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Abstract

Novello de Brito, Tiago; Tomei, Carlos (Advisor); Paixão, João
Antônio Recio da(Co-Advisor). Discrete Line Fields on Surfa-
ces. Rio de Janeiro, 2018. 56p. Tese de Doutorado – Departamento
de Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

A line field on a surface is a smooth map that assigns a tangent
line to all but a finite number of points. Such fields model a number of
geometric and physical properties, e.g. the principal curvature directions on
surfaces or the stress flux in elasticity. They can be seen as a generalization of
vector fields. To understand a line field, it is common to study the behavior
of its orbits, which can have many di�erent patterns. To this end, we
consider a topological approach: we use the critical points and separatrices
to decompose the field in regions of similar behavior. We focus on fields that
have a Morse–Smale structure. This allows operations like the cancellation
of critical points controlled directly in the field decomposition, which is
essential for noise removal (topology simplification) on fields coming from
simulations or sampling of real-world problems. Based on the decomposition
of a Morse–Smale vector field and on cancellation of critical points, Robin
Forman introduced a discrete definition for Morse-Smale vector fields. This
thesis provides a purely combinatorial definition of line fields, the discrete
line fields, entailing Forman’s discrete constructions for vector fields through
a new representation of these. Discrete line fields admit a (Morse–Smale
type of) decomposition that generates a bridge between discrete and smooth
line fields, thus guaranteeing the topological consistency of the definition.
We also use double branched coverings to suspend discrete line fields to
discrete vector fields, so that vector field tools can be used for discrete line
fields. Finally we provide, for a discrete line field, a topologically consistent
(Morse-like) cancellation of critical elements. This allows a simplification of
the discrete line field topology retaining only the most significant features.

Keywords
Vector fields; Line fields; Discrete vector fields; Discrete line fields;

Morse–Smale decomposition.
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Resumo

Novello de Brito, Tiago; Tomei, Carlos; Paixão, João Antônio
Recio da. Campos de Linhas Discretos sobre Superfícies.
Rio de Janeiro, 2018. 56p. Tese de Doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Um campo de linhas sobre uma superfície é um mapa suave que
atribui uma linha tangente a todos, exceto a um número finito de pontos.
Esses campos modelam um número de propriedades geométricas e físicas,
tais como as direções de curvatura principais nas superfícies ou o fluxo de
tensão na elasticidade. Para entender um campo de linha, é usual estudar o
comportamento de suas órbitas, que podem apresentar diferentes padrões.
Para este fim, consideramos uma abordagem topológica que consiste em
utilizar os pontos críticos e separatrices para decompor o campo em regiões
de comportamento homogêneo. Focamos em campos que possuem uma
estrutura de Morse–Smale. Isso permite operações como o cancelamento
de pontos críticos controlados diretamente na decomposição de campo,
o que é essencial para a remoção de ruído (simplificação da topologia)
em campos provenientes de simulações ou amostragem de problemas do
mundo real. Baseado na decomposição de um campo vetorial de Morse–
Smale e no cancelamento de pontos críticos, Robin Forman introduziu uma
definição discreta para esses campos. O presente trabalho fornece uma
definição puramente combinatória para campos de linhas, os campos de
linhas discretos, que implicam as construções discretas de Forman para
campos de vetores por meio de uma nova representação destes. Campos de
linhas discretos admitem uma decomposição que gera uma ponte entre os
campos de linhas discretos e suaves, garantindo dessa forma a consistência
topológica da definição. Também estabelecemos uma conexão entre um
campo de linha discreto e um campo vetorial discreto, desse modo as
ferramentas de campos de vetores podem ser usadas em campos de linhas.
O trabalho fornece ainda um cancelamento topologicamente consistente de
seus elementos críticos para um campo de linha discreto.

Palavras-chave
Campos de vetores; Campos de linhas; Campos de vetores discretos;

Campos de linhas discretos; Decomposição de Morse–Smale.
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1
Introduction

A line field on a surface is a smooth map which assigns a tangent line
to all but a finite number of points. Such fields model a number of physical
properties, like velocity and temperature gradient in fluid flow [1], stress, and
momentum flux in elasticity [2]. In computer graphics, line fields are often
studied in topological segmentation of fields [3, 4, 5], remeshing [6, 7, 8],
and are helpful for the visualization of vector/line/symmetric tensor fields
[9, 10, 11, 12, 13, 14, 15].

To analyze a line field, it is common to study the behavior of its orbits
[10, 14]. We take a more topological approach, consisting of grouping orbits
with similar behavior [16, 17]. To construct such a decomposition, we observe
that the dynamics of a line field is usually trivial almost everywhere except near
the points for which the field is not defined or vanishes, the so called critical
points [18] (Figure 1.1). Such points are usually connected by separatrices,
which in turn partition the phase space (Figures 1.1(b)). For computations, it is
essential that such orbit decomposition be maintained over small perturbations
of the field [10, 14]. Such structurally stable fields are well studied in the
dynamical systems literature [17, 19, 20].

(a) (b)

Figure 1.1: (a) a line field, the dots are the critical points of the line field, (b)
the critical points and the separatrices decompose the phase space in regions.

In this work we obtain combinatorial descriptions of structurally stable
fields. Most ideas are inspired by constructions associated to (continuous) line
fields. Restricted to the vector field setting, Andronov and Pontryagin [19]
provided a list of combinatorial properties characterizing a structurally stable
(smooth) vector field, frequently called a Morse–Smale (MS) field.
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Chapter 1. Introduction 11

Peixoto [17] proved that the critical points and separatrices of a MS
vector field produce a (MS) decomposition of the underlying surface with
no critical points in the interior of each two 2-cell. Additionally, such MS
decomposition characterizes the class of topologically equivalent of the MS
vector field (Theorem 3.2, a vertical bijection in Diagram 1.1).

MS vector field
(Andronov and Pontryagin)

Projection≠≠≠≠≠≠≠≠≠⇣ Equivalence classes
of MS vector field¯̀

`̀
˘

Thm. 3.2

(Peixoto)

MS decomposition
(Peixoto)¯̀

`̀
˘ Lem. 3.4

Discrete vector field
(Forman)

Thm. 3.6≠≠≠≠≠≠≠≠⇣
Forman

Special discrete vector field

(1.1)

Deformations of vector fields may lead to cancellation of critical points,
a technique widely used by Morse [21] yielding substantial simplification of
vector fields without altering the topological type of the underlying surface.

Forman [22, 23] proposed a definition of a discrete (Morse–Smale) vector
field, which is presented for the convenience of the reader in Section 3.2. Morse
cancellation takes a privileged place in this context: each discrete vector field
gives rise to a special model (in a sense to be specified in Section 3.2) and
such models are in one-to-one correspondence with MS decompositions of a
(continuous) vector field (Corollary 3.7, the composition of some functions in
the diagram). The result follows from Forman’s fundamental characterization
of the homotopy type of the underlying decomposition of a discrete vector field
in terms of its critical cells (Theorem 3.6).

One of the algorithmic upshots of Forman theory is the construction
of a (Morse-Smale type of) decomposition through the definition of (discrete)
critical elements and orbits (paths). This decomposition represent the standard
MS decomposition of a MS vector field which allows for simpler combinatorial
operations: as a (Morse-like) cancellation of critical elements.

The analogous result of Theorem 3.2 for line fields, Theorem 4.2, was
introduced by Bronshteyn and Nikolaev [24, 25]: they defined MS line fields,
showed their structural stability and presented their MS decomposition. In this
thesis, we extend Forman’s theory to line fields, the bottom line of Diagram 1.2.
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Chapter 1. Introduction 12

MS line field
(Bronshteyn, Nikolaev)

Projection≠≠≠≠≠≠≠≠≠⇣ Equivalence classes
of MS line field¯̀

`̀
˘

Thm. 4.2

(Bronshteyn, Nikolaev)

MS decomposition
(Bronshteyn, Nikolaev)¯̀

`̀
˘ Lem. 4.4

Discrete line field
(Section 4.2)

Thm. 4.8≠≠≠≠≠≠≠≠≠⇣ Special discrete line field
(Section 4.2)

(1.2)

Forman’s discrete vector fields are special cases of such discrete line fields, as
smooth vector fields are special cases of line fields. The first step towards the
new definition consists of a representation of a Forman’s vector field by means
of bipartite 4-decompositions (also called radial graphs [26, 27, 28]). Dropping
some of the properties of such discretization then yields the desired definition.

As in Forman’s theory, our definition provides an Euler–Poincaré formula
(Theorem 4.7), and a homotopy theorem (Theorem 4.8 in analogy to Theorem
3.6) which again induces a bijection between MS decomposition and equiva-
lence classes of homotopical MS line fields. Such MS decomposition partition
the discrete line field in regions with no critical elements.

Theorem (Homotopy) The underlying decomposition of a discrete line field
is homotopy equivalent to a decomposition consisting only of its critical cells.

Inspired by Morse’s cancellation of critical points in a MS vector field,
we propose two consistent cancellations of critical elements in a discrete line
field (Propositions 4.10 and 4.11), which entail Forman’s cancellation of critical
elements [23], widely used in applications [4, 29, 30, 31].

Theorem (Cancellation) Two critical elements in a discrete line field can
be merged if there is a unique path connection between them.

We now consider a di�erent issue. Following ideas dating back to the
theory of Riemann surfaces, Bronshteyn and Nikolaev [16] studied a MS
line field by considering a suspension of such field to a vector field on a
double branched covering. Branch points are the non-orientable critical points.
Such construction bridges continuous line and vector fields, and allows for
transferring results and algorithms between contexts. We propose a discrete
version: a discrete line field suspends to a discrete vector field.

Theorem (Suspension) Every discrete line field can be suspended to a
discrete vector field, on a double branched covering of their underlying surfaces.
The branched points belong to the non-oriented critical elements.
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2
Basic definitions

We use extensively some special (CW) decompositions of a compact
surface, following the standard notation from Gross and Tucker [32]. Thus,
MS decompositions of vector and line fields [16, 17], and discrete vector and
line fields depend of such decompositions.

A special case, the bipartite 4-decomposition [26, 28], is used in Chapter 3
to provide an alternative definition of Forman’s concept of discrete vector field
[23] and in the MS decompositions of discrete vector and line fields.

2.1
Decompositions of a compact surface and rotational systems

In this section we present two equivalent discrete representations of a
compact (orientable) surface: 2-cell embeddings and rotational systems.

We follow the notation of Gross and Tucker [32]. Let S be a connected
compact surface. An embedding i : G æ S of a finite graph G into S is an
injective continuous map. Two embeddings i

1

and i

2

of G in S are equivalent
if there is a homeomorphism h : S æ S such that h ¶ i

1

= i

2

. In a 2-cell
embedding i : G æ S, the components of the set S \ i(G), the 2-cells, are
homeomorphic to open discs. A 2-cell embedding i : G æ S induces a (CW)
decomposition S = (V, E, F ) of S, where i(G) = (V, E) is obtained as follows.
The set of vertices V and the set of edges E are the images of the elements of
G, and the set of faces F is the set of 2-cells of S \ i(G) (Figure 2.1).

We frequently need notation for the boundary of a face f . We list
edges and vertices along the boundary cyclically, inducing the boundary walk
v

1

e

1

v

2

e

2

. . . vkekvk+1

, with vk+1

= v

1

. Here, for i = 1 · · · k, the edge ei runs from
vi to vi+1

. Thus f , up to homeomorphism, is a k-gon, i.e., a k-regular polygon
with identifications on its edges. In Figure 2.1(a), a simple decomposition of
the sphere, the faces are 4-gons. Figure 2.1(b) is an extreme case, in which the
sphere is obtained from a single 2-gon. This rather peculiar example will be
used sometimes as a special case.

Stahl [33] described another representation for the decomposition S =
(V, E, F ) of a compact, oriented surface S. Draw a (topological) circle around
a vertex v and orient it positively with respect to the orientation of S. The

DBD
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Chapter 2. Basic definitions 14

(a) (b) (c)
Figure 2.1: Two decompositions of the sphere: (a) a cube, (b) and (c) equivalent
decompositions consisting of two vertices, one edge, and one face.

circle intersects the edges incident at v at a set of points with a cyclic order.
The set of all such ordered cycles, one per vertex, is a rotational system R.

We now invert the procedure. A rotational system R on a finite graph
G = (V, E) consists of a choice of a cyclic ordering on each set of edges with a
common vertex. Two graphs G

1

and G

2

endowed with rotational systems R
1

and R
2

are equivalent if there is a graph isomorphism from G

1

to G

2

, which
either preserves or reverses all of the cyclic orderings induced by R

1

and R
2

.
It turns out that G and R su�ce to describe a surface S.

Theorem 2.1 (Stahl [33]) Every rotational system R on a finite graph G =
(V, E) induces a 2-cell embedding in an oriented surface S with a decomposition
S = (V, E, F ). All such embeddings of G are equivalent.

Algorithm 1 [32] explicitly reconstructs the decomposition associated to
a graph endowed with a rotational system, as stated in Theorem 2.1.

Data: A graph G = (V, E) and a rotational system R.
Result: Decomposition S = (V, E, F ) of a compact surface S.
while There is an edge e = [u, w] adjacent to less than two faces in F do

take the order that reverses any existing boundary walk containing e;
create an empty face f ;
while w ”= u do

add e to the boundary walk of f ;
update e by R to the next edge [w, u

Õ] in w;
replace w by u

Õ;
end
add f to F .

end
Algorithm 1: Face Tracing Algorithm [32].

2.2
Bipartite 4-decomposition

We define Pisanski’s bipartite 4-decomposition of compact surfaces [28].
Bipartite 4-decompositions are in correspondence with decompositions of com-
pact surfaces [27, 28]. Also, as we will see in Chapter 3, the MS decompositions
of MS vector fields correspond to bipartite 4-decompositions [16, 17].

A decomposition S = (V, E, F ) of S is called a 4-decomposition if the set
of faces F consists of either only 4-gons (as Figure 2.1(a)) or a single 2-gon (as
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Chapter 2. Basic definitions 15

Figure 2.1(b)), the latter being a special case. When the graph G is bipartite1,
S is called a bipartite 4-decomposition. Figure 2.1 provides two examples.

The notion of a bipartite 4-decomposition of a compact surface S may
seem restricted. However, Pisanski and Malni� [28] provided a construction of
a bipartite 4-decomposition of S from any 2-cell decomposition of S.

For a decomposition S = (V, E, F ) of a compact surface S, we define
a bipartite graph G = (VG, EG) as follows. VG is the union of V and a
point in the interior of each face of S . The edges EG indicate the adjacency
relations between vertices and faces, and they are represented by disjoint arcs
in S. The graph G is bipartite and naturally embedded in S and produces
a 4-decomposition S . This object is called a bipartite 4-decomposition of S

and denoted as M(S ). For instance, Figure 2.2(a) provides a bipartite 4-
decomposition of Figure 2.2(b).

The embedding associated to the bipartite 4-decomposition M(S ) of
S is known in the literature as the radial graph of S [26, 28]. The following
result is a characterization of bipartite 4-decompositions.

Theorem 2.2 (Pisanski–Malni�[28]) Let M be a bipartite 4-decomposition
of the surface S. Then, up to equivalence, there are only two decompositions
S

1

and S
2

of S whose bipartite 4-decompositions M(Si) are equivalent to M.

The decompositions in the statement are obtained as follows: for G = (V, E),
we split V into two disjoint sets, V

1

and V

2

, since G is bipartite. We construct
the decomposition S

1

such that its set of vertices is V

1

. Edges are the face
diagonals joining two vertices in V

1

. Finally, faces are components of S\(V
1

fiE),
and are identified with the vertices in V

2

(Figures 2.2(a) and (b)). Similarly,
S

2

is built by replacing V

1

by V

2

in the construction of S
1

. Informally, the
chosen face diagonals are “flipped” in the construction of S

1

(Figure 2.2(c)
and (d)). The decomposition S

2

is called the dual of S
1

. The decomposition
S

2

is often denoted by S ú
1

.

(a) (b) (c) (d)
Figure 2.2: (a) the face diagonals of a bipartite 4-decomposition, joining the
white dots. (b) the decomposition associated to the face diagonals. (c) and (d)
the analogous construction for the face diagonals connecting the black dots.

1
A graph is bipartite if its vertices can be partitioned into two di�erent sets and no edge

is allowed between vertices of a same set.
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3
Vector fields

This chapter presents the definitions and main results on MS vector and
discrete vector fields. We follow Diagram 3.1, from Chapter 1.

Field Structure

Smooth

Equivalence
classes of MS
vector field

[(S, X)]

Thm 3.2 [17]Ω≠≠≠≠≠≠≠≠æ MS decomposition
M(S, X)

¯̀
`̀
˘ Lem 3.4

Discrete Discrete vector
field (S , X )

Thm 3.6 [23]≠≠≠≠≠≠≠≠≠≠æ MS decomposition
M(S , X )

(3.1)

The chapter has two sections. In the first, we define a MS vector
field (S, X) (upper left box of Diagram 3.1) on a compact surface S, and
we construct its MS decomposition M(S, X) [17]. We finish the section
with a correspondence between the equivalence class of (S, X) and M(S, X)
(Theorem 3.2). The second section presents the analogous discrete concepts of
a MS vector field [23], and Theorem 3.6[23]. Lemma 3.4 is a bijection between
the MS decompositions of smooth and discrete vector fields.

Corollary 3.7 concludes this chapter by combining the correspondences
above to finally show the correspondence between MS vector fields and discrete
vector fields [23].

The contribution in this chapter is a new representation of Forman’s
discrete vector fields (Appendix A) by means of bipartite 4-decompositions,
which we will call simply discrete vector fields. This will permit a natural
generalization to line fields (Chapter 4) by dropping the bipartite and the 4-
decomposition requirements. Because of such generalization, the proofs in this
chapter will be given in Chapter 4 in a more general context.
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Chapter 3. Vector fields 17

3.1
Smooth vector fields

Let S be a compact (possibly orientable) surface and its tangent bundle,
which is the disjoint union TS =

h

pœS

TpS of its tangent planes TpS. We write

each element of TS as a pair (p, v), where p œ S and v œ TpS. The map
fi : T æ S, fi(p, v) = p is called the projection map. A vector field is a pair
(S, X), where X : S æ TS is a smooth map satisfying fi ¶ X = Id.

A point p in a vector field (S, X) is said to be critical if X(p) = (p, 0).
A curve “ : (a, b) æ S, with a < b, is called an integral line of (S, X) if
“

Õ(t) = X(“(t)) for t œ (a, b). The integral line “ is an orbit of (S, X) if it is a
maximal integral line: there is no other integral line – : (c, d) æ S, with c < d,
satisfying “(a, b) µ –(c, d). The field (S, X) is called acyclic when it does not
admit a orbit which is a closed curve. We say that two fields (S, X

0

) and (S, X

1

)
are topologically equivalent if there is a homeomorphism h : S æ S mapping
orbits from (S, X

0

) to orbits of (S, X

1

). The equivalence class of (S, X

1

) is
denoted by [(S, X

1

)]. We endow the space of smooth vector fields with the
uniform C

r-topology, r Ø 1.

MS vector fields

A vector field (S, X) is said to be structurally stable if it admits an open
neighborhood in the space of smooth vector fields consisting of topologically
equivalent vector fields. These fields are essential in applications [10, 34].

Consider for example the following non-stable situation [10, 34]: a 6-
saddle point, that is, a critical point with 6 separatrices (also known as a
monkey saddle, Figure 3.1(a)). Small perturbations might deform the field
into two 4-saddle points (Figure 3.1(b) and (c)).

(a) (b) (c)
Figure 3.1: (a) a 6-saddle point. (b) and (c) two possible perturbations of (a).

Another frequent situation is the presence of unstable orbits between
saddle points (Figure 3.2(a)). Consider the perturbation in Figures 3.2(b) and
(c). The critical points in this example are from the context of line fields
(Section 4.1).
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(a) (b) (c)
Figure 3.2: (a) an unstable orbit. (b), (c) two perturbations (from [14]).

Andronov and Pontryagin [19] proved that those are the issues to avoid
for a vector field to be structurally stable, defining thus the following set of
simple geometric properties for an (acyclic) vector field (S, X).

i) There are finitely many critical points, which are necessarily maxima,
minima, and 4-saddle points;

ii) There is no orbits between saddle points;

iii) The limit sets of each orbit are critical points (there are no closed orbits).

Fields satisfying these properties are called Morse–Smale (MS). Peixoto [35]
proved that the MS properties are also su�cient for the structural stability of
a vector field.

Theorem 3.1 (Andronov–Pontryagin–Peixoto[19, 35]) Structurally sta-
ble vector fields are in bijection with MS vector fields. Further, they form an
open and dense subset of the space of smooth vector fields.

The second part of Theorem 3.1 states, informally, that every vector field
is arbitrarily near a MS vector field. This result is not used in this work, but
provides that MS vector fields are robust and abundant.

MS decomposition

As is well known [32], surfaces admit CW decompositions, which are
especially simple in low dimensions. In Section 2.1, we present the standard
notation used in this case, following Gross and Tucker [32], and introduce
an alternative description of such a decomposition due to Stahl in terms of
rotational systems.

Theorem 3.1 opens the door for a combinatorial description of struc-
turally stable vector fields [17], since it gives a correspondence between such
fields and MS vector fields. These admit finitely many critical points (Prop-
erty i) connected by separatrices: the orbits which have a 4-saddle point as
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Chapter 3. Vector fields 19

limit set (Properties ii and iii). This suggests the representation of a MS vec-
tor field (S, X) by an orgraph (graph of orbits) M = (V, E), where the set of
vertices V consists of the critical points of (S, X) and the edges E are given by
the separatrices between them. The orgraph M is tripartite1 by three di�er-
ent sets, the minima (lower level), 4-saddle points (middle level), and maxima
(upper level).

Peixoto [17] tried to describe classes of topologically equivalent MS vector
fields (S, X) by the orgraph M . There is a di�culty, however, presented in
Figure 3.3: two isomorphic, abstractly given, orgraphs yielding non-equivalent
decompositions of the sphere. Thus, non-equivalent MS vector fields may have
isomorphic orgraphs. To overcome this obstruction, a rotational system R
compatible with the orientation of the underlying surface was required. The
motivation behind such a requirement is that any decomposition of a compact
surface is completely determined by a graph endowed with a rotational system,
as described in Section 2.1.

Figure 3.3: Peixoto’s counterexample for the characterization of topological
type of a MS line field through its orgraph. The green cycle represents the
meridian of the sphere. (from [17]).

Theorem 2.1 applied to both the orgraph M = (V, E) and to the
rotational system R produces a decomposition (V, E, F ) of S, which is called
the MS decomposition of (S, X) and denoted by M(S, X). This decomposition
satisfies the following important properties.

a) The orgraph M is tripartite (and triangle-free) by three di�erent sets,
the minima (lower level), 4-saddles (middle level), and maxima (upper
level) of (S, X);

b) The faces in F are 4-gons;
1
A graph is tripartite if its vertices can be partitioned into three di�erent sets and no

edge is allowed between vertices of a same set.
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Chapter 3. Vector fields 20

c) The vertices in the middle level have two adjacencies with the upper level
and two with the lower level;

d) If the middle level is empty, then M(S, X) is a decomposition of the
sphere consisting of a unique 2-gon (as in Figure 2.1(b)).

An argument for b depends on Property ii to be proved in Lemma 4.4,
Chapter 4 in a more general context; the other properties follow directly from
the MS properties i - iii. Clearly, M(S, X) is a bipartite 4-decomposition (Sec-
tion 2.2), since it is tripartite and triangle-free by Property a, thus bipartite,
and its faces S \ M are 4-gons by Property b (Figures 3.4). A decomposition
satisfying Properties a - d is called an abstract MS decomposition.

(a) (b)

Figure 3.4: (a) a MS vector field, (b) the MS decomposition.

Theorem 3.2 (Peixoto [17]) Two MS vector fields are topologically equiv-
alent if and only if their MS decompositions are equivalent. Moreover, every
abstract MS decomposition is equivalent to a MS decomposition of a MS vec-
tor field.

MS vector field
[(S, X)]

Thm 3.2 [17]Ω≠≠≠≠≠≠≠≠æ MS decomposition
M(S, X)

(3.2)

Diagram 3.2 is part of Diagram 3.1 provided in the beginning of this chapter.

Cancellation of critical points

As Theorem 3.2 provides a discretization of a MS vector field in terms
of its MS decomposition, the question now becomes: are there operations in
the MS decomposition which reduces the critical points of its MS vector field?
Many applications rely on this question, such as reducing the number of critical
points in the topological analysis of vector fields [10, 3, 29, 14, 30].

We recall Morse’s procedure to cancel critical points of vector fields [21],
exemplified in Figure 3.5. Take two critical points connected by a unique
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separatrix: the procedure obliterates the separatrix and two critical points
and naturally acts on the MS decomposition of the vector field.

Theorem 3.3 (Morse [21]) Let (S, X) be a MS vector field and p and q be
critical points connected by a unique edge e in M(S, X). Then it is possible to
alter the vector field (S, X) in a small neighborhood U of e such that the new
field has no critical points in U .

Theorem 3.3 states that a pair of critical points connected by a unique
edge (as Figure 3.5(a)) in the MS decomposition of a MS vector field provides
the cancellation of such points (as Figure 3.5(b)). This motivates Forman’s
definition of discrete vector fields in the next section.

(a) (b)

Figure 3.5: The opposite sides of the squares are identified providing a torus.
(a) two critical points joined by a unique edge in a MS vector field. (b) the
result of applying Theorem 3.3 to (a).

3.2
Discrete vector fields

In this section we reinterpret Forman’s Morse matching [23], presented in
Appendix A. We replace a smooth (acyclic) vector field (S, X) on a compact
surface S by a pair (S , X ), called discrete (acyclic) vector field, which consists
of a bipartite 4-decomposition S of S, and a matching X between vertices and
adjacent face’s diagonals. We provide an alternative representation of a discrete
vector field (S , X ) by an inductive approach.

Discrete vector fields with empty matching

To analyze a discrete vector field (S , ÿ), take S = (V, E, F ) as a
bipartite 4-decomposition of a compact surface S (for the definition and basic
properties, see Section 2.2). The set of vertices V admits a bipartition W Û B

and S \ (V, E) consists of 4-gons. We call the vertices in W and B white and
black. Now, let M(S , ÿ) be the bipartite 4-decomposition of S , as stated in
Theorem 2.2. This object, naturally, enjoys the following properties:
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a) The vertices and edges of M(S , ÿ) induces a tripartite (and triangle-
free) by three di�erent sets, the white vertices (lower level), the 4-gons
(middle level), and the black vertices (upper level);

b) The faces of M(S , ÿ) are 4-gons;

c) The vertices in the middle level have two adjacencies with the upper level
and two adjacencies with the lower level;

d) If the middle level is empty, then M(S , ÿ) is a decomposition of the
sphere consisting of two vertices connected by an edge (special case).

The decomposition M(S , ÿ) is called the MS decomposition of (S , ÿ)
(Figures 3.6(a)-(d)). Properties a - d are identical to Properties a - d of the MS
decomposition of a MS vector field. The next lemma states this correspondence.

(a) (b) (c) (d) (e)

Figure 3.6: The squares represent the surface of the torus. (a) a bipartite
4-decomposition, and in (b) each face of (a) gets a grey point. (c), (d) the
bipartite 4-decomposition. (e) the MS vector field correspondent to (d) stated
by Theorem 3.2.

Lemma 3.4 The MS decomposition M(S , ÿ) of a discrete vector field (S , ÿ)
is equivalent to a MS decomposition M(S, X) of a MS vector field (S, X).

MS decomposition
M(S , ÿ)

Lemma 3.4Ω≠≠≠≠≠≠≠æ MS decomposition
M(S, X)

(3.3)

Lemma 3.4 ensures that the minima, maxima, and 4-saddles in a MS
vector field correspond to the white vertices, black vertices, and 4-gons,
respectively, in a discrete vector field (S , ÿ) (Figure 3.6).

If the reader is familiar with Morse matchings, the following connection
may be interesting. Observe that Theorem 2.2 applied to the bipartite 4-
decomposition S returns a decomposition S

1

, for which its vertices, faces,
and edges (critical elements of an empty Morse matching) correspond to the
white vertices, black vertices, and faces of S , respectively (Table 3.1).
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Minimum 4-saddle Maximum

MS vector field

Discrete vector field

white vertex 4-gon black vertex

Morse matching

(Forman’s discrete vector field)
vertex edge face

Table 3.1: Diagram among critical elements of MS vector fields, discrete vector
fields, and Morse matchings.

The singleton matching

We now introduce a discrete vector field (S , X ) with a singleton match-
ing, where |X | = 1. This matching is motivated by Morse cancellation (The-
orem 3.3) of critical points. Let p and q be two critical points in a MS vector
field (S, X) connected by a unique separatrix (Figure 3.5(a)). Either p or q

must be a 4-saddle since Property ii of a MS vector field says that there is no
orbits between 4-saddle points. Without loss of generality we assume that p

is the 4-saddle point. Then, q is either a minimum or a maximum. The first
column of Table 3.2 shows both cases.

Lemma 3.4 states that there is a MS decomposition M(S , ÿ) of a discrete
vector field (S , ÿ) which corresponds to the MS decomposition M(S, X) of
(S, X). Then the 4-saddle point p and q correspond to a face f and a vertex v

of S , respectively. Thus, the cancellation between p and q can be represented
in S as a matching {v, d} between the vertex v and the diagonal d of a face
f , producing a discrete vector field (S , {v, d}); Table 3.2 shows this matching
on its second column, considering two bipartitions of S .

We provide another connection between discrete vector fields and Morse
matchings related to duality. A discrete vector field (S , {v, d}) encodes both
a singleton Morse matching {v, d} on the decomposition S

1

and a singleton
Morse matching {v

ú
, d

ú} in its dual decomposition S ú
1

, where S
1

and S ú
1

are provided by Theorem 2.2 applied to S . Thus, the discrete vector field
(S , {v, d}) encodes a Morse matching and its dual (defined in Appendix A)
in the same structure. Table 3.2 shows both cases on its last column.

We now analyze the behavior of the discrete vector field (S , {v, d})
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MS vector field Discrete vector field Morse matching

Table 3.2: First column: the possible cancellations of two critical points in a
MS vector field. Second column: the possible matchings between a vertex and a
face diagonal in a bipartite 4-decomposition. Last column: the possible Morse
matchings on the two decompositions given by this bipartite 4-decomposition.

(Figure 3.7(a)) under the cancellation of the critical points p and q of (S, X).
Applying Theorem 3.3 to the points p and q of (S, X) (Figure 3.5(a)), we obtain
a simple MS vector field (Figure 3.5(b)) which provides a MS decomposition.
From Lemma 3.4, such a decomposition corresponds to a MS decomposition of
a new discrete vector field (Figure 3.7(b)). The conclusion is that (S , {v, d}) is
equivalent (this can be formalized somehow) to S with a cancellation between
the vertex v and the face f (Figure 3.7). This is exactly what Theorem A.1
would provide if applied to the Morse matching {v, d} on S

1

.

(a) (b)

Figure 3.7: (a) a matching between a vertex and a face diagonal. (b) the
resulting bipartite 4-decomposition after cancellation of the matched cells.

The general matching

To introduce the general case of a discrete vector field, we apply induction
on the previous construction for a singleton matching. Consider the set
P = {{p

1

, q

1

}, {p

2

, q

2

}, . . . , {pk, qk}} of disjoint pairs of critical points in a
MS vector field (S, X), such that for each 1 Æ i Æ k, pi and qi are connected
by a unique separatrix.

Applying Morse cancellation on the pair {p

1

, q

1

} of critical points of
(S, X), we obtain a MS vector field containing the set {{p

2

, q

2

}, . . . , {pk, qk}} of
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disjoint pairs of critical points. To cancel {p

2

, q

2

} we must verify that this pair
is connected by a unique separatrix, since {p

1

, q

1

} and {p

2

, q

2

} could configure
the vertices of a cycle in the original MS decomposition. To avoid this test, we
suppose that P is an acyclic matching. By induction, the pairs in P can be
canceled; there is no ambiguity in choosing di�erent orders of cancellation.

Using the construction in the previous section, the acyclic matching P can
be, inductively, replaced by a matching X = {{v

1

, d

1

}, {v

2

, d

2

}, . . . , {vk, dk}}
between vertices vi’s and face diagonals di’s of a bipartite 4-decomposition S of
the surface S. This motivates a discrete definition for vector fields. A discrete
(acyclic) vector field on a compact surface S is a pair (S = (V, E, F ), X )
satisfying the following properties.

i) S is a decomposition of S consisting of only 3- and 4-gons;

ii) X consists of an acyclic matching {{v

1

, e

1

}, {v

2

, e

2

}, . . . , {vk, ek}} be-
tween the vertices vi’s and the edges ei’s of S ;

iii) The embedding of (V, E ≠ {e

1

, e

2

, . . . , ek}) in S produces a bipartite 4-
decomposition of S.

The discrete vector field (S , X ) corresponds to a MS vector field (S, X)
and to an acyclic matching P in M(S, X), as described above. Then, applying
Morse cancellation, inductively, to each pair of critical points of P in (S, X), we
obtain a new MS vector field (S, X

Õ). This has a MS decomposition M(S, X

Õ)
which Lemma 3.4 states to be equivalent to a MS decomposition M(S , ÿ) of
a discrete vector field (S , ÿ). In other words, (S , X ) corresponds to (S , ÿ)
and the vertices and faces of S correspond to the critical points of (S, X).

3.2.1
Critical elements and topological properties

A vertex v in a discrete vector field (S , X ) is critical if it is unmatched
in X . The index of a vertex v is 1 if it is critical and 0 otherwise. Let c(f) be
the number of unmatched edges in the boundary walk of a face f . We say that
f is critical if c(f) ”= 2. Its index is 1 ≠ c(f)

2

.
Property iii of a discrete vector field (S , X ), where S = (V, E, F ), says

that (V, E≠{e

1

, e

2

, . . . , ek}) is bipartite, where {e

1

, e

2

, . . . , ek} are the matched
edges. Then, V can be partitioned into white and black vertices. We take the
following convention. The critical white (black) vertices correspond to minima
(maxima) of a smooth vector field (Table 3.3).

For a face f , note that Property i of (S , X ) ensures that f is either a
4-gon or a 3-gon. Then c(f) Æ 4. We investigate the possibilities.
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Index 1 ≠1 1

MS vector field

Minimum 4-saddle point Maximum

Discrete vector field

White vertex 4-gon Black vertex

Table 3.3: Correspondence presented in Table 3.1 increased by the indices of
the critical elements.

• If c(f) = 4, then Properties i and iii imply that f is a 4-gon, since
otherwise the embedding of the subgraph induced by the unmatched
edges of (S , X ) would produce a face with more than 4 edges in the
boundary walk. Hence f is a critical face with index ≠1;

• If c(f) < 4, then Property i implies that f is a 3-gon. By Property ii
c(f) ”= 3 and by Property iii c(f) = 2; analogous to previous item. Hence
f is a regular face with index 0.

Thus the critical faces in (S , X ) are 4-gons with index ≠1: they correspond
to 4-saddle points of a smooth vector field, as shown in the middle column of
Table 3.3. We reinterpret Forman’s version of the Euler-Poincaré formula [23].

Theorem 3.5 (Forman [23]) Let (S = (V, E, F ), X ) be a discrete vector
field on a compact surface S. Then

‰(S) =
ÿ

vœV

index(v) +
ÿ

fœF

index(f).

The proof of Theorem 3.5 will be a particular case of Theorem 4.7, which
will be proven in Chapter 4. We also reinterpret Forman’s discrete version
(Theorem A.1) of the fundamental theorem of classical Morse theory [36].

Theorem 3.6 (Forman [23]) The decomposition S of a discrete vector field
(S , X ) is homotopy equivalent to a decomposition S of a discrete vector field
(S , ÿ) whose p-cells, for p = 0, 2, are the critical p-cells of (S , X ), and their
indices are preserved.

The proof of Theorem 3.6 is a particular case of Theorem 4.8, which will
be proven in Chapter 4. Next we study the structure of a discrete vector field
(S , X ) on a compact surface. By Theorem 3.6, the critical cells of (S , X )
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produce a simple decomposition S of S. We define the MS decomposition
of (S , X ) as the bipartite 4-decomposition of S , and it is denoted by
M(S , X ). Two discrete vector fields (S

1

, X
1

) and (S
2

, X
2

) are said to be
equivalent if M(S

1

, X
1

) and M(S
2

, X
2

) are equivalent, and [(S
1

, X
1

)] denotes
the equivalence class of (S

1

, X
1

).
We provide an explicit construction for the MS decomposition M(S , X )

of (S , X ) (Figure 3.8). The basic ingredient is a path, inspired on Forman’s
definition [23]. This is a sequence of vertices in S , v

1

v

2

v

3

. . . vk, such that
for each 1 Æ i < k, there is an edge e = vivi+1

satisfying {vi, e} œ X ; the
highlighted paths in Figure 3.8(b) are paths of (S , X ). The paths are the
discrete counterpart of the orbits in continuous vector fields.

As in smooth vector field (Section 3.1) we define a graph M, where its
vertices are the critical cells of (S , X ) (the red cells in Figure 3.8(a)). We
create an edge between a critical face f and a critical vertex v for each path,
with no edge in f , which connects v with a vertex in f ’s boundary walk (the
highlighted paths in Figure 3.8(b)). The orientability of the underlying surface
S induces a rotational system R. Thus the MS decomposition M(S , X ) is
given by Theorem 2.1 applied to M and R. Algorithm 1 provides an explicit
construction for the faces of M(S , X ).

(a) (b)

Figure 3.8: (a) a discrete vector field, the critical cells are in red. (b) the MS
decomposition of (a).

3.2.2
Smooth vector fields and discrete vector fields

We now build a correspondence between the equivalence classes of
discrete and smooth vector fields. From an equivalence class [(S , X )] of a
discrete vector field (S , X ), we obtain a MS decomposition M(S , X ) of
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the underlying surface, essentially, by Theorem 3.6. On the other hand, by
Theorem 3.2, the equivalence class under topological equivalence [(S, X)] of
a vector field (S, X) corresponds to a MS decomposition M(S, X). Finally,
Lemma 3.4 gives the identification between M(S, X) and M(S , X ), since
M(S , X ) is by construction equivalent to M(S , ÿ).

[(S , X )] Thm 3.6Ω≠≠≠≠≠≠æ M(S , X ) Lem 3.4Ω≠≠≠≠≠æ M(S, X) Thm 3.2Ω≠≠≠≠≠æ [(S, X)] (3.4)

The identification is Diagram 3.1. It implies that discrete vector fields
are in correspondence with the topological aspects of MS vector fields.

Corollary 3.7 (Forman [23]) Every equivalence class of MS vector fields
has a MS decomposition isomorphic to a bipartite 4-decomposition, which in
turn corresponds to an equivalence class of discrete vector fields.

Corollary 3.7 is not actually presented by Forman [23], but it is straight-
forward once we have Theorem 3.2 [17] and Theorem 3.6 [23]. Next we present
a connection between Morse matchings and discrete vector fields.

3.2.3
Discrete vector fields and Morse matchings

We finish this chapter describing an algorithmic procedure to bridge
Morse matchings (Appendix A) and discrete vector fields. This ensures that
the definition of discrete vector fields is indeed codifying Morse matchings
(through a di�erent representation). Such algorithmic procedure may be used
to build discrete vector fields by translating the Morse matching constructions
in the literature [29, 37, 38, 39, 40, 41, 42, 43] to discrete vector fields.

Let S be a decomposition of a compact surface S, and X be a Morse
matching on S (as in Figure 3.9(a)). We construct a discrete vector field
on the bipartite 4-decomposition M(S ) of S based on X . Let W Û B be a
bipartition of M(S ) vertices’s, where W are the white vertices and B are the
black vertices. The construction of M(S ) (presented in Section 2.1) provides
a bijection between the faces, vertices, and edges of S and the white vertices,
black vertices, and faces of M(S ), respectively (Figure 3.9(b)).

Let {‡, ·} œ X be a matching between an edge ‡ and a face (vertex) ·

(Figure 3.9(a)). In M(S ), ‡ and · correspond to a face f and a white (black)
vertex w, respectively (Figure 3.9(b)). Match w and its adjacent diagonal e of f

(Figure 3.9(c)) creating {w, e}. Repeating this construction for each matching
in X we build a Morse matching X Õ between vertices and face diagonals in
M(S ). Then adding these face diagonals to the decomposition M(S ) we
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obtain a decomposition M(S )Õ which together with X Õ provide the desired
discrete vector field (M(S )Õ

, X Õ) (Figure 3.9(c)).

(a) (b) (c)
Figure 3.9: (a) a Morse matching. (b) the overlap of (a) by its bipartite 4-
decomposition. (c) the corresponding discrete vector field.
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4
Line fields

In this chapter we generalize the definitions and results of the previous
chapter to line fields. In particular, we define discrete line fields in a way that
entails the discrete vector field structure presented in Section 3.2. We follow
Diagram 4.1, informally presented in Chapter 1.

Field Structure

Smooth

Equivalence
classes of MS

line field
[(S, L)]

Thm 4.2 [16]Ω≠≠≠≠≠≠≠≠æ MS decomposition
M(S, L)

¯̀
`̀
˘ Lem 4.4

Discrete Discrete line
field (S , L)

Thm 4.8≠≠≠≠≠≠æ MS decomposition
M(S , L)

(4.1)

The chapter has two sections. In the first, we start by defining the
concepts of a MS line field (S, L) (upper left box of Diagram 4.1) on a compact
surface S, and the MS decomposition M(S, L) (upper right box of Diagram
4.1) of the field (S, L). We conclude the section by presenting Theorem 4.2 [16]
which states a correspondence between (S, L) and M(S, L). The second section
introduces the analogous discrete concepts of a MS line field and Theorem 4.8.
We also present an identification between the MS decompositions of smooth
and discrete line fields (Lemma 4.4).

The main goal of this chapter is Corollary 4.9, yielding the correspon-
dence between MS line fields and discrete line fields [23].

4.1
Smooth line fields

In this section, we summarize the theory of MS line fields [16, 20, 24, 25,
44]. Let S be a compact and orientable surface, and TS its tangent bundle.
Define an equivalence relation in TS, where two elements (p

1

, v

1

) and (p
2

, v

2

)
are equivalent if fi(p

1

, v

1

) = fi(p
2

, v

2

) and v

1

= ±v

2

. In this case, we denote
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(p
1

, v

1

) v (p
2

, v

2

). This equivalence provides a fiber bundle LS = TS/ v with
a natural projection ⁄ := fi/ v over S. A line field is a pair (S, L), where
L : S æ LS is a smooth map satisfying ⁄ ¶ L = Id.

As in vector fields, a point p in a line field (S, L) is said to be critical if
L(p) = (p, 0). A curve “ : (a, b) æ S, with a < b, is an integral line of (S, L) if
“

Õ(t) œ L(“(t)) for t œ (a, b). The integral line “ is an orbit of (S, X) if it is a
maximal integral line. The field (S, L) is called acyclic when it does not admit
an orbit “ which is a closed curve.

As for vector fields, two fields (S, L

1

) and (S, X

2

) are topologically
equivalent if there is a homeomorphism h : S æ S mapping orbits from (S, L

1

)
to orbits of (S, L

2

). The equivalence class of (S, L

1

) is denoted by [(S, L

1

)].
A line field (S, L) is structurally stable if it admits an open neighborhood

in the space of line fields consisting of topologically equivalent line fields.
Bronshteyn and Nikolaev [24] proved that the critical points in a structurally
stable line field are necessarily of the form of those listed in Figure 4.1.

focus 4-saddle 1-saddle 3-saddle sunset apple

Figure 4.1: The list of all structurally stable critical points allowed in a smooth
line field. The last four types of critical points are not present in line fields.

To extend Properties i - iii of a MS vector field (Section 3.1) to an
(acyclic) line field (S, L) Bronshteyn and Nikolaev [24] replace the sunset points
(the fifth type listed in Figure 4.1) by pairs consisting of focus and 3-saddle
points. The apple points (the last type listed in Figure 4.1) are also replaced
by focus and 1-saddle points. Finally, they define a MS line field as an line
field (S, L) satisfying:

i) There are finitely many critical points, being necessarily focus, 4-saddle,
1-saddle, and 3-saddle points (first four types listed in Figure 4.1);

ii) There is no orbits between two critical points;

iii) The limit sets of each orbit are critical points (there are no closed orbits).

Fields satisfying these properties are called MS (Figure 4.2(a)). Bron-
shteyn and Nikolaev [24] extended Theorem 3.1 to line fields.

Theorem 4.1 (Bronshteyn–Nikolaev [24]) Structurally stable line fields
are in bijection with MS line fields. Further, they form an open and dense
subset of the space of smooth line fields.
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The second part of Theorem 4.1, informally, states that every line field is a
small perturbation of a MS line field. This result is not used in the constructions
in this work, but it provides robustness to the definition of MS line fields.

MS decomposition

Theorem 4.1 invites for a combinatorial description of structurally stable
line fields, since it produces a correspondence between such fields and MS
line fields, which in turn satisfy the combinatorial Properties i - iii. They
state that a MS line field has finitely many critical points and they are all
connected by separatrices: the orbits which have a saddle point as limit set
(Properties ii and iii). As we observed for vector fields in Chapter 3, this
suggests a representation of a MS vector field (S, X) by a decomposition of
the underlying surface. However, as mentioned by Bronshteyn and Nikolaev
[24], additional constructions are necessary.

We say that a line field (S, L) is orientable if it is possible to construct
a vector field (S, X) such that X(p) œ L(p) = {(p, v), (p, ≠v)} for each p œ S,
and non-orientable otherwise [18]. Clearly, the orientable MS line fields are MS
vector fields, so we only need to treat the non-orientable MS line fields.

In a tradition dating back to the construction of Riemann surfaces,
Bronshteyn and Nikolaev [16] studied a non-orientable MS line field (S, L)
by considering a triple ( Â

S, X, ◊) (Figure 4.2) defined over a double branched
covering Â

S of S. The branch points coincide with the non-orientable critical
points. Such triple must satisfy the following properties.

i) ◊ is an involution in Â
S preserving orbits of the vector field ( Â

S, X), and
the quotient ( Â

S/◊, X/◊) is topologically equivalent to (S, L);

ii) ◊ fixes only a finite number of critical points that when projected to Â
S/◊

corresponds to 1-saddle and 3-saddle points;

iii) There is no orbits between saddle points.

The triple ( Â
S, X, ◊) provides an orgraph Ê

M = ( Â
V ,

Â
E), as it did in

Section 3.1 for MS vector fields. The vertices Â
V are the critical points of

( Â
S, X). The separatrices between the critical points make up the set of edges
Â
E. The orgraph Ê

M is a tripartite graph, consisting of an upper level of
maxima, a lower level of minima, and a middle level containing the 2-, 4-,
and 6-saddles of ( Â

S, X). The orientation of Â
S provides a rotational system

on Ê
M and then Theorem 2.1 induces a decomposition of Â

S, named MS
decomposition of ( Â

S, X, ◊) and denoted by Ê
M( Â

S, V, ◊). Figure 4.3(a) illustrates
the MS decomposition of the triple presented in Figure 4.2(b). A decomposition
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(a) (b)

Figure 4.2: (a) a MS line field with two 3-saddle and three focus points on the
sphere. (b) the suspension of the MS line field; white (black) dots represent
the minima (maxima).

enjoying the properties of a MS decomposition of a line field is called an abstract
MS decomposition. The following result is a line field analogous to Theorem 3.2.

Theorem 4.2 (Bronshteyn–Nikolaev [16]) Two MS line fields are topo-
logically equivalent if and only if they admit equivalent MS decompositions.
Moreover, every abstract MS decomposition is equivalent to a MS decomposi-
tion of a MS line field.

MS line field
[( Â

S, X, ◊)]
Theorem 4.2 [16]Ω≠≠≠≠≠≠≠≠≠≠≠≠æ MS decomposition

M( Â
S, X, ◊)

(4.2)

The branched covering double the cells of the MS decomposition
M( Â

S, X, ◊) of ( Â
S, X, ◊), except at branched points. We can reduce the com-

plexity of computing M( Â
S, X, ◊) by avoiding this doubling of cells. To this end,

we define the MS decomposition M(S, L) of the field (S, L) as the projection
of M( Â

S, X, ◊) on S by the 2-branched covering p : Â
S æ S (Figure 4.3).

(a) (b)

Figure 4.3: (a) the MS decomposition of the triple presented in Figure 4.2(b).
(b) the MS decomposition of the line field given in Figure 4.2(a).
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The MS decomposition M(S, L) of a MS line field (S, L) enjoys the
following properties [16].

a) The orgraph M is bipartite by two di�erent sets, the focus, and the
saddles of (S, L);

b) Its faces are 4-gons;

c) The n-saddle vertices have n connections with the focus vertices;

d) If there is no saddle vertex, then M(S, L) is a decomposition of the sphere
consisting of a unique 2-gon (special case).

Item a follows from Property i of MS line fields. Property b is Lemma 4.4,
which we prove in the next section. Item c follows from Properties i - ii of
MS line fields. Figure 1.1 presented in the introduction of this thesis is an
expressive example of a MS decomposition. As the triple ( Â

S, X, ◊) corresponds
to (S, L), Diagram (4.2) can be presented as follows.

MS line field
[(S, L)]

Theorem 4.2 [16]Ω≠≠≠≠≠≠≠≠≠≠≠≠æ MS decomposition
M(S, L)

(4.3)

The proof [16] that every abstractly given MS decomposition corresponds
to a MS line field (second part of Theorem 4.2 ) does not depend on the
number of separatrices having n-saddle as limit set. To allow the employment
of n-saddle points, n Ø 5, for modeling purposes, we extend the definition of
line fields.

A (generalized) MS line field (S, L) on an orientable compact surface S is
a line field satisfying the MS properties i - iii (described above Theorem 4.1)
with the set of critical points, described by Figure 4.1, increased by n-saddle
points, with n > 4 (Figure 4.4). Its MS decomposition M(S, L) is built as in
the previous case.

5-saddle 6-saddle

Figure 4.4: The saddles allowed in generalized MS line fields.

From now on the MS line fields will be treated as generalized MS line
field. The next result is an extension of the second part of Theorem 4.2.
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Corollary 4.3 Every abstract MS decomposition of a surface is equivalent to
a MS decomposition of a MS line field.

4.2
Discrete line fields

The results presented in this section can also be found in [45], and they
describe the main object of this work — the discrete line field — which is a
generalization of the discrete vector field given in Section 3.2.

The key idea, again, is to replace a smooth (acyclic) line field (S, L) on
the compact (possible orientable) surface S by a pair (S , L), called discrete
(acyclic) line field, which consists of a decomposition S of S, and a Morse
matching L between vertices and edges of S . Observe that no restriction is
imposed in S . Meanwhile, the underlying decomposition of a discrete vector
field is a bipartite 4-decomposition. To analyze a discrete line field (S , L), we
start with an empty matching (|L| = 0), then we consider a singleton matching
(|L| = 1), and to conclude we analyze a general matching.

Empty matching

To analyze a discrete line field (S , ÿ), we consider M(S , ÿ) be its
bipartite 4-decomposition of S , as stated in Theorem 2.2 (Figures 4.5(a)-(d)).
This decomposition, naturally, satisfies the following properties.

a) The vertices and the faces of S induce a bipartition of the vertices in
M(S , ÿ);

b) The faces of M(S , ÿ) are 4-gons;

c) The vertices of M(S , ÿ) which represents the n-gons of S have n

adjacencies with the vertices of M(S , ÿ);

d) If M(S , ÿ) admits only two vertices, then it is a decomposition of the
sphere consisting of two vertices connected by an edge (special case).

The decomposition M(S , ÿ) is called MS decomposition of (S , ÿ).
Properties a - d are identical to Properties a - d of the MS decomposition of a
MS line field. For instance, compare Figures 4.3(b) and 4.5(d). The following
lemma states this correspondence.

Lemma 4.4 The MS decomposition M(S , ÿ) of a discrete line field (S , ÿ)
is equivalent to the MS decomposition M(S, L) of a MS line field (S, L).

DBD
PUC-Rio - Certificação Digital Nº 1412645/CA



Chapter 4. Line fields 36

Proof. As said above, this proof follows directly from the fact that Properties
a - d of M(S , ÿ) are identical to Properties a - d of M(S, L). However, the
proof of Property b of M(S, L) still missing. This property states that all the
faces of M(S, L) are 4-gons. To verify this, let � be a face of M(S, L). Then
by Property a of M(S, L) the number of edges in the boundary walk of � is
even. Now attach two copies of � along their boundary walk, which becomes
an equator of a sphere S2. The line field map L restricted to the copies of �
produces a line field (S2

, L) with copies of the field in � on each hemisphere.
In the sphere, the vertices of � which represent n-saddle points of L have
index zero (they are removed by small perturbations) and the focus points are
maintained. Since the Euler characteristic of (S2

, L) is 2, the total number of
focus points must be 2. In other words the face � is a 4-gon. ⌅

MS decomposition
M(S , ÿ)

Lemma 4.4Ω≠≠≠≠≠≠≠æ MS decomposition
M(S, L)

(4.4)

(a) (b) (c) (d)
Figure 4.5: (a) a decomposition of the sphere into two triangles. (b) each
triangle receives a grey point. (c) and (d) the bipartite 4-decomposition.

Corollary 4.3 and Lemma 4.4 provide a correspondence between the focus
and the n-saddle points of a MS line field and the vertices and the n-gons of a
decomposition, respectively; see Table 3.1 and Figure 4.6 for examples.

(a) (b) (c)

Figure 4.6: (a) a piece of a decomposition. (b) the associated bipartite quadri-
lateral embedding. (c) the corresponding line field.

Singleton matching

To introduce a discrete line field (S , L) with a singleton matching in L we
inspire in the definition of discrete vector fields. We set L as a matching {v, e}
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between a vertex v and an adjacent regular edge e (Figure 4.7(a)). However,
we can not follow the ideas of Section 3.2, which uses the Morse cancellation
theorem, since it only allows cancellation of critical points in vector fields [21].
To overcome this di�culty, we take an approach based on “collapses”.

Lemma 4.5 The decomposition S = (V, E, F ) of a discrete line field (S , {v, e})
is homotopy equivalent to a decomposition S = (V ≠ v, E ≠ e, F ) where the
faces adjacent to e have the pair {v, e} removed from their boundary walk.

Proof. Let u be the endpoint of a regular edge e such that u ”= v. The
pair {v, e} defines a Morse matching, since u is unmatched, and thus there
is no alternated cycle containing {v, e}. Theorem A.1 applied to S and {v, e}
provides the desired decomposition. ⌅

Figures 4.7(a) and (b) give an example of the proof of Lemma 4.5.
The next step is to collapse the 2-gons of the decomposition. Indeed,

from Lemma 4.4, they represent critical points in a MS line field with exactly
2 separatrices, and are thus collapsible.

Lemma 4.6 Let S = (V, E, F ) be a decomposition of a surface S and f be a
face with boundary walk consisting of two distinct edges, e

1

and e

2

. Then S is
homotopy equivalent to a decomposition S = (V, E ≠ e

1

, F ≠ f) of S.

Proof. The pair {e

1

, f} defines a Morse matching, since e

2

is unmatched
making it impossible the existence of an alternated cycle containing {e

1

, f}.
Theorem A.1 applied to S and {e

1

, f} provides the desired decomposition. ⌅
Figures 4.7(c) and (d) provide an illustration of the proof of Lemma 4.6.

(a) (b) (c) (d)
Figure 4.7: (a) presents a discrete line field with a singleton matching; (b) is
the result of applying Lemma 4.5 to (a). Finally, Lemma 4.6 applied to (b) is
expressed in (c) and (d).
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General matching

Lemmas 4.5 and 4.6 motivate a discrete (acyclic) line field on a compact
surface S as a pair (S , L) satisfying the following properties.

i) S is a decomposition of S;

ii) L consists of an acyclic matching between vertices and edges of S .

Items i - ii of a discrete line field are more general than Properties i - iii of a
discrete vector field since no restriction on the underlying decomposition was
imposed (Figure 4.8).

(a) (b)
Figure 4.8: (a) a decomposition of the sphere. (c) a discrete line field.

We now present the definitions of critical elements and their indices for
discrete line fields. The expected results still hold: a Euler–Poincaré formula
and a homotopic characterization of the underlying decomposition, that is,
the line field version of Theorems 3.5 and 3.6 as a reinterpretation of Forman’s
Morse matching results [23].

4.2.1
Critical elements and topological properties

A vertex v in a discrete line field (S , L) is critical if it is unmatched in
L. The index of vertex v is 1 if it is critical and 0 otherwise. Let c(f) be the
number of unmatched edges in the boundary walk of a face f . We say that f

is critical if c(f) ”= 2. Its index is 1 ≠ c(f)

2

. We denote the face f by c(f)-gon.
In Figure 4.8(b), the pentagon is a 4-gon with index ≠1.

Next we present the first topological property for discrete line fields, the
Euler-Poincaré formula.

Theorem 4.7 Let S = (V, E, F ) be a decomposition of the compact surface
S and (S , L) be a discrete line field. Then

‰(S) =
ÿ

vœV

index(v) +
ÿ

fœF

index(f).
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For convenience, the proof will be provided after Theorem 4.8, the discrete line
field version of Theorem 3.6. This result is based on Lemmas 4.5 and 4.6 and
it states that the critical elements of a discrete line field contain the necessary
information to characterize the homotopy type of its underlying decomposition
(Figure 4.9 provides an illustration).

Theorem 4.8 The decomposition S of a discrete line field (S , L) is homo-
topy equivalent to a decomposition S of a line field (S , ÿ) whose p-cells, for
p = 0, 2, are the critical p-cells of (S , L), and their indices are preserved.

Proof. By the definition of (S , L), L is a Morse matching between vertices
and edges of S (Figure 4.9(a)). Then, Theorem A.1 applied to L produces a
decomposition S Õ (Figure 4.9(b)) homotopy equivalent to S , whose vertices
are the critical vertices of (S , L). We now observe that the non-critical faces
have only two di�erent edges on their boundary walk. Applying Lemma 4.6 to
each of these possible non-critical faces of (S Õ

, ÿ) (Figure 4.9(c)), we obtain a
decomposition S (Figure 4.9(d)) homotopy equivalent to S Õ containing only
the critical faces (S , L). ⌅

(a) (b) (c) (d)
Figure 4.9: (a) a discrete line field. (b)-(d) the proof’s idea of Theorem 4.8.

We now prove the Euler–Poincaré formula for a discrete line field.

Proof of Theorem 4.7. From Theorem 4.8, it is enough to prove the case
L = ÿ. By Euler’s formula of the decomposition S = (V, E, F ),

‰(S ) = |V | ≠ |E| + |F |.

Since all vertices are critical, |V | =
ÿ

vœV

index(v). In the sum

ÿ

fœF

index(f) = |F | ≠ ÿ

fœF

c(f)
2 ,

each edge e œ E is counted twice in the boundary walk of the S face’s, since
S is a decomposition of a compact surface. Then

ÿ

fœF

c(f)
2 = |E|. ⌅
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Next we study the global structure of a discrete line field (S , L). By
Theorem 4.8, the critical cells of (S , L) produce a simple decomposition S

of S. As we did for vector fields, we now define the MS decomposition of
(S , L) as the bipartite 4-decomposition of S , and it is denoted by M(S , L).
Two discrete line fields (S

1

, L
1

) and (S
2

, L
2

) are said to be equivalent if
M(S

1

, L
1

) and M(S
2

, L
2

) are equivalent. [(S
1

, L
1

)] denotes the equivalence
class of (S

1

, L
1

). The next diagram is a discrete version of (4.3).

Discrete line
field [(S , L)]

Theorem 4.8Ω≠≠≠≠≠≠≠≠æ MS decomposition
M(S , L)

(4.5)

We now develop an explicit construction for the MS decomposition
M(S , L) of (S , L). We follow the illustrations in Figures 4.10(a) and (b). A
basic ingredient in this construction is based on paths, as in the case of discrete
vector fields. Remarking, this is a sequence of vertices in S , v

1

v

2

v

3

. . . vk, such
that for each 0 Æ i < k there is a edge e, which contains vi and vi+1

satisfying
{vi, e} œ L. The highlighted paths in Figure 4.10(b) are examples of paths.

We define a graph M, whose vertices are the critical cells of (S , L). We
create an edge between a critical face f and a critical vertex v for each path
which connects v to a vertex in the boundary walk of f (Figure 4.10(b)). The
orientability of the underlying surface S induces a rotational system R. Thus
the MS decomposition M(S , L) is given by Theorem 2.1 applied to M and
R. Algorithm 1 provides an explicit construction for the faces of M(S , L).

(a) (b)

Figure 4.10: (a) a discrete line field, the critical cells are in red. (b) the MS
decomposition of (a).
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4.2.2
Smooth line fields and discrete line fields

We now build a correspondence between equivalence classes of discrete
and continuous line fields. From an equivalence class [(S , L)] of a discrete line
field (S , L), we obtain a MS decomposition M(S , L) of the underlying surface
by Theorem 4.8. On the other hand, by Theorem 4.2, the equivalence class
under topological equivalence [(S, L)] of a line field (S, L) corresponds to a MS
decomposition M(S, L). Finally, Lemma 4.4 gives the identification between
M(S, L) and M(S , L), since it is by definition equivalent to M(S , ÿ). These
correspondences are related in (4.6)

[(S , L)] Thm 4.8Ω≠≠≠≠≠≠æ M(S , L) Lem 4.4Ω≠≠≠≠≠æ M(S, L)
Thm 4.2[16]Ω≠≠≠≠≠≠≠≠æ [(S, L)]

(4.6)

The identification provided in Diagram 4.6 is Diagram 4.1 and it pro-
duces the following result, which guarantees that discrete line fields are in
correspondence with the topological aspects of MS line fields.

Corollary 4.9 Every equivalence class of MS line field admits a MS decom-
position equivalent to a bipartite 4-decomposition, which in turn corresponds
to an equivalence class of discrete vector fields.

See Figure 4.10 for an example of the correspondence stated in Corollary 4.9.

4.2.3
Discrete line fields and Morse matchings

In Subsection 3.2.3 we provided a correspondence between Morse match-
ings and discrete vector fields. Here, we use the less restrictive structure of
discrete line fields to propose a more general definition of Morse matchings.

Let S be a decomposition of a compact surface S, and X be a Morse
matching on S (Figure 4.11(a)). In Subsection 3.2.3, we constructed a discrete
vector field (M(S )Õ

, X Õ), based in the bipartite 4-decomposition M(S ) of S

and in X (Figures 4.11(a)-(c)). The unmatched edges in M(S )Õ correspond
to the edges of M(S ), which represent the adjacencies between the vertices
and faces of S . The matched edges correspond to the matching X .

Let W and B be a bipartition of V of M(S ) in white and black
vertices. A path “ in the discrete vector field (M(S )Õ

, X Õ) connects either white
vertices or black vertices, since the matched edges of M(S )Õ are diagonals of
a bipartite 4-decomposition (Figure 4.11(c)). As the unmatched edges are the
edges of M(S ), they have an endpoint in W and other in B. Then, adding
a possible pair {v, e} of unmatched vertex and edge to discrete vector field
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(M(S )Õ
, MÕ), we obtain a discrete line field (M(S )Õ

, L), where L = {v, e}fiX Õ

(Figure 4.11(c) and (d)). A path containing {v, e} has both white vertices and
black vertices (Figure 4.11(d)).

The black (white) vertices of M(S ) match with the vertices (faces) of
S , as observed in Subsection 3.2.3. Then, considering v as a black (white)
vertex, the pair {v, e} corresponds to a matching, in S , between a vertex v

(face f) and an adjacency between v (f) and a face (vertex) (Figure 4.11(e)).
This observation allows us to generalize Morse matchings by adding possible
pairs of vertices (faces) and their adjacencies with faces (vertices).

(a) (b) (c) (d) (e)
Figure 4.11: (a) and (c) are Figure 3.9. (d) adding a matching between a vertex
and edge; (e) the matching on the original decomposition.

4.3
Cancellation in discrete line fields

We also propose a consistent (Morse-like) cancellation of critical elements
in a discrete line field yielding a substantial simplification of the field without
altering the topological type of the underlying surface. The proposal consists
of two approaches: a merge between two critical faces connected by a unique
strip of regular faces, and a cancellation between a critical face and a critical
vertex connected by a unique path.

Proposition 4.10 Let f and g be critical faces of a discrete line field (S , L),
which belong to a unique face � of M(S , L). Then such faces can be merged
into a unique critical face.

Proof. Basically, it consists of the removal of the unmatched edges inside
� (Figures 4.12(a) and (b)). More precisely, observe that the faces f and g

share a unique edge a in S , since they are opposite vertices of an unique
face � in M(S , L). This guarantees the existence of two edges e œ f and
d œ g and two sequences of collapses e æ f

1

, e

1

æ f

2

, . . . , ek≠1

æ fk and
d æ g

1

, d

1

æ g

2

, . . . , dk≠1

æ gl, where the edges e and d belongs to f and
g, respectively, and both fk and gl contain the edge a. The uniqueness of
the adjacency between a and f in S implies that reversing the sequence of
collapses e æ f

1

, e

1

æ f

2

, . . . , ek≠1

æ fk does not create alternated closed
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paths in the Morse matching. Let a æ fk, ek≠1

æ fk≠1

, . . . , e

1

æ f

1

, e æ f be
this reversed sequence. Then the set

{d æ g

1

, d

1

æ g

2

, . . . , dk≠1

æ gl, a æ fk, ek≠1

æ fk≠1

, . . . , e

1

æ f

1

, e æ f}

is a Morse matching on S , and Theorem A.1 provides the desired result. ⌅

(a) (b)

Figure 4.12: (a) the two critical triangles in red are in the boundary of a unique
face of the MS decomposition. (b) the cancellation between the critical faces.

We now present a cancellation criterion between a vertex v and a face f

in a discrete line field (S , L); it is based on Forman’s cancellation of critical
elements in a Morse matching [23]. A path v = v

1

v

2

. . . vk from v to a vertex vk

in the boundary walk of f can be reversed as follows . For each 1 Æ i < k there
is an edge ei which runs from vi to vi+1

, satisfying {vi, ei} œ L. To reverse the
path, consider {vi, ei} œ M(S ) and {vi+1

, ei} œ L, and {v, e} œ M , where e

is a diagonal of f .

Proposition 4.11 Let v be a critical vertex and f a critical face, with
index(f) < 0, connected by a unique path “. One can reverse “ such that
f is subdivided into two faces f

0

fi e fi f

1

and the resulting vector field has v

and f

0

as non-critical cells satisfying index(f
1

) = index(f) + index(v).

Proof. The reversion of the path “ does not create a cycle, since otherwise
there would be another path between v and f , contradicting the proposition
hypothesis; Figures 4.13(a) and (b) provide the proof idea. ⌅

(a) (b)

Figure 4.13: (a) a critical face and a critical vertex connected by a unique path.
(b) the reversed path.
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5
From discrete line to discrete vector fields

In this chapter we give correspondence between discrete line fields
and discrete vector fields, which motivates the use of discrete vector field
constructions and analysis [29, 37, 38, 39, 40, 41, 42, 43] to study discrete
line fields.

5.1
Discrete vector fields and discrete line fields

The strategy used to build the correspondence between discrete vector
fields and discrete line fields is based on considering two classes of discrete line
fields: the orientable and the non-orientable fields. We prove that a subdivision
of the critical faces of an orientable discrete line field produces a discrete
vector field. For a non-orientable discrete line field, we suspend the field to
an orientable line field, using the construction of branched coverings of surface
decompositions proposed by Gross and Tucker [32].

5.1.1
Orientable discrete line fields

Let (S , L) be a discrete line field and S = (V , E, F ) be the simple
decomposition given by Theorem 4.8 applied to (S , L). The field (S , L) is
said to be orientable if the graph G = (V , E) is bipartite, and non-orientable
otherwise (Figure 5.1).

Next we write the property of orientability of a discrete line field (S , L)
in terms of its unmatched edges. The set E(L) denotes the matched edges.

Lemma 5.1 Let (S , L) be an orientable discrete line field. Then the graph
(V, E ≠ E(L)) is bipartite.

Proof. By hypothesis, (V , E) admits a bipartition W Û B. We construct a
bipartition W Û B of (V, E ≠ E(L)) as follows: a vertex v in V belongs to W

if there is a path connecting v to a critical vertex in W ; analogously for B. To
verify that W Û B is indeed a bipartition of (V, E ≠ E(L)), consider an edge
e in E ≠ E(L). Then the endpoints of e are in di�erent sets of the partition
W Û B, otherwise the critical vertices, connected to them by paths, must be
adjacent in (V , E), contradicting its bipartition W Û B. ⌅
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From Lemma 5.1, the boundary walk of a face in an orientable discrete
line field has an even number of unmatched edges (the reciprocal is false,
Figure 5.1(a) provides a counterexample). We propose a face subdivision of
the underlying decomposition that converts the orientable discrete line field
into a discrete vector field.

(a) (b)
Figure 5.1: (a) and (b) present a non-bipartite 4-decomposition of the torus
and a bipartite 4-decomposition.

Lemma 5.2 (Face subdivision) Let f be a face with k > 2 edges in its
boundary walk. If k = c(f) > 4 then f can be subdivided into one 4-gon and a
(k ≠ 2)-gon. If k ”= c(f) then f can be subdivided into a triangle with just one
matched edge and a c(f)-gon.

Proof. First, let k = c(f), then f has no matched edges on its boundary
walk. The number k is even by Lemma 5.1, and greater than 4, since k > 2 by
hypothesis. Let v

1

e

1

v

2

e

2

· · · vkekv

1

be the boundary walk of f . As k Ø 4, we can
subdivide f into two faces, f

1

and f

2

, by adding an edge e joining the vertices
v

1

and v

4

. The boundary walk of f

1

and f

2

are given by v

1

e

1

v

2

e

2

v

3

e

3

v

4

ev

1

and
v

1

ev

4

e

4

v

5

e

5

· · · vkekv

1

, respectively. Then, f

1

is a 4-gon, and f

2

is a (k ≠ 2)-gon
(Figures 5.2(a) and (b)).

When k ”= c(f), we consider an unmatched edge e

1

adjacent to a matched
edge e

2

. Such a configuration is allowed, since otherwise c(f) = 0, so by
Theorem 4.8, the decomposition S is a sphere consisting only of a vertex
and a face. Let v

1

e

1

v

2

e

2

v

3

· · · vkekv

1

be the boundary walk of f . We can
subdivide f into two faces, f

1

and f

2

, by adding an edge e joining the vertices
v

1

and v

3

. The boundary walk of f

1

and f

2

are given by v

1

e

1

v

2

e

2

v

3

ev

1

and
v

1

ev

3

e

3

v

4

e

4

· · · vkekv

1

, respectively. Then, f

1

is a triangle with just one matched
edge e

2

, and f

2

is a c(f)-gon (Figures 5.2(c) and (d)). ⌅

(a) (b) (c) (d)
Figure 5.2: (a) a hexagon with no matched edge; in (b) a subdivision into two
4-gons. (c) a pentagon with a unique matched edge; (d) a subdivision into a
4-gon and a regular triangle.
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Applying Lemma 5.2 inductively on an orientable discrete line field, we
obtain a discrete vector field.

Theorem 5.3 Let (S , L) be an orientable discrete line field. There is a
subdivision of faces of S producing a discrete vector field (S Õ

, L).

Proof. The application of Lemmas 5.2 and 4.6, inductively, on the faces of
(S , L) produces a discrete line field (S Õ

, L) with only regular triangles and
critical 4-gons without matched edges. In other words, a discrete vector field
is obtained. ⌅

5.1.2
Non-orientable discrete line fields: double branched coverings

For non-orientable discrete line fields, that is, when the graph of un-
matched edges is not bipartite, we use a double branched covering defined
below, which suspends the field to an orientable discrete line field.

We will use the same definitions by Gross and Tucker from [32]. Let Z
2

be
the cyclic group of order two, G = (V, E) a graph and – : E æ Z

2

be a function
over its set of edges E. The derived graph Â

G of the pair (G, –) is defined by
considering its vertex set being Â

V = V (G) ◊ Z
2

and edge set Â
E = E(G) ◊ Z

2

,
such that for each edge e = [u, v] œ E we define e ◊ i = [u ◊ i, v ◊ (i + –(e))]
for i = 0, 1 (Figure 5.3).

(a) (b) (c)

Figure 5.3: Di�erent colors receive the number 0, and 1 otherwise. (a) the
suspension of an edge signed with 1. (b) the suspension of an edge signed with
0. (c) combines (a) and (b).

The natural projection p : Â
G æ G is a double covering map since the

edges of G have two copies in Â
G and the degree of each vertex is preserved by

the construction of Â
G (Figure 5.3(c)). We show that a rotational system can

be suspended. Let R be a rotational system over G. One can define a derived
suspension ÊR: For the rotation e

1

, e

2

, . . . , ek on each vertex v of G lifted to
v ◊ i on the derived graph Â

G, consider the rotation e

1

◊ i, e

2

◊ i, . . . , ek ◊ i.
Theorem 2.1, in turn, provides the derived surface Â

S, in which the derived
graph Â

G is embedded.
Gross and Tucker [32] proved that the map p : Â

G æ G induces a
branched covering between Â

S and S (Figure 5.4).
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Theorem 5.4 (Gross–Tucker [32]) Let S = (V, E, F ) be a decomposition
of an oriented compact surface S and – : E æ Z

2

a function. One can extend
the covering map p : Â

G æ G to a double branched covering p : Â
S æ S between

their embedding surfaces, such that: If –(e
1

) + · · · + –(ek) = 1 on the boundary
walk v

1

e

1

v

2

e

2

. . . vkekv

1

of a face f then the map p restricted to f consists of
the complex map z

2. Otherwise the pre-image of f is two disjoint copies of f .

(a) (b)
Figure 5.4: The edges assignment is similar to Figure 5.3. (a) a decomposition
containing two faces; (b) the derived decomposition.

The embedding of the derived graph Â
G = ( Â

V ,

Â
E) into the derived surface

Â
S provides the derived decomposition ÊS = ( Â

V ,

Â
E,

Â
F ) of Â

S.
Next we use Theorem 5.4 to suspend a non-orientable discrete line field

to an oriented field on a derived decomposition.
Let S = (V, E, F ) be a decomposition of a compact connected orientable

surface S and (S , L) be a non-orientable discrete line field. Define a function
– : E æ Z

2

on the edges of G = (V, E), such that –(e) = 1 if e is unmatched
by L and 0 otherwise. Then the derived graph Â

G = ( Â
V ,

Â
E) covers G twice:

suspend each matched pair of vertex-edge to two copies in Â
G. The result is a

matching ÂL between vertices and edges of the derived decomposition on ÊS ,
that is, a discrete line field ( ÊS ,

ÂL) (Figure 5.5).

(a) (b)

Figure 5.5: (a) a non-orientable discrete line field. (b) the suspension to an
orientable field.

Using the properties given by Theorem 5.4 the next result follows.
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Theorem 5.5 Let (S , L) be a discrete line field. The discrete line field ( ÊS ,

ÂL)
is orientable.

The suspension ( ÊS ,

ÂL) of a discrete line field (S , L) corresponds to a
discrete vector field. Specifically, ( ÊS ,

ÂL) is an orientable discrete line field
by Theorem 5.5, then Theorem 5.3 applied to this field provides through a
subdivision the desired discrete vector field ( ÊS Õ

,

ÂL).
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6
Conclusion and future work

This thesis provided a combinatorial framework to approach line fields.
The main object was the self-contained definition of discrete line fields that
encoded Forman’s construction for vector fields.

For computational issues, discrete line fields admit the following simple
algorithmic constructions without any numerical parameters:

• The critical point detection is made through the formula c(f)

2

≠ 1 which
is easily computed (linear time);

• The connection between critical elements is determined by the paths
(linear time);

• The MS decomposition is essentially determined through a rotational
system (linear time). The face each cell belongs to can be determined
through a path and the rotational system (linear time);

• The reduction of critical elements is made by removing edges or reversing
paths of the discrete line field (linear time).

The simplicity and combinatorial nature of the constructions above motivate
their use in geometry processing applications. The main challenge in this
context is to match the construction of a discrete line field with the geometry
of a sampled surface, e.g. the principal curvature directions in Figure 6.1.

(a) (b)

Figure 6.1: (a) a bitorus. (b) a sample of the minimum curvature vector field
over the vertices of a decomposition of the bitorus.

We also provided a suspension of a discrete line field to a discrete vector
field. Thus geometric constructions for discrete vector fields [39, 40, 43, 38, 42,
29] can be used to study discrete line fields.
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Chapter 6. Conclusion and future work 50

The definitions and results behind discrete line fields motivate many ques-
tions. For instance:

• Can we consider cycles in the definition of discrete line fields?

• Is it possible to extend the definition of discrete line fields to higher
dimensions?

• Is there any relation between discrete line fields and other discrete
definitions for line fields (for example, the discrete version of line field
presented in discrete exterior calculus [11])?

In a nutshell, we proposed a consistent combinatorial point of view for line
fields, usually approached in computer graphics/geometry processing/discrete
geometry through numerical methods. We hope that this technique can be
explored and applied to new o�er perspectives.
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A
Discrete Morse theory

We present a reduced exposition of the discrete version [23] of classical
Morse theory [36]. Here the smooth surfaces are replaced by decompositions,
and the gradient of Morse functions by Morse matchings.

Let S = (V, E, F ) be a decomposition of a compact surface S (Fig-
ure A.1(a)). The Hasse diagram H(S ) of S is a graph embedding whose
vertices consist of a unique point in each cell of S . Edges are disjoint lines con-
necting points of adjacent cells whose dimensions di�er by one (Figure A.1(b)).

A matching in H(S ) is a collection X of disjoint edges in the Hasse
diagram H(S ). Clearly X is the disjoint union of the sets of edges XV and
XF containing elements in V and F , respectively. Following the notation from
Forman [23] and Chari [46], a Morse matching is a matching in H(S ) for
which neither XV nor XF contains a set of alternating edges of a closed cycle
of H(S ). Figure A.1(c) provides a Morse matching.

(a) (b) (c)
Figure A.1: (a) a decomposition. (b) the Hasse diagram. (c) a Morse matching.

An unmatched cell in a Morse matching is a critical cell. Forman proved
a discrete version of the fundamental theorem of Morse theory [36].

Theorem A.1 (Forman [23]) Any decomposition S of S endowed with
a Morse matching X over its Hasse diagram is homotopy equivalent to a
decomposition S , whose p-cells are the critical p-cells.

Theorem A.1 is a classification of the homotopy type of the underlying
decomposition in terms of only the critical elements.

In classical Morse theory [36], the negative of a Morse function is a Morse
function. The discrete version of this result was also presented by Forman [23],
and it consists of dualizing both the underlying decomposition and its pairing
of cells. More precisely, let S be a decomposition of a compact surface S, and
X be a Morse matching on the Hasse diagram H(S ). As H(S ) is isomorphic to
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Appendix A. Discrete Morse theory 56

the Hasse diagram H(S ú) of the dual composition S ú of S (folkloric result),
the Morse matching X corresponds to Morse matching in H(S ú). This is called
the dual Morse matching of X and denoted by X ú.

Following the notation of the previous paragraph, Theorem A.1 applied
to both X and to its negative X ú produces dual decompositions of the surface
S [23]. Then, their Hasse diagrams are isomorphic, producing equivalent
decompositions of the surface S.

DBD
PUC-Rio - Certificação Digital Nº 1412645/CA


	Discrete Line Fields on Surfaces
	Resumo
	Table of contents
	Introduction
	Basic definitions
	Decompositions of a compact surface and rotational systems
	Bipartite 4-decomposition

	Vector fields
	Smooth vector fields
	Discrete vector fields
	Critical elements and topological properties
	Smooth vector fields and discrete vector fields
	Discrete vector fields and Morse matchings


	Line fields
	Smooth line fields
	Discrete line fields 
	Critical elements and topological properties
	Smooth line fields and discrete line fields 
	Discrete line fields and Morse matchings

	Cancellation in discrete line fields

	From discrete line to discrete vector fields
	Discrete vector fields and discrete line fields
	Orientable discrete line fields
	Non-orientable discrete line fields: double branched coverings


	Conclusion and future work
	Bibliography
	Discrete Morse theory



