PUC-RIo - Certificacdo Digital N° 1412713/CA

Henrique d’Escragnolle-Taunay

A Spatial Partitioning
Heuristic for Automatic
Adjustment of the 3D

Navigation Speed in
Multiscale Virtual
Environments

DISSERTACAO DE MESTRADO

DEPARTAMENTO DE INFORMATICA
Programa de Pds—graduacdo em Informatica

Rio de Janeiro
March 2016

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

PONTIFfCIA UNIVERS]DADE CATéLlCA
DO RIO DE JANEIRO

Henrique d’Escragnolle-Taunay

A Spatial Partitioning Heuristic for Automatic
Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments

Dissertacao de Mestrado

Dissertation presented to the Programa de Pds-Graduacido em
Informatica of the Departamento de Informética, PUC-Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informatica.

Orientador: Prof. Alberto Barbosa Raposo

Rio de Janeiro
Marco de 2016

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

PONTIFfCIA UNIVERS]DADE CATéLlCA
DO RIO DE JANEIRO

Henrique d’Escragnolle-Taunay

A Spatial Partitioning Heuristic for Automatic
Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments

Dissertation presented to the Programa de Pds-Graduacido em
Informatica of the Departamento de Informatica do Centro
Técnico Cientifico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Alberto Barbosa Raposo
Orientador
Departamento de Informatica — PUC-Rio

Prof. Waldemar Celes
Departamento de Informatica — PUC-Rio

Prof. Marcelo Gattass
Departamento de Informéatica — PUC-Rio

Prof. Marcio da Silveira Carvalho
Coordenador Setorial do Centro Técnico Cientifico — PUC-Rio

Rio de Janeiro, March 4", 2016.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

All rights reserved.

Henrique d’Escragnolle-Taunay

BSc. in Information Systems at PUC-Rio - 2011. Worked
at: TecGraf, developing virtual reality and scientific
visualization systems; Olympya Software, developing a MMO
game; Gapso, developing systems for business logistics;
Bomnegocio.com/OLX, developing large scale micro-service
oriented backend web services; and currently works at
Microsoft, more specifically with search at the Bing team.

Bibliographic data

Taunay, Henrique d'Escragnolle

A Spatial Partitioning Heuristic for Automatic Adjustment
of the 3D Navigation Speed in Multiscale Virtual
Environments / Henrique d'Escragnolle-Taunay; advisor:
Alberto Barbosa Raposo. — 2016.

47f:il.; 30 cm

1. Dissertagdo (mestrado) - Pontificia Universidade
Catdlica do Rio de Janeiro, Rio de Janeiro, 2016.

Inclui referéncias bibliogréficas.

1. Informatica — Teses. 2. Computacdo Grafica;. 3.
Técnicas e Metodologias;. 4. Técnicas Interativas;. 5.
Realismo e Graficos Tridimensionais;. 6. Realidade Virtual.. I.
Raposo, Alberto Barbosa. Il. Pontificia Universidade Catdlica

do Rio de Janeiro. Departamento de Informatica. Ill. Titulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

VOIETLZTYT oN [enbig ogdeouniad - or4-oNd

To Carol, Bel, Malu and Peter.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Acknowledgments

I would like to express my gratitude to Professor Alberto Raposo, my
research advisor for his support, guidance and useful critiques. I would also
like to thank Pablo Elias, Vinicius Rodrigues and Rodrigo Braga, for their
friendship and part in this work. I thank the PUC-Rio institution, especially
the TecGraf lab, without them none of this would be possible. Finally, I would

also like to thank Petrobras for funding our host project Siviep.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Abstract

Taunay, Henrique d’Escragnolle; Raposo, Alberto
Barbosa(Advisor). A Spatial Partitioning Heuristic for
Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments. Rio de Janeiro, 2016.
47p. MSc Dissertation — Departamento de Informadtica, Pontificia
Universidade Catélica do Rio de Janeiro.

With technological evolution, 3D virtual environments continuously
increase in complexity; such is the case with multiscale environments, i.e.,
environments that contain groups of objects with extremely diverging levels
of scale. Such scale variation makes it difficult to interactively navigate
in this kind of environment since it demands repetitive and unintuitive
adjustments in either velocity or scale, according to the objects that
are close to the observer, in order to ensure a comfortable and stable
navigation. Recent efforts have been developed working with heavy GPU
based solutions that are not feasible depending on the complexity of the
scene. We present a spatial partitioning heuristic for automatic adjustment
of the 3D navigation speed in a multiscale virtual environment minimizing
the workload and transferring it to the CPU, allowing the GPU to focus
on rendering. Our proposal describes a geometric strategy during the
preprocessing phase that allows us to estimate, in real-time phase, which is
the shortest distance between the observer and the object nearest to him.
From this unique information, we are capable to automatically adjusting
the speed of navigation according to the characteristic scale of the region
where the observer is. With the scene topological information obtained in a
preprocessing phase, we are able to obtain, in real-time, the closest object
and the visible objects, which allows us to propose two different heuristics for
automatic navigation velocity. Finally, in order to verify the usability gain in
the proposed approaches, user tests were conducted to evaluate the accuracy
and efficiency of the navigation, and users’ subjective satisfaction. Results
were particularly significant for demonstrating accuracy gain in navigation

while using the proposed approaches for both laymen and advanced users.

Keywords

Computer Graphics; Methodology and Techniques; Interaction

techniques; Three-Dimensional Graphics and Realism; Virtual Reality.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Resumo

Taunay, Henrique d’Escragnolle; Raposo, Alberto Barbosa. Uma
heuristica de particao espacial para o ajuste automatico da
velocidade de navegacao 3D em ambientes de multiescala.
Rio de Janeiro, 2016. 47p. Dissertacdo de Mestrado — Departamento
de Informatica, Pontificia Universidade Catdlica do Rio de Janeiro.

Com a evolugao tecnologica, ambientes virtuais em 3D crescem
continuamente em complexidade; este é o caso de ambientes multiescala, i.e.,
ambientes que contém grupos de objetos com niveis de escala extremamente
divergentes. Tal variagdo em escala dificulta a navegacdo interativa neste
tipo de ambiente dado sua demanda repetitiva e nao-intuitiva de ajustes
em tanto velocidade quanto escala, levando em consideragdo os objetos
que estdo proximos ao observador, para garantir uma navegagao estavel
e confortavel. Esforgos recentes tem sido desenvolvidos trabalhando com
solugoes fortemente baseadas na GPU que nem sempre podem ser
viaveis dependendo da complexidade de uma cena. Nés apresentamos
uma heuristica de particionamento espacial para o ajuste automatico
de velocidade de navegacdo 3D em um ambiente multiescala virtual,
minimizando o esforgo computacional e transferindo este para a CPU,
permitindo que a GPU possa focar na renderizagdo. Nossa proposta descreve
uma estratégia geométrica durante a fase de pré-processamento que nos
permite estimar, em tempo real, qual é a menor distancia entre o observador
e 0 objeto mais préximo dele. A partir desta informagao tunica, somos
capazes de ajustar automéaticamente a velocidade de navegagido de acordo
com a carateristica de escala da regiao na qual o observador se encontra.
Com a informagao topologica da cena obtida na fase de pré-processamento,
somos capazes de responder, em tempo real, qual é o objeto mais préximo
assim como o objeto visivel mais préximo, que nos permite propor duas
diferentes heuristicas de velocidade de navegacéo automética. Finalmente,
com o objetivo de verificar o ganho de usabilidade alcancado com as
abordagens propostas, foram realizados testes de usuario para avaliar a
eficiéncia e precisdo da navegacdo, assim como a satisfacido subjetiva do
usuario. Os resultados foram particularmente significantes ao demonstrar o
ganho em precisdo da navegacio ao utilizar as abordagens propostas, tanto
para usuarios experientes quanto para leigos.

Palavras-chave

Computacdo Grafica; Técnicas e Metodologias; Técnicas Interativas;

Realismo e Graficos Tridimensionais; Realidade Virtual.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Index

Figure List

Table List

1 Introduction

2 Related Work

2.1 Automatic Navigation in 3D environments
2.2 k-d Trees in Computer Graphics

3 Automatic Speed Adjustment Heuristic
3.1 The k-d Tree

3.2 Pre-Processing

3.3 The Real-Time Phase

3.4 The Nearest Visible Search

3.5 Improving the Heuristic

3.6 Performance

4 User Tests

4.1 Test Environment

4.2 User Profiles

4.3 Test Design

4.4 Test Results

5 Automatic Speed Adjustment as a Service
5.1 The Architecture

5.2 Dealing with Dynamic Objects

5.3 Consuming the API

5.4 Solar System Experiment

5.5 Performance

6 Conclusion

7 References

8 Glossary

9 Appendix: System Usability Scale (SUS) Form

10
12

14
14
15

16
16
17
18
20
21
24

25
25
26
26
28

34
35
36
37
38
39

41
43
46

47

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Figure List

3.1

3.2
3.3

3.4

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8

51
5.2
5.3
5.4
55

Example of a 2D k-d tree. The left image displays the points
separated by the generated hyperplanes, and the right image
presents the same structure in a binary tree view

A complex object processed into cells

Example of how the fovy of the viewing frustum was reduced while
searching for the nearest visible point. The black frustum represents
the area being rendered, while the blue one represents the search
area.

Graph of FPS measurement per time

Example screenshot of Siviep

Ring in test

Average rings crossed successfully

Average time to complete course in seconds

Average time to complete course, in seconds, depending on whether
his/her first navigation test was manual or automatic

Average input count per interaction. A discrete input is defined as
any time the user presses and releases a key from the keyboard, or
when he/she starts and finishes a mouse wheel movement.
Average user SUS Scores

User feedback comparing interactions B and C

RMNS architecture

Distributed heuristic approach

Navigation shaking for out of out responses
Solar system demo

Round-trip path

17
19

23
24

25
27
29
30

31

32
33
33

35
37
38
39
40

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

Table List

3.1 Configuration values
3.2 General results of performance for each strategy

23
24

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

We are what we repeatedly do, excellence, then,
is not an act but a habit.

Aristotle

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

1
Introduction

Freely navigating in a 3D virtual environment can prove to be problematic,
even for the most experienced users [1], and possibly deal-breaking for laymen,
especially when dealing with massive multiscale scenes. An example of this kind of
scene, which was used in this work, is a real oil field, which varies in a scale of 1:107
from the smallest object (an oil tube with a 15cm radius) to the largest (a seismic
object with possibly kms of extension in all three dimensions). Some systems
can tackle such scenarios more easily given their nature (e.g., examine focused
applications, an exocentric interaction technique where the user can orbit and zoom
infout around a point of interest); however others that demand more navigation
freedom (e.g., fly, an egocentric interaction technique) are more susceptible to user
errors.

The problem of egocentric multiscale navigation has been tackled previously
from mainly two distinct approaches: level of scale (LoS) based solutions, and au-
tomatic speed adjustment solutions. In LoS based solutions, the virtual environment
surrounding the camera — or avatar — grows/shrinks according to user input [2]
(i-e., a navigation with seven degrees of freedom (7DOF)); alternatively, the user
can transit in and out from predefined discrete layers of scale [3]. The solution pre-
sented in this work follows the second approach, i.e. automatic speed adjustment,
using the closest geometry position as input to heuristics that determine the optimal
navigation speed at any given moment.

Examples of this last approach used an image-based environment representa-
tion named cubemap [4] [5]. Given the camera position, the cubemap is constructed
from 6 rendering passes, each in a different direction in order to cover the whole en-
vironment. Targeting a more fluid navigation experience (i.e., without discrete scene
scale layers or manual scale adjustment) with six degrees of freedom (6DOF), the
cubemap technique is used to obtain an automatic speed adjustment for the scenario,
which has proved to be an effective multiscale interaction technique solution.

However, this approach presents a different limitation: the render bottleneck.
As virtual environment scenes grow in detail and complexity, despite the fast
improvements in modern hardware, rendering six screens per frame is a GPU-
intensive operation and can become unfeasible given the scenario. Following the
motivation of eliminating such extra render steps, we propose a CPU based solution
where the virtual environment’s geometries are stored in a k-d tree [6]. This structure
is used to obtain the nearest objects — visible as well as non-visible — allowing

the application of a similar but revisited heuristic used in the cubemap solution.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 13

The proposed solution presents a regression compared to the cubemap approach:
it is only applicable to static scenes, given that rebuilding the k-d tree every frame
can prove unfeasible. A proposed solution to this regression, working with parallel
processing, has also been developed and will be introduced in this work as well.
The following chapter presents related work on multiscale navigation and k-
d trees. In chapter 3 we show that such a solution matches the known cubemap
features while successfully removing the render bottleneck without exhausting the
CPU. The main divergences between both techniques will be exposed, and specific
optimizations will be detailed as well. To back our usability claim, in chapter 4 we
present results from a user-testing process involving participants with 3D navigation
experience as well as laymen. Finally, in chapter 5, we will introduce an isolated and
language agnostic tool that offers the optimal navigation speed heuristic feature as

a service, while also allowing such solution to be scaled with ease.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

2
Related Work

2.1
Automatic Navigation in 3D environments

The problem of automatic navigation in 3D environments was previously
tackled by Mackinlay et al. [7]. They proposed a type of navigation which involved
a user choice for a point of interest (POI). They addressed the difficulty of dealing
with different speeds according to the POI, allowing you to move faster when you’re
far away from the object, and slower when you’re close, making it possible for the
user to carefully examine the desired object in a detailed manner. Although they
developed a feasible solution, they assumed a discrete number of POI’s in a scene
and also limited the freedom of navigation considerably in their solution which is
not suitable for all applications.

With the evolution of VR and 3D hardware and inevitably the growth of 3D
scenes in size and complexity new kinds of user interaction problems have emerged.
The term multiscale environment was forged by Perlin and Fox [8] to describe
scenes in which a conventional navigation system is not sufficient to properly
interact with a given environment (in their case 2D multiscale documents), and
the option of adding the freedom to choose the scale with which the user would
navigate was suggested.

Offering a 6DOF navigation is a considerable jump in interaction freedom
and complexity compared to an examine interaction. Differently from Mackinlay’s
solution [7] in which a focus point was predetermined and therefore velocity control
could be applied relative to such point, with 6DOF navigation it is not possible to
determine exactly which is the scene object on which the user is currently focused
at every given moment of the navigation. It is not difficult to see when navigating in
a multiscale virtual environment that manually adjusting either velocity or scale can
be unpractical and demand repetitive user inputs. Some techniques were developed
with the goal of easing the navigation in these environments with a more universal
approach. The most notorious one was showed by McCrae et al. [4], who used a
render technique to fetch the nearest point to the observer at each frame, and used
this point and its distance to choose an optimal velocity at that instant. Trindade
and Raposo [5] extended the cubemap approach adding new features, such as
determining automatically a pivot point when transitioning from free navigation
to an examine navigation.

Another approach to tackling the 6DOF multiscale problem was the adaptive

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 15

navigation technique by Sanz [9], where not only the observers navigation speed is
automatically adjusted, but the camera’s rotation speed as well, in order to reduce
jerkiness during the interaction. Sanz, instead of taking in as input the nearest object,
worked with a combination of: a Time to Collision map, a grid where each cell
represents the time to reach each rendered pixel given the user’s current speed; and
an Optical Flow map, a grid where each cell represents the amount of displacement
(in screen space) between two consecutive frames. Both maps when applied to
an custom algorithm can provide - what the author describes - as the perceived
user’s speed, which when compared to a hard coded optimal perceived speed (by
configuration) serves as a reference for maximum translation and rotation variations

between frames.

2.2
k-d Trees in Computer Graphics

Spatial data structures have been widely used in 3D computer graphic appli-
cations for a variety of purposes, and the k-d tree is one of the most popular choices
in such a category. Among its advantages, the efficient point searching and closest
neighbor calculation are very convenient for the usual geometric problems present
in computer graphics.

Schaufler and Sturzlinger in 1996 presented an optimization technique for
rendering complex virtual environment scenes, creating a cache of a scene’s geo-
metry stored in a k-d tree[10]. More recently Foley and Sugerman used the k-d tree
to accelerate raytracing computed in the GPU when dealing with scenes with many
objects in different scales[11], over the — until then — traditional grid acceleration
structures. This solution was later improved by Horn [12]. However, previous solu-
tions only worked with static scenes. A dynamic scene raytracing solution using a
k-d tree in the GPU was later developed by Zhou et al. [13].

Other examples of the k-d tree usage in computer graphics are: real-time
occlusion culling strategy for models that present large occluders, which replaced
the traditional z-buffer approach with a k-d tree in which the scene’s polygons were
stored[14]; a real-time 3D pose estimation, exploring the spatial structure to obtain
an efficient closest point computation used in comparison with predefined models
[15]; and a panorama recognizing solution that manages to merge n 2D images into
a single coherent image, utilizing the k-d tree for feature matching between multiple
samples[16].

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

3
Automatic Speed Adjustment Heuristic

Our approach aims to be simpler and more efficient than the cubemap strategy.
It is simpler because our objective is to obtain a good speed for each scene region,
not necessarily the best, given that it is not necessary to treat the scene down to its
lowest level of detail, and it is more efficient by making it possible to use heuristics
to reduce CPU/GPU workload needed for an acceptable solution. In a complex
multiscale scenario, such simplification is very important. Inspired by the work of
McCrae’s et al [4], we present a CPU based solution, in which most of the work
is done in the preprocessing phase, leaving a minimal and efficient query to be
performed in each frame, eliminating the need of extra render passes. This could
easily allow an automatic speed strategy for scenes in which the rendering is the
main bottleneck without exhausting the CPU.

The point of the work of McCrae’s et al.[4] is to use its cubemap to fetch
the nearest point to the observer in the scene. However, the nearest neighbor search
is a well known problem that can be solved with the use of spatial structures, for
example. In the following sub-sections, it is explained in detail how we developed a
CPU based solution to an automatic speed navigation using the information from the
result of a nearest neighbor search. It is shown how the scene is simplified to serve
as input to a spatial structure, to reduce cost and to provide a good approximation
of the optimal result. We present a math heuristic to determine the speed at each
frame that allows the user to comfortably navigate in any position of the scenario.
In addition, a technique to use the information stored in the spatial structure to fetch
nearest visible point, which was used to improve our speed heuristic and implement
features proposed by Trindade and Raposol[5].

We point out that the spatial structure based solution by itself currently does
not deal with dynamic scenes, unlike the cited GPU solutions. Updating a k-d tree
in real time is unfeasible given the complexity of the scenes we deal with, however,
this problem can be solved with a hybrid solution. More on this topic will be covered
in chapter 5, until then, we will discuss mainly the heuristic for static scenes, which
is exactly the nature of the oil field scenes used as test case studies in this work
through the SiVIEP system. More on SiVIEP will be presented on chapter 4.1.

3.1
The k-d Tree

The k-d tree [6] is a classic spatial structure that provides an efficient search
of the nearest neighbor via a geometric approach. It is a space-partitioning data

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 17

structure for organizing points in a k-dimensional space represented by a binary tree
in which every node is a k-dimensional point. Every non-leaf node can be thought of
as implicitly generating a splitting hyperplane that divides the space into two parts,
known as half-spaces. Points to the left of this hyperplane are represented by the
left subtree of that node and points right of the hyperplane are represented by the
right subtree. An example of a two dimensional k-d tree is shown in Figure 3.1. In

our scenario, exclusively 3 dimensions will be taken under consideration.

T
.P_: p: /I"‘-_[/ =]
o | Py e ey
D P —
; / N
2, J»f J< '\, { ';,
i . pS "{i . [< h
— @ P \/_4 (2] [Ps @ 2
3 [2 \
o 703
Subdivision Tree structure

Figura 3.1: Example of a 2D k-d tree. The left image displays the points separated
by the generated hyperplanes, and the right image presents the same structure in a
binary tree view

The structure organization permits us to avoid big regions of the space by
performing simple single number comparisons, such as distance to an orthogonal
plane, speeding up operations while executing a geometric traversal. Algorithms
like point search, nearest neighbor search and region search can be executed
efficiently using a k-d tree. A balanced k-d tree performs the nearest neighbor search
in O(log n).

A known limitation of this approach — compared to the cubemap solution —
is that, since the tree nodes represent the vertices of a given scene’s geometries,
we can eventually face corner case scenarios where a relatively long and straight
geometry (e.g. a tube) may not have any points along its body, and therefore no
velocity adjustment would be applied along the surface between both edges. This

problem was not tackled in this work.

3.2
Pre-Processing

The pre-processing phase of our approach aims to reduce the number of
vertices to be considered when performing the query needed to calculate the

instantaneous velocity. For that, our large scene is split into regular cubes of a given

edge size named cells. These cells represent the basic unit of the velocity calculation

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 18

and a cell is considered filled if any vertex of any relevant object is located inside
it, regardless of quantity. Knowing that, the whole scene is pre-processed to cluster
all vertices into cells. The goal of this preprocessing phase is to reduce the space
requirement and CPU realtime workload while using the k-d tree. One could decide
to skip this phase and use all vertices without pre-processing, resulting in a more
precise calculation, if the memory and processing resources are available. Also, its
worth mentioning that this optimization process can eliminate part of the multi-
scale nature of the scene, given that vertices in a smaller scale than the grid cell
size will be discarded. However, this preprocessing phase makes the technique
scalable and more efficient, since using raw vertices would not be applicable to all
multiscale scenarios given their frequent huge sizes. Also, this provides flexibility
for the navigation precision, being possible to set a larger cell size for a less precise
velocity calculation and more efficient processing, and vice-versa.

The result of this phase is a sparse point cloud, orders of magnitude smaller
than the original scene. The choice of the cell size has an important influence on
how much the scene can be simplified and, as it will be seen later, how precise the
navigation can be. The bigger the cell size, the more simplifications occur in the
clustering phase. Figure 3.2 shows an example of this simplification.

In the example shown in Figure 3.2, using a cell with size 4 meters, the sample
object, originally with more than 700,000 vertices, was simplified to only 1,400
cells. These cells are then stored in a k-d tree and this structure will be consulted in

the real-time phase to properly calculate the navigation velocity.

33
The Real-Time Phase

At each frame, while a user is navigating, a nearest neighbor search is
performed, having as parameter the cell where the user camera is located. The
nearest neighbor search was first shown by Bentley [6] and improved by Friedman
et al. [17], and is proved to cost O(log n) on the number of points present on the
structure. Along with the simplification described in the last section, it is expected
that such a search costs a small amount of time, even in real-time calculation.
Having this nearest cell information in hand, along with the distance that can be
easily calculated, we use a heuristic to calculate the speed the user can move at that
instant.

The basic heuristic for an instant velocity is:

V = distance * cellSize (3-1)

where distance means the number of cells of the k-d tree calculated from the

nearest cell to the camera cell. The cellSize represents the length of a cell’s edge in

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 19

Figura 3.2: A complex object processed into cells

meters. So the instant velocity is (approximately) the distance to the observer per
second.

However, this heuristic presented in equation 3-1 can cause abrupt changes
in the current navigation velocity. For example, the larger the distance the more
the current velocity increases, and hence the distance increments, and so forth. In
order to reduce the probability of the user becoming disoriented, ideally the ve-
locity variation should be smoothed. This can be achieved by limiting the acce-
leration/deceleration variations on the instant velocity in consecutive frames in a
frame-rate independent fashion. We apply a smoothing function to the last velocity

set, to calculate the current one. Our increment is limited by:

AV =VA | Ar (3-2)

where A is a constant potential increment factor. In other words, the current

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 20

velocity can accelerate at most VtA_ 1 — Vi—1 per second. The final result of the

velocity V in a instant 7 is:

Vi =Vi_1+ (sgn(V, = V1) *AV) (3-3)

It’s worth noting that this smoothing strategy can influence collisions with
other scene objects, given that - depending on the scenario - the observer may not
decelerate as necessary in order to avoid a theoretical collision. We also want to
highlight that this strategy is in no way mandatory for the heuristic, during testing
only a few scenarios demanded this adjustment, and therefore this strategy should
be interpreted as a helper and optional feature to be enabled on demand.

The user instantaneous velocity is bounded between two values: V,;, and
Vinax- Vmin 18 chosen to be the cell size, while V,,,, is set according to the scale of
the total dimension of the scene. These bounds are important in order to avoid both
the user stopping or getting a speed so high that it gets uncontrollable. Therefore,
for any ¢, we clamp the current velocity so Viuin < Vi < Viyax.

The influence of cell size can be perceived here. Since the minimum velocity
is dependent on the cell size, it determines how precisely you can examine an object
when you are close to it, or in other words, within the same cell. A good choice for a
cell size depends on the smallest object in the scene that you would want to examine

closely and carefully.

3.4
The Nearest Visible Search

One feature of Trindade and Raposo’s[5] approach which remains to be
solved in our strategy is the consideration of the “nearest visible point”for the
automatic pivot point for exocentric navigation. Basically, it allows a smooth
transition through an egocentric navigation to an exocentric navigation (examining
an object) by setting a visible subject as the current point of interest. In their work,
this information was obtained by a render strategy, more specifically, instead of
obtaining the closest point in all 6 frames of the cubemap, only the closest point in
the front frame was considered.

In our proposed implementation, we want to benefit from k-d tree’s properties
to make an efficient CPU based approach to obtain the same information. The k-d
tree nodes entirely outside the view frustum could be discarded on the traversal for
the search of the nearest neighbor, avoiding many unnecessary searches.

We present a strategy to perform a search that gives, as a result, the nearest
neighbor within a view frustum. For simplification’s sake, we present an algorithm

considering the region only as the viewing frustum, but it can be extrapolated for any

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 21

region. For didactic reasons, we present the algorithm as recursive, but an iterative
implementation is preferred to improve performance.

Consider, for each k-d tree node n, dim,, the dimension of the node that was
split during its generation, and key, the vertex used as key for that node. In our k-d
tree, we consider that left nodes store keys that are smaller than the current node
along its dimension. Consider also two arithmetic functions: distance that takes two
points (or keys) as parameters and returns their euclidian distance; and distToPlane
that returns the distance between a point p and an orthogonal plane, defined as

follows:

distToPlane(n, p) = |p[dim,] — key,[dim,]| (3-4)

The algorithm is frustum aware and the model-view-projection matrix is used
as an input. Previously, an axis aligned bounding box of the frustum geometry in
world coordinates has been calculated, shown below as frustum,y,;, and frustum,,,.
The isVisible function, considering the input frustum, is assumed implemented, by
projecting a point into clipping space, and checking if it belongs within the borders
of the canonical cube.

In a regular multiscale scenario, the view frustum tends to be much smaller
than the whole scene. Therefore, many branches of the k-d tree are readily ignored
and, besides the additional plane-against-frustum tests, the search tends to be faster
than the global nearest neighbor calculation on average. The result of this search
can be used as a pivot point on exocentric navigation, similarly to Trindade and

Raposo’s solution [5].

3.5
Improving the Heuristic

A common issue with defining the current navigation velocity based on the
nearest world point occurs when leaving a near object while facing a different
distant object towards which the user wishes to navigate. Although the target object
is relatively far, the previous object that is still near the camera — despite not being
visible — limits the acceleration, resulting in a frustrating feeling of being pulled
back.

Our proposed solution to this problem involves taking advantage of the result
of the nearest visible search to extend the heuristic presented in section 3.3. Let
Pcamera> Pglobal @nd pyigipe be the camera position, the position of the nearest
neighbor to the camera, and the nearest visible neighbor to the camera, respectively.

Thus, we define two vectors (normalized):

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 22

Algoritmo 3.1 Nearest Visible Algorithm
n <— root
nearest <— oo

function nearestVisible(n,nearest,p)
if key,[dim] < frustumpy;,[dim,)| and n.right # null then
return nearestVisible(n.right ,nearest,p)
end if
if key,[dim,] > frustumpqy[dim,] and n.left # null then
return nearestVisible(n.left,nearest,p)
end if

resultNode < null
if isVisible(key,) and distance(p,key,) < nearest then
nearest < distance(p,key;)
resultNode < n
end if
if n.left # null and distToPlane(n.left,p) < nearest then
tempNode <— nearestVisible(n.le ft,nearest,p)
if tempNode # null then
resultNode < tempNode
end if
end if
if n.right # null and distToPlane(n.right,p) < nearest then
tempNode < nearestVisible(n.right ,nearest,p)
if tempNode # null then
resultNode < tempNode
end if
end if

return resultNode
end function

‘_jglobal = Pglobal — Pcamera

; (3-5)
Vvisible = Pvisible — Pcamera
So we replace the calculus of V on the equation 3-1 for:
1—79 T
V = (distance * cellSize) * (1 + global Vl“ble) (3-6)

2

The sequence of the heuristic logic follows equally. The desirable result is to
give priority to visible points when deciding the base velocity. When the nearest
visible and nearest global are in completely opposite directions in relation to the
viewer, the result velocity is doubled. If pgjopar = Pyisinie then it behaves exactly as

in the basic heuristic.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments

23

An undesired limitation of this improvement occurs when visible objects loca-

ted near the border of the screen maintain the frustrating feeling of not accelerating

accordingly towards the distant object on which the camera is centered. Assuming

that the user will always center the camera in the direction on which he/she wishes

to navigate, we improved once more the heuristic to only consider objects located

relatively in the center of the camera view.

This proposed improvement is achieved by deliberately narrowing the vi-

ewing frustum by reducing the perspective fovy. This would consider only objects

that are shown in the center of the visible area, as shown in Figure 3.3.

To recap, in the table 3.1 we present the list of all of the configuration values

accepted by the heuristic presented in this work.

performing the nearest visible search

Name Description Mandatory
Cell Size Grid cell 31ze,. and a.lsg 1nPut E?.S rr.nn velocity (even if Yes
grid optimization is disabled)
A Speed Increment Factor No
Vinax Maximum speed limit No
Visible Fovy Field of view to be taken into account when No

Tabela 3.1: Configuration values

Figura 3.3: Example of how the fovy of the viewing frustum was reduced while
searching for the nearest visible point. The black frustum represents the area being
rendered, while the blue one represents the search area.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 24

3.6

Performance

In this section we present the impact of the proposed strategies on application
performance. Our test scenario has a total of 8.9 million vertices, 5.9 million
primitives and 1250 unique objects. The specifications of the machine which ran
the tests are: Core 17-920 (2.67 GHz) processor, 6 GB RAM memory, GeForce
GTX 460 graphics card.

The performance test was executed by running a predefined camera path,
trying to cover scene areas with different CPU and GPU demands. The same
path was run using three situations: not using any automatic adjustment, using the
basic heuristic for automatic speed adjustment (section 3.3), and using the nearest
visible heuristic for automatic speed adjustment (section 3.5), named A, B and C,
respectively. Table 3.2 shows general performance results, and Figure 3.4 shows the

measurements per seconds in a graph.

120

FPS

Time (s)

Figura 3.4: Graph of FPS measurement per time

FPS count A B C
Average | 64.38 | 57.10 | 50.97

Minimum 31 28 27

Maximum | 118 115 87

Tabela 3.2: General results of performance for each strategy

As we can notice by Table 3.2, the impact is roughly a fixed rate (11%) for
the B scenario on average, considering the scenario A as baseline. A similar cost
rate is perceived between B strategy and C strategy (11%). The graph confirms the
proximity, except in rare cases. It is also worth highlighting that the worst frame-
rates in the B and C scenarios were nearly identical.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RiIo - Certificagéo Digital N° 1412713/CA

4
User Tests

To evaluate the usability of the proposed techniques, a batch of user tests
were conducted. The techniques present the goal of assisting the users in the task
of exploring a multiscale virtual environment with a more fluid, comfortable and
intuitive experience. Therefore, we chose to perform tests comparing navigation
experiences with and without such improvements. Among the aspects of navigation
to be analyzed, we were mainly interested in the precision, duration and overall user

satisfaction.

4.1
Test Environment

The tests were performed using the Siviep viewer, a project under develop-
ment by TecGraf in cooperation with Petrobras. Siviep supports a comprehensive
visualization of several types of models comprising an oil exploration and produc-
tion enterprise. For example, it is possible to examine the oil extraction process
starting at the reservoirs, passing through the wells, the water and gas pumps, up to
the ducts that arrive at the oil platform, also included, not to mention seismic and

terrain data as well. All of this is in a single 3D scene (see Figure 4.1).

Figura 4.1: Example screenshot of Siviep

Such a scenario is relevant for the test because of the multiscale nature of the
different types of models that can be inspected simultaneously in a single interactive

scene.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 26

4.2
User Profiles

The tests were conducted with a group of 24 subjects. Twelve of them already
had previous experiences with 3D navigation (e.g., 3D modeling applications, video
games, other 3D viewers), and the remaining twelve had little or no experience.
We will refer to these subgroups as the experienced group and the laymen group
respectively. The individuals in the experienced group are herein called E1 to E12,
while the test users in the laymen group are identified as L1 to L12.

The ages of the subjects varied from 22 to 55, all of them were familiar with
the input devices used in the experiment (keyboard and mouse), and none of them

had any previous contact with the application used in the tests.

4.3
Test Design

The proposed test consists of the user navigating through a predefined path
guided by a sequence of rings (Figure 4.2). Only one ring is visible at each time,
and the user is instructed to attempt to navigate through such ring. Once surpassing
the ring — be it successfully through its bounds or unsuccessfully outside — it
will immediately disappear and the next ring will appear, and so on until the end of
the test. In the case of the next ring in the course escaping the current view of the
camera, an arrow indicating the direction of such ring is displayed on the screen to
help the user.

The ring sequence forms a course covering most of the selected scene’s ele-
ments, which is a convenient path for evaluating the automatic speed adjustment.
While the two closest rings — both located inside an oil platform — present a
distance of approximately 15m between them, the most distant pair of rings — lo-
cated between the offshore enterprises and the continent’s coast — have more than
80km separating them. The course can also be viewed as three separate sub-courses
connected between themselves: inside platform navigation; between platform na-
vigation; and offshore navigation, each with a particular scale, presenting average
distances between rings at 50m, 1500m, and 40km respectively. And yet, the course
was engineered to allow a navigation experience with similar time intervals neces-
sary to advance through any pair of rings.

The navigation itself is performed from a first person perspective with 6DOF
and using mouse and keyboard as input devices. The mouse serves as an interface
to determine the direction in which the user is looking. During manual navigation,
the mouse scroll wheel is used to determine the navigation velocity. The keyboard
serves as an interface to determine the translation movement of the camera, always

relative to the direction in which the camera is facing.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RiIo - Certificagéo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Muftiscale Virtual Environments 27

Figura 4.2: Ring in test

Each user was asked to perform three interactions on the same pathway by
varying the velocity adjustment policy of each interaction: interaction A works with
a fully manual speed adjustment system; B with a nearest-point automatic speed
adjustment heuristic; and C with a hybrid nearest-point and nearest-visible-point
speed adjustment heuristic, as seen in section 3.5. In interaction A the user was also
offered feedback of the current velocity on the GUI to assist the navigation, while
the B and C interactions offered no such feedback with the goal of making the speed
adjustment as natural as possible. As far as the subjects were concerned, there were
no apparent distinctions presented between interactions B and C.

This multiple-condition within-subjects test approach used the counterbalan-
cing technique with a Latin Square order[18] to compensate the learning between
interactions. An advantage of the within-subjects design is that there is less vari-
ance due to participant disposition, given that a participant who is predisposed to be
meticulous (or reckless) will be likely to exhibit such behavior consistently across
all interactions, and therefore the variability in measurements is more likely to be
attributed to differences between interactions than differences between participants.

Each user was introduced to the system and the procedure identically, fol-
lowed by the explanation of the current interaction based on the order of the given
test, where only the information relevant for each type of interaction was informed
incrementally. We purposely chose not to conduct any training previous to testing,
since our typical use-case involves laymen performing a quick navigation without
being introduced to the system. After each interaction the user was given a Sys-
tem Usability Scale (SUS)[19] form to fill out (see appendix 9), producing, at the

end of the test, three SUS results per user. Following the second interaction using

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 28

automatic-speed adjustment (be it B or C, depending on the order), users were also
asked if they noticed any difference between both automatic experiences, and in
such a case what were the differences.

During the testing process the following data was recorded for each interac-
tion: the number of rings that the user was able to successfully navigate through;
the time taken to navigate between each pair of rings; the total distance covered
between each pair of rings; the current state of the velocity of each frame step during
the entire interaction; the actual velocity of each frame step, obtained by dividing
the distance covered by the duration of such frame; and lastly the quantity of dis-
crete inputs the user made during the interaction. A discrete input is defined by any
time the user presses and releases a key from the keyboard, or when he/she starts
and finishes a mouse wheel movement. Camera orientation defined by the mouse
cursor is not recorded. To be clear, the reason to record both the velocity state and
actual velocity is justified by the fact that each can offer distinct relevant data, e.g.
the velocity state of each frame offers us a graph of exactly how the user altered his
velocity manually or how the system adjusted it for him, while the actual velocity
offers us information of when - and during which speed moments - the user stopped

translating.

4.4
Test Results

In order to analyze the test results objectively, it is important that we interpret
the data of both user groups — laymen and experienced users — separately, since
our solution may affect each category differently. Users in the laymen category have
difficulties dealing with the most trivial of multiscale navigations, and therefore
our solution aims to allow an interaction that originally would simply not be
possible, breaking the multiscale interaction barrier for non-experienced users. On
the other hand, experienced users are already familiarized (and in some cases even
comfortable) with manually adjusting navigation speed, and so our goal is focused
on improving an already existing navigation experience, making it as fluid and
intuitive as possible.

The normality prerequisite to perform a parametric significance test on our
data was not met according the Shapiro Wilk test[20]. Therefore, the significance
of the obtained data was tested using the Friedman test[21]. We assign this to
the fact that, despite the groups being divided by their prior familiarity with 3D
environments, other variables were not assessed, e.g., the person’s ability or speed
using mouse and keyboard. There were cases in which laymen performed similarly
to some experts. In other cases, laymen were much less familiar with computer

interaction than others in the same group and had difficulties with simple 3D

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 29

concepts, becoming clear outliers of the dataset.

441
Precision Analysis

The applied test consisted of a total of 30 rings through which the subjects
should attempt to cross within their bounds as an evaluation of precision and
control of the navigation system. Results showed an improvement in this criteria
for both laymen and experienced users, as seen in Figure 4.3 when using automatic
speed adjustment over the manual alternative. Curiously, while the experienced
group managed to practically ace the test with both automatic solutions presenting
a performance increase of nearly 16%, the laymen group felt more comfortable
with the less volatile navigation technique B without the nearest visible object
heuristic increment. This behavior can be understood by the difficulty that the
unexperienced users had in dealing with the more abrupt changes in scale, and
consequently in velocity. What one laymen would classify as an exaggerated jump
in the acceleration in a short period of time, a more experienced user would consider
as an essential volatility to avoid a frustrating experience of tediously waiting for

his/her navigation velocity to change the desired value.

loManualll 1 Automatic |1 Automatic + Heuristic
| |

29.91
30| s 212966 |
25141 25/66
22117 J
20| :
10 2
O I I
Laymen Experienced

Figura 4.3: Average rings crossed successfully

According to the Friedman test, there was a significant statistical difference
in precision measured with both groups (p=0.023 for laymen, p=0.001 for experts).
Pairwise comparison between strategies showed that the most significant differen-
ces were between the manual speed strategy A and automatic speed adjustment
strategies (Laymen AB: p=0.011, Experienced AB: p=0.001, and Experienced AC:
p=0.004), showing that the automatic strategies improved the navigation precision.
We did not find a significant difference between automatic strategies B and C in
both groups. It should be highlighted that on both B and C interaction techniques

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in

Multiscale Virtual Environments 30
600 5
400 - 366 8
m 319
2lt5

200 | J 156 164)

“ i

0 = — T T
Laymen Experienced

Figura 4.4: Average time to complete course in seconds

the laymen group managed to match or beat the experienced group accuracy level
of manual navigation, i.e., with the aid of automatic speed adjustment a laymen user
was able to perform similarly to an experienced navigator.

Regarding the completion time, no statistical relevance was observed with the
laymen group using the Friedman test (p=0.205). Besides that, the laymen managed
to achieve more precise results while taking considerably less time to complete the
course on average — approximately 34% less comparing navigation technique C to
A — as seen by observing Figure 4.4, which shows a tendency of improvement.

On the other hand, the Friedman test confirmed significant difference in the
time measurements of the experienced group (p=0.009), despite the close average
numbers. Pairwise comparison between strategies showed that the most significant
difference was between the two automatic speed strategies B and C (p=0.02),
showing that experienced users consistently improved their completion time using
the visibility heuristic, without compromising their precision.

Figure 4.4 also shows us that experienced users already were able to navigate
with near optimal speed control, as the variation between average course completion
times between interaction techniques were negligible, while laymen were much
more directly influenced by the different navigation approaches.

To better illustrate the learning curve of laymen when navigating in a 3D
multiscale environment for the first time, Figure 4.5 shows the average course
completion times separated by whether or not the manual navigation was the first
test performed by the user. It is visible through the chart, as it was noticeable while
applying the users tests, that the average user would struggle with the most simple
transitions between the scene rings, implicitly frustrating the user and not allowing
him/her to focus on the interaction as a whole as well as to get a better idea of
what was expected from the test. On the other hand, when navigating manually

after having experienced a more stable experience aided by the automatic speed

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 31

adjustment mechanism, the average user would still notice the limitations of manual
velocity adjustment, but his/her familiarity with the test course as a whole flattened
the manual adjustment learning curve. This behavior does not repeat itself when
involving automatic navigation, as also seen in Figure 4.5. Automatic navigation
completion times are hardly biased depending on whether the first navigation test
was manual or not. We believe that even if the manual speed adjustment were to
be preferred over the automatic solution by an experienced user, the automatic

approach is more user friendly and more inclined to accelerate the learning process.

[0 Starting with A0 Starting with B or C
| | | |

600 |- :
500 - :
400 |- :
300 -

200 - :

ol Il N

I
\)f‘),\ \)"A\ N\
WM“ \N\?’o 0\0‘@ OO
e e | s
{\6‘\ 6\60 {\6‘\06
Q)
P

!

Figura 4.5: Average time to complete course, in seconds, depending on whether
his/her first navigation test was manual or automatic

442
Input Analysis

By relieving the user of the responsibility of defining the navigation speed, the
automatic speed adjustment technique demands considerably less user input without
limiting movement freedom in any way. The results shown in Figure 4.6 reveal that
tendency. The Friedman test showed no significant difference with the laymen group
(p=0.174), but a statistical significance among the experienced group (p=0.005).
Once again we notice that laymen are more comfortable with a less volatile velocity
adjustment policy present in the B navigation scenario, while the experienced users
presented approximately 50% improvement in both automatic approaches.

This drop in the demand for user input can be very useful depending on
the device interface at hand. During testing, we worked with the mouse and
keyboard devices, where both hands are used simultaneously offering a more

flexible manipulation of the system. However, in immersive environments such as

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 32

caves, users usually have to work with a wand-like controller manipulated by a
single hand, therefore overloading the quantity of inputs on a single device. Not
having the worry about one of the interactions variables (speed) simplifies such a
scenario.

A behavior observed during testing on manual velocity adjustment interacti-
ons was subjects showing difficulties in translating and adjusting their speed simul-
taneously. Some users, the majority of them laymen, would translate, stop, adjust
their speed, and return to translating, resulting in a jerky experience. This issue is

also solved by calculating the near-optimal velocity during navigation.

‘ J0Manual 10 Automaticl ! Automatic + Heuristic

300 ——— B ‘ 7
200 | | 1
168
141
114
100 |- 8 :
5 41
0 - — T T D -
Laymen Experienced

Figura 4.6: Average input count per interaction. A discrete input is defined as any
time the user presses and releases a key from the keyboard, or when he/she starts
and finishes a mouse wheel movement.

4.4.3
User Feedback

In order to evaluate the user experience of performing the navigation tests,
we presented the subjects an SUS questionnaire after each interaction, resulting
in the approval rates displayed in Figure 4.7. Both laymen and experienced groups
showed improvements when interacting with the automatic velocity adjustment sys-
tem, while laymen, once again, preferred the less volatile navigation technique B,
and experienced users had near equal satisfaction with both B and C techniques.
However, no significant difference was found according to the Friedman test (Lay-
men p=0.094, Experienced p=0.166). This disparity between SUS scores and the
objective results from the study can be explained in part because SUS may not be
the best questionnaire for a task-level evaluation [22]. Another reason for this is that,
in general, the users did not understand very well the differences between the auto-

matic approaches.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 33

l0Manual 10 Automaticl 1 Automatic + Heuristic ‘

100 : :
589%701
801 804]77 91 77171 J .
7312]
60 | :
40 1 !
Laymen Experienced

Figura 4.7: Average user SUS Scores

Despite experienced users presenting similar SUS ratings for both automatic
techniques, and laymen even giving technique B a slight advantage over C, when
asked if any difference was noticed between both types of automatic speed adjust-
ment interactions, those who managed to notice the influence of the nearest visible
point heuristic favored it over the only nearest-point alternative, as seen in Figure
4.8. While most users would offer less precise feedback such as “C was faster” or
“I felt more control with B”, be it in favor or against the nearest visible point heu-
ristic, three users were able to point out the exact improvements proposed, such as
“The interaction allowed me to leave objects faster, and decelerate faster as well

when quickly approaching a smaller scale object”.

| == Laymen == Experienced |

No Difference 8 | 6 |
Preferred B [2 .
Preferred C [2 .

0 5 10 15
#Number of users

Figura 4.8: User feedback comparing interactions B and C

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

5
Automatic Speed Adjustment as a Service

After successfully completing the process of shifting the automatic speed
adjustment calculation from the GPU to the CPU, we are no longer tied to a
mandatory local solution, i.e. when the nearest point is obtained from the render
process, it necessarily must be done on a machine where the entire 3D scene is
being rendered, but this limitation does not apply when dealing with an abstract
point grid only in the CPU.

A natural instinct would be to separate the multiscale calculation into its
own thread, reducing completely the impact seen in the previous performance
analysis 3.4, and allowing us to increase our number of points budget without
worrying about impacting other CPU processes (e.g. scene graphs). However, this
would still limit any practical solution to a single programming language or specific
framework, without any necessity. The multiscale speed adjustment is a separate
abstract representation of any given scene and has no need to be even in the same
machine.

In order to offer a completely generic and agnostic solution to the multiscale
navigation problem, we decided to create a service dedicated exclusively for solving
it, allowing not only local but also remote access. In a nutshell, the service would
allow any consumer to register points to it, populating a remote k-d tree, and later
on querying which optimal velocity should be used with a given point in space and
camera frustum.

This solution was inspired by a successful trend in large scale web applicati-
ons, the microservice architecture[23], where systems are broken into several dis-
tributed services focused on offering a solution for a single problem. This mindset
follows the popular Unix philosophy of ”do one thing, and do it well”, and not only
is effective for ensuring modularity between components, but also conveniently fits
well into the current cloud oriented direction the tech industry tending toward.

Therefore, as a conclusion to this research, we intend to deliver an agnostic,
isolated and scalable service that offers an API for obtaining the optimal multiscale
speed for any given 3D scene. In this chapter, we will dive into the technical
specifics of the service solution - which we named Remote Multiscale Navigation
System (RMNS) - present our performance results, and examine what other known
problems this proposed solution helps us solve.

The RMNS is an open source initiative and all the source code, along with its

documentation, tests and examples, is currently available at GitHub[24].

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 35

5.1
The Architecture

Our server solution, which we named Remote Multiscale Navigation System
(RMNS), is responsible for:

e Receiving and registering information relevant for automatically determining

the navigation speed of a given scene

e Answering which is the optimal velocity for navigation with the given inputs

and previously registered information

The server is separated in two layers. On the top layer runs on Node.js’s [25]
javascript V8 engine, which os responsible for data checking, high-level logic and
all HTTP communication. This top layer binds seamlessly with the a lower-level
layer running on C++ process, which is responsible for all expensive geometric
computation. All communication between both layers are asynchronous in order to

avoid bottlenecks. See figure 5.1.

C++ Find nearest point Find nearest visible
in k-d tree point in k-d tree
A A
h 4 h 4

. * Business Logic
Node.js * APl / HTTP communication
* Velocity Heuristic

Request Response

Client

Figura 5.1: RMNS architecture

Custom settings such as cell grid size and fovy reduction - if any - are made
by configuration and cannot be updated during execution.

A server can act following one of three different roles: stand-alone, master
or slave. The former, as the name implies, is an independent approach where the

entire system runs on a single Node.js process. The latter two are complementary

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 36

when working with a distributed solution. They allow, for example, that while one
slave only deals with finding the nearest point, another can deal with just finding
the nearest visible point, therefore parallelizing both efforts. In this scenario the
master’s role involves managing the communication between the slaves, as well as
dealing with all business logic and the heuristic calculation.

The distributed approach leaves room for scaling scene complexities as well.
Two different processes could be responsible for finding the nearest point in each
half the scene, leaving the master to decide later on which one is closest. This
improvement however could not be tackled during in time for this work and is

postponed for future versions.

5.2
Dealing with Dynamic Objects

A downside from the CPU oriented nearest point solution is dynamic object
support. While the GPU can seamlessly answer which is the nearest point in a
given frame, without even having to be aware which objects are dynamic or not,
rebuilding the k-d tree every frame is completely unfeasible for the CPU solution.
This limitation did not pass unnoticed during the research and was given a lot of
thought.

However, with a distributed system in place, we no longer need to be tied to
the k-d tree exclusively. Imagine if while one process calculates the nearest point
with the already known heuristics, a second process would calculate the nearest
point taking into consideration only a relatively small subset of primitive objects
(e.g. spheres and/or cubes). Figure 5.2 attempts to illustrate such a solution:

The advantages of using primitive objects are that they are cheaper to re-
register on a frequent basis (data transfer wise) and do not demand rebuilding any
spatial structure. Instead of transmitting several thousand points (or more) with a
sphere we would need only a center and radius, for example. These primitive objects
are stored in a list that on every request would be iterated linearly storing the nearest
point found on each object, and returning only the closest one of all. Currently only
spheres are supported as dynamic objects.

Since we are dealing with a list, and will be iterating it linearly, a reasonable
suspicion could be raised over scalability issues. A benchmark was conducted with
a mid-range server in order to measure this approaches performance, which proved
that the bottleneck was not the linear loop as would be expected, which even with
1M spheres managed to maintain less than 40ms necessary taking into account both
nearest global and visible points, but the limit of the body of the HTTP request
package itself. In other words, the system can - within a acceptable time budget

- register/update spheres in the scale of millions and on top of them calculate the

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in

Multiscale Virtual Environments 37
Nearest point in Nearest dynamic
k-d tree focused object focused
process process
A A
Nearest visible point MNearest visible
in k-d tree focused dynamic object
process focused process
A 4 h 4
* Manage slave communication
Master * All high level logic stays here

I

Client

Figura 5.2: Distributed heuristic approach

optimal velocity heuristic, the issue is being able to update all sphere positions
when an HTTP request can usually only transfer sphere data in the scale of tens of
thousands. A workaround can be sending multiple sphere registration requests at a
given frame, but in this case no test is needed to acknowledge that this approach
would definitely not scale. Therefore, this dynamic-object solution is currently
limited to a scale range of tens of thousands of objects.

It’s worth noting that running RMNS in a distributed topology is not manda-
tory for dealing with scenes with dynamic objects. The stand alone mode also offers
this feature, and if the scene’s complexity and the machine’s processing power allow

it, navigation works seamlessly.

5.3
Consuming the API

All calls to the RMNS are by design asynchronous. This may lead to unfa-
miliar scenarios in computer graphics applications, such as a later call returning
before a previous one. In a scenario where the current optimal speed is raising or
decreasing in a constant ratio, responses that return from the server out of order may

lead to a shaking and unstable navigation. A solution for this problem is to return in

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 38

every answer a timestamp, making the client responsible for verifying and eventu-
ally ignoring if any answers are already deprecated. The figure 5.3 exemplifies this

situation.

Speed
F

@ Valid Packages

@ Discarded Packages

* Time

Figura 5.3: Navigation shaking for out of out responses

Currently there is support for point and basic geometry registration. The latter
can, and should, be updated frequently during navigation, while the former must
be registered previous to interaction, as rebuilding the point spatial structure in
real-time is not supported. Any calls made to the point registration APIs during

interaction will return an error response.

5.4
Solar System Experiment

As a demo test for the RMNS, we created a 3D scene representing the solar
system, where each planet is represented by a sphere geometry, with their positions
being updated on a frequent basis as dynamic objects, and the asteroid belt between
Venus and Jupiter being represented by a 2M static size point cloud. The theme was
chosen given the multiscale nature of the scene, that is also well known by the wide
public. Figure 5.4 displays a screen-shot of the demo, which runs in the Unity3D
engine (with C# code), proving the agnostic nature of the service. The demo can
also be found at the project’s web age[24], and is a good reference as an example
on how to consume the RMNS.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 39

Figura 5.4: Solar system demo

5.5
Performance

The time taken for the RMNS to answer the optimal navigation speed is
formed by the round-trip time plus the processing time on the server side. Taking
into consideration the scenario where each process is run in parallel, as well as
the fact that the optimal velocity can only be achieved when each of its answers
are made available, we can conclude that the service is as fast as its slowest
slave answer, plus the round-trip time. Figure 5.5 illustrates this behavior. In this
example, processes A, B and C could be the nearest global point, the nearest visible
point and the nearest visible and global sphere processes respectively, or any other
combination of distributed processes as the system’s users see fit. In fact, there could
be more or less than three processes, since the service’s generic architecture allows
any number of distributed setups. Each distribution configuration should be fine-
tuned depending on each scene’s nature, targeting the minimization of the lengthiest
process.

We have managed to obtain a 140ms answer time performance accessing from
Rio de Janeiro, Brazil, a server running the RMNS in a data center in Texas, USA.
From the 140ms total time, 20ms were from the round-trip and 120ms from the
processing time bottleneck. This result was achieved with a single server. When
distributing the service with a master server and two slaves performing the nearest
point heuristic, a 90ms roundtrip time was achieved. In the distributed scenario, the

bottleneck was the visible nearest point process, with an average 70ms processing

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 40

Server
| Process A |

| Process B

Request Response

Client

Figura 5.5: Round-trip path

time, that when added with the 20ms round-trip we reach the 90ms mark. Since
RMNS still can’t break a scene’s k-d tree into separate processes this bottleneck
currently cannot be any more parallelized. Now, despite that 140ms - or even 90ms
- can be considered high-processing times in traditional synchronous computer
graphic applications, the system’s asynchronous nature does not affect in any way
the main process, and therefore the roundtrip time is only relevant regarding how
much it affects the user’s navigation experience. The user tests presented in chapter
4 still were applied with the former local solution, so we are still not able to
present formal usability results, but during the author’s manual tests the delay
did not appear to present any significant different - positive or negative - to the
navigation experience. All performance tests were run working with an interval
of approximately 10 requests for second, with a number of points in the scale of
millions (4M to be exact) and spheres in the scale of thousands (5k to be exact), on

top of mid-range virtual machines.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

6

Conclusion

Multiscale navigation has proven to be a challenge to both experienced users
and laymen, specifically regarding the task of defining the most suitable navigation
speed for each moment during an interaction. Though it is still not a definite
solution, since test subjects eventually still complained about the lack of fine tuning
over the current velocity, there are indicators that removing this responsibility from
the user improved the experience regarding control and overall satisfaction, and
reduced the learning curve of the system. Laymen who previously were incapable
of performing the most trivial interactions managed to complete our test course
with the same precision as experienced users navigating with manual velocity
adjustment. Experienced users averaged near perfect scores with half the inputs
necessary for the manual technique while offering conclusive positive feedback on
the SUS questionnaire.

The results achieved were similar to previous works [4] [5] but with more ex-
tensive testing. We also managed to evolve performance-wise, relocating the wor-
kload from the GPU to the CPU and consequently removing the need of rendering
the same scene six times per frame, while at the same time reducing the overall
processing demands of real-time interaction by working with a preprocessed spatial
structure. This was achieved while maintaining most features available in previous
similar solutions, with the exception of dealing with dynamic scenes indiscrimina-
tely (since the cost of updating the k-d tree in real-time is usually prohibitive). On
the other hand, we were able to suggest a simple and complementary alternative by
working with basic geometries that, while not being as generic as the previous GPU
approach, can be proven useful depending on the scene being dealt with.

The proposed nearest-visible-point heuristic is a step towards improving the
automatic-speed adjustment technique in a more universal solution. Although every
alteration in the heuristic offers a trade-off, and due to the diversity present in
multiscale scenarios, it is challenging to determine exactly what is the intention
of the user. It is possible that eventually more advanced users could manually
determine the heuristic improvements and adjustment variables more suitable for
them.

The RMNS (Remote Multiscale Navigation System) is a initiative to make
this solution available to the scientific community, while also opening the problem
for parties interested in understanding or contributing towards the service. It also
succeeds in isolating the problem from the main navigation system, providing an

high level and language agnostic architecture interface, while also isolating the

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 42

automatic speed velocity computation by design.

For future works, we intend to explore the idea of breaking the scene into
separate sub-scenes, in order to allow multiple processes to answer the nearest-
point question in parallel. This feature will prove necessary the moment we start
dealing with larger and more complex scenes where the grid strategy will not be
able to reduce the total number of points enough to gain efficiency. We also intend
to include support to more basic geometries - i.e. cubes and capsules - with the
objective of offering more fine tuning and versatility when dealing with dynamic
objects. Finally, on a different front, we plan to study the possibility of working with
spatial structures that could allow reconstruction in real time, e.g. a more efficient
variation of the k-d tree, or a BVH (bounding volume hierarchy). In the case of
the BVH, it not only may prove helpful for dealing with dynamic objects, but it
also has potential to be used as an alternative to the grid structure built during the
pre-processing phase, with the goal of maintaning part of the multiscale nature of a

given scene.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

7

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[

[10]

George W. Fitzmaurice, Justin Matejka, Igor Mordatch, Azam Khan, and
Gordon Kurtenbach. Safe 3D navigation. In Eric Haines and Morgan McGuire,
editors, SI3D, pages 7-15. ACM, 2008.

Xiaolong Zhang. Multiscale traveling: crossing the boundary between space
and scale. Virtual Reality, 13(2):101-115, 2009.

Regis Kopper, Tao Ni, Doug A. Bowman, and Marcio Pinho. Design and
evaluation of navigation techniques for multiscale virtual environments. In VR
'06: Proceedings of the IEEE Virtual Reality Conference (VR 2006), page 24,
Washington, DC, USA, 2006. IEEE Computer Society.

James McCrae, Igor Mordatch, Michael Glueck, and Azam Khan. Multiscale
3d navigation. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, 13D '09, pages 7-14, New York, NY, USA, 2009. ACM.

DanielRibeiro Trindade and AlbertoBarbosa Raposo. Improving 3D navigation
techniques in multiscale environments: a cubemap-based approach. Multime-
dia Tools and Applications, 73(2):939-959, 2014.

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, September 1975.

Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. Rapid
controlled movement through a virtual 3d workspace. In Proceedings of the

17th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH '90, pages 171-176, New York, NY, USA, 1990. ACM.

Ken Perlin and David Fox. Pad: An alternative approach to the computer
interface. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH '93, pages 57-64, New York,
NY, USA, 1993. ACM.

Ferran Argelaguet Sanz. Adaptive navigation for virtual environments. In
IEEE Symposium on 3D User Interfaces, pages 91-94, 2016.

Germot Schaufler and Wolfgang Sturzlinger. A three-dimensional image cache
for virtual reality. Computer Graphics Forum, 15(3):C227-C235, C471-C472,
September 1996.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 44

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a
GPU raytracer. In Michael MeiBner and Bengt-Olaf Schneider, editors,
Graphics Hardware, pages 1522, Los Angeles, California, 2005. Eurographics
Association.

Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan.
Interactive k-d tree GPU raytracing. In Bruce Gooch and Peter-Pike J. Sloan,
editors, SI3D, pages 167-174. ACM, 2007.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time KD-
tree construction on graphics hardware. ACM Transactions on Graphics,
27(5):126:1-126:11, December 2008.

Satyan Coorg and Seth Teller. Real-time occlusion culling for models with
large occluders. In Michael Cohen and David Zeltzer, editors, 1997 Symposium
on Interactive 3D Graphics, pages 83-90. ACM SIGGRAPH, April 1997.

D. Simon, M. Hebert, and T. Kanade. Real-time 3D pose estimation using a
high-speed range sensor. In CRA, pages 22352241, 1994,

Matthew Brown and David G. Lowe. Recognising panoramas. In /ICCV, pages
1218-1227. IEEE Computer Society, 2003.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3):209-226, September 1977.

| Scott MacKenzie. Human-computer interaction: An empirical research

perspective. Newnes, 2012.

John Brooke. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189:194, 1996.

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, pages 591-611, 1965.

Milton Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32(200):675-701, 1937.

Jeff Sauro. 10 Things To Know About The System Usability Scale (SUS), Oc-
tober 2013. https://www.measuringu.com/blog/10-things-SUS. php.

M Fowler and J Lewis. Microservices. ThoughtWorks. http://martinfowler.
com/articles/microservices. html [last accessed on February 17, 2015], 2014.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

A Spatial Partitioning Heuristic for Automatic Adjustment of the 3D Navigation Speed in
Multiscale Virtual Environments 45

[24] Henrique d'Escragnolle Taunay. RMNS - Remote Multiscale Navigation
System (https://github.com/htaunay/rmns), 2016.

[25] Ryan Dahl. Node. js: Evented i/o for v8 javascript. URL: https://www.
nodejs. org, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

8
Glossary

CPU Central Processing Unit. A computer’s processor, more specifically the
processing unit and control unit (CU), distinguishing these core elements

from its external components such as main memory and 1/0 circuitry.

GPU Graphical Processing Unit. Has a different own internal architecture, which

is parallel and customized for graphical applications.

Rendering Digital image generation by the physical simulation of light from
data describing a scene.

SUS The System Usability Scale. A simple, ten-item attitude scale giving a
global view of subjective assessments of usability

RMNS Remote Multiscale Navigation System. A stand-alone software as a
service tool for defining the optimal speed for navigation given all the current

scenes objects and a specific set a configurations.

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

PUC-RIo - Certificacdo Digital N° 1412713/CA

9

Appendix: System Usability Scale (SUS) Form

System Usability Scale

© Digital Equipment Corporation, 1986.

1. 1 think that | would like to
use this system frequently

2. | found the system unnecessarily
complex

3. | thought the system was easy
to use

4. | think that | would need the
support of a technical person to
be able to use this system

5. | found the various functions in
this system were well integrated

6. | thought there was too much
inconsistency in this system

7. 1 would imagine that most people
would learn to use this system
very quickly

8. | found the system very
cumbersome to use

9. | felt very confident using the
system

10. | needed to learn a lot of
things before | could get going
with this system

Strongly
disagree

Strongly
agree

DBD
PUC-Rio - Certificação Digital Nº 1412713/CA

