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diente. I. Nunokawa, Hiroshi. II. Zohren, Stefan. III. Pon-
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Abstract

Cáceres Tintaya, Percy Alexander; Nunokawa, Hiroshi (advisor);
Zohren, Stefan (co-advisor). Riemann Hilbert problems in
Random Matrix Theory. Rio de Janeiro, 2015. 126p. MSc.
Dissertation — Departamento de F́ısica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

We review the basic notions of the Random Matrix Theory and in

particular the Gaussian Unitary Ensemble. In what follows we describe the

Dyson gas in equilibrium and nonequilibrium that allows one to interpret the

statistical information of the eigenvalues of random matrices. Furthermore

we show alternative descriptions of this statistical information. In the

following we discuss different aspects of orthogonal polynomials. One of

these caracterizations is given by a Riemann Hilbert problem. Riemann

Hilbert problem techniques are an efficient and powerfull tool for Random

Matrix Theory which we discuss in more detail. In the final part we

use the steepest descent method in the asymptotic analysis of orthogonal

polynomials.

Keywords
Random Matrix Theory; Gaussian Unitary Ensemble; Dyson gas; Or-

thogonal polynomials; Riemann Hilbert problem; Steepest descent method.
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Resumo

Cáceres Tintaya, Percy Alexander; Nunokawa, Hiroshi (orientador)
; Zohren, Stefan (co-orientador) . Problemas de Riemann-
Hilbert na teoria de Matrizes Aleatórias. Rio de Janeiro,
2015. 126f. Dissertação de Mestrado — Departamento de F́ısica,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Estudamos as noções básicas da Teoria das Matrizes Aleatórias e

em particular discutimos o Emsemble Unitário Gaussiano. A continuação

descrevemos o gaz de Dyson em equiĺıbrio e fora do equiĺıbrio que permite

interpretar a informação estat́ıstica dos autovalores das matrizes aleatórias.

Além desso mostramos descrições alternativas dessa informação estat́ıstica.

Em seguida discutimos aspectos diferentes dos polinômios ortogonais. Uma

dessas caracterizações é dada pelos problemas de Riemann-Hilbert. As

técnicas dos problemas de Riemann-Hilbert são uma ferramenta eficaz e

potente na Teoria das Matrizes Aleatórias a qual discutimos com mais

cuidado. Finalmente usamos o método de máxima gradiente na análise

assintótico dos polinômios ortogonais.

Palavras–chave
Teoria das Matrizes Aleatórias; Emsemble Unitário Gaussiano; Gas

de Dyson; Polinômios ortogonais; Problemas de Riemann-Hilbert; Método de

máxima gradiente.
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1
Introduction

Random Matrix Theory (RMT) has found different connections between the-

oretical physics, mathematics and science in general [26]. RMT allows to in-

terplay between these branches. Supplementing and in other cases optimizing

some calculations between these researches one can learn more about RMT.

A canonical example the use of Random Matrix Theory in applying theoret-

ical physics to mathematics was in number theory. The point is looking for

different representations of the same problem to have a wide perspective when

solving each problem. In the same spirit the Riemann Hilbert problem applied

to RMT allows to obtain different families of continuum theories that one can

extend from two-dimensional quantum gravity to number theory. Indeed, the

Riemann Hilbert technique provides a method to classify different families of

continuum theories by the criticality of the support of the equilibrium measure

from RMT.

In this thesis we introduce the theory of unitary ensembles as a particular

case of RMT. With respect to this ensemble we interprete its free energy as

a topological expansion such that the asymptotic expansion of this energy

provides only planar contributions. But the problem is how to compute each

topological contribution in the free energy. To overpass this difficulty, we inte-

grate the degrees of freedom of the gauge in the measure, hence we obtain the

joint probability distribution function (jpdf) of the eigenvalues which allows to

do different calculations, as for example, the partition function. As a special

case, we discuss the Gaussian Unitary Ensemble (GUE) and find possible in-

terpretations of the moments of GUE by Catalan numbers and Dyck paths.

Furthermore, we show some statistical observables of the eigenvalues that were

proved by Riemann Hilbert problems which will be studied in the context of

the thesis.

In the third chapter we introduce the Dyson gas as an useful physical anal-

ogy that allows to understand the joint probability distribution function (jpdf )

of the eigenvalues in thermodynamical equilibrium and in nonequilibrium. A

nonequilibrium Dyson gas has a Brownian motion with Smoluchowski equa-

tion such that a solution independent of the time is given by the Gibbs measure

of the GUE. In the same way all the matrix elements of this ensemble obey
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Chapter 1. Introduction 13

a Brownian process that for long enough time is given by the Gibbs measure.

In the equilibrium case we developed the saddle point equation of the Dyson

gas. Furthermore, the resolvent function allows to solve this equation and in

consequence find other statistical observables such as the eigenvalue density.

In a modern way we rephrased both the saddle point equation and resolvent

function as Riemann Hilbert problems. Hence showing the formality of Rie-

mann Hilbert techniques.

Orthogonal polynomials are very especial in Physics and Mathematics. Its vast

applications is in part due to the fact that the orthogonal polynomials can

be studied under different perspectives. In chapter 4 we formally review the

generalities of orthogonal polynomials. In the following we study the orthog-

onal polynomials from different points of view. From a combinatorial point

of view the orthogonal polynomials can be represented as three term recur-

rence relations. Analytically, the orthogonal polynomials are represented by a

string equation which is shows below. We introduce the relation between a

string equation and the staircase path. In this way the orthogonal polynomials

can be represented geometrically as staircase paths. Algebraically we represent

orthogonal polynomials by commutation relation. Statistically the orthogonal

polynomials are represented by a kernel and hence we compute the n-point

correlation function of the eigenvalues in function of orthogonal polynomials.

Furthermore, orthogonal polynomial can be represented as Riemann Hilbert

problem that will be studied in the next chapter.

The Riemann Hilbert problem (RHP) is a powerfull method in asymptotic

analysis of differential and integral equations with applications in many areas,

in particular orthogonal polynomials and Random Matrix Theory(RMT). Also

we introduce basic notions of complex analysis such as the theory of Cauchy

type integrals. We discuss the scalar RHP. This discussion is generalized to

the matrix RHP such that in some cases matrix RHP can be reduced to the

analysis of an array of scalar RHPs. When this is not possible the analysis

is given by singular integral equations. Furthermore we review the relation of

orthogonal polynomials in RMT and RHPs.

Many statistical quantities of Hermitian Random Matrices can be reduced to

calculations involving large asymptotics of orthogonal polynomials. Finally we

present the Riemann-Hilbert approach to the large asymptotics of orthogonal

polynomials. This approach is based on the steepest descent method, which

provides an asymptotic solution to the RHP, as N → ∞.
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2
Random Matrix Theory

We can find applications of Random Matrix Theory at theoretical physics,

mathematics and science in general on the book [26]. A few examples of

emergence of Random Matrix Theory range from two-dimensional quantum

gravity [3], towards biological models [4] and number theory [5]. In this chapter

we introduce the unitary ensemble of random matrices. Fixing the gauge of the

ensemble, we obtain the joint probability distribution function (jpdf) of the

eigenvalues. In particular, we discuss the Gaussian unitary ensemble (GUE)

and possible interpretations of the moments of GUE. Finally we present some

statistical properties of the eigenvalues that will be proved in a further chapter

by Riemann Hilbert problems. In the third section of this chapter we follow the

exposure of [11], whereas the fourth section is based on the text [29]. For more

detail the reader should consult [31].

2.1
Introduction

RMT originated with the works of Hsu, Wishart, and others, in mathematical

statistics around 1920s [1]. In the 1950s the theory had its first steps in physics

with the work of Wigner as an attempt to describe the statistical fluctuations of

random operators in many body quantum systems. In fact, Wigner suggested

resonance spectra of heavy nuclei can be described in terms of the eigenvalues

of very large matrices. Just like any resonant system can be characterized by a

Hamiltonian, Wigner considered that eigenvalue statistics of this Hamiltonian

was only restricted to symmetries of this Hamiltonian. Using this fact he found

that the average density of eivenvalues for real symmetric matrices is given by

the semicircle law in the limit of large matrix size. Next, more detailed work on

other observables and different ensembles, was studied by Dyson and Metha.

While later, the method of orthogonal polynomials was developed for the GUE

by Metha and Gaudin.

Furthermore, a relation between RMT and two-dimensional quantum gravity

was found. This relation began with the work of t’Hooft [28], where the

expansion of the free energy in terms of Feymann diagrams for a field theory

with large gauge group is dominated by planar Feymann diagrams. This
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Chapter 2. Random Matrix Theory 15

Figure 2.1: Scketch of the resonance spectrum of the Uranium. The qualitative
analysis of this spectrum can be approximatly given by eigenvalue statistics of
very large random matrices.

expansion was introduced in RMT by Brézin, Itzykson, Parisi and Zuber [6]

such that random matrix integrals using an appropriate limit scaling generate

planar graphs. Further developments showed that a more exact method for

finding statistical properties of eigenvalues was the orthogonal polynomial

method. Later, orthogonal polynomials were rephrased as Riemann Hilbert

problems [14]. Hence, Riemann Hilbert problems turn out to be a powerfull

method in RMT.

All these reflect the wide variety of resources in RMT.

Outline: The chapter is organized as follows. Section 2.2 contains basic notions

of probability space and of ensembles. Section 2.3 gives a review of unitary

ensembles and its topological large N expansion. In section 2.4 we introduce

the ensemble of eigenvalues. In section 2.5 we describe the Gaussian Unitary

Ensemble. Following by the statistical obsevables that were proved with

Riemann Hilbert problems.

2.2
Statistical ensemble

Observing that entries of random matrices are random variables in a probability

space, we will review some topics of random variable and statistical ensembles.

Recall that probability space of random variables is a measure space such that

the measure of the whole space is equal to one. In general, this space is a

mathematical construction that models a real process and consists of three

parts:

1. Sample space Ω, which is a set of all possible outcomes. Where the

outcomes may be states of nature, possibilities, experimental results

among others. Since individual outcomes could be of little practical use,

then more complex events are used to characterize groups of outcomes.

A collection of all such events corresponds to a σ-algebra F .

2. σ-algebra F , which is a collection of all the subsets of the sample space

that we would like to consider.
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PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 2. Random Matrix Theory 16

3. Probability measure P , which is given by the assignment of probabilities

to the events. Where probability is a real number between zero (event

never happens) and one (event happens with total certainty). Indeed, a

function P : F → [0, 1] is a measure on F if it is countably additive and

P (Σ) = 1.

In this framework, the probability space of N × N random matrices is given

by (Ω,F , P ), so that a random matrix M is a measurable map from (Ω,F) to

MN(C), whereMN(C) denotes the space of N×N matrices with entries in the

complex plane C. The measurable map is determined by the invariants of the

matrix such as E(TrMk), where E is the expectation with respect to P and

Tr is the trace on MN(C).

The choice of P is promoted by thermodynamic ensembles. A thermodynamic

ensemble is a statistical ensemble that is in equilibrium and can be isolated,

closed or open. This ensembles are specified by

1. Microcanonical ensemble, is a set of microstates such that when a

macroscopic system is in thermodynamic equilibrium and this system

is isolate, all the microstates have approximately the same role in the

definition of the macrostate. Thus a probability of finding one system

with energy Er is given by

P (Er) =

{
1

Ω(E)
E = Er

0 otherwise
,

where Ω(E) is a microcanonical partition function. This partition func-

tion gives a number of available states for the energy Er.

2. Canonical ensemble, is associated with a system that can exchange energy

with a reservoir. So the probability to find a system with energy Er is

given by

P (Er) =
e−βEr

Z(β)

which is known as Gibbs measure, where Z(β) is the canonical partition

function,

Z(β) =
∑
r

e−βEr

and e−βEr is called Boltzmann weight.

It is important to realize that the canonical ensemble is mathematically

equivalent to the microcanonical ensemble, in the sense that although

the canonical ensemble contains systems of all energies, the majority of

them have the same energy in the microcanonical esemble. Indeed one
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PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 2. Random Matrix Theory 17

Figure 2.2: General description of the Gibbs measure that is introduced for the
Random Matrix Ensemble later.

can fix Er = E to obtain

z(β) =
∑
E

∑
r,Er=E

e−βEr

=
∑
E

e−βE
∑
i,Ei=E

1

=
∑
E

e−βEΩ(E)

implying that the canonical partition function corresponds to the gener-

ating function of the microcanonical partition function.

3. Grand canonical ensemble, corresponds to a system such that if it

exchanges particles with the reservoir too, then the Grand canonical

partition function is the generating function of the canonical partition

function

Θ(β, z) =
∑
N

ZN(β)(e
βµ)N ,

where eβµ is the fugacity of the chemical potential µ which is the

probability of expansion of the particle. For this reason one can obtain

the canonical partition function by inverse Laplace transform,

ZN(β) =
1

2πi

∮
dz

Θ(β, z)

zN+1
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Chapter 2. Random Matrix Theory 18

2.3
Unitary ensemble of random matrices

The Unitary ensemble for random matrices is given by a measure dµN(M), so

that this measure is invariant under global transformations U(N). The matrix

elements Mij are complex valued random variables which are taken from a

probability distribution dµN(M) of the (Ω,F , dµN(M)). In fact, given a set of

N ×N random Hermitian matrices

M =


M11 <M12 + i=M12 · · · <M1N + i=M1N

<M12 − i=M12 M22 · · · <M2N + i=M2N

...
...

. . .
...

<M1N − i=M1N <M2N − i=M2N · · · MNN


we define a Gibbs measure for Hermitian matrices M , in the following way

dµN(M) =
1

Z ′
N

e−NTrV (M)dM, (2.1)

where Z ′
N =

∫
e−NTrV (M)dM , is the partition function and dM corresponds to

the Lebesgue mesure:

dM = ΠN
j=1dMjjΠj 6=kd<Mjkd=Mjk, (2.2)

notice that we assumed independence between the matrix elements initially,

but the so-called potential V correlates the matrix elements subsequently.

Since the trace is invariant under unitary transformations, UU † = U †U = I ,

we have

TrV (M) = TrV (U †M ′U) = TrV (M ′UU †) = TrV (M ′).

Therefore the Gibbs measure is invariant under unitary transformations,M →
U †M ′U, U ∈ U(N).

As an illustration, for V (M) = 1
2
M2, the expectation value of f(M) in the

Gaussian Unitary Ensemble, is given by

〈f(M)〉 =
∫
f(M)e−

N
2
TrM2∫

e−
N
2
TrM2

. (2.3)

Using the so-called source integral method [21] in this ensemble, we have

〈MijMkl〉 =
δilδjk
N

, (2.4)

This source integral method can be generalized to the matrix Wick theorem

〈
∏

(i,j)∈I

Mij〉 =
∑

pairings

P
∏

(ij),(kl)∈P

〈MijMkl〉. (2.5)
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Chapter 2. Random Matrix Theory 19

Now suppose that V (M) be a formal power series in the gi, of the following

Figure 2.3: Diagramatic interpretation of the propagator (in the top), where the
expectation value of two matrices is given by the coupling of indices with the
same direction and the matrix Wick theorem (in the bottom) which consists
that the expectation value of a even number of matrices is given by the sum
over all the possible couplings.

form
V (M) =

∑
i≥3

gi
i
T rM i (2.6)

hence the partition function can be expressed as a expectation value,

ZN(g3, g4, ...) = 〈e−N
∑

i≥3
gi
i
TrM i〉, (2.7)

using the Taylor expansion of the exponential yields

ZN(g3, g4, ...) =
∑

n1,n2,...

∏
i≥3

(−Ngi)ni

inini!
〈
∏
i≥3

Tr(M i)ni〉. (2.8)

Since the expectation value can be rephrased as a sequence of ni i-valent

vertices, connecting the oriented double links into pairs forms a closed graph

Γ with double lines. By the matrix Wick theorem, we obtain

ZN(g3, g4, ...) =
∑

n1,n2,...

∏
i≥3

(−Ngi)ni

inini!

∑
all labelled Γ

with ni i-valent vertices

N−E(Γ)NF (Γ),

(2.9)
where E(Γ) is the number of edges of Γ and F (Γ) is the number of faces of Γ.

Summing over all the possible labelings of an unlabeled graph Γ, we find [11]

ZN(g3, g4, ...) =
∑
all Γ

NV (Γ)−E(Γ)+F (Γ)

|AutΓ|
∏
i

(−gi)ni(Γ), (2.10)
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Chapter 2. Random Matrix Theory 20

Figure 2.4: Illustration of planar diagrams corresponding to the average
〈TrM6〉.

where ni(Γ) is the total number of i − valent vertices of Γ, |AutΓ| is the

symmetry group of Γ which cancels the repetitions of the graph on the

equivalent topological surfaces and V (Γ) is the number of vertices of Γ. Since

the number V (Γ)−E(Γ)+F (Γ) characterizes the topology of the surface where

the graph is drawn, we obtain

ZN(g3, g4, ...) =
∑
all Γ

N2−2g

|AutΓ|
∏
i

(−gi)ni(Γ), (2.11)

where 2 − 2g = V (Γ) − E(Γ) + F (Γ) = χ(Γ) is called Euler-Poincare

characteristic of the dual of Γ which is a tessellation Γ∗ of a Riemann surface.

So that g is the number of holes of this Riemann surface.

Hence a normalized free energy is given by taking the logarithm to ZN ,

restricted only to connected graphs [31]

F 0
N(g3, g4, ...) = logZN(g3, g4, ...), (2.12)

because, in the Taylor expansion of logFN the contribution of the disconnected

graphs are cancelled between terms of this expansion. Then, we get

F 0
N(g3, g4, ...) =

∑
connected Γ

N2−2g

|AutΓ|
∏
i

(−gi)ni(Γ). (2.13)

As g is a topological invariant,

F 0
N(g3, g4, ...) =

∑
connected Γ

N2−2gF g(g3, g4, ...), (2.14)

is called the topological large N expansion.
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Figure 2.5: Illustration of the large-N expansion of matrix integrals correspond-
ing to the topological expansion of the Feymann diagrams.

2.4
Ensemble of eigenvalues

By gauge symmetry one can reduce the number of parameters of the Gibbs

measure from N2 to N , thence expressing this measure only as function of

the eigenvalues of M by the gauge fixing [29]. In the following we will show

how this gauge fixing works by using a more physical approach given by the

references [29][27].

Recall that in general, the Dirac delta function satisfies∫
dg(x)δ(g(x)) = 1

which can be written in the following way∫
dg(x)δ(g(x)) =

∫
dx

∣∣∣∣dgdx
∣∣∣∣ δ(g(x)) = 1.

Analogously, for the matricial functions we can define a matrix distribution δ

before fixing the gauge. For convenience if one fixes the gauge at F = 0, we

obtain ∫
dU

∣∣∣∣δF (UM)

δU

∣∣∣∣
F=0

δ(F (UM)) = 1, (2.15)

where δF (UM) =
∏

i<j δ
(2)(Fij(

UM)) and UM = U †MU . Using the gauge

invariance we have ∣∣∣∣δF (UM)

δU

∣∣∣∣
F=0

=

∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

,

thus, we insert this equality into the integral (2.15) to get∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫
dUδ(F (UM)) = 1. (2.16)

If one consideresM as an almost diagonal matrix, then U is approximately the

identity matrix, because we do not need to change M significantly. Therefore,

U ∼= I + A
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since the matrix A has small entries, then U ∼= eA. For this reason one can

expres the measure dU as functions of the matrix elements of A, in the following

way

dU = du
∏
i<j

d(<Aij)d(=Aij)

where du is the measure over the diagonal of U , such that in particular∫
du = 1. Therefore the integral (2.16) can be expressed as∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫
du
∏
i<j

d(<Aij)d(=Aij)δ(F (UM)) = 1

As the gauge is given by, Fij(
UM) = (U †MU)ij, i 6= j, and this gauge does

not depend on u, we have

(

∫
du)

∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫ ∏
i<j

d(<Aij)d(=Aij)δ2(U †MU)ij = 1 (2.17)

Now we will obtain the constraints onM by gauge fixing, (U †MU)ij = 0, i 6= j,

hence we have

(U †MU)ij =
∑
kl

(e−A)ikMkl(e
A)lj = 0, i 6= j

also since Mll 6= 0, and eA ∼= I + A, we can write the gauge fixing as∑
l

(I − A)ilMll(I + A)lj = 0, i 6= j∑
l

(Iij − AilIlj + IilAlj − AilAlj)Mll = 0∑
l

(−AilAlj)Mll = 0

thus for i 6= j we get ∑
l

AilAlj = A2
ij = 0.

In conclusion, the gauge fixing is equivalent to

Aij = 0, i 6= j (2.18)
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Furthermore, we will use this condition to reduce the integral (2.17). Using∫
du = 1 and U = I + A this integral can be espressed as∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫ ∏
i<j

d(<Aij)d(=Aij)δ2((I − A)M(I + A))ij = 1∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫ ∏
i<j

d(<Aij)d(=Aij)δ2(MA− AM − AMA+ I)ij = 1

as can be noted Mij
∼= λiδij, then we can rewrite this integral as

1∣∣∣ δF (M)
δU

∣∣∣
F=0

=

∫ ∏
i<j

d(<Aij)d(=Aij)×

×δ2(
∑
l

λiδilAlj −
∑
m

Aimλmδmj −
∑
nr

AinλnδnrArj + Iij)

by the property of the δ distribution, we obtain

1∣∣∣ δF (M)
δU

∣∣∣
F=0

=

∫ ∏
i<j

d(<A′
ij)d(=A′

ij)×∏
i<j δ[<(Aij − A′

ij)=(Aij − A′
ij)]∏

i<j(λj − λi −
∑

r A
′
irλrδrj)

∏
i<j(λj − λi −

∑
r A

′
irλrδrj)

Finally, using the gauge fixing (2.18) we find∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

=
∏
i<j

(λj − λi)
2 (2.19)

Consequently, the partition function is given by

Z ′
N =

∫
dMe−NTrV (M)

∣∣∣∣δF (M)

δU

∣∣∣∣
F=0

∫
dUδ(F (UM))

=

∫
dUdMe−NTrV (M)

∏
i<j

(λj − λi)
2δ(F (UM))

Z ′
N =

∫
dU

∫ N∏
i=1

dλie
−NV (λi)

∏
i<j

(λi − λj)
2

So if one defines ZN =
Z′
N∫
dU

we obtain

ZN =

∫ N∏
i=1

dλie
−NV (λi)

∏
i<j

(λi − λj)
2 (2.20)

In essence, by integrating out U one obtains the jpdf of the eigenvalues
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dµN(λ) =
1

ZN

∏
i<j

(λi − λj)
2

N∏
i=1

e−NV (λi)dλi, (2.21)

where ZN =
∫ ∏

i<j(λi − λj)
2
∏N

i=1 e
−NV (λi)dλi is the partition function. This

jpdf allows to intrepete and calculate the correlation between eigenvalues. One

can observe that the eigenvalues are dependent random variables due to the

factor
∏

i<j(λi − λj)
2 which is called Van der Monde determinant.

2.5
Gaussian unitary ensemble

A special case of unitary emsembles is given when V (M) = 1
2
M2 which

corresponds to the Gaussian Unitary Ensemble. For this case, we write the

partition function of the GUE as

Z
′GUE
N =

∫
e

N
2
TrM2

dM (2.22)

In this case, we express the trace in terms of the matrix elements,

TrM2 =
∑
i,j

MijMji =
∑
i,j

(<Mij + i=Mij)(<Mji + i=Mji)

by the hermiticity of M , we have

TrM2 =
∑
i,j

(<Mij)
2 + (=Mij)

2

=
∑
i

M2
ii + 2

∑
i<j

(<Mij)
2 + 2

∑
i<j

(=Mij)
2

TrM2 =
∑
i

M2
ii + 2

∑
i<j

|Mij|2

hence the probability distribution of GUE is given by

dµGUEN (M) =
1

Z
′GUE
N

Πi(e
−N

2
M2

ii)Πi<j(e
N |Mij |2)dM (2.23)

Here one observes that the matrix elements in GUE are independent Gaussian

random variables. Therefore integrating each random variable, we obtain the

partition function of GUE,

Z
′GUE
N =

∫
Πi(e

−N
2
M2

ii)Πi<j(e
N |Mij |2)dM = 2

N2−N
2 (

π

N
)
N2

2 . (2.24)

On the other hand, the jpdf of the GUE is given by

dµGUEN (λ) =
1

ZGUE
N

Πi<j(λi − λj)
2ΠN

i=1e
−N

2
λidλi, (2.25)
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where ZGUE
N corresponds to a Selberg integral, so that

ZGUE
N =

∫
Πi<j(λi − λj)

2ΠN
i=1e

−N
2
λidλi =

(2π)
N
2

N
N2

2

ΠN
n=1n!. (2.26)

Notice that the ratio between Z
′GUE
N and ZGUE

N gives us the volume
∫
dU . In

addition, given a finite N and λ, we define the eigenvalue distribution as the

normalized random probability measure on the real line R given by

ρN(λ) =
1

N

N∑
i=1

〈δ(λ− λi)〉 (2.27)

and for the large N limit this distribution becomes an eigenvalue density

ρ(λ) = lim
N→∞

ρN(λ) =
1

2π

√
4− λ2 (2.28)

which is the famous Wigner’s semi-circle law.

We also define the moments of the eigenvalue density as

Figure 2.6: Illustration of the correspondence between the quadratic potential
of the GUE and Wigner’s semicircle law.

mk =

∫
λkρ(λ)dλ.
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If we write λ = 2 sin θ, then ρ(λ) = 1
π
cos θ and dλ = 2 cos θdθ, the moment

m2k is given by

m2k =

∫ 2

−2

λ2kρ(λ)dλ =

∫ π
2

−π
2

(2 sin θ)2k(
1

π
cos θ)(2 cos θdθ)

=
22k+1

π

∫ π
2

−π
2

sin2k θ cos2 θdθ

=
22k+1

π

(∫ π
2

−π
2

sin2k θdθ − (2k + 1)

∫ π
2

−π
2

sin2k θ cos2 θdθ

)

m2k =
22k+1

π

∫ π
2

−π
2

sin2k θdθ − (2k + 1)m2k.

which simplifies to

m2k =
22k+1

π(2k + 2)

∫ π
2

−π
2

sin2k θdθ

=
22k+1(2k − 1)

π(2k + 2)

∫ π
2

−π
2

sin2k−2 θ cos2 θdθ

m2k =
22(2k − 1)

2k + 2
m2k−2. (2.29)

To solve this recursion relation, we compute m0 in the following way,

m0 =
2

π

∫ π
2

−π
2

cos2 θdθ = 1.

Therefore, the moment m2k is given by

m2k =
22(2k − 1)

2k + 2

22(2k − 3)

2k

22(2k − 5)

2k − 2
...
22

4

=
(2k)!

(k + 1)!k!

=
1

k + 1

(
2k

k

)
m2k = Ck (2.30)

which is known as Catalan number. The moments m2k+1 read

m2k+1 =
22k+2

π

∫ π
2

−π
2

sin2k+1 θ cos2 θdθ,

but the integral of an odd function over a symmetric interval is zero

m2k+1 = 0. (2.31)
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Actually, the Catalan numbers Ck possess many interpretations. For instance,

we consider a Bernoulli walk of length l which is a sequence {sn}0≤n≤l ⊂ Z

such that s0 = 0 and |st+1−st| = 1 for t ≤ l−1. In fact, Ck counts the number

of nonnegative Bernoulli walks of length 2k that terminate at 0. These walks

are know as Dyck paths.

Indeed, let Dk corresponds to the number of Dyck paths. If Bk denotes the

number of Bernoulli walks {sn} of length 2k that only satisfy s2k = 0, and B̃k

denotes the number of Bernoulli walks {sn} of length 2k that satisfy s2k = 0

and st < 0 for some t < 2k, then, Dk = Bk − B̃k. Now Bk consists of k jumps

up and k jumps down, so Bk =

(
2k

k

)
. Next B̃k equals to the number of

Bernoulli walks starting at 0 and ending at -2, because if one consideres t the

last visit to -1, and by reflection of the walk after t at -1, one obtains a unique

walk ending at -2 with the same set of visits to -1. Therefore, B̃k is given by

k− 1 jumps up and k+1 jumps down, so B̃k =

(
2k

k − 1

)
. Thus we conclude

that

Dk = Bk − B̃k =

(
2k

k

)
−

(
2k

k − 1

)
=

1

k + 1

(
2k

k

)
= Ck (2.32)

Figure 2.7: Illustration of a Dyck path for k = 5.

2.6
Statistical properties of the eigenvalues spectrum

The probabilistic properties of the eigenvalue distribution allow to explore all

the possible interpretations and applications of the RMT.

In the physics and mathematics, it is natural to study the expectation values

of functions f of the eigenvalues

E [f ] = 〈f〉 = 1

ZN

∫
Πi<j(λi − λj)

2f(λ1, λ2, ..., λN)Π
N
i=1e

−NV (λi)dλi.
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One of the quantities of interest is the eigenvalue density that was defined in

the preceding section for GUE. In general, it is defined in mathematics and

physics notation respectively as

ρN(λ) = E

[
1

N

N∑
i=1

δ(λ− λi)

]
=

〈
1

N

N∑
i=1

δ(λ− λi)

〉
, (2.33)

where both average are calculated with respect to jpdf on R. Another point

that one notice is the factor 1
N

necessary to support a finite large N limit of

the eigenvalue density,

ρ(λ) = lim
N→∞

ρN(λ)

if this limit exists we obtain the equilibrium density. Existence of this limit

generally depends on the behaviour of V at infinity. Just like Nρ(λ)dλ counts

the average number of energy levels between λ and λ + dλ, thus the mean

spacing between consecutive eigenvalues is given by

∆ =
1

Nρ(λ)
(2.34)

Another quantity of interest is the 2-point correlation function,

Figure 2.8: Typical eigenvalue distribution for N finite.

ρ2,N(λ1, λ2) =

〈
1

N

N∑
i,j=1

δ(λ1 − λi)δ(λ2 − λj)

〉

−

〈
1

N

N∑
i=1

δ(λ1 − λi)

〉〈
1

N

N∑
i=1

δ(λ2 − λi)

〉
, (2.35)

where ρ2,N(λ1, λ2)dλ1dλ2 corresponds to the probability that there is one

eigenvalue in [λ1, λ1 + dλ1] and one in [λ2, λ2 + dλ2]. In the large N limit

this correlation function is denoted by

ρ2(λ1, λ2) = lim
N→∞

ρ2,N(λ1, λ2). (2.36)
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In fact, this function only depends on the complex structure of the resolvent

function and can be obtained by Riemann Hilbert approach. Indeed we will

further obtain the scaling limit of this correlation function in the bulk (far

from the end points) of the spectrum which for any λ ∈ (a, b) is given by [13]

[17] [19]

ρ2(λ+∆λ1, λ+∆λ2) ∼
sin2[π(λ1 − λ2)]

[π(λ1 − λ2)]2
. (2.37)

In general, the n-point correlation function is given as

ρn(λ1, ..., λn) = lim
N→∞

Nn−2

〈
n∏
k

N∑
i=1

δ(λk − λi)

〉
c

, (2.38)

where the index ”c” restricts only to connected correlations. Also if this limit

exists it depends on the complex structure of the resolvent function, such that

can be approached by Riemann Hilbert problem and expressed in the bulk of

the spectrum as

ρn(λ+ λ1, ..., λ+ λn) ∼

∣∣∣∣∣∣∣∣
sin[π(λ1−λ1)]
[π(λ1−λ1)] · · · sin[π(λ1−λn)]

[π(λ1−λn)]
...

. . .
...

sin[π(λn−λ1)]
[π(λn−λ1)] · · · sin[π(λn−λn)]

[π(λn−λn)]

∣∣∣∣∣∣∣∣
2

. (2.39)

So far, we have considered scaling limits away from the endpoints. However,

there exist a different scaling of the 2-point correlation function near the

endpoints, and for c > 0 are given by [17]

lim
N→∞

ρ2,N

(
a− λ1

(Nc)
2
3

, a− λ2

(Nc)
2
3

)
∼ (Ai(λ1)Ai

′(λ2)− Ai′(λ1)Ai(λ2))
2

(λ1 − λ2)2

(2.40)

lim
N→∞

ρ2,N

(
b+

λ1

(Nc)
2
3

, b+
λ2

(Nc)
2
3

)
∼ (Ai(λ1)Ai

′(λ2)− Ai′(λ1)Ai(λ2))
2

(λ1 − λ2)2
,

(2.41)
where Ai(x) is the Airy function. This scaling limit will be obtained by the

Riemann Hilbert approach.
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3
The Dyson gas and eigenvalue density

Dyson gas is an useful analogy that allows to understand the joint probability

distribution function (jpdf ) of the eigenvalues. In this chapter we introduce

a Dyson gas in thermodynamical equilibrium. A Dyson gas with Brownian

motion is shown such that approaches to GUE for long enough time. We discuss

the Dyson gas in equilibrium by the saddle point equation. Furthermore,

using the resolvent function one can solve this equation. Alternatively we

rephrase both saddle point equation and resolvent function as Riemann Hilbert

problems. In the second section of this chapter we follow the exposition of [31],

while the third section is based on the text [1]. For more detail the reader

should consult [21].

3.1
Introduction

Our main goal here is to understand the spectrum of a random matrix

ensemble as stationary and dynamical system. There is an analogy with a

gas of eigenvalues in a potential well. The analogy is available only when

one is able to integrate out the angular degrees of freedom and write the

integral only in terms of eigenvalues. As a consequence of integrating out the

eigenvector components, a term Πi<j(λi − λj)
2 appears, which is responsible

for the strong correlations (long-range) among the eigenvalues. The presence

of this term leads to a natural and far-reaching interpretation of the set of

N real eigenvalues as positions for N particles of a 1D fluid and subject to

a logarithmic (Coulomb) repulsion plus a confining external potential. If we

assume the Coulomb gas as a dynamical system, originally due to Dyson, one

can actually infer the equilibrium positions of Coulomb particles in Brownian

motion which correspond to the large N limit of the jpdf of this particles,

and hence to the jpdf of the eigenvalues. We obtain a resolvent function which

can be represented via Riemann Hilbert problems. In fact, the saddle point

equation can be rephrased as Riemann Hilbert problem too. These show the

importance of Riemann Hilbert problems in the spectrum of random matrix

theory.

Outline: The chapter is organized as follows. Section 3.2 contains the relation
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between the jpdf and Dyson gas via an equilibrium equation which is called

saddle point equation. In section 3.3 we describe a nonequilibrium Dyson gas

for GUE. Section 3.4 gives the solution of the saddle point equation which

corresponds to the resolvent function. In section 3.5 we translate the saddle

point equation and resolvent function as Riemann Hilbert problem. Showing

the usefulness of the RHP.

3.2
Dyson gas

Raising the term Πi<j(λi − λj)
2 into the exponent in the jpdf yields

ZN =

∫
ΠN
i=1dλie

−N2S(λ1,...,λN ), (3.1)

where S(λ) = 1
N
V (λ) − 2

N2

∑
i<j ln |λi − λj| is the so-called effective action.

This gives the Dyson gas : a charge distribution in 1D under the influence of a

Coulomb repulsive force inside a confining potential V (λ), in thermodynamical

equilibrium at a temperature kT = N−2. The equilibrium equation of this gas

is given by
δS(λ)

δλi
|λi=λ̃i =

1

N
V ′(λ̃)− 2

N2

∑
i6=j

1

λ̃i − λ̃j
= 0. (3.2)

From this one can for example obtain the eigenvalues density ρ(λ) of the

equilibrium measure when N → ∞. In the case of the Gaussian Unitary

Figure 3.1: Pedagogycal illustration of the Dyson gas where one finds the
repulsion among the particles and the probability distribution of all particles.
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Ensemble, with V (λ) = λ2

2
, this yields

− 2

N

∑
i 6=j

1

λ̃i − λ̃j
= λ̃

which gives the Wigner’s semi-circle law ρ(λ) = 1
2π

√
4− λ2 as will be shown

below. So that this describes the equilibrium of the charge distribution.

3.3
Dyson-Nonstationary ensemble

In the description of the Dyson gas and eigenvalue density, the distribution was

assumed to be stationary. Now the Dyson gas is interpreted as a dynamical

system that corresponds to nonequilibrium state depending on time until

the equilibrium is approached. Dyson propoused that for GUE, λi should be

interpreted as positions of particles in Brownian motion [1] [25]. This Brownian

particle is subject to random collisions with other particles, so that these

collisions give rise to an average frictional force resisting their motion. Hence

this force will be characterized by a friction coefficient η. While the particle at

λi experiences an external force field,

F (λi) = −δS(λ)
δλi

= − 1

N
λi +

2

N2

∑
i 6=j

1

λi − λj
. (3.3)

Under these physical conditions, the Langevin equation is given by:

λ̈i = −ηλ̇i + F (λi) + f(t), (3.4)

where the stochastic force f(t) obeys the following properties

〈f(t1)f(t2)...f(t2n+1)〉 = 0

〈f(t1)f(t2)...f(t2n)〉 =
∑
pairs

〈f(ti)f(tj)〉...〈f(tk)f(tl)〉

〈f(t1)f(t2)〉 = 2ηkTδ(t1 − t2).

To characterize the higher moments of f(t), we assume that f(t) follows a

Gaussian distribution
P [f(t)] = e−

∫ tf
t0

dt
f(t)2

4ηkT , (3.5)

where this ditribution gives the probability density for the values of f(t) in the

interval [t0, tf ].

For the Langevin equation, considering that the evolution of the system is a

Markov process, we can also define a probability density

P (λ1, λ2, ..., λN ; t) = 〈δ(λ1 − x1(t))δ(λ2 − x2(t))...δ(λN − xN(t))〉, (3.6)
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where these xi(t) obey the Langevin equation and P (λ1, λ2, ..., λN ; t)dλ1dλ2...dλN

is the probability of finding the particle at time t within the intervals

[λ1, λ1 + dλ1] ∪ [λ2, λ2 + dλ2] ∪ ... ∪ [λN , λN + dλN ]. We now derive the

Smoluchowski equation for P (λ1, λ2, ..., λN ; t), through the next steps:

∂

∂t
P (λ1, λ2, ..., λN ; t) = −

N∑
i

∂

∂λi
〈δ(λ1−x1(t))δ(λ2−x2(t))...δ(λN−xN(t))ẋi(t)〉

by (3.4), we have that

∂

∂t
P (λ, t) = −

N∑
i

∂

∂λi
〈δ(λ1 − x1(t))δ(λ2 − x2(t))...δ(λN − xN(t))

1

η
(F (xi) + f(t))〉

= −1

η

N∑
i

∂

∂λi
(P (λ1, λ2, ..., λN ; t)F (λi))−

−1

η

N∑
i

∂

∂λi
〈δ(λ1 − x1(t))δ(λ2 − x2(t))...δ(λN − xN(t))f(t)〉

= −1

η

N∑
i

∂

∂λi
(P (λ1, λ2, ..., λN ; t)F (λi))−

−2ηkT

η

N∑
i

∂

∂λi
〈 δ

δf(t)
δ(λ1 − x1(t))δ(λ2 − x2(t))...δ(λN − xN(t))〉

= −1

η

N∑
i

∂

∂λi
(P (λ1, λ2, ..., λN ; t)F (λi)) +

+2kT
N∑
i

∂2

∂λ2i
〈δ(λ1 − x1(t))δ(λ2 − x2(t))...δ(λN − xN(t))

δxi(t)

δf(t)
〉

= −1

η

N∑
i

∂

∂λi
(P (λ1, λ2, ..., λN ; t)F (λi)) +

+kT
N∑
i

∂2

∂λ2i
P (λ1, λ2, ..., λN ; t)

hence, we obtain

η
∂

∂t
P (λ1, λ2, ..., λN ; t) =

N∑
i

(− ∂

∂λi
(P (λ1, λ2, ..., λN ; t)F (λi)) +

+ηkT
∂2

∂λ2i
P (λ1, λ2, ..., λN ; t)). (3.7)

Notice that one can express the Smoluchowski equation in the form of an

equation of continuity
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∂

∂t
P (λ1, λ2, ..., λN ; t) = −

N∑
i

∂

∂λi
j(λ1, λ2, ..., λN ; t) (3.8)

with the current density

j(λ1, λ2, ..., λN ; t) = −1

η
(ηkT

∂

∂λi
− F (λi))P (λ1, λ2, ..., λN ; t), (3.9)

where the current density j(λ1, λ2, ..., λN ; t) contains a diffusion term and a

drift term. In this case the continuity equation reflects the fact that the particle

is always somewhere at the positions λ1, λ2, ..., λN and that it moves by a

continuous motion.

Since there exists a unique solution to the Smoluchowski equation which is

independent of time, this time independent solution is given by the probability

distribution of the GUE.

Analogously to the eigenvalue distribution we can interpret that the matrix

elements Mij obey a Brownian process. This process is defined by requiring

that the N2 random variables Mk = {Mii,<Mij,=Mij} have moments

〈Mk〉 = −ηMk,

〈(Mk)
2〉 = gijηkT,

where gij = 1 + δij. In this Brownian motion the matrix elements Mk are

completely uncoupled, as was studied in the section GUE, and each is subject

only to harmonic force. As before, the Smoluchowski equation corresponding

to this Brownian force is given by

η
∂P

∂t
=

N2∑
k=1

[
1

2
gijηkT

∂2P

∂M2
k

+
∂

∂Mk

(MkP )]. (3.10)

Here P (M1,M2, ...,MN2 ; t) is the time dependent probability density of the

matrix elements Mk, so that the following solution satisfies the Smoluchowski

equation with initial condition M =M ′ at t = 0,

P (M1,M2, ...,MN2 ; t) = C(1− p2)−
N2

2 e
−Tr(M−pM′)2

2ηkT (1−p2) , (3.11)

where C is a normalization constant and p = e−
t
η . Consequently, just after

t→ ∞ we have p→ 0, the stationary probability distribution is given by

P (M1,M2, ...,MN2 ; t) = Ce−
Tr(M)2

2ηkT

which is the Gibbs measure for the GUE. And this measure is the unique

equilibrium measure for the Brownian process.
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Therefore when all the matrix elements execute Brownian motion according

to

〈Mk〉 = −ηMk,

〈(Mk)
2〉 = gijηkT,

with arbitrary initial values, its eigenvalues {λi} execute also a Brownian

motion with the Smoluchowski equation (3.7), which gives the jpdf of the

GUE after a long enough time.

3.4
Saddle point equation

In this section we will rephrase the saddle point equation as second order

equation for a so-called resolvent function. Recall that the saddle point equation

is given by 1

N
V ′(λ̃)− 2

N2

∑
i 6=j

1

λ̃i − λ̃j
= 0, (3.12)

where the eigenvalues do not accumulate in the minimun of the potential due

to the term
∑

i6=j
1

λ̃i−λ̃j
. Multiplying each term of the saddle point equation by

1
z−λ̃i

and summing over i, we have

1

N

N∑
i=1

V ′(λ̃)
1

z − λ̃i
− 2

N2

N∑
i=1

∑
i6=j

1

λ̃i − λ̃j

1

z − λ̃i
= 0

1

N

N∑
i=1

V ′(λ̃)
1

z − λ̃i
− 1

N2

N∑
i=1

∑
i6=j

1

λ̃i − λ̃j
(

1

z − λ̃i
− 1

z − λ̃j
) = 0

1

N

N∑
i=1

V ′(λ̃)
1

z − λ̃i
− 1

N2

N∑
i=1

∑
i6=j

1

(z − λ̃i)(z − λ̃j)
= 0

1

N

N∑
i=1

V ′(λ̃)
1

z − λ̃i
− 1

N2

N∑
i,j=1

1

(z − λ̃i)(z − λ̃j)
− 1

N2

N∑
i=1

1

(z − λ̃i)2
= 0.

Upon adding and subtracting the term 1
N

∑N
i=1 V

′(z) 1
z−λ̃i

, we have

1

N

N∑
i=1

V ′(z)
1

z − λ̃i
+

1

N

N∑
i=1

V ′(λ̃)− V ′(z)

z − λ̃i
−

− 1

N2

N∑
i,j=1

1

(z − λ̃i)(z − λ̃j)
− 1

N2

N∑
i=1

1

(z − λ̃i)2
= 0,

if we define, ω(z) = 1
N

∑N
i=1

1
z−λ̃i

, this equation can be rewritten as

V ′(z)ω(z)− P (z)− ω(z)2 +
1

N
ω′(z) = 0, (3.13)
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where, P (z) = 1
N

∑N
i=1

V ′(z)−V ′(λ̃)

z−λ̃i
, which is a polynomial of degree d− 2 when

V (z) is of degree d.

In the large N limit, we only consider O(1) terms

ω(z)2 − V ′(z)ω(z) + P (z) = 0, (3.14)

whose solution is given by

ω(z) =
V ′(z)±

√
V ′2(z)− 4P (z)

2
.

One notes that ω(z) behaves like ∼ 1
z
for |z| large by its definition. Hence the

sign ”-” in the solution allows for the cancelling of the higher orders than O(1
z
)

for large |z|. Thus one gets

ω(z) =
V ′(z)−

√
V ′2(z)− 4P (z)

2
. (3.15)

In the context of this thesis, we consider the one cut solution. In this case,

V (z) has only one minimum, thence we have a single connected cut [a, b] and

only two branch points a and b in the complex plane. This one cut condition

is enough to determine P (z) and the branch points a and b, because in

V ′2(z)− 4P (z) =M2(z)(z − a)(z − b). (3.16)

There are as many unknowns coefficients of P , of M , a and b as well as

equations for each order of z. Therefore, ω(z) becomes

ω(z) =
V ′(z)−M(z)

√
(z − a)(z − b)

2
(3.17)

which is known as the resolvent function. We will note that this function gives

statistical properties of the equilibrium eigenvalue distribution in the next

section.

For the case of the GUE, V (z) = z2

2
. we have that V ′(z) = z then P (z) is of

degree 0, in particular P (z) = c. Inserting these terms in the equation (3.16)

and consideringM(z) = d to have the same order in both sides of this equation,

we obtain

V ′2(z)− 4P (z) = z2 − 4c =M2(z)(z − a)(z − b) = d2(z − a)(z − b)

Since the potential is even, then b = −a. Therefore

z2 − 4c = d2(z2 − a2)
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Here we observe that d2 = 1 =M2 and in particular if c = 1 then a = 2. Hence

the resolvent function is given by

ω(z) =
z −

√
(z − 2)(z + 2)

2

such that the eigenvalue density corresponds to

ρ(z) =
1

2π

√
(2− z)(z + 2).

3.5
Resolvent function as a Riemann Hilbert representation

In the Random Matrix Theory, it is common to consider the resolvent function

as the generating function of moments

ω(z) =
1

N

∞∑
k=0

〈TrMk〉
zk+1

, (3.18)

thus the generating function ω(z) encodes all the statistical information of the

spectrum of M . If we define ωk =
1
N
〈TrMk〉, then one has a Laurent series

ω(z) =
∞∑
k=0

ωk
zk+1

. (3.19)

One additional feature is that ωk generates surfaces with one boundary of

length k, so that ω(z) is the generating function for surfaces with one boundary

of arbitrary length.

From other point of view ω(z) is a Laurent series, hence by inverse discrete

Laplace transformation, ωk is given by

ωk = − 1

2πi

∮
ω(z)zkdz, (3.20)

where the contour is a clockwise circle around infinity. In the definition, ω(z)

becomes singular when z approaches each λi, but we can analytically extend

this function to the whole complex plane in particular when N → ∞. In this

limit there are many eigenvalues such that we can consider the one cut solution.

Therefore ω(z) is discontinuous across [a, b].

Now let consider a function ρ defined on [a, b] which determine the jump

condition for ω(z), given by

ω(λ+ iε) = ω(λ− iε)− 2πiρ(z). (3.21)

So that we can define the resolvent function ω(z) by a Riemann Hilbert

representation that satisfies the following:
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1. ω(z) is analytic on C\[a, b].

2. For any λ ∈ [a, b],

lim
ε→0+

ω(λ+ iε) = lim
ε→0+

ω(λ− iε)− 2πiρ(λ)

3. As z → ∞,

ω(z) ∼=
1

z
.

There is a unique function which satisfies these requirements which is

ω(z) =
1

2πi

∫
[a,b]

−2πiρ(λ)

λ− z
dλ =

∫
[a,b]

ρ(λ)

z − λ
dλ. (3.22)

Note that this is analogue to the definition of ω(z) when the distribution of

eigenvalues becomes continuous.

In addition at the large N limit, the saddle point equation can be rewritten as

a functional of the eigenvalue density ρ(λ),

V ′(λ)− 2−
∫
ρ(λ′)dλ′

λ− λ′
= 0 (3.23)

by the definition of the principal value integral,

V ′(λ)− lim
ε→0+

(

∫
[a,b]−Cε

ρ(λ′)

λ− iε− λ′
dλ′ +

∫
[a,b]+Cε

ρ(λ′)

λ+ iε− λ′
dλ′) = 0

V ′(λ)− lim
ε→0+

(

∫
[a,b]

ρ(λ′)

λ− iε− λ′
dλ′ +

∫
[a,b]

ρ(λ′)

λ+ iε− λ′
dλ′) = 0,

thus by the definition (3.22) we obtain

V ′(λ)− lim
ε→0+

(ω(λ− iε) + ω(λ+ iε)) = 0. (3.24)

Note that the simplest one cut solution for the respective homogeneous

equation corresponds to V ′(λ) = 0, and by (3.17) this solution is

√
(z−a)(z−b)

2
,

which is the singular part of ω(z). Hence, for transform (3.23) into a jump

condition, it is convenient to divide (3.24) by i
√
(z − a)(z − b),

lim
ε→0+

ω(λ+ iε)

i
√

(z − a)(z − b)
= − lim

ε→0+

ω(λ− iε)

i
√

(z − a)(z − b)
+

V ′(λ)

i
√
(z − a)(z − b)

.

(3.25)
Therefore the saddle point equation can also be expressed as a Riemann Hilbert

problem with the following conditions

1. ω(z)

i
√

(z−a)(z−b)
is analytic on the complex plane, except [a, b]
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2. ∀λ ∈ [a, b],

lim
ε→0+

ω(λ+ iε)

i
√

(z − a)(z − b)
= − lim

ε→0+

ω(λ− iε)

i
√

(z − a)(z − b)
+

V ′(λ)

i
√
(z − a)(z − b)

3. As |z| → ∞
ω(z)

i
√

(z − a)(z − b)
∼=

1

iz2
+O(

1

z3
).

Figure 3.2: An illustration of the jump condition for the saddle point equation.

It gives the unique solution of the saddle point equation

ω(z)

i
√
(z − a)(z − b)

=
1

2πi

∫
[a,b]

V ′(λ)

i
√

(b−λ)(λ−a)
dλ

λ− z
, (3.26)

hence, the resolvent function is given by

ω(z) =

√
(z − a)(z − b)

2π

∫
[a,b]

dλ

λ− z

V ′(λ)√
(b− λ)(λ− a)

, (3.27)

so that if we expand this equation for |z| → ∞ we find

ω(z) =
z(1− (a+b)

2z
+O( 1

z2
))

2π

∫
[a,b]

dλ
1 + λ

z

z

V ′(λ)√
(b− λ)(λ− a)

ω(z) =
1

2π

∫
[a,b]

dλ
V ′(λ)√

(b− λ)(λ− a)
+

1

2π

∫
[a,b]

dλ
λ

z

V ′(λ)√
(b− λ)(λ− a)

and then by the large |z| behavior of the resolvent we have two other conditions
for the coeficients of ω(z), such that

1

2π

∫
[a,b]

dλ
V ′(λ)√

(b− λ)(λ− a)
= 0 (3.28)

1

2π

∫
[a,b]

dλ
λV ′(λ)√

(b− λ)(λ− a)
= 1. (3.29)

To emphasize the usefulness of the Riemann Hilbert approach we will de-

mostrate that P (z) is a polynomial, then through the jump condition of ω(z),
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we have

P (λ+ iε) = V ′(λ+ iε)ω(λ+ iε)− ω(λ+ iε)2

P (λ− iε) = V ′(λ− iε)ω(λ− iε)− ω(λ− iε)2

subtracting both equations we obtain

P (λ+ iε)− P (λ− iε) = V ′(λ)(ω(λ+ iε)− ω(λ− iε)) + ω(λ− iε)2 −

−ω(λ+ iε)2

= (V ′(λ)− ω(λ+ iε)− ω(λ− iε))(ω(λ+ iε)−

−ω(λ− iε))

P (λ+ iε)− P (λ− iε) = 0. (3.30)

Thus P (z) is analytic on C. Now since by definition P (z) ∼= V ′(z)
z

for z → ∞,

we have that P (z) is an entire function with polynomial behaviour at infinity,

therefore P (z) is a polynomial of degree d− 2.
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4
Orthogonal Polynomials

Orthogonal polynomials have wide range of applications. In this chapter we

review the generalities of orthogonal polynomials. From a combinatorial point

of view, orthogonal polynomials can be represented by a three term recurrent

relation. Analytically, the orthogonal polynomials are represented by a string

equation which is showed below. We introduce the relation between the string

equation and a staircase path. In this way, the orthogonal polynomials can

be represented geometrically as staircase paths. Algebraically we represent

orthogonal polynomials by commutation relation. Statistically the orthogonal

polynomials are represented by a kernel and hence we compute the n-point

correlation function of the eigenvalues as function of orthogonal polynomials.

Furthermore, orthogonal polynomial can be represented as Riemann Hilbert

problems that will be studied in the next chapter. In the third section of this

chapter we follow the exposure of [3], while the fourth section is based on the

text [29]. For more detail the reader should consult [21].

4.1
Introduction

Orthogonal polynomials are a very interesting topic of analysis that have

numerous links with other branches of analysis, spectral theory, number theory,

mathematical physics, etc. One of the links is with Random Matrix Theory.

Moreover, we can characterize orthogonal polynomials by Riemann Hilbert

problem in this context.

By itself, orthogonal polynomials are an efficient tool to study the distribution

of eigenvalues of unitary ensembles for any N . In particular, this tool is crucial

for compute all the correlation functions in the large N limit.

Outline: The chapter is organized as follows. In section 4.2 we described

orthogonal polynomials. In section 4.3 we compute the partition function by

orthogonal polynomials and derive the string equation. In section 4.4 we

introduce staircase paths that represent terms of the string equation. Section

4.5 gives two operators that represent the string equation. This is followed by

computing the n point correlation function in the section 4.6.
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4.2
Generalities of orthogonal polynomials

Let ℘ be a real linear space of polynomials in one variable with real coefficients,

with a positive definite scalar product (·, ·). By applying the Gram-Schimdt

orthogonalization to monomials {1, λ, λ2, ...} one obtains mutually orthogo-

nal(with respect to the scalar product) polynomials {p0(λ), p1(λ), p2(λ), ...},
such that

p0(λ) = 1,

pn(λ) = λn −
n−1∑
i=0

(pi, λ
i)

(pi, pi)
pi(λ). (4.1)

Moreover, the subspace ℘n generated by {λn} is the same as the subspace

generated by {pn(λ)}.
The uniqueness of the orthogonal polynomials is determined by the constants

hn and an, in the following way

(pn, pn) = hn, (4.2)

pn(λ) = anλ
n +O(λn−1). (4.3)

Furthermore, when one fixes to 1 some of this constants we have two types

of orthogonal polynomials : orthonormal polynomials when hn = 1 and monic

orthogonal polynomials when an = 1. For our interest, we consider implicitly

monic orthogonal polynomials, so that only hn establishes the uniqueness.

In particular, for the orthogonal polynomials pn, pm ∈ ℘, we have the scalar

product of the form

(pn, pm) =

∫
R

pn(λ)pm(λ)dµ(λ). (4.4)

The map µ : B → [0,∞) is a finite (Borel) measure on R, such that B

corresponds to a system of Borel subsets of R. That means that for any system

of mutually disjoint sets {Ai} one has

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

The measure µ is absolutely continuous if there exists a positive function w

such that dµ(λ) = w(λ)dλ. Then the scalar product acquires the following

form ∫
R

pn(λ)pm(λ)dµ(λ) =

∫
R

pn(λ)pm(λ)w(λ)dλ. (4.5)
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Analyzing the above ideas, if µ is a absolutely continuous measure on R with

distribution function µ(λ) = µ((−∞, λ]), such that all the moments∫
supp (µ)

λndµ(λ) <∞

and the support of the measure µ,

supp (µ) = {λ ∈ R : ∀ε > 0, ∃µ((λ− ε, λ+ ε))}

is an infinite set. Then there exists an infinite sequence of orthogonal polyno-

mials {pn(λ)} in the space ℘ equipped with scalar product

(pn, pm) =

∫
supp (µ)

pn(λ)pm(λ)w(λ)dλ (4.6)

and the orthogonality relation∫
supp (µ)

pn(λ)pm(λ)w(λ)dλ = hnδnm, (4.7)

where w is called weight function. Monic orthogonal polynomials satisfy the

three term recurrence relation

λpn(λ) = pn+1(λ) + snpn(λ) + rnpn−1(λ), n ≥ 1

λp0(λ) = p1(λ) + s0p0(λ), (4.8)

where sn ∈ R and rn > 0. The uniqueness of the measure µ will be guaranteed

when sequences {sn} and {rn} are bounded.

In addition, the orthogonal projection onto ℘N is given by linear map ΠN :

℘→ ℘N , such that

ΠNf =

∫
supp (µ)

KN(λi, λj)f(λj)dλj, (4.9)

where KN is the kernel of the projection operator on the n dimensional space

generated by {pn(λ)}, and is given by

KN(λi, λj) =
√
w(λi)w(λj)

N−1∑
n=0

pn(λi)pn(λj)

hn
, (4.10)

multiplying and dividing this expression by λi − λj, we have

KN(λi, λj) =

√
w(λi)w(λj)

λi − λj

N−1∑
n=0

(λi − λj)pn(λi)pn(λj)

hn

KN(λi, λj) =

√
w(λi)w(λj)

λi − λj

N−1∑
n=0

(λipn(λi))pn(λj)− pn(λi)(λjpn(λj))

hn
.
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As pn are monic orthogonal polynomials, then by recurrence relation we find

that

KN(λi, λj)√
w(λi)w(λj)

λi−λj

=
N−1∑
n=0

(pn+1(λi) + snpn(λi) + rnpn−1(λi))pn(λj)−
hn

−pn(λi)(pn+1(λj) + snpn(λj) + rnpn−1(λj))

hn

=
N−1∑
n=0

pn+1(λi)pn(λj) + rnpn−1(λi)pn(λj)− pn(λi)pn+1(λj)−
hn

−rnpn(λi)pn−1(λj)

hn
,

one notices that this expression corresponds to a telescoping series, hence

simplifies as

KN(λi, λj)√
w(λi)w(λj)

λi−λj

=
rNpN(λi)pN−1(λj)− rNpN−1(λi)pN(λj)

hN
, (4.11)

using rN = hN
hN−1

we obtain

KN(λi, λj) =

√
w(λi)w(λj)

λi − λj

pN(λi)pN−1(λj)− pN−1(λi)pN(λj)

hN−1

(4.12)

which is the Christoffel-Darboux formula. In consequence the exact form for

the density of intervals [λ, λ + dλ] that contains one zero of the orthogonal

polynomial is given by

ρN(λ) =
KN(λ, λ)

N
= w(λ)

p′N(λ)pN−1(λ)− p′N−1(λ)pN(λ)

hN−1

(4.13)

All the zeros of the orthogonal polynomials pn are real, simple and lie in the

support of the measure µ. Furthermore pn has n distinct zeros in this support.

This suggests that in the large N = n limit, the distribution of the zeros of pn

converge to the equilibrium distribution.

As all the moments of the orthogonality measure are finite, the Stieltjes

transform of this measure for z ∈ C\R is given by

G(z) =

∫
R

dµ(λ)

z − λ
, (4.14)

where this transform is a bijective mapping between finite measures and

analytic functions on C\R. In this way, this transform corresponds to a special

case of the Cauchy type integrals.

Also since the support of the orthogonality measure is closed, we have that the
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large λ limit of this measure is

lim
λ→∞

dµ(λ) = 0

and due to the pole of G(z) at infinity, we can represent G(z) as a generating

function of the moments of the orthogonality measure

G(z) =
1

z
+

∫
R
dµ(λ)λ1

z2
+

∫
R
dµ(λ)λ2

z3
+ ...+

∫
R
dµ(λ)λk

zk+1
+ ..., (4.15)

where the moments of the orthogonality measure correspond to the generating

function for surfaces with one boundary of length k in the planar limit. Indeed,∫
R

dµ(λ)λk = lim
N→∞

〈trMk〉
N

. (4.16)

The trace ofM can be expressed as function of its eigenvalues λi, then we have∫
R

dµ(λ)λk = lim
N→∞

〈
∑

i λ
k
i 〉

N
, (4.17)

where equilibrium measure sustains this equality. Therefore the Stieltjes trans-

form G(z) can be represented as a generating function for surfaces with one

boundary of any length, in the following way

G(z) =
1

z
+

limN→∞
〈
∑

i λi〉
N

z2
+

limN→∞
〈
∑

i λ
2
i 〉

N

z3
+ ...+

limN→∞
〈
∑

i λ
k
i 〉

N

zk+1
+ ...

= lim
N→∞

1

N

(〈∑
i 1

z

〉
+

〈∑
i λi
z2

〉
+

〈∑
i λ

2
i

z3

〉
+ ...+

〈∑
i λ

k
i

zk+1

〉
+ ...

)
= lim

N→∞

1

N

〈∑
i

1

z − λi

〉

= lim
N→∞

1

N

〈
tr

1

z −M

〉
G(z) = lim

N→∞
ω(z). (4.18)

One notices that Stieltjes transform G(z) yields planar limit of the resolvent

function.

Also the Stieltjes transform G(z) can be represented G(z) as a continued

fraction [29]

G(z) =
h0

z + s0 −
r1

z + s1 +
r2

z + s2 −
r3

z + s3 − ...

,
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where sn and rn are the sequences of coefficients in the recurrence relation for

the orthogonal polynomials.

4.3
Analytical Representation

Since matrix elements of the Van der Monde determinant can be written in

terms of orthogonal polynomials∏
i<j

(λi − λj) = |pj(λi)|, (4.19)

recalling that pj(λi) compounds an infinite ensemble with respect to e−NV (λ)dλ

and by Leibniz formula,

|pj(λi)| =
∑
σ∈Sn

pσ(j)(λi)(−1)σ(j), (4.20)

the partition function is given by

ZN =

∫
(
∑
σ∈Sn

pσ(j)(λi)(−1)σ(j))(
∑
τ∈Sn

pτ(j)(λi)(−1)τ(j))
N∏
i=1

e−NV (λi)dλi

=
∑
σ,τ∈Sn

(−1)σ(j)(−1)τ(j)
∫
pσ(j)(λi)pτ(j)(λi)

N∏
i=1

e−NV (λi)dλi,

using the orthogonality relation, we obtain

ZN =
∑
σ,τ∈Sn

(−1)σ(i)(−1)τ(i)
N∏
i=1

hσ(i)δσ(i)τ(i)

=
∑
σ∈Sn

(−1)σ(i)(−1)σ(i)
N∏
i=1

hσ(i)

ZN =
∑
σ∈Sn

(1)σ(i)
N∏
i=1

hσ(i),

since the number of permutations of N indices is N !, we find

ZN = N !
N−1∏
i=0

hi. (4.21)

Notice that one can show that the partition function for this model is given by

the products of rates, fk =
hk
hk−1

, between the normalizations for the consecutive
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orders, in the following way

ZN = N !(h0h1h2...hN−1)

= N ![h0(
hN−1
0

hN−1
0

)h1(
hN−2
1

hN−2
1

)h2(
hN−3
2

hN−3
2

)h3...(
hN−2

hN−2

)hN−1]

= N ![hN0 (
hN−1
1

hN−1
0

)(
hN−2
2

hN−2
1

)(
hN−3
3

hN−3
2

)...(
hN−1

hN−2

)]

= N !hN0

N−1∏
k=1

fN−k
k , (4.22)

then the free energy of the model is given by

F = logZN = log(N !) +N log h0 +N
∑
k

(1− k

N
) log fk. (4.23)

To understand the role or meaning of fn, let us look it

hn =

∫
dλe−NV (λ)pn(λ)(λpn−1(λ)) (4.24)

by the three term recurrence relation, it reads

hn =

∫
dλe−NV (λ)(pn+1(λ) + rnpn−1(λ))pn−1(λ)

=

∫
dλe−NV (λ)pn+1(λ)pn−1(λ) + rn

∫
dλe−NV (λ)pn−1(λ)pn−1(λ)

hn = rnhn−1 (4.25)

as has been noted using the definition of fn, we obtain

rn =
hn
hn−1

= fn, (4.26)

notice that the sufficient condition for computing the free energy, and in

consecuence the correlation functions is the coeficient rn of the recurrence

relation.

On the other hand, the trick to find one relation between the potential V and

the normalization constants consists in evaluating the following integral∫
dλe−NV (λ)p′n(λ)pn−1(λ) =

∫
dλe−NV (λ)(npn−1(λ) +O(λn−2))pn−1(λ)

=

∫
dλe−NV (λ)npn−1(λ)pn−1(λ) +

+

∫
dλe−NV (λ)O(λn−2)pn−1(λ)

= nhn−1 (4.27)
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and alternativaly using integration by parts we obtain

∫
dλe−NV (λ)p′n(λ)pn−1(λ) = [

N∏
i=1

e−NV (λ)pn(λi)pn−1(λi)]
∞
−∞ −

−
∫
dλpn(λ)

d

dx
(e−NV (λ)pn−1(λ))

= −
∫
dλpn(λ)(−NV ′(λ)e−NV (λ)pn−1(λ) +

+e−NV (λ)(n− 1)pn−2(λ) + e−NV (λ)O(λn−3))

=

∫
dλe−NV (λ)pn(λ)(NV

′(λ))pn−1(λ)−

−(n− 1)

∫
dλe−NV (λ)pn(λ)pn−2(λ)−

−
∫
dλe−NV (λ)pn(λ)O(λ

n−3))

=

∫
dλe−NV (λ)NV ′(λ)pn(λ)pn−1(λ) (4.28)

and finally comparing both results (4.27),(4.28) we have the relation

nhn−1 =

∫
dλe−NV (λ)NV ′(λ)pn(λ)pn−1(λ) (4.29)

which is called string equation.

For example, in the GUE, we have the quadratic potential, V (λ) = 1
2
λ2. Hence

the measure in the corresponding partition function

ZN = CN

∫
dλe−

N
2
λ2pi(λ)pj(λ)

allow expressing this partition function with Hermite polynomials,

pi(λ) =

(
1

2N

) i
2

Hi

(√
N

2
λ

)

such that inserting and integrating this polynomial in the orthogonality

relation we find the normalization constants given by

hi =
1√
2πN

i!N−i.

Thus the coefficient ri of the equation (4.26),

ri =
hi
hi−1

=
i

N
,
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agrees to the following recurrence relation,

λpi(λ) = pi+1(λ) +
i

N
pi−1(λ).

In this way the partition function by the equation (4.22) is given by

ZN = N !

(
1√
2πN

)N N−1∏
i=1

(
i

N

)N−i

and the free energy corresponding to the equation (4.23) is given by

F = logZN = log(N !) +N log

(
1√
2πN

)
+N

∑
i

(1− i

N
) log

(
i

N

)
.

4.4
Geometrical Representation

String equation can be interpreted as staircase path, because involves terms of

the form ∫
dλie

−V (λi)pn(λi)λ
2p+1pn−1(λi). (4.30)

For general even potentials

V (λ) =
λ2

2
+
∑
p>1

g2p
2p
λ2p,

hence,

V ′(λ) = λ+
∑
p>1

g2pλ
2p−1,

computing the right side in the string equation∫
dλie

−V (λi)pn(λi)V
′(λ)pn−1(λi) =

∫
dλie

−V (λi)pn(λi)(λ+
∑
p>1

g2pλ
2p−1)×

×pn−1(λi)

=

∫
dλie

−V (λi)pn(λi)λpn−1(λi) +∑
p>1

g2p

∫
dλie

−V (λi)pn(λi)λ
2p−1pn−1(λi)

= hn +
∑
p>0

g2p+2

∫
dλie

−V (λi)pn(λi)λ
2p+1

×pn−1(λi)

= hn +
∑
p>0

g2p+2α
[2p+1]
n , (4.31)

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 4. Orthogonal Polynomials 50

where α
[2p+1]
n is given by

α[2p+1]
n =

∫
dλie

−V (λi)pn(λi)λ
2p+1pn−1(λi). (4.32)

And since pn form a complete set of basis vector in the espace of polynomials,

one can identify α
[2p+1]
n as a coefficient of the linear expansion of λ2p+1pn−1(λi),

λ2p+1pn−1(λi) =
∑
n

α[2p+1]
n pn(λi). (4.33)

Analogously, for the next order in λ,

λ2p+2pn−1(λi) =
∑
m

α[2p+2]
m pm(λi), (4.34)

moreover, this expansion can be expressed in terms of pn,

λ2p+2pn−1(λi) = λ2p+1(λipn−1(λi)) =
∑
n

α[2p+1]
n (λipn(λi)),

using the recursion relation for pn and comparing with the equation (4.34), we

obtain ∑
m

α[2p+2]
m pm(λi) =

∑
n

α[2p+1]
n (pn+1(λi) + rnpn−1(λi))

=
∑
n+1

α
[2p+1]
n−1 pn(λi) +

∑
n−1

rn+1α
[2p+1]
n+1 pn(λi). (4.35)

For fixed m = n, the above identity leads to a recursion relation for the

coeficients, α
[2p+2]
m , given by

α[2p+2]
n = α

[2p+1]
n−1 + rn+1α

[2p+1]
n+1 , (4.36)

moreover in the equation (4.33) for 2p+1 = 0, by uniqueness of the orthogonal

polynomials we get the initial condition to the recurrence relation,

α[0]
n = δn,n−1. (4.37)

One way of representing this recurrence relation, is as all possible staircase walk

of 2p + 1 steps that joining height n − 1 to height n such that for each step

we attach a weight 1 for a step up or weight rl for step down when we leave

height l and the total contribution is the product of all this weights. Therefore

α
[2p+1]
n is a sum over the

(
2p+ 1

p

)
paths along the staircase, with p steps

up and p− 1 steps down.

For example when p = 1, we have

(
3

1

)
= 3 paths, represented in Figure
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Figure 4.1: All possibles staircase walks connecting height n − 1 to height n
for α

[2p+1]
n .

4.2. We can write

α[3]
n = 1× 1× rn+1 + 1× rn × 1 + rn−1 × 1× 1 = rn+1 + rn + rn−1.

Figure 4.2: Staircase walks corresponding to p = 1.

4.5
Algebraic Representation

In view of {pn(λ)} form a basis in the linear space of polynomials ℘, we can

define two operators Q and P that acting on this basis, such that one multiplies

the polynomial by λ and the other take the derivative of the polynomial with

respect to λ respectivaly. So that one can represent this operators as matrices

in the following way

λpn(λ) =
∑
m

Qnmpm(λ) (4.38)

d

dλ
pn(λ) =

∑
m

Pnmpm(λ). (4.39)
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In fact, the matrix elements of Q are given by the scalar product

Qnm = (pn, Qpm)

= (pn, λpm), (4.40)

using the three term recurrence relation, we have

Qnm = (pn, pm+1 + smpm + rmpm−1),

due to the orthogonality relation, (pn, pm) = hnδnm, we obtain

Qnm = (pn, pm+1) + sm(pn, pm) + rm(pn, pm−1)

Qnm = hnδn,m+1 + smhnδnm + rmhnδn,m−1, (4.41)

consequently the matrix Q is given by

Q =



s0h0 h1 0 0 0 · · ·
r1h0 s1h1 h2 0 0 · · ·
0 r2h1 s2h2 h3 0 · · ·
0 0 r3h2 s3h3 h4 · · ·
...

...
...

...
...

. . .


, (4.42)

notice that this matrix is tridiagonal and is called Jacobi matrix. But it is not

symmetric because this characteristic depends on the basis. For instance, one

can obtain a symmetric Jacobi matrix in the basis {ψn(λ) = pn(λ)e
−NV (λ)

2√
hn

}.
Identically, the matrix elements of P are defined of the following way

Pnm = (pn, Ppm)

= (pn,
d

dλ
pm)

=

∫ ∞

−∞
e−NV (λ)dλpn(λ)

dpm(λ)

dλ
, (4.43)

using integration by parts, we have

Pnm = −
∫ ∞

−∞
pm(λ)

d

dλ
(e−NV (λ)pn(λ))

= −
∫ ∞

−∞
e−NV (λ)pm(λ)(−NV ′(λ))pn(λ)−

∫ ∞

−∞
e−NV (λ)pm(λ)

d

dλ
(pn(λ))

= (pm, NV
′(λ)pn)− (pm,

d

dλ
pn), (4.44)
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using the operator Q, we obtain

Pnm = N(pn, V
′(Q)pm)− (pm, Ppn)

Pnm = N [V ′(Q)]nm − Pmn. (4.45)

Since, d
dλ
pn(λ) = npn−1(λ) +O(λn−2), we have that

npn−1(λ) +O(λn−2) =
∑

m>n−1

Pnmpm(λ). (4.46)

Notice that the matrix P is lower triangular. In this way, if Pnm is lower

triangular, then Pmn corresponds to upper triangular. Hence by the equation

(4.45), we obtain
Pnm = N [V ′(Q)−]nm, (4.47)

where − denote the lower triangular part of V ′(Q).

In fact, the commutation relation of Q and P in the basis {pn(λ)} is given by∑
m

[P,Q]nmpm(λ) =
∑
m

(PQ−QP )nmpm(λ)

=
∑
l,m

(PnlQlmpm(λ)−QnlPlmpm(λ))

=
∑
l

(Pnl
∑
m

Qlmpm(λ)−Qnl

∑
m

Plmpm(λ))

=
∑
l

(Pnlλpl(λ)−Qnl
d

dλ
pl(λ))

=
d

dλ
(λpn(λ))− λ

d

dλ
pn(λ)

= pn(λ) + λ
d

dλ
pn(λ)− λ

d

dλ
pn(λ),∑

m

[P,Q]nmpm(λ) = pn(λ), (4.48)

here [P,Q]nm = δnm, therefore

[P,Q] = 1 (4.49)

4.6
Statistical Representation

Recall that the orthogonal polynomials form an infinite set with respect to the

measure ∫
dλie

−NV (λi)pn(λi)pm(λi) = hnδnm.

The Van der Monde determinant is given by
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∏
i<j

(λi − λj) = (−1)
N(N−1)

2

∣∣∣∣∣∣∣∣∣∣
1 1 1 · · · 1

λ1 λ2 λ3 · · · λN
...

...
...

. . .
...

λN−1
1 λN−1

2 λN−1
3 · · · λN−1

N

∣∣∣∣∣∣∣∣∣∣
. (4.50)

Now by multilinearity of the determinant, we add up the first row to the

second row of the Van der Monde determinant, and replace the second row

with (p1(λ1), p1(λ2), p1(λ3), · · · , p1(λN)) without changing the determinant.

Hence by adding up appropriate combinations of the first rows to the third

row, and replace the third row with (p2(λ1), p2(λ2), p2(λ3), · · · , p2(λN)) without
changing the determinant. Thus doing the same in the others rows, we have

∏
i<j

(λi − λj) = (−1)
N(N−1)

2

∣∣∣∣∣∣∣∣∣∣
p0(λ1) p0(λ2) · · · p0(λN)

p1(λ1) p1(λ2) · · · p1(λN)
...

...
. . .

...

pN−1(λ1) pN−1(λ2) · · · pN−1(λN)

∣∣∣∣∣∣∣∣∣∣
, (4.51)

hence, by |M | = |MT |, we obtain

∏
i<j

(λi − λj)
2 = (−1)N(N−1)

∣∣∣∣∣∣∣∣∣∣
p0(λ1) · · · pN−1(λ1)

p0(λ2) · · · pN−1(λ2)
...

. . .
...

p0(λN) · · · pN−1(λN)

∣∣∣∣∣∣∣∣∣∣
×

×

∣∣∣∣∣∣∣∣∣∣
p0(λ1) · · · p0(λN)

p1(λ1) · · · p1(λN)
...

. . .
...

pN−1(λ1) · · · pN−1(λN)

∣∣∣∣∣∣∣∣∣∣
.

And the jpdf of the eigenvalues can be expressed as

dµN(λ) =
1

ZN

∣∣∣∣∣∣∣∣∣∣
p0(λ1) · · · pN−1(λ1)

p0(λ2) · · · pN−1(λ2)
...

. . .
...

p0(λN) · · · pN−1(λN)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
p0(λ1) · · · p0(λN)

p1(λ1) · · · p1(λN)
...

. . .
...

pN−1(λ1) · · · pN−1(λN)

∣∣∣∣∣∣∣∣∣∣
×

×ΠN
i=1e

−NV (λi)dλi,

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 4. Orthogonal Polynomials 55

multiplying by e−
N
2
V (λi) to each row i in the first determinant and to each

column i in the second determinant, we get

dµN(λ) =
dλ

ZN

∣∣∣∣∣∣∣∣∣∣
e

−NV (λ1)
2 p0(λ1) · e

−NV (λ1)
2 pN−1(λ1)

e
−NV (λ2)

2 p0(λ2) · e
−NV (λ2)

2 pN−1(λ2)
... ¨

...

e
−NV (λN )

2 p0(λN) · e
−NV (λN )

2 pN−1(λN)

∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣

e
−NV (λ1)

2 p0(λ1) · e
−NV (λN )

2 p0(λN)

e
−NV (λ1)

2 p1(λ1) · e
−NV (λN )

2 p1(λN)
... ¨

...

e
−NV (λ1)

2 pN−1(λ1) · e
−NV (λN )

2 pN−1(λN)

∣∣∣∣∣∣∣∣∣∣∣
,

resulting as expected in

dµN(λ) =
dλ

ZN

∣∣∣∣∣∣∣∣∣∣∣

e
−N(V (λ1)+V (λ1))

2

∑
n pn(λ1)pn(λ1) · · ·

e
−N(V (λ2)+V (λ1))

2

∑
n pn(λ2)pn(λ1) · · ·

...
. . .

e
−N(V (λN−1)+V (λ1))

2

∑
n pn(λN−1)pn(λ1) · · ·

∣∣∣∣∣∣∣∣∣∣∣
.

Denoting each matrix element asKN(λi, λj) = e
−N(V (λi)+V (λj))

2

∑
n

1
hn
pn(λi)pn(λj),

we obtain

dµN(λ) = dλ

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λN−1)

KN(λ2, λ1) · · · KN(λ2, λN−1)
...

. . .
...

KN(λN−1, λ1) · · · KN(λN−1, λN−1)

∣∣∣∣∣∣∣∣∣∣
. (4.52)

Now since the determinant is invariant under permutations

(λσ(1), λσ(2), ..., λσ(N)), where σ is any permutation of {1, 2, ..., N}, we have

dµN(λ) = dλ

∣∣∣∣∣∣∣∣∣∣
KN(λσ(1), λσ(1)) · · · KN(λσ(1), λσ(N))

KN(λσ(2), λσ(1)) · · · KN(λσ(2), λσ(N))
...

. . .
...

KN(λσ(N), λσ(1)) · · · KN(λσ(N), λσ(N))

∣∣∣∣∣∣∣∣∣∣
=

dλ

N !

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λN−1)

KN(λ2, λ1) · · · KN(λ2, λN−1)
...

. . .
...

KN(λN−1, λ1) · · · KN(λN−1, λN−1)

∣∣∣∣∣∣∣∣∣∣
. (4.53)
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Finally, by using Πi<j(λj − λi) = (−1)
N(N−1)

2 det(λij) = (−1)
N(N−1)

2 det pi(λj),

the eigenvalue jpdf reads

dµ(λ1, ..., λN) =
1

N !
det(KN(λi, λj))

N
i,j=1, (4.54)

where the kernel, KN(λi, λj) = e−
1
2
N(V (λi)+V (λj))

∑N−1
n=0

1
hn
pn(λi)pn(λj), has the

following properties∫
KN(λi, λk)KN(λk, λj)dλk = KN(λi, λj)∫

KN(λi, λi)dλi = N (4.55)

such that by this properties one can obtain the following relation∫
det(KN(λi, λj))

k+1
i,j=1dλk+1 = (N − k) det(KN(λi, λj))

k
i,j=1. (4.56)

If we use this relation to integrate the eigenvalue jpdf over all eigenvalues

except λ1, ..., λn, then the n-point correlation function Rn is given as

Rn(λ1, ..., λn) =
N !

(N − n)!

∫
dµN(λ)dλn+1...dλN (4.57)

by the relation between the jpdf and the kernel we can write

Rn(λ1, ..., λn) =
N !

(N − n)!

∫
(
1

N !
det(KN(λi, λj))

N
i,j=1)dλn+1...dλN

=
1

(N − n)!

∫
det(KN(λi, λj))

N
i,j=1dλn+1...dλN , (4.58)

integrating over λN we have by the relation (4.56),

Rn(λ1, ..., λn) =
1

(N − n)!

∫
(N − (N − 1)) det(KN(λi, λj))

N−1
i,j=1dλn+1...dλN−1.

Now integrating over λN−1 in the same way we obtain

Rn(λ1, ..., λn) =
1

(N − n)!

∫
1×(N−(N−2)) det(KN(λi, λj))

N−2
i,j=1dλn+1...dλN−2,

hence performing the step repeatedly

Rn(λ1, ..., λn) = det(KN(λi, λj))
n
i,j=1. (4.59)

The 1-point correlation function yields the eigenvalue density,

ρ(λ) = lim
N→∞

1

N
R1(λ) = lim

N→∞

1

N
KN(λ, λ). (4.60)

One observes that all the statistical information of the eigenvalue distribution

is contained in the correlation kernel. This correlation can be expressed only
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in terms of pN−1 and pN due to the Christoffel-Darboux formula

KN(λi, λj) = e−
1
2
N(V (λi)+V (λj))

1

hN−1

pN(λi)pN−1(λj)− pN−1(λi)pN(λj)

λi − λj
(4.61)

which can be described by a Riemann Hilbert problem.
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5
Riemann Hilbert problem

A Riemann Hilbert problem (RHP) is a powerful method in asymptotic analysis

of differential and integral equations with applications in many areas, in

particular such as orthogonal polynomials and random matrix theory (RMT).

In this chapter we introduce basic notions of complex analysis such as the

theory of Cauchy type integrals. We discuss the scalar RHP. This discussion

is generalized to matrix RHP such that in some cases the matrix RHP can be

reduced to the analysis of an array of scalar RHPs. When this is not possible

the analysis is given by singular integral equations. Furthermore we review the

relation of orthogonal polynomials in RMT and RHPs. In the first part of this

chapter we follow the exposure of [2], whereas the second part is based on the

text [13].

5.1
Introduction

In physics, a fundamental question of integrability is that the local properties

of an object yield complete information about its global behavior. Similarly

in complex analysis a complex function can be reconstructed from the known

structure of its singularities. In turn, both questions almost always can be

formulated as a Riemann Hilbert problem.

In an analogous way, a lot of non linear differential equations can be reduced to

RHPs. This differential equations arose from physical applications, promoting

the development of the Riemann Hilbert theory. Among other things, RHP are

also related to other kinds of equations, for example

1. Find a function, w(z) = a(x, y) + ib(x, y), analytic inside a contour S,

such that its components on this contour satisfy

α(t)a(t) + β(t)b(t) = γ(t), t ∈ S

2. Linear integral equations, by knowing integrable functions α and β, find

a function f that satisfy

f(t) +

∫ ∞

0

α(t− t′)f(t′)dt′ = β(t), t > 0
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3. Reconstruct a function q(x) from appropriate scattering data in the time-

independent Schrödinger equation

Ψxx + (q(x) + k2)Ψ = 0, −∞ < x <∞

This problem is also solved by inverse scattering method and has many

areas of applications, from geophysics to quantum theory.

Problem 1 was formulated by Riemann in 1851. In 1904, Hilbert reduced this

problem to a RHP. Problem 2 can be converted to scalar RHP, while problem

3 is associated with matrix RHP, which its formulation is similar to that for

scalar ones.

The essential idea behind a Riemann Hilbert problem is finding an analytic

function in the complex plane with a known jump across a curve. More

precisely, consider a curve γ, which can be a simple closed curve, smooth arc,

contour or finite union of arcs and contours that intersect at finite number of

points.

The orientation of the curve defines the positive side on the left, while

Figure 5.1: A general curve for the RHP.

transversing γ according to its orientation, and the negative side on the right.

If γ0 := γ\{intersection points and end points } and Y be an analytic function

in C\γ, the boundary values of Y , at positive and negative side of γ, in x ∈ γ0
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are denoted by

Y+(x) = lim
z→x,z∈+side

Y (z) (5.1)

Y−(x) = lim
z→x,z∈−side

Y (z). (5.2)

When Y+, Y− exist and are linked by a jump condition, Y+(x) = Y−(x)jY (x)+

Z(x), hence Y is the solution of a boundary value problem in the complex

plane, the so-called Riemann Hilbert problem:

1. Y is analytic in C\γ

2. Y+(x) = Y−(x)jY (x) + Z(x), x ∈ γ0,

where jY is the continuos jump for Y over γ0. The solution for this problem

is not unique, because by adding an entire function to Y do not change the

conditions of this problem. So to ensure uniqueness we impose an asymptotic

condition,

3. Y (z) → Y (∞), z → ∞.

This normalization condition also can be defined at other points, but is not

usual. In the case of intersection points or end points, we need extra condition

at those points.

Outline: The chapter is organized as follows. Section 5.2 contains basic notions

of complex analysis. In section 5.3 we review the Cauchy type integrals. Section

5.4 gives the theory of scalar RHP. In section 5.5 we introduce the matrix RHP,

study some cases and introduce the relation between orthogonal polynomials

and matrix RHP. This is followed by the relation between both scalar, matrix

RHP and singular integral equations.

5.2
Complex Analysis

A curve in the complex plane can be described via the parametrization

z(t) = x(t) + iy(t), a ≤ t ≤ b.

The curve is said to be continuous if x(t) and y(t) are continuous functions of

t. Similarly, it is said to be differentiable if x(t) and y(t) are differentiable. A

curve γ is simple if it does not intersect itself, that is, z(t1) 6= z(t2) if t1 6= t2 for

t1, t2 ∈ [a, b], except that z(b) = z(a) is allowed; in the latter case we say that

γ is a simple closed curve. A smooth arc C is one for which z(t) is continuous.

A contour is an arc consisting of a finite number of connected smooth arcs.
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A function f(z) is said to be analytic at point z0 of a region R ⊂ C if there exist

ε > 0 and constants a0, a1, ... such that for all points z in the neighborhood

B(z0, ε) ⊂ R we have

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + ...

Moreover, this power serie is unique and the coefficients are given by ak =
f (k)(z0)

k!
. A function is said to be entire when it is analytic at each point of the

complex plane. An isolated singular point z0 is a point where f fails to be

analytic. There are three types of singularities according to number of terms

in the Laurent series

1. An isolated singularity at z0 of f(z) is said to be removable if f(z) is

bounded and C0 6= f(z0) in f(z) =
∑∞

n=0Cn(z − z0)
n. In this case by a

slight redefinition of f(z0), the function f(z) becomes analytic.

2. An isolated singularity at z0 of f(z) is said to be a pole if f(z) =∑∞
n=−N Cn(z−z0)n, where N is the order of pole such that (z−z0)Nf(z)

is analytic in a neighborhood of z0

3. An isolated singular point that is neither removable nor a pole, is called

an essential singular point.

A basic fact that has been used is Liouville’s theorem.

Theorem (Liouville) If f(z) is entire and bounded in the z plane (including

infinity), then f(z) is a constant.

Cauchy’s Theorem tells us that if f(z) is analytic inside C, then
∮
C
f(z)dz = 0.

Now we also recall the converse.

Theorem (Morera) If f(z) is continuous in a domain D and if∮
C

f(z)dz = 0

for every simple closed contour C lying in D, then f(z) is analytic in D.

5.3
Cauchy Type integrals

Many useful results for the RHP can be deduced from the Cauchy type integral.

Given a smooth curve γ (may be an arc or a closed contour) in the complex

plane and a function f : γ → C, the Cauchy type integral is defined by

Cγf(z) =
1

2πi

∫
γ

f(x)

x− z
dx. (5.3)
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One observe that, in general, the Cauchy type integral maps functions on

a contour to analytic functions off the contour. In this sense, we are going

to describe a class of functions in which the Cauchy type integral has nice

properties for the solution of the RHP.

Given γ ⊂ C, a function satisfies the Hölder condition on γ if for any two

points τ and τ1 on γ, there exists Λ > 0 such that

|f(τ)− f(τ1)| ≤ Λ|τ − τ1|λ, 0 < λ ≤ .1

Note that If λ = 1, the Hölder condition becomes the so-called Lipschitz

condition and if λ > 1, df
dτ

= 0 and hence f must be constant.

Since the Cauchy type integral becomes ambiguous when z be on γ, then to

give it a unique meaning we must know how z approaches γ. We denote the

limiting values of Cγf in the same way that the boundary values of Y ,

lim
z→x,z∈+side

Cγf(z) = C+
γ f(x) (5.4)

lim
z→x,z∈−side

Cγf(z) = C−
γ f(x) (5.5)

Theorem (Sokhotski-Plemelj Formula) Let γ be a smooth contour(closed or

open) and let f(τ) satisfies a Hölder condition on γ. Then , for x not an

endpoint of γ, the limits of Cauchy type integral are given by

C+
γ f(x) =

1

2
f(x) +

1

2πi
−
∫
γ

f(τ)

τ − x
dτ (5.6)

C−
γ f(x) = −1

2
f(x) +

1

2πi
−
∫
γ

f(τ)

τ − x
dτ (5.7)

or in another words

C+
γ f(x)− C−

γ f(x) = f(x) (5.8)

C+
γ f(x)− C−

γ f(x) =
1

πi
−
∫
γ

f(τ)

τ − x
dτ, (5.9)

where −
∫
denotes the principal value integral defined by

−
∫
γ

f(τ)dτ

τ − x
= lim

ε→0

∫
γ−γε

f(τ)dτ

τ − x
, (5.10)

where γε is the part of γ that has length 2ε and is centered around x. The

above framework is not sufficient to study RHPs for open contours, thereupon

we need to know the behavior of Cγf(z) near the end points.

A function f satisfies an Hölder condition on a open contour γ if f is Hölder
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away from the endpoints of γ and if also at each endpoint c, f satisfies

f(x) =
f̄(x)

(x− c)α
, α = m+ in, 0 ≤ m < 1,

where f̄ satisfies Hölder condition.

Let γ be a bounded open contour from a to b and let f satisfies a Hölder

condition on γ. Consider γ′ ⊂ γ be a curve with endpoints lying a finite distance

from the endpoints a and b of γ. Then C±
γ f satisfies the Hölder condition on

γ′. Among other things, the following holds for any endpoint c = a, b.

1. If α = 0, then

(a) As z → c, z ∈ ±side,

cγf(z) = ∓f(c)
2πi

log
1

z − c
+ g(z) (5.11)

(b) As x→ c, x ∈ γ

cγf(x) = ∓f(c)
2πi

log
1

x− c
+ h(x). (5.12)

Where g and h tend to definite limits at c. Also the upper sign is taken

for c = b, and the lower for c = a. the branch cut for the logarithm is

taken along γ.

2. Otherwise, If α 6= 0,

(a) As z → c, z ∈ ±side,

cγf(z) = ∓ e±iαπ

2i sin(απ)

f̄(c)

(z − c)α
+ g(z) (5.13)

(b) As x→ c, x ∈ γ

cγf(x) = ∓cot(απ)

2i

f̄(c)

(x− c)α
+ h(x) (5.14)

such that if m > 0 then for 0 < α∗ < m,

|f(z)| < A

|z − c|α∗ , |g(x)| < B

|x− c|α∗

For the proofs see [2].
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5.4
Scalar Riemann–Hilbert Problems

The facts estudied above will now be used to solve scalar RHP. The index of a

function f(x) with respect to γ is the increment of its argument in traversing

a curve γ in the positive direction, divided by 2π, that is

indf(x) =
1

2π
[argf(x)]γ =

1

2πi
[log f(x)]γ =

1

2πi

∫
γ

d(log f(x)). (5.15)

Recall the solution of the simplest scalar RHP: Let γ = R and jY be a Hölder

continuous scalar function in R, then the following additive scalar RHP for Y

in C:

1. Y is analytic in C\R,

2. Y+(x) = Y−(x) + jY (x), x ∈ R,

3. Y (z) → 0, z → ∞,

has the following unique solution as a Cauchy type integral

Y (z) = CRjY (z) =
1

2πi

∫
R

jY (x)

x− z
dx. (5.16)

Indeed, the first condition is satisfied for the Cauchy type integral definition

and Sokhotski-Plemelj Formulae gives for x ∈ R

C+
R jY (x)− C−

R jY (x) = jY (x), (5.17)

thence, CRjY (x) satisfies the second condition. To show the third condition we

use the geometric serie in the definition of CRjY (x). Therefore

CRjY (z) =
1

2πi

∫
R

jY (x)[(−
1

z
)

1

1− (x
z
)
]dx.

=
−1

2πzi

∫
R

jY (x)[
∞∑
n=0

(
x

z
)n]dx.

=
∞∑
n=0

1

zn+1
(
−1

2πi

∫
R

jY (x)x
ndx).

CRjY (z) =
∞∑
n=0

1

zn+1
an, (5.18)

note that as z → ∞ we have CRjY (z) → 0. Therefore, there exists a solution,

CRjY (z), of the additive scalar RHP. Hereupon, to prove uniqueness, one

can consider any other solution h(z) of the additive scalar RHP. Thence the

function Z(z) = CRjY (z)− h(z) provides the following features:

1. Z is an entire function,
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2. For x ∈ R,

Z+(x) = C+
R jY (x)− h+(z)

= C−
R jY (x) + jY (z)− h−(z)− jY (z)

Z+(x) = Z−(x)

3. Z(z) → 0, z → ∞.

By Liouville’s theorem, Z(z) = 0. Therefore, there is a unique solution

h(z) = CRjY (z).

The so-called multiplicative homogeneous RHP is formulated as follows:

1. Y is analytic in C\R,

2. Y+(x) = Y−(x)jY (x), x ∈ R,

3. Y (z) → 1, z → ∞.

By applying the second condition to the logarithm

(log Y )+(x) = log(Y−(x)jY ) = (log Y )−(x) + log jY (x). (5.19)

Notice that this jump condition is similar to the jump condition of the additive

RHP, but log jY (x) may not be well defined. In general, we suppose that

ind jY (x) = m, and in this way log jY (x) may not be a Hölder continuous

function. To overcome this issue we modify the jump function to x−mjY (x),

such that

ind (x−mjY (x)) =
1

2πi

∫
γ

d(log(x−mjY (x)))

=
1

2πi

∫
γ

(x−mjY (x))
′dx

(x−mjY (x))

=
1

2πi

∫
γ

((−m)x−m−1jY (x) + x−mj′Y (x))dx

(x−mjY (x))

=
−m
2πi

∫
γ

dx

x
+

1

2πi

∫
γ

j′Y (x)dx

jY (x)

= −m+ ind jY (x)

ind (x−mjY (x)) = 0, (5.20)

hence log(x−mjY (x)) is a Hölder continuous function. This recommends restat-

ing the second condition of multiplicative RHP in the following way

Y+(x) = (Y−(x)x
m)(x−mjY (x)) (5.21)

and by taking logarithm we have
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(log Y )+(x) = (log Y (x)xm)− + log(x−mjY (x)). (5.22)

Therefore the solution of this multiplicative homogeneous RHP that satisfies

the third condition is given by

Y (z) = X(z)Pm(z), (5.23)

where Pm(z) is an arbitrary polynomial of degree m with leading coefficient 1,

and X(z) is given by

X(z) =

 e
1

2πi

∫
R

dx log(x−mjY (x))

x−z , z ∈ C+

z−me
1

2πi

∫
R

dx log(x−mjY (x))

x−z , z ∈ C−
(5.24)

This implies that there are three cases:

1. For m = 0, we have at z ∈ C\R

Y (z) = X(z) = e
1

2πi

∫
R

dx log jY (x)

x−z . (5.25)

As log jY (x) be Hölder continuous functions, this solution is unique,

which is equivalent to

log Y (z) =
1

2πi

∫
R

dx log jY (x)

x− z
, (5.26)

notice that this corresponds to the Cauchy type solution of the equivalent

additive RHP(5.16).

2. In the case of m > 0, there exist m linearly independent solutions at

z ∈ C\R
Ym(z) = X(z)Pm(z), (5.27)

because the asymptotic condition does not restrict Pm,

Y (z) → z−mPm, z → ∞,

notice that for this limit vanishing at infinity, we require Pm(z) =

a0 + a1z + a2z
2 + ...+ am−1z

m−1 such that it has m arbitrary constants,

because

zmPm ∼= O(z−1), z → ∞

3. Considering m < 0 in the solution (5.23). Then

Y (z) = X(z)Pm(z) = 0 (5.28)

is the only solution that satisfies

Y (z) → 0, z → ∞,
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because one must take Pm(z) = 0 to remove the growth at infinity of

X(z).

Now we are going to look at inhomogeneous scalar RHP: Let jY (x), kY (x) be

Hölder continuous functions in R, then

1. Y is analytic in C\R,

2. Y+(x) = Y−(x)jY (x) + kY (x), x ∈ R,

3. Y (z) → 0, z → ∞.

The solution of this problem is derived from the solution of the homogeneous

RHP. Actually, if indjY (x) = n, dividing the jump condition by the homo-

geneous boundary solution X+(z) for Pm = 1, and taking into account that

X+(x) = X−(x)jY (x), we have

Y+(x)

X+(x)
=

Y−(x)jY (x)

X+(x)
+
kY (x)

X+(x)

=
Y−(x)jY (x)

X−(x)jY (x)
+
kY (x)

X+(x)

Y+(x)

X+(x)
=

Y−(x)

X−(x)
+
kY (x)

X+(x)
, (5.29)

hence we obtain a jump condition for Y (z)
X(z)

, and by the Cauchy type integral

Y (z)

X(z)
=

1

2πi

∫
R

dxkY (x)

X+(x)(x− z)
+ Pn(z), (5.30)

next to find the solution at infinity,

Y (z)

X(z)
= O(z−1). (5.31)

Anew, there are three solutions that accomplish this requirement in the

following way:

1. if n = 0, then Pn(z) = 0 and hence

Y (z) =
X(z)

2πi

∫
R

dxkY (x)

X+(x)(x− z)
(5.32)

is a unique solution of the inhomogeneous scalar RHP.

2. if n > 0, then there exist n linearly independent solutions due to uncon-

strained n arbitrary constants of Pn(z) by the asymptotic condition.
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3. If n < 0, then Pn(z) = 0 and the asymptotic expansion is given by

Y (z) =
X(z)

2πi

∫
R

dxkY (x)

X+(x)(x− z)

=
X(z)

2πi

(
1

−z

∫
R

dxkY (x)

X+(x)

1

(1− x
z
)

)
=

−X(z)

2πi

∫
R

dxkY (x)

X+(x)z

(
∞∑
i=0

xi

zi

)

=
−X(z)

2πi

∫
R

dxkY (x)

X+(x)

|n|−1∑
i=0

xi

zi+1
+

∞∑
i=|n|

xi

zi+1


Y (z) =

−1

2πi

∫
R

dxkY (x)

X+(x)

|n|−1∑
i=0

xiX(z)

zi+1
+

∞∑
i=|n|

xiX(z)

zi+1

 .

Since X(z) ∼= z|n| at z → ∞, thus when z → ∞ notice that Y (z) vanishes

at infinity when the first sum vanishes

Y (z) ∼=
−1

2πi

∫
R

dxkY (x)

X+(x)

|n|−1∑
i=0

xiz|n|

zi+1
+

∞∑
i=|n|

xiz|n|

zi+1

 , (5.33)

This happens if and only if for all i = 0, 1, ..., |n| − 1∫
R

dxkY (x)x
i

X+(x)
= 0. (5.34)

5.5
Matrix Riemann–Hilbert Problems

Given an oriented curve γ in the complex plane C. Let jY : γ → Ck×k be

an invertible k × k matrix function such that all its matrix elements satisfy a

Hölder condition. We can say that an j × k matrix function Y : C\γ → Cj×k

is a solution of RHP (γ, jY ) if

1. Yil(z) are analytic in C\γ.

2. Y+(x) = Y−(x)jY (x), x ∈ γ

If, in addition, j = k and

3. Y (z) ∼= Ik, z → ∞,

where Ik denotes the k×k identity matrix. We say that Y (z) solves the matrix

RHP and can be reduced to the analysis of an array of scalar RHPs. If one

could not reduce the matrix RHP to an array of scalar RHPs we can study

this problem by singular integral equations. This will be described in the next
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section.

The shape of jY determines the type of matrix RHP. Thus, let us first

Figure 5.2: An arbitrary oriented curve γ for a given jump condition jY .

discuss some cases: Diagonal matrix RHPs, Constant matrix RHPs, Rational

matrix RHPs, Triangular matrix RHPs and characterization of orthogonal

polynomials.

5.5.1
Diagonal Matrix Riemann Hilbert problems

In this case jY is a diagonal matrix such that |jY | 6= 0. Thus Y solves the

following RHP:

1. Yij are analytic in C\γ.

2. For any x ∈ γ,

Y+(x) = Y−(x)


jY,11(x) 0 · · · 0

0 jY,22(x) · · · 0
...

...
. . .

...

0 0 · · · jY,kk(x)


3. As z → ∞,

Y (z) ∼= Ik.

Letting indjY,ii(x) = 0, this problem can be separated into k scalar RHP, in

the following way:

1. Yii are analytic in C\γ.
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2. For any x ∈ γ,

Y+,ii(x) = Y−,ii(x)jY,ii

3. As z → ∞,

Yii(z) ∼= 1,

where i = 1, 2, ..., k. Then each of these problems has a unique solution given

by Sokhotski-Plemelj formula

Yii(z) = e
1

2πi

∫
γ

dx log jY,ii
x−z (5.35)

which is a solution of the multiplicative scalar RHP. Therefore a unique solution

of the diagonal matrix RHP is given by

Y (z) =


e

1
2πi

∫
γ

dx log jY,11
x−z 0 · · · 0

0 e
1

2πi

∫
γ

dx log jY,22
x−z · · · 0

...
...

. . .
...

0 0 · · · e
1

2πi

∫
γ

dx log jY,kk
x−z

 (5.36)

5.5.2
Constant Matrix Riemann Hilbert problems

In this case jY is a constant matrix with |jY | 6= 0, also is diagonalizable,

jY = UDYU
−1. Accordingly Y solves the following RHP:

1. Yij are analytic in C\γ.

2. For any x ∈ γ,

Y+(x) = Y−(x)


jY,11 jY,12 · · · jY,1k

jY,21 jY,22 · · · jY,2k
...

...
. . .

...

jY,k1 jY,k2 · · · jY,kk



= Y−(x)U


DY,11 0 · · · 0

0 DY,22 · · · 0
...

...
. . .

...

0 0 · · · DY,kk

U−1

3. As z → ∞,

Y (z) ∼= Ik.

By multiplying U from the left by the jump condition, we obtain

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 5. Riemann Hilbert problem 71

Y+(x)U = Y−(x)U


DY,11 0 · · · 0

0 DY,22 · · · 0
...

...
. . .

...

0 0 · · · DY,kk

 (5.37)

which corresponds to a diagonal matrix RHP with the following solution:

Y (z)U =


e

1
2πi

∫
γ

dx logDY,11
x−z 0 · · · 0

0 e
1

2πi

∫
γ

dx logDY,22
x−z · · · 0

...
...

. . .
...

0 0 · · · e
1

2πi

∫
γ

dx logDY,kk
x−z

 ,

therefore a unique solution of the constant matrix RHP is given by

Y (z) =


e

1
2πi

∫
γ

dx logDY,11
x−z 0 · · · 0

0 e
1

2πi

∫
γ

dx logDY,22
x−z · · · 0

...
...

. . .
...

0 0 · · · e
1

2πi

∫
γ

dx logDY,kk
x−z

U−1

(5.38)

5.5.3
Rational Matrix Riemann Hilbert Problems

Now the matrix elements of jY are rational functions, jY,ij(z) =
pij(z)

qij(z)
such that

pij(z), qij(z) are polynomials. Hence jY can be rewritten as jY (z) =
P (z)
r(z)

, where

P (z) is a matrix whose elements are polynomials, and r(z) is a polynomial.

Thereupon Y solves the following RHP:

1. Yij are analytic in C\γ.

2. For any x ∈ γ,

Y+(x) = Y−(x)
1

r(x)


P11(x) P12(x) · · · P1k(x)

P21(x) P22(x) · · · P2k(x)
...

...
. . .

...

Pk1(x) Pk2(x) · · · Pkk(x)


3. As z → ∞,

Y (z) ∼= Ik.

Notice that P (z) can be factorized as

P (z) = P+(z)D(z)P−(z), (5.39)
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where D(z) is a diagonal polynomial matrix, such that |P+| and |P−| are

polynomials that do not have zeros in the + side and - side respectively. Then,

by decomposing r into factors, r(x) = r+(x)r−(x), where r+(x) and r−(x) are

polynomials that do not have zeros in the + side and - side respectively, we

have the following diagonal matrix RHP:

1. Yij are analytic in C\γ.

2. For any x ∈ γ,

r+(x)P
−1
+ (x)Y+(x) = Y−(x)

P−(x)

r−(x)


D1(x) 0 · · · 0

0 D2(x) · · · 0
...

...
. . .

...

0 0 · · · Dk(x)


3. As z → ∞,

Y (z) ∼= Ik.

In general, Di(x) = Di+(x)Di−(x), where Di+(x) and Di−(x) are polynomials

that do not have zeros in the + side and - side respectively, we obtain
1

D1−(x)
· · · 0

...
. . .

...

0 · · · 1
Dk−(x)

 r+(x)P
−1
+ (x)Y+(x) =

= Y−(x)
P−(x)

r−(x)


D1+(x) · · · 0

...
. . .

...

0 · · · Dk+(x)

 . (5.40)

Hence, by the analyticity of polynomials in each side, we have
1

D1−(x)
· · · 0

...
. . .

...

0 · · · 1
Dk−(x)

 = Y−(x)
P−(x)

r−(x)

r+(x)P
−1
+ (x)Y+(x) =


D1+(x) · · · 0

...
. . .

...

0 · · · Dk+(x)

 . (5.41)
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Therefore, in general Y is determined by the following boundary values

Y−(x) = r−(x)P−(x)
−1


1

D1−(x)
· · · 0

...
. . .

...

0 · · · 1
Dk−(x)



Y+(x) =
P+(x)

r+(x)


D1+(x) · · · 0

...
. . .

...

0 · · · Dk+(x)

 (5.42)

5.5.4
Triangular Matrix Riemann Hilbert Problems

Here jY is either an upper or lower triangular matrix with |jY | 6= 0. Thence Y

solves the following RHP:

1. Yij are analytic in C\γ.

2. For any x ∈ γ,

Y+(x) = Y−(x)


jY,11(x) jY,12(x) · · · jY,1k(x)

0 jY,22(x) · · · jY,2k(x)
...

...
. . .

...

0 0 · · · jY,kk(x)


3. As z → ∞,

Y (z) ∼= Ik.

First of all, to have unique solution we assume indjY,ii(x) = 0 for i = 1, 2, ..., k.

While later, by multiplying and comparing the second and third condition of

the triangular RHP respectively, we decompose step by step the first row of Y

into an array of scalar RHPs:

The homogeneous scalar RHP,

1. Y11 is analytic in C\γ,

2. Y+,11(x) = Y−,11(x)jY,11(x), x ∈ γ,

3. Y11(z) → 1, z → ∞,

yields Y11, then the inhomogeneous scalar RHP,

1. Y12 is analytic in C\γ,

2. Y+,12(x) = Y−,12(x)jY,22(x) + Y−,11(x)jY,12(x), x ∈ R,
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3. Y12(z) → 0, z → ∞,

yields Y12, hence consecutively the inhomogeneous scalar RHP,

1. Y1k is analytic in C\γ,

2. Y+,1k(x) = Y−,1k(x)jY,kk(x) +
∑k−1

n=1 Y−,1n(x)jY,nk(x), x ∈ R,

3. Y1k(z) → 0, z → ∞,

yields Y1k. Notice that the first row was decomposed independently of the other

rows. Hence we can reduce each row m independent of the other rows to an

array of scalar RHPs:

1. Ym1, ..., Ymk is analytic in C\γ,

2. For any x ∈ R

Y+,m1(x) = Y−,m1(x)jY,11(x)

. . .

Y+,mk(x) = Y−,mk(x)jY,kk(x) +
k−1∑
n=1

Y−,mn(x)jY,nk(x)

3. As z → ∞,

Ymn(z) → δmn.

5.6
Characterization of Orthogonal Polynomials

Let us now consider a matrix RHP: Yn and jY being matrix functions, with

jY (x) =

(
1 w(x)

0 1

)
, where w(x) defines a finite measure over R. This

allows to establish a scalar product and by the Gram-Schimdt ortogonalization

one determines corresponding orthogonal polynomials pn(x). Those can be

characterized through the following matrix RHP for Yn

1. Yn,11(z), Yn,12(z), Yn,21(z), Yn,22(z), are analytic in C+,C−,

2. Yn+(x) = Yn−(x)jY (x), x ∈ R,

3. Y (z) ∼=

(
zn +O(zn−1) O(z−n−1)

O(zn−1) z−n +O(z−n−1)

)
, z → ∞,

where, by Liouville theorem, Yn,11 = pn and we have a scalar RHP for Yn,12,

with solution Yn,12(z) =
1

2πi

∫
R
pn(x)w(x)

x−z dx. Analogously for the rest. Therefore

the unique solution of this matrix RHP is given by
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Figure 5.3: Representation of the orthogonal polynomial.

Yn(z) =

(
pn(z)

1
2πi

∫
R
pn(x)w(x)dx

x−z

− 2πi
hn−1

pn−1(z) − 1
hn−1

∫
R
pn−1(x)w(x)dx

x−z

)
, (5.43)

hence the correlation kernel is expressed in terms of YN±(x) as follows

KN(λi, λj) =
e−

1
2
N(V (λi)+V (λj))

2πi(λi − λj)

(
0 1

)
Y −1
N+(λj)YN−(λi)

(
1

0

)
(5.44)

5.7
Singular Integral Equations

In some cases, matrix RHP can not be reduced to an array of scalar RHPs.

But these cases can be solved by singular integral equations, because matrix

RHP can be represented as singular integral equations.

In this section we introduce the singular integral equations and its relation to

both scalar and matrix RHPs. First of all, consider the so-called linear integral

equation for y(x) given by

g(x)y(x) = f(x) +

∫
γ

K(x, x′)y(x′)dx′, (5.45)

where g(x), f(x) and K(x, x′) are integrable functions. Moreover, the kernel

K(x, x′) can be a distribution. If g(x) = 0 on γ, the integral equation is of the

first kind, and in the other case is of the second kind.

An integral equation is usually called singular if

1. the contour increases to infinity,

2. the kernel is not bounded.

Hence a singular kernel can have the following form
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K(x, x′) =
−h(x)

πi(x′ − x)
(5.46)

in this case, the contour integral is given by the principal value integral. Thus

we have the following singular integral equation

g(x)y(x)−−
∫
γ

(
−h(x)

πi(x′ − x)
)y(x′)dx′ = f(x)

or
g(x)y(x) +

h(x)

πi
−
∫
γ

y(x′)dx′

x′ − x
= f(x), (5.47)

where f(x), g(x), h(x) satisfy the Hölder condition on γ. If we consider

Y (z) =
1

2πi

∫
γ

y(x)dx

x− z
(5.48)

which is a Cauchy type integral. Then by Sokhotski-Plemelj formula we obtain

Y+(x)− Y−(x) = y(x) (5.49)

Y+(x) + Y−(x) =
1

πi
−
∫
γ

y(x′)dx′

x′ − x
, (5.50)

replacing these relations in the singular integral equation (5.47), we find

g(x)(Y+(x)− Y−(x)) + h(x)(Y+(x) + Y−(x)) = f(x),

reducing to the following way

Y+(x) =

(
g(x)− h(x)

g(x) + h(x)

)
Y−(x) +

(
f(x)

g(x) + h(x)

)
(5.51)

which corresponds to a inhomogeneous scalar RHP, such that

jY (x) =
g(x)− h(x)

g(x) + h(x)
, (5.52)

kY (x) =
f(x)

g(x) + h(x)
. (5.53)

This equivalence between scalar RHPs and singular integral equations can be

extended to the matrix RHPs. For this purpose we recall the jump condition

of the matrix RHP,

Y+(x) = Y−(x)jY (x).

Since, |iY | 6= 0 and jY (x) − I satisfy |jY (x) − I| < C for a C > 0, defining

g ≡ jY − I, this jump condition can be written as

Y+(x) = Y−(x)g(x) + Y−(x), (5.54)
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subtracting I from both terms,

Y+(x)− I = Y−(x)g(x) + Y−(x)− I

and ordering appropriately

(Y+(x)− I)− (Y−(x)− I) = Y−(x)g(x), (5.55)

by the Sokhotski-Plemelj formula we obtain

(Y+(x)− I) + (Y−(x)− I) =
1

πi
−
∫
γ

Y−(x
′)g(x′)

x′ − x
dx′, (5.56)

using the jump condition we get

Y−(x)jY (x) + Y−(x)− 2I =
1

πi
−
∫
γ

Y−(x
′)g(x′)

x′ − x
dx′,

adding and subtracting Y−(x) we have

Y−(x)(jY (x)− I) + 2Y−(x)− 2I =
1

πi
−
∫
γ

Y−(x
′)g(x′)

x′ − x
dx′

by the definition of g we obtain

Y−(x)− I = −Y−(x)g(x)
2

+
1

2πi
−
∫
γ

Y−(x
′)g(x′)

x′ − x
dx′,

deforming the contour γ to two contours, γ−γε and Cε, where Cε is a semicircle

of radius ε centered at x, we have

Y−(x)− I = lim
ε→0

1

2πi

∫
Cε

Y−(x
′)g(x′)

x′ − x
dx′ +

1

2πi
−
∫
γ

Y−(x
′)g(x′)

x′ − x
dx′,

therefore by the definition of the principal value integral, we obtain

Y−(x)− I =
1

2πi

∫
γ

Y−(x
′)g(x′)

x′ − (x− iε)
dx′ (5.57)

which is equivalent to

Y−(x)− I =

∫
γ

K(x, x′)Y−(x
′)dx′ (5.58)

such that K(x, x′) = 1
2πi

g(x′)
x′−(x−iε) . As shown above this singular integral

equation of the second kind is equivalent to the matrix RHP.
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6
Large asymptotics of orthogonal polynomials: The Riemann-
Hilbert approach

Many statistical quantities of Hermitian Random Matrices can be reduced

to calculations involving large asymptotics of orthogonal polynomials. In this

chapter we present the Riemann-Hilbert approach to the large asymptotics of

orthogonal polynomials such that we follow the exposure of [17]. This approach

is based on the steepest descent method, which provides an asymptotic solution

to the RHP, as N → ∞. For more detail the reader should consult [13, 19, 20].

6.1
Introduction

In the 1990s, the steepest descendent method was developed by Percy De-

ift and Xin Zhou[?] and then applied to orthogonal polynomials by De-

ift, Kriecherbauer, McLaughlin, Venakides and Zhou[19, 20]. Its aplication

span from universality, double scaling limit[17], Fredhom kernel, to painleve

equations[18], amongs others. In general terms, the steepest descent method

consists in performing a number of explicit and invertible transformations

YN → TN → ... → RN , provided that for the last equivalent RHP both the

jump matrix and the behavior at infinity are closed to the identity. After trac-

ing back the transformations, RN → ...→ TN → YN , we obtain the asymptotic

solution for RHP that characterized the orthogonal polynomials.

Outline: The chapter is organized as follows. In section 6.2 we normalize the

asymptotic condition of the RHP, supported from the Heine formula for or-

thogonal polynomials. In section 6.3 we recuperate the behavior at infinity of

the jump matrix of the RHP except in the edge points. In section 6.4 we reg-

ularize the RHP in the edge points. Section 6.5 gives the large asymptotics of

orthogonal polynomials. This is followed with concluding remarks in Section

6.6.

6.2
First transformation of the RHP

In this chapter we transform the asymptotic condition in the RHP of YN , that

is non constant, for a condition asymptotically closed to the identity matrix.
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Namely, TN(z) = I+O(z−1), as z → ∞. For this reason, we define the following

transformation in the RHP:

TN(z) = e−
Nl
2
σ3YN(z)e

−N [g(z)− l
2
]σ3 , σ3 =

(
1 0

0 −1

)
, (6.1)

where g is an analytic function in C\R, l is a constant, σ3 is a Pauli matrix

and for every function f we have

ef(z)σ3 =
∑
i

f i(z)σi3
i!

=
∑
i

f2i+1(z)σ2i+1
3

(2i+ 1)!
+
∑
i

f 2i(z)σ2i
3

(2i)!

=
∑
i

f2i+1(z)σ3
(2i+ 1)!

+
∑
i

f 2i(z)I

(2i)!

=
∑
i

f 2i+1(z)

(2i+ 1)!

(
1 0

0 −1

)
+
∑
i

f 2i(z)

(2i)!

(
1 0

0 1

)

=

( ∑
i
f i(z)
i!

0

0
∑

i
f i(z)(−1)i

i!

)

=

(
ef(z) 0

0 e−f(z)

)
,

where we used the properties of Pauli matrices. Consequently, by the asymp-

totic expression of YN , the asymptotic at infinity of TN can be obtained as

follows:

TN(z) = e−
Nl
2
σ3

(
zN +O(zn−1) O(z−n−1)

O(zn−1) z−N +O(z−n−1)

)
e−N [g(z)− l

2
]σ3 ,

= e−
Nl
2
σ3(I +O(z−1))

(
zN 0

0 z−N

)
e−N [g(z)− l

2
]σ3 ,

= (e−
Nl
2
σ3 + e−

Nl
2
σ3O(z−1))

(
zN 0

0 z−N

)
e−N [g(z)− l

2
]σ3 ,

= (I +O(z−1))e−
Nl
2
σ3

(
zN 0

0 z−N

)
e−N [g(z)− l

2
]σ3 ,

= (I +O(z−1))

(
zN 0

0 z−N

)
e−Ng(z)σ3 . (6.2)

In addition, for our purpose we assume at infinity that

e−Ng(z)σ3 =

(
z−N 0

0 zN

)
+O(z−1), (6.3)

more precisely, for normalizing the asymptotic condition we have to assume
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(
e−Ng(z) 0

0 eNg(z)

)
=

(
e−Nlogz 0

0 eNlogz

)
+O(z−1). (6.4)

Observe that g has to satisfy, g(z) = log z + O(z−1), as z → ∞. Therefore,

inserting (6.3) into (6.2) we obtain

TN(z) = (I +O(z−1))

(
zN 0

0 z−N

)(
z−N 0

0 zN

)
= I +O(z−1). (6.5)

So long as g can have jump on the real axis, by the transformation (6.1) the

Figure 6.1: Goal of the first transformation TN : normalize the asymptotic
condition of the RHP for the orthogonal polynomials.

jump matrix in the RHP for YN is modified in the following way

TN+(x) = e−
Nl
2
σ3YN+(x)e

−N [g+(x)− l
2
]σ3 . (6.6)

In fact, using the jump of YN we have

TN+(x) = e−
Nl
2
σ3YN−(x)

(
1 e−NV (x)

0 1

)
e−N [g+(x)− l

2
]σ3 . (6.7)

Inserting, I = e−N [g−(x)− l
2
]σ3eN [g−(x)− l

2
]σ3 , in the preceding expression

TN+(x) = e−
Nl
2
σ3YN−(x)e

−N [g−(x)− l
2
]σ3eN [g+(x)− l

2
]σ3

(
1 e−NV (x)

0 1

)
×

×e−N [g+(x)− l
2
]σ3 , (6.8)

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 6. Large asymptotics of orthogonal polynomials: The
Riemann-Hilbert approach 81

as well as identifying, TN−(x) = e−
Nl
2
σ3YN−(x)e

−N [g−(x)− l
2
]σ3 , we obtain

TN+(x) = TN−(x)e
N [g−(x)− l

2
]σ3

(
1 e−NV (x)

0 1

)
e−N [g+(x)− l

2
]σ3 . (6.9)

Therefore, symplifying the jump matrix we show

TN+(x) = TN−(x)

(
e−N [g+(x)−g−(x)] eN [g+(x)+g−(x)−V (x)−l]

0 eN [g+(x)−g−(x)]

)
. (6.10)

As the transformation (6.1) does not change the first condition of the RHP for

YN . Then TN(z) solves uniquely the following RHP:

1. TN is analytic in C\R,

2. TN+(x) = TN−(x)jT (x), x ∈ R,where

jT (x) =

(
e−N [g+(x)−g−(x)] eN [g+(x)+g−(x)−V (x)−l]

0 eN [g+(x)−g−(x)]

)

3. TN(z) = I +O(z−1), z → ∞.

Furthermore, if we want jT → I as N → ∞, we consider that g satisfies the

following conditions

g+(x)− g−(x) = 2kπi, k ∈ Z, x ∈ R (6.11)

g+(x) + g−(x)− V (x)− l < 0, x ∈ R, (6.12)

thereupon the jump matrix jT has the following asymptotic behaviour as

N → ∞
jT (x) =

(
e−2Nkπi e−Nc(x)

0 e2Nkπi

)
=

(
1 0

0 1

)
, (6.13)

where c(x) > 0. Observe that g is related to the asymptotic behaviour of TN

and jT , for this reason we will determine all properties of g. First from (6.3)

without loss of generality we have that

eNg(z) ≈ pN(z), (6.14)

where pN(z) is an orthogonal polynomial of degree N . Hence by the Heine

formula [17], pN(z) is the average difference of the diagonal elements in the

random matrix with respect to z, we can write that

eNg(z) = 〈det(z −M)〉. (6.15)

Certainly, in the ensemble of eigenvalues we have
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eNg(z) = 〈ΠN
j=1(z − λj)〉 =

1

ZN

∫
ΠN
j=1(z − λj)Πj<k(λj − λk)

2ΠN
j=1e

−NV (λj)dλj.

(6.16)
Therefore, due to the Heine formula we can associate g to the equilibrium

measure of the eigenvalues of the following way

g(z) =
1

N
log〈ΠN

j=1(z − λj)〉 =
∫
J

log(z − x)dνV (x), (6.17)

where for obtaining the other properties of g we assume that the equilibrium

measure νV is regular and we take the principal branch for logarithm. Second,

we will study the asymptotic behavior of g, which was established before for

our convenience. Formally,

g(z) =

∫
J

log z log(1− x

z
)dνV (x)

=

∫
J

log zdνV (x) +

∫
J

log(1− x

z
)dνV (x)

= log z

∫
J

dνV (x) +

∫
J

log(1− x

z
)dνV (x). (6.18)

Upon the condition that J is a finite union of intervals, for z → ∞ we can

expand the logarithm in the following way

g(z) = log z −
∫
J

∞∑
j=1

(x
z
)j

j
dνV (x), (6.19)

where we substituted
∫
J
dνV (x) = 1. As can be seen the asymptotic behavior

of g as z → ∞ is given by

g(z) = log z −
∞∑
j=1

gj
zj
dνV (x) = log z +O(z−1), gj =

∫
J

xj

j
dνV (x) (6.20)

which guarantees the normalization of the asymptotic condition of the RHP.

Third, we will analize the jumps of g on the real axis, which were considered

before for ensuring the asymptotic behavior of the jump matrix jT . As has

been noted, log z has a jump on the negative real axis. So for the principal

branch of the logarithm a circuit in the clockwise direction put us on the

branch log z = log |z|−πi while in the counterclokwise direction put us on the

branch log z = log |z| + πi. Under those circumstances, we can generalize the

jumps on the following way

log(x− y)± =

{
log |x− y| x > y

log |x− y| ± πi x < y
, (6.21)
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hence from (6.17) this implies that

g±(x) =

∫
J

log(x− y)±dνV (y)

=

∫
J

[log |x− y| ± πiθ(y − x)]dνV (y)

=

∫
J

log |x− y|dνV (y)± πi

∫
J

θ(y − x)dνV (y). (6.22)

By manipulying the preceding expressions to compare with (6.11) and (6.12)

we obtain that
g+(x)− g−(x) = 2πi

∫
J

θ(y − x)dνV (y) (6.23)

g+(x) + g−(x) = 2

∫
J

log |x− y|dνV (y). (6.24)

Observe that from the equation (6.23) we have that the function

G(x) = g+(x)− g−(x) (6.25)

is pure imaginary for all real x, and we also have that

G(x) = 2πi, x ∈ R\J, (6.26)

because
∫
J
dνV (y) = 1. Furthermore, the equation (6.24) can be related to

Figure 6.2: Analytic definition(continuation) of G.

V (x) by the Euler-Lagrange variational conditions [17]. Consequently for the

same constant l, we obtain

g+(x) + g−(x) = 2

∫
J

log |x− y|dνV (y) < V (x) + l, x ∈ R\J (6.27)

g+(x) + g−(x) = 2

∫
J

log |x− y|dνV (y) = V (x) + l, x ∈ J. (6.28)

Observe that (6.23) and (6.27) coincide with the conditions (6.11) and (6.12)

respectivaly. Therefore the above properties of g guarantee the asymptotic
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behavior of the jump matrix jT outside J . In particular the property (6.28)

ensures that on J we have

jT (x) =

(
e−NG(x) 1

0 eNG(x)

)
. (6.29)

In summary, the normalization of the asymptotic behavior was obtained after

Figure 6.3: After the first transformation TN the jump condition was modified.

the first transformation but jump matrix was modified, and we observe that

the jump oscillates over x. The Heine formula had sustained the asymptotic

behavior of TN and jT , through the function g.

6.3
Second transformation of the RHP

The first transformation changes the behavior of the jump matrix jT , now

this jump matrix has oscillatory behavior because G is pure imaginary. The

procedure is splitting the jump matrix by its factorization, and after extending

analytically this jump matrix factors into several curves such that behavior of

the factors approach to the identity for large N . Then we will demostrate this

analytic extension. We assume that J consists of a single interval [a, b], by the

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Chapter 6. Large asymptotics of orthogonal polynomials: The
Riemann-Hilbert approach 85

definition of the equilibrium mesure we have that

G(x) = 2πi

∫
J=[a,b]

θ(y − x)
1

2πi
h(y)

√
(y − a)(y − b)+dy

=

∫ b

x

h(y)
√

(y − a)(y − b)+dy. (6.30)

As e±NG(z) is a continnous function and the integral along the contour that

contains [a, b] in its interior is given by∮
e±NG(z)dz =

∫ b

a

e±NG(x)dx−
∫ a

b

e±NG(x)dx

= 2

∫ b

a

e±NG(x)dx

= 2

∫ b

a

∑
j

(±NG(z))j

j!
dz

= 2

∫ b

a

(±NG(x) +
∞∑
j=1

(±NG(x))j

j!
)dx

= ±2N

∫ b

a

G(x)dx+ 2

∫ b

a

∞∑
j=1

(±NG(x))j

j!
dx

= ±2N

∫ b

a

G(x)dx+ 2
∞∑
j=1

∫ b

a

(±NG(x))j

j!
dx∮

e±NG(z)dz 6= 0, (6.31)

then as the integral is different from 0, by Morera’s Theorem we have that

e±NG(z) is analytic in C\[a, b]. Accordingly, e±NG(z) has analytic extension to

C\[a, b]. Furthermore, by matrix algebra(
ea 1

0 e−a

)
=

(
1 0

e−a 1

)(
0 1

−1 0

)(
1 0

ea 1

)
,

the matrix jump can be factorized as follows(
e−NG(x) 1

0 eNG(x)

)
=

(
1 0

eNG(x) 1

)(
0 1

−1 0

)(
1 0

e−NG(x) 1

)
, (6.32)

hence the contour equation for TN can now be written as

T+(x) = T−(x)

(
1 0

eNG(x) 1

)(
0 1

−1 0

)(
1 0

e−NG(x) 1

)
. (6.33)

Eventually, by bringing the rightmost matrix to the left-hand side, we obtain
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T+(x)

(
1 0

e−NG(x) 1

)−1

= T−(x)

(
1 0

eNG(x) 1

)(
0 1

−1 0

)
(6.34)

T+(x)

(
1 0

−e−NG(x) 1

)
= T−(x)

(
1 0

eNG(x) 1

)(
0 1

−1 0

)
, (6.35)

where we can define the nonconstant matrices, j±(x) =

(
1 0

∓e∓NG(x) 1

)
,

such that the contour equation is given by

T+(x)j+(x) = T−(x)j−(x)

(
0 1

−1 0

)
. (6.36)

Now, we will define the analytic extension of j±(x) such that this extension

approaches to the identity for large N . To do so we rewrite the equation (6.30)

in the following way

G(x) = −i
∫ x

b

h(y)
√

(y − a)(b− y)+dy, (6.37)

hence the analytic extension of this expression is given by

G(z) = −i
∫ z

b

h(y)
√
(y − a)(b− y)dy, (6.38)

where z = x+ iw. In fact, the preceding expression is an analytic continuation

to the upper half plane C+. Then on one hand the derivative of G(z) yields

d

dz
G(z) = −ih(z)

√
(z − a)(b− z) (6.39)

and on the other hand the Cauchy-Riemann equations give

d

dz
G(z) =

∂

∂y
ImG(z)− i

∂

∂y
ReG(z). (6.40)

Thus by comparing both expression one gets

∂

∂y
ReG(z) = h(z)

√
(z − a)(b− z). (6.41)

Due to
√
(z − a)(b− z) > 0 and h(z) > 0, one finds that

∂

∂y
ReG(z) > 0 for Imz > 0. (6.42)

Therefore e−NG(z) decays exponentially on the upper half plane C+. Hence for

this reason exists c > 0 such that

|e−NG(z)| ≤ e−Nc, z ∈ R+ = {z = x+ iy/a < x < b, 0 < y} (6.43)

which ensures that e−NG(x) admits analytic continuation in the upper half plane

C+. Also owing to |eNG(z)| = |e−NG(z̄)|, exist c > 0 such that
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|eNG(z)| ≤ e−Nc, z ∈ R− = {z = x+ iy/a < x < b, y < 0}. (6.44)

In the same way eNG(x) admits analytic continuation in the lower half plane C−.

As a result the matrices j±(x) accept analytic continuation in the upper/lower

half planes C± respectively. Furthermore, we consider the curves γ± ⊂ R±

Figure 6.4: Analytic continuation of the contours for the jump condition of
TN . Where quantitatibly the different coulors correspond to different solutions
of the RHP for TN such that for large N , the yellow and green regions will
became only one region.

such that the region bounded by the interval [a, b] and γ+/γ− is called

the upper/lower lens L±, respectively. Here we observe that the curves γ±

correspond to contour deformation. Then, this allows us to define the following

deformation of TN

SN =


TN(z)j+(z) z ∈ L+

TN(z)j−(z) z ∈ L−

TN(z) otherwise

, (6.45)

where j± approach to the identity for large N . Thereupon, by the transforma-

tion (6.45) the jump matrix in the RHP for TN is modified in the following

way: First of all, by the contour equation (6.36) on the support z ∈ [a, b] we

get

TN+(z)j+(z) = TN−(z)j−(z)

(
0 1

−1 0

)
, (6.46)

through the definition of SN we have

SN+(z) = SN−(z)

(
0 1

−1 0

)
. (6.47)

Second, again via the definition of SN on the upper lens γ+ we have
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SN+(z) = TN+(z)(j+(z))+, (6.48)

taking into account that (j+(z))+ decays exponentially to I we find

SN+(z) = TN+(z) = TN(z)

(
1 0

0 1

)
, (6.49)

by introducing,

(
1 0

0 1

)
=

(
1 0

eNG(z) 1

)(
1 0

−eNG(z) 1

)
, we get

SN+(z) = TN(z)

(
1 0

eNG(z) 1

)(
1 0

−eNG(z) 1

)
, (6.50)

hence, according to the definition of SN− we find

SN+(z) = SN−(z)

(
1 0

−eNG(z) 1

)
, (6.51)

but bearing in mind (6.43) we obtain

SN+(z) = SN−(z)

(
1 0

O(e−cN) 1

)
, z ∈ γ+. (6.52)

Analogously for the lower lens γ− we obtain

SN+(z) = SN−(z)

(
1 0

O(e−cN) 1

)
, z ∈ γ−. (6.53)

And finally the jump matrix is the same outside the support [a, b],

jS(z) = jT (z), z ∈ R\[a, b]. (6.54)

Therefore SN solves uniquely the following RHP:

1. SN is analytic in C\(R ∪ γ+ ∪ γ−),

2.

SN+(x) = SN−(x)jS(x), x ∈ R ∪ γ− ∪ γ+,

such that the jump matrices are given by

a.

jS(x) =

(
0 1

−1 0

)
, z ∈ [a, b]

b.

jS(x) =

(
1 0

O(e−cN) 1

)
, z ∈ γ±
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c.

jS(x) =

(
1 O(e−cN)

0 1

)
, z ∈ R\[a, b]

where c > 0

3. SN(z) = I +O(z−1), z → ∞.

Figure 6.5: After the second transformation SN only the jump condition in the
interval [a, b] did not tend to the identity when N → ∞.

Observe that the only jump matrix which is not close to the identity is the

jump on [a, b]. While the other jumps, on R ∪ γ+ ∪ γ−\[a, b], have only one

element off-diagonal that tends exponentially to zero except in the edge points

a and b, where the jump matrix is given by

jS(a, b) =

(
1 0

1 1

)
, a, b ∈ γ± (6.55)

jS(a, b) =

(
1 1

0 1

)
, a, b ∈ R\[a, b] (6.56)

This problem at the edge points can be resolved if one deforms the edge points

to small disks. Thence, the RHP can be solved explicity inside this disks where

the local solution is called parametrix.

In the generic cases, this parametrix can be constructed with the aid of Airy

functions but in nongeneric situations one could need other especial functions.

Meanwhile, If we ignore for this moment the parametrix at the edge points

and we drop the terms of ordem O(e−cN) in the jump matrix jS(z), we obtain

the following model RHP:
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Figure 6.6: Problem in the edge point a. In this point the jump matrix has a
bad behavior by the intersection of four contours.

1. M(z) is analytic in C\[a, b],

2. M+(z) =M−(z)

(
0 1

−1 0

)
, z ∈ R,

3. M(z) = I +O(z−1), z → ∞.

we can diagonalize the jump matrix of this model RHP(
0 1

−1 0

)
=

1

2

(
1 1

i −i

)(
i 0

0 −i

)(
1 −i
1 i

)
, (6.57)

by replacing in the jump condition, we have

M+(z) =M−(z)
1

2

(
1 1

i −i

)(
i 0

0 −i

)(
1 −i
1 i

)
. (6.58)
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Figure 6.7: Problem in the edge point b. In the same way the jump matrix has
a bad behavior by the intersection of four contours

Now we can reduce this RHP to a pair of scalar RHP through the following

procedure:

First, by multiplying both sides of the jump condition(6.58) by

(
1 −i
1 i

)−1

,

M+(z)
1

2

(
1 1

i −i

)
=M−(z)

1

2

(
1 1

i −i

)(
i 0

0 −i

)
, (6.59)

next, by multiplying both sides of the same jump condition by

(
1 −i
1 i

)
, we

obtain

1

2

(
1 −i
1 i

)
M+(z)

(
1 1

i −i

)
=

1

2

(
1 −i
1 i

)
M−(z)

(
1 1

i −i

)(
i 0

0 −i

)
,

(6.60)
finally, notice that this modified jump condition suggests the following trans-

formation
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Figure 6.8: Representation of the RHP for M.

M̃(z) =
1

2

(
1 −i
1 i

)
M(z)

(
1 1

i −i

)
(6.61)

such that M̃ is the unique solution of the following RHP

1. M̃ is analytic in C\[a, b],

2. M̃+(z) = M̃−(z)

(
i 0

0 −i

)
, z ∈ R,

3. M̃(z) = I +O(z−1), z → ∞.

Figure 6.9: Representation of the RHP for M̃ .

which corresponds to a pair of scalar RHP of the diagonal elements of M̃ , so

that this RHPs have unique solution as a Cauchy type integral in the diagonal

elements of M̃ , in the following way

M̃(z) =

(
e

1
2πi

∫ b
a

log i
s−z

ds 0

0 e
1

2πi

∫ b
a

log(−i)
s−z

ds

)

=

(
e

1
4
log z−b

z−a 0

0 e−
1
4
log z−b

z−a

)

=

(
( z−b
z−a)

1
4 0

0 ( z−a
z−b )

1
4

)
, (6.62)
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tracing back to M by the inverse trasformation of (6.61), we have

M(z) =
1

2

(
1 1

i −i

)(
( z−b
z−a)

1
4 0

0 ( z−a
z−b )

1
4

)(
1 −i
1 i

)

=
1

2

(
( z−b
z−a)

1
4 ( z−a

z−b )
1
4

i( z−b
z−a)

1
4 −i( z−a

z−b )
1
4

)(
1 −i
1 i

)

=
1

2

(
( z−b
z−a)

1
4 + ( z−a

z−b )
1
4 (−( z−b

z−a)
1
4 + ( z−a

z−b )
1
4 )

i(( z−b
z−a)

1
4 − ( z−a

z−b )
1
4 ) ( z−b

z−a)
1
4 + ( z−a

z−b )
1
4

)
. (6.63)

To study the asymptotic behavior of M(z) and compute |M(z)|, we define

γ(z) ≡ ( z−b
z−a)

1
4 , thence the determinant of M(z) is given by

|M(z)| = 1

4
[(γ + γ−1)2 − (γ − γ−1)2] =

1

4
4γγ−1 = 1 (6.64)

and the asymptotic behavior of γ(z) at infinity is obtained in the following

way

γ(z) = (
z − b

z − a
)
1
4 = (

z − b

z − b
+
b− a

z − b
)
1
4

= (1 +
b− a

z − b
)
1
4 = 1 +

1

4

b− a

z
+O(z−2), (6.65)

taking the inverse by the approximate Taylor expansion

γ−1(z) = 1− 1

4

b− a

z
+O(z−2), (6.66)

therefore, substituting both asymptotic behaviors of γ and γ−1 in M(z), we

find

M(z) =
1

2

(
2 +O(z−2) i2(b−a)

4z
+O(z−2)

−i2(b−a)
4z

+O(z−2) 2 +O(z−2)

)

=

(
1 +O(z−2) i (b−a)

4z
+O(z−2)

−i (b−a)
4z

+O(z−2) 1 +O(z−2)

)

= I +
1

z

(
0 i (b−a)

4z

−i (b−a)
4z

0

)
+O(z−2). (6.67)

6.4
Parametrix at the edge points

In the preceding section we obtained the asymptotic model RHP without

considering the edge points. Indeed, at this points the jump matrix has a

nasty behavior because it is obtained by intersection of four contours. To avoid

this behavior, one can build a parametrix at this point. Consequently, we will
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deform RHP in the neighborhood of this edge points, in such a way that inside

this neighborhood, RHP can be solved exactly.

Consider small disks D(a, r), D(b, r), such that

D(a, r) ≡ {z/|z − a| ≤ r}, D(b, r) ≡ {z/|z − b| ≤ r}

Next, for this moment we only consider the disk D(b, r) at the edge point b.

Outside this disk the solutionM is a good approximation to S. But inside this

disk, S is not a good solution of the jump conditions. To find a solution that

solves the jump conditions which agrees with M on the boundary of the disks

D. We define a map from D(b, r) to a neighborhood of 0 such that the jump

contours are mapped to γ± ∪R where γ± correspond to rays of argument ±θ.
For the purpose of defining this map, we proceed in the following way: First

of all, from (g− + g+ = V + l) and the definition of G we have

G(x) = g+(x)− (−g+(x) + V (x) + l)

= 2g+(x)− V (x)− l, (6.68)

by (6.30), we get

G(x) = 2g+(x)− V (x)− l =

∫ b

x

h(y)
√
(y − a)(y − b)+dy. (6.69)

Now, if we evaluate the integral at x = b, we obtain

2g+(b)− V (b)− l = 0, (6.70)

hence the constant l is given by

l = 2g+(b)− V (b), (6.71)

replacing this l in G(x), one can write G(x) as

G(x) = 2g+(x)−V (x)−(2g+(b)−V (b)) =

∫ b

x

h(y)
√
(y − a)(y − b)+dy. (6.72)

The analytic extension of this equation to the upper half-plane is given by

(2g+(b)− V (b))− (2g+(z)− V (z)) =

∫ z

b

h(y)
√
(y − a)(y − b)dy, (6.73)
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since f(y) =
√
y − ah(y) is analytic in a neighborhood of y = b, we can expand

one factor of the integrand around y = b in the following way

(2g+(b)− V (b))− (2g+(z)− V (z)) =

∫ z

b

√
(y − b)(h(b)

√
(b− a) +

+
∞∑
j=1

f (j)(b)(y − b)j)dy, (6.74)

ordering and integrating, we have

(2g+(b)− V (b))− (2g+(z)− V (z)) =
√

(b− a)h(b)

∫ z

b

√
(y − b) +

+

∫ z

b

∞∑
j=1

f (j)(b)(y − b)j+
1
2dy

=
√

(b− a)h(b)
2

3
(z − b)

3
2 +

+
∞∑
j=1

2f (j)(b)

2j + 3
(z − b)j+

3
2 , (6.75)

if z is sufficiently near b, we find

(2g+(b)−V (b))−(2g+(z)−V (z)) =
2
√

(b− a)h(b)

3
(z−b)

3
2+O((z−b)

5
2 ), (6.76)

as function (2g+(b) − V (b)) − (2g+(z) − V (z)) have jumps due to the factor

(z−b) 3
2 , this function can not define a conformal map. Now by the cancellation

the exponent of the factor (z − b)
3
2 we can define a conformal map, in the

following way

β(z) = {3
4
[(2g+(b)−V (b))−(2g+(z)−V (z))]}

2
3 =

(b− a)
1
3h

2
3 (b)

2
2
3

(z−b), (6.77)

where we only take the linear term due to proximity between z and b.

Since we have the freedom to choose the image of β(z) in the contours near b,

matching the jump contours with the Stoke lines of the Airy function, we take

θ = 2π
3
, hence the conformal map determines four regions in the disk D(z, r)

around 0, such that 0 < argβ(z) < 2π
3

defines region I, 2π
3
< argβ(z) < π

defines region II and the other conjugates define regions III and IV respectively.

Note that under the transformation,

jQ(z) = e−N(g−(z)−V (z)
2

− l
2
)σjS(z)e

N(g+(z)−V (z)
2

− l
2
)σ,

the non constant jump matrices of S convert to constant matrices in the

neighborhood of b, in the following way
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Figure 6.10: An illustration of the conformal map β.

jQ =



(
0 1

−1 0

)
, [b− r, b〉(

1 0

1 1

)
, γ±(

1 1

0 1

)
, 〈b, b+ r]

(6.78)

Then this jump matrices define the jump condition for some QN ,

QN+(z) = QN−(z)jQ(z)

= QN−(z)e
−N(g−(z)−V (z)

2
− l

2
)σjS(z)e

N(g+(z)−V (z)
2

− l
2
)σ, (6.79)

multiplying both terms of this jump condition by e−N(g+(z)−V (z)
2

− l
2
)σ, we obtain(

QN+(z)e
−N(g+(z)−V (z)

2
− l

2
)σ
)
=
(
QN−(z)e

−N(g−(z)−V (z)
2

− l
2
)σ
)
jS(z)

which is the jump condition for SN inside the disk D(b, r). Thus the solution

that solves the jump conditions of SN inside the disk D(b, r) is given by

UN(z) = QN(z)e
−N [g(z)−V (z)

2
− l

2
]σ3 (6.80)

which is called the parametrix. Now to match this parametrix UN with M on

the boundary of the disk D(b, r), we recur to a product of functions,

QN(z) = EN(z)Φ(N
2
3β(z))

such that the first function allows to match M and the other function reflects

the jump conditions given by jQ. Where we have used the conformal map and

scaling to define the Airy parametrix,
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Φ(z) =



(
Ai(z) −w2Ai(w2z)

Ai′(z) −wAi′(w2z)

)
0 < argz < 2π

3(
−wAi(wz) −w2Ai(w2z)

−w2Ai′(wz) −wAi′(w2z)

)
2π
3
< argz < π(

−w2Ai(w2z) wAi(wz)

−wAi′(w2z) w2Ai′(wz)

)
−π < argz < −2π

3(
Ai(z) wAi(wz)

Ai′(z) w2Ai′(wz)

)
−2π

3
< argz < 0

, (6.81)

where w = e
2πi
3 . Recall that the Airy functions Ai(z), Ai(wz), Ai(w2z) are

solutions of the equation y′′ = zy, such that for |arg(z)| < π the Airy function

has the following asymptotics at z → ∞,

Ai(z) =
1

2
√
πz

1
4

e−
2
3
z
3
2 (1 +O(z−

3
2 )) (6.82)

Ai′(z) = − z
1
4

2
√
π
e−

2
3
z
3
2 (1 +O(z−

3
2 )). (6.83)

Furthermore, the Airy functions satisfy the following linear equations

Ai(z) + wAi(wz) + w2Ai(w2z) = 0 (6.84)

Ai′(z) + w2Ai′(wz) + wAi′(w2z) = 0. (6.85)

Now we show that the Airy parametrix Φ(z) solves the jump conditions given

by jQ. then the jump of Φ(z) from the region IV to I, for x ∈ 〈b, b+ r] is given

by

Φ(x)IV

(
1 1

0 1

)
=

(
Ai(x) wAi(wx)

Ai′(x) w2Ai′(wx)

)(
1 1

0 1

)

=

(
Ai(x) Ai(x) + wAi(wx)

Ai′(x) Ai′(x) + w2Ai′(wx)

)
,

by the linear relations (6.84)(6.85), we find

Φ(x)IV

(
1 1

0 1

)
=

(
Ai(x) −w2Ai(w2x)

Ai′(x) −wAi′(w2x)

)

Φ(x)IV

(
1 1

0 1

)
= Φ(x)I ,
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next, the jump of Φ(z) from the region II to I, for x ∈ γ+ is given by

Φ(x)II

(
1 0

1 1

)
=

(
−wAi(wx) −w2Ai(w2x)

−w2Ai′(wx) −wAi′(w2x)

)(
1 0

1 1

)

=

(
−wAi(wx)− w2Ai(w2x) −w2Ai(w2x)

w2Ai′(wx)− wAi′(w2x) −wAi′(w2x)

)
,

by the linear relations (6.84)(6.85), we get

Φ(x)II

(
1 0

1 1

)
=

(
Ai(x) −w2Ai(w2x)

Ai′(x) −wAi′(w2x)

)

Φ(x)II

(
1 0

1 1

)
= Φ(x)I .

Similarly, for the other conjugates regions, we have

Φ(x)III

(
0 1

−1 0

)
= Φ(x)II

Φ(x)IV

(
1 0

1 1

)
= Φ(x)III .

Therefore, taking into account the orientation of the contours we deduce that

Φ+(x) = Φ−(x)jQ(x), x ∈ γ± ∪ R.

Furthermore, the parametrix UN in terms of the Airy parametrix is given by

UN(z) = EN(z)Φ(N
2
3β(z))e−N [g(z)−V (z)

2
− l

2
], (6.86)

where the scaling N
2
3β(z) is of order O(1), because β(z) ∼ O(N

3
2 ). To match

M on the boundary of the disk D(b, r), EN can be written as a function of

M . However, the asymptotic of the scaling Airy parametrix do not allow to do

this exactly. Then, for hiding this asymptotic, we fit EN as

EN(z) =M(z)L−1
N (z),

where L−1
N (z) is the factor that matches UN with M , and is given by

LN(z) =
1

2
√
π

(
N− 1

6β− 1
4 (z) 0

0 N
1
6β

1
4 (z)

)(
1 i

−1 i

)
.
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Figure 6.11: A representation of the Airy parametrix.

Notice that LN has at most a singularity of the fourth-root type at b which is

removable. In the same way, M also has a removable singularity at b. Thence

by a slight redefinition, both LN and M are analytic in D(b, r). Therefore, EN

is analytic in D(b, r). For the region I, by the asymptotic (6.82) of the Airy

function we have

−w2Ai(w2z) =
i

2
√
πz

1
4

e
2
3
z
3
2 (1 +O(z−

3
2 )),

while, by the asymptotic (6.83) we obtain

−wAi′(w2z) =
iz

1
4

2
√
π
e

2
3
z
3
2 (1 +O(z−

3
2 )).

Therefore, the asymptotic behavior of the scaling Airy parametrix is given by

Φ(N
2
3β(z)) =
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e−

2
3 (N

2
3 β(z))

3
2

2
√
π(N

2
3 β(z))

1
4
(1 +O((N

2
3β(z))−

3
2 )) ie

2
3 (N

2
3 β(z))

3
2

2
√
π(N

2
3 β(z))

1
4
(1 +O(N−1β(z)−

3
2 ))

−(N
2
3 β(z))

1
4

2
√
πe

2
3 (N

2
3 β(z))

3
2
(1 +O((N

2
3β(z))−

3
2 )) i(N

2
3 β(z))

1
4

2
√
πe−

2
3 (N

2
3 β(z))

3
2
(1 +O(N−1β(z)−

3
2 ))



Φ(N
2
3β(z)) =

 1

2
√
πN

1
6 β

1
4
e−

2
3
Nβ

3
2 i

2
√
πN

1
6 β

1
4
e

2
3
Nβ

3
2

−N
1
6 β

1
4

2
√
π
e−

2
3
Nβ

3
2 iN

1
6 β

1
4

2
√
π
e

2
3
Nβ

3
2

 (I +O(N−1))

=
1

2
√
π

 1

N
1
6 β

1
4
e−

2
3
Nβ

3
2 i

N
1
6 β

1
4
e

2
3
Nβ

3
2

−N 1
6β

1
4 e−

2
3
Nβ

3
2 iN

1
6β

1
4 e

2
3
Nβ

3
2

 (I +O(N−1))

=
1

2
√
π

(
N− 1

6β− 1
4 0

0 N
1
6β

1
4

)(
e−

2
3
Nβ

3
2 ie

2
3
Nβ

3
2

−e− 2
3
Nβ

3
2 ie

2
3
Nβ

3
2

)
×

×(I +O(N−1))

=
1

2
√
π

(
N− 1

6β− 1
4 0

0 N
1
6β

1
4

)(
1 i

−1 i

)
×

×

(
e−

2
3
Nβ

3
2 0

0 e
2
3
Nβ

3
2

)
(I +O(N−1))

Φ(N
2
3β(z)) =

1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))e−

2
3
Nβ(z)

3
2 σ3 ,

by definition of the conformal map, 2
3
β(z)

3
2 = −g(z) + V (z)

2
+ l

2
, we have

Φ(N
2
3β(z)) =

N− 1
6
σ3

2
√
π
β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))e(Ng(z)−

NV (z)
2

−Nl
2
)σ3 .

Then, using this expression in the parametrix UN , we get

UN(z) = EN(z)
1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))×

×e(Ng(z)−
NV (z)

2
−Nl

2
)σ3e−N [g(z)−V (z)

2
− l

2
]σ3

= EN(z)
1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1)),

according to the fitted EN we find

UN(z) =M(z)L−1
N (z)

1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1)),
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notice that 1
2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
= LN(z), then we have

UN(z) = M(z)L−1
N (z)LN(z)(I +O(N−1))

UN(z) = M(z)(I +O(N−1)).

For the region II, by the asymptotics (6.82) (6.83) of the Airy function we have

− wAi(wz) =
1

2
√
πz

1
4

e−
2
3
z
3
2 (1 +O(z−

3
2 ))

−w2Ai′(wz) =
−z 1

4

2
√
π
e−

2
3
z
3
2 (1 +O(z−

3
2 )).

Thus, the scaling Airy parametrix has the following asymptotic behavior

Φ(N
2
3β(z)) =

1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))e−

2
3
Nβ(z)

3
2 σ3 ,

replacing the conformal map, 2
3
β(z)

3
2 = −g(z) + V (z)

2
+ l

2
, this asymptotic

behavior is given by

Φ(N
2
3β(z)) =

N− 1
6
σ3

2
√
π
β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))e(Ng(z)−

NV (z)
2

−Nl
2
)σ3 .

Therefore, putting this asymptotic behavior in the parametrix UN , we find

UN(z) = EN(z)
1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1))×

×e(Ng(z)−
NV (z)

2
−Nl

2
)σ3e−N [g(z)−V (z)

2
− l

2
]σ3

= EN(z)
1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1)),

by the definition of EN we have

UN(z) =M(z)L−1
N (z)

1

2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
(I +O(N−1)).

Since, 1
2
√
π
N− 1

6
σ3β(z)−

1
4
σ3

(
1 i

−1 i

)
= LN(z), then we obtain

UN(z) = M(z)L−1
N (z)LN(z)(I +O(N−1))

UN(z) = M(z)(I +O(N−1)).
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Similarly to the other conjugates regions the parametrix UN match withM on

the boundary of the disk D(b, r).

6.5
Final transformation and solution of the RHP

In this section we glue the model RHP to the parametrix, resulting one RHP

for RN in all the complex plane C. The solution of this RHP can be obtained

Figure 6.12: Analytic continuation of the jump condition after glueing the
model RHP to the parametrix.

by perturbation series and is close to I.

Let RN solves the final RHP (γ, jR):

1. RN(z) : C\γ → C2×2 is analytic, such that

γ = γ+ ∪ γ− ∪ ∂D(a, r) ∪ ∂D(a, r) ∪ R\[a− r, b+ r]

oriented as in Figure 6.12.

2. For z ∈ γ,

RN+(z) = RN−jR(z),
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where

jR(z) =

{
M(z)U−1

N (z) , ∂D(a, r) ∪ ∂D(a, r)

M(z)jS(z)M
−1(z) , γ± ∪ R\[a− r, b+ r]

3. As z → ∞,

RN(z) ∼= I +
∞∑
j=1

Rj

zj
,

where for z ∈ ∂D(a, r) ∪ ∂D(a, r)

jR(z) ∼= M(z)(M(z)(I +O(N−1)))−1

∼= I +O(N−1)

and for z ∈ γ± ∪ R\[a− r, b+ r]

jR(z) ∼=



(
1 0

O(e−cN) 1

)
M(z)M−1(z), γ±(

1 O(e−cN)

0 1

)
M(z)M−1(z), R\[a− r, b+ r]

Therefore

jR(z) ∼= I +O(e−cN).

Now If we represent the RHP (γ, jR) as singular integral equation, we obtain

RN−(z)− I =
1

2πi

∫
γ

RN−(z
′)(jR(z

′)− I)

z′ − (z − iε)
dz′.

Since

jR(z
′)− I ∼=

{
O(N−1) , ∂D(a, r) ∪ ∂D(a, r)

O(e−cN) , γ± ∪ R\[a− r, b+ r]

The singular integral equation can be solved by perturbation series, and by

the normalization condition of the RHP, we have

RN−(z) =
∞∑
k=0

RN−,k(z)

such that RN−,0 = I, then the singular integral equation can be written as

follows

∞∑
k=0

RN−,k(z)− I =
1

2πi

∫
γ

∑∞
k=0RN−,k(z

′)(jR(z
′)− I)

z′ − (z − iε)
dz′,
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hence

∞∑
k=1

RN−,k(z) =
1

2πi

∫
γ

∑∞
k=0RN−,k(z

′)(jR(z
′)− I)

z′ − (z − iε)
dz′

=
∞∑
k=0

1

2πi

∫
γ

RN−,k(z
′)(jR(z

′)− I)

z′ − (z − iε)
dz′,

by the properties of the indices in the sum,

∞∑
k=1

RN−,k(z) =
∞∑
k=1

1

2πi

∫
γ

RN−,k−1(z
′)(jR(z

′)− I)

z′ − (z − iε)
dz′

thus,

RN−,k(z) =
1

2πi

∫
γ

RN−,k−1(z
′)(jR(z

′)− I)

z′ − (z − iε)
dz′.

As RN−,0 = I, we find that

RN−,1(z) =
1

2πi

∫
γ

(jR(z
′)− I)

z′ − (z − iε)
dz′,

without loss of generality, as jR(z
′)− I ∼= O(N−1) we have

RN−,1(z) ∼= O(N−1)

and for the next term

RN−,2(z) =
1

2πi

∫
γ

RN−,1(z
′)O(N−1)

z′ − (z − iε)
dz′

=
1

2πi

∫
γ

O(N−1)O(N−1)

z′ − (z − iε)
dz′

RN−,2(z) ∼= O(N−2).

Consequently,

RN−,k(z) ∼= O(N−k).

Therefore, the solution of the singular integral equation is given by

RN−(z) ∼= I +
∞∑
k=1

O(N−k)

∼= I +O(N−1).
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By the jump condition,

RN+(z) = RN−(z)jR(z)

∼= (I +O(N−1))jR(z),

as jR(z) = I +O(N−1)

RN+(z) ∼= (I +O(N−1))(I +O(N−1))

RN+(z) = I +O(N−1).

Therefore by Liouville’s theorem we obtain

RN(z) = I +O(N−1)

Figure 6.13: After the final transformation RN both jump and asymptotic
conditions of the RHP approach to the identity when N → ∞.

6.6
Large asymptotics of orthogonal polynomials

In the RMT we are interesed in calculating limit density, limit local distribution

and free energy, that is closely related to the large asymptotic of orthogonal
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polynomials. Now we can go back to the tranformations

RN(z) = I +O(N−1)

SN(z) =

{
RN(z)M(z) , z ∈ C\D(a, r) ∪ (b, r)

RN(z)UN(z) , z ∈ D(a, r) ∪ (b, r)

TN(z) =



SN(z)

(
1 0

e−NG(z) 1

)
, z ∈ L+

SN(z)

(
1 0

eNG(z) 1

)−1

, z ∈ L−

SN(z) , z ∈ C\L+ ∪ L−

YN(z) = e
Nl
2
σ3TN(z)e

N [g(z)− l
2
]σ3

Figure 6.14: Screenplay of the steepest descent method for solving the RHP
that containing information about orthogonal polynomials.

6.7
Concluding remarks

In this chapter we studied the steepest descent method in the RHP which con-

sists in a serie of transformations for approaching the jump and asymptotic

conditions of the RHP to the identity. Recently large asymptotics of orthogonal

polynomials have attracted a lot of attention because of their relation to the

statistics of the eigenvalues of Hermitian random N ×N matrix, as N → ∞.

Importantly, this statistics have seen to be dependent only on symmetry prop-

erties of the matrices under consideration, but not on the exact distribution of
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the entries of the matrix. This behavior is known as universality. Most inter-

estingly, the local statistics at the edge has a universality independent of the

potential V (x). The bulk scaling limit as N → ∞ is described by [17]

lim
N→∞

1

Nc
KN(z +

u

Nc
, z +

v

Nc
) =

sin(π(u− v))

π(u− v)
. (6.87)

and for the edge point b is given by [17]

lim
N→∞

1

(Nc)
2
3

KN(b+
u

(Nc)
2
3

, b+
v

(Nc)
2
3

) =
Ai(u)Ai′(v)− Ai′(u)Ai(v)

u− v
. (6.88)

Simirlarly for the other edge point a,

lim
N→∞

1

(Nc)
2
3

KN(a−
u

(Nc)
2
3

, a− v

(Nc)
2
3

) =
Ai(u)Ai′(v)− Ai′(u)Ai(v)

u− v
, (6.89)

where the rescaling is the same for both edge points.
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7
Discussion and Outlook

In this thesis we studied the theory necessary to formalize the continuum limit

of Random Matrix Theory via Riemann Hilbert problems. Especifically we

have seen the planar limit which is the minimal and standard continuum the-

ory that one can find in almost all the applications of Random Matrix Theory.

To get the other continuum theories by Riemann Hilbert theory one only has

to change the local parametrix and the rest of transformations keeping in the

same way. For this reason the Riemann Hilbert algorithm can be extended to

other continuum theories without a lot of difficulties. For example in the Dy-

namical Triangulation continuum theory the parametrix local is given by the

painleve I which is a nonlinear function that also can be analyzed by Riemann

Hilbert problems. Indeed with the techniques of the Riemann Hilbert problems

one can demostrate the transition to continuum theories and study the con-

tinuum theory by steepest descent method. Other interesting subject that was

studied in this thesis is the variety of representations of the orthogonal polyno-

mials. Motivating to continue to look more representations of the orthogonal

polynomials. As the generating function for rooted branched polymers is given

by generating function of the Dick paths, we also have a manifold of repre-

sentations of the Gaussian Unitary Ensemble because one can think of the

Hermite polynomials as a characterization of this ensemble without rigorosity

and in this way connect this ensemble to the variety of representations of the

orthogonal polynomials. We remarked the Gaussian Unitary Ensemble because

this corresponds to the same family of continuum theories of the planar limit.

So incrementing the quantity of tools for analysing this family of continuum

theories that range from Riemann Hilbert problems to Gaussian Unitary En-

semble. Other ensembles as Circular Ensemble also correspond to this family

of continuum theories allowing to find other applications as in the number

theory. On the other side the Dyson gas allows one to interpret the statistical

information of the eigenvalues of these ensembles. All these connections can

be applied to the nonperturbative gravitational path integral of Dynamical

Triangulation and can be extended to its causal approach in the discrete and

continuum side because both correspond to Random Matrix Theories.
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A
Continum limits of Random matrices

Before describing the continuum limit of the matrix integral, we review how the

phase transition of the path integral gives a quantum continuum theory with

an error proportional to the inverse of the number N of random paths. This

transition occurs after decomposing the time interval into N small intervals

when we take the large N limit. Where the propagator is the sum of all

possible paths with lattice spacing a from some field configuration to other

field configuration such that to each path we associate a phase.

〈ψf |ψi〉 =
∫
[dψ]eiS(ψ)

By the transformation t = −iτ that changes the Minkowski into Euclidean

space time, the propagator in the evolution kernel is analytically continued

from the imaginary time to real time and hence into Euclidean time propagator,

〈ψf |ψi〉E =

∫
[dψ]Ee

−SE(ψ)

which is given by a partition function at finite temperature with a Gibbs mea-

sure, where paths have the only constraint that they are periodic in Euclidean

time with period τ = β.

In both propagators as Minkowskian and Euclidean, the integral is well defined

by taking the spacing a to zero and at the same time taking the number N

of intervals to infinite, hence we obtain a right quantum theory by a proper

scaling limit.

In the same way that the Euclidean propagator, the matrix integrals corre-

spond to path integrals where the paths are discrete graphs such that a planar

limit is done by taking the area A of this graphs to zero and at the same time

taking the number N of graphs to infinite. In this way the matrix integrals

acquire meaning as a continuum theory with free energy

F 0
N =

∑
connected Γ

N2−2gF g
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which is the same for a family of random graphs. Since this family after taking

the planar limit are well defined into a finite radius of convergence gc, so when

the coupling constant reaches this radius of convergence gc, the free energy is

dominated by graphs with infinite vertices which corresponds to a continuum

surface. In other words this limit only combines graphs of the same genus

g = 0.

If one wants the contribution of all the genus in the free energy and as the

divergence of the terms of this energy is a local phenomena and not dependt on

global properties likewise the genus, we take the limits N → ∞ and g → gc in

a correlated manner such that genus suppression is compensated with g → gc.

This so-called double scaling limit gives a coherent contribution from all genus

in the free energy. Moreover this energy corresponds to a family of continuum

theories differents from the families obtained by a planar limit.
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B
Properties of the kernel

As the determinantal structure of the point process on the Hermi-

tian case is described by the kernel, so the kernel KN(λi, λj) =

e−
1
2
N(V (λi)+V (λj))

∑N−1
n=0

1
hn
pn(λi)pn(λj), fullfiled the following property

∫
KN(λi, λk)KN(λk, λj)dλk =

∫
dλke

− 1
2
N(V (λi)+2V (λk)+V (λj))

N−1∑
n=0

pn(λi)pn(λk)

×
N−1∑
m=0

pm(λk)pm(λj)

=
N−1∑
n,m=0

∫
dλke

−NV (λk)e−
1
2
N(V (λi)+V (λj))pn(λi)×

×pn(λk)pm(λk)pm(λj)

=
N−1∑
n,m=0

e−
1
2
N(V (λi)+V (λj))pn(λi)δn,mpm(λj)

=
N−1∑
n=0

e−
1
2
N(V (λi)+V (λj))pn(λi)pn(λj)∫

KN(λi, λk)KN(λk, λj)dλk = KN(λi, λj), (B.1)

and has the next property

∫
KN(λi, λi)dλi =

∫
dλie

−NV (λi)

N−1∑
n=0

pn(λi)pn(λi)

=
N−1∑
n=0

∫
dλie

−NV (λi)pn(λi)pn(λi)

=
N−1∑
n=0

δn,n∫
KN(λi, λi)dλi = N, (B.2)
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Next, one can remark what happens if we integrate the determinant of the

kernel over one of the eigenvalues, then we get

∫
det(KN(λi, λj))

k+1
i,j=1dλk+1 =

∫
∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣
dλk+1

by the Laplace formula which expresses the determinant of a matrix in terms

of its minors

(∗) ≡
∫

det(KN(λi, λj))
k+1
i,j=1dλk+1

=

∫ k+1∑
i

(−1)k+1+iKN(λk+1, λi)

×

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,i)

dλk+1 (B.3)

where the minor | · |(i,k+1) is the determinant of the k × k matrix that results

from | · | by removing the row i and the column k + 1.

Now, expanding the minors, except the last one, along the last column by the
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Laplace formula

(∗) =

∫ k∑
i

(−1)k+1+iKN(λk+1, λi)
k∑
j

(−1)j+kKN(λj, λk+1)︸ ︷︷ ︸
ajk

×

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,i)(j,k+1)

︸ ︷︷ ︸
A(jk)

dλk+1 +

+

∫
(−1)2k+2KN(λk+1, λk+1)×

×

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

dλk+1

= −
∫ k∑

i

k∑
j

(−1)i+jKN(λk+1, λi)KN(λj, λk+1)

×

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,i)(j,k+1)

dλk+1 +

+

∫
KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

dλk+1
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seeing that the determinants are independent of λk+1, we find

(∗) = −
k∑
i

k∑
j

(−1)i+j

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,i)(j,k+1)

×
∫
KN(λk+1, λi)KN(λj, λk+1)dλk+1 +

+

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1) ∫
KN(λk+1, λk+1)dλk+1

by the properties of the kernel, we obtain

(∗) = −
k∑
i

k∑
j

(−1)i+j

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,i)(j,k+1)

×

×KN(λj, λi) +

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

N

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Appendix B. Properties of the kernel 115

evaluating the sum over j as a determinant, we have

(∗) = −
k∑
i

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

+

+

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

N

= −k

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

+N

∣∣∣∣∣∣∣∣∣∣
KN(λ1, λ1) · · · KN(λ1, λk+1)

KN(λ2, λ1) · · · KN(λ2, λk+1)
...

. . .
...

KN(λk+1, λ1) · · · KN(λk+1, λk+1)

∣∣∣∣∣∣∣∣∣∣

(k+1,k+1)

resulting in∫
det(KN(λi, λj))

k+1
i,j=1dλk+1 = (N − k) det(KN(λi, λj))

k
i,j=1 (B.4)
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C
Some considerations of the equivalence between orthogonal
polynomials and RHP

Here first of all we will prove with more detail the characterization of the

orthogonal polynomials via RHP. Hence for Yn,11 by the first condition and the

second condition of RHP,

(Yn,11)+(x) = (Yn,11)−(x),

we have that Yn,11 corresponds to a entire function. Furthermore, due to the

third condition,

Yn,11(z) = zn +O(zn−1)

we obtain through the Liouville’s theorem that Yn,11 is a monic polynomial of

degree n, Yn,11 = pn.

Next for Yn,12 by the first condition we have that Yn,12 is analytic in C+ and

C−. Further the second condition gives us that

(Yn,12)+(x) = (Yn,11)−(x)w(x) + (Yn,12)−(x).

Taking into count that Yn,11 = pn, we have that the preceding expression can

be written on the following way

(Yn,12)+(x) = (Yn,12)−(x) + pn(x)w(x).

Therefore we have a scalar RHP for Yn,12 with the next conditions

1. Yn,12 is analytic in C\R.

2. (Yn,12)+(x) = (Yn,12)−(x) + pn(x)w(x). x ∈ R

3. Yn,12 → O(z−n−1), z → ∞

Then, the function Yn,12 that satisfies this conditions is given by the Cauchy

transform of pn(x)w(x), on the following way

Yn,12 =
1

2πi

∫
R

pn(x)w(x)

x− z
dx
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such that when z → ∞ the asymptotic behaviour of Yn,12 is given by

Yn,12 =
1

2πi

∫
R

pn(x)w(x)

z

1
x
z
− 1

dx

= − 1

2πi

∫
R

1

z
(

∞∑
j=0

(
x

z
)j)pn(x)w(x)dx

= − 1

2πi

∞∑
j=0

1

zj+1

∫
R

xjpn(x)w(x)dx

due to orthogonality relation the first n terms of the sum are canceled

Yn,12 = − hn
2πizn+1

−
∞∑

j=n+2

1

2πi

1

zj

∫
R

xn+1pn(x)w(x)dx

which as z → ∞ is equivalent to

Yn,12 = O(z−n−1)

Analougosly as before to the first row of Yn, for the second row we have that

for Yn,21 by the Liouville’s theorem is given by Yn,21 = − 2πi
hn−1

pn−1 and for Yn,22

we have a nonhomogeneus RHP with solution Yn,22 = − 1
hn−1

∫
R
pn−1(x)w(x)dx

x−z .

Therefore the solution Yn of the matricial RHP can be expressed as a function

of orthogonal polynomials with respect to the measure w(x)dx in R.

Since by the second condition of the RHP the determinant of Yn satisfies the

following relation

detYn+(x) = detYn−(x) det

(
1 w(x)

0 1

)
= detYn−(x)

Hence detYn corresponds to a entire function and by the third condition of

RHP,

det

(
zn +O(zn−1) O(z−n−1)

O(zn−1) z−n +O(z−n−1)

)
∼= 1

Therefore, due to Liouville’s theorem we have that

detYn(z) = 1

which means that every solution Yn of RHP is invertible and Y −1
n is analytic.

Now we will show that Yn is unique, so we suppose that there are other solution
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Ỹn of RHP such that Xn = ỸnY
−1
n satisfies the following condition

Xn+(x) = ˜Yn+Y
−1
n+

= ˜Yn−jY (x)j
−1
Y (x)Y −1

n−

= ˜Yn−Y
−1
n−

= Xn−(x)

then Xn is an entire function. Using the third condition of RHP we have as

z → ∞ that

Xn(z) ∼=

(
zn +O(zn−1) O(z−n−1)

O(zn−1) z−n +O(z−n−1)

)(
z−n +O(z−n+1) O(z−n+1)

O(zn+1) zn +O(zn+1)

)
Xn(z) ∼= I

So by the Liouville’s theorem we have,Xn(z) = I which means that ỸnY
−1
n = I,

for this reason

Ỹn = Yn

which proves the uniqueness of Yn.

Now we will find the coefficients of the three term recurrence relation for n > 0

λpn(λ) = pn+1(λ) + snpn(λ) + rnpn−1(λ) (C.1)

as function of the RHP’s solution. To our pourpose we multiply both the second

and third condition of the RHP by

(
z−n 0

0 zn

)
to compare them. Hence for

the second condition we have

Yn(z)

(
z−n 0

0 zn

)
=

(
z−npn(z)

zn

2πi

∫
R
pn(x)w(x)dx

x−z

−2z−nπi
hn−1

pn−1(z) − zn

hn−1

∫
R
pn−1(x)w(x)dx

x−z

)
(C.2)

and for the third condition we have

Yn(z)

(
z−n 0

0 zn

)
= (

(
zn 0

0 z−n

)
+

∞∑
k=1

Yk

(
zn−k z−n−k

zn−k z−n−k

)
)

(
z−n 0

0 zn

)

= I +
∞∑
k=1

Yk
zk

(C.3)

and by comparing (C.2) and (C.3), we obtain that

I +
∞∑
k=1

Yk
zk

=

(
z−npn(z)

zn

2πi

∫
R
pn(x)w(x)dx

x−z

−2z−nπi
hn−1

pn−1(z) − zn

hn−1

∫
R
pn−1(x)w(x)dx

x−z

)
(C.4)
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If we consider that

pn(z) = zn + an−1z
n−1 + an−2z

n−2 + ...

pn−1(z) = zn−1 + bn−2z
n−2 + bn−3z

n−3 + ...

so by replacing these expressions in the first column and expanding the second

column of the right term in (C.4), we have

I+
∞∑
k=1

Yk
zk

=

(
z−n(zn + an−1z

n−1 + ...) zn

2πi

∫
R
pn(x)w(x)

∑∞
j=0

xj

zj+1dx

−2z−nπi
hn−1

(zn−1 + bn−2z
n−2 + ...) − zn

hn−1

∫
R
pn−1(x)w(x)

∑∞
j=0

xj

zj+1dx

)

by the orthogonality relation we have that

(∗∗) =

(
1 + an−1

z
+ an−2

z2
+O(z−3) zn(− hn

2πizn+1 +O(z−n−2))

− 2πi
hn−1z

− 2πbn−2i
hn−1z2

− 2πbn−3i
hn−1z3

+O(z−4) zn( hn−1

hn−1zn
+O(z−n−1))

)

=

(
1 + an−1

z
+ an−2

z2
+O(z−3) − hn

2πiz
+O(z−2)

− 2πi
hn−1z

− 2πbn−2i
hn−1z2

− 2πbn−3i
hn−1z3

+O(z−4) 1 +O(z−1)

)

If we decompose this expression like the left side of (C.4) we obtain

I+
Y1
z
+
Y2
z2

+
∞∑
k=3

Yk
zk

=

(
1 0

0 1

)
+

(
an−1 − hn

2πi

− 2πi
hn−1

O(1)

)
1

z
+

(
an−2 O(1)

−2πbn−2i
hn−1

O(1)

)
1

z2
+

+

(
O(1) O(1)

−2πbn−3i
hn−1

O(1)

)
1

z3
+O(z−4)

By comparing each order we have

Y1 =

(
an−1 − hn

2πi

− 2πi
hn−1

O(1)

)
,

Y2 =

(
an−2 O(1)

−2πbn−2i
hn−1

O(1)

)

Y3 =

(
O(1) O(1)

−2πbn−3i
hn−1

O(1)

)
Now we evaluate the coefficients of the recurrence relation by the elements of

these matrices. First, to obtain rn from Y1 we find the following relation

Y1,21Y1,12 = (− 2πi

hn−1

)(− hn
2πi

) =
hn
hn−1

= rn
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where the last equality is given by (4.26). Finally to obtain sn−1 we unfold the

polynomials in the recurrence relation by (C.1) in the following way

z(zn−1 + bn−2z
n−2 + bn−3z

n−3 + ...) = (zn + an−1z
n−1 + an−2z

n−2 + ...)

+sn−1(z
n−1 + bn−2z

n−2 + bn−3z
n−3 + ...) +O(zn−2)

classifying order by order we obtain

zn + bn−2z
n−1 + bn−3z

n−2 + ... = zn + (an−1 + sn−1)z
n−1 +O(zn−2)

hence from the O(zn−1) term we have

sn−1 = bn−2 − an−1

note that from the matrix elements of Y1 and Y2 we find that

Y2,21
Y1,21

− Y1,11 = bn−2 − an−1 = sn−1

Now we express the correlation kernel in terms of the solution of RHP. Since

detYn(z) = 1 the inverse of the solution of RHP is given by

Y −1
n (z) =

(
− 1
hn−1

∫
R
pn−1(x)w(x)dx

x−z − 1
2πi

∫
R
pn(x)w(x)dx

x−z
2πi
hn−1

pn−1(z) pn(z)

)

hence by multiplying by
(

0 1
)
we obtain

(
0 1

)
Y −1
N+(λj) =

(
2πi
hN−1

pN−1(λj) pN(λj)
)

while by multiplying YN−(λi) by

(
1

0

)
we obtain

YN−(λi)

(
1

0

)
=

(
pN(λi)

− 2πi
hN−1

pN−1(λi)

)

therefore

(
0 1

)
Y −1
N+(λj)YN−(λi)

(
1

0

)
=

2πi

hN−1

(pN−1(λj)pN(λi)− pN(λj)pN−1(λi))

DBD
PUC-Rio - Certificação Digital Nº 1322133/CA



Appendix C. Some considerations of the equivalence between orthogonal
polynomials and RHP 121

hence the correlation kernel is given by

KN(λi, λj) =
e−

1
2
N(V (λi)+V (λj))

2πi(λi − λj)

(
0 1

)
Y −1
N+(λj)YN−(λi)

(
1

0

)
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D
Universality

A general phenomena so-called Universality allows the different applications in

mathematics, physics and science in general. In RMT there is a lot of progress

about this phenomena which for a family of random matrices the limiting dis-

tribution of various statistics of the eigenvalue spectrum determined by the

kernel after a proper scaling converges to a common distribution as N → ∞,

farther the kernel of this distribution is non random which is connect to some

kernels. But is not complete its understanding yet.

In the scalar RMT this phenomena is known as central limit theorem

which states that for a group of mutually independent random variables

X1, X2, ..., XN , no matter what distribution characterize this random variables,

so the normalized average in the limit N → ∞ is given by a Gaussian distri-

bution, which have special properties as ?.

A family of the local distribution of eigenvalues in the matrix is detremined by

the correlation kernel. Dyson found an exact solution for the scaling limit of

correlation kernel between eigenvalues in the Gaussian unitary ensemble. Now

we know that the majority of nongaussian unitary ensembles below to the same

family of the Gaussian unitary ensemble which this family is determined by

the scaling limit of the correlation kernel inside the support of the limiting

spectral measure,

K(u, v) =
sin(π(u− v))

π(u− v)

and at the edge point of the spectral measure by

K(u, v) =
Ai(u)Ai′(v)− Ai′(u)Ai(v)

u− v

But for the rest of nongaussian unitary ensembles this last kernel is different

wich is given by the criticality of the potential in this point wich is related to

the double scaling limit, while for this rest of nongaussian unitary ensembles

the kernel inside the support is the same in the case of polynomial potentials.

In this way for each family of Random matrix one can find a type of kernel.

Hence in the unitary ensemble by Riemann hilbert techniques one can classify

this families by the critical points of the support. Because correlation kernel
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for finite N can be expres in terms of orthogonal polynomials on the line.
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