
Yanely Milanés Barroso

Structured Learning with Incremental Feature
Induction and Selection for Portuguese

Dependency Parsing

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor: Prof. Ruy Luiz Milidiú

Rio de Janeiro
March 2016

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Yanely Milanés Barroso

Structured Learning with Incremental Feature
Induction and Selection for Portuguese

Dependency Parsing

Dissertation presented to the Programa de Pós–Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Ruy Luiz Milidiú
Advisor

Departamento de Informática — PUC–Rio

Prof. Marco Antonio Casanova
Departamento de Informática — PUC-Rio

Prof. Maria Cláudia de Freitas
Departamento de Letras — PUC-Rio

Prof. Marcio da Silveira Carvalho
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, March 9th, 2016

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

All rights reserved.

Yanely Milanés Barroso

Graduated from University of Havana, Cuba in Computer
Science. Her research is focused in Machine Learning and
Natural Language Processing.

Bibliographic data
Milanés Barroso, Yanely

Structured Learning with Incremental Feature Induction
and Selection for Portuguese Dependency Parsing / Yanely
Milanés Barroso; advisor: Ruy Luiz Milidiú. — 2016.

92 f. : il. (color.); 30 cm

Dissertação (mestrado) - Pontif́ıcia Universidade Católica
do Rio de Janeiro, Rio de Janeiro, Departamento de In-
formática, 2016.

Inclui bibliografia.

1. Informática – Teses. 2. aprendizado de máquina su-
pervisionado. 3. processamento de linguagem natural. 4.
análise de dependência de português. 5. modelo linear es-
parso. 6. indução de atributos. I. Milidiú, Ruy Luiz. II. Pon-
tif́ıcia Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Acknowledgement

Thanks to my advisor Prof. Ruy Luiz Milidiú for his endless support and

encouragement for this accomplishment.

Thanks to Prof. Maria Cláudia de Freitas for her help and the shared

knowledge.

Thanks to PUC-Rio and CAPES, for the financial support.

Thanks to the friends of LEARN, for their support and friendship.

To all colleagues, faculty and staff of the Department of PUC-Rio, for

the fellowship, encouragement and support.

To my parents, family and friends who supported me even with my ab-

sence in family life.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Abstract

Milanés Barroso, Yanely; Milidiú, Ruy Luiz (Advisor). Structured
Learning with Incremental Feature Induction and
Selection for Portuguese Dependency Parsing. Rio de
Janeiro, 2016. 92p. MSc. Dissertation — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Natural language processing requires solving several tasks of increasing

complexity, which involve learning to associate structures like graphs and

sequences to a given text. For instance, dependency parsing involves learning

of a tree that describes the dependency-based syntactic structure of a

given sentence. A widely used method to improve domain knowledge

representation in this task is to consider combinations of features, called

templates, which are used to encode useful information with nonlinear

pattern. The total number of all possible feature combinations for a given

template grows exponentialy in the number of features and can result in

computational intractability. Also, from an statistical point of view, it can

lead to overfitting. In this scenario, it is required a technique that avoids

overfitting and that reduces the feature set. A very common approach to

solve this task is based on scoring a parse tree, using a linear function

of a defined set of features. It is well known that sparse linear models

simultaneously address the feature selection problem and the estimation

of a linear model, by combining a small subset of available features. In

this case, sparseness helps control overfitting and performs the selection

of the most informative features, which reduces the feature set. Due to

its flexibility, robustness and simplicity, the perceptron algorithm is one of

the most popular linear discriminant methods used to learn such complex

representations. This algorithm can be modified to produce sparse models

and to handle nonlinear features. We propose the incremental learning of

the combination of a sparse linear model with an induction procedure of

non-linear variables in a structured prediction scenario. The sparse linear

model is obtained through a modifications of the perceptron algorithm. The

induction method is the Entropy-Guided Feature Generation. The empirical

evaluation is performed using the Portuguese Dependency Parsing data set

from the CoNLL 2006 Shared Task. The resulting parser attains 92.98% of

accuracy, which is a competitive performance when compared against the

state-of-art systems. On its regularized version, it accomplishes an accuracy

of 92.83%, shows a striking reduction of 96.17% in the number of binary

features and reduces the learning time in almost 90%, when compared to

its non regularized version.
Keywords

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

supervised machine learning; natural language processing; Portuguese

dependency parsing; sparse linear model; feature induction.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Resumo

Milanés Barroso, Yanely; Milidiú, Ruy Luiz. Aprendizado Es-
truturado com Indução e Seleção Incrementais de Atri-
butos para Análise de Dependência em Português. Rio de
Janeiro, 2016. 92p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O processamento de linguagem natural busca resolver várias tarefas de

complexidade crescente que envolvem o aprendizado de estruturas comple-

xas, como grafos e seqüências, para um determinado texto. Por exemplo, a

análise de dependência envolve o aprendizado de uma árvore que descreve a

estrutura sintática de uma sentença dada. Um método amplamente utilizado

para melhorar a representação do conhecimento de domı́nio em esta tarefa

é considerar combinações de atributos usando conjunções lógicas que codifi-

cam informação útil com um padrão não-linear. O número total de todas as

combinações posśıveis para uma conjunção dada cresce exponencialmente

no número de atributos e pode resultar em intratabilidade computacional.

Também, pode levar a overfitting. Neste cenário, uma técnica para evitar o

superajuste e reduzir o conjunto de atributos faz-se necessário. Uma abor-

dagem comum para esta tarefa baseia-se em atribuir uma pontuação a uma

árvore de dependência, usando uma função linear do conjunto de atributos.

Sabe-se que os modelos lineares esparsos resolvem simultaneamente o pro-

blema de seleção de atributos e a estimativa de um modelo linear, através

da combinação de um pequeno conjunto de atributos. Neste caso, promo-

ver a esparsidade ajuda no controle do superajuste e na compactação do

conjunto de atributos. Devido a sua flexibilidade, robustez e simplicidade,

o algoritmo de perceptron é um método linear discriminante amplamente

usado que pode ser modificado para produzir modelos esparsos e para lidar

com atributos não-lineares. Propomos a aprendizagem incremental da com-

binação de um modelo linear esparso com um procedimento de indução de

variáveis não-lineares, num cénario de predição estruturada. O modelo li-

near esparso é obtido através de uma modificação do algoritmo perceptron.

O método de indução é Entropy-Guided Feature Generation. A avaliação

emṕırica é realizada usando o conjunto de dados para português da CoNLL

2006 Shared Task. O analisador resultante alcança 92,98% de precisão, que é

um desempenho competitivo quando comparado com os sistemas de estado-

da-arte. Em sua versão regularizada, o analizador alcança uma precisão de

92,83%, também mostra uma redução notável de 96,17% do número de atri-

butos binários e, reduz o tempo de aprendizagem em quase 90%, quando

comparado com a sua versão não regularizada.
Palavras–chave

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

aprendizado de máquina supervisionado; processamento de lingua-

gem natural; análise de dependência de português; modelo linear esparso;

indução de atributos.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Contents

1 Introduction 11
1.1 Dependency Parsing 12
1.2 Structured Learning 13
1.3 Feature Generation 13
1.4 Feature Selection 14
1.5 Motivation and Goals 15
1.6 Contributions 16
1.7 Dissertation Organization 17

2 Background 18
2.1 Dependency Grammars 18
2.2 Dependency Trees 19
2.3 Parsing with Dependency Trees 20
2.4 Chapter Conclusions 26

3 Dependency Parsing 27
3.1 Auxiliary Predictors 27
3.2 Candidate Edge Filter 30
3.3 Basic Edge Features 33
3.4 Chapter Conclusions 37

4 Structure Perceptron 39
4.1 Dependency Tree Learning 40
4.2 Structure Perceptron 41
4.3 Large Margin Classifiers 43
4.4 Feature Induction 45
4.5 Sparser Perceptron Models 48
4.6 Chapter Conclusions 51

5 S-IFIS Structured Learning with Incremental
Feature Induction and Selection 52

5.1 Attributes Representation 52
5.2 Learning Algorithm 53
5.3 Experiments Parametrization 56
5.4 Implementation Remarks 57
5.5 Chapter Conclusions 58

6 Empirical Evaluation 60
6.1 Corpus 60
6.2 Evaluation Metrics 61
6.3 Portuguese Dependency Parsing 62
6.4 Results 64
6.5 Error Analysis 75
6.6 Discussion 76

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

6.7 Chapter Conclusions 78

7 Conclusions 79

8 Bibliography 82

A Portuguese Corpus Part-Of-Speech Tag Set 90

B Chunk and Clause Tag Sets 91
B.1 Clause Tags 91
B.2 Chunk Tags 92

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

1
Introduction

Nowadays, due to remarkable technology achievements, we observe an

explosion of big data applications and services. Hence, the analysis of large

collections of complex data is imperative. In order to pursue this goal, several

Machine Learning techniques have been successfully applied to the analysis of

large collection of texts, images and sensor measurements. These approaches

have been successfully applied in several research fields, such as natural

language processing (NLP), computer vision, and speech recognition.

NLP refers to the set of computational techniques that, combined with

linguistic knowledge, allow computers to represent and use human knowledge

expressed by human language sentences. Unlike programming languages, that

are designed to be unambiguous, natural languages are not precise. Hence,

NLP tasks are challenging because of this intrinsic ambiguity and due to the

presence of linguistics structures that depend on many complex variables.

A distinctive characteristic of this field is that, for each task, it usually

exists a competition that establishes a well-defined problem setting, standard

corpora and evaluation metrics. The Conference on Natural Language Learning

(CoNLL) Shared Tasks are examples of such competitions. Furthermore, they

promote a great number of advances in this research area. Therefore, tasks

on this field are suitable for empirical evaluation of novel machine learning

algorithms.

NLP comprises several problems that involve the learning of complex

structures like sequences or graphs. Here, we are interested in Dependency

Parsing (DP), which is based on syntactic theories, like dependency grammars,

that model dependency relations between the linguistic units of a sentence

(68). This task involves the prediction of a tree representing the syntactic

structure of a sentence. In this case, the output domain covers all possible

dependency trees for a given sentence and, hence, can be modeled as a

structured prediction problem. Moreover, following the line of research of the

Laboratorio de Engenharia de Algoritmos e Redes Neurais1 (LEARN) research

group, we seek to integrate the machine learning approaches to DP previously

used by (48), (17) and (13). Next, we define DP in the context of structured

prediction and give details regarding the motivations, goals and contributions

1http://www.learn.inf.puc-rio.br

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 12

of this work.

In our problem statement and techniques review, we follow (48; 17; 13)

making free use of their former descriptions. Our emphasis in this document

is on reporting our new modeling strategies and the resulting new Portuguese

Dependency Parsing system.

1.1
Dependency Parsing

Dependency parsing refers to the task of finding the syntactic structure

underlying a sentence. The modern theoretical support for this type of parsing

starts with the work of (68). The grammatical theories and formalisms com-

prised in this tradition share the same basic assumptions, that the syntactic

structure of a sentence can be defined as lexical elements linked by binary

assymetrical relations called depedencies.

In order to find the dependencies between the lexical elements of a given

sentence, the dependence structure is modeled as a rooted graph, where the

nodes represent the lexical items and the edges represent the dependency

relations between such elements. Also, most dependency grammars consider

additional constrains for this structure, which leads to consider this graph as

a rooted tree. Here, we use the term token to refer the lexical elements of the

sentence.

penaROOT É por isso que , diz , não tem de Bill .

Figure 1.1: Dependency tree for a Portuguese sentence.

Let x = (x0 . . . xn) be a sentence, where xi represents the i-th token

for i ∈ [0, n]. The dependency relation is directed by nature. Therefore, the

dependency structure is often modeled as a directed acyclic graph. An example

is shown in Figure 1.1 for the Portuguese sentence É por isso que, diz, não tem

pena de Bill. The dependency relations are represented by arrows pointing

from the head to the dependent.

A dependency tree y associated with the given sentence x is a directed

rooted tree where there is a node i for each token xi, an artificial node 0

that represents the tree root and several arcs (i, j) that represent dependency

relations. When (i, j) is an arc in y, this means that there exists a dependency

relation between xi, the head token, and xj, the dependent token.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 13

1.2
Structured Learning

Structured Learning (SL) comprises several machine learning techniques

that build maps between pairs of input and their corresponding correct output.

In a general sense, such outputs can be complex structures like sequences

or graphs. These approaches allow a more natural modeling for tasks that

involve learning complex and interdependent structures. DP can be successfully

modeled as a structured prediction problem because involves the prediction of

a dependency tree given an input sentence. The output space is composed by

all possible dependency trees.

In this case, the prediction problem F (x) is to predict a dependency tree

for an input sentence x, and coincides with finding the maximum-score tree

among the valid rooted trees

F (x;w) = arg maxy∈Y (x)s(x, y;w),

where s(x, y;w) =
∑

(i,j)∈y s(x, i, j;w) is the score of a candidate tree y ∈ Y (x),

i.e., the sum of its edges scores.

Most approaches recast parsing as a maximum branching problem. This

prediction problem can be efficiently solved with Chu-Liu-Edmonds algorithm

(15; 11). The scoring function is known as the edge-based model.

Linear discriminative models are one of the most popular techniques

used in the NLP community to solve DP. The edge-based scoring function is

represented with a linear discriminant function with the form of

s(x, i, j;w) = ⟨w,Φ(x, i, j)⟩ =
M∑
m

wmϕm(x, i, j).

That is a linear combination of the vector Φ(x, i, j) of M-real valued

feature functions ϕi(x, i, j) that represents the input x with a weight vector

w. In this case, ⟨., .⟩ refers to the scalar product operator. Due its flexibility,

robustness and simplicity, the perceptron algorithm is one of the most popular

linear discriminant methods used to learn such complex representations.

1.3
Feature Generation

A distinctive characteristic of NLP tasks is the presence of ambiguity. In

the context of DP, it is possible to attribute more than one interpretation to a

sentence. The problem of disambiguation of sentences in DP is hard because

it is difficult for an analyzer choose the most adequate answer. In this case, to

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 14

tackle the disambiguation problem, it is necessary a large set of features that

describe well the phenomenon of interest.

On the other hand, it is known that in supervised machine learning

algorithms the quality of the chosen features describing the problem is critical

to the learning process. Thus, the discovery of useful features has a major role.

Feature engineering is the process of using domain knowledge in the

design of features. One drawback is that it is carried out manually. DP can be

modeled as a structured problem and structured prediction is highly nonlinear

on the set of inputs. In this case, are required domain experts, which is

expensive in time and resources, to manually derive such patterns. As an

alternative, there are several methods for automatic feature generation that

can be employed such as nonlinear kernels, feature induction or deep learning

approaches, among others.

Usually, these methods can lead to the learning of dense models in a

feature space with large dimensions. As a consequence, it can appear the

problem of overfitting the training data. Another potential issue to take into

account is the introduction of a large number of features that are irrelevant

or redundant. In this scenario, to maintain the benefits of feature generation,

a mechanism to tackle overfitting and select the most informative features

becomes a major task.

1.4
Feature Selection

In machine learning, the process of feature selection refers to the tech-

niques used to select the set of the most relevant features for the learning

process. These methods can be applied to increase training speed or to limit

space of memory and storage. Also they are employed to obtain a better un-

derstanding of the data, or to increase predictive accuracy (25).

When considering linear discriminant models, feature selection can be

attained by encouraging the weight vector w to be sparse (49). In this case,

sparse linear models focus on the joint estimation of a linear model and the

selection of the subset of the most informative features. Basically, they predict

outputs by linearly combining a small subset of the features representing

the data. Therefore, learning algorithms using this technique are suitable to

promote a trade-off between model complexity and generalization power, while

they prevent overfitting of the training data.

Due to the large dimensions of feature vectors used in DP, sparse models

are an attractive solution, since they produce compact models. The model can

be much smaller, since the approach encourages several feature weights to be

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 15

set to zero. Also, they are used to boost performance in very high-dimensional

datasets and to help on the feature engineering process.

Feature selection and sparseness are currently very active topics in

machine learning and statistics. One of the most popular techniques to obtain

sparse solutions is the L1-regularization, which is well known to yield sparse

solutions, by penalizing the weight vector using the L1-norm.

1.5
Motivation and Goals

Is well known that in supervised machine learning, when considering

many input features, a potential problem is the overfitting of the training

data. Hence, it is necessary the use of regularization techniques to mitigate

this issue (50). This is also the ordinary scenario in the context of DP.

DP is modeled using a high dimensional feature space to describe the

phenomenon. Usually, features are binary functions, each one indicating the

presence of a certain condition. A distinctive characteristic here is that the

instances are encoded with highly sparse vectors, since only a few features are

active in each instance. Also, when using feature induction to encode nonlinear

information, the dimension of the feature space is augmented dramatically.

This leads to another critical issue, namely: the introduction of a large number

of irrelevant features (48). When considering feature induction, we want to

control a potential overfitting of the training data, produced by a large

dimensional feature space. Therefore, we would like to select the set of features

that should be used in the prediction model.

Main Goal

In order to mitigate the problems described above and following the

line of research of the LEARN lab, we propose to integrate and enhance the

approches reported by (48; 13; 17), as stated next.

To build a graph-based dependency parser, with generalization power

similar to the state-of-art analyzers, that uses a reduced amount of

attributes. This parser shall incrementally learn a sparse linear model

combined with a nonlinear features induction procedure.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 16

Specific Goals

To accomplish the main goal proposed above, we state the following six

specific subgoals:

1. to divide the dependency parsing task into less complex subtasks that

predict the basic informations about the head of a given a dependent

token: both its Part-Of-Speech tag and side (13);

2. to use the predicted information about the head of a given token, in order

to identify its position on the sentence, in a structured context;

3. to adapt the incremental scheme proposed by (48) for the structured

scenario of learning dependency trees, and use a structured perceptron

as the main classifier;

4. to perform the induction procedure, using the Entropy-Guided Feature

Generation algorithm (17; 19; 60; 61; 47);

5. to perform the selection of the most informative features, using the

Structured Sparse Perceptron (23);

6. to empirically evaluate and compare the proposed solution with state-

of-art systems, using the Portuguese data set and the evaluation metric

provided by the CoNLL Shared Task 2006 (8; 1; 22).

1.6
Contributions

The main contributions of this dissertation are:

– the combination of multiclass auxiliary predictors as filters of non promis-

ing candidate arcs to improve the performance of the learning algorithm;

– an implementation based on the Incremental Feature Induction and

Selection framework proposed by (48) for the scenario of structured

prediction;

– the implementation of the Entropy-Guided Structured Learning Frame-

work proposed by (17) with Structured Sparse Perceptron and dropout

technique;

– a parser with competitive performance when compared against the state-

of-art that attains 92.96% of accuracy when using the standard UAS

metric.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Introduction 17

1.7
Dissertation Organization

The remainder of this document is organized as follows. In chapter 2, we

review the background and related work on the dependency parsing task. In

chapter 3, we give the modeling details of our approach to parsing. In chapters

4 and 5, we describe our proposed learning system. Next, in chapter 6, we

present the empirical evaluation of our approach. Finally, in chapter 7, we

draw our conclusions and comment on interesting future work.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

2
Background

Dependency parsing is a type of syntactic analysis for sentences in natural

languages. This chapter is devoted to review the theoretical foundations that

serve to define such analysis in terms of the dependencies relations between

the words of an input sentence and to define the structure that serves for the

representation of such relations. Also, we review the work that have been made

to solve this task with main focus on data-driven approaches, particularly in

the subcategory of graph-based parsers.

We based our background overview mainly on (24; 42; 45) for parsing

systems overview and on (52) for theoretical foundations of dependency

grammars and dependency parsing.

For a better comprehension, the remainder of this chapter is organized

as follows. First we present the basic concepts of dependency parsing, which

are dependency grammars and dependency structures. Finally we review the

related work on parsing, making special emphasis on approaches tested on the

Portuguese CoNLL 2006 data set.

2.1
Dependency Grammars

Dependency parsing is a type of syntactic analysis for sentences in natural

language, for instance sentences in Portuguese. It is based on syntactic theories

that model the dependency relations between the linguistic units of a sentence.

Such syntactic theories refer to a specific way to describe the syntactic structure

of a sentence.

The starting point of the modern theoretical support of DP is the

work of (68). The grammatical theories and formalisms that are included

in this tradition, share the same basic assumptions. They believe that the

syntactic structure of a sentence, is defined as lexical elements linked by binary

assymetrical relations called depedencies. In this case, a dependency relation

holds between a syntactically subordinate linguistic unit, called the dependent,

and another linguistic unit on which it depends, called the head. An example

for the Portuguese sentence É por isso que, diz, não tem pena de Bill., is given

in Figure 2.1. The dependency relations are represented by arrows pointing

from the head to the dependent. In Figure 2.1 is shown a dependency relation

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 19

between tem and pena. In this case, pena is the dependent linguistic unit and

temp is its head.

penaROOT É por isso que , diz , não tem de Bill .

Figure 2.1: Dependency structure for a Portuguese sentence.

Most notable formalisms include Word Grammar (27), Meaning-T ext

Theory (46), Functional Generative Description (62), and Constraint Depen-

dency Grammar (37). Although they share basic assumptions, there exists

important differences between these formalisms. One of those differences is

regarding the analysis of certain syntactic constructions like coordinations.

Also, they have different points of view regarding the formal properties of the

syntactic representation. An extensive review on these theoretical subjects is

given in (52). Next we describe the properties and constraints of the syntactic

structure.

2.2
Dependency Trees

Usually, the dependency-based syntactic structure of a given sentence

is modeled as a rooted graph. The nodes represent the lexical elements of

the sentence and the edges represent the dependency relations between such

elements. The dependency relations are directed by nature, from heads to

dependents. Here we use the term token to refer the lexical elements of the

sentence.

Let x = (x0, x1, . . . , xn) be an input sentence, where xi, i ∈ [1, n], is

the i-th token in x and x0 is an artificial token that represents the root. The

syntactic structure associated with x is a directed graph G = (V,A) where

there is a node i for each token xi, then V ⊆ {0, 1, . . . , n}; and several edges

(i, j) ∈ A ⊆ V × V that represent the dependency relations. When (i, j) ∈ A

this means that there exists a dependency relation between the head token xi

and the dependent token xj. The Figure 2.1 exemplifies this definition.

In particular, an edge (i, j) can be labeled with the syntactic dependency

relation between the token xi and xj. When the structure has no concern

with such labels is called unlabeled dependency structure, and in practice is

commonly adopted by most parsing systems. Next we outline some constraints

over this general structure.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 20

Constraints over the dependency structure

In order to provide a complete syntactic analysis of a sentence, the graph

must be connected. This constraint specifies that every node is related to at

least an other node (46). Given this general characterization, we may then

impose additional conditions on these graphs. Most versions of dependency

grammars assume that each node has at most one head, this is called the

single-head constraint. Another assumption, is that the graph must not contain

cycles, this is the acyclicity constraint.

These two constraints, together with connectedness, imply that the graph

should be a rooted tree, with a single root node that is not a dependent of any

other node. Hence, this constrained structure is called dependency tree.

Another concern regarding the formal representation of dependencies is

the relation between dependency structure and tokens order. The most well-

known example is the constraint of projectivity. A dependency graph satisfies

the constraint of projectivity with respect to a particular linear order of the

nodes if, for every edge (h, d) and node w, w occurs between h and d in a

linear order only if w is dominated by h (where dominates is the reflexive

and transitive closure of the arc relation). The structure represented in Figure

2.1 represents a projective dependency tree. It is also often assumed that the

constraint of projectivity is too rigid for the description of languages with free

word order.

Having introduced the basic notions of dependency grammar, we can say

that dependency parsing is a syntactic parsing of natural language based on

syntactic dependency representations. Taking this into account, if we have a

dependency parser, then we are capable of building a dependency tree given

an input sentence (32). Next, we review the most paradigmatic approaches to

dependency parsing.

2.3
Parsing with Dependency Trees

In computational linguistics, the use of dependency structures has be-

come popular. That is because many dependency parsers combine a competi-

tive parsing accuracy with highly efficient processing. This type of parsing has

been successfully employed for many applications such as information extrac-

tion (14; 65; 9), question answering (63; 5) and machine translation (58; 71).

In this work we focus on a common parsing paradigm called data-

driven dependency parsing. Unlike grammar-based parsing (52), data-driven

approaches learn to produce dependency graphs for sentences from an anno-

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 21

tated corpus. The advantage of such models is that they are easily ported to

any domain or language in which annotated resources exist.

In accordance with (42), the rise of data-driven methods in natural

language processing coupled with the availability of dependency annotated

corpora for multiple languages has led to an increased activity in this research

area. Clear examples, are the competitions held by the CoNLL Shared Task

on the years 2006, 2007, 2008 and 2009.

2.3.1
Conference on Natural Language Learning Shared Task

The Conference on Computational Natural Language Learning (CoNLL)

features a shared task, in which the participant’s learning systems are trained

and tested on the same data sets. In 2006, 2007, 2008 and 2009, DP related

tasks have been part of this competition.

In 2006 the shared task was multilingual dependency parsing, where par-

ticipants had to train a single parser on data from thirteen different languages.

This enabled a comparison not only of parsing and learning methods, but also

of the performance that can be achieved for different languages (8). In 2007

(51), as in 2006, the shared task has been devoted to dependency parsing, that

year they hosted a multilingual track and a domain adaptation track. For the

other two years, a joint task on syntactic and semantic dependencies has been

proposed. These competitions have created an standard for: task formalization,

data sets extracted from available treebanks and evaluation metrics. In other

words, they have served to set up a common ground input for the parsers and

their further comparison.

There were 13 annotated corpora in the CoNLL 2006 Shared Task, one for

each proposed language. However, only four of those corpora are still publicly

available, namely, the Dutch, Danish, Portuguese and Swedish. Here we are

interested in the corpus of Portuguese which is the Bosque part of the Floresta

Sintác(c)tica (1). This corpora consists of European and Brazilian Portuguese

language texts. Such information was automatically annotated by the parser

Palavras (4) and manually corrected in a postprocessing step (22).

As the two parsers that provided the best results in these Shared Tasks

were MSTParser (40) and MaltParser (55), these competitions point out that

there are two dominant approaches approaches to data-driven dependency

parsing: graph-based and transition-based techniques (45). Following, we re-

view the main approaches in the mentioned paradigms of DP.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 22

2.3.2
Transition-Based Approaches

The transition-based parsers parameterize the parsing problem by the

structure of a transition system or abstract state machine. The goal is to

map sentences to dependency trees and learn models for scoring individual

transitions from one state to the other. In the words of (6), such parsers learn

which actions to perform for building a dependency graph while scanning a

sentence. The parser builds the dependency trees by going left-to-right (or

right-to-left) through the words of a sentence. At each step, a classifier selects

the appropriate parsing action for the current state based on a set of features.

MaltParser (55) is the classical structured learning system of the

transition-based approaches. In accordance with (45), it uses a transition-based

inference algorithm that greedily chooses the best parsing decision based on a

trained classifier and current parser history. It also trains a model to make a

single classification decision that is to choose the next transition. Regarding to

feature representation, it can introduce a rich feature history based on previous

parser decisions.

In general, transition-based parsers typically have a linear or quadratic

complexity (54; 3). Traditionally, they have relied on local optimization

and greedy deterministic parsing (72; 55; 3). The transition-based and non-

projective parsing algorithm of (53) has quadratic complexity in the worst

case and an expected linear parsing time. Also, globally trained models and

non-greedy parsing methods, such as beam search, are increasingly used

(29; 69; 75; 77). A combination of a transition-based parsing algorithm that

uses a beam search with a latent variable machine learning technique is pre-

sented in (69). Next, we review another paradigmatic type of parser, the graph-

based parsers.

2.3.3
Graph-Based Approaches

As DP involves the prediction of a dependency tree given a sentence, the

graph-based parser defines its model over dependency trees. It learns models

for scoring entire parse trees for a given sentence. In particular, it starts with a

completely connected graph whose edges are weighted according to a statistical

model. Then, it tries to find the spanning tree that covers all nodes in the graph

and, at the same time, maximizes the sum of the weights of the edges belonging

to such spanning tree.

MSTParser is the classical system of this type of parser. It recasts the

problem of parsing as a structured linear prediction problem. When compared

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 23

with MaltParser, it uses near exhaustive search over a dense graphical repre-

sentation of the sentence, with the goal of finding the dependency graph that

maximizes the score. It also trains a model to maximize the global score of

correct graphs. MSTParser is forced to restrict the score of features to a sin-

gle or pair of nearby parsing decisions in order to make exhaustive inference

tractable.

The original non-projective formulation by (40) had a complexity of

O(n2) but it was not capable of taking into account the second-order features.

In this case the choice for an edge is made depending on already chosen

edges. Second-order MST parsing was shown to significantly improve results

compared to first-order parsing (43; 10) but at the cost of a higher complexity

(44).

Regarding the learning of labeled dependency structures, (10) integrated

edge labels into the parsing procedure by adding an additional loop over the

set of edge labels (L), thus, performance is improved. Also, the theoretical

complexity is raised to O(n4L).

An efficient third-order dependency parsing algorithm is introduced by

(31). The algorithm considers substructures containing three dependencies,

and is called efficient because it has O(n4) complexity. The parsing algorithm

can utilize features with sibling and grandchild information. This system holds

the best result for the Portuguese corpus of the CoNLL 2006 Shared Task.

In the context of CoNLL 2006 competition, (8) observed that it is striking

that recent work on data-driven dependency parsing has been dominated

by global, exhaustive, graph-based models, on one hand, and local, greedy,

transition-based models, on the other. Next we review the work made towards

feature generation and selection in the context of graph-based parsers.

Feature Generation

The prediction of a dependency tree is highly nonlinear on the available

input features. In this context, to provide the required nonlinear feature

combinations, it is necessary to use some feature generation method.

For graph-based approaches is common the use of features with nonlinear

pattern that were created manually by domain experts (40; 31; 10). Another

common method is the use of kernel functions on the training algorithm

(6; 67; 33). Also, an approach that embeds multiple kernel functions into

training algorithms has been examined by (36).

A well explored feature generation method by the LEARN lab is the

induction of features based on the entropy concept (17; 19; 60; 61; 47). Entropy

Guided Feature Generation (EFG) method is a form of feature induction based

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 24

on the conditional entropy of basic attributes that are extracted from the paths

of a learned decision tree, to build logical conjunctions of such basic attributes.

Hence, it promotes the induction of new features with nonlinear pattern. As

a result of the work of (17), EFG is successfully integrated with structured

perceptron algorithm, leading to new structured framework called Entropy

Structured Learning (ESL).

Feature Selection

Linear models are pervasive in dependency parsing approaches, mainly

because they are efficient training algorithms with proven error bounds. Prac-

tical studies on dependency parsing did not pay much attention to its regular-

ization. Efforts towards this direction have been made by (74). In particular,

they study three simple but effective task-independent regularization methods.

One is to average the weights of different trained models, with the main goal

of reducing the bias caused by the specific order of the training examples. Also

they consider a penalty term in the loss function to promote regularization. In

the last method, they promote the random corruption of the data flow during

training, which is called dropout in the neural network.

On the other hand, (35; 64) investigate regularizers that promote struc-

tured sparsity. The goal is to improve the models that include L1-norm penalty

term in the scoring function, which is known helps control weight complexity.

On the line of research of LEARN lab, the work of (48) uses a sparse

linear model through an adaptation for the perceptron algorithm proposed by

(23).

Is well known that sparse linear models have the ability of jointly perform

the estimation of a linear model and the selection of the subset of the most

informative features. In this case, feature selection is attained by encouraging

several weights of the model to be zero. This regularization technique is applied

by (48) in combination with feature induction, yielding a regularized and

nonlinear model with high prediction power.

2.3.4
Portuguese Dependency Parsing

In the past decade, dependency parsing has attracted much attention.

A fast progress has been made on pushing the performance of dependency

parsers. We are interested in review the systems with best performance on the

Portuguese CoNLL-2006 dataset, in order to establish a comparison with the

proposed solution. Particularly, we pay attention to graph-based approaches.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 25

In 2005, MSTParser (40) achieved state-of-the-art performance on This

approach uses a feature decomposition and a scoring function defined over the

edges of the candidate graph. It also recasts the problem of parsing as the

problem of finding the maximum spanning arborescense.

In the CoNLL-2006 Shared Task (8), (41) achieved the best performance

by applying an extension of MSTParser that uses second-order features. It uses

a scoring function defined over a more complex decomposition of the candidate

graph.

MSTParser’s original features are based on individual edges. The second-

order features depend on two edges, which link a head token to two sibling

modifiers. Since this model considers more complex dependencies in the output

structure, the corresponding prediction problem is also more complex. An

approximation algorithm to this problem is proposed in (43). On the other

hand, it also showed that the second-order model outperforms the first-order

version, even when approximate prediction is used.

On the other hand, the cube-pruning technique can efficiently introduce

higher order dependencies in graph-based parsing. Based on that, (39) seeks

to extend (73) by forcing inference to maintain both label and structural am-

biguity. In this case they handle higher order substructures to score candidates

dependency trees.

As far as we know, the best performing system on the Portuguese

CoNLL-2006 dataset is the dual decomposition system proposed by (31). This

system introduces a new algorithm to perform approximate prediction with

second- and third-order features. The third-order features include grandparent

dependencies, in addition to the sibling dependencies given by second-order

features. All these models are trained with MIRA and the complex features

are generated with the manual templates proposed by (43). More recently and

also based on dual decomposition algorithm, (34) attained the second-best

result for this task when using Portuguese data. Hence, dual decomposition

has shown to leads to a certificate of optimality for the vast majority of the

sentences.

Also, (76) gets results compared with the state-of-art by using a ran-

domized greedy method of inference based on an approach that starts from a

tree drawn from the uniform distribution and uses hill climbing for parameter

updates. They test their system across several languages included Portuguese.

In the line of research of the LEARN lab, parsing has been an intensive

line of work. Comprised in this research on DP, we found the token-based

approaches of (48) and (13). Also (17) recasts DP as a structured linear

prediction problem with first-order feature decomposition.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Background 26

In particular, the token-based approach of (48) uses a supervised machine

learning approach that incrementally inducts and selects feature conjunctions

derived from base features. This approach integrates decision trees, support

vector machines and feature selection using sparse perceptrons in a machine

learning framework named IFIS – Incremental Feature Induction and Selection.

On the other hand the work of (48) uses EFG to model the feature gener-

ation component. EFG promotes the induction of new features with nonlinear

pattern and it was successfully integrated with structured perceptron algo-

rithm leading to a new structured framework called Entropy-Guided Structure

Learning ESL (17). Also, the work of (48) is based in another token-based ap-

proach to dependency parsing named Entropy Guided Transformation Learn-

ing (ETL) (13).

2.4
Chapter Conclusions

Several techniques have been applied to solve the problem of syntactic

analysis of an input sentence. Here we reviewed the main topics referring to

dependency-based syntactic analysis, that is the theoretical foundations and

the representation used to describe the structure underlying such analysis.

Also, we paid attention to the work on data-driven approaches to

dependency parsing and the efforts made by the community of NLP on the

CoNLL Shared Tasks to get an standard for evaluating and comparing parsers.

Particularly, we focused on the work on graph-based parsers and it main

characteristics when compared against their counterpart the transition-based

parsers.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

3
Dependency Parsing

Dependency parsing refers to the machine learning task of finding the

dependency structure of a given sentence. The dependency structure is a

directed rooted tree in which the nodes represent the lexical units of the

sentence and the arcs represent the dependency relations between such lexical

items.

This chapter is devoted to outline the modeling details of our approach

to dependency parsing. Starting from the perspective of the canonical graph-

based model, we describe a candidate edges filtering process which helps to

build sparse candidate dependency graphs by eliminating unpromising arcs.

The goal is to accelerate the adjustment of the weights of the linear model that

we are proposing in this work. This process is based on auxiliary predictors

described in the token classification approach of (48) and (13). We detail the

feature engineering process. We divide the attributes by its context, in other

words the attributes relative to a token and relative to a relation between

tokens.

First, we describe the auxiliary predictors used as input to the edges

filtering method. After, we outline the candidate edges filtering process and

we make emphasis on two measures: density and recall of standard golden

edges1. These are measures to describe the obtained structures. Finally, we

depict the basic features and how we create derived features to improve the

accuracy of the proposed learning method.

3.1
Auxiliary Predictors

In (48) and (13), dependency parsing is treated as a token classification

machine learning task, where the goal is to predict the head of every token

in the sentence using a set of classes resulting from a particular tagging style

named relative tags.

They build their class set using three pieces of information about the

head token of a given dependent. The first is where the head appears: if before

or after of the dependent. The second is relative to the Part-Of-Speech (POS)

tag or postag of the head. Finally, the distance counter refers to the number

1Standard golden edge refers to an edge that belongs to the structure that is taken as
ground of truth.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 28

of tokens between the head and the dependent that have its postag equal to

the head’s postag. Hence, a tag class is composed by the combination of the

distance counter, the postag and the side of the head token. For example, the

tag class ”1 v L” is understood as a head that corresponds with the first verb

to the left of the dependent token. A common characteristic of these subtasks

is that they consider an extra class name to denote the token that is the root

of the dependency tree of a given sentence. So, they do not use the artificial

node called ROOT of the canonical graph-based approach.

They use this tagging style to codify the column of the head token in the

Portuguese data set of the CoNLL 2006 Shared Task (8; 1; 22). The Table 3.1

shows an example of the relative tag codification for the Portuguese sentence

”É por isso que, diz, não tem pena de Bill.”

Id Word postag Head Special Tagset

1 É adv 9 2 v R
2 por prp 9 2 v R
3 isso pron 2 1 prp L
4 que adv 9 2 v R
5 , punc 6 1 v R
6 diz v 0 ROOT
7 , punc 6 1 v L
8 não adv 9 1 v R
9 tem v 6 1 v L
10 pena n 9 1 v L
11 de prp 10 1 n L
12 Bill prop 11 1 prp L
13 . punc 6 2 v L

Table 3.1: Relative tag codification for a Portuguese sentence in CoNLL format.

This particular set of classes allows them to decompose the main task of

parsing into less complex multiclass subtasks that can be solved independently.

The first subtask is to identify if the head appears before or after the dependent,

relative to its position in the sentence. The second one is to identify the postag

of the head token and the last one is to find the correct distance between the

head and the dependent. In the particular case of (48), they use the head’s

postag prediction as well as the head’s side prediction as input of the task of

finding the right distance between the head and the dependent.

The idea here is to use the outputs of the auxiliary predictors to benefit

the training of the perceptron algorithm. Based on the information of side and

postag of the head given a dependent token, we propose as a preprocessing

step, the removal of unpromising candidate edges. Following (48), we detail

the input subtasks and report their respective accuracy.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 29

3.1.1
Head Side Predictor

The task of identifying the side of the head involves the prediction of

the side of the head relative to the position of the dependent in the sentence.

Hence, the side can take two possible values: right (R) or left (L). We also add

a special tag (ROOT) to denote the token that is the root of the dependency

tree. This is a multiclass prediction problem. The Table 3.2 shows an example

of the side tags codification for the Portuguese sentence ”É por isso que, diz,

não tem pena de Bill.”

Id Word postag Head Special Tagset

1 É adv 9 R
2 por prp 9 R
3 isso pron 2 L
4 que adv 9 R
5 , punc 6 R
6 diz v 0 ROOT
7 , punc 6 L
8 não adv 9 R
9 tem v 6 L
10 pena n 9 L
11 de prp 10 L
12 Bill prop 11 L
13 . punc 6 L

Table 3.2: Head side codification for a Portuguese sentence in CoNLL format.

The predictor trained by (48) used Incremental Feature Induction and

Selection (IFIS) algorithm. Specifically, this predictor obtained 98.09% of

accuracy on the Portuguese dataset of the CoNLL 2006 Shared Task.

3.1.2
Head Part-Of-Speech Predictor

The task of identifying the postag of the head involves the prediction of

the postag of the head token of given dependent token. In this particular case,

the postag takes values from the coarse-grained postag set of the Portuguese

data set of the CoNLL-2006 Shared Task. Such tag set is detailed in Appendix

A. We also add a special tag (ROOT) to denote the token that is the root of

the dependency tree. This is a multiclass prediction problem. Revisiting our

main example, the Table 3.3 shows an example of the postags codification for

the Portuguese sentence ”É por isso que, diz, não tem pena de Bill.”

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 30

Id Word postag Head Special Tagset

1 É adv 9 v
2 por prp 9 v
3 isso pron 2 prp
4 que adv 9 v
5 , punc 6 v
6 diz v 0 ROOT
7 , punc 6 v
8 não adv 9 v
9 tem v 6 v
10 pena n 9 v
11 de prp 10 n
12 Bill prop 11 prp
13 . punc 6 v

Table 3.3: Head POS codification for a Portuguese sentence in CoNLL format.

The Portuguese dataset of the CoNLL 2006 Shared Task and IFIS (48),

were used in the training of this predictor. It attained 95.67% of accuracy on

the test dataset.

Next, we describe the method for filtering candidates edges, that is the

process of removing unpromising edges from the candidate dependency graph

by making use of head’s side and postag information.

3.2
Candidate Edge Filter

The canonical graph-based parser defines its model over dependency

trees. It learns models to score entire parse trees for a given sentence. In

particular, it starts with a completely connected graph whose edges are

weighted according to a statistical model. Then, it tries to find the spanning

tree that covers all nodes in the graph and, at the same time, maximizes the

sum of the weights of the edges belonging to the spanning tree (40; 42). We

seek to improve this representation by filtering a large amount of unpromising

edges. Our goal is to accelerate the adjustment of the weights of our model.

Let x = (x0, x1, . . . , xn) be an input sentence, where xi is the i-th token

in x for i ∈ [1, n]. In order to represent the syntactic structure associated

with x, let’s consider Gx = (Vx, Ax) a completely connected graph, where

there is a node i for each token xi, then Vx ⊆ {0, 1, . . . , n} and several edges

(i, j) ∈ Ax ⊆ Vx×Vx that represent the dependency relations. Also, let D(Gx)

be the set of subgraphs ofGx that are valid dependency trees for the sentence x.

Because Gx contains all the possible arcs between tokens, the set D(Gx) must

necessary contain all dependency trees for x. An example graph Gx and the

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 31

corresponding dependency tree for the sentence in Portuguese Um revivalismo

refrescante, is shown in Figure 3.1.

revivalismo

Um refrescante

revivalismo

Um refrescante

Um revivalismo refrescante

Figure 3.1: On the left is shown an example of the candidate graph Gx for the
sentence Um revivalismo refrescante, to the right is shown the corresponding
dependency tree.

To fulfill our goals, we seek to reduce as much as possible the number of

irrelevant arcs, in other words, arcs that belong to Ax but does not belong to

any one of the possible dependency trees for x. This reduction can be achieved

by using a filter for the candidate arcs of Gx.

In order to reduce the density of the candidate graph Gx, we propose

to remove a set of unpromising arcs from Ax based on information about the

head’s side and postag. Let’s consider the set of unpromising arcs Ax as the set

of arcs that does not belong to any subgraph in D(Gx). Also, we consider Ad

as the set of unpromising arcs for a given dependent token d, that is the set of

unpromising arcs incoming the token d. Given a dependent token d, let hpos

be the output of the auxiliary predictor for head’s postag and hside the output

of the auxiliary predictor for head’s side. Making use of this information, we

can say that the set of incoming arcs on d with postag different from hpos

and with side different from hside are in Ad, therefore can be considered as

irrelevant for the learning task. For example, conjoining the information from

head postag and side in Table 3.4 for the token tem we can eliminate all the

incoming arcs on tem that are not verbs on the left. This means that the filter

leaves out all edges entering tem except for (diz, tem).

A particular case occurs when the predictions of head’s postag and side,

for a given token d, coincide with the especial tag ROOT. In such case d is the

root of the dependency tree, for that reason we can eliminate all incoming arcs

on it. Returning to our example, we can eliminate all incoming arcs on diz.

Applying this process to all tokens on the sentence we obtained a

candidate graphG′
x with r ∈ V ′

x denoted as root that have only a few arcs when

compared against Gx. Particularly, Figure 3.2 shows the filtered candidate

graph on the left and the corresponding dependency tree on the right for

the sentence codified in Table 3.4. We strongly believe that the perceptron

algorithm can be benefited if the learning process is carried out with these

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 32

Id Word postag Head POS Head Side

1 É adv v R
2 por prp v R
3 isso pron prp L
4 que adv v R
5 , punc v R
6 diz v ROOT ROOT
7 , punc v L
8 não adv v R
9 tem v v L
10 pena n v L
11 de prp n L
12 Bill prop prp L
13 . punc v L

Table 3.4: Combining information of Head POS and Side for a Portuguese
sentence in CoNLL format

pena

É por

isso

que

,2

diz

não

tem

de

Bill

. ,1

É por isso que , diz , não tem pena de Bill .

pena

É por

isso

que

,2

diz

não

tem

de

Bill

. ,1

Figure 3.2: On the left is shown an example of the filtered candidate graph
G′

x for the sentence É por isso que, diz, não tem pena de Bill., to the right is
shown the corresponding dependency tree.

filtered candidate graphs and we show evidences in the empirical evaluation of

the proposed solution.

Following the idea of (48) and (13) of dividing parsing into less complex

subtasks, we divide parsing into two subtasks. For a given dependent token,

we used two auxiliary predictors that predict the information of head’s postag

and side. Such information is used as input for the parsing task. Our machine

learning task is defined in terms of using the predicted information about of

the head of a given dependent token, to identify its position on the sentence.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 33

3.2.1
Candidate Graph Measures

The goal is to filter a large amount of irrelevant arcs to accelerate

the adjustment of the weights of our learning algorithm. Sparseness and

high percentage of standard golden edges are desirable characteristics in our

candidate graphs. The last characteristic is important because we are using

information from auxiliary predictors that is not 100% accurate.

In order to characterize the filtered candidate graph G′
x, we calculate its

density which is defined as follows

Density(G′
x) =

|A′
x|

|V ′
x|(|V ′

x| − 1)
.

Other important measure is the recall of standard golden edges. Given

y ∈ Y (x) a standard golden dependency tree2, the recall is defined as follows

Recall(G′
x, y) =

|Ay ∩ A′
y|

|Ay|
.

Next, we describe the basic features associated with an edge of a

candidate graph.

3.3
Basic Edge Features

In order to perform the parsing task each lexical item in the input

sentence x is represented as a list of linguistic properties like the word form,

the postag, gender, number and other morpho-syntactic features. Following

the canonical graph-based approach (40), Φ(x, y) is a feature representation

defined over the sentence x an its parse tree y.

To construct and effective representation, Φ(x, y) is decomposed into

local representations relative to less complex parts p of the dependency tree y,

Φ(x, y) =
∑
p∈y

ϕ(x, p).

The most simple decomposition of the dependency structure is over

edges. Standard decompositions include other types of parts like sibling arcs

or grandparent arcs which are known as higher-order decompositions.

We are interested in adopt the arc-based model, in that way an edge (i, j)

connecting the lexical items xi and xj is represented by a vector

Φ(x, i, j) = (ϕi(x, i, j), . . . , ϕM(x, i, j))

2Standard golden dependency tree refers to the structure that is taken as ground of truth.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 34

of M binary features. Hence the joint feature vector is

Φ(x, y) =
∑

(i,j)∈y

Φ(x, i, j),

which gives the frequency distribution of the local features ϕ in the

dependency tree y.

The basic features associated to an edge (i, j) are defined by its context.

In particular, we consider features relative to tokens and features relative to

the relation between tokens. We concatenate the features relative to the word

context with the features of the relation between i and j, Figure 3.3 shows

this.

i j

relation contextword context

attributes

Figure 3.3: Edges feature representation.

Here we use the same set of features of (48). Next we detail the set of

features that we use given the mentioned contexts.

3.3.1
Token Context

The set of basic features associated with a token are the features codified

in the CoNLL format for dependency parsing task. Such features are word-

form, lemma, coarse-grained postag, fine-grained postag and other syntactic

and morphological features. In our case, given this basic set of features we also

add derived features that we describe next and summarize in Table 3.5.

The features word-form and lemma have a large number of instances. In

order to reduce the cardinality of the feature lemma we substitute it for the

lemma of the verb on the left of every token.

Instead of using the two types of postags associated with a lexical item, we

only use the coarse-grained postag that have a more compact tag set. Further,

we add the head’s postag and side features that are the output of the respective

auxiliary predictors. In addition, we work with several counter features like:

the number of nouns and verbs that occurs to the left of the dependent token,

as well as the number of nouns and verbs appearing on the right.

Another important information that we use is the chunk tag information

and the clause tag. Particularly, chunking refers to the natural language

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 35

Feature Description

token Word-form
POS postag of the token
fts Other morphological and syntactical attributes
Num. of n left Number of nouns to the left
Num. of n right Number of nouns to the right
Num. of v left Number of verbs to the left
Num. of v right Number of verbs to the right
Left v lemma Lemma of the verb on the left
Chunk Chunk tag for the token
Claused start Clause start tag for the token
Clause end Clause end tag for the token
Clause Clause tag for the token
hPOS Head’s postag
hSide Head’s side

Table 3.5: Token context attributes.

processing task of breaking the sentence into nonoverlapping parts or chunks,

ensuring that lexical items that are syntactically related belong to the same

chunk. It have been proved that this information offers insights for the parsing

process and helps to improve accuracy (17). The chunk attributes are obtained

by the system of (21) and the used tag set is described in Appendix B.

The other important information is about sentence clause segmentation.

This is a natural language processing task that identifies the clauses of a given

sentence. This information is obtained using the system of (16). In Appendix

B we describe the tag set for this task.

This give us a total of 14 attributes per token. Next, we present a

mechanism to improve this representation by concatenating information about

the surrounding tokens given a current one.

Window Format

In order to improve the information about the context of a lexical item,

we represent it using a window context. This is the concatenation of the

information of k tokens on the left, followed by the information of the current

lexical item and followed by the information relative to the next k tokens.

Here, we use k = 3, hence the window context has length 7. Also, in Figure 3.4

is shown how we represent the features of the word context of an edge (i, j),

this is the concatenation of the window context of i with the window context

of j.

In order to improve the representation of the current token we add 12

attributes that are summarized in Table 3.6.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 36

i j

relation contextword context

attributes

i - 3 i - 2 i - 1 i i + 1 i + 2 i + 3

j - 3 j - 2 j - 1 j j + 1 j + 2 j + 3

Figure 3.4: Feature representation of the word context.

Feature Description

Num. of Start clause left Number of tokens with start clause tag
to the left

Num. of Start clause right Number of tokens with start clause tag
to the right

Num. of End clause left Number of tokens with end clause tag
to the left

Num. of End clause right Number of tokens with end clause tag
to the right

Num. of NP chunks left Number of noun chunks to the left
Num. of NP chunks right Number of noun chunks to the right
Num. of VP chunks left Number of verbal chunks to the left
Num. of VP chunks right Number of verbal chunks to the right
Num. of PP chunks left Number of prepositional chunks to the

left
Num. of PP chunks right Number of prepositional chunks to the

right
Num. of tokens left Number of tokens to the left
Num. of tokens right Number of tokens to the right

Table 3.6: Additional token context attributes for window format.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 37

We used a window context of size 7, then we have 110 features describing

a token. Therefore, we have 220 features as the result of concatenating the

window contexts of i and j for an edge (i, j).

Feature Description

Num. of Start clause tags Number of start clauses between i and
j

Num. of End clause tags Number of end clauses between i and j
Num. Ck Noun Number of start noun chunks between

i and j
Num. Ck Verb Number of start verbal chunks between

i and j
Num. Ck Prep Number of start preprositional chunks

between i and j
Num. POS Art Number of articles between i and j
Num. POS Conj Number of conjunctions between i and

j
Num. POS Noun Number of nouns between i and j
Num. POS Nprop Number of proper nouns between i and

j
Num. POS Prep Number of prepositions between i and

j
Num. POS Verb Number of verbs between i and j
Num. Tok Pai Number of tokens between i and j

Table 3.7: Attributes of the relation context between the token i and its
candidate head j.

3.3.2
Relation Context

We describe the features relative to the edge (i, j), these are basically

counters for properties of the tokens between i and j. A summary of this set

of features is presented in Table 3.7.

3.4
Chapter Conclusions

As shown in (48) and (13), their token-based approach to dependency

parsing divides the task into three less complex subtasks, those are multiclass

predictors for each of the heads properties: side, postag and distance relative

to the dependent token. We shown how to decompose parsing into subtasks

and use the side and postag prediction as input to the parsing task but in

the context of structured prediction and not a multiclass approach as stated

in the works that we are following. Taking this into account, we define the

machine learning task in question and detailed the set of features describing

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Dependency Parsing 38

dependency relations between the lexical items of the input sentence. The next

chapters describe the learning methods used in this work to solve dependency

parsing based on the modeling details described here.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

4
Structure Perceptron

The canonical graph-based approach builds a model in which the param-

eters are over dependency subgraphs and learns such parameters to globally

score correct dependency trees above incorrect ones. Based on this, the parsing

task can be modeled as a structured linear prediction problem. Then, the in-

tention is to define the scoring function that helps discriminate between correct

structures and incorrect ones. To fulfill this goal we need to define a scoring

function s over the dependency trees that can be inferred from the proposed

filtered candidate graph G′
x. Such candidate graph contains the syntactic struc-

ture underlying the input sentence x = (x1, . . . , xn).

A step towards a successful modeling of DP as a structured linear

prediction problem is to decompose the joint feature representation vector

Φ(x, y) over less complex parts of the dependency tree. This has the main goal

of expressing the score of the candidate structure as a linear combination of the

input features. The most simple decomposition of Φ is over edges. Following

this line of thinking, the scoring function is factorized in terms of edges too

which is known as the arc-based model.

Finally, we present the structured learning algorithm that learns the pa-

rameters of the mentioned model. Here we are interested in using structure

perceptron as the classification algorithm. Also we pay special attention to

regularization techniques, which are well known for helping on the improve-

ment of the performance of the obtained models. In addition, we are interested

in the promotion of sparsity on the obtained models because it is known that

sparse linear models perform simultaneously feature selection and the estima-

tion of the parameters. The result is a more compact and light-weight model

which helps with the control of a potential overfitting. Then it can be employed

as a powerful regularization technique.

The remainder of this chapter is organized as follows, first we give

details of how the learning is performed with dependency trees. Then, we

specify the edge-based scoring function that serves to discriminate candidates

to dependency tree. Finally, we describe the structure perceptron and the

corresponding extensions that need to be included in order to fulfill the

proposed goals.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 40

4.1
Dependency Tree Learning

DP refers to the task of finding the syntactic dependency structure

underlying a given sentence x = (x0, . . . , xn). In order to model this task

as a structured linear prediction problem, the classical graph-based approach

recasts the parsing problem as a maximum branching problem (11; 15). The

idea is to use a learning algorithm to learn the parameters of a scoring function

s over less complex parts of a dependency tree. When such parts coincide

with the candidate head-dependent edges (i, j), the scoring function s(x, i, j)

is called edge-based model.

In this case, the prediction problem F (x) is to predict a dependency tree

for an input sentence x, which coincides with finding the maximum-score tree

among the valid rooted trees

F (x;w) = arg maxy∈Y (x)s(x, y;w),

where s(x, y;w) =
∑

(i,j)∈y s(x, i, j;w) is the score of a candidate tree y ∈ Y (x).

This is the well studied maximum branching problem that can be efficiently

solved by Chu-Liu-Edmonds’ algorithm (11; 15). There is also an improved

implementation of this algorithm by Tarjan (66).

By processing a given sample of correct sentence-tree pairs, the super-

vised learning algorithm learns a scoring function that generalizes for unseen

sentences. The scoring function takes the form

s(x, i, j;w) =
M∑

m=1

wm · ϕm(x, i, j) = ⟨w,Φ(x, i, j)⟩,

where w = (w1, . . . , wM) is the weight vector that defines a dependency parsing

model, Φ(x, i, j) = (ϕ1(x, i, j), . . . , ϕM(x, i, j)) is the feature vector ofM binary

features that describe the relation between (i, j) and ⟨·, ·⟩ is the scalar product
operator.

This means that the score of a dependency tree has the form

s(x, y;w) =
∑

(i,j)∈y

⟨w,Φ(x, i, j)⟩.

Thus, the learning problem consists in the search of the feature weights

that make F (x) accurate on the training data and, moreover, with good

generalization performance on unseen data. In this work, we use the averaged

structure perceptron algorithm (12) with a large margin extension (18; 38; 70)

as the main training algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 41

The perceptron is an online learning algorithm, hence it is sensitive to

the order that training examples are received. To tackle this disadvantage we

include an extension to the learning algorithm that shuffles the order of the

training examples at the beginning of every epoch.

In our approach we include an extension to structure perceptron for in-

ducing model sparsity (23). We use this technique to regularize the attributes

domains and following (48), we introduce the dropout extension in the struc-

ture predictor. Also, we present an extension to structure perceptron that

allows the inclusion of features with nonlinear pattern, which is performed

with Entropy-Guided Feature Generation algorithm (17; 19; 60; 47).

4.2
Structure Perceptron

The structure perceptron algorithm (12) is analogous to its univariate

counterpart (59). Given a training sample D of correct sentence-tree pairs, the

algorithm generates a sequence w0 = 0, w1, . . . , wm of models.

At each iteration t, the structure perceptron draws a training instance

(x, y) ∈ D and performs two major steps:

(1) a prediction ŷ = F (x) is made using the current model wt;

(2) wt+1 ← wt + Φ(x, y)− Φ(x, ŷ).

This algorithm is presented in Figure 4.1 in the context of dependency

parsing.

Input: D = {(x, y)} binary data set
Output: w
w ← 0
while no convergence

for each (x, y) ∈ D

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s(x, i, j;w)

w ← w +Φ(x, y)− Φ(x, ŷ)

return w

Figure 4.1: Structure Perceptron algorithm.

Note that, when the current model makes a correct prediction ŷ = y, the

model does not change, that is wt+1 ← wt. When the prediction is wrong, the

update rule favors the correct output y over the predicted one ŷ. Regarding

binary feature functions, for instance, the update rule increases the weights

of features that are present in y but missing in ŷ and decreases the weights

of features that are present in ŷ but not in y. The weights of features that

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 42

are present in both y and ŷ are not changed. A simple extension of Novikoff’s

theorem (56) shows that the structure perceptron is guaranteed to converge to

a zero loss solution, if one exists, in a finite number of steps (2; 12).

4.2.1
Averaged Models

The structure perceptron algorithm with an averaging strategy is pro-

posed by (12). This is a known strategy, used even with the binary perceptron,

which makes the algorithm more robust. In Figure 4.2, we present the pseudo-

code of the averaged structure perceptron.

Input: D = {(x, y)} binary data set
Output: w
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ D

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s(x, i, j;w)

wt+1 ← wt +Φ(x, y)− Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.2: Averaged Structure Perceptron algorithm.

It is very similar to the algorithm presented in Figure 4.1. Given that the

algorithm executes for T iterations, the averaged structure perceptron builds a

sequence of models w0, . . . , wT . Instead of returning the last model wT , like the

ordinary structure perceptron, it returns the average among all models built,

that is, w = 1
T

∑T
k=1 w

k. Each update in the structure perceptron algorithm

has a large potential impact on the model parameters. Thus, the averaged

algorithm is more robust to noisy examples and usually performs significantly

better than the nonaveraged version.

4.2.2
Shuffled Training Examples

Structure perceptron is an online algorithm that can be affected by the

order in which the examples are processed. In order of reduce the bias caused

by the specific order of the training examples, we propose to randomly shuffle

the training examples at the beginning of every training epoch. In Figure 4.3,

we present the pseudo-code with the proposed modification.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 43

Input: D = {(x, y)} binary data set
Output: w
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s(x, i, j;w)

wt+1 ← wt +Φ(x, y)− Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.3: Shuffled Structure Perceptron algorithm.

In particular, the function Suffle(D) returns the training examples in

the order given by a permutation of |D| numbers. This modification turns the

structure perceptron more robust.

4.3
Large Margin Classifiers

The structure perceptron algorithm finds a classifier with no concern

about its margin. However, it is well known that large margin classifiers provide

better generalization performance on unseen data. In this work, we use a large-

margin generalization of the structure perceptron that is based on the well

known margin rescaling technique for structural support vector machines. For

a training instance (x, y) ∈ D, instead of F (x), we use the following loss-

augmented prediction problem in step 1 of the structure perceptron learning

algorithm

Fℓ(x) = arg maxȳ∈Y (x)s(x, ȳ) + ℓ(y, ȳ),

where ℓ(·, ·) ≥ 0 is a given loss function that measures the difference

between a candidate tree and the correct one.

In other words,

Fℓ(x, y;w) = arg maxȳ∈Y (x)

[(∑
(i,j)∈ȳ

s(x, i, j;w)

)
+ C · ℓ(y, ȳ)

]
,

where C is the constant that balance the weight between the loss function

and the learned edges weights w.

We use the most common loss function for dependency trees, which just

counts, for all tokens within the input sentence, how many head tokens have

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 44

been incorrectly assigned in the predicted tree, which is given by

ℓ(y, ȳ) =
∑

(i,j)∈ȳ

1[(i, j) /∈ y].

This loss function can be decomposed along the tree edges and we can

thus rewrite the loss-augmented prediction function as

Fℓ(x, y;w) = arg maxȳ∈Y (x)

∑
(i,j)∈ȳ

(
s(x, i, j;w) + C · 1[(i, j) /∈ y]

)
.

This characteristic is desirable because we can define a loss-augmented

edge scoring function as

sℓ(x, y, i, j;w) = s(x, i, j;w) + C · 1[(i, j) /∈ y],

and then we have that

Fℓ(x, y;w) = arg maxȳ∈Y (x)

∑
(i,j)∈ȳ

sℓ(x, y, i, j;w),

which is a maximum branching problem just as the original prediction problem,

but with modified edge weights. In that way, we can still use Chu-Liu-Edmonds

algorithm in the large margin structure perceptron. We present the pseudo-

code of the large-margin structure perceptron algorithm in Figure 4.4.

Input: D = {(x, y)} binary data set,
C loss constant

Output: w
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ

(
⟨wt,Φ(x, i, j)⟩+ C · 1[(i, j) /∈ y]

)
wt+1 ← wt +

∑
(i,j)∈y Φ(x, i, j)−

∑
(i,j)∈ŷ Φ(x, i, j)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.4: Large margin Structure Perceptron algorithm for dependency
parsing.

The unique modification to the structure perceptron algorithm is in

the computation of edge scores, where we add a constant C to the score of

every incorrect edge. The constant C is a meta-parameter of this algorithm

that allows us to balance the relative importance of the two components in

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 45

the objective function. This parameter can be calibrated by means of cross-

validation or a development set.

By using the loss-augmented prediction problem during training, an

example (x, y) implies a model update whenever the current model does not

respect the following margin constraint

s(x, y;w)− s(x, ȳ;w) ≥ C · ℓ(y, ȳ), ∀ȳ ∈ Y (x),

where s(x, y;w) =
∑

(i,j)∈y s(x, i, j;w) is the score of a whole tree. If a model

respects this prediction margin, then the current predictor F (x;w) separates

the correct output y from every alternative ȳ ∈ Y (x) by a margin as large as

C · ℓ(y, ȳ). In that way, the training algorithm incorporates some information

about the structured empirical risk Rℓ(D,w) of the current model, defined as

R(F,D) =
∑

(x,y)∈D

ℓ(y, F (x)).

In order to enhance the feature representation by introducing features

with nonlinear pattern we modify the structured perceptron. Next we detail

such modifications.

4.4
Feature Induction

Many structure learning problems are highly nonlinear on the available

input features, which is the case of dependency parsing. Therefore, when

training a linear model for a structured prediction problem, it is necessary to

use some feature generation method in order to provide the required nonlinear

feature combinations.

Feature generation is frequently solved by a domain expert that generates

complex and discriminative feature templates by conjoining input features.

Manual template generation is a limited and expensive way to obtain feature

templates.

In this work, we used Entropy-guided Feature Generation (EFG) (19; 17)

an automatic method to generate feature templates. EFG is based on the

conditional entropy of local prediction variables given basic features. It receives

a training dataset with basic features and produces a set of feature templates by

conjoining features that together are highly discriminative. EFG is based on the

same strategy of Entropy-guided Transformation Learning (ETL) (61), which

generalizes Transformation-Based Learning (7) by automatically generating

rule templates.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 46

In (17), they proposed Entropy-Guided Structure Learning (ESL) frame-

work, which integrates in a general structure learning framework EFG as a pre-

processing step. As an instance of this general structure learning framework we

proposed the Structure Sparse Perceptron described above; the pseudo code

of the new extension is shown in Figure 4.5.

Input: D = {(x, y)} binary data set,
C loss constant

Output: w
Φ(D)← EFG(D)
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ

(
⟨wt,Φ(x, i, j)⟩+ C · 1[(i, j) /∈ y]

)
wt+1 ← wt +

∑
(i,j)∈y Φ(x, i, j)−

∑
(i,j)∈ŷ Φ(x, i, j)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.5: Large margin Structure Perceptron algorithm for dependency
parsing with feature induction.

EFG automatically derives a set of basic feature conjunctions, which are

denoted feature templates. Each generated template is used to instantiate a

feature in Φ(x, y), hence we are increasing the dimensions of the feature space.

For the purpose of this document, we refer to this increment as the expansion

step of the joint feature representation vector.

By considering this modification in the perceptron algorithm we are ob-

taining a structured model that is linear on the derived feature representation,

which corresponds to a nonlinear combination of the basic features. Hence, we

are introducing features with nonlinear pattern into a linear algorithm.

Next, we describe the process of the feature templates generation that is

built-in the expansion step.

4.4.1
Template Generation

The first step of our automatic template generation method is to train

a decision tree on a dataset, where each example comprises the basic features

related to one local decision variable of the prediction problem. Local decision

variables correspond to edges, since the prediction problem is to choose some

edges from all candidate edges between tokens. Thus, given a sentence in the

input dataset, we generate a decision tree example for each candidate edge. The

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 47

binary decision variable indicates whether an edge is included in the correct

dependency tree or not. Hence, the decision tree algorithm learns the output

tree by predicting whether an edge is correct or not. Figure 4.6 illustrates a

decision tree which is used to extract feature templates.

dist

pos j

pos i

head-side j

head-side j

1 2

n v
L R

n v L R

FTFT

T F

Figure 4.6: Decision tree example.

From the learned decision tree, the proposed method uses a very simple

tree decomposition scheme to extract templates. The decomposition process is

based on a depth-first traversal of the decision tree and thus can be recursively

described as follows. For each visited node, a new template is created by

conjoining the node feature with its parent template.

dist

pos j

pos i

head-side j

head-side i

dist, pos j
dist, pos j,pos i
dist, pos j,head-side i
dist, head-side j

Decision tree skeleton Generated templates

Figure 4.7: Decision tree skeleton example and the corresponding templates.
We highlighted the template ”dist, posj, posi” in the decision tree skeleton to
illustrate the corresponding path on the tree.

The tree in the left side of the Figure 4.7 uses four basic features

(rectangular nodes): dist is the absolute distance between the head and the

dependent token, head side j is the side of the head token relative to the

token j, pos i and pos j are the part-of-speech respectively for the token i

and j of the dependent and the head token, respectively. The round nodes

are the decision variable values (T for true and F for false). The generated

templates are listed in the right side of the figure. In other words, we create a

template for each path from the root to every other decision tree node, ignoring

the feature values at the edges and, thus, using only the node features.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 48

4.5
Sparser Perceptron Models

Sparse linear models have emerged as a powerful framework to deal with

various supervised estimation tasks, in machine learning as well as in statistics

and signal processing. These models basically seek to predict an output by

linearly combining only a small subset of the features describing the data (28).

Here we are concerned with model selection: which features should be

used to define the prediction score? We want to take advantage of high-

dimensional inputs while selecting values of w that achieve high accuracy not

only on training data, but also to generalize well on new data. The fact is that

models with few features or sparse models are desirable for several reasons like

compactness, interpretability, good generalization (35).

For the particular case of perceptron, to simultaneously address this

variable selection and the linear model estimation, Goldberg and Elhadad have

proposed a modification on the prediction step, inspired in the number of times

that a feature participates in models updates. On they own words:

”Our sparse variant of the perceptron algorithm is based on the intuition

that only relevant features should end up in the final parameter vector, and

that all features are irrelevant until proven otherwise. For a feature to prove

its relevance, it needs to participate in a minimum number of updates.”

Input: D = {(x, y)} binary data set,
C loss constant,
L update counters threshold

Output: w
Φ(D)← EFG(D)
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s

′
ℓ(x, y, i, j;w, u, L)

wt+1 ← wt +Φ(x, y)− Φ(x, ŷ)

u← u+ 1[Φ(x, y) ̸= Φ(x, ŷ)]

t← t+ 1

for all i s.t ui < L

ui ← 0

return 1
t

∑t
k=1w

k

Figure 4.8: Structure Sparse Perceptron algorithm with consideration of large
margin.

Specifically, to include this extension on the prediction step of perceptron

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 49

we maintain a vector u with the number of updates of w in which every feature

has participated. Also, we use a threshold L to establish when a feature became

relevant. In other words, L is the lower bound of number of updates of w

required by an attribute in order to participate in the activation rule of the

learning algorithm. Here the u vector acts as a mask because the ⟨·, ·⟩ not
consider binary features ϕi, i ∈ [1,M] with updates below L.

As the main question is the selection of attributes that participate in a

minimum number of updates of w we modify the original arc-based scoring

function

s(x, i, j;w) = ⟨w,Φ(x, i, j)⟩

to activate the mask when ϕi has attained L, therefore the modified

scoring function is

s′(x, i, j;w, u, L) = ⟨w[u ≥ L],Φ(x[u ≥ L], i, j)⟩,

if we consider a large margin, the new scoring function has the form

s′ℓ(x, y, i, j;w, u, L) = ⟨w[u ≥ L],Φ(x[u ≥ L], i, j)⟩+ C · 1[(i, j) ̸∈ y].

In order to consider s′ℓ as the scoring function the modified prediction

function is

F ′
ℓ(x, y, i, j;w, u, L) = arg maxȳ∈Y (x)

∑
(i,j)∈ȳ

s′ℓ(x, y, i, j;w, u, L),

which is a maximum branching problem just as the original prediction

problem, but with modified edge weights. In this scenario, we are able to use

Chu-Liu-Edmonds as inference method.

We also need to consider in the update step of the structure perceptron

algorithm how to update the information on the vector u. Our update rule

is simple, augment the counter in one for the binary feature ϕi, i ∈ [1,M] if

ϕi(x, y) ̸= ϕi(x, ŷ). In Figure 4.8, we present the pseudo-code of the structure

perceptron integrating the outlined extensions in previous sections.

When an epoch ends, the algorithm performs an additional step, that is

to reset the update counters of the nonselected features. The consideration of

this extension also introduces another meta-parameter that must be calibrated

in validation step, the threshold constant L.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 50

In NLP context, features are usually binary functions indicating the

presence of some condition which results in a very high-dimensional feature

space were only few of the features are active for each observed instance is

expected that a lot of features are irrelevant for classification. Particularly, (48)

observed a great amount of irrelevant features in their token based approach

to dependency parsing.

4.5.1
Dropout

We present a modification made to the structure sparse perceptron pro-

posed by (48). Dropout is introduced with the main goal of promoting regular-

ization through eliminating correlated attributes. This allows a better control

over the number of selected attributes. This modification is an adaptation for

sparse perceptron of the idea of dropout of neural networks, proposed by (26).

Input: D = {(x, y)} binary data set,
C loss constant,
L update counters threshold,
Pdropout probability of dropout

Output: w
Φ(D)← EFG(D)
w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s

′
ℓ(x, y, i, j;w, u, L)

wt+1 ← wt +Φ(x, y)− Φ(x, ŷ)

for all i s.t Φ(x, y) ̸= Φ(x, ŷ)

r ← random[0, 1)

if r ≥ Pdropout

ui ← ui + 1

t← t+ 1

for all i s.t ui < L

ui ← 0

return 1
t

∑t
k=1w

k

Figure 4.9: Structure Sparse Perceptron algorithm with consideration of large
margin and dropout.

Specifically, we modify our u update rule to not always increment the

counter of ϕi(x, y), i ∈ [1,M], if the later participates in an update of the

current model w. We consider a probability of dropping out the feature ϕi,

respect to a given probability Pdropout. The consideration of this extension also

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Structure Perceptron 51

introduces another meta-parameter that must be calibrated in validation step,

the probability of dropout Pdropout. In Figure 4.9, we present the pseudo-code

of the structure perceptron integrating the outlined extensions in previous

sections.

With the introduction of dropout extension, we can make a fine grane

selection of attributes, through variations of the Pdropout. In the original

algorithm, we do not get such fine grained selection of attributes because the

threshold of minimum updates is an integer.

4.6
Chapter Conclusions

Due to its flexibility, robustness and simplicity, the perceptron algorithm

is one of the most popular linear discriminant methods used to learn complex

representations in the scenario of structure prediction. Here we presented how

the learning of dependency trees can be done with structure perceptron and

the extensions that perform feature induction and selection. This algorithm

can be modified to produce sparse models and combined with an induction

method to include features with nonlinear pattern.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

5
S-IFIS Structured Learning with Incremental
Feature Induction and Selection

Incremental Feature Induction and Selection (IFIS) (48) is a framework

to create regularized nonlinear models with high performance using a linear

algorithm. This approach integrates decision trees, support vector machines

and feature selection via multiclass sparse perceptrons. It was empirically

evaluated in dependency parsing with a token-based approach, in other words

using a multiclass prediction approach. Also, they propose to use other

algorithms to substitute the components of the framework. For example, for

structured prediction they propose ESL (16; 17) or Structured Support Vector

Machines to substitute SVM as main classifier.

Inspired by this framework and to give continuity to the work on parsing

of the LEARN lab, we propose an approach to parsing in a structured

context by performing cycles of compression and expansion of the feature

representation vector Φ. We describe the incremental scheme of compression

and expansion of Φ that integrates decision trees and structured perceptron

with the extensions outlined in Chapter 4. Finally, we describe some modeling

remarks and the parametrization of the obtained learning algorithm.

5.1
Attributes Representation

In natural language processing, generally, attributes are represented

symbolically, or as categorical attributes. An example of categorical attribute

is the attribute word. A sentence in natural language, as Portuguese, is

represented as a sequence of words and every word can assume a value of a set

called vocabulary. For example, the sentence A casa é amarela is represented

as

word[1] = A

word[2] = casa

word[3] = é

word[4] = amarela

The categorical representation is appropriate for certain types of classifi-

cation algorithm based on information theory, as is the case of decision trees.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 53

However, algorithms based on mathematical models need numeric attributes

to represent categorical attributes. So, the original corpus of natural language

which is represented in a categorical manner must be binarized to be used

by SVM and the sparse perceptron. Each pair of attribute and value is as-

signed a unique index binary attribute. After selecting attributes, the domains

of categorical attributes are compressed, in accordance with the selected bi-

nary attributes. When an attribute value is discarded by the perceptron, it is

encoded as a value dummy in the input of the decision tree. The Table 5.1

illustrates the transformation of the domains of the attributes after regulariza-

tion of the features word and lemma for the initialization step in the scheme

outlined before.

Attribute Value Binary Selected Attribute Value
Attribute Attribute

word conseguem 5 yes word conseguem
word sempre 716 yes word sempre
word tenha 3 yes word tenha
word casa 201 no word ”dummy”
word Brasil 43 no word ”dummy”
lemma eleger 72 yes lemma eleger
lemma merecer 137 yes lemma merecer
lemma renovar 82 yes lemma renovar
lemma avaliar 78 no lemma ”dummy”
lemma prezar 302 no lemma ”dummy”

Table 5.1: Example of the compression of the domains of categorical attributes
word and lemma after the initialization step of our proposed method.

Given a categorical attribute word that has a vocabulary V dimension

|V | = n, the binarized representation of this attribute is given n binary

indicator functions defined as

xi =

1 if Vi = Vj

0 if Vi ̸= Vj

where 0 < i, j ≥ n.

5.2
Learning Algorithm

Our main goal is to generate regularized nonlinear models with high

performance by incremental cycles of compression and expansion of the feature

joint vector Φ. Next, we describe how the compression and expansion steps are

performed.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 54

Since the Structured Sparse Perceptron (SSPerc) jointly performs feature

selection and the estimation of the model by combining a small set of features,

we are interested in the selected features. The goal is to reduce the dimensions

of the feature space by taking into account only the set of selected features,

which are the features that exceed the minimum updates threshold L. Hence

we are interested in the update counters that SSPerc maintains. We propose

to modify the algorithm to return K ← {k | uk ≥ L}. This modification

corresponds to the compression step because its intention is to reduce the

dimensions of the feature vector Φ. The modified algorithm is presented in

Figure 5.1.

Input: D = {(x, y)} binary data set,
C loss constant,
L update counters threshold,
Pdropout probability of dropout

Output: w
K

w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ Shuffle(D)

ŷ ← arg maxȳ∈Y (x)

∑
(i,j)∈ȳ s

′
ℓ(x, y, i, j;w, u, L)

wt+1 ← wt +Φ(x, y)− Φ(x, ŷ)

for all i s.t Φ(x, y) ̸= Φ(x, ŷ)

r ← random[0, 1)

if r ≥ Pdropout

ui ← ui + 1

t← t+ 1

for all i s.t ui < L

ui ← 0

w ← 1
t

∑t
k=1w

k

K ← {k | uk ≥ L}
return (w,K)

Figure 5.1: Modified Structure Sparse Perceptron algorithm with consideration
of large margin and dropout.

The original algorithm includes the feature generation component based

on Entropy-Guided Feature Generation (EFG) algorithm, which is included as

a preprocesing step in SSPerc. The induction corresponds with the expansion

step because it is responsible for the increment of the dimensions of the feature

vector Φ. For a better comprehension of the incremental scheme, we have

removed this preprocessing step with the goal of describing in details how this

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 55

is accomplished.

Our incremental scheme works using cycles of compression and expansion

of the set of attributes and uses as main classifier the Structured Perceptron

(SPerc). After any modification made on the feature vector Φ, we must learn a

model with the new representation. In our approach this is achieved by SPerc.

In this case, our SPerc coincides with SSPerc with L = 0 and Pdropout = 1. The

pseudo-code of the proposed algorithm is shown in Figure 5.2.

Input: cycles stop condition,
D = {(x, y)} binary data set,
C loss constant,
L update counters threshold,
Pdropout probability of dropout

Output: w
K ← StructuredSparsePerceptron(D,C,L, Pdropout)
D ← CompressDataSet(D,K)
w ← StructuredSparsePerceptron(D,C, 0, 1)
c← 0
while c < cycles

Dcategorical ← ToCategorical(D)

decisionTree← C4.5(Dcategorical)

templates← ExtractTemplates(decisionTree)

D ← ExpandDataSet(D, templates)

K ← StructuredSparsePerceptron(D,C,L, Pdropout)

D ← CompressDataSet(D,K)

w ← StructuredSparsePerceptron(D,C, 0, 1)

c← c+ 1

return w

Figure 5.2: Incremental scheme.

The first step towards an expansion of the feature representation is

performed with the preparation of the data set that is used in the templates

generation stage. In this case, the local decision variables correspond to edges,

since the prediction problem is to choose some edges from all candidate edges

between tokens. Thus, given a sentence in the input dataset, we generate a

decision tree example for each candidate edge. The binary decision variable

indicates whether an edge is included in the correct dependency tree or not.

Then, the decision tree algorithm learns the output tree by predicting whether

an edge is correct or not. Next, the templates are extracted from the paths

of the trained decision tree. The expansion is completed when the generated

templates are instantiated as derived features in Φ.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 56

Here we are basically performing conjointly the feature generation and

selection for a structured problem, and then, we learn a regularized and non

linear model using SPerc. In order to improve the first template generation

step, we only consider the set of the most informative basic features. For that

reason the method is initialized with a compression step performed by the

SSPerc.

Next, we outline some modeling considerations regarding to the incre-

mental scheme that we propose here. Such remarks are about the counters ini-

tialization in the compression step and concerning to the conversion between

categorical and binary data.

5.2.1
Modeling Remarks

At each cycle, attributes that have been selected remain throughout

subsequent processing. For this behavior, from cycle 1, the vector u is initialized

with counter L for all attributes selected in the previous cycle, such that in

the perceptron learning those attributes starts already active. In cycle 0, the

input parameter U0 receive 0.

5.3
Experiments Parametrization

Each experiment processed by the incremental scheme has a configuration

profile that specifies all the required parameters. Next, we describe the input

parameters of the method.

The first group of parameters are for the stop conditions of the built-in

algorithms. The parameter cycle is used as stop condition for the incremental

scheme that we propose here, as well the parameter epochs is used as the stop

condition of the perceptrons algorithms that are built-in the scheme.

The parameter C, used in the large margin extension of SPerc, is a

constant to balance the weight between the loss function and the learned edge

weights.

The second group of parameters are related with the compression step,

this only with the SSPerc, the parameter L is the lower bound of the number of

updates of the weight vector in which a feature must participate. The Pdropout

parameter, this is the probability of dropping a feature ϕ, was introduced for

a fine-grain selection of attributes.

Finally, the parameters related with the expansion step, that is related to

the decision tree learning. The extraction of the decision tree models is defined

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 57

by a minimum length and a maximum length of the paths taken in the tree.

Typical sizes templates range from two to four (17; 61).

5.4
Implementation Remarks

Following the line of research at the LEARN lab on Multilingual Coref-

erence Resolution, this section gives details regarding the implementation of

the proposed solution in order to be reused in the development of a coreference

analyzer.

The implementation of the proposed solution is developed using C#

language in Visual Studio Community 2015. Since the key components of our

solution are the data preparation stage and the learning algorithm, we show

the classes involved in the respective components on Figures 5.3 and 5.4

In the data preparation stage, we have the classes that model the

proposed filter, that from the sentence representation builds a sparse graph.

Then, we have the classes representing a graph, the generic abstract class

Graph and the generic class DirectedGraph.

Specifically, CandidateBuilder filters the edges of candidates graphs and

GoldenBuilder builds the standard golden dependency trees. We also have a

class to create the derived features, like counters.

Figure 5.3: Classes involved in the data preparation stage.

Regarding to the classes involved in the incremental scheme, we have a

class Templates to represent a template, that is a conjunction of basic features.

It is related to the feature generation component that is implemented in the

class FeatureInduction.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 58

Figure 5.4: Classes involved with the learning algorithm.

Our feature induction implementation is based in the Accord.NET

Framework 1, that is a .NET machine learning framework completely writ-

ten in C#. From this framework, we use the classes related to decision tree

learning. Among them we use Codification, DecisionVariable, DecisionTree and

C45Learning.

The implementation of the Structured Perceptron and its respective

extensions are specified in the class Structured. We also place there the

implementation of Tarjan for the algorithm of Chu-Liu-Edmonds.

The attributes representation is specified in the generic class Map. It

contains the methods that perform the compression and the expansion of

the feature representation vector. It also has the procedures that apply the

binary codification over categorical data. Finally, the incremental scheme is

implemented in the class LearningALgorithm, which follows the pseudocode

described here. Our evaluation methods are specified in the class Measures.

5.5
Chapter Conclusions

The incremental scheme is a based on cycles of compression and expan-

sion of the feature representation vector Φ. It combines decision trees with

structured perceptron and extensions. Such extensions are the core of our

method. The Structured Sparse Percetron performs the selection of the at-

tributes and the Entropy-Guided Feature Generation performs the induction

of feature with non linear pattern given a set of basic features. Therefore,

we obtain a procedure that generates regularized and nonlinear models, that

1http://accord-framework.net

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

S-IFIS Structured Learning with Incremental
Feature Induction and Selection 59

are desirable because they speed up the training, are compact and with great

generalization power.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

6
Empirical Evaluation

Dependency parsing refers to the task of finding the syntactic structure

underlying a sentence. It involves the prediction of the dependency tree

describing the sentence structure. Hence, it can be modeled as a structured

problem.

The CoNLL 2006 Shared Tasks have created a standard for: task formal-

ization, data sets extracted from available treebanks and evaluation metrics.

This standarization has served to set up a common input ground for the parsers

and their further evaluation. In the years following this set up, several machine

learning approaches adopt this standard to evaluate their performances.

Here, our goal is to empirically evaluate the proposed incremental scheme.

To accomplish this, we propose to test our scheme by using the Portuguese

data set from the CoNLL 2006 Shared Task and the standard metrics proposed

in that competition. This chapter presents the experimental setup, corpus

statistics and performance results of our proposed machine learning approach

to DP.

First, the Portuguese corpus is described and analyzed, as well as the

evaluation metrics. Then, the application of the proposed machine learning

solution is described. Finally, we report the achieved performance on the

experiments, their modeling particularities and specific parameter setting.

6.1
Corpus

In 2006, 2007, 2008 and 2009, DP related tasks have been part of the

Conference on Natural Language Learning Shared Task. For the first two years,

the task has been to solve the dependency parsing problem itself for a wide

range of languages. For the remaining two years, a joint task on syntactic

and semantic dependencies has been proposed. Since this work is focused on

syntactic dependencies for Portuguese, it is mainly concerned with the task of

the first year.

In 2006, corpora for thirteen languages were made available, namely: Ara-

bic, Chinese, Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene,

Spanish, Swedish, Turkish and Bulgarian (8). However, only four of those

corpora are still publicly available, namely, the Dutch, Danish, Portuguese

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 61

and Swedish. Here, we are interested in the Portuguese corpus, which is the

BOSQUE part of the Floresta Sin(c)táctica (1; 22).

By the occasion of the competition, the Portuguese treebank has been

converted into a dependency treebank, since it is originally a phrase struc-

ture treebank. This corpus provide the following features: word form, token

position, lemma of the word, coarse-grained part-of-speech, fine-grained part-

of-speech and a list of set-valued syntactic and morphological features. Table

6.1 provides statistical information about the Portuguese corpus.

Statistic Result

Number of Tokens 212 545
Number of Sentences 9 359
Tokens per sentence 22.8
Number of different coarse postags 15
Number of different fine postags 21
Percentage of punctuation tokens 14.2%
Percentage of nonprojective relations1 1.3%
Percentage of sentences with at 22.2%
least one nonprojective relation1

Table 6.1: Portuguese corpus Statistics.

Information regarding the set of part-of-speech tags for coarse-grained

and fine-grained features is presented in Appendix A. This corpus has been

partinioned into a training and a test set, by the occasion of the conference.

This work follows the same division. In Table 6.2 we provide basic statistics

about these partitions.

Partition Sentences Tokens

Train 9 071 206 678
Test 288 5 867

Table 6.2: Partitions of Portuguese corpus.

Additionally, we use 10% of the training data as a validation set, in order

to choose the values for our algorithm meta-parameters.

6.2
Evaluation Metrics

To evaluate dependency parsers the three most common metrics are the

labeled attachment score (LAS), the unlabeled attachment score (UAS) and

the label accuracy (LA). LAS is the percentage of tokens where the system

correctly predicts both its head and the relation type that the token holds

1Including nonscoring tokens

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 62

with its head. UAS is the percentage of tokens where the system correctly

predicts its head, whereas LA is the percentage of tokens with correct relation

type.

For both the CoNLL 2006 (8) and the CoNLL 2007 (51) shared tasks,

LAS is used as the main evaluation metric. Nevertheless, systems results are

reported for all three metrics. One difference between the competitions on

those years was about including or not punctuation marks as scoring tokens.

In this work, we use UAS as the evaluation metric, since our concern here

is the prediction of correct token heads when learning unlabeled dependency

trees. Following the rules of the competition that were held in 2006, we don’t

consider punctuation marks as scoring tokens.

6.3
Portuguese Dependency Parsing

In the past decade, DP has attracted a lot of attention. Fast progress

has been made on improving the performance of dependency parsers. Here,

we are interested on reviewing the systems that show higher performance on

the Portuguese CoNLL-2006 dataset. We compare them with our proposed

solution. Furthermore, we use the unlabeled attachment score (UAS) to score

the reviewed systems. UAS is defined as the percentage of tokens that are

correctly attached to their head tokens, that is, the percentage of correct arcs

in the predicted tree. Here, we don’t consider punctuation marks to calculate

UAS.

In 2005, the MST Parser system proposed by (40), achieved state-of-

the-art performance on different datasets. In the next year, the CoNLL-2006

Shared Task (8) were devoted to multilingual DP. By applying an extension

of the MST Parser that uses second-order features and showing a 91.36% of

UAS, (41) achieved the best performance.

MST Parser’s original features are based on individual edges. The second-

order features depend on two edges, which link a head token to two sibling

modifiers. Since this model considers more complex dependencies in the output

structure, the corresponding prediction problem is also more complex. In

fact, the prediction problem in this case is NP-Hard (43). (43) proposed an

approximation algorithm to this problem and showed that the second-order

model outperforms the first-order one, even using approximated prediction.

As far as we know, the best performing system on the Portuguese CoNLL-

2006 dataset is the dual decomposition system proposed by (31). This system

introduces a new algorithm to perform approximated prediction with second-

and third-order features. However, the second-order features used in this

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 63

Parser Year
Learning Basic

UAS
Algorithm Features

Koo et al. 2010 MIRA 3rd order 93.03
Martins et al. 2013 MIRA 2nd order 92.71
Fernandes 2012 ESL 1st order 92.66
Motta 2014 IFIS 1st order 92.01
Mcdonald et al. 2006 MIRA 2nd order 91.36
Crestana 2010 ETL 1st order 89.74
This Work 2016 S-IFIS 1st order 92.96

nonregularized
This Work 2016 S-IFIS 1st order 92.83

regularized

Table 6.3: Portuguese Dependency Parsing best reported parsers.

system are slightly different from the features used in MST Parser, as we can

see from the achieved results. The third-order features include grandparent

dependencies, in addition to the sibling dependencies given by second-order

features. All these models are trained with MIRA and complex features are

generated with the manual templates proposed by (43).

More recently, also based on dual decomposition algorithm, (34) attained

the second-best result for this task with the Portuguese data set. Their second-

order model obtains 92.71% of UAS. Furthermore, dual decomposition has

shown to lead to a certificate of optimality for the vast majority of the

sentences.

The major goal of this work is to advance this line of research of the

Laboratorio de Engenharia de Algoritmos e Redes Neurais (LEARN) research

group. For that sake, we compare our approach with the parsers developed in

this group. The schemes proposed by (48) and (13) are token based, whereas

the parser proposed by (17) is graph based. This graph based parser uses the

well known edge-based scoring function. The decomposition of the score of

a candidate dependency tree is based on its edges. Hence, it belongs to the

category of parsers that use first-order feature decomposition.

The Entropy-guided Feature Generation (EFG) has been proposed as a

component of the Entropy Guided Transformation Learning (ETL) (60). EFG

promotes the induction of new features with nonlinear pattern. (13) applies a

token-based approach and uses ETL to build a system for the DP task. This

system shows a 89.74 % of accuracy.

The token-based approach of (48) attains 92.01% of accuracy. It uses a

supervised machine learning approach that incrementally induces and selects

feature conjunctions derived from basic features. This approach integrates

decision trees, support vector machines and sparse perceptrons. The resulting

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 64

machine learning framework is named IFIS – Incremental Feature Induction

and Selection. The work of (48) uses EFG to model the feature generation

component and formulates the prediction task as a multiclass problem.

EFG has been successfully integrated with the structured perceptron

algorithm leading to a structured framework called Entropy-Guided Structure

Learning (ESL) (17). ESL has been used to develop a Portuguese DP system.

This system shows a 92.66% accuracy. This is the previous best result,

regarding DP parsers developed at the LEARN lab. In Table 6.3, we summarize

the best reported results for the Portuguese DP task, on the evaluation scenario

of the CoNLL 2006 Shared Task. Also, we compare the results of the proposed

incremental scheme against the best reported systems.

The performance of our method is evaluated in two scenarios. First,

we report the result of a model that is trained without any regularization

– this is our nonregularized model. It attains 92.96% of accuracy, which is our

best result. Second, we report our best performance when using regularization

techniques. This regularized model shows a 92.83% accuracy. Both models

outperform the second best reported result, being also very close to the state-

of-art system (31).

6.4
Results

This section is devoted to the experimental results achieved with the

incremental scheme. The evaluation of the method is performed using the

Portuguese corpus provided by the CoNLL 2006 Shared Task. In Table 6.4,

we specify the partition that we use to conduct the experiments. We randomly

select 10% of the available training data to build a development set, which is

used for the parameter setting. All results are reported using the UAS metric.

Here we do not take into account punctuation marks as scoring tokens.

Partition Sentences Tokens

Train 8 164 185 974
Development 907 20 704
Test 288 5 867

Table 6.4: Partition of the Portuguese corpus used to perform the experiments.

Since this is a task that consumes many resources, particularly memory,

our experiments were conducted in the Microsoft Azure cloud platform, using a

configuration for computing memory and CPU intensive tasks. We use an A10

virtual machine with 8 cores and 56 GB of RAM. The A10 and A11 virtual

machines feature Intel Xeon E5 processors and are ideal for high-performance

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 65

clusters, modeling and simulations, video encoding and other computer or

network intensive applications.

Also we carried out part of our experiments in a D12 v2 virtual machine

with 4 cores and 28 GB of RAM. As well as the A10 configuration, the Dv2-

series instances are based on the latest generation 2.4 GHz Intel Xeon E5-2673

v3 (Haswell) processor and with Intel Turbo Boost Technology 2.0, which

can go up to 3.2 GHz. Dv2-series and D-series are ideal for applications that

demand faster CPUs, better local disk performance, or higher memories. Both

virtual machines were utilizing Microsoft Windows Server 2012 R2 operating

system.

The incremental scheme integrates several machine learning techniques

to predict the syntactic structure of a given sentence. In particular, it uses a

decision tree to generate templates in order to include features with nonlinear

pattern. Also, it uses a sparse perceptron to perform the selection of the most

informative attributes and a structure perceptron as the main classifier.

The proposed method is always trained using the arcs filtering procedure.

For each instance, we provide standard golden information1 regarding the head

to be used by the arcs filter. In this case we provide the correct postag and side

of the candidate head. In order to test the performance of the obtained model,

the development and test data sets are filtered with predicted information

regarding the head. This information is obtained from the outputs of the

predictors of head postag and head side developed by (48). Particularly, the

coarse-grained tag set specified in Appendix A was used as the class set for

the predictor of head postag.

We believe that the proposed filter improves the accuracy of all the learn-

ing algorithms comprised in the incremental scheme. This is because it reduces

the number of unpromissing candidate arcs, what makes more expressive the

number of standard golden edges. Therefore, we tested the performance of the

scheme with filtered candidate structures and compared it against a model

trained with unfiltered structures. In this case, the parser developed by (17)

helped us in the comparison. It corresponds with the nonregularized version of

our scheme when it is trained with unfiltered candidate structures. To accom-

plish this, we trained a model that only performs feature induction and does

not include any regularization extension.

In a second group of experiments we tested the performance of models

trained with regularization extensions. We showed the sensibility of the method

to different values of the parameter update counters threshold and to dropout

1Standard golden information is a term that refers to the correct information or 100%
accurate. In other words to information that is taken as ground of truth.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 66

intensity.

The last experiment measures the impact of arcs filtering method based

on the quality of auxiliary predictors. Such predictors provide information

related to the head, particularly its postag and its side. As the method uses

predictions that are not 100% accurate to filter candidate edges, it is interesting

to test it in ideal conditions. In this case, we tested a model with standard

golden information. We compared this set up against a data set that uses

predicted information in the filtering. In this scenario, we can evaluate the

system gain if we improve the accuracy of the auxiliary predictors.

6.4.1
Impact of Candidate Edges Filter

For the task of dependency parsing, we incorporate a filter of candidate

edges, which we believe improves the accuracy of the learning algorithms

comprised in the incremental method. As our incremental scheme is based

on cycles of compression and expansion of the feature representation of

the training examples, we measure the power of the proposed filter in the

initialization cycle of the method without any regularization extension. We

hope this experiment shows an improvement in performance of the Structured

Perceptron (SPerc) used as main classifier.

The training is performed on the initialization cycle with different values

of the margin to measure the sensibility of the accuracy against this parameter.

As stop condition of the SPerc we use 10 epochs of training. The Figure 6.1

shows on the left the results for the training set and the results on the right

are for the development data set.

The best result for the development data set was obtained when the

margin is equal to 400. The performance of the corresponding model was

measured on the test data set and 91.93% of accuracy was obtained. This

result compared against (13) and (41) shows that, in this scenario, our method

performs better. Hence, we concluded that just the application of the filter

benefits the parser’s performance. In other words, the main classifier obtains

a better result when the number of unpromising edges is reduced.

This improvement is due to the fact that we moved from training with

complete candidate graphs, in which the relation between unpromising edges

and the number of edges in a dependency tree is large, to a better balanced

scenario. In Table 6.5 we show statistics regarding the filtered structures that

we are using to the empirical evaluation of our method.

The mean density obtained from the filtered candidate structures points

outs that such structures are very sparse. Another important measure associ-

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 67

Margin
100 200 300 400 500

A
cc

ur
ac

y

95.5

95.6

95.7

95.8

95.9

96

96.1

96.2

96.3

96.4

96.5
Train

Margin
100 200 300 400 500

A
cc

ur
ac

y

90.8

91

91.2

91.4

91.6

91.8

92

92.2
Development

Figure 6.1: Sensibility of the accuracy against different values of the margin
when performing the initialization cycle. On the left we show the results for
the training data set and on the right for the development data set.

Partition Mean Density Mean Recall (%)

Train 0.14 100
Development 0.15 93.51

Table 6.5: Mean density and recall of standard golden edges for the chosen
partition.

ated with the quality of the filter is the mean recall of standard golden edges2,

this measures the percent of correct edges in the candidate graph. In the train-

ing set the recall of golden edges is 100% because we used standard golden

information to filter the structures. On the other hand, the mean recall in the

development set is 93.51%, due to the fact that the information used in the

filtering stage is obtained from auxiliary predictors that are not 100% accu-

rate. This means that the measure of recall is an upper bound for performance.

However, as this experiment demonstrated, the filter can benefit the main clas-

sifier by improving its accuracy. Next, we investigated the power of the filter

when combined with feature induction.

Impact on the Feature Induction

We believe that the accuracy of the decision tree used to generate the

templates in the feature induction step is improved when using the proposed

filter. To prove this claim, we add to the initialization cycle another cycle with

2Standard golden edge refers to an edge that belongs to the structure that is taken as
ground of truth.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 68

feature induction; all this without any regularization extension. We compared

the result with the model of (17), which coincides with our model when it is

trained with unfiltered candidate structures. The training is carried out with

different values of the margin, to measure the sensibility of the accuracy to

this parameter. We use 10 epochs as stop condition of the SPerc algorithm.

Following (17) and (61), we use templates with lengths in the range from 2 to 4.

The Figure 6.2 shows the results of this model for the training and development

sets.

Margin
100 200 300 400 500

A
cc

ur
ac

y

96.9

96.95

97

97.05

97.1

97.15

97.2
Train

Margin
100 200 300 400 500

A
cc

ur
ac

y

92.2

92.3

92.4

92.5

92.6

92.7

92.8

92.9
Development

Figure 6.2: Sensibility of the accuracy against different values of the margin
when performing the initialization cycle and a cycle of feature induction. On
the left we show the results for the training data set and on the right for the
development data set.

In this scenario and for the development data set, the best model was

obtained when the margin is equal to 300. We measured its performance on

test data set and 92.96% of accuracy was obtained. This result compared

against the unfiltered case, (17), shows an improvement of performance. This

is because the decision tree performs the training with a reduced number of

unpromising edges and a more representative number of edges that belong

to a dependency tree. In other words, we are promoting the balance of the

number of examples in the classes used to train the decision tree. Therefore,

we concluded that the filter helps to improve the performance of two of the

main components of the incremental scheme: the decision tree algorithm and

the SPerc. This model outperforms the second best reported result (34), being

very close to the state-of-art system (31).

A highlight on the statistics of the selection of the model, when using

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 69

the development data set, is its size. In Table 6.6 we detail such statistics. In

the initialization cycle, the learning of the model’s weights starts with 328 665

binary attributes. After the induction are obtained 7 templates. When such

templates are instantiated the number of binary attributes grows to 428 625,

which represents an increment of 23.33%.

Another particularity is that the number of nonzeros of the final model,

the obtained after the induction, is 87 483. This means that our embedded

extension of regularization, models of averages, is working; although its size is

still regarded as large.

Cycle
Initial

Nonzeros
Attributes

0 328 665 86 482
1 428 625 87 483

Table 6.6: Statistics of the nonregularized model obtained with the margin
parameter set to 300.

Another peculiarity, is regarding the time spent training this model. In

this particular case, the training of the decision tree algorithm took 6 hours

to be completed because of the large amount of decision variables that were

used. In total the experiment took 6 hours and 30 minutes to complete.

In this scenario, it is necessary to use regularization techniques. Our

goals are to reduce training time, to select the most useful features for the

model’s learning and to promote compactness which is known to improve the

generalization power. We use two regularization techniques introduced in the

SPerc: dropout and update counters threshold. Next, we report the results of

the regularized model.

6.4.2
Impact of Regularization

Sparse linear models have become a powerful tool due to its ability

to jointly perform feature selection and the estimation of the model. It is

interesting to select only the features that should be used to build the model.

In the scenario of feature induction the amount of binary attributes that are

generated by the templates can lead to a potential overfitting of the training

data. Also, it might introduce a large number of irrelevant attributes as was

shown in (48). Hence, to control overfitting and the size of the model, we

introduce regularization techniques based on sparse linear models. Our main

goal is to promote more compact models, which are desirable because they

facilitate interpretation, they take less time to be trained and occupy less

computational resources.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 70

Up to this point we have tested our method without any extension of

regularization. We are interested on investigating the efficacy of two particular

regularization techniques. First, the update counters threshold technique, which

was introduced in SPerc for the promotion of sparseness. Second, the dropout

technique, that as shown in (48), is an adaptation for the perceptron algorithm

of the dropout used in neural networks. The intention is to smooth and

refine the selection performed by the counters threshold. So, the compression

component is based on Structured Sparse Perceptron (SSPerc).

First, we present a group of experiments referring to the setting of the

threshold parameter and its contribution to accuracy improvement. In a second

stage we investigate the impact of the dropout when combined with update

counters threshold.

Update Counters Threshold

Inspired on the number of times that a feature participates in updates

of the model, (23) proposed the extension that we are referring here as update

counters threshold. The intention is to establish a minimum bound of necessary

updates that a feature must accomplish in order to become relevant for the

learning of the model. To include this extension the scoring function is modified

with the main goal of use the update counters as a mask, this is to include ϕi

in the scalar product only if it has participated in minimum L updates. For

example, if we have (ϕ1(x, i, j), . . . , ϕ3(x, i, j)) basic features for the edge (i, j)

and u = [1, 2, 3] with L = 2 the score of the edge is w2∗ϕ2(x, i, j)+w3∗ϕ3(x, i, j)

because ϕ1 does not meet the constraint of minimum updates.

Our method is based on cycles of compression and expansion of the

feature representation. The compression is performed with the selection of the

most informative attributes, which helps to control the size of the model. The

expansion is performed with the induction of features with nonlinear pattern.

Our main concern here is to investigate the impact of the update counters

threshold extension as part of the compression step. We based our experiments

on the value of the margin for the nonregularized model. So we adjusted the

threshold parameter using the margin equal to 300. Also, we used 10 epochs

of training as stop condition for the SPerc and the SSPerc.

The application of the arcs filter helped to improve performance, so

we wanted to test its combination with this regularization technique. We

performed the initialization cycle guided by the update counters threshold

extension and in Figure 6.3 we depicted the results for the training and the

development sets.

In this scenario, the best result for the development set is obtained when

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 71

Threshold
1 2 3 4 5

A
cc

ur
ac

y

94.8

95

95.2

95.4

95.6

95.8

96
Training

Threshold
1 2 3 4 5

A
cc

ur
ac

y

90.8

91

91.2

91.4

91.6

91.8

92
Development

Figure 6.3: Sensibility of the accuracy against different values of update
counters threshold. The obtained results are for the initialization cycle, on
the left is shown the training set results and to the right the development
results.

the threshold has value 3. Using the generated model on test data set we obtain

91.00% of accuracy. As expected, its nonregular counterpart performs better.

When compared with the best results reported, this model only outperforms

(13). This let us conclude that only the attributes selection combined with arcs

filter is not sufficient to describe the phenomenon of interest. In this case, is

required a clever mechanism to introduce more features to help in the learning.

We combined this setup for the initialization with a cycle of induction and

selection. As the method is initialized with a compression step, the induction

is made over the selected attributes. Hence, this helps with the refinement of

the primary selection because we are adding templates built only with relevant

features. We claim that this configuration improves the accuracy of the final

model. With this configuration we obtained competitive results. In Figure 6.4

is shown the results for the training and development sets.

The best results are attained when the threshold parameter is set to 5.

Using this model on the test data set we obtain 92.65% of accuracy. This is

because the induction helps to refine the initial selection which improves the

final accuracy. This model has a better performance than (48), (41) and (13)

approaches.

In this scenario of an initialization cycle with compression and a full cycle

with compression and expansion using the update counters extension active,

we obtain the results reported in Table 6.7 regarding to the regularization

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 72

Threshold
1 2 3 4 5

A
cc

ur
ac

y

95.8

95.9

96

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8
Training

Threshold
1 2 3 4 5

A
cc

ur
ac

y

91.4

91.5

91.6

91.7

91.8

91.9

92

92.1

92.2

92.3
Development

Figure 6.4: Sensibility of the accuracy against different values of update
counters threshold. The obtained results are for the initialization cycle and
another cycle of induction and compression, on the left is shown the training
set results and to the right the development results.

power.

Cycle
Initial

Nonzeros
Regularization

Attributes (%)

0 328 665 9 295 97.17
1 106 317 12 285 88.27

Table 6.7: Statistics of the regularized model obtained with parameters of
update counters threshold in 5.

The obtained results showed that our method has a great regularization

power. It discarded 97.17% of the basic features that served as input for the

method in the initialization cycle. As well, after the induction it compressed the

model in 88.27%. This model obtained a good result when compared against

its nonregularized counterpart.

Regarding the time spent on the training of this model, we can say that

the most time consuming component, when compared against its nonregular-

ized counterpart, is the training of the decision tree algorithm. In this context

this component takes a mean time of training of 20 minutes. The experiment

took 45 minutes to be completed. Therefore, when compared against the non-

regularized model we have reduced the time of training from 6 hours to 45

minutes. So, we concluded that the employed regularization technique drops

dramatically the size of the final model and the time spent on training, which

in turn helps to improve performance.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 73

Next, we combined this technique with the dropout technique proposed

by (48) to investigate the impact of regularization in this scenario.

Combining Update Counters Threshold with Dropout

In order to refine the selection made by the update counters threshold

extension is proposed dropout. The goal of dropout is to promote regularization

through the elimination of highly correlated attributes. This allows a better

control over the number of selected attributes. It is based on the probability of

discarding a feature even if it participates in an update of the model. Hence, it

allows a fine selection of the attributes through the variation of this probability.

For example, low values of the dropout probability cause low increments of the

update counters. On the other hand, values near 1 obtain similar results to the

update counters threshold extension.

An important remark is that there is no purpose of training with dropout

and without the threshold extension. This is because it only intervenes in the

update rule of the attributes update counters. In other words, if the threshold

is 0 this means that every attribute participates in the score of the edges, hence

is irrelevant if we increase the update counters or not.

The conducted experiments showed that the best result for the develop-

ment set was obtained with values of the threshold in 3 and dropout in 0.9.

We used as stop condition of the perceptrons 10 epochs and a margin constant

of 300. For the template generation we consider templates lengths between 2

and 4. We obtained 92.83% of accuracy on the test set with the model trained

with the proposed parameter setting.

This model outperforms the second best result (34), being also very

close to the state-of-art system from (31). As expected, its nonregularized

counterpart has a better performance. However, it outperforms the regularized

model obtained with update counters threshold technique. This might be

explained in the number of attributes or the percent of regularization that

the model suffers when such techniques are employed.

Regarding the statistics on model’s size, in the scenario of the initializa-

tion with compression and a cycle of induction and selection, are discarded

96.17% of the total of binary attributes. The Table 6.8 reports such statistics.

Cycle
Initial

Nonzeros
Regularization

Attributes (%)

0 328 665 14 138 95.69
1 142 327 17 746 87.53

Table 6.8: Statistics of the regularized model obtained with parameters of
update counters threshold in 3 and dropout in 0.9.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 74

The size of this model is larger when compared against the model trained

with update counters threshold technique. Also, it attained a better perfor-

mance. This increase in the size of the model helped to improve performance

which means that we refined the selection made by update counter threshold

technique. Regarding the time spent in the training of this algorithm, we can

say that it has similar measure when compared with the model without the

dropout extension. Hence, we concluded that with this combination we have

improved the trade-off between accuracy and model’s size.

6.4.3
Impact of Standard Golden Information on Auxiliary Predictors

Up to this point we have demonstrated the power of the proposed filter

of candidate edges when combined with several machine learning techniques.

Until now we always have used predicted information to evaluate performance.

The discussion now turns to the scenario of getting more accurate information

to filter our candidate structures.

As we trained our models with standard golden information, it is inter-

esting to test our best model in this scenario too. Our main goal here is to

investigate the impact in accuracy if an improvement is made in the filtering

stage. In other words, this will give us a measure of the gain in accuracy that

is obtained if the recall of standard golden edges is improved.

The predictors used in the filtering step are not 100% accurate, Table 6.9

shows the accuracy of the used auxiliary predictors. When the filter is applied

with predicted information to the development dataset, it leads to a recall of

93.51% which sets an upper bound for accuracy in such dataset. Hence, we

wanted to test the performance of our best model when the upper bound set

by the recall of standard golden edges is 100%. Such condition is achieved when

the candidate structures are filtered with standard golden information.

Predictor Accuracy (%)

Head POS 95.67
Head Side 98.90

Table 6.9: Accuracy of the auxiliary predictors used in the filtering step.

When predicted information is used, our best model which is the non-

regularized one, attains 92.86% of accuracy in the development dataset. To

conduct our experiment we used the development dataset because it allows us

to relate the results with the recall. In this case we have filtered the dataset

with standard golden information and tested the model. In this scenario we

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 75

obtained 94.67% of accuracy, Table 6.10 summarizes the results for the devel-

opment dataset when predicted and standard golden information is used.

Filtering Information UAS (%)

Predicted 92.89
Standard golden 94.67

Table 6.10: Accuracy of the nonregularized model on the development dataset.
First, we used predicted information to filter the candidates structures. Also,
we include the obtained result when standard golden information is used in
the filtering step.

When standard golden information is used in the filtering stage we envi-

sioned a clear improvement in the accuracy. We had a 1.88% of improvement,

allowing us to outperform the state-of-art system from (31). Hence, we con-

cluded that if we work towards the improvement of the auxiliary predictors

used in the filtering stage, the results of the general task are going to be ben-

efited. Next, we performed an error analysis of the auxiliary predictors and

discussed a solution to circumvent the errors of such predictors.

6.5
Error Analysis

We observe that the division into less complex subtasks to solve the

parsing problem benefits the learning algorithms involved in the components

of our incremental scheme. As shown in the empirical evaluation, the best

results are obtained from the combination of the candidate edges filter and the

feature induction.

The candidate edges filter is used as a preprocessing step, hence any error

made in this stage is propagated through the subsequent components of the

proposed method. In this case the recall of standard golden edges obtained after

the application of the filter sets an upper bound for performance. For example,

after the filtering stage the recall in the development dataset is 93.51%, which

means that the performance on this dataset can’t be above this measure.

Our filter is based on the outputs of the auxiliary predictors of head

postags and head side. In this section is discussed an error analysis made on

the head postags auxiliary predictor used to filter the candidate edges. We

focus on this predictor because it has 95.67% of accuracy and is outperformed

by the head side predictor. Our goal here is to propose a solution to circumvent

the errors of such predictor and improve the final accuracy of the method. The

Table 6.11 shows the most common errors made by the head postags predictor.

When analyzing the errors of the head postags predictor we found

that the most confusing items are verbs and nouns. Analyzing the mistaken

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 76

v n prop prp adj root pron adv Total
v 7 401 176 10 34 12 42 4 13 294
n 152 6 543 36 22 16 9 1 2 251

prop 35 104 1 163 5 0 1 2 1 148
prp 55 42 8 3 157 7 1 2 3 120
adj 25 57 2 1 248 0 1 2 88

root 41 4 0 0 0 862 0 0 45
pron 19 15 4 2 0 2 67 1 43
adv 25 5 1 2 1 1 0 98 36

Table 6.11: Partial confusion matrix of the errors made by the head postags
predictor. Here we show the most frequent mistakes made by the predictor in
question.

predictions regarding nouns, we can say that in 60.55% of the cases it predicts

verbs rather than nouns. On the other hand, the predictor confuses nouns with

verbs in 59.89% of the mistakes made when analyzing verbs.

Inspired on this analysis, we want to pass for the structured perceptron

the task of correcting the hard cases in which the multiclass predictor fails, that

is on differentiating verbs from nouns. As future work, we propose to increase

the recall of standard golden edges by not to filter edges linking dependent

tokens with verbs or nouns. Therefore, is expected an increase on the density of

the candidate structures. We expect to see an improvement on the performance

of the proposed learning algorithm.

6.6
Discussion

Machine learning approaches to dependency parsing have used several

strategies, from token based to structure learning. Following the line of

research of the Laboratorio de Engenharia de Algoritmos e Redes Neurais, we

propose an integration and enhancement of the machine learning approaches

to dependency parsing proposed by (48), (17) and (13).

First, we decompose the main task into less complex subtasks. These

are, the prediction of the postag of the head token given a dependent and

the prediction of the side of the head token given the relative position in

the sentence of the dependent. This two subtasks correspond to multiclass

prediction problems.

In order to find the correct head token for a given dependent, we can

define a measure of distance based on previous information, that is the number

of tokens between the head and the dependent that have the same postag as the

head token. Given such measure of distance between the head token and the

dependent, we propose to solve in terms of encountering the correct distance

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 77

between the dependent and its head token based on the information of the

head side and postag. This corresponds to the distance subtask proposed in

(48) and (13).

To integrate the mentioned subtasks into a problem of structured predic-

tion of the distance, we filter the unpromissing edges based on the information

of the auxiliary predictors of head postag and head side. Here, we show the

power of the filter when compared against the best reported results of the lit-

erature. We concluded that only the application of the filter helps improve the

accuracy of the predictor. This improvement is due to the significant reduc-

tion on the number of candidate arcs. Instead of working with all the arcs as

candidates, we filter just a few as candidates. As a result, the relation between

unpromissing arcs and corret arcs in the candidate arcs graph is drastically

reduced. This fact reduces noise, improving learnability.

In the second group of experiments we obtained the best result of

our model, 92.96% of accuracy. We shown that the combination of the

filter with feature induction is powerful. This is because the decision tree

performs the training with a reduced number of unpromising edges and a

more representative number of edges that belong to a dependency tree. In

other words, we are promoting the balance of the number of examples in the

classes used to train the decision tree. Therefore, the filter helps improve the

performance of two of the main components of the incremental scheme: the

decision tree algorithm and the Structured Perceptron.

As feature induction introduces a large number of binary attributes and

can produce overfitting, we conducted a serie of experiments to obtain a

regularized model. This is because the promotion of more compact models

simplify interpretation, reduce training time and consume less computational

resources. It turns out that our regularized model quality is comparable to

the nonregularized version, although a little smaller. Particularly, it reduces

the number of nonzeros in the final model in at least 80%, this is respect the

number of nonzeros of the nonregularized model.

Also, we present some statistics about the structures obtained after

the arc filtering. We found that the performance of the predictor is limited

by the recall of standard golden edges of the filtered candidate structures.

For example, we can not have a performance better that 93.51% on the

development dataset. Inspired on this, in the last experiment we tested our

best model using the development data set filtered with standard golden

information. This experiment showed that the performance of the incremental

scheme can be benefited from an improvement on the accuracy of the auxiliary

predictors.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Empirical Evaluation 78

Finally, we concluded that the integration of our arc filter procedure

with decision trees and structured perceptron is powerful when applied to the

Portuguese dependency parsing task. Our resulting system is competitive with

the state-of-the-art for the task.

6.7
Chapter Conclusions

Here we reported the empirical evaluation performed to the proposed

solution. We have observed its superiority when compared against state-of-

art approaches. The obtained results demonstrate that the filter of candidate

edges benefits the incremental scheme and that our approach improves the

performance of the dependency parsers.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

7
Conclusions

Several techniques have been proposed to automatically solve the syntac-

tic analysis problem. In this dissertation, we review the main topics referring

to dependency-based syntactic analysis. These topics provide the theoretical

foundation and the representation used to describe the structure underlying

such analysis.

Additionally, we examined the work on data-driven approaches to depen-

dency parsing. We highlight the efforts made by the NLP community on the

CoNLL Shared Tasks. These shared tasks establish a standard for evaluating

and comparing parsers. Particularly, we focused on the work on graph-based

approaches to dependency parsing and their main characteristics when com-

pare against their counterpart, the transition-based parsers.

Following a line of research of Laboratorio de Engenharia de Algoritmos e

Redes Neurais (LEARN), we proposed an integration and enhancement of the

machine learning approaches to dependency parsing proposed by (48), (17)

and (13). The token-based approaches of (48) and (13) decompose the task

into less complex subtasks related to the head token. They build a multiclass

predictor for three head properties, namely: side, postag and relative distance

to the dependent token. In this case, the measure of distance is the number

of tokens, between the head and the dependent, that have the same postag as

that of the head token.

In this work, we model dependency parsing as a structured prediction.

The main goal is to identify, for each token, which token in the sentence is

its corresponding head token. One of our major contributions is the filtering

of candidate arcs, using the head side and head postag predictors. Taking this

into account, we defined the machine learning subtask that is the focus of our

research. Also, we described a set of features that capture dependency relations

between the lexical items in the input sentence.

Due to its flexibility, robustness and simplicity, the perceptron algorithm

is one of the most popular linear discriminant methods. It is also adapted to

learn complex representations, such as those required for structured prediction.

In this dissertation, we proposed the learning of dependency trees with the

structured perceptron and its dropout and sparse vector extensions. Such

extensions are the core of our proposal. We also combined this algorithm with

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Conclusions 80

an induction method, which provides automatically features that represent

nonlinear patterns.

Additionally, we proposed an incremental scheme that is based on

cycles of compression and expansion of the feature representation vector. It

combines decision trees with the proposed structured perceptron extensions.

The Structured Sparse Percetron performs the selection of the attributes,

whereas the Entropy-Guided Feature Generation performs the induction of

features with nonlinear pattern from a given set of basic features. Therefore,

we have a procedure that generates regularized and nonlinear models. As a

consequence of these size reduced models, we obtained a speed up in the

training phase. We reduced in 88% the time spent on training which in turn

saves computational resources and improves learnability. On the other hand,

these compact models show better generalization power.

In the empirical evaluation of our model, we observe that only the

application of the arc filter helps improve the accuracy of the predictor. This

improvement is due to the significant reduction of the number of candidate

arcs, after we apply our arc filtering procedure.

Our Portuguese Dependency Parsing system achieves a 92.96% of accu-

racy on its nonregularized version. It is obtained with the initialization cycle

using the basic features and just one cycle of feature induction. Our findings

indicate that the combination of the arc filter with feature induction is pow-

erful.

Our regularized model achieves a 92.83% accuracy. Nevertheless, it also

shows a striking reduction of 96.17% in the number of binary features used

by the model. Furthermore, it reduces the learning time in almost 90%, when

compared to its nonregularized version. It is obtained with the initialization

cycle using the basic features and a full cycle of compression and expansion.

The full cycle uses the dropout and the update counters threshold extensions.

Future Work

We observe that the task decomposition into less complex subtasks that

are sequentially executed helps to solve the dependency parsing problem. The

learning algorithms involved in our incremental learning scheme efficiently

use the information from the previous subtasks. As shown in the empirical

evaluation, the best results are obtained by combining the candidate edges

filter and the feature induction. Nevertheless, performance has the quality of

the recall of standard golden edges as an upper bound. For example, the recall

quality in the development dataset has 93.51% as an upper bound, because we

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Conclusions 81

use predicted information for the arc filtering procedure. Hence, when tested

in such dataset, our method can not perform better than that. By examing

our head postag predictor confusion matrix, we observed that the most difficult

head postags to discriminate are verbs and nouns. Therefore, we think that the

result of the system accuracy would be improved if we don’t include the arcs

which are hard to discriminate for the head postag predictor in the filtering

stage. On the other hand, following a line of research at the LEARN lab on

Multilanguage Coreference Resolution (57; 20), we foresee the reuse of our

parser implementation as a key component in the development of coreference

resolution systems.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

8
Bibliography

AFONSO, S. et al. Floresta sintá (c) tica: A treebank for portuguese. In LREC.

[S.l.: s.n.], 2002. 6, 2.3.1, 3.1, 6.1

ALTUN, Y. et al. Hidden markov support vector machines. In ICML. [S.l.: s.n.],

2003. vol. 3, p. 3–10. 4.2

ATTARDI, G. Experiments with a multilanguage non-projective dependency parser.

In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the

Tenth Conference on Computational Natural Language Learning. [S.l.],

2006. p. 166–170. 2.3.2

BICK, E. The parsing system palavras. Automatic Grammatical Analysis of

Portuguese in a Constraint Grammar Framework, University of Arhus, 2000.

2.3.1

BIKEL, D. M.; CASTELLI, V. Event matching using the transitive closure of de-

pendency relations. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS.

Proceedings of the 46th Annual Meeting of the Association for Com-

putational Linguistics on Human Language Technologies: Short Papers.

[S.l.], 2008. p. 145–148. 2.3

BOHNET, B. Comparing advanced graph-based and transition-based dependency

parsers. In Proceedings of the International Conference on Dependency

Linguistics (Depling). [S.l.: s.n.], 2011. p. 282–289. 2.3.2, 2.3.3

BRILL, E. Transformation-based error-driven learning and natural language pro-

cessing: a case study in part-of-speech tagging. Comput. Linguist., MIT Press,

Cambridge, MA, USA, vol. 21, p. 543–565, dec. 1995. ISSN 0891-2017. Available

from Internet: <http://dl.acm.org/citation.cfm?id=218355.218367>. 4.4

BUCHHOLZ, S.; MARSI, E. Conll-x shared task on multilingual dependency

parsing. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings

of the Tenth Conference on Computational Natural Language Learning.

[S.l.], 2006. p. 149–164. 6, 2.3.1, 2.3.3, 2.3.4, 3.1, 6.1, 6.2, 6.3

BUYKO, E.; HAHN, U. Evaluating the impact of alternative dependency graph

encodings on solving event extraction tasks. In ASSOCIATION FOR COMPUTA-

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 83

TIONAL LINGUISTICS. Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing. [S.l.], 2010. p. 982–992. 2.3

CARRERAS, X. Experiments with a higher-order projective dependency parser. In

EMNLP-CoNLL. [S.l.: s.n.], 2007. p. 957–961. 2.3.3

CHU, Y.-J.; LIU, T.-H. On shortest arborescence of a directed graph. Scientia

Sinica, SCIENCE PRESS 16 DONGHUANGCHENGGEN NORTH ST, BEIJING

100717, PEOPLES R CHINA, vol. 14, no. 10, p. 1396, 1965. 1.2, 4.1

COLLINS, M. Discriminative training methods for hidden markov models: Theory

and experiments with perceptron algorithms. In ASSOCIATION FOR COMPUTA-

TIONAL LINGUISTICS. Proceedings of the ACL-02 conference on Empirical

methods in natural language processing-Volume 10. [S.l.], 2002. p. 1–8. 4.1,

4.2, 4.2, 4.2.1

CRESTANA, C. E. M. A Token Classification Approach to Dependency

Parsing. Master thesis — Pontif́ıcia Universidade Católica do Rio de Janeiro,

2010. 1, 1.5, 1, 2.3.4, 3, 3.1, 3.2, 3.4, 6.3, 6.3, 6.4.1, 6.4.2, 6.4.2, 6.6, 7

CULOTTA, A.; SORENSEN, J. Dependency tree kernels for relation extraction.

In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the

42nd Annual Meeting on Association for Computational Linguistics. [S.l.],

2004. p. 423. 2.3

EDMONDS, J. Optimum branchings. Journal of Research of the National

Bureau of Standards B, vol. 71, no. 4, p. 233–240, 1967. 1.2, 4.1

FERNANDES, E.; SANTOS, C. dos; MILIDIÚ, R. A machine learning approach

to portuguese clause identification. In PARDO, T. et al. (Ed.). Computational

Processing of the Portuguese Language. [S.l.]: Springer Berlin Heidelberg,

2010, (Lecture Notes in Computer Science, vol. 6001). p. 55–64. ISBN 978-3-642-

12319-1. 3.3.1, 5

FERNANDES, E. L. R. Entropy Guided Feature Generation for Structure

Learning. Tese (Doutorado) — Pontif́ıcia Universidade Católica do Rio de Janeiro,

2012. 1, 1.5, 4, 1.6, 2.3.3, 2.3.4, 3.3.1, 4.1, 4.4, 5, 5.3, 6.3, 6.3, 6.4, 6.4.1, 6.4.1,

6.6, 7

FERNANDES, E. R.; BREFELD, U. Learning from partially annotated sequences.

In Proceedings of the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases (ECML-

PKDD). Athens, Greece: [s.n.], 2011. 4.1

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 84

FERNANDES, E. R.; MILIDIÚ, R. L. Entropy-guided feature generation for struc-

tured learning of portuguese dependency parsing. In Computational Processing

of the Portuguese Language. [S.l.]: Springer, 2012. p. 146–156. 4, 2.3.3, 4.1,

4.4

FERNANDES, E. R.; SANTOS, C. N. dos; MILIDIÚ, R. L. Latent trees for

coreference resolution. Computational Linguistics, MIT Press, 2014. 7

FERREIRA, G. C. D. N. A Machine Learning Approach for Portuguese Text

Chunking. Master thesis — Pontif́ıcia Universidade Católica do Rio de Janeiro,

2011. 3.3.1

FREITAS, C.; ROCHA, P.; BICK, E. Floresta Sintá(c)tica: Bigger, thicker and

easier. In TEIXEIRA, A. et al. (Ed.). Computational Processing of the Por-

tuguese Language. [S.l.: s.n.], 2008. (Lecture Notes in Computer Science,

vol. 5190), p. 216–219. 6, 2.3.1, 3.1, 6.1

GOLDBERG, Y.; ELHADAD, M. Learning sparser perceptron models. Tech.

Rep.[Online]. Available: http://www. cs. bgu. ac. il/˜ yoavg/publications, 2011.

5, 2.3.3, 4.1, 4.5, 6.4.2

GÓMEZ-RODŔIGUEZ, C.; NIVRE, J. Divisible transition systems and multiplanar

dependency parsing. Computational Linguistics, MIT Press, vol. 39, no. 4, p.

799–845, 2013. 2

GUYON, I. et al. Feature extraction: foundations and applications. Springer, 2008.

1.4

HINTON, G. E. et al. Improving neural networks by preventing co-adaptation of

feature detectors. arXiv preprint arXiv:1207.0580, 2012. 4.5.1

HUDSON, R. A. English word grammar. [S.l.]: Basil Blackwell Oxford, 1990.

2.1

JENATTON, R.; AUDIBERT, J.-Y.; BACH, F. Structured variable selection with

sparsity-inducing norms. The Journal of Machine Learning Research, JMLR.

org, vol. 12, p. 2777–2824, 2011. 4.5

JOHANSSON, R.; NUGUES, P. Dependency-based syntactic-semantic analysis

with propbank and nombank. In ASSOCIATION FOR COMPUTATIONAL LIN-

GUISTICS. Proceedings of the Twelfth Conference on Computational Nat-

ural Language Learning. [S.l.], 2008. p. 183–187. 2.3.2

KOLLER, D.; TASKAR, B.; GUESTRIN, C. Max-margin markov networks. Ad-

vances in Neural Information Processing Systems (NIPS), Citeseer, vol. 17.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 85

KOO, T. et al. Dual decomposition for parsing with non-projective head automata.

In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the

2010 Conference on Empirical Methods in Natural Language Processing.

[S.l.], 2010. p. 1288–1298. 2.3.3, 2.3.4, 6.3, 6.3, 6.4.1, 6.4.2, 6.4.3

KÜBLER, S.; MCDONALD, R.; NIVRE, J. Dependency parsing. Synthesis Lec-

tures on Human Language Technologies, Morgan & Claypool Publishers,

vol. 1, no. 1, p. 1–127, 2009. 2.2

LEI, T. et al. Low-rank tensors for scoring dependency structures. In ASSOCIA-

TION FOR COMPUTATIONAL LINGUISTICS. [S.l.], 2014. 2.3.3

MARTINS, A. F.; ALMEIDA, M. B.; SMITH, N. A. Turning on the turbo: Fast

third-order non-projective turbo parsers. 2013. 2.3.4, 6.3, 6.3, 6.4.1, 6.4.2

MARTINS, A. F. et al. Structured sparsity in structured prediction. In ASSOCI-

ATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the Confer-

ence on Empirical Methods in Natural Language Processing. [S.l.], 2011.

p. 1500–1511. 2.3.3, 4.5

MARTINS, A. F. et al. Online learning of structured predictors with multiple

kernels. 2011. 2.3.3

MARUYAMA, H. Structural disambiguation with constraint propagation. In AS-

SOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 28th

annual meeting on Association for Computational Linguistics. [S.l.], 1990.

p. 31–38. 2.1

MCALLESTER, D.; HAZAN, T.; KESHET, J. Direct loss minimization for struc-

tured prediction. In Advances in Neural Information Processing Systems.

[S.l.: s.n.], 2011. 4.1

MCDONALD, H. Z. R. Enforcing structural diversity in cube-pruned dependency

parsing. 2014. 2.3.4

MCDONALD, R.; CRAMMER, K.; PEREIRA, F. Online large-margin training

of dependency parsers. In Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics. [S.l.: s.n.], 2005. (ACL’05), p. 91–

98. 2.3.1, 2.3.3, 2.3.4, 3.2, 3.3, 6.3

MCDONALD, R.; LERMAN, K.; PEREIRA, F. Multilingual dependency analysis

with a two-stage discriminative parser. In In Proceedings of the Conference

on Computational Natural Language Learning (CoNLL. [S.l.: s.n.], 2006. p.

216–220. 2.3.4, 6.3, 6.4.1, 6.4.2

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 86

MCDONALD, R.; NIVRE, J. Analyzing and integrating dependency parsers. Com-

putational Linguistics, MIT Press, vol. 37, no. 1, p. 197–230, 2011. 2, 2.3, 3.2

MCDONALD, R.; PEREIRA, F. Online learning of approximate dependency parsing

algorithms. In In Proc. of EACL. [S.l.: s.n.], 2006. p. 81–88. 2.3.3, 2.3.4, 6.3,

6.3

MCDONALD, R.; SATTA, G. On the complexity of non-projective data-driven

dependency parsing. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS.

Proceedings of the 10th International Conference on Parsing Technolo-

gies. [S.l.], 2007. p. 121–132. 2.3.3

MCDONALD, R. T.; NIVRE, J. Characterizing the errors of data-driven depen-

dency parsing models. In EMNLP-CoNLL. [S.l.: s.n.], 2007. p. 122–131. 2, 2.3.1,

2.3.2

MEL’ČUK, I. A. Dependency syntax: theory and practice. [S.l.]: SUNY press,

1988. 2.1, 2.2

MILIDIÚ, R. L. et al. Phrase chunking using entropy guided transformation

learning. In ACL. [S.l.: s.n.], 2008. p. 647–655. 4, 2.3.3, 4.1

MOTTA, E. N. Indução e seleção incrementais de atributos no aprendizado

supervisionado. Tese (Doutorado) — Pontif́ıcia Universidade Católica do Rio de

Janeiro, Departamento de Informática, 2014. 1, 1.5, 3, 1.6, 2.3.3, 2.3.4, 3, 3.1,

3.1, 3.1.1, 3.1.2, 3.2, 3.3, 3.4, 4.1, 4.5, 4.5.1, 5, 6.3, 6.3, 6.4, 6.4.2, 6.4.2, 6.4.2,

6.6, 7

MURPHY, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.

1.4

NG, A. Y. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In

ACM. Proceedings of the twenty-first international conference on Machine

learning. [S.l.], 2004. p. 78. 1.5

NILSSON, J.; RIEDEL, S.; YURET, D. The conll 2007 shared task on dependency

parsing. In SN. Proceedings of the CoNLL shared task session of EMNLP-

CoNLL. [S.l.], 2007. p. 915–932. 2.3.1, 6.2

NIVRE, J. Dependency grammar and dependency parsing. MSI report, vol. 5133,

no. 1959, p. 1–32, 2005. 2, 2.1, 2.3

NIVRE, J. Non-projective dependency parsing in expected linear time. In ASSO-

CIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the Joint

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 87

Conference of the 47th Annual Meeting of the ACL and the 4th Interna-

tional Joint Conference on Natural Language Processing of the AFNLP:

Volume 1-Volume 1. [S.l.], 2009. p. 351–359. 2.3.2

NIVRE, J.; HALL, J.; NILSSON, J. Memory-based dependency parsing. 2008. 2.3.2

NIVRE, J. et al. Labeled pseudo-projective dependency parsing with support vec-

tor machines. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-

ceedings of the Tenth Conference on Computational Natural Language

Learning. [S.l.], 2006. p. 221–225. 2.3.1, 2.3.2

NOVIKOFF, A. B. On convergence proofs for perceptrons. [S.l.], 1963. 4.2

PRADHAN, S. et al. Conll-2012 shared task: Modeling multilingual unrestricted

coreference in ontonotes. In ASSOCIATION FOR COMPUTATIONAL LINGUIS-

TICS. Joint Conference on EMNLP and CoNLL-Shared Task. [S.l.], 2012.

p. 1–40. 7

QUIRK, C.; MENEZES, A.; CHERRY, C. Dependency treelet translation: Syn-

tactically informed phrasal smt. In ASSOCIATION FOR COMPUTATIONAL LIN-

GUISTICS. Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics. [S.l.], 2005. p. 271–279. 2.3

ROSENBLATT, F. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, American Psychological

Association, vol. 65, no. 6, p. 386, 1958. 4.2

SANTOS, C. N. d.; MILIDIú, R. L.; INFORMáTICA, P. U. C. do Rio de Janeiro.

Departamento de. Entropy guided transformation learning. 2007. 4, 2.3.3,

4.1, 6.3

SANTOS, C. N. dos; MILIDIú, R. L. Entropy guided transformation learning. In

Foundations of Computational Intelligence (1). [S.l.]: Springer, 2009. p. 159–

184. 4, 2.3.3, 4.4, 5.3, 6.4.1

SGALL, P.; HAJICOVÁ, E.; PANEVOVÁ, J. The meaning of the sentence in

its semantic and pragmatic aspects. [S.l.]: Springer Science & Business Media,

1986. 2.1

SHEN, D.; KLAKOW, D. Exploring correlation of dependency relation paths for an-

swer extraction. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-

ceedings of the 21st International Conference on Computational Linguis-

tics and the 44th annual meeting of the Association for Computational

Linguistics. [S.l.], 2006. p. 889–896. 2.3

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 88

SMITH, N. A.; MARTINS, A. F. Linguistic structure prediction with the sparsep-

tron. XRDS: Crossroads, The ACM Magazine for Students, ACM, vol. 19,

no. 3, p. 44–48, 2013. 2.3.3

STEVENSON, M.; GREENWOOD, M. A. Comparing information extraction pat-

tern models. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-

ceedings of the Workshop on Information Extraction Beyond The Docu-

ment. [S.l.], 2006. p. 12–19. 2.3

TARJAN, R. E. Finding optimum branchings. Networks, Wiley Online Library,

vol. 7, no. 1, p. 25–35, 1977. 4.1

TAUB-TABIB, H. et al. Template Kernels for Dependency Parsing. [S.l.: s.n.],

2014. 2.3.3

TESNIÉRE, L. Eléments de syntaxe structurale. [S.l.]: Librairie C. Klincksieck,

1959. 1, 1.1, 2.1

TITOV, I.; HENDERSON, J. A latent variable model for generative dependency

parsing. In Trends in Parsing Technology. [S.l.]: Springer, 2010. p. 35–55. 2.3.2

TSOCHANTARIDIS, I. et al. Large margin methods for structured and interde-

pendent output variables. Journal of Machine Learning Research, vol. 6, p.

1453–1484, 2005. 4.1

XU, P. et al. Using a dependency parser to improve smt for subject-object-verb

languages. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceed-

ings of human language technologies: The 2009 annual conference of the

North American chapter of the association for computational linguistics.

[S.l.], 2009. p. 245–253. 2.3

YAMADA, H.; MATSUMOTO, Y. Statistical dependency analysis with support

vector machines. In Proceedings of IWPT. [S.l.: s.n.], 2003. vol. 3, p. 195–206.

2.3.2

ZHANG, H.; MCDONALD, R. Generalized higher-order dependency parsing with

cube pruning. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Pro-

ceedings of the 2012 Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Language Learning.

[S.l.], 2012. p. 320–331. 2.3.4

ZHANG, K.; SU, J.; ZHOU, C. Regularized structured perceptron: A case study on

chinese word segmentation, pos tagging and parsing. In EACL. [S.l.: s.n.], 2014.

p. 164–173. 2.3.3

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Bibliography 89

ZHANG, Y.; CLARK, S. A tale of two parsers: investigating and combining graph-

based and transition-based dependency parsing using beam-search. In ASSOCIA-

TION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the Conference

on Empirical Methods in Natural Language Processing. [S.l.], 2008. p. 562–

571. 2.3.2

ZHANG, Y. et al. Greed is good if randomized: New inference for dependency

parsing. 2014. 2.3.4

ZHANG, Y.; NIVRE, J. Transition-based dependency parsing with rich non-local

features. In ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceed-

ings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies: short papers-Volume 2. [S.l.],

2011. p. 188–193. 2.3.2

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

A
Portuguese Corpus Part-Of-Speech Tag Set

The Portuguese dataset of the CoNLL 2006 Shared Task has information

about Part-Of-Speech in two levels: coarse-grained and fine-grained. Here we are

interested in the first tag set because is more compact and less detailed.

Coarse-grained Grammatical
postag class

adj adjective
adv adverb
art article
conj conjunction
in interjection
n noun
num numeral
pron pronoun
prop proper noun
prp preposition
v verb

Table A.1: Portuguese Part-of-Speech Tags of CoNLL 2006 Shared Task

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

B
Chunk and Clause Tag Sets

Next, we describe the tags used to mark clauses limits and chunks, which

are used as basic attributes in the dependency analysis task.

B.1
Clause Tags

The clause limits is a syntactic information that is available in the BOSQUE

corpus. Here, we use parentheses to mark the clause limits. A sentence example

from the BOSQUE corpus is shown in Figure B.1.

(Ninguém percebe (que ele quer (impor sua presença)) .)

Figure B.1: A sentence annotated with information of the limits of clauses,
indicated by parentheses.

The tags used to mark the clause limits in a sentence are described in Table

B.1. The column Start encodes the binary attribute that indicate if a clause start

in the current token. The column End indicates if at least a clause ends in the

current token. Finally, the column Clause indicates the clauses of the sentence,

using parenthesis, like in the previous example.

Token postag Start End Sentence

Ninguém pron-indp S X (S*

percebe v-fin X X *

que conj-s S X (S*

ele pron-pers X X *

quer v-fin X X *

impor v-inf S X (S*

sua pron-det X X *

presença n X E *S)S)

. . X E *S)

Table B.1: Clause tags

The tag set representing the clause limits of a sentence are used as basic

features in dependency parsing task.

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

Chunk and Clause Tag Sets 92

B.2
Chunk Tags

In the Table B.2 we describe the tags that encode the chunks, used in

dependency parsing task.

Information of the token chunk Tag

Beginning of a Nominal chunk B-NP

Beginning of a Preprositional chunk B-PP

Beginning of a Verbal chunk B-VP

Inside of a Nominal chunk I-NP

Inside of a Preprositional chunk I-PP

Inside of a Verbal chunk I-VP

Out of any chunk chunk O

Table B.2: Chunk tags

DBD
PUC-Rio - Certificação Digital Nº 1322200/CA

	Structured Learning with Incremental Feature Induction and Selection for Portuguese Dependency Parsing
	Contents
	Introduction
	Dependency Parsing
	Structured Learning
	Feature Generation
	Feature Selection
	Motivation and Goals
	Contributions
	Dissertation Organization

	Background
	Dependency Grammars
	Dependency Trees
	Parsing with Dependency Trees
	Chapter Conclusions

	Dependency Parsing
	Auxiliary Predictors
	Candidate Edge Filter
	Basic Edge Features
	Chapter Conclusions

	Structure Perceptron
	Dependency Tree Learning
	Structure Perceptron
	Large Margin Classifiers
	Feature Induction
	Sparser Perceptron Models
	Chapter Conclusions

	S-IFIS Structured Learning with Incremental Feature Induction and Selection
	Attributes Representation
	Learning Algorithm
	Experiments Parametrization
	Implementation Remarks
	Chapter Conclusions

	Empirical Evaluation
	Corpus
	Evaluation Metrics
	Portuguese Dependency Parsing
	Results
	Error Analysis
	Discussion
	Chapter Conclusions

	Conclusions
	Bibliography
	Portuguese Corpus Part-Of-Speech Tag Set
	Chunk and Clause Tag Sets
	Clause Tags
	Chunk Tags

