies come of age. Spinning
the semantic web: bringing the World Wide Web to its full potential, page 171-
192 (2002)

(McGuinness, D.L., Harmelen, F., 2010) McGuinness, D.L., Harmelen, F. OWL
Web Ontology Language Overview (OWL). http://www.w3.org/TR/2004/REC-
owl-features-20040210/ (2010)

(Noy, N. F. et al, 2004) N. F. Noy. Semantic Integration: A Survey Of Ontology-
Based Approaches, ACM SIGMOD Record, vol. 33, nº4, p.65-70, (2004)

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

105

(Noy, N. F. et al, 2004) N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen.
Tracking changes during ontology evolution. In Sheila A. Mcilraith, Dimitris
Plexousakis, e Frank van Harmelen. Third International Semantic Web
Conference, pages 259–273, Hiroshima, Japan (2004)

(Noy, N. F. and Musen M. A., 2000) N. F. Noy, and M. A. Musen. PROMPT:
Algorithm and Tool for Automated Ontology Merging and Alignment. In
Seventeenth International Joint Conference on Artificial Intelligence AAAI/IAAI,
pages 450–455 (2000)

(Noy, N. F. and Musen, M. A., 2004) N. F. Noy, and M. A. Musen. Specifying
Ontology Views by Traversal. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, International Semantic Web Conference, volume
3298 of Lecture Notes in Computer Science, pages 713–725 (2004)

(Peter Haase et al, 2003) Peter Haase, York Sure e Denny Vrandei (Institute
AIFB, University of Karlsruhe) Ontology Management and Evolution – Survey,
Methods and Prototypes (2003)

(Pinheiro, A.M.A., 2013) Pinheiro, A.M.A.. OntologyManagementTool – Uma
Ferramenta Para Gerenciamento De Ontologias Como Teorias Lógicas (2013)

(Rahm, E. e Bernstein,P.A. 2001) E. Rahm and P. A. Bernstein. A Survey of
Approaches to Automatic Schema Mat- ching. VLDB Journal: Very Large Data
Bases, 10(4):334–350 (2001)

(Ramos., J. A., 2001) Ramos, J. A..Mezcla automática de ontologías y catálogos
electrónicos. Final YearProject. Facultad de Inform´atica de la Universidad
Politécnica de Madrid. Spain, (2001)

(Roy,R., 1959) R. Roy. Transitivité et connexité. C.R. Acad. Sci. Paris, 249:216–
218 (1959)

(Sahoo, S.S. et al., 2009) Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K.,
Thibodeau Jr, T., Auer, S., Sequeda J., Ezzat, A. A survey of current approaches
for mapping of relational databases to rdf. W3C RDB2RDF Incubator Group
Report (2009)

(Shvaiko, P. e Euzenat., J., 2004) P. Shvaiko and J. Euzenat. A Survey of
Schema-based Matching Approaches. Tech- nical Report DIT-04-087, University
of Trento (2004)

(Stojanovic, L., 2004) Stojanovic, L. Methods and Tools for Ontology Evolution,
Ph.D. Thesis, University of Karlsruhe, Germany (2004)

(Thompson, H. S. et al., 2004)Thompson, H. S. et al. XML Schema Part 1:
Structures Second Edition, W3C Recommendation. Disponível em:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ (2004)

(Tury, M. e Bieliková. M., 2006) Tury, M. e Bieliková, M.. An Approach to
Detection Ontology Changes. In ICWE ’06: Workshop proceedings of the sixth

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

106

international conference on Web engineering, page 14, New York, NY, USA.
ACM Press (2006)

(Volz R., 2003) Volz, R., Oberle, D. e Studer, R.. Implementing Views for Light-
Weight Web Ontologies. In Proc. of Int. Database Engineering and Application
Symposium - IDEAS, pages 160–169, Hong Kong, China. IEEE Computer
Society (2003)

(Warshall, S., 1964) Warshall, S.. A theorem on boolean matrices. Journal of the
ACM , 9(1):11–12 (1962)

DBD
PUC-Rio - Certificação Digital Nº 1312411/CA

