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Abstract

Faria, Waldecir Vicente; Lopes, Hélio Côrtes Vieira Lopes(Advisor);
Feijó, Bruno(Co-Advisor). D-Engine: a framework for the random

execution of plans in agent-based models . Rio de Janeiro, 2015.
72p. MSc Dissertation � Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

An important question in agent-based systems is how to execute some

planned action in a random way. The answer for this question is fundamental

to keep the user's interest in some product, not just because it makes the

experience less repetitive but also because it makes the product more realistic.

This kind of action execution can be mainly applied on simulators, serious

and entertainment games based on agent models. Sometimes the randomness

can be reached by just generating random numbers. However, when creating a

more complex product, it is recommended to use some statistical or stochastic

knowledge to not ruin the product's consumption experience. In this work

we try to give support to the creation of dynamic and interactive animation

and story using an arbitrary model based on agents. Inspired on stochastic

methods, we propose a new framework called D-Engine, which is able to

create a random, but with a well-known expected behavior, set of timestamps

describing the execution of an action in a discrete way following some speci�c

rate. While these timestamps allow us to animate a story, an action or a

scene, the mathematical results generated with our framework can be used to

aid other applications such as result forecasting, nondeterministic planning,

interactive media and storytelling. In this work we also present how to

implement two di�erent applications using our framework: a duel scenario and

an interactive online auction website.

Keywords

Stochastic Simulation; Agent-Based Models; Procedural Animation;

Auctions.
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Resumo

Faria, Waldecir Vicente; Lopes, Hélio Côrtes Vieira Lopes(Orientador);
Feijó, Bruno(Coorientador). D-Engine: um framework para a exe-

cução aleatória de planos em modelos baseados em agentes. Rio
de Janeiro, 2015. 72p. Dissertação de Mestrado � Departamento de In-
formática, Pontifícia Universidade Católica do Rio de Janeiro.

Uma questão importante em sistemas baseados em agentes é como

executar uma ação planejada de uma maneira aleatória. Saber responder esta

questão é fundamental para manter o interesse do usuário em um determinado

produto, não apenas porque torna a experiência menos repetitiva, mas também

porque a torna mais realista. Este tipo de execução de ações pode ser aplicado

principalmente em simuladores, jogos sérios ou de entretenimento que se

baseiam em modelos de agentes. Algumas vezes, a aleatoriedade pode ser

obtida pela simples geração de números aleatórios. Porém, quando estamos

criando um produto mais complexo, é recomendável usar algum conhecimento

estatístico ou estocástico para não arruinar a experiência de consumo deste

produto. Neste trabalho, nós damos suporte à criação de animações e histórias

dinâmicas e interativas usando um modelo arbitrário baseado em agentes. Para

isto, inspirado em métodos estocásticos, nós propomos um novo framework,

chamado D-Engine, que é capaz de criar um conjunto de timestamps aleatórios,

mas com um comportamento esperado bem conhecido, que descrevem a

execução de ações em regime de tempo discreto e a uma determinada taxa. Ao

mesmo tempo em que estes timestamps nos permitem animar uma história,

uma ação ou uma cena, os resultados gerados com o nosso framework podem

ser usados para auxiliar outras aplicações, tais como previsões de resultado,

planejamento não determinístico, mídia interativa e criação de estórias. Nesta

dissertação também mostramos como criar dois aplicativos diferentes usando

o framework proposto: um cenário de duelo em um jogo e um site de leilões

interativo.

Palavras�chave

Simulação Estocástica; Modelos Baseados em Agentes; Animação

Procedural; Leilões.
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1

Introduction

With the advance of the technology, interactive media is becoming each day

more popular. In the present, we are able to produce interactive stories that

does not follow a single storyline, having multiple endings and multiple paths.

With that, a single product can be enjoyed several times and still keeping

the consumer entertained. We say that products with this property have a

high "replay factor" (23), a factor that increases the users' desire to "replay"

the same content various times. Addicting or �exible gameplay, unlockable or

secret contents, good soundtrack and plot variation itself are ways to increase

the product's replay factor.

It is usual to see stories which can be presented in multiple ways or with

distinct possible endings in digital games. The player can in�uence how the

story will proceed in di�erent ways such as: triggering events with key actions

or activating events based on a player's pro�le, for example, the story would

proceed to a bad ending if the player was behaving crudely in the game world

context.

Moreover, there is a set of algorithms that focus on the automatic

generation of story plots. These can be related to digital games, but they

are not limited to only that kind of content. For example, there is also interest

in applications that present dynamic stories like a common movie (29). These

algorithms, commonly called arti�cial intelligence planners, are able to choose

a sequence of actions based on a set of parameters and the desired goals to be

achieved. Generally they focus on selecting which actions will be performed,

but they do not detail how each action will be executed. Excluding sections

from digital games, where the player can interact with the same scenario in

di�erent ways to achieve some objective, when a speci�c sequence of actions

is given, usually it is presented in the same way, having pre-made animations

representing each action.

We �nd a more simple example in Real-Time Strategy (RTS) Games

(like Age of Empires1), where there are many actions and tools that in�uence

the game progress throughout the war in which we are participating. However,

1http://www.ageofempires.com/
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Chapter 1. Introduction 10

when we focus on the atomic actions that compose this complex �ow of events,

we notice that some of them are executed in cycles. A �ght between two units is

just each warrior repeating its static attack animation until being interrupted

by something else.

1.1
Objective

Our objective is to increase the replay factor by adding variation and com-

plexity to those atomic actions by introducing randomness on this kind of

cyclic events. We break this cycle in multiple well-de�ned parts, transforming

a single action or state into a sequence of stages that are executed over

time. This way, we can establish how the action is executed in a discrete se-

quence of events. Each stage starts in a randomly generated instant and has a

random time of execution before going to the next stage. While this approach

may generate some limitations, it allows us to use decision theory techniques

based on discrete event simulation (section 3.1).

Since we cannot represent many stories using just a single action as base,

we also give support to an arbitrary planner that chooses what each agent

should do to achieve some goal (section 2.2). Also, we create a simple system

of message exchange between agents to add more power to the simulated model.

One extra feature is the capacity of mixing this algorithm execution with the

processing of user input to let the user interact with the simulated universe,

and not just observe its execution (section 4.4).

1.2
Contribution

Our contribution consists of a new framework, named D-Engine (chapter 5),

for agent-based models with randomized actions execution without demanding

deep knowledge about stochastic simulation. With that, artists and game de-

signers would take advantage of stochastic methods that can be applied to this

kind of discrete simulation without having much background in mathematical

areas.

This framework was devised to simulate environments where the actions

can be described as a sequence of discrete events through time without losing

relevant information. Also it supports multiple agents being able to exchange

messages and to execute di�erent actions simultaneously; however, a single

agent can execute only one action per time.

As a proof of concept we present two applications. Firstly, following the

inspiration from Real-Time Strategy Games, we present a simple agent-based
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Chapter 1. Introduction 11

model that represents a battle between two warriors as a base to let new users

know how it works and what they need to implement in order to create a new

custom model.

The second application is the simulation of an e-commerce application

based on English Auctions. The proposed model can have hundreds of agents

with di�erent states and it is used to show how to apply the framework in a

more complex context, including user interaction with the simulated universe

to let it compete with the agents through multiple auctions as a serious game.

1.3
Outline

This document is organized as follows. Chapter 2 discusses the related work.

Chapter 3 describes an overview of the proposed framework and some basic

concepts. Chapter 4 presents the details of the D-Engine framework. Chapter

5 shows the D-Engine software architecture. Chapter 6 and chapter 7 show

an application of this framework to Real-Time Strategy Games and to English

Auctions, respectively. Chapter 8 compares this proposed work with some

solutions for similar problems or approaches. Finally, chapter 9 concludes this

thesis and suggests ideas for future works that can be done in the proposed

framework or using it as base for custom projects using agent-based models.
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2

Related Work

This chapter describes some related work in the �elds of procedural animation,

arti�cial planning, stochastic processes and agent-based modeling.

2.1
Procedural Animation

If we know the exact stage in which an agent is, while it is executing some

action, and we know its starting and �nishing instants, then we can animate

how this action is executed through time using an animation clip for each

stage. This is a very lightweight and simple strategy for creating procedural

animations.

There are other complex strategies, such as the crowd simulation used in

the Lord of Rings movies (8), the animation based on data blending to simulate

realistic character motion through a complex scenario (12), and the work from

(18) based on game theory and machine learning to teach two agents how to

act in a �ghting game or in a tag game like a competitive game for example.

These projects produce smooth and realistic animations, some of them

including physical interaction with the scenario. They are mainly focused on

3D models that manipulates the skeleton of the human characters to create real

life-like motions. Our approach focuses in describing how an action is executed

in an abstract way; we want to specify just what is happening in each point of

time. Doing this, we can use our approach in any kind of story presentation: 2D

animation, 3D animation, text description or audio description. Our approach

may not o�er all the realism details from these other complex techniques, but

because of that, it can be used by simpler projects using less computational

power and demanding less e�ort to implement.

2.2
Arti�cial Planning

The proposed framework's main objective is to describe how an arbitrary

action should be executed; however, it is not focused on choosing which action

should be executed in a speci�c context. To do that, our framework needs to
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Chapter 2. Related Work 13

be compatible with some custom program able to plan which actions should

be executed.

According to (19, Page 1), "planning is the subarea of Arti�cial Intelli-

gence that studies the abstract and explicit deliberation process of choosing

and organizing actions, by anticipating their expected outcomes, in order to

achieve objectives".

Using classical planning with a well-de�ned set of states, enough know-

ledge about the simulated environment and a list of actions to change the

system's state, it is possible to de�ne a linear sequence of actions to satisfy a

goal with a deterministic process.

However, this linearity may not look natural. In the real world, actions

can have di�erent results and stories can occur in di�erent ways. In these cases,

nondeterministic planning can be a good tool to improve the experience (19).

There are planners that use the expected outcome from each task to improve

the plan generation, like Markov Decision Processes (9) or Markov Games (18).

Also there are planners prepared to work with Knightian Uncertainty

(24), when the probability of something happening is unknown or immeas-

urable. Examples of these planners are Hierarchical Task Networks (HTN)

(27, 28), Model Checking (9) and Nondeterministic Finite State Machines (2).

Note that for any planning algorithm, choosing the parameters needed to

do that e�ciently can be a very hard task. While the system does not need to

know everything about the simulated world, it must have enough information

to take satisfying decisions (27). Even knowing what a good parameter can be,

choosing how it should be presented to the planning system can be a challenge,

for example we have simulated emotions (20), physics-based actions or long-

term strategies and tactics (30).

2.3
Stochastic Processes

One important source of inspiration for this project was discrete event simula-

tion, mainly the algorithms used for queue simulation. Queues are a common

example in introductory courses about this speci�c kind of simulation, because

they are simple to implement and it is easy to see how one can simulate their

expected behavior by just knowing how to model the time when each event

will occur and how much time it takes to accomplish some task.(25)

Instead of generating random times of client arrival on a line, for each

agent doing a speci�c task, our approach generates the initial time of any stage

from the basic animation cycle and its duration. In this way, we have a tool
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Chapter 2. Related Work 14

to discretize the atomic tasks and we can also pro�t from all decision theory

algorithms that exist to support this kind of simulation.

Stochastic processes are a vast knowledge area, and they have some

methods that can be used in tasks like animation or planning. (18) is based

on Markov Games to tell how each agent should react to achieve its best

performance. Markov Decision Processes can be used to aid agents to plan

their movements in �ghting games, giving support to nondeterministic moves

(10). However, if the represented model is complex, those methods can become

very expensive in computational terms, requiring the use of some heuristics to

make them usable (21).

2.4
Agent-based modelling

Agent-based models can be used to get insights from complex environments

based on interaction between a massive number of agents, being widely used to

observe phenomena from biology, economy, business and other areas where it

seems to have some emergent behaviour, in other words, if there is some bigger

pattern or result that is created by multiple interactions of smaller patterns or

events (15).

Generally these agents are modeled in the simplest way possible to just

represent their e�ects on the simulated universe, ignoring everything else. On

the other hand there are models used in arti�cial intelligence projects focused

on solving hard problems using multiple agents rather than just observing

their behaviour. These models are popularly known as "multiagent models"

and their agents can be much more complex and require synchronization or

group work between multiple agents and machine learning to let the agents

discover new ways of doing something (6).

Both models can give support to visual representation of their simulation;

however, in this project we are more interested in visualizing agents performing

actions than in the result of their actions. This does not mean that we do

not care for the model's result, but we prefer to give more emphasis to the

observation than to the problem solving feature of a model, so we use the word

"agent-based model" for any model that will be simulated with our framework.

Note that both areas share common techniques, terminology and methods and

their names are used with the same meaning in some works.

Also to keep the research focus on the presented algorithm for action

discretization and to keep the model design simple for artists, designers or any

other kind of programmer that have interest in creating some project using our

framework, we do not follow any formal speci�cation or standards related to
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agent systems, such as FIPA (Foundation for Intelligent Physical Agents)(14)

or KQML (Knowledge Query and Manipulation Language)(3).
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3

Framework and Basic Concepts Overview

In this work, we propose a new framework, namedD-Engine, to randomize the

execution of tasks within an agent-based model. Since each event has a random

duration, it may generate random results. The main feature of this framework

is that it is mathematically well grounded and it is able to support custom

extensions to be used for di�erent purposes. Also it should provide methods of

stochastic simulation for inexperienced users, letting them estimate how the

model will act and what kind of outcome it could generate.

Planners generate a sequence of compose actions and atomic actions.

Composite actions are made of the union of multiple composite or atomic

actions, and an atomic action is the indivisible unit for planner (see �gure

3.1 as an example). Our algorithm's idea is to add variation to those atomic

actions, while detailing how this sequence will be executed.

Figure 3.1: The set of possible actions that can be generated by a speci�c
Hierarchical Task Network planner. Composite actions are made from a set of
atomic or basic actions. Adapted from (28).

It is important to notice that our method alone cannot handle multiple

actions. It needs the support of a planner compatible with nondeterministic

actions, since our method cannot decide which action each agent will execute
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Chapter 3. Framework and Basic Concepts Overview 17

in some speci�c context. Nondeterministic planners are also able to create

alternative plans when a planned action does not generate the expected result.

These planners are able to work with policies, which are total functions (π)

that map model states (S) into actions (A) to achieve some goal (9):

π : S → A.

An action A may not have a deterministic result but policies are made to

handle this kind of problems. If possible in the presented context, the policy will

move to an alternative state to recover itself from the failure and keep moving

towards to the �nal goal. Policies may also select the best set of actions for

each state, a set that increases the expected outcome of the plan execution

over an arbitrary context.

Our method details the execution of each atomic action by dividing it in

a group of stages executed in a loop. This cycle of stages is repeated until the

action achieves the desired subgoal or it fails trying to achieve it. Each stage

execution is de�ned by a simple timestamp (�gure 3.2) with information such

as which stage is being executed, which action is being performed, the initial

time and its duration.

Figure 3.2: With our method we are able to describe an atomic action execution
using a set of discrete stages indicated by multiple timestamps s1, s2, s3, ...
through time. Then action's total time t1 is the sum of the duration of every
timestamp used to describe it.

In order to give a more concrete meaning to this division, we chose three

common stages that we observed in simple animations like the attack one from

Real-Time Strategy Games. Following this example, �rst we need to prepare

to attack, then we execute the sword movement to attack, and we �nish the

movement going back to the basic �ghting stance. Therefore we have three

default stages: Prepare,Do and Finish. However, in real applications, a stage
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Chapter 3. Framework and Basic Concepts Overview 18

could be interrupted by some reason. For example, consider an archer shooting

an arrow in our agent. So we also create an extra stage that is executed when

our agent is interrupted to let it recover itself from this halting. Properly, we

call this stage Recover.

We useDiscrete Event Simulation (section 3.1) concepts to create the

events that represent these stages at a speci�ed timestamp. Queue simulation

(section 3.2) is, in fact, the main inspiration for the timestamp creation

system. Consequently, we can use some decision theory processes in any

model generated using this model. In special, this project provides Statistical

Analysis (section 3.3) to let the user estimate the given model's outcome.

Running this analysis multiple times, we are able to re�ne an arbitrary

model to satisfy some custom constraints or say that they are probabilistically

impossible to be reached.

Since the idea of this work is to create a suitable and �exible framework

for this task, we provide hotspots to the user in order to implement the

functions responsible to generate the plans, check goals, de�ne the agents

parameters and their behavior (chapter 5). We let agents exchange messages

between them to create more complex models, and to not let the user modify

the default discretization cycle (Prepare, Do, Finish). For example, using

messages, the agent can interrupt other agents; this interruption is captured by

the framework and forces the interrupted agent to go to the recovering stage.

Using this message system we provide the programmer with a method

to intercept �nal user's inputs and let him interact with the system as if the

user were an ordinary agent. Moreover, we abstract the task of processing the

timestamps to present the agents behavior through time.

3.1
Discrete Event Simulation

While deep knowledge about this area is not necessary to use this framework,

it is necessary to understand how this framework is implemented. Also, it can

aid the user to create models faster and with more precision. This section

brie�y describes how this approach works, and it is based on the explanations

of (25), where the reader can �nd more details about it.

Simulation is the act of trying to mimic some existing process or event

through time in a device like a computer, a mechanic machine or a sheet of

paper. Here, we are interested in stochastic processes simulation, which deals

with models based on random variables indexed by time.

When a simulation tracks the behavior of a model continuously through

time, we say that we are using a continuous simulation. This simulation is
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Chapter 3. Framework and Basic Concepts Overview 19

needed in models in which we are interested in how their objects act through

time based on some continuous function, such as a di�erential equation.

Examples of its application are models based on physical processes, like rocket

trajectories or rigid body simulations (11).

On the other hand, there are some real-life processes for which we do not

identify a continuous function that describes how their objects works, or we just

need to know some key points in time when important events happen. In these

cases we can use discrete event simulation, which is an approach to track the

behavior of a model based on a sequence of discrete events through time. This

technique may not have the same precision of the continuous simulation, but

in many occasions it is su�cient to study some processes. Also it is generally

faster and lighter to be used when compared with the continuous option.

In this kind of simulation we are more interested to observe how some

variables are a�ected when some events are triggered. The most basic variables

needed are:

� The time variable t, which refers to the amount of simulated time;

� The system state variable SS, which refers to the state of the simulated

process at the time t;

� The counter variable C, which refers to the amount of times that a

speci�c event happened in the simulated process until the current time

t.

To start a discrete simulation process, we initialize a list of events that

will happen after the beginning. The simulation system will choose the event

with the smallest starting time (the �rst event to happen) and the time variable

t will be updated with this value, so our simulated time is the time when this

event will happen. The simulation proceeds to create this event's duration and

the e�ects generated by it. We assume that this event happened, and if it will

chain the creation of some new event in the future, we insert this new event in

the event list and restart this simulation cycle until some condition is satis�ed

to �nish the simulation.

3.2
Queue Simulation

Single line queues are a good example to understand better how this kind of

discrete event simulation works. Consider a single server where the time tA of
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Chapter 3. Framework and Basic Concepts Overview 20

customers arriving to be served follows a nonhomogeneous Poisson Process 1

with rate Λ(t), t ≥ 0 . If this server is free, the customer proceeds to it and

expends a random time tD, following an arbitrary probability distribution G

before its departure. Otherwise it goes to the end of a waiting line until the

server becomes free again, giving us a classic �rst-in �rst-out system (�gure

3.3).

If we are interested in knowing the average time a customer spends in

this system, or when the server can go home after serving all customers, we

can use discrete event simulation to estimate these values. To simulate this

queue system, we need the following variables:

� The time variable t that represents to the amount of simulated time and

increases each time we detected the ending of an event;

� The system state variable SS that is used to count the number of client

arrivals and departures until the simulated time t;

� The counter variables C that are used to count the number of clients at

the simulated time t in the system that are waiting in the line or being

served.

The variables that we are interested to track are mainly a�ected by two

events: customer arrivals and customer departures. So our event list can be

composed of the combination of these two kinds of events, the arrival occurs

on tA and the departure happens on tD.

The simulation proceeds with the following idea: The simulated system is

initialized with the event of the �rst customer arrival on the event list. Then it

chooses this event as the current event, increasing the number of customers on

the line and changing the simulating time to t = tA. If t ≤ T ( T indicates the

maximum time when customers can enter into the line) we also calculate the

time tA of the next customer arrival. If the server is idle, we generate a random

number tD indicating the time when the service will be �nished and insert a

new departure event from this customer on the event list. Otherwise, we just

need to let the customer wait in the line until their turn arrives. The simulation

keeps doing this cycle of choosing the next event and updating its variables

according to the current event. At one moment t will be greater than T , then

we block new customer arrivals and generate tD, updating t with t = t+ tD for

each remaining client on the line until the number of customers in the system

becomes zero. Finally the simulation is over.

1Basically a Poisson Process is a stochastic process used to count the number of
events with independent inter-arrival times that would occur until some speci�c amount
of time. When the event does not happen at a constant rate, we say that the process is
nonhomogeneous. For more details see (25).
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Figure 3.3: The sequence of actions used in a queue system. In the left we have
the queue system working normally but when they go beyond some speci�c
time T it will stop receiving new customers and start to service the present
ones until the line becomes empty to let it close the establishment for the next
day.

Using this simulation we can count how many clients were served and

when the server would halt its operations by observing the variable T . Then

we can play with the functions related to the generation of tA and tD and

optimize the simulated model to see what kind of changes we need to do to

make the real-life line work better.

3.3
Statistical Analysis of Simulation Results

When running a single simulation we have access to the result of a single run of

an arbitrary model. To let us make decisions with con�dence on the simulated

result, we can analyze the average value θ generated from multiple simulations

of the same model.

If we run k simulations and the simulation i generates the output variable

Xi with expected value θ, we can consider that

∑
i≤k

Xi/k = X

is an estimator for our simulation output with an unknown average value θ,

known as the sample mean. Since the mean calculation E is a linear operation
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E[X] = E[
∑
i≤k

Xi/k]

=
∑
i≤k

E[Xi]/k

= kθ/k = θ

we can conclude that the average value from the estimator is the same as the

real value θ. Then we can consider it as an unbiased estimator.

The precision of the simulation statistical analysis increases when we

increase the number of simulations performed. To measure this precision we can

use the sample variance of Xi given in a similar way of the mean operation

by

S2
k =

∑
i≤k

(Xi −X)2/(k − 1).

Given some degree of tolerance l, we can use this sample variance to know

when the execution of more simulations does not change the sample mean X

in a signi�cant way.

With those formulas in hand we can use the following technique to

analyze an arbitrary simulation model based on its statistics:

1. Run the simulation at least 100 times;

2. X ← the sample mean of these simulated values;

3. S ← the sample variance of these simulated values;

4. if a custom tolerance function using these values accepts the calculated

sample mean, we stop and return X;

5. Run the simulation again and go to (2).

For example, in this project our tolerance function is based on the normal

distribution to approximate with 100(1−α) percent that the distance between

X and the unknown θ is less than an arbitrary l, the logical expression used is

2Za/2Sk/
√
k ≤ l

where Z is the standard normal random variable ( for example Z0.25 = 1.96 ).

Sk is the standard deviation calculated from the sample variance S2 and k is

the number of simulations performed until the calculation moment.
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Discretization Engine

Our focus is on discretizing atomic action in multiple internal stages to detail

how an action is executed. These actions are executed by agents inside the

simulated universe. We consider the Simulation Universe as the set of the

following concepts:

� A set of agents;

� A set of states de�ning the actions that each agent can execute;

� A planner.

4.1
Agents and the Universe Updating Cycle

Unlike basic discrete simulation where we usually focus on performance, sac-

ri�cing modularity when creating a solution for a speci�c problem, in our

framework we wanted to give support to an arbitrary discrete simulation sys-

tem with programming �exibility but keeping the support to formal methods of

statistical analysis. Instead of having few variables to modify, like in a single

line queue simulation, we can have multiple agents with multiple variables.

Also, di�erent agents can generate a di�erent set of states, and agents can

execute multiple actions concurrently (but a single agent can execute only a

single action at a time).

Instead of having a global event list to choose the next event to be

executed like the list used in queue simulation, each agent has its own event

list. In this way, at the end of the simulation, each agent will know which

actions it has executed throughout a simulation. Since the agent action can

generate multiple events before changing the current action, we consider that

an agent is in a state of doing an action, rather than just saying that it did

the action in our system.

This state tells the agent how it should proceed to ful�ll some arbitrary

action, so it should be able to tell how each stage should be executed, and how

much time each stage could use. Stages are the smallest units which let the

agents a�ect the simulated universe, and there are four types of stages based

on the following ideas:
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� "Prepare" : The agent prepares itself to do something;

� "Do" : The agent actually executes the action;

� "Finish" : The agent does anything that happens after executing the

action here;

� "Recover" : If something interrupts the other stages, the agent may pass

through this stage to try to recover itself.

Atomic actions may describe something more abstract than an individual

movement. For example, the action of "�ght" has a clear meaning, but its

execution may be a repetition of moves like punches and kicks. The action of

talking would be represented as a cycle of producing speci�c words with the

mouth. So, our purpose is to break any atomic action according to these stages

in a cyclic way.

Since we are discretizing the execution using these stages as keyframes

or timestamps, we need a method to determine their duration and when each

stage starts. We also need to know which stage should be executed to keep the

logical �ow of execution. Algorithm 1 can be used to do these tasks. Figure

4.1 shows a graphical representation of the update algorithm.

Figure 4.1: A graphical representation of the update algorithm integrated with
the planner that it is responsible to check the goals and choose the next state.

It begins checking if someone has interrupted the execution �ow in the

line 3 from the update algorithm. If this is true, it proceeds to execute the

recovering routine that involves calculating the execution time of the recovering

stage with the doRecover function, disabling the interruption �ag and turning

on the check necessity �ag. This �ag is used to let the agent know when it

needs to evaluate its current status and decide if it makes sense to stay in the

current stage. Using the usual "�ght" state as example, there is no sense to

keep attacking when our opponent is knocked-out.

DBD
PUC-Rio - Certificação Digital Nº 1321839/CA



Chapter 4. Discretization Engine 25

Algorithm 1 Calculate the duration of an arbitrary stage execution and apply
its side e�ects to the simulated universe.
1: function update()
2: tRet← −1
3: if state.interrupted then
4: tRet← state.doRecover()
5: state.interrupted← false
6: state.needCheck ← true
7: if tRet < MIN_TIME then

8: error('Invalid stage duration')
9: end if

10: end if

11: while tRet < MIN_TIME do

12: if state.stage = FINISH then

13: tRet← state.doF inish()
14: state.stage← PREPARE
15: state.needCheck ← true
16: else if state.stage = PREPARE then

17: tRet← state.doPrepare()
18: state.stage← DO
19: else

20: tRet← state.doDo()
21: state.stage← FINISH
22: if tRet < MIN_TIME then

23: error('Invalid stage duration')
24: end if

25: end if

26: end while

27: returntRet
28: end function

Otherwise it proceeds to the normal discretization �ow in the line 11.

This loop is used to mimic the cyclic sequence Prepare - Do - Finish - Prepare

- Do .... For example, if the state is on the stage of preparing the action (line

16), it will calculate the necessary time to execute the preparation with the

doPrepare function and set the next stage to be executed as "Do".

In our de�nition, we allow the state implementation to ignore the

execution of the preparing and �nishing stages; this happens when their

calculated time is less than some speci�ed time MIN_TIME > 0. The loop

condition will continue being valid and the next stage will be executed until any

of them returns a value greater than MIN_TIME. The "do" and "recover"

stages must return a positive time greater than this limit to avoid in�nite

loops, while simplifying this discretization loop.

We can only consider one stage execution �nalized, when we start the

next one. When we calculate the necessary time to execute the "Finish" stage,
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we are doing that because the previous stage has been �nished. This happens

because any stage may be interrupted in the middle of its execution.

Finally, it is also relevant to know that all functions which calculate

the estimated execution time from a stage (doPrepare, doDo, doFinish and

doRecover) may modify the simulated universe variables. They can send

messages to other agents and interrupt what they are doing. All these functions

are planned to be abstract functions and they can be implemented in di�erent

ways, they just need to obey the time value restrictions described before.

4.2
D-Engine Algorithm

Section 4.1 describes how to discretize a single action using a single agent in a

static state. This may be useful to animate single actions, but its use is very

restricted. Algorithm 2 uses that idea to simulate an agent-based model with

the help of an external planner responsible for the logic decisions:

The �rst thing that the algorithm does is to initialize all agents with

their initial state to be executed and their other parameters. The "external

planner" is some arbitrary planner compatible with nondeterministic actions

adapted to do the following functions:

� Initialize the agents parameters and other values used to de�ne the

simulated universe;

� Decide if a simulation has reached its goal;

� Decide if some set of predicates is valid in the simulated universe;

� Decide which action each agent will execute.

We can consider that the planner controls the global logic, while each

agent controls how the world is modi�ed. Depending on these changes, the

planner needs to change the global strategy to achieve the �nal goal.

After that, the D-Engine algorithm proceeds to use this planner and check

whether the goal has been accomplished or it is possible to be accomplished

using the mayProceed(universe) function in line 5 of algorithm 2. We say that

the "universe" is the parameter, because it may need to verify any variable in

the simulated universe to verify this a�rmation. If it is not possible, we �nish

the algorithm returning a logical value showing if some extra constraint has

been satis�ed while it was trying to achieve the �nal goal.

Otherwise we need to choose which agent will start to execute its state.

In line 10, we get the agent whose stage execution starting time is the smallest

one. This means that this agent is the next agent to act.
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Algorithm 2 Simulate an agent-based model with actions detailed in discrete
points of the time.

1: function dEngine(t0, deltaT , universe, externalP lanner)
2: externalP lanner.initializeAllAgents(agentsArray)
3: t← t0
4: nIter ← 0
5: while externalPlanner.mayProceed(universe) do

6: nIter ← nIter + 1
7: if MaxIterNum < nIter then

8: error('Stage maximum number exceeded')
9: end if

10: currAgent← agent with smallest tProx value
11: t← currAgent.getState().tProx
12: if t < t0 then
13: error('Stage with an invalid initial time')
14: end if

15: if t ≥ t0 + deltaT then

16: returnexternalP lanner.checkConstraints(universe)
17: end if

18: if currAgent.getState().needCheck then
19: currAgent.getState().needCheck ← false
20: if currAgent.getState().needChange() then
21: nextState← externalP lanner.nextState(currAgent)
22: nextState.tProx← currAgent.getState().tProx
23: currAgent.setState(nextState)
24: currAgent.getState().needCheck ← false
25: if currAgent.getState().needChange() then
26: error('A new stage should't be �nished without executing any stage.')
27: end if

28: end if

29: end if

30: tNextEvent← currAgent.update()
31: currAgent.getState().tProx← t+ tNextEvent
32: end while

33: returnexternalP lanner.checkConstraints(universe)
34: end function
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We check whether the selected agent's event initial time is valid in the

lines 12 and 15 to secure that t0 ≤ t < t0 + deltaT . t0 is the simulation's initial

time and deltaT indicates the time span that will be simulated. An error is only

raised if we try to run a stage that was supposed to start before the initial

time. When this initial time is greater than t0 + deltaT , we consider that the

simulation was halted before executing the current stage. In section 4.4, we

will detail how we can work with these values to get the real-time version of

this algorithm. Consider t0 = 0 and deltaT as +∞ to simulate the universe as

long as it needs.

Line 18 is used to verify whether the agent needs to check if something

relevant happened which raises the need to change its current state. Generally

this happens when it �nishes the local goal for the current state or it becomes

impossible to do that.

If it is really necessary to change its state to achieve some goal, it will

ask to the planner to give a suitable new state on line 21. Then it will update

the new state's internal time, change the agent's current state and do an extra

test on line 25 since every state must be tested on its �rst execution. An error

is raised if the new state begins being considered as �nished of failed, since it

means that the planner chose the next state in a wrong way.

The algorithm proceeds to line 30 and runs a single stage of the discret-

ization cycle. This line may a�ect the universe variables and it will return the

needed time to �nish this stage, using this value we calculate the next time

the agent will act again.

Each interaction of this loop results in the creation of a new event

timestamp. To avoid in�nite loops, we also limit the number of timestamps

that this algorithm can create. In the end, Algorithm 2 returns a logical value

indicating if some custom predicate was satis�ed in the simulated universe

using the checkConstraints function.

4.3
D-Engine Result Statistical Analysis

Algorithm 2 returns the evaluation of some logic predicate about the universe

state after the simulation of an arbitrary multiagent model on it. If we run

this algorithm multiple times, we can calculate the expected probability of

satisfying the given logic predicate. This value can be useful since we are

dealing with a nondeterministic system.

To support this kind of analysis, we developed some functions compat-

ible with our D-Engine algorithm to support discrete event simulation and

statistical analysis, as described on section 3.3. Statistical Analysis can be
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used directly in our framework by running the D-Engine multiple times. For

each run, we get the returned value, calculate its sample mean and variance,

and check if we can estimate the average value of return with some level of

con�dence.

Also, we have a function that runs the Statistical Analysis multiple times

to re�ne the simulated model. "Re�ning" means that we tweak some universe

variables to increase the probability of satisfying some arbitrary constraints

de�ned by the planner. Algorithm 3 describes the re�ner.

Algorithm 3 Checks if there is some degree of cheating where we can satisfy
some constraint with some tolerance
1: function simulationRefiner(desiredTolerance)
2: cheat← 0.0
3: while cheat ≤ 1.0 do
4: externalP lanner.modelRefine(cheat)
5: simulationAvg ← DEngineStatAnalysis()
6: if simulationAvg ≥ desiredTolerance then
7: returncheat
8: end if

9: cheat← cheat+ refiningStep
10: end while

11: return−1.0
12: end function

We de�ne the "cheat" parameter as a value from 0 to 100 percent (or

0.0 to 1.0). The planner must have some function which tweaks the simulated

model taking into account this cheat value. After applying this cheat value in

the line 4, it uses Statistical Analysis with D-Engine as the analyzed discrete

system. It runs D-Engine at least 100 times to calculate its estimated average

result. If the average value is greater than the desired tolerance, we �nish

the algorithm returning to the current cheat level. Otherwise, we increase this

cheat value by some value smaller than 1.0. If the cheat level becomes greater

than 1.0, we consider that it is impossible to achieve the desired tolerance, and

it returns -1.0.

4.4
Presenting and Interacting with the Simulated Model

At the end of a simulation, each agent will have a set of timestamps indicating

its behavior through the simulated time. Using these objects as key frames, we

can present this simulation run to the user in any convenient way. However, if

we run the simulation from its beginning until the end without stopping, we

cannot consider external inputs such as the user interaction.

DBD
PUC-Rio - Certificação Digital Nº 1321839/CA



Chapter 4. Discretization Engine 30

To solve this problem we can break the simulation time interval in several

time fractions, and before simulating each fraction, we check whether some user

has given some input to the system, in this case we intercept this input and

convert it into some relevant change for the simulated universe. For example,

after intercepting it we would do things such as:

� Convert the input into an internal message that can be sent to one or

more agents;

� Modify the simulated universe directly based on the given input.

For that, we execute the following steps, per frame, until the simulation

(starting with t = 0) is �nished:

� Intercept and process any possible user or external input;

� Call the D-Engine algorithm with t0 = t and deltaT = frameLength;

� t← t+ frameLength;

� Start to animate every timestamp with initial time smaller than t that

has not been animated yet.

In this way, we simulate a very small interval of time per frame (generally

1/60 seconds) and the simulation universe generation progress as the presenta-

tion time increases. With this, we have the real time D-Engine algorithm where

users can interact with agents and the simulated universe.
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Framework Architecture Overview

Algorithms 1 and 2 describe the general idea behind the discretization engine

but it does not detail how each part should be implemented. In this chapter

we give an overview about one way to use those algorithms inside of a

�exible framework compatible with a general game engine. In this speci�c

implementation we focused on the following points:

� Facilitate model presentation: The framework should expose all data

related with the model that represents how any action is executed;

� Facilitate model analysis: The framework should provide and abstract

statistical analysis methods for any model created with it;

� Facilitate model design and creation: The framework should o�er classes

and methods that aid the user to think how to create and simulate an

agent-based model;

Because of those points, the framework implementation sacri�ces per-

formance thinking in the ease and use and creation �exibility. It uses generic

functions to be compatible with di�erent applications, it is based on a generic

Mediator design pattern (4) for the exchange of message between agents and

its main core classes use the Dependency Injection design pattern (16) to let

the user modify how these classes works without modifying their most internal

and complex functions, just changing some external components.

Since we started to create this project thinking about applications related

with storytelling, we refer to agents as "actors" that are part of some arbitrary

story and the story creators need a tool to animate the story plot generated

by some external planner.

5.1
Story Actors

A single actor represents any kind of agent inside our model (�gure 5.1).

It has an object that contains every parameter that describes the actor's

information at some speci�c point of the time. So to create a new personalized

actor, the user should not extend the base actor class, he should extend the
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actor parameters object and attach it to a new instance of a base actor. This

parameter object also describes how an actor receives any message from other

agents or for external sources. If the message processing implementation was

made on the state object, we would need to repeat some code sections relative

to receiving similar messages between di�erent states.

Figure 5.1: Simpli�ed class diagram of the classes that represents a generic
actor.

Its state object indicates how it should act to achieve some global or

local objective, so they contain the functions used in the update function

(algorithm 1). Another important method contained in the state object is the

one responsible for checking whether the current state's goal has been achieved

or it became impossible to do that using just that state.

While trying to achieve a goal it will generate a timestamp and save it

for each stage that it executes, letting the actor with an internal history of the

stages that it executed until the current simulated moment.

5.2
Simulation Core

The simulation core (�gure 5.2) is formed by the components listed in section

4 plus a class that manages all these components based on the algorithms

1 and 2 and also on the statistical analysis methods from section 3.3. Each

actor represents an agent and the set of actors with any relevant variable that

characterize the current simulation forms the universe parameters. Using this

universe object the user can access any variable or send individual or global

messages to the simulated universe.

An external planner is used to control the global logic, implementing the

necessary functionalities cited on section 4.2. It also includes the model re�ner

method used in the algorithm 3. Note that, in this framework, an actor can

be its own planner if a model needs agents with more autonomy. The global

planner just needs to ask the agent itself to choose which state it wants to

execute. All these objects combined form the Simulated Universe.
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Figure 5.2: Simpli�ed class diagram of the classes that constructs the simulated
universe. The BaseActor class's components were hidden in this picture.

5.3
Implementation Tips

This framework works well with the bottom-up application design, where the

user �rst models the most basic functions and the combination of those tools

creates something more elaborated. In our case, the most basic elements are

the actors themselves and the combination of their interactions says how the

simulated universe will behave through time.

After de�ning which kind of application the user wants and which

features he wants to provide, the user should choose the suitable actors that

will be part of this universe. Each actor will have a set of actions that needs

to be executed in a certain order to achieve some objective, so it will also need

some adequate planner to control the action �ow.

The user also needs to de�ne how each action will be broken into di�erent

stages (Figure 5.3). The category name of each stage may help the user to

divide it into several logical sections, but the user needs to be careful to choose

when each stage's side e�ects should be applied to the simulated universe. A

good idea is if stage A happens before stage B and stage A is responsible

for changing something, you will only know if it was really executed correctly

when it reaches stage B without being interrupted, so you should only apply

stage A's changes when stage B begins. See section 6.1 for a practical example

of how to solve this kind of design problem.

To represent the e�ect from the stages executed by the actors, the user

may need extra variables that de�ne the global state of the simulated universe.

A good strategy to create a new model in this framework can follow these steps:

� For each actor:

� Implement and test its parameters;

� Implement and test its states and their stages;

� Implement and test the timestamps created by each stages;

� Add any necessary variable to the universe parameters and test them;
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� Add the necessary features to let the planner control the actors and test

them;

� Run the D-Engine using these objects as parameters;

� Analyze the results and execute this development cycle again if needed;

Following this order, it is also easier to test each module from the

application. Since we use dependency injection, it is possible to create mock

components to test other components if they need some speci�c element that

is not ready or it needs to have a very speci�c behaviour for some test.

Figure 5.3: Some states can be broken into a complex combination of stages.
Instead of going directly to code generation, it may be useful to start modeling
them as a �nite state machine with some extra informations like the "height" of
the diagram indicating which stage is being represented, an asterisk indicating
which stage changes some global variable or the conditions and the weight of
each transition in seconds for each edge. See �gure 7.3 for a practical example
of this kind of diagram.

Unit tests are specially useful to experiment each state execution in the

new model and how the planner should control the state transitions. While

the combination of these events can generate a big number of possible ways

of executing a state, if you guarantee the state transitions and the side e�ects

generated by each one of them by using the unit tests, the number of tests

needed are much inferior.

Finally the statistical analysis can simulate the same model thousands

of times in seconds, being able to trigger some obscure errors that the user

would not be able to �nd in some cases. Therefore it is also good to insert
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some assertions in the execution of key stages to ensure some predicates that

enforce the model correctness.

After developing the custom model, testing it and achieving a desired

number of features, the user can generate the code responsible for the simula-

tion graphic visualization and external input interaction. The framework has

methods that expose the information needed to present the simulated model

as explained in the section 4.4.

The external input can be done in two ways: Modifying the universe

parameters directly or sending messages to the agents and letting them modify

the simulated universe for you. The former is simpler to implement and useful

when the user has the role of giving absolute commands into the agent-based

model and the latter can be applied when the user is acting as an extra agent

in the simulated universe.
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Proof of Concept Application: Simple Duel

Since we are proposing a framework, we need to provide documentation and

some application implemented on our framework to show that it is usable for

agent-based model simulation compatible with the features described in the

sections 4.3 and 4.4. This application can also serve as an example project to

let interested users know how the framework works and how it should be used.

Consider the following problem: There is a digital scenario (�gure 6.1)

where two warriors, warrior 1 and warrior 2, need to �ght. They cannot move,

just keep attacking until one of them faints. We want to make this battle look

more dynamic and realistic, so we have decided to insert more variation in it.

To solve this problem, we can use our framework to describe how this

�ght happens through time. Also, to show that the user can interact with the

simulated system, when it presses a speci�c key, warrior 1 will try to dodge an

attack.

Figure 6.1: 120 duels presented using our framework with the same con�gur-
ations of the machine cited in section 6.3. Each duel is an isolated duel from
the others but they are presented simultaneously to give the impression of a
war happening. A and B indicates two examples of di�erent duels. Note how a
di�erent action is happening at each duel even though all of them were using
the same initial parameters.
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6.1
The Agents

In this model, we have only one kind of agent: Warriors. We can represent

their life as hitpoints (HP) and add other variables like speed or dexterity to

be the parameters that dictate how they should act as a warrior.

Since they just need to do one thing, they can have only a single state:

Fight (Figure 6.2). This state must contain the functions that de�ne the

duration of each of the four stages that comprises our framework:

Figure 6.2: A diagram representing the possible stages from the �ght state. It
follows the basic update cycle from algorithm 1 plus two cases of recovering
stages. See �gure 5.3 for more details about the diagram.

� doPrepare() : Simulates the agent contracting its arm to throw a punch.

It does not a�ect the simulated parameters. Returns 0.2+rexp(w.speed);

� doDo() : Simulates the agent executing the punch. It does not a�ect the

simulated parameters. Returns 0.2 + rexp(w.speed);

� doFinish() : Simulates the agent moving its arm back after throwing a

punch. A successful attack interrupts and damage the opponent with

damage de�ned by 0.9 + rexp(w.speed). The attack fails if the opponent

is executing the dodge state, and its progress is between 25% and 75%.

Returns 0.2 + rexp(w.speed);

� doRecover() : called when w is damaged or when w starts to try to dodge

an attack. Returns 0.2 + rexp(w.dexterity) in both cases.

Where w is the warrior object executing these functions and rexp(λ)

creates a random value following the exponential distribution, whose mean

value is 1/λ. If w.speed = w.dexterity = 10, the average duration of each

stage will be 0.3, giving us attacks (�gure 6.3) with an average duration of 0.9
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Figure 6.3: A sequence of frames showing how the attack main animation is
broken into multiple stages. Each stage has a random time and this attack
animation can be executed in loop until it is interrupted by some external
agent. The interaction between the agents that makes the scene looks more
dynamic instead of just an animation being executed repeatedly.

seconds. If w.hp is 5 and we keep w.speed = 10, the attack damage will have

an average value of 1.0, so a warrior would generally be defeated after 5 hits.

Warrior 1 in�icts the damage by sending a message to the opponent

warrior. The opponent receives the message, reduces its own HP to represent

this attack and marks itself as interrupted. Note that we only apply the damage

on the Finish stage because only then that we are sure that the punch landed

correctly.

To show a simple example of external input a�ecting the simulated

universe, we let the user send an input to the warrior 1 ordering it to try to

dodge some attack, so when warrior 1 receives a message with that command

it will halt any stage and start to execute the dodge stage. This action is also

interesting to see how a single event can impact the simulated model when

involving two agents that were in a well-balanced con�ict (Figure 6.4).

6.2
The Planner

For this purpose, we do not need any complex planner, our planner always

return a plan with only one state to be executed. When it initializes the two

warriors, it just sets their initial states to "Fight".

The planner is responsible to tell to D-Engine that it needs to run until

one of the warrior's hitpoints becomes less than or equal to zero. It also de�nes

the constraint predicate used when the D-Engine �nishes the simulation. For

example, we can ask if warrior 1 defeated warrior 2 when the simulation ends.

So when we use this model as input, D-Engine will return true if warrior 1

defeated the warrior 2 and false otherwise.

Considering this return predicate, we can use a custom re�ning function
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Figure 6.4: Two pictures of the ending of a war scenario with 120 duels
happening at the same time. If a pair of warriors is light green, then warrior 1
won, otherwise it is dark red and warrior 1 lost. In both pictures all warriors
had the same parameters, but in the bottom one all warriors 1 received exact
one interruption to try to dodge an attack, interrupting their current action.
Note how the picture including a single user input changed the �nal result,
making the warrior 1 lose in more duels.

in our planner to tweak the model and let warrior 1 be the winner more often.

This little function is de�ned by Algorithm 4. With the cheat at the maximum

value (1.0), these parameters from warrior 1 can be 50 percent greater than

the untouched parameters from Warrior 2.

6.3
Results

The implementation of this example application was very useful to test the

proposed framework and check whether it had enough expressive power to
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Algorithm 4 Tweak the simulated model to support Warrior 1 before simu-
lating the duel

1: function modelRefiner(cheat)
2: w1← the object that represents Warrior 1 in this model
3: w1.speed← w1.speed+ w1.speed ∗ 0.5 ∗ cheat
4: w1.dexterity ← w1.dexterity + w1.dexterity ∗ 0.5 ∗ cheat
5: end function

represent a simple project like this duel between two agents. As shown in

picture 6.5, this project architecture can be used as the base for any new

custom model planned to be simulated in this framework. Its unit tests are

also interesting since they show how some framework functions works and how

their returned values should be analyzed.

Figure 6.5: A simpli�ed diagram class highlighting the custom classes respons-
ible for representing this duel model inside of our framework with an extra
square margin. Note that in this case we did not need to touch in the universe
parameters since our model was very simple.

Using D-Engine combined with the Statistical Analysis with the re�ning

step of 0.05 per interaction and l = 0.1 on a notebook with an Intel i7-2620M

with 6GB of RAM, Windows 7 64Bits and Unity3d 5.0.1f1 Personal1 in Editor

Mode, we can estimate that if we have a cheat value of 0.60 (�gure 6.6), Warrior

1 will be the winner in roughly 75 percent of all simulated �ghts. To achieve

this result the simulation analysis spent almost 2.5 seconds to generate roughly

750000 events through 15000 di�erent �ghts with a mean of 50 events per �ght.

Since that parameter di�erence between them is small, the �ght will still be

happening in a similar way as a �ght without any cheat. An animator could

1www.unity3d.com
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use this kind of analysis strategy to generate a scene that seems to be random

but with a controlled result without letting the ending become obvious to the

�nal application's viewers.

Finally, using the timestamps stored on each Warrior agent, we were

able to generate a textual output describing each duel. This kind of output

generator was so useful since it could describe a simulation without any extra

implementation that it became a native function o�ered by the framework.

After checking this output dump, the user can generate any other kind of model

representation. In our case we used a Game Engine (Unity3D) to animate this

�ght using a 3D avatar to represent each warrior (Figure 6.1), as explained in

section 4.4. We use �xed animation clips to present each stage, adjusting the

clip`s speed according to the stage duration.

Figure 6.6: A graph created after running the statistical analysis with 20
di�erent tolerance values between 0 and 100% using our framework. It shows
the needed cheat to achieve a tolerance as a percentage about the number of
times that warrior 1 will win. The cheat needed to ensure that the warrior
will win more than 0 until 50% of the duels is almost zero since both warriors
have the same parameters when the cheat value is zero. After this value, the
necessary cheat will increase until the tolerance is 85%, when it becomes -1.
This happens because, in the current model with the current re�ning function,
it is impossible to guarantee that the warrior will have that success ratio.
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Figure 6.7: Figure 6.4 shows a war result with no cheat. The top picture shows
a war result with cheat value of 0.6 and the bottom one with 1.0. Note how
the density of light green increases, indicating that the warrior 1 is winning
more times.
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Proof of Concept Application: Auction Site

When hearing about auctions, people usually think about the classic scene

shown in movies where people raise their hands to show their interest to pay

more than the last bid. Some people can also think about digital auctions

like Ebay1 where people can create their own auctions that are released on the

Internet, which is one recent and popular application of auctions. However, this

way of negotiation is still widely used in industry, such as telecommunication

(17), agricultural goods (13) or applied in more abstract concepts like task

allocation for robots (26).

Since an auction may deal with huge amounts of money, it would be

interesting to know ways of increasing the outcome of this kind of negotiation.

We can achieve it by reducing the probability of losing money, like frauds, or

increasing the pro�t of the deal by using di�erent strategies to aid the bidders

and the auction owners (22). It is also an interesting way of analyzing human

behavior, like the auction of a bill of twenty dollars2 where in the end winner

had to pay more than the value of the note (1). Because of that, auctions are

an old target of academic studies, having much researches about it, in both

theoretical and practical areas from diverse �elds of study, such as informatics

or economy (22).

Auctions can appear in di�erent �avors: maybe the buyers are only

interested in the price of the good to be bought (single dimensional) or we

can have other extra interests like quantity and quality (multi dimensional).

In some of them, we can access every bid (open cry) information or they can

be kept secret until the end of an auction (sealed bid). According to these

features we can classify an auction inside of a group with a common name like

"Dutch" auctions or "Japanese" auctions or cluster then following a taxonomic

classi�cation (22). 3

1http://www.ebay.com/
2There is one episode from the History Channel's television program "Brain Games"

called "On the Set of Money" where you can see this history.
3Read more about this on the lectures notes called "A survey of auction types." from

Stanford University CS206-Technical Foundations of Electronic Commerce, by Shoham and
Wellman.
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7.1
Discrete Simulation with Auctions

We use auctions as an example of the functionality of our framework because

it has multiple people interacting at the same time in a situation of con�ict.

The auctioneer wants to get more money while the bidders want to get more

products for a lower value, so there is con�ict between the sellers and the

buyers and con�ict between the buyers themselves. This kind of environment is

suitable for showing that our framework can simulate universes with multiple

agents executing di�erent actions and exchanging di�erent messages at the

same time.

In this work we are focused on the English ones, which are open cry,

single dimensional, the winner bidder pays the value of the highest bid (�rst

price) and the auctioneer has the job of deciding the winning bid (one-sided)

or deciding to not sell the product when the highest bid is lower than a reserve

price (sell-side). Because of those rules, one emergent behaviour in this kind

of auctions is that bids have an ascending order, since it does not make sense

to post a bid with a value lower than the actual winner one.

We are interested in this type of auction because it is one of the most

well known kinds of auctions. It is simple and direct, pay most to win. With

this it is easier to analyze the behaviour of the bidders inside of this context

and mimic them as autonomous agents. Also it is easier for a human player to

understand those rules and try to compete with others to get more products

than them.

7.2
Description of the Simulated Universe

We will present the English auctions in the context of a digital market. Users

can access one site where they can search auctions by a speci�c product. The

result of this search shows a list of auctions with basic information such as

the current highest bid and remaining time. The user can select one of these

auctions to see more detailed information such as the list of past bids and it

can bid some value greater than the current highest bid. When some auction

is over, the winner is de�ned by the system and the product is distributed

automatically if that bidder has enough money to pay the bid that it did (it

is common to call this process of �nishing an auction of "clearing"). The user

does not need to wait the auction �nish to go to other auctions and do bids

there. In speci�c for this work, all auctions start at the same time and have

a random duration. The universe simulation ends when the spent time on it

exceeds some de�ned value tmax > 0 in the beginning of the simulation.
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With that we must have two di�erent agents: the bidders that mimics

the human buyers and the auction manager that mimics the auction clearing

system. Also we must say how the market is de�ned, what kind of products it

has and how an auction is represented. We de�ne the agent's bidding strategy

based on the work of (7) which has as base the research made in (5). Since our

market must be compatible with those agents, when possible we try to use the

same letters that were used in (7) to de�ne some basic concepts or sets from

this chapter.

7.3
Simulated Market De�nition

Our market contains information about the available bidders, products, auc-

tions and its bids. Every simulation has always only one market m accessed

by a set of bidders agents Ba that may be interested in buying one or more

products from the set P . These products are made available by auctions from

the set A, which contains all auctions that will be available before the simula-

tion ends. The auctions that still active in time t are part of the set L(t). For

any auction i ∈ A, σi represents its start time and ηi represents its �nish time,

so i ∈ L(t)↔ σi ≤ t ≤ ηi, L(t) ⊂ A.

Bidders can only bid in an auction i if i ∈ L(t). If Bi(t) is the set of bids

in the auction i on the time t, then this bid must always be greater than any

value from it on time t to be accepted as a valid bid. Lets also call the set of

products o�ered by an auction i of Pi ∈ P and say that the o�ered amount

for each product pi ∈ Pi do not need to be an exact number, so auctions can

o�er fractions of products.

7.4
Bidding Agent's Bidding Strategy

An agent can consider a set C of constraints j to think about the value of its

bid and it can give di�erent weights wj(t) for each constraint in the time t.

∀j ∈ C, 0 ≤ wj(t) ≤ 1 and
∑

j∈C wj(t) = 1.

For any agent the maximum value pr(t) that it would pay for a single unit

of some product in some time t is called private valuation. If an agent wins

an auction, its satisfaction is proportional with the di�erence of its private

valuation with the �nal value which it paid. A good strategy to spend less

money with that objective is to start with smaller bids and increase its value

based in how the constraints C progress with the time.

In this project we use the same four constraints from the base research (7)

as a set of tactics to achieve that strategy because it seems to be a good way to
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simulate a human facing a marketplace: remaining time, remaining auctions,

agent's wish to bargain and agent's despair level to buy. For each of these

constraints j we have a function fj(t) that returns a value between zero and

the current privation valuation at time t. Since we have multiple constrains,

we can use a weighted sum to have the current maximum bid at time t by

the equation 7-1:

M(t) =
∑
j∈C

wj(t)fj(t) (7-1)

fj(t) is an equation that gives a bid value based on the constraint j. Generally

it is presented as fj(t) = αjpr(t) with αj being the constraint in�uence with

value between zero and one.

7.4.1
Polynomial Tactics Family

Every constraint will in�uence the current maximum bid with a polyno-

mial equation 7-2 based on data related with the constraint j:

αj(t) = kj + (1− kj)r
1/βj
j , 0 ≤ αj(t) ≤ 1. (7-2)

This type of equation can create an in�nite range of time-based functions that

can be used to model di�erent kinds of agents with di�erent curve shapes. Some

of them can start bidding very low values while others can be very aggressive

from the beginning. The main parameters from the equation 7-2 are:

� kj: The initial weight of αj(t), 0 ≤ kj ≤ 1;

� rj: Usually it is the result of the division between two variables related

to the constraint j, the current value of something and the maximum

possible value of it, 0 ≤ rj ≤ 1;

� βj: The importance of the ratio variance through the time, αj(t) grows

faster as how bigger beta is, 0 ≤ βj.

7.4.2
Remaining Time Tactic

Using the equation 7-2 with rrt as the ratio of the current time t with

the maximum time tmax we can determine this tactic as:

frt(t) = αrt(t)pr(t), (7-3)

where

αrt(t) = krt + (1− krt)(t/tmax)1/βrt , 0 ≤ αrt(t) ≤ 1. (7-4)
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This tactic (�gure 7.1) represents the time pressure over a buyer in an

auction.

Figure 7.1: An example of how the remaining time tactic αrt(t) works with
di�erent parameters. For this picture we used krt = 0.2 and the time going
from 0 until 1000 seconds.

7.4.3
Remaining Auctions Tactic

Following the same logic of the remaining time tactic, if ca(t) is the

number of cleared auctions related to the target product and ea(t) is the

number of existent auctions related to the target product until t, we can

simulate the pressure of having less options to get a good using the following

equation:

fra(t) = αra(t)pr(t), (7-5)

where

αra(t) = kra + (1− kra)(ca(t)/ea(t))1/βra , 0 ≤ αra(t) ≤ 1. (7-6)

Note that di�erently from the original work where rra = ca(t)/|A|, in
this project we use ea(t) instead of |A| because of some occasions where we

do not know the total number of auctions that will exist in this universe until

we �nish the simulation. For example, more auctions would be created after

the beginning of the simulation, so |A| would not be considered a constant

number.
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7.4.4
Bargain Desire Tactic

This tactic is di�erent from the others since it tries to control to increment

that the user does when the time progress in the marketplace. For that it

considers the progress of every un�nished auction and the value of the highest

bid in each un�nished auction until t. Let Lp(t) ⊂ L(t) be the subset of active

auctions which sells the agent`s target product p and consider the following

equation:

fba(t) = ω(t) + αba(t)(pr(t)− ω(t)), (7-7)

with αba being similar to the formula 7-4:

αba(t) = kba + (1− kba)(t/tmax)1/βba , 0 ≤ αba(t) ≤ 1, (7-8)

and ω(t) representing the minimum bid value that this agent would pay as the

average value of the highest bid vj(t) from each auction j ∈ Lp(t) weighted by

the ratio of the auction progress

ω(t) =
1

|Lp(t)|
(

∑
1≤i≤|Lp(t)|

t− σi
ηi − σi

vi(t)), 0 ≤ ω(t) ≤ max(vj(t), j ∈ Lp(t)).

(7-9)
Note that we can only ensure that fba(t) ≤ pr(t) if ∀j ∈ Lp(t), vj(t) ≤ pr(t).

While this calculation seems to be smart to an autonomous buyer agent which

wants to spend less money, it does not seem to be something that a human

would do, since it can consider dozens of auctions values to calculate ω(t).

Maybe a modi�ed ω(t) calculation considering the values which the agent

observed while it was looking for a product would be more interesting for

an agent trying to mimic a human buyer, but for this project we kept the

calculation inspiration from the base work.

7.4.5
Despair Tactic

Since this tactic share the same interest of controlling the increase of the

bid value through the time, it uses the same equations 7-7 and 7-8 to calculate

the fde(t) and αde(t). The di�erence is in the values of the other parameters

kde and βde.

7.5
Modeling the bidder agent with D-Engine

In this project we wanted that the agents act like a human trying to buy

something in an electronic marketplace based on auctions. For that propose
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we must de�ne what an agent needs to execute to access the auctions and how

it makes decisions like which product it would buy, which auction it would

look for that product and how much it would pay for that.

A human accessing a site can do lots of actions until he arrives in a

speci�c section of it. Section 7.3 shows how an agent choose the value of every

bid but does not detail how it will act until it bid in an auction. We use the D-

Engine framework to simulate this set of actions as a non-deterministic �nite

state machine where each state represents one action that it will be discretized

by the framework into multiple stages. Those states (�gure 7.2) are explained

with details in the sections 7.5.2, 7.5.3, 7.5.4 and 7.5.5.

Figure 7.2: A diagram of the bidder agent's possible states. See the subsection
7.5.6 for more details.

7.5.1
Useful agent functions

These functions are used by the agents in di�erent states to mimic

how humans would execute some actions that have subjective parameters like

choosing things or values. Some of them includes random values to make it

look less arti�cial:

� Calculating product utility : Given a product p ∈ P , if the agent has

access to the average value of p and it is greater than its amount of

money, the utility is zero. Otherwise it is 0.1 + 0.9 ∗ p.rarityFactor. The
"rarity factor" is a parameter to let an agent distinguish di�erent kinds

of products as if the products had di�erent popularity or rarity in the

simulated universe;

� Selecting the target product : Calculates the utility of every product p ∈ P
and for each result it adds until 100% of the original utility to generate

randomness, then it selects the product with the maximum modi�ed

utility;
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� Selecting the target auction : Given a product p ∈ P as its target product,

it will access the subset of active auctions Lp(t) ⊂ L(t) that contains this

product and choose the auction i ∈ Lp(t) with the smallest remaining

time. So our agents are worried to not lose time in auctions at its very

beginning, since the result of these auction are harder to notice in that

moment;

� Calculate relative private valuation : In this project the private valuation

pr(t) for a single unit of a product p ∈ P is the amount of money that

an agent has at the time t. If an auction i ∈ A o�ers the product p, the

relative private valuation is given by min(pr(t), pi.amount ∗ pr(t));

� Checking if the auction is interesting for bidding : An auction i ∈ A is

not interesting at time t if it is �nished, its current highest bid is higher

than the agent's relative private valuation for that product or if the agent

itself is the owner of that highest bid. If the agent has any other bid in

this auction then the auction i has 30% of chance of being uninteresting,

in other cases it will be interesting to the agent bid on it;

� getHumanTime(x) : Simulates a function able to calculate the time used

by a human to do something using x as a parameter. In this project we

use a simple calculation: getHumanTime(x) = MIN_TIME+rexp(x);

� Calculate bid value : See section 7.3, we use the relative private valuation

instead of the usual private valuation here.

7.5.2
Standing by

When the user is away from the computer or it is not focused on the

auction site we say that the agent is standing by since it is doing nothing useful

until it focus its attention on the site again. This usually happens before the

user arriving to use the site for the �rst time or after it doing some important

decision like bidding on some auction and leaving from it.

Stages functions:

� doPrepare() : Does nothing. Returns 0.0;

� doDo() : Simulates the agent spending time doing some arbitrary action

not related with auctions or thinking about buying something. Clear the

agent's target product and auction. Returns getHumanTime(1.0);

� doFinish() : Does nothing. Returns 0.0;

� doRecover() : This state is uninterruptible, so it does not have any

recovering stage. Returns 0.0.
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State status after a discretization cycle:

� If the agent is able to �nd any target product (see section 7.5.1), it

considers the current state as concluded with success;

� Otherwise it executes the cycle again.

7.5.3
Choosing a product

In this moment the agent is looking the list of available products and

wondering about which product it would want.

Stages functions:

� doPrepare() : The �rst time when this stage is executed it simulates the

agent going to the section of products, returning getHumanTime(1.0).

If this function is called again in this state it will return 0.0 since the

agent is already on the product section;

� doDo() : Simulates the agent spending time looking for some interesting

product. Returns getHumanTime(1.0);

� doFinish() : Simulate the agent deciding its target product for the

moment or giving up to �nd products, setting the target product case it

exists. Returns getHumanTime(1.0);

� doRecover() : This state is interrupted only when the agent receives a

noti�cation that it won some auction with the product that it was looking

for. Returns getHumanTime(1.0).

State status after a discretization cycle:

� If the agent was able to choose its target product on the Finish stage

and it was not interrupted after that, it considers the state �nished with

success;

� Otherwise it considers that it failed to choose a product to buy.
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7.5.4
Looking for auctions

The agent knows which product it wants, now it needs to �nd some

interesting auction that o�ers this product.

Stages functions:

� doPrepare() : The �rst time when this stage is executed it simulates the

agent going to the section of auctions and typing the name of the product

that it wants to �nd, returning getHumanTime(1.0). If this function is

called again in this state it will return 0.0 since the agent has already

the list of available auctions;

� doDo() : Simulates the agent spending time looking for some auc-

tion in the generated list and selecting it if it �nds one. Returns

getHumanTime(1.0);

� doFinish() : Simulates the reaction time of the agent after �nding one

auction and going to the bidding screen (setting the agent's target

auction) or not. Returns getHumanTime(1.0);

� doRecover() : This state is interrupted only when the agent receives a

noti�cation that it won some auction with the product that it was looking

for. Returns getHumanTime(1.0).

State status after a discretization cycle:

� If it was interrupted it considers the state as failed;

� If the agent was able to choose its target auction on the Finish stage

and it was not interrupted after that, it considers the state �nished with

success;

� Else if it was not able to �nd an auction there but there are other auctions

to look, it considers the state execution in progress;

� If the agent checked all available auctions from the auction list, it

considers the state as failed.

DBD
PUC-Rio - Certificação Digital Nº 1321839/CA



Chapter 7. Proof of Concept Application: Auction Site 53

Figure 7.3: An example of the representation of the set of stages used to
represent the state of bidding following the pattern from �gure 5.3.

7.5.5
Bidding

The �nal moment where the agent decides if it will really bid to try to

get that product or give up and move to another auction (�gure 7.3). After

doing this, it will stand by for some moments before deciding if it will want

more products, starting a new cycle of actions in the site or staying halted for

more time.

Stages functions:

� doPrepare() : Simulates the agent observing the details about the selected

auction. Returns getHumanTime(1.0);

� doDo() : Simulates the agent spending time to create a bid or deciding

to give up from the target auction. Returns getHumanTime(1.0);

� doFinish() : Simulates the agent observing if its bid was accepted or it

exiting the auction. Returns getHumanTime(1.0);

� doRecover() : This state is interrupted only when the current auction

reaches its end, sending a message to this agent to go away since there

is nothing to be done there. Returns getHumanTime(1.0).

State status after a discretization cycle:
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� If the auction stills interesting for the agent it considers the state

execution in progress;

� Otherwise it considers the state as executed with success.

7.5.6
Bidder Agent State Transitions

The state transitions are controlled by an external planner and its idea

follows a cyclic �ow that ideally would execute the sequence of states standing

by → product choosing → auction choosing → bidding → standing by →
... until the simulation time expires. However since it is based on a non-

deterministic �nite state machine, it can generate di�erent execution paths.

The planner handles this non-determinism generating the following transitions:

� standing by → product choosing when the standing by state is �nished;

� product choosing → auction choosing when the product choosing state is

�nished successfully;

� product choosing → standing by when the product choosing state is

�nished with a failure;

� auction choosing → bidding when the auction choosing state is �nished

successfully;

� auction choosing → standing by when the auction choosing state is

�nished with a failure;

� bidding → standing by when the bidding state is �nished;

7.6
Modeling the auction manager agent with D-Engine

We use of D-Engine's �exibility to create the auction manager agent that is

responsible for basically clearing every auction when it is �nished. When the

simulation starts, this agent has its next event time tProx scheduled to +∞,

so it would never be active.

However, when a new auction i ∈ A is created at some time σi < tMax,

it checks if σi < tProx. If that is true, a message is sent to this manager agent,

triggering the recovering state that calculates the moment tProx = ηi < tMax

when an auction must be cleared.

When the simulated time reaches tProx, every auction with �nishing

time between tProx and tProx + MIN_TIME is cleared. This happens

because if some auction was �nished in this interval it would be ignored by

this agent since no agents can execute 2 stages in sequence with a time interval
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smaller than MIN_TIME (excluding recovering cases). Finally if L(t) is not

empty it calculates a new tProx as tProx = min(ηj, j ∈ L(t)). Otherwise

tProx = +∞.

To let this idea compatible with the D-Engine framework, we have the

following stage functions for the state of managing auctions :

� doPrepare() : If this function is being executed for the �rst time in this

state, it returns +∞. Otherwise returns 0.0;

� doDo() : Clears every auction between the current time t and t +

MIN_TIME, removing them from L(t). Noti�es every auction winner

and every auction participant at that moment. Returns +∞ if L(t) is

empty. Otherwise returns (ηj − t), where j ∈ L(t) is the auction with

lesser remaining time;

� doFinish() : Does nothing. Returns 0.0;

� doRecover() : This state is interrupted only when a new auction j ∈ L(t),

t = σj has the remaining time smaller than any other auction from L(t).

Returns (ηj − t).

At the beginning of the simulation, the planner sets this agent's state as

managing auctions and it stays with this state until the end of the simulation.

So the state status is always in progress.

7.7
Results

The implementation of this second application was far more complicated than

the �rst one from chapter 6. This one has 6 states, two kinds of di�erent agents,

a real planner and it is able to run with more than two agents at the same time

(�gure 7.4). This application works as a proof of the framework`s �exibility,

a test suit for the framework features and as an example of how to develop a

more complex application using it.

Following the development recommendations cited in section 5.3, we

started implementing and testing the model objects that form the market,

like people or auctions. Then we keep going from the bottom to the top until

becoming able to run the simulation with the entire model representing our

�nal target: an online auction site simulator.

A great amount of e�ort was needed to create all the unit tests responsible

to check our auction proposed model, but after �nishing the tests of each mod-

ule, the model ran through the D-Engine and statistical analysis algorithms

without great troubles. Without these tests it would be very tiresome to run
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Figure 7.4: A simpli�ed diagram class highlighting the most important custom
classes responsible to represent this duel model inside of our framework with
an extra square margin. Each actor can have di�erent states but no more than
one at the same time. There are di�erent kinds of timestamps and parameters
for each kind of actor. For this model we also needed to modify the simulated
universe parameters since this case is more complex.

the entire model directly, probably generating a chain of errors that would be

hard to debug.

7.7.1
Visual Results

After all those tests we developed a graphic interface to visualize the

simulated model and let the user interact with it (�gures 7.5, 7.6 and 7.7).

For this application we present the model using only user interface elements

as lists and buttons, di�erently from the application from chapter 6 where we

used 3D models.

Since the player itself "simulates" its own behavior while it interacts

with the interface, we do not need an extra agent to represent this kind of

events. We intercept the player's inputs in the interface and convert it directly

to modi�cations in the universe parameters, these inputs are related to the
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following e�ects:

� Change the number of visitors in an auction: When the player access the

bidding section where it can read more details about the selected auction

and bid some value, we increase the number of visitors in that auction

by one. When the user goes back to its product section, we decrease that

value by one;

� Apply a bid: When the user con�rms its bidding and this value is bigger

than the current winner bid or there is no current winner bid in some

auction, we insert a new bid in the list of bids of that auction. That bid

indicates a special person related to the player. So, if the player's bid

won some auction, the model can handle and indicate to him without

any modi�cation in the original model without external inputs.

Figure 7.5: The �rst screen from the site simulator created with our framework.
In the left it shows the products owned by the player and in the right it shows
which kind of products exists in the current simulation. In the bottom we have
the current time and the player`s amount of money.
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Figure 7.6: The second screen that lets the player �nd auctions related to the
available products from �gure 7.5.

Figure 7.7: The third screen where the player can see more details about a
speci�c auction. In this speci�c picture you can see that the player had bid a
value, having its name exhibit in a obfuscated way on the right section.

7.7.2
Statistical Results

Finally we used statistical analysis to choose better parameters to estim-

ate parameters to achieve some speci�c predicate. As an example we used the
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following predicate:

Our auction model has M bidders and 5 products. For each

product, it exists exactly 1 unit of them in the universe and this

amount can be divided to be sold equally in N di�erent auctions, so

each auction sells just 1/N units of a single product. If M is �xed

with some value, which is the smallest round value of N guarantee

that in 75% of all model simulations at least 10% of theirM bidders

will have at least one fraction of a product at the end? Which is

the biggest value of M that keeps this predicate true?

We set the model re�ner function (algorithm 5) to increase the number

of auctions per product N bit by bit. With that re�ner we ran the statistical

analysis with some round values of M (showed in the table 7.1) and we got

some values of N and M that satis�ed our desired property. We also noticed

that when M ≥ 300 it becomes impossible to guarantee that predicate, so 250

bidders and 50 auctions would be a good number to use in the �nal model

available for the player.

Algorithm 5 Tweak the simulated model to increase the number of auctions
per product

1: function modelRefine(cheat)
2: up← the universe parameters
3: up.numberAuctionsPerProduct← 1 + Floor(cheat ∗ 10)
4: end function

Table 7.1 Table with results of the statistical analysis ran with di�erent values
of M to �nd the best value of N. Table 7.2 shows the common parameters used
in all simulations. Table 7.3 shows the bidding agent's range of parameters.

M
Minimum
Cheat
Needed

N
Analysis
Total
Time(s)

Number
of
Simulations

Number of
Stages
Executed

Average
number of
stages per
agent

10 0.0 1 0.426 100 120901 120.901
50 0.1 2 7.800 228 1374748 120.591
100 0.3 4 195.047 1862 22600899 121.379
150 0.5 6 608.564 2828 51672815 121.812
200 0.7 8 1213.631 3365 82200385 122.140
250 0.9 10 2428.449 4499 137684667 122.413
300 -1.0 N/A 3338.633 4355 160106321 122.545

The results from table 7.1 were created in a machine with 64 Gigabytes

of RAM, a processor Intel i7-3960X, Windows 7 64Bits and Unity3d 5.0.1f1

DBD
PUC-Rio - Certificação Digital Nº 1321839/CA



Chapter 7. Proof of Concept Application: Auction Site 60

Personal in the editor mode. The analysis execution time rises with the

increment of M because it increases the number of the agents in the simulated

model. We can also observe other interesting facts in these results as how the

number of auctions per products N grows at the same rate than the number of

bidders M or that the average number of stages per person is almost constant

for all values ofM , maybe being an indicator that the agents expected behavior

is independent of the number of auctions and bidders in the simulated model.

Table 7.2 Parameters that were not changed between the multiple executions
of the statistical analysis to generate the table 7.1.

Bidder Initial Money 10
Product rarity maximum random increment 100%
Auction minimum �nishing time 60 s
Maximum random increment on auction's �nishing time 60 s
Desired Tolerance 75%
Desired % of Bidders with a fraction of some product in the end 10%
Number of Products 5
L 0.1
Re�ning Step 0.1

Table 7.3 Each bidding agent used to generate the table 7.1 is created using
these variables to calculate its bidding value (Consider runif() as a random
number generator that follows the uniform distribution between zero and one).
The weight of each of the four bidding constrains are generated calling the
algorithm 6 with X = 4 and Y = 1.0.

βrt 1000 ∗ runif()
krt runif()
βra 1000 ∗ runif()
kra runif()
βba runif()
kba runif()
βde 1000 ∗ runif()
kde runif()
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Algorithm 6 Returns a vector with a random set of X positive numbers that
sums the value of Y
1: function randomVector(X, Y )
2: if X = 1 then
3: returna new array with Y as its single element.
4: end if

5: arr ← new empty array with X+1 slots.
6: ret← new empty array with X slots.
7: for i=0 to X-1 do
8: arr[i]← runif() ∗ Y
9: end for

10: arr[X − 1]← 0
11: arr[X]← Y
12: sort(arr)
13: for i=0 to X do

14: ret[i]← arr[i+ 1]− arr[i]
15: end for

16: returnret
17: end function
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Comparison with Related Works

Our framework has been designed to work with generic models using generic

animations to present its simulation. Its output is a list of timestamps

describing important events that describes how each agent executes each state

through time, so the module that receives these timestamps are responsible

for detailing how it should be animated.

Initially it was thought to animate crowds as the armies from some real-

time strategy game, but it showed to be useful as a generic agent-based model

simulator. Being generic means that it is not optimized for a speci�c use, so

the programmer should put more e�ort to make a model run as well as if it

were being executed on some specialist system.

For instance, there are multiple systems specialized in crowd simulators

and one of them famous for being used on the Lord of the Rings movies is

called MASSIVE (8). It is far more mature, it has a wider scope than from

our framework and it uses smart agents with many di�erent techniques to

animate di�erent scenes with multiple agents. For example, an agent can have

motion trees with hundreds of nodes describing what to do in each situation.

These agents have sensors which let them react to other agents or events in

their surroundings. Using them it is possible to do things like detect the angle

of the ground where it is grounded and adapt its animation for it, blending

pre-made animations for di�erent angles. These animations can be done by

motion capture from real actors and by describing the agents body with basic

geometric shapes and joint limitations, it is possible to calculate all possible

body motion combinations that can be used. The results generated with that

software are far more realistic than the ones shown by our work, but the

software is not free and it needs far more computational power to render each

animation.

Another work (12) focused on crowd simulation uses a �nite state

machine to create a sequence of actions to move agents between two points

in the space using A* algorithm. Each state says how the agent should act to

move itself in the space with actions like jogging, crawling or jumping and it

may contain multiple motion animation clips. That works supports multiple
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agents and moving obstacles like falling trees and can be used to animate agents

like horses and humans running or riding a skate. For some environments like

horses running from moving obstacles it has a nice performance, simulating 16

seconds of animation in just one second.

Going from macro to micro animation generation, there is a research (18)

which generates procedural animation to present some competitive game as tag

or sword �ghting between two-players being able to act simultaneously in a

very rich and realistic way. It is based on game theory methods like zero-sum

Markov Games and Markov Decision Processes; however, since these methods

can require exponential time and storage according to game's state space, it

employs an o�ine learning algorithm to generate a value function to be used

in the policy generation that will describe how the game will be presented.

It uses motion models to generate custom animation clips for each action in

di�erent occasions.

Simulation visualization is also useful in agent-based models (15). In

many cases this presentation is very crude but this is not a problem because

generally we are interested in �nding some emergent pattern or behavior when

observing the abstraction of some system. Even animations using simple images

as circles to represent some agents moving can be su�cient to let us understand

better how some environments work, such as: criminal rebellions, wolf-sheep

predation, war logistics and tumor growth.

While it seems possible to simulate agent-based models for that purpose

with our framework, it is important to remember that the focus of our work

is animation for entertainment. The e�ort used to design the model and

to simulate it with our framework may be excessive and unnecessary for

many cases, demanding more computational power than needed by other tools

focused on that kind of analysis.
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Conclusion

9.1
Contributions

In this dissertation we proposed a framework to execute atomic actions from

an arbitrary non-deterministic planner in a random way. This framework

architecture aids the user to model a custom agent-based model. It o�ers

functions that let the user analyze the model based on the statistics generated

by simulating that custom agent model hundreds of times and the output

generated by each model simulation is compatible with multiple ways to

represent content as graphical or textual methods. Moreover, the models

created in this framework are compatible with external interaction, being

suitable for applications in areas like interactive medias or digital games.

To test the framework e�ciency, generate example cases about how to

use it and how to create an agent-based model compatible with the framework

we created two di�erent applications:

The �rst application was a simple duel between two warriors. Its main

features are:

� It shows how to send external messages to the simulation's agents (a�ects

how the agents modify the universe);

� Graphical representation of the model simulation based on 3D models;

� The representation focuses on how an agent executes an action;

� Agent model with only one kind of agents and no need of real planners;

� The simulation ending is based on the warriors lifepoints (variable time

simulation);

� Since the model is very simple, it works as an introductory project.

The second application is a bigger project of a serious game about an

e-commerce application based on English auctions. This one has the following

characteristics:
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� It shows how to let an external element manipulate the simulated

universe parameters directly (a�ect the universe to change how the agents

behave);

� Graphical representation of the model simulation based on user interface

elements;

� The representation focuses on the result of the agent actions;

� Compatible with a variable number of agents with di�erent types and

with some of them having multiple states, so this model has also a planner

to control them;

� The simulation ending is based on the total simulated time (constant

time simulation);

� It works as an example of how to develop a complex project, going beyond

the basics shown on the duel project.

Even with di�erent objectives and scopes, those applications show that

our framework can be useful for di�erent areas and agent models. Moreover

each one presents di�erent features that can be combined to be create a new

di�erent model.

Besides these projects and this thesis itself, the framework has docu-

mentation by the tool Doxygen 1 about its code made to work with Unity3D

Personal version 5.0.1f using the C# programming language.

9.2
Discussions

This framework is only recommended for models where each action can be

described in discrete points of time. In some occasions it can be possible to

abstract a continuous model like those ones based on physics into a discrete

model, but we would lose some details on the results, the model generation

would be too much complex or it would require too many states to represent

all possible actions with di�erent variations.

To achieve an even more realistic presentation, it may be better to use

other approaches than the discrete one proposed here. It is interesting to use

our framework when the available computation resource is limited by some

reason as the nature of the animation or the number of agents in the planned

model. Also it is useful when the desired model events can be described in

discrete points of time without losing any relevant data.

Another limitation is that a single agent can execute only one action

per time, so this framework is only able of handling simultaneous actions

1www.doxygen.org/
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from di�erent agents at the same time. While some animation tools allows

animation blending between multiple animation clips (for example branding a

sword while the warrior is running), our framework does not handle it natively.

The programmer would need to create a new set of states that represent this

kind of combination of actions or a set of timestamps with enough parameters

to say that some stage should be executed in a di�erent way.

Another restriction is that the simulation's result is not 100% guaranteed

in all con�gurations of an arbitrary model. This does not mean that it is

impossible to achieve this status but it can be troublesome to balance the

presentation randomness with this very precise result estimation. For example,

in the duel example if we wanted to let warrior 1 win every time it would be

hard to make the �ght look disputed. Warrior 2 would seem to be too weak,

removing the emotion of watching this �ght since its result can be quite clear

since its very beginning.

This uncertainty in the simulation's �nal result happens because the

execution of a single state may have a random result, a�ecting the entire set

of states needed to achieve a result. Therefore, programmers should be careful

when designing a model with some crucial state needing to generate the same

result every time. For example if we are presenting an animation with �nal goal

as "save the princess", the hero could do lots of di�erent actions like explore

dungeons or collect gold until he reaches the princess. He would fail in some of

them but it would still be possible to achieve the �nal goal. However the real

state where the hero saves the princess must always be executed successfully

or the planner should have a recovering set of states in the case of failure in

that speci�c state.

9.3
Future Works

In this work we implemented all basic features that the framework should

provide to o�er the features that we wanted, however there are some points

where it can be optimized. One special improvement would be checking

whether the D-Engine algorithm can be designed in a way that it would run

in multiple threads or maybe execute the statistical analysis running multiple

simulations at the same time using multiple cores.

Another way of accelerating the statistical analysis would be to apply

variance reduction techniques to reduce the necessary number of simulations

executed in an analysis to reach some tolerance value. The framework would

provide multiple variance reduction techniques and let the user choose one that

would be most suitable for his custom model at the moment.
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Maybe it would be interesting to see how recursive D-Engine models

would work. It would have a state which is de�ned by a model that also uses

the D-Engine algorithm to describe how it is executed. This way it would be

easier to create complex models and focus on the simulation and analysis of a

single state.

One interesting kind of output that would be generated by the framework

would be, for each kind of agent, the amount of time that it uses in each state

and, for each state, the amount of time used in each stage too. This would be

useful to have an idea of what each agent does when the model is executed.

For each agent it also would be convenient to have access to a diagram

indicating the possible state changes that it can handle and the probability

of each transition, abstracting that agent with the speci�c parameters used in

that analysis into a Markov Chain.

Finally it would be interesting to create something like an abstract family

of agent-models for di�erent proposes, but with a common set of states, stages

or similar planners. With that, �nal users could create di�erent kinds of similar

agent-based models with di�erent parameters or small modi�cations more

easily. For example, if we had a generic model based on people behaviour

when they were using a computer product and able to calculate the duration

of each stage based on the product's utilization log, we would have a framework

to simulate humans in various environments where there are human con�icts,

as the auction e-commerce application shown in this project.

9.3.1
Simple Duel Application

It would be interesting to let the duel have more attacks than just the

punch, for example it would include kicks or elbow attacks that would be

triggered according to the values of the calculated damage or attack duration.

It also would include actions and intelligence for dodging, blocking and counter

attacks.

The current duel project includes only two warriors �ghting, it would be

interesting to see more agents battling, maybe including two or more teams.

Also it would be interesting to let the agents have more states, like movement

to chase other agents or to run away in the case of fear or power inferiority.

The agent model would include di�erent classes of warriors like archers,

knights or barbarians which would share some states or including exclusive

ones. If we create an easy way of de�ning di�erent actions for agents in a

battle or war environments, we would have a generic agent-based model for

this kind of content, being useful for bigger projects as strategy games or war
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movies.

For each kind of di�erent model using our framework it would be

interesting to have empirical tests about the reaction of the viewers when

observing the generated presentation and verify how the randomness can

in�uence the consumer experience and increase the replay factor. For example,

we would get a number U of users, show for U/2 users a presentation using

classic deterministic animations and show for the other half a presentation

based in our framework. Then we could give a survey about what all the users

observed and compare the results.

9.3.2
Auction Site Application

The auction model introduced by this thesis only presents English

auctions, it would be interesting to have di�erent kinds of auctions like Dutch

or Vickrey ones. Then the same agent would have to adapt its strategies for

each kind of auction, generating more dynamism in the simulated system.

Talking about strategies, in our project every agent's behaviour is based

on the same strategy concept. While it is possible to simulate di�erent agents

by changing their parameters, their strategies will still be similar. It would

be interesting to have other agents with di�erent strategy concepts, maybe

even agents that acts in groups to take advantage over the others or agents

with a "bad" behaviour, trying to gain money by exploring sharp practises like

shilling, shielding or rings (22, Chapter 3.7).

Going back to our agents, sometimes they will start to give new bids that

are greater than the previous one by just some very small fractions of money

(lesser than $0.01), looking very unnatural. It would be interesting to adapt

the bidding calculation functions to try to �x this problem. Also they spend a

random time in every stage but the parameter used is the same; it would be

interesting to have more complex and �exible ways of de�ning the time in each

stage, maybe even based in some empirical study about human speed when

using computer interfaces.

This project was focused on the buy-side of auction, it would be interest-

ing to let agents create their own auctions and sell their products, demanding a

more advanced strategy to see when it should buy or sell products to have the

maximum possible gain. Other nice point would be to give a purpose for each

product, consequently being able to give a concrete objective for each agent.

As a recreational example, imagine that our agents can create �ghting robots,

then one agent would want to construct an extreme powerful robot while an-

other agent would want to have an army of average robots and it would have a
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rival agent that has as objective having the best army to beat him. An universe

with objectives like that would create a bigger, more complex and wide range

of possible stories to be played or watched by the �nal viewers.
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