
Luis Eduardo Talavera Ŕıos

An Energy-aware IoT Gateway, with
Continuous Processing of Sensor Data

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em In-
formática of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC–Rio as partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Markus Endler

Rio de Janeiro
March 2016

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Luis Eduardo Talavera Ŕıos

An Energy-aware IoT Gateway, with
Continuous Processing of Sensor Data

Thesis presented to the Programa de Pós–graduação em In-
formática of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC–Rio as partial fulfillment of the requirements
for the degree of Mestre em Informática.

Prof. Markus Endler
Orientador

Departamento de Informática — PUC–Rio

Profª. Noemi Rodriguez
Departamento de Informática — PUC-Rio

Prof. Jose Viterbo
Departamento de Ciência da Computação e Pós-graduação —

UFF

Prof. Márcio da Silveira Carvalho
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, March 16th, 2016

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

All rights reserved

Luis Eduardo Talavera Ŕıos

BSc. in Computer Science at San Pablo Catholic University
(UCSP), Arequipa - Peru in 2013. Joined the Master in
Informatics at Pontifical Catholic University of Rio de Janeiro
(PUC-Rio) in 2014.

Ficha Catalográfica
Talavera Ŕıos, Luis Eduardo

An Energy-aware IoT Gateway, with Continuous Pro-
cessing of Sensor Data / Luis Eduardo Talavera Ŕıos; advisor:
Markus Endler. — 2016.

73 f. : il. (color); 30 cm

1. Dissertação (mestrado) - Pontif́ıcia Universidade
Católica do Rio de Janeiro, Departamento de Informática,
2016.

Inclui bibliografia.

1. Informática – Teses. 2. Sistemas Distribúıdos. 3. Dis-
positivos móveis. 4. Consumo de energia. 5. Processamento
de eventos complexos. 6. Internet das Coisas. 7. SDDL. I.
Endler, Markus. II. Pontif́ıcia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Acknowledgments

I want to firstly thank my parents Eduardo and Mercedes, and my family

in general, for all their unconditional support during these years of hard study

away from home. They taught me how important it is to give always the best

of myself in order to chase my dreams. Also, I need to thank my sister Natalia,

who has been a terrific friend and counselor in my best and worst moments.

I would like to give a special thanks to my advisor Markus Endler, for

giving me the incredible opportunity to work under his guidance, and for

all the knowledge he shared with me through our several conversations and

discussions. Working with him has been the most rewarding experience of my

life and without his support this dissertation would not have been possible.

To my friends in Perú, the LAC, the Telemidia and the Informatics

Department, for their support, advice and exchange of ideas during the last

two years. Specially to José Talavera, Álan Ĺıvio, Marcos Roriz, Bruno Olivieri

and André Mac Dowell who have been like brothers to me during this stage of

my life.

Finally, I would like to give thank to PUC-Rio and CAPES for bringing

me this wonderful opportunity.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Abstract

Talavera Rı́os, Luis Eduardo; Endler, Markus (Advisor). An
Energy-aware IoT Gateway, with Continuous Processing
of Sensor Data. Rio de Janeiro, 2016. 73p. MSc. Dissertation —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

Few studies have investigated and proposed a middleware solution for

the Internet of Mobile Things (IoMT), where the smart things (Smart Ob-

jects) can be moved, or else can move autonomously, but remain accessible

from any other computer over the Internet. In this context, there is a need

for energy-efficient gateways to provide connectivity to a great variety of

Smart Objects. Proposed solutions have shown that mobile devices (smart-

phones and tablets) are a good option to become the universal intermediates

by providing a connection point to nearby Smart Objects with short-range

communication technologies. However, they only focus on the transmission

of raw sensor data (obtained from connected Smart Objects) to the cloud

where processing (e.g. aggregation) is performed. Internet Communication

is a strong battery-draining activity for mobile devices; moreover, band-

width may not be sufficient when large amounts of information is being

received from the Smart Objects. Hence, we argue that some of the pro-

cessing should be pushed as close as possible to the sources. In this regard,

Complex Event Processing (CEP) is often used for real-time processing of

heterogeneous data and could be a key technology to be included in the

gateways. It allows a way to describe the processing as expressive queries

that can be dynamically deployed or removed on-the-fly. Thus, being suit-

able for applications that have to deal with dynamic adaptation of local

processing. This dissertation describes an extension of a mobile middleware

with the inclusion of continuous processing of sensor data, its design and

prototype implementation for Android. Experiments have shown that our

implementation delivers good reduction in energy and bandwidth consump-

tion.

Keywords
Distributed Systems; Mobile devices; Energy consumption; Complex

event processing; Internet of Things; SDDL.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Resumo

Talavera Ŕıos, Luis Eduardo; Endler, Markus. Um Energy-aware
IoT Gateway, com Processamento Cont́ınuo de Dados de
Sensor. Rio de Janeiro, 2016. 73p. Dissertação de Mestrado —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.
Poucos estudos têm investigado e propôs uma solução de middleware

para a Internet das Coisas Móveis (IoMT), onde as coisas inteligentes

(Objetos Inteligente) podem ser movidos, ou podem mover-se de forma

autônoma, mas permanecem acesśıveis a partir de qualquer outro computa-

dor através da Internet. Neste contexto, existe uma necessidade de gateways

com eficiência energética para fornecer conectividade para uma grande va-

riedade de objetos inteligentes. As soluções propostas têm mostrado que

os dispositivos móveis (smartphones e tablets) são uma boa opção para se

tornar os intermediários universais, proporcionando um ponto de conexão

para os objetos inteligentes vizinhos com tecnologias de comunicação de

curto alcance. No entanto, eles só se preocupam apenas sobre a transmissão

de dados de sensores-primas (obtido a partir de objetos inteligentes conec-

tados) para a nuvem onde o processamento (e.g. agregação) é executada.

Comunicação via Internet é uma atividade de forte drenagem da bateria em

dispositivos móveis; Além disso, a largura de banda pode não ser suficiente

quando grandes quantidades de informação estão sendo recebidas dos ob-

jetos inteligentes. Por isso, consideramos que uma parte do processamento

deve ser empurrada tão perto quanto posśıvel das fontes. A respeito disso,

processamento de eventos complexos (CEP) é muitas vezes usado para o

processamento em tempo real de dados heterogéneos e pode ser uma tec-

nologia chave para ser inclúıdo nas Gateways. Ele permite uma maneira

de descrever o processamento como consultas expressivas que podem ser

implantados ou removidos dinamicamente no vôo. Assim, sendo adequado

para aplicações que têm de lidar com adaptação dinâmica de processamento

local. Esta dissertação descreve uma extensão de um middleware móvel com

a inclusão de processamento cont́ınuo dos dados do sensor, a sua concepção

e implementação de um protótipo para Android. Experimentos têm mos-

trado que a nossa implementação proporciona uma boa redução no consumo

de energia e largura de banda.

Palavras–chave
Sistemas Distribúıdos; Dispositivos móveis; Consumo de energia; Pro-

cessamento de eventos complexos; Internet das Coisas; SDDL.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Contents

1 Introduction 10
1.1 Problem Statement 13
1.2 Objective and Contribution 15
1.3 Methodology 15
1.4 Outline 15

2 Background 17
2.1 Complex Event Processing 17
2.2 Scalable Data Distribution Layer Middleware 22

3 Energy Consumption in Mobile Devices 24
3.1 Mobile Environment Evolution 24
3.2 Components of Mobile Devices 26
3.3 Energy-Saving Strategy 28

4 The Mobile Hub 30
4.1 Communication Infrastructure 31
4.2 Local Processing Infrastructure 35
4.3 Summary 41

5 Performance Experiments and Results 43
5.1 Experimental Setup 43
5.2 Filtering Query 45
5.3 Aggregation Queries 46
5.4 Aggregation Queries with Heavy Processing 52
5.5 Aggregation and Pattern Match Queries 56
5.6 Discussion 57

6 Related Work 60
6.1 Discussion 63

7 Conclusion and Future Work 66
7.1 Future Work 67

8 Bibliography 69

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

List of Figures

2.1 Top-level architecture of a CEP System 19
2.2 Sliding Window 20
2.3 Jumping Window 20
2.4 Example of M-OBJs sensing using the SDDL and the M-Hubs 22

3.1 Mobile Environment. Adapted from (Tarkoma et al., 2014) 25
3.2 Usual hardware structure of mobile devices. Adapted from

(Tarkoma et al., 2014) 27
3.3 Example of a duty cycle 27

4.1 Typical IoT Architecture 30
4.2 Architecture of the Mobile Hub 32
4.3 Main interfaces used by the M-Hub to communicate with M-OBJs. 34
4.4 Basic sensor data structure of the M-Hub. 34
4.5 Distributed CEP scenario 36
4.6 Architecture of the M-Hub with the MEPA Service 37
4.7 Environment defined by a beacon 37
4.8 Screenshots of the M-Hub viewer for sensor data and events 39
4.9 Sequence diagram of the deployment of CEP Queries 39

5.1 Filtering - Energy consumption 45
5.2 Average CEP Query (Jumping 10 seconds) - Energy consumption 47
5.3 Average CEP Query (Jumping 1 minute) - Energy consumption 47
5.4 Average CEP Query (Sliding 10 seconds) - Energy consumption 48
5.5 Average CEP Query (Sliding 1 minute) - Energy consumption 49
5.6 Maximum CEP Query (Jumping 10 seconds) - Energy consumption 50
5.7 Maximum CEP Query (Jumping 1 minute) - Energy consumption 50
5.8 Maximum CEP Query (Sliding 10 seconds) - Energy consumption 51
5.9 Maximum CEP Query (Sliding 1 minute) - Energy consumption 52
5.10 Heavy Processing (Jumping 10 seconds) - Energy consumption 53
5.11 Heavy Processing (Jumping 1 minute) - Energy consumption 54
5.12 Heavy Processing (Sliding 10 seconds) - Energy consumption 55
5.13 Heavy Processing (Sliding 1 minute) - Energy consumption 55
5.14 Aggregation and Pattern Match - Energy consumption 57
5.15 Six CEP Queries - Bandwidth consumption 58
5.16 Six CEP Queries - Energy consumption 59

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

List of Tables

3.1 Evolution of mobile phones. Adapted from (Tarkoma et al., 2014) 26

5.1 Moto X Specifications 44
5.2 No processing - Energy and bandwidth consumption 45
5.3 Filtering - Bandwidth consumption 46
5.4 Average CEP Query (Jumping) - Bandwidth consumption 47
5.5 Average CEP Query (Sliding) - Bandwidth consumption 49
5.6 Maximum CEP Query (Jumping) - Bandwidth consumption 51
5.7 Maximum CEP Query (Sliding) - Bandwidth consumption 52
5.8 Heavy Processing (Jumping) - Bandwidth consumption 53
5.9 Heavy Processing (Sliding) - Bandwidth consumption 56
5.10 Aggregation and Pattern Match - Bandwidth consumption 57

6.1 Comparison of related works 64

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

1
Introduction

Nowadays information about the physical world is unconsciously sensed

and gathered through smartphones, smartwatches, sensors and other devices

which are quickly becoming a crucial part of our daily lives. However, these

immense volumes of data are not easily accessible or remains separated from

the Internet since each type of hardware device requires a specific software to

communicate, yielding a very restricted view of the environment. Additionally,

in order to include a meaning to those continuous streams of data, they need

to be processed in real-time in order to detect important situations (e.g. a gas

leak, a IT system failure), and allow fast responses.

In this context, Internet of Things (IoT), one of the major paradigms that

computing is facing nowadays (Gubbi et al., 2013), appears as a vision to ex-

tend the Internet connectivity to a wide variety of small, embedded, low-power

wireless devices also known as Smart Things. Furthermore, there has been an

incredible increase in the demand for IoT applications in many areas which go

from sports, health care, public safety to business, commercial services, social

networks, etc. But despite the huge number of potential applications and the

increasing proliferation of appliances with embedded processing and wireless

communication capacity, yet there is no widely accepted approach, established

standards and consolidated technologies for IoT. In other words, extraction of

meaningful information from tens of billions of sensors and prompt control of

actuators in (near) real-time is still a challenge.

IoT is evolving towards a heterogeneous network including a mix of

IP-based connectivity and an array of short-range, wireless technologies (e.g.

Bluetooth Smart, ZigBee). The latter allows personal mobile devices (smart-

phones, and tablets) to connect to the available sensors in their vicinity which

can be considered as small private sensor networks that provide heterogen-

eous data about the physical environment. In particular, very few studies have

focused on the Internet of Mobile Things (IoMT) where a Mobile Object (M-

OBJ) may be any movable thing that carries sensors and/or actuators and

has some means of wireless connectivity. In this context of general and un-

restricted mobility of smart things, different resources (M-OBJs) can become

available and unavailable at any moment without previous warning. Finally,

it is worth noting that in IoMT mobility is just an option: M-OBJs and IoT-

gateways may also be deployed in a static configuration, and be associated

with a specific place, for applications such as Smart Home/Buildings.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 11

In the following we present two hypothetical IoMT applications:

• Application 1: In a region with high density of smartphone users, such

as a metropolitan area, we can imagine the need for collaborative air

quality monitoring. Common citizens may obtain tax incentives to install

and deploy affordable Wireless Air Monitoring Stations (WAMS) in their

yards, along neighborhood driveways, parks or other public spaces. All

such WAMS would have CO, NO2, SO2, Lead sensors, etc., a short

range and low-power wireless interface, be weather-resistant and run on

solar energy. In this context, the collaborative monitoring app would be

a crowd-sourced one where pedestrians passing close to some WAMS

would donate their smartphone’s Internet connectivity and energy to

upload the current collected sensor data from the nearby WAMS to a

city-wide monitoring service in the cloud, where all this information

would be presented on a map both on-line and in consolidated statistics,

for access by any citizens. Actually, through this IoMT application air

quality indeed would not be be monitored uniformly for the entire city

region, but only at those parts of the city where it is most relevant, i.e.,

the places with much intense pedestrian and bike traffic. Moreover, some

citizens may even opt for an air monitoring on the go-attitude, carrying

a smaller and lighter version of the WAMS on their bike baskets or their

knapsacks, so as to measure the air pollution on their ways. And through

their smartphone, this data would be uploaded to the central monitoring

service.

• Application 2: Nowadays, several goods and merchandise require spe-

cific minimal transportation and storage conditions on their routes from

producer to consumer. For example, meat and some fruits need ambient

temperatures of less than 10 degrees Celsius, special flowers and plants

should be in environments with air humidity above certain level, livestock

requires smooth movement as well as places with sufficient air circula-

tion (i.e., O2 concentration), etc. Hence, it would be advantageous to

be able to monitor the ambient and movement conditions along all the

transport path of these and other “sensitive” merchandise. This could

be done by placing some M-OBJs close to the goods, and having the

sensor values probed in all the stages of transportation and intermediate

storage. These data could then be send in real-time to interested users

(e.g. the customer, or the transportation company) so as to early de-

tect some non-conformance in the transportation conditions, or else, be

the input for transport reports. Such a monitoring could be achieved by

having IoT-gateways placed in the array of vehicles (trucks), vessels or

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 12

delivery personal involved in the transportation. By such, as soon as the

merchandise cargo is loaded, stored or picked by the next transportation

means, the IoT-gateways would connect with the M-OBJs, send messages

acknowledging the arrival/ handing-over of the goods to the clients, and

start receiving, checking the M-OBJs sensed data, and eventually sending

alert notifications about inadequate transport conditions.

Furthermore, according to Francis daCosta (daCosta, 2013), IoT com-

munication involves small but frequent messages, where each message indi-

vidually is unimportant, but the statistical properties of the corresponding

data flows carry the relevant pieces of information. In this regard, Complex

Event Processing (CEP) is a rather novel software technology for continuous

real-time processing of high volumes of data items (low level information) that

allows an easy specification of patterns (using SQL like queries) that represent

complex situations (e.g. a fraud in a bank transaction) (Mayer, 2013). CEP

processing considers heterogeneous data from different sources, and looks for

event patterns of interest (causal, logical or temporal) and eventually gener-

ates high-level events that represent these detected patterns (e.g. a crash or

a fraud). Nevertheless, current CEP solutions are cloud-centralized, meaning

that they only distribute their processing among server nodes (Govindarajan

et al., 2014). Almost none of them have considered using CEP components

that execute on nodes at the edges of the network.

Moreover, recent works (Zachariah et al., 2015) have proposed the use

of mobile devices (phones/handhelds) as the propagator nodes in IoT, since

they can gather the information of the environment and transmit it to cloud-

based servers. However, the huge volume of transmissions among those mobile

devices and the cloud would drain the device’s battery, overload the network

with low-level information (raw pieces of data) and delay the delivery of data

if the network quality is not good enough to provide sufficient bandwidth.

As the data volume grows, this approach of data processing solely in the

cloud becomes unsustainable (Saleh e Sattler, 2013). For the previous reasons,

many works advocate that for IoT it is important to have as much in-network

processing as possible, by performing filtering, aggregation and pre-processing

over the data streams before sending any information to the cloud (Billet

e Issarny, 2014). All these in-network pre-processing functions can be well

expressed in CEP; which therefore should be provided in the IoT-gateways

close to the sources, e.g., sensors. In fact, recent works have shown that

current mobile devices have sufficient capacity to execute CEP, allowing them

to perform such processing (Stipkovic et al., 2013).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 13

To illustrate the need for in-network processing, consider a medical mo-

bile application that should detect changes in the patient’s health condition, so

that corresponding health professionals can be notified and respond immedi-

ately with some action. In this context, heart rate, temperature, and movement

sensors could provide information about the patients, and the mobile applica-

tions could pre-process the sensor data to only send relevant events (e.g. high

temperature and/or low heartbeats) to the cloud. In another scenario, ima-

gine the actions that you will need to be automatically executed in your home

and work place. Houses are very likely to have temperature, light, and mo-

tion sensors in order to start some actions like set the temperature level to

keep a fresh environment, or turn on the lights at night. However, it will a

completely different case in the work place, where we could use information

about available parking places, scheduled meetings, and rain forecasts to alert

us about different opportunities at work. Hence, our research aims to find out

the feasibility of using CEP at mobile devices in order to allow in-network pro-

cessing of sensor data (local pre-processing). Discover if it is suitable to have a

dynamic deploy and exchange of CEP queries in mobile devices. And, expose

the main trade-off between local pre-processing versus send all the sensor data

to servers in the cloud for processing.

1.1
Problem Statement

Being able to detect relevant situations (e.g. change in the stock market

or an accident) over continuous data flows in (near) real-time has many

applications in different areas like industry and health care (Schilling et al.,

2010; Stipkovic et al., 2013). In this context, due to the need for immediate

responses, solutions like Hadoop or database management systems (DBMS)

cannot be applied for their high latencies for large volumes of data (Chen et

al., 2014). In such cases the use of CEP has been widely used thanks to its

characteristics that facilitate the specification of event patterns, and its fast

detection on high traffic event streams that can be considered (almost) real-

time (Saleh e Sattler, 2013; Schilling et al., 2010; Govindarajan et al., 2014;

Stojanovic et al., 2014; Jaein et al., 2012; Eggum, 2014; Schmidhäuser, 2014;

Stipkovic et al., 2013; Dunkel et al., 2013).

In the new generation of IoT, the edge nodes are usually mobile devices

(e.g. smartphones and tablets) which are becoming more popular and widely

spread (Schmidhäuser, 2014). These devices are used as propagator nodes for

simpler smart objects in order to enrich and route the sensed information to

the cloud. Moreover, recently Cisco has proposed a new computing paradigm

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 14

called Fog computing (Bonomi et al., 2012), allowing for low-latency processing

on resource-constrained devices near the edge like mobile devices or routers,

while computational-intensive processing is performed in the cloud. In fact,

there are already some previous studies where Android smartphones work with

Esper (an open source CEP engine). Results in (Jaein et al., 2012) show low

levels of throughput and imply that it has a substantial overhead. However,

a more recent study (Eggum, 2014) mentions that the introduction of ART1

(the new Android runtime) resolves many performance related issues that were

previously seen with Dalvik (Jaein et al., 2012), and proves that future revisions

of Android could be suitable for this environment.

However, most of the current CEP solutions for IoT are cloud-centralized

(only distribute their processing among server nodes), and mobile devices (IoT-

gateways) act only as data sources to the cloud. These approaches will be

unfeasible, since in the IoT domain it is expected that 50 billion or more

devices will be interconnected through the Internet, generating an enormous

amount of information to be continuously sent to the cloud (Govindarajan

et al., 2014). Network quality in mobile environments could not be always

good enough to provide sufficient bandwidth. Moreover, forwarding all the

information to the cloud is unfeasible for mobile devices since it will consume

their energy, and also ”introduces a too high energy cost for the envisioned

IoT scale, considering the energy cost of communication over computation.

Given the growing requirement of a distributed solution for data stream

management in IoT” (Billet e Issarny, 2014), the increasing popularity of

mobile devices functioning as edge nodes (Schmidhäuser, 2014) and the fact

that CEP is a promising technology for stream processing in IoT (Chen et al.,

2014; Govindarajan et al., 2014), this dissertation aims at answering following

research questions:

a) Is it feasible to deploy CEP queries at mobile devices to do in-network

processing of sensor data from the mobile device and from nearby Smart

things (a.k.a. M-OBJs)?

b) How is the energy consumption of the mobile device affected by the choice

between local pre-processing of data versus send all the sensor data to

servers in the cloud for processing?

c) Which is the main trade-off between local pre-processing in the mobile

device versus processing in the cloud?

1https://source.android.com/devices/tech/dalvik/

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 15

1.2
Objective and Contribution

The main objective of this work is to respond to the statements of

section 1.1, for that we designed and implemented a dynamic complex event

processing service that allows in-network processing of sensor data streams

presented by smart objects. Thus, we propose the concept of Mobile Event

Processing Agent (MEPA) as a new service for IoT gateways, that allows an

easy specification of situations (e.g. a crash, a fraud) with the use of CEP. It can

offload part of the cloud processing to reduce the amount of transferred data.

Moreover, depending on the available resources, it is easy to change the running

CEP queries since Esper (the CEP technology used in this dissertation) allows

an on-the-fly reconfiguration avoiding the service downtime. The previous

points lead us to research the impact of local processing on mobile device’s

energy and bandwidth consumption compared to sending the raw sensor data

to a service in the cloud. A benchmark showing the performance and the

overhead of the presented solution could act as a guideline for who wishes to

use CEP solutions in this domain.

1.3
Methodology

An initial study about energy consumption in mobile devices and recent

works in sensor-gateways, in-network processing and CEP solutions in IoT

was first executed in order to identify the State of the Art. It also helped us to

understand how CEP should be evaluated in a mobile environment, where

energy overhead and bandwidth usage are considered the most important

requirements.

Given the nature of this dissertation, it required an empirical evaluation

where we conducted a series of quantitative experiments using several M-

OBJs (SensorTags 2 and different CEP queries with different complexities.

We measured the energy overhead and bandwidth usage generated from

the communication, and local processing. Relating the outcome between the

observed values helped us to draw strong conclusions.

1.4
Outline

This dissertation is structured in the following way:

• Chapter 2 - Background: This chapter provides an overview of the

enabling technologies and main concepts used in the project.

2Texas Instruments CC2541 Sensor Tag - http://www.ti.com/lit/ml/swru324b/swru324b.pdf

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 1. Introduction 16

• Chapter 3 - Energy Consumption in Mobile Devices: Here we

introduce the basic knowledge about energy consumption in mobile

devices.

• Chapter 4.2 - Mobile Processing and Dynamic Deployment: We

present our approach to handle in-network processing and its general

architecture.

• Chapter 5 - Evaluation: This chapter presents and discusses the

evaluation results obtained from the tests over the local processing service

with real sensors.

• Chapter 6 - Related Work: In this chapter we introduce similar works

related to distributed CEP and sensor data processing.

• Chapter 7 - Conclusion: Finally, this chapter summarizes our work

and propose the main lines for the future work.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

2
Background

This chapter introduces the main concepts and basic technologies used in

this dissertation. Section 2.1 describes Complex Event Processing (CEP), the

technology used for in-network sensor data processing. Afterwards Section 2.2

gives an insight about the middleware technology used for cloud-based services.

2.1
Complex Event Processing

Complex Event Processing (CEP) is a software technology for the dy-

namic analysis of massive data- or event-streams in (near) real-time. It was

initially proposed by David Luckham in the mid 1990s. Using CEP it is possible

to describe causal, temporal, logic and contextual relations among the events,

and check the event stream for their occurrence. An event is any activity, pro-

cedure or decision that happens in the real world. In general, an event describes

the change of a state or a property of a real or virtual object. Examples range

from technical events such as the change of the measured temperature probed

from of a sensor in a production plant to business events, such as changes in a

company’s stock value.

CEP provides capabilities of filtering, aggregation, correlation and ana-

lysis over continuous streams of data. Moreover, the search for event patterns

considers the event stream over a period of time (in a time our event win-

dow). Depending on the expressiveness of the used operators, different kinds

of patterns may be detected:

– Detection of simple patterns using boolean operators. For example, the

simple pattern (A and B and not(C)) describes the occurrence of events

A and B but the absence of event of type C.

– Detection of complex patterns using the followed-by (→) and the Every

operators. With these, it is possible to check the causality and the

repetition of simpler events and patterns. For example ((A or B)→C)

checks if there is the occurrence of events A or B that are followed by

any event of type C. And the pattern every (A→B) picks all the pairs of

instances of event types A and B where B follows A.

– Abstraction of Event patterns: whenever a pattern is detected from

simple events, a new event of a higher level of abstraction can be

generated, that represents the detected pattern. These more complex

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 18

events yield high-level views of such patterns. Typical examples are the

sum or the average of simpler events. For example, an average of the

stock price over the last x days can be consolidated in a x-day-avg event,

and this event can in turn be subject to further pattern analyses.

In CEP the logic of the event processing is explicitly and declaratively

expressed as queries. An event processing query describes a specific (re)action

that should take place whenever the corresponding pattern is detected. Each

query consists of a condition and an action part. The condition part consists of

one or more connected patterns that are checked against the event stream. If

the condition is satisfied (the analysed events in the stream match the pattern)

we say that the query matched, and then the action part of the rule is fired.

The action part typically describes the activation of a callback procedure of

a listener, which in turn may activate a application-specific service, or may

generate a complex event to be re-inserted into the event stream.

The entire event processing logic of an application is structured in CEP

as a workflow among connected Event Processing Agents (EPA). EPAs are

software modules that receive an input event stream and execute one or more

event processing queries for pattern matching and eventually reacting upon

them by outputting other events. The complete set of interconnected EPAs

is called an Event Processing Network (EPN), an EPN can be distributed

among multiple physical networks and computers. The top-level architecture

of an EPN consists of three layers: event producers, event consumers and event

processing logic (see Figure 2.1), plus the communication channels between the

layers. An EPA can act as any of the three roles, an event producer at one

moment, a consumer at another time, or an event processor for the events that

it receives from the sources.

Event Producers Also known as event sources, is the layer in charge of

producing or capturing events in the internal or external environment

(e.g. sensor values, financial trades) to later be forwarded to the event

processing logic layer. Event producers could be a software module,

different sensors or even a clock.

Event Processing Logic The event processing logic consists of a CEP en-

gine and continuous queries. The CEP engine is where all the events

are analyzed, while the queries are a set of patterns that describe the

situations of interest presented in the form of combinations and trans-

formation of low level events with causal, temporal, spacial and other

relations. Queries are defined in a declarative SQL-like language. An

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 19

example would be a query that detects credit-card frauds, when two

transactions are realized in far places, within a short period of time.

Event Consumers Event consumers receive complex events from the Event

processing logic in order to deal with detected situations. Typical event

consumers could be applications for visualizing events or services in the

Cloud.

Event Processing Logic

CEP Engine

Event Producers

Systems

Applications

Sensors

Business
Processes

Event Consumers

Data Stores

Applications

Actuators

Business
Processes

Events

Events

Actions

Figure 2.1: Event-Driven Architecture of a CEP System1

2.1.1
Main Concepts of Event Processing

There are some fundamental concepts that we have to know at the

moment of using a solution for event processing. Events that happen in the

real world are usually a combination of data that contains different properties

such as time, location and sequence. An event could be also described as the

absence of something that was expected to happen. Moreover, the word query

is used to refer a programming representation of an event (an occurrence), for

example a query that represents all the transaction events with a value equal or

higher to 5000, could be: SELECT * FROM Transactions[amount >= 5000].

Queries that involve functions like aggregation or negation (absence of an

event) are not adequate for infinite streams because they can only be answered

after the stream ends (Eckert e Bry, 2009). In such cases, queries require an

upper and lower bound (range) that constraints the streams, such scope is

called a Window. Additionally, windows can be classified in time- and count-

based. Time-based windows define the bounds as seconds, hours or days, while

count-based use the amount of data items. Besides, depending on how window’s

moves and process information they can be classified in:

1Source: Opher Etzion, Peter Niblett. Event Processing in Action. Manning, 2011

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 20

1. Sliding Windows have a fixed size and process the information in a

continuous block of events. They have a lower and upper bounds that

advance with time or as data items are inserted into the engine. Every

time these windows vary, they process all the data that they contain

within their bounds (Eggum, 2014) and release the oldest ones. As an

example, you can see in Figure 2.2, where dashed events are the ones

leaving the window, and the new events are the ones with an arrow

above.

Time

E1 E2 E3 E4 E5

E1 E2 E3 E4 E5 E6

E2 E3 E4 E5 E6 E7

E3 E4 E5 E6 E7 E8

Figure 2.2: Sliding Window

2. Jumping Windows waits until their size n is filled with events, to process

in a bulk operation all the data items contained in it. The main difference

to sliding windows is that jumping windows will never contain a data item

that could have resided in the window before the processing (Eggum,

2014). Sliding windows only remove the oldest events. Figure 2.3 shows

how jumping windows remove all the contained events after they are

completely filled, and then start to include new events.

Time

E1 E2 E3

E1 E2 E3 E4

E4 E5

E4 E5 E6

Figure 2.3: Jumping Window

Queries usually join several event items to express a more complex event

over time (Composition). Such unions are represented by different relationships

between events. Selectivity is the capacity that allows to select a number of

events that match certain criteria. Projection can generate new events that

contain a sub-set of the properties from previously seen events. Aggregation is

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 21

defined as a combination of events and it is related to counting, summarizing,

or averaging. Different from projection and selectivity, aggregation needs to see

the entire input, so they must be used in combination with windows (Eckert e

Bry, 2009).

CEP queries frequently implement complex correlation functions that

sometimes can be divided into different sets of sub-queries. The sub-queries

can perform certain steps of the correlation separately and provide the results

to a CEP root query in the cloud. For example, a CEP root query could be

a computational-intensive processing (e.g. correlations of pre-processed sensor

data), while the the rest of sub-queries could be simple correlations on collected

sensor data (e.g. aggregators in a window of time, filters) (Schmidhäuser, 2014).

In our approach mobile devices collect most of the sensor data, processing

these sensor data directly in them can improve the performance of the system

regarding the possible slow network connections, as well as reducing the

device’s energy consumption.

2.1.2
Esper

There are several technologies and languages for CEP, but we focus

on Esper2, since it is an open-source software available under GNU GPL

license and one of the most widely used CEP engine. It was initially released

in 2006, and has a continuous release to this date (2016) from an active

community (Eggum, 2014). Esper events allow a rich object representation,

since it supports all aspects of object-oriented design as well as dynamic typing.

Other CEP technologies force a flat Map-like tuple-set definition of events. It

also offers a rich set of parameterizable data windows (expiry policies) while

most other engines provide a very small set of very simple rolling, sliding or

hopping windows3.

Esper uses a declarative Event Processing Language (EPL) that derives

many properties from the SQL standard, to define the event processing queries

used to detect the patterns over the streaming data. An event processing engine

analyzes the event streams and executes the matching queries in-memory

(Stipkovic et al., 2013). An application that embeds Esper, can employ one

or more engine instances with different configurations and queries. However,

since mobile devices still possess limited resources like processing power it

is recommended that all EPAs share one Esper instance instead of having an

own instance for each agent (Dunkel et al., 2013). Finally, and more important,

2http://www.espertech.com/esper/documentation.php
3http://www.espertech.com/esper/faq esper.php#comparison

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 22

it has been successfully ported to Android with the name of Asper (Eggum,

2014). This allows us to include it as an additional service for the IoT gateways.

Thus, enabling a flexible and efficient way of real-time processing of sensor

data in mobile environments, where data are obtained either by the sensors

embedded in a mobile device, or by the sensors connected to it.

2.2
Scalable Data Distribution Layer Middleware

The concept of the Mobile Hub in principle is independent of the pro-

tocol/technology used for Internet connectivity and communication with the

cloud. Nevertheless, the current implementation is based on the utilization

of a middleware for mobile-cloud communication called the Scalable Data

Distribution Layer (SDDL) (David et al., 2013; Vasconcelos et al., 2013;

Vasconcelos et al., 2014), which connects mobile nodes 4 with an IP-based

wireless data connection to stationary nodes in a wired core network, the

SDDL Core. In this core that executes in a cloud, some of the stationary

nodes are information and context data processing nodes, others are gateways

for communication with the mobile nodes, and yet others are monitoring

and control nodes operated by humans, and capable of displaying the mobile

nodes current position (or any other context information), managing groups,

and sending message to the mobile nodes. The mobile nodes would become

the gateways (hubs) of communication for providing Internet connectivity to

Smart Objects, as shown in Figure 2.4.

Figure 2.4: Example of M-OBJs sensing using the SDDL and the M-Hubs

4A mobile node is the generic term for an end user terminal or a Mobile Hub

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 2. Background 23

SDDL employs two communication protocols: the Data Distribution

Service (DDS) Real Time Publish/Subscribe Protocol for the wired commu-

nication within the SDDL Core, and the Mobile Reliable UDP (MR-UDP)

(Silva e Roriz., 2013) for the inbound and outbound communication between

the core network and the mobile nodes. DDS (Pardo-Castellote, 2003) is an

OMG standard that specifies a peer-to-peer middleware architecture for real

time and high-performance data distribution, with Quality of Service (QoS)

contracts between producers and consumers of data (e.g., reliable commu-

nication, data persistency, priority lanes, etc.). MR-UDP, on the other hand,

is a Reliable-UDP with mechanisms for tolerating intermittent connectivity,

dynamic IP address changes of the Mobile nodes and reaching these nodes

behind firewalls/NATs. It is used by the mobile nodes to connect with a

special type of SDDL Core node called Gateway (GW), of which any number

can be deployed in the SDDL Core. Each Gateway maintains one independent

MR-UDP connection with each mobile node, and is responsible for translating

application-messages from MR-UDP to the intra-SDDL core protocol, and, in

the opposite direction, converting SDDL Core messages to MR-UDP messages

and delivering them reliably to the corresponding mobile nodes. Any mobile

node uses the ClientLib, a library used to establish and manage a MR-UDP

connection with any of the Gateways and that hides most MR-UDP details

and message re-transmission issues from the application layer, and also sup-

ports a fully application-transparent handover of the mobile nodes between

SDDL Gateways. The M-Hub is thus nothing else but a special kind of mobile

node that opportunistically connects to M-OBJs.

The SDDL Core includes several other specialized services in charge

of load balancing, data persistency, data stream processing and groupcast

communication, whose explanation can be found in papers (David et al., 2013;

Vasconcelos et al., 2014). In particular, it is possible to deploy CEP root nodes

for the in-network sub-queries on the sensor data collected by the mobile nodes.

The interested reader can download a VM with pre-installed SDDL, as well

as find examples and tutorials for implementing SDDL-based applications in

Java, Android and Lua5.

5http://www.lac-rio.com/dokuwiki/doku.php?id=tutorial

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

3
Energy Consumption in Mobile Devices

Personal mobile devices (smartphones, phablets and tablets) and mobile

Internet are becoming increasingly ubiquitous1, more affordable, powerful and

opportunistic; and intermittent connectivity is becoming a common place for

mobile, wearable and embedded technologies that need to constantly share

data. However, mobile devices have a limited amount of energy obtained from

batteries which haven’t evolved as much as other components in the last years,

limiting its use to a few tasks over the day.

Usually, there are a lot of applications and services running at the same

time in mobile devices, and this can reduce the device’s battery life to few

hours of operation. This could be due to a lousy management or a high

requirement of resources, for example keep using the camera or the GPS even

when the application is in background. Additionally, mobile internet services

are becoming popular, so wireless data transmission is turning into a major

energy consumer on mobile Internet devices (Tarkoma et al., 2014). As an

example, according to a review from AnandTech2, the Motorola Moto X (2013)

device can be idle for up to 576 hours, but it can only maintain up to five

hours of data access on 4G and eight hours on Wi-Fi. In other words, there

is a considerable difference in energy consumption when keeping the mobile

device idle (fully awake without active applications) and when it is using the

wireless Internet connection (Pentikousis, 2010).

In this chapter we will introduce the basic concepts about the energy

consumption in mobile devices. It is important to understand where and how

the energy is used: how much of the system’s energy is consumed by which parts

and under what circumstances, in order to maximize the operation time of

mobile devices. This problem is very complicated, since mobile devices consist

of various hardware and software systems that work together.

3.1
Mobile Environment Evolution

Nowadays, mobile devices are becoming increasingly complex and dis-

tributed. They can now communicate among them and with simpler peri-

pheral devices (e.g. smart watches, a myriad of sensors, and augmented reality

1According to eMarketer, in 2014 we already had 1.75 billion smartphone users - almost
24% of the world population!

2http://www.anandtech.com/show/7235/moto-x-review/6

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 3. Energy Consumption in Mobile Devices 25

devices) by using protocols such as Bluetooth, Bluetooth Low Energy (BLE),

and ANT+. They also maintain one or more connections with Internet servers

in order to synchronize their platforms and applications with the cloud, produ-

cing an environment similar to the one shown in Figure 3.1. This expands the

optimization beyond the device (inter-device level), since now improvements

have to be put in a local communication context. A more common approach

is to offload certain power-hungry tasks that are frequently used to the cloud,

to mitigate the battery consumption in the mobile devices (Tarkoma et al.,

2014).

Cloud
(Mobile Services)

Smartphone

Smartphone

Sensor device

Smart watch

Local ConnectivityInternet Connection

Figure 3.1: Mobile Environment. Adapted from (Tarkoma et al., 2014)

Moreover, mobile devices have evolved into general-purpose computers

that get their power from rechargeable batteries. They now include high-

resolution resolution digital cameras, and displays that have become larger

with a superior quality. New interaction methods, such as touch screens and

voice recognition, are also adopted. This environment will open the doors to

many new innovative applications that sense and interact with users in different

ways. However, it also presents many challenges that includes energy efficiency

(Tarkoma et al., 2014).

In contrary to the many new features that mobile devices include now,

their battery capacity haven’t evolved as much as its energy requirement (see

Table 3.1). In terms of watt-hours, battery is increasing linearly as a result

of gradual advances in Li-ion batteries since the early 1990s. Year after year,

average battery capacity increased 3.52 percent between 1996 and 2008, while

clock speed has more than tripled from 2008 to 2013 (Tarkoma et al., 2014).

As an example; an Apple iPhone 3G had a clock speed of single-core 412 MHz

and a battery of 1219 mAh in 2008, while in 2013 a Samsung Galaxy S4 had a

quad-core 1600 MHz clock speed and a battery of 2600 mAh. John Baker imply

that “lithium-based cell technologies are likely to represent the pinnacle of cell

development in terms of energy efficiency”. Unfortunately, he also predicts

that only incremental improvements are most likely to occur, resulting in 10-

20 percent increases in energy densities (Pentikousis, 2010). So, we should not

expect a big increase of battery capacity in the mid-term.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 3. Energy Consumption in Mobile Devices 26

1995 2000 2005 2010 2015

Cellular Generation 2G 2.5G - 3G 3.5G Pre-4G 4G
Standard GSM GPRS HSPA HSPA, LTE LTE, LTE-A

Downlink (Mb/s) 0.01 0.1 1 10 100
Display pixels (x 1000) 4 16 64 256 1024

Comms modules - - Wi-Fi, Bluetooth Wi-Fi, Bluetooth Wi-Fi, Bluetooth LE, RFID
Battery capacity(Wh) 1 2 3 4 5

Table 3.1: Evolution of mobile phones. Adapted from (Tarkoma et al., 2014)

Network traffic has also grown tremendously over the last few years since

the appearance of laptops, smartphones, tablets and other portable devices. On

the one hand, technologies such as cellular networks 2G-5G and Wi-Fi can now

provide wireless speeds of hundreds of Mbps. In the case of Wi-Fi, it can cover

certain areas, such as a room or an office (Tarkoma et al., 2014), while cellular

networks can cover bigger areas like a city. Mobile devices switch between

them depending on the availability and quality of the wireless networks. On

the other hand, Machine-to-Machine (M2M) communication is expected to

growth significantly in the next years, because a lot of devices are including

short-range wireless technologies to allow mobile devices to communicate with

a growing number of sensors and actuators.

3.2
Components of Mobile Devices

A mobile device consists of software and hardware components. The

hardware components (see Figure 3.2) are the ones that require energy in order

to function (e.g. microprocessors, wireless network interfaces, and cameras).

The I/O controllers are implemented by a specific chip, while Wi-Fi, cellular

modem, sensors, and other auxiliary components are connected through system

buses (e.g. internal USB, or multichannel buffered serial port - McBSP)

(Tarkoma et al., 2014).

The number of cores in mobile devices have increased in the past years.

Such cores can be categorized in two types: high and low performance,

the former handles heavy tasks and the latter background tasks (e.g. email

synchronization). An algorithm monitors the load on each CPU and migrates

tasks between the higher and lower performance CPUs. Another component

is the GPU, that priorizes low power consumption over performance. Mobile

GPUs use various on-chip caching techniquest to reduce the memory traffic,

which is a requirement for energy-efficient operations (Tarkoma et al., 2014).

The display is yet another of the most energy-consuming components

in mobile devices, they now include touch-sensitive full HD screens. It is

only surpassed by the wireless network interfaces (WNI), where the energy

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 3. Energy Consumption in Mobile Devices 27

Bluetooth

GPS

Wi-Fi

Cellular
Modem

Display Cameras

ARM processor,
DSPs, 2D/3D graphics

accelerator, and
other components

Shared Memory Controller

Boot ROM

NAND Flash RAM

Batt Charger

Pwr Manager

Audio Codec

USB
Interface

Battery

Figure 3.2: Usual hardware structure of mobile devices. Adapted from
(Tarkoma et al., 2014)

consumption depends highly on the type of access network used and the

workload offered by the applications. Interfaces such as Wi-Fi and Bluetooth

have a dynamic power demand, and usually have three states: idle, transmitting

and receiving which can be categorized in two different duty cycles, idle and

active. The power consumption on the active state is significantly higher than

on the idle state. The overall power can be optimized by making the active

states shorter, so mobile devices could spend most of their time in idle states

(Tarkoma et al., 2014) consuming less energy. Some experiments presented by

(Pathak et al., 2012) shows that most of the applications spend a large amount

of energy in I/O components such as Wi-Fi, 3G and GPS.

Energy Consumption

T

Ta Ti

Figure 3.3: Example of a duty cycle

Figure 3.3 shows a total duration of a duty cycle, where Ta is the active

state, and Ti the idle state. Moreover, for each data transfer there is a waste

of energy produced by the ramp energy and the tail energy. Ramp energy is

referred to the energy required to switch to the active state, while tail energy

is a waste of energy (where the interface remains active during a certain

amount of time) after the completion of a transfer. Tail and ramp energies

are constants that mitigates the waste over larger transfer sizes or frequent

successive transfers. For example, with the tail energy, the interfaces avoid a

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 3. Energy Consumption in Mobile Devices 28

change of state between close transmissions. Tail energy has different duration

times depending on the type of connection (i.e. WiFi, 2G/3G/4G). GSM (2G)

has a much smaller tail time compared to 3G and WiFi (6 secs vs 12 secs).

However, the data transfer in WiFi is significantly more efficient than the other

connections (Balasubramanian et al., 2009).

Another high-energy consuming activity in Wi-Fi and Bluetooth is the

discovery phase. While in Wi-Fi the discovery looks for Access Points (AP),

in Bluetooth it looks for other bluetooth devices. Moreover, Bluetooth Low

Energy (BLE) was introduced as a new standard for the version 4.0 of

Bluetooth, allowing low rate and very low-power communications. Bluetooth

was originally designed for continuous streaming data applications, meanwhile

BLE limits the transmissions to small but frequent packages (31 bytes for

application payload data, once per second or minute). However, Bluetooth’s

discovery consumes only slightly more energy than BLE discovery, and BLE

connection events seems to draw a high amount of energy, even more than

its discovery. BLE communication takes place between a slave and a master

device. For all data transfers in BLE, both the slave and the master have to

wake up in synchrony to exchange messages in order to consume less energy

(Tarkoma et al., 2014).

All these hardware components are feed with energy by Lithium-ion

batteries, which have become popular due to their thinness, lightness, and

efficiency. But these batteries haven’t evolved as much as the other components

and have not kept up with Moore’s Law. This is due to the chemical nature

of batteries and the fact that there are theoretical limits on the amount of

energy that can be obtained from the materials (Tarkoma et al., 2014). We

have introduced the energy-consuming components in mobile devices, however

we will only focus in the WNI, since it is the most energy-hungry activity in

IoT-gateways.

3.3
Energy-Saving Strategy

Developing energy-efficient mobile applications is a very challenging task.

Different from desktop and laptop computers, where the CPU is likely to be

the component that consumes more energy (often more than 60 percent of

the total power), in mobile devices there are several components that may

consume nearly the same or even more energy than the CPU. For example, an

often cited power budget mobile phone streaming a 384 kb/s video includes

1.2 W power drain caused by the WNI, 1 W for the display, and 0.8 W for

the CPU and memory operations (Tarkoma et al., 2014). Besides, nowadays

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 3. Energy Consumption in Mobile Devices 29

mobile devices possess several sensors that also consume a considerable amount

of energy, such as GPS, accelerometer, and gyroscope. In this dissertation

we focus on the energy consumption produced by the network interfaces (i.e.

Internet communication).

Experiments in (Li e Halfond, 2014), related to the network interface,

showed that it is more efficient to send bigger size packages over smaller ones,

since this reduces the active state duration of the duty cycle. As an example

the energy consumption for downloading 1,000 bytes of data is almost the

same as downloading 1 byte. Moreover, they also showed that high memory

usage will increase the energy consumption only by a small amount. In their

experiments, the average energy consumption per computational step increased

21% for each memory increase of 10,000%. So, buffering several messages to

decrease the number of active states during communication, could produce a

relevant decrease in the energy consumption depending on the frequency of

messages.

Internet A/V streaming is an interesting case in point. If MP3-encoded

music is streamed to a mobile device, its network interface must remain active

during the entire session. If the user first downloads the songs and then listens

to them; during playback the network interface does not have to remain

active, which can reduce energy consumption significantly (Pentikousis, 2010).

Moreover, cellular networks consume much more energy than Wi-Fi according

to (Balasubramanian et al., 2009), because they remain more time in active

states.

In this context, with the purpose to prevent the wireless network inter-

faces (WNI) to remain in prolonged active states, CEP can pre-process all the

data collected by the M-OBJs. Thus, the mobile device will only communic-

ate with the cloud when a complex event is detected. CEP queries may not

necessarily reduce the amount of transferred data, but instead require a low

outbound frequency, since the main objective is to increase the idle states of the

WNI. Moreover, it is important to use a monitor to estimate the improvements,

usually power values are reported as averages over a specified time window.

In order to target the subsystem of interest, we have to turn off all the other

features. The challenge is that mobile devices consist of many subsystems that

are constantly under interaction.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

4
The Mobile Hub

The envisioned architecture for IoT has changed a lot during the last

years. Now we are aware that simpler Things or M-OBJs cannot and will not

communicate directly to the cloud because they are low-powered devices and

Internet communication is an energy-hungry activity. Hence, the architecture

illustrated in Figure 4.1 has been proposed by most of the works in the

literature. In such architecture, in order to deliver the information gathered

by the perception layer (Level 0) to the application layer (Level 2) in the

cloud there is a mid-layer for transmission (Level 1). This transmission layer

is formed by mid-powered devices called IoT-gateways (e.g. routers, mobile

devices) that communicate with the M-OBJs and the cloud using WPAN (e.g.

BLE and ANT+) and WLAN (e.g. WiFi) technologies respectively.

Level 2

Level 1

Level 0

Data Analytics & Visualization

GSM/GPRS, WiFi

IoT Gateway

ZigBee, BLE, ANT+, RF, Z-Wave

I/O from Sensors and Actuators

WPAN

WLAN

Figure 4.1: Typical IoT Architecture

Moreover, since mobile devices are becoming ubiquitous, cheaper and

more powerful, and that disconnections and message loss will be the norm

in IoT, where reliable delivery of single messages from/to M-OBJs will be

less important, mobile devices are the natural candidates for serving as IoT

propagator nodes. This makes us propose the concept of Mobile Hub (M-

Hub) as the intermediate between the myriad of different Smart M-OBJs and

the long-haul Internet connection. In this regard, IoT-gateways have a high

energy consumption for their behaviour as a merely bridge for the data. Thus,

we propose a modification to the current IoT architecture by including Fog

computing, which allows to move part of the processing from the application

layer to the edges of the network. This chapter introduces our two main

proposals for communication and local processing.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 31

4.1
Communication Infrastructure

The M-Hub is a general-purpose middleware that enables mobile per-

sonal devices to become the propagator nodes (i.e. gateways to the Internet)

for simpler IoT objects with only short-range WPAN interfaces. This mid-

dleware is responsible for discovering and opportunistically connecting many

different simple M-OBJs to the Internet in order to be able to “bridge the gap”

between the Internet connection to the cloud and the short-range wireless con-

nections established with M-OBJs. Furthermore, the M-Hub provides context

information like the current local time and/or the (approximate) location to

the data obtained from the M-OBJs to which it is connected (Talavera et al.,

2015). This feature opens up to IoT applications new ways of classifying, filter-

ing or searching data gathered from the M-OBJs. The main mandatory tasks

of the M-Hub thus include:

Discovery, monitoring and registration of nearby M-OBJs

periodically, the M-Hub scans for nearby M-OBJs announcing their

IDs and capabilities. This information about reachable M-OBJs is kept

stored in the M-Hub database and eventually forwarded to some service

executing in the SDDL core.

Connecting to a M-OBJ depending on the kind of interaction (and the

WPAN technology capabilities) a stable communication link may be

established with some M-OBJ, over which the M-Hub executes a request-

reply protocol.

Protocol Transcoding Data packets and messages from/to M-OBJs may

have different formats and encodings. Thus, the M-Hub transcodes

them from/to serialized objects, encoded with Protocol Buffers, and

transmitted over the MR-UDP connection.

Caching of recent M-OBJ sensor/status information in order to op-

timize communication over the Mobile Internet, the M-Hub may group

several pieces of sensor data from the set of nearby M-OBJs into a single

“bulk message” for transmission. In order to do this it stores the most

recent (the current) data items obtained from the M-OBJs.

Sending requests to M-OBJs depending on the services/resources offered

by the M-OBJ, the M-Hub periodically or sporadically send queries

about sensor readings and/or the M-OBJ’s current state (e.g. read the

current temperature value).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 32

4.1.1
Main Components

The M-Hub consists of four services and one manager executing in

background. The S2PA Service is responsible of discovering and monitoring

nearby M-OBJs that use the supported WPAN technologies. This service

keeps a record of the current provided sensors/actuators (e.g. temperature,

accelerometer) and publish the sensed information to all the components that

require it. One of which is the Connection Service, where messages are sent

to/from the cloud in a JSON format through an Internet connection. Important

messages (e.g. M-OBJ connection/disconnection) are sent immediately to the

cloud, while sensor data or low relevance messages (e.g. temperature readings)

are grouped, to be transmitted as a bulk message at periodic time intervals.

Messages that are going to be send to the cloud are enriched with

context information, like a timestamp and the approximate location. The

location is obtained through the Location Service, responsible for sampling

the M-Hub’s current position obtained from different providers like GPS or a

manually entered (in case of a fixed location). The periodicity and duration

of all of these three service’s actions, are influenced by the device’s current

energy level (LOW, MEDIUM, HIGH), and is set by the Energy Manager,

which from time to time samples the device’s battery level and checks if it is

connected to a power source.

Figure 4.2: Architecture of the Mobile Hub

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 33

Figure 4.2 shows the M-Hub architecture and some details of the interac-

tions between the aforementioned components. The communication among all

the services is done using an EventBus1, which is a Publish-Subscribe (Pub-

Sub) event bus optimized for Android that helps to decouple the components,

and allows the inclusion of different services without many code modifications.

Device Type 1, ..., Device Type N are modules that handle the information

received/sent from/to specific M-OBJs, since each different M-OBJ could pos-

sess a different method to transform the raw data (bytes array) to readable

information (doubles array). Hence, each of the modules possess a convert()

method that handles such conversion.

The S2PA Service is capable of managing several WPAN technologies

by calling generic methods, that are mapped to their respective classes and

methods. As soon as a new M-OBJ is detected, it starts getting data from

the it, which are then handed over to the Connection Service, where they are

stored in a buffer (msg buffer). The Energy Manager controls the periodicity

intervals for all the three Services, depending on the current battery level, and

if the M-Hub is plugged or not to the power supply. For example, if energy

supply is LOW, MEDIUM or HIGH the S2PA Service will perform the scan

(on all WPAN technologies) every 20, 30 and 40 seconds, respectively. These

thresholds are configurable for different mobile devices.

4.1.2
Short-Range Sensor, Presence and Actuation API

One of the main purposes of the M-Hub is to handle M-OBJs with

different WPAN technologies (e.g. BLE, Classic Bluetooth). To this end, it

has a protocol for short-range communication with M-OBJs, based on two

interfaces that help developers implement the different technologies uniformly.

On the one hand, the Technology Interface (shown in Figure 4.3), maps the

main capabilities of each WPAN technology to some methods that have to

perform the following actions: 1) Discovery of, and connection to M-OBJs, 2)

Discovery of services provided by each M-OBJ, 3) Read and write of service

attributes (e.g., sensor values, and actuator commands) and 4) Notifications

about disconnection of M-OBJs. And on the other hand, the Technology

Listener Interface is implemented by the S2PA Service to listen to all the

important events such as the sensor data, detected by the M-OBJs and

reported by each technology in order to publish them for the subscribed

components. The data published has the structure showed in the Figure 4.4.

1http://greenrobot.github.io/EventBus

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 34

Technology

ID : uint

initialize() : boolean
enable() : void
setListener(listener : TechnologyListener) : void
startScan(autoconnect : boolean) : void
stopScan() : void
readSensorValue(macAddress : String, sensorName : String) : void
writeSensorValue(macAddress : String, sensorName : String, sensorValue : Object) : void
connect(macAddress : String) : boolean
disconnect(macAddress : String) : boolean
destroy() : void

TechnologyListener

onMObjectFound(mobileObject : MOUUID, rssi : Double) : void
onMObjectConnected(mobileObject : MOUUID) : void
onMObjectDisconnected(mobileObject : MOUUID, sensors : List::String) : void
onMObjectServicesDiscovered(mobileObject : MOUUID, sensors : List::String) : void
onMObjectValueRead(mobileObject : MOUUID, rssi : Double, sensorName : String, sensorValue : Double[]) : void

Figure 4.3: Main interfaces used by the M-Hub to communicate with M-OBJs.

Some functions in Figure 4.3 that need to be explained are the followings:

initialize, verifies if the technology exists on the device and sets it up in order

to be used, readSensorValue, and writeSensorValue, request a read or a

write of a sensor respectively, where the macAdrress is the unique identifier of

the M-OBJ under the technology and the serviceName represents the sensor

with a string (e.g. “Temperature” and “Humidity”). In case of a write there is

an extra parameter sensorValue that will handle commands to actuators.

Moreover, the developers have to include an ID in the different Tech-

nology classes to uniquely identify them. This ID is also combined with the

M-OBJ’s MAC address to form the Mobile Object Universally Unique Identi-

fier (MOUUID) which help developers to differentiate all the M-OBJs, even if

they are communicating with the M-Hub under different WPAN technologies.

The current M-Hub implementation only has a module for Bluetooth Low En-

ergy (a.k.a. Bluetooth Smart - BLE) defined with the ID 1, and a MOUUID

under such technology could be 1-B4994C64BA9F.

SensorData

mouuid : String
signal : Double
action : String
sensorName : String
sensorValue : Double[]

toJSON() : String

Figure 4.4: Basic sensor data structure of the M-Hub.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 35

Figure 4.4 represents the data received from the M-OBJs, the mouuid

identifies uniquely the M-OBJ that produced the sensor data. The signal

represents the connection strength of the M-OBJ (e.g. Bluetooth uses dBm2)

with the M-Hub. The action indicates the type of data in relation with the

M-OBJ (i.e. found, connected, disconnected, read), while the sensorName is

an optional value that gives a higher description of the data (e.g. temperature,

humidity). Finally, the sensorValue only appears when the sensorName is

present, and contains the data values (e.g. 25 for the temperature, or [0.5,

0.0, 0.5] for the accelerometer).

4.2
Local Processing Infrastructure

Differently from the traditional Internet where data consumption is

primarily discrete (Billet e Issarny, 2014), IoT deals with a continuous pro-

cessing of data produced by sensors and actuators embedded into mobile

devices and M-OBJs. In IoT data usually have value at the their generation

time, given the need for fast decision making systems (e.g. Smart Cities, and

Ambient Assisted Living), and to reduce bandwidth consumption in order to

avoid bottlenecks, IoT should completely decentralize its processing. However,

most of the current IoT-gateways only care about the direct transmission of

the data acquired from the physical environment (perception layer) to the

cloud (Pereira et al., 2013) yielding an architecture with a high cost for data

processing.

In this regard, an emerging category of applications are based on the col-

lection of sensing data at a community-wide level, where multiple individuals

provide sensing data in order to contribute to the observation of a large scale

phenomena (e.g. traffic congestion, environmental pollution) (Skorin-Kapov et

al., 2014). Current mobile devices have enough processing power to perform

part of the IoT data processing close to the data sources (M-OBJs). Further-

more, communication with the cloud is an expensive operation in terms of

energy and network bandwidth consumption which may critically affect the

scalability and the sustainability required by the IoT. Thus, a recurrent IoT

concern is to reduce the amount of information being sent to the cloud, by

detecting and sending only consolidated and pre-processed data that actually

matters to applications, like for example a sudden increase in the temperature,

or an elevated heart rate.

2https://en.wikipedia.org/wiki/DBm

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 36

4.2.1
MEPA Service

The Mobile Event Processing Agent (MEPA) is an aditional service that

extends the Mobile Hub (M-Hub) with the capacitity of local processing of

the data received from the Mobile Objects (M-OBJs) (see Figure 4.6). We

believe that Complex Event Processing (CEP) can be used for evaluating the

streams of sensor data (looking for certain data patterns) close to the sources.

Raw sensor data usually carries only little semantic information, and hence it

needs to be correlated and enriched to gain some meaning (Dunkel et al., 2013).

Moreover, CEP exhibits characteristics that makes it well suited for processing

in mobile devices: it employs in-memory processing which allows (near) real-

time operations, and also the ability to correlate heterogeneous data (sensor

data) obtained from nearby M-OBJs.

qh

ql ql

Action Handler

EventP1 EventPn

Figure 4.5: Distributed CEP scenario

As an example, Figure 4.5 shows a scenario where ql are simple correla-

tions (CEP queries) executed in different mobile devices. Such queries process

the sensor data received from EventPi (Event Producers), which could be dif-

ferent M-OBJs (sensors) located in the proximity. The events generated from

ql are sent to a computational-intensive processing CEP query qh in the cloud,

where they are combined producing events that can start different actions (e.g.

send a notification, turn on the air conditioner). Such distributed workflow of

CEP queries can be used in similar IoT processing applications where it is pos-

sible and desired to distribute the processing across the cloud and the edges,

in order to scale a system (e.g. smart cities, ambient assisted living).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 37

Figure 4.6: Architecture of the M-Hub with the MEPA Service

4.2.2
Dynamic Deployment of CEP Queries

M-Hubs can opportunistically collect data in different environments (e.g.

a hospital, a school, the streets) at different moments. Such environments

are very likely to have diverse sets of M-OBJs, which provide sensor data

to complete different applications. For example, imagine a set of M-OBJs (e.g.

sensors for temperature, smoke, motion) distributed around a house to provide

information about its current state. When a M-Hub enters to the house, it will

need to swap the executing CEP queries to the ones required to process the

corresponding sensor data (e.g. detect motion when no one is supposed to

be home or a gas leak). A completely different scenario could be described

for sensors located in the street or the beach that could help to detect high

pollution/radiation levels, or the average environmental temperature. In fact,

in certain situations it will need to stop all the executing CEP queries since

the sensor data is very infrequent or not necessary at all.

Beacon

Signal Range

M-OBJMoving M-Hub

Figure 4.7: Environment defined by a beacon

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 38

To identify different environments, we could use for example the GPS

position or Beacons3 (see Figure 4.7). Hence, when a M-Hub enters in the range

of a Beacon, or in a predefined area over a GPS position, the installed CEP

queries should be swapped with the corresponding ones to the available sensors

in the device’s vicinity. These sensors may vary as the M-Hub is connected with

different M-OBJs during its lifetime and in different situations. Due to this

flexibility requirement we included the capability to add/remove CEP queries

to/from the M-Hub remotely using the communication link with the cloud.

On the one hand, when processing in the cloud, there is virtually an

unlimited processing and energy capacity. Centralized-cloud processing has

the ability to analyze collectively data obtained from different mobile devices,

and with a low latency of processing since raw sensor data are received as soon

as they are collected (depending on the amount of sensor data and available

bandwidth). On the other hand, when we include a local pre-processing and

bulk transmission in the mobile device, energy is saved (except for very complex

computations), there are less probabilities of overcrowd the bandwidth, and

the CEP queries can be customized to the types of sensors that are in the

vicinity of the mobile devices.

4.2.3
Implementation

In order to enable CEP processing in mobile devices, we have included

the Asper CEP engine (Eggum, 2014) to the new MEPA service to process

any incoming sensor data. Additionally, to allow the creation of CEP queries

to process such data we needed to define a primitive data type. So, for such

primitive (event type) we have used the SensorData structure defined in the

section Communication Infrastructure (see Figure 4.4), which provides an

identifier for the M-OBJ, the sensor’s name (e.g. temperature, humidity) as a

string and its respective values as a array of doubles.

The MEPA Service keeps a record of the running CEP queries, and the

representations of the events as tuples of named values (event type). These

records allow to start and stop CEP queries on-the-fly, and to restore them

even if a sudden shutdown occurs. As shown in the Figure 4.6, the MEPA

Service subscribes to all the messages that are sent from the S2PA and the

Connection services, since the former collects the data from the M-OBJs, and

the latter receives the commands from the cloud to modify its behavior (e.g.

deploy/remove a new CEP query).

3Device that advertises its position in a fixed region - ht-
tps://es.wikipedia.org/wiki/IBeacon

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 39

Figure 4.8: Screenshots of the M-Hub viewer for sensor data and events

The MEPAListener is a class that implements the notification interface of

Asper (UpdateListener). It can initiate an action whenever new events become

available. Each one of the CEP queries installed in the MEPA Service require

an instance of the MEPAListener in order to listen and react to the detected

event patters (which leads to the generation of a new complex event). The

MEPAListener may also publishes the complex events (an Event structure that

contains the data and the identification label) to any interested component

that could be the Connection service, or another CEP query executing in the

MEPA Service. For example, Figure 4.8 shows some detected events in a list

view (right image), obtained from the M-OBJs in the left image.

createCEPQuery

deployCEPQuery

statement

updateDB

confirmation

routeMessage

ConnectionListener MEPA Service CEP Engine CEP Queries

Figure 4.9: Sequence diagram of the deployment of CEP Queries

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 40

A software framework implemented around the MEPA Service translates

the messages (JSON encoded) received through the Connection Service into

specific commands to modify the CEP queries executing in the M-Hub. Fig-

ure 4.9 shows the process for the deployment of CEP queries. First messages

are received by the ConnectionListener, to later be parsed and routed (pub-

lished) to the MEPA Service. Once in the MEPA Service, all the fields are

verified before deploying the query in the CEP Engine. Finally, the database

(CEP Queries) is updated with the new query. It is important to keep a re-

cord of the CEP queries in order to be able to modify or reload them when

necessary (e.g. service reboot).

Code 4.1: A MEPARequest structure

1 {
2 "MEPARequest": {
3 "type" : "add",

4 "label" : "HighTemperature",

5 "target": "global"

6 "query" : {
7 "SELECT sensorValue[1] as

value FROM SensorData(

sensorName=‘Temperature ’)

WHERE sensorValue[1] > 25"

8 }
9 }

10 }

The commands are encapsulated as MEPARequest objects that con-

tain the minimum information that we believe is necessary for this process.

The type of the request (i.e. add/remove/start/stop/clear), and a text label

used to identify the Event Processing Language (EPL) queries. In the case of

an add request type, the MEPARequest will also include a field query for the

EPL query (encoded as a string). The CEP query is always assumed to be

correct, so the MEPARequest is always sent to the M-Hub, see the Code 4.1.

However, wrong query specifications or any other exception that could arise

(e.g. incorrect syntax in the CEP query, undefined label), generate an error

message in the MEPA Service that is sent to the server with a description of

the problem.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 41

Code 4.2: An event message

1 {
2 "uuid" : "f26c668c-4751-44e9-bd27-77...",

3 "label" : "HighTemperature",

4 "latitude" : -22.978823,

5 "longitude": -43.233249,

6 "tag" : "EventData",

7 "timestamp": 1456250590,

8 "data" : {
9 "value": 21.299697018395786

10 }
11 }

The outbound events of the CEP queries (complex events) can be sent

to the cloud or to another query executing in the local MEPA Service. The

previous characteristic arises for the necessity of using complex events as input

for different CEP queries that don’t need to be sent to the cloud. So, in order

to define the destination of the generated event, the value target (shown in

Code 4.1) might be set either to local or global. If it is set as local, the event

will be received by the CEP engine in the MEPA Service, and as global it will

be sent to the cloud.

Moreover, the complex events are sent in a JSON format with a data

structure similar to the one presented in the Code 4.2. The uuid uniquely

identifies the M-Hub, the tag indicates that it is an EventData structure and

the label relates the event with its query. The latitude and the longitude are

optional values, the timestamp is in an Epoch format4, and finally, the data

contains all the values obtained from the complex event (defined in the CEP

query). As an example, the code in 4.2 shows an outbound event from the CEP

query in 4.1 that explicitly selects the sensorV alue[1] with the alias “value”.

4.3
Summary

One of the most (if not the most) important requirements of IoT is to

bridge the gap between the things and the cloud. Hence, we propose the concept

of the Mobile Hub (M-Hub) to provide Internet connectivity to nearby Mobile

Objects (M-OBJ). While the former can be very simple sensor or actuator

devices with no significant processing and storage capacity, the latter are

resource-full portable personal devices (smart phones or tablets).

4https://en.wikipedia.org/wiki/Unix time

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 4. The Mobile Hub 42

Several IoT projects are starting to use mobile devices as opportunistic

sensor data collectors for the cloud, given their current capabilities (e.g.

Internet communication, WPAN technologies). However, energy stored in

mobile devices batteries is very limited and the activity that drains more

of such energy is the Internet communication. In this regard, sending only

pre-processed data to the cloud could reduce the use of the wireless network

interfaces, and hence mitigate the energy/bandwidth consumption in mobile

devices. CEP is a widely used technology used for processing of continuous

streams of data in (near) real time, and that have been proved can be adapted

to Android. In section 4.2.1 we explained the advantages of mobile CEP, and

gave an example of its use.

Moreover, mobile devices are usually in constant movement and can be

located in several environments that provide different types of sensor data.

Depending in the sensor types, CEP queries executing in the IoT-gateways

should be dynamically swapped with the corresponding ones. Section 4.2.2

explained the advantages and limitations of including a dynamic modification

of the local CEP queries. Finally, Section 4.2.3 presented an explanation about

our architectural decisions for the implementation of the MEPA Service as a

new service for the IoT-gatewats.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

5
Performance Experiments and Results

This chapter describes the experiments and measurements realized that

aims to answer the research questions of section 1.1. Our intention is to

demonstrate that by executing Complex Event Processing (CEP) in the edge

devices (mobile devices), it is possible to reduce the communication with the

cloud, and thus, save energy/bandwidth in mobile devices. To this end, we

tested a prototype running different kinds of CEP queries to measure the

number of actions the M-Hub can perform until the battery level decreases

by 1%, as well as the total bandwidth usage. Section 5.1 details the setup for

our experiments, followed by a presentation of each individual query, while

Section 5.6 discusses the results.

5.1
Experimental Setup

For all the experiments we used a Motorola Moto X handheld (model

2013) running Android 4.4.4 KitKat (see Table 5.1) with a good battery

integrity as the M-Hub. Both Android runtimes were tested, Dalvik and

ART1. The devices used as M-OBJs were off-the-shelf SensorTags2. Each one

of the Sensor Tags has six sensors with different update times: Humidity

(>100ms), Temperature (>250ms), Gyroscope (>0.125ms), Accelerometer

(>20ms), Magnetometer (>12ms), and Barometric pressure (>2ms).

The WPAN technology used for the communication with the M-OBJs

was Bluetooth Low Energy (BLE). It has a characteristic called notifications

that allows to get the values from the connected sensors as soon as they are

updated. The experiments were made with up to six M-OBJs, since BLE

in Android limits the simultaneously connections and notifications to that

number. The average size of the messages was 200 bytes for events, and 300

bytes for sensor data. Such sizes could vary depending on the type of sensor or

event. However, as explained in Chapter 3, the energy consumption is not very

related to the size of the transferred data. The notebook used to run the SDDL

Core (Gateway, Query Manager and Web Monitor) for all the experiments was

an ASUS Intel(R) Core(TM) i7-4500U CPU 1.80GHz with 5857 MB of RAM,

running Arch Linux (Kernel 4.1.11-1-lts). All the tests were executed using a

WiFi (IEEE 802.11bgn) connection.

1ART and Dalvik - https://source.android.com/devices/tech/dalvik/
2Texas Instruments CC2541 Sensor Tag - http://www.ti.com/lit/ml/swru324b/swru324b.pdf

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 44

Component Description
Chipset Qualcomm MSM8960DT Snapdragon S4 Pro

CPU/GPU Dual-core 1.7 GHz Krait 300 / Adreno 320
Memory 2 GB RAM
Kernel 3.4.42-g50861a7
Battery Non-removable Li-Ion 2200 mAh battery

Table 5.1: Moto X Specifications

In order to quickly connect with the M-OBJs and avoid that other

components affect the battery, the M-Hub was configured to not use the

Location Service, perform a WPAN scan every three seconds, and the scan

duration was set at two seconds. For the experiments without CEP processing,

the time interval in between consecutive sending of sensor data to the cloud

was set to 100ms. Moreover, BLE requires a Service Discovery phase to retrieve

the services that the M-OBJs provide, however such time could be quite long

for the first connection depending on the amount of sensors/actuators that a

device possess. Hence, for our experiments, we skipped this first connection

and started testing from the re-connections, to avoid an idle time on the M-

Hub that will only reduce the amount of messages processed and sent to the

cloud. Further tests that reflect the time that it takes to the M-Hub to connect

with M-OBJs using BLE can be found in (Talavera et al., 2015).

Our main concern is the energy and bandwidth consumption caused by

the CEP processing and Internet communication in mobile devices. Thus,

we conducted a series of experiments deploying different CEP queries with

different kinds of processing such as filtering, pattern match, and aggregation.

Each test sampled the processing and the cloud communication for one hour

with different sets of connected M-OBJs (1, 3, and 6). In order to find out

the energy and bandwidth consumption of the mobile device, we built a tool

to measure the bandwidth usage (Kb and packets) per application and the

mean time that it takes a battery percentage to decrease. Most of the queries

included time windows (jumping and sliding), in those cases the length of the

windows was set to 10 seconds and 1 minute.

It is also important to mention that some external factors that we

couldn’t control were present during the experiments, such as some discon-

nections of the M-OBJs since BLE is still unstable in Android, and some

processing or Internet communications from other applications that slightly

affected the battery life (e.g. system apps). Most of the other applications in

the smartphone were uninstalled with exception of the stock ones which were

deactivated. Nevertheless, it was possible to relate the outcome between the

observed values to draw strong conclusions.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 45

Table 5.2: No processing - Energy and bandwidth consumption
Dalvik 1 3 6

Bandwidth (kb) 7,108 20,635 42,204
Mean time (s) 578.00 535.83 516.17
Std. Deviation 34.77 28.48 71.94

ART 1 3 6

Bandwidth (kb) 7,262 19,551 37,440
Mean time (s) 727.00 629.39 551.60
Std. Deviation 21.85 48.18 13.35

5.2
Filtering Query

We tested how much energy and bandwidth we could save with a

simple CEP filtering query. Hence, we created the query 5.1 that filtered the

information to just temperature data, but didn’t do any further processing. By

filtering data we can successfully reduce the amount of transferred information,

reducing the possibility of a bottleneck. However, it doesn’t reduce the amount

of active states of the network interfaces.

Code 5.1: Filtering CEP Query

1 SELECT * FROM SensorData(sensorName=‘Temperature ’);

Figure 5.1: Filtering - Energy consumption

1 3 6
0

200

400

600

800

1,000

593.6

533.72
488.85

670.4

593

530

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

As we can see in Figure 5.1 and Table 5.3, even when we reduced the

total bandwidth usage to almost a factor of three, the energy consumption is

almost the same as sending all the information to the cloud (see Table 5.2).

Thus, if we can’t reduce the number of active states for communication, we

won’t be able to see big reductions in the energy consumption.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 46

Table 5.3: Filtering - Bandwidth consumption
No. of Sensors Dalvik (kb) ART (kb)

1 3,146 3,219
3 7,178 7,045
6 12,682 12,865

5.3
Aggregation Queries

In these experiments we intend to show the energy and bandwidth

consumption with some CEP queries that included other processing than just

filtering, and used different window types (i.e. sliding and jumping). The scope

of a stream is called a window and defines the lower and upper bounds of the

information that is currently seen. Jumping windows wait until their size n is

filled with events to only then process all data items in a bulk operation.

Sliding windows have lower and upper bounds that advance with time

or as data items are inserted into the engine. Every time these windows vary,

they process all the data that they contain within their bounds. Their main

difference is that jumping windows will never contain a data item that could

have resided in the window before it, while sliding windows exchange the oldest

event with the newest event that arrived (Eggum, 2014). Both window types

can be classified as time- and count- based. Count-based windows group events

by quantity (e.g. 10 events). In order to find out the relation of the energy

consumption with different window sizes, we used time-based windows for the

tests with 10 seconds and 1 minute of length.

5.3.1
Average Query

The following CEP queries filter the sensor data to process their average

value using sliding and jumping windows. Only events that contained the

average value were sent to the cloud.

Jumping Windows

The query in Code 5.2 processes the average value by using a jumping

window of ten seconds, while the query in Code 5.3 uses a jumping window of

one minute.

Code 5.2: Average CEP Queries (Jumping 10 seconds)

1 SELECT avg(sensorValue [0]) FROM SensorData

2 (sensorName=‘Humidity ’).win:time_batch (10 sec);

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 47

Code 5.3: Average CEP Queries (Jumping 1 minute)

1 SELECT avg(sensorValue [0]) FROM SensorData

2 (sensorName=‘Humidity ’).win:time_batch (1 minute);

Figure 5.2: Average CEP Query (Jumping 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

737.42

675.2 660.6

860.33

806.5 793

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Figure 5.3: Average CEP Query (Jumping 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000

807.5
760.67

719.8

918

840.67 824.25

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Table 5.4: Average CEP Query (Jumping) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 267 320 250
ART (kb) 254 312 268

1 minute 1 3 6

Dalvik (kb) 71 102 69
ART (kb) 81 105 67

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 48

Figures 5.2 and 5.3 plot the energy consumption results showing an

improvement in comparison with the previous experiments, in special with

the results in Table 5.2 where there is no processing involved. Moreover,

Table 5.4 also presents a high reduction in the bandwidth consumption. Thus,

we imply that since bigger jumping windows reduce the frequency of outbound

events, they could also increase the idle time of the network interfaces. If the

frequency is low enough, it is possible to greatly reduce the energy/bandwidth

consumption.

Sliding Windows

Queries in the Codes 5.4 and 5.5 use the same processing logic as the

queries in Section 5.3.1 but using sliding windows instead of jumping windows.

Code 5.4: Average CEP Queries (Sliding 10 seconds)

1 SELECT avg(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time (10 sec);

Code 5.5: Average CEP Queries (Sliding 1 minute)

1 SELECT avg(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time(1 minute);

Figure 5.4: Average CEP Query (Sliding 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

650.6

571.33
533

718.5
677.75

637.4

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

The results in Table 5.5 show a decrease in the bandwidth consumption

in comparison with Table 5.2 (no processing), however results in section 5.3.1

(jumping windows) are still better. Moreover, the results in Figures 5.4 and 5.5

show that similar to the CEP filtering query, sliding windows don’t reduce

the active states of the network interfaces. Differently from jumping windows

where the frequency of outbound events depends on the window size, in

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 49

Figure 5.5: Average CEP Query (Sliding 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000

576.33
553.83

490.14

705.67

607.2
582

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Table 5.5: Average CEP Query (Sliding) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 3,214 6,047 10,715
ART (kb) 3,091 6,146 9,263

1 minute 1 3 6

Dalvik (kb) 2,519 6,131 11,355
ART (kb) 3,261 5,485 10,240

sliding windows the frequency remains constant and dependent on the arrival

frequency of new data since each new item in the window causes a new

outbound event. As the size of the sliding windows is increased, the energy

savings are reduced since more data within the window must be processed by

the MEPA service, and thus the network interface states remains frequent.

5.3.2
Maximum Query

The previous section presented experiments concerning the difference

between using jumping and sliding windows, in regard to the energy consump-

tion. However, we also want to show the impact of different kinds of processing

(other than the average) using the same window types and sizes as the previous

Section 5.3.1. Having said that, the following CEP queries search for the max-

imum value over a window of time instead of the average. Same configurations

as the previous experiments were used.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 50

Jumping Windows

Query in Code 5.6 process the maximum value using a jumping window

of ten seconds, while query in 5.7 uses a jumping window of one minute.

Code 5.6: Maximum CEP Queries (Jumping 10 seconds)

1 SELECT max(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time_batch (10 sec);

Code 5.7: Maximum CEP Queries (Jumping 1 minute)

1 SELECT max(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time_batch (1 minute);

Figure 5.6: Maximum CEP Query (Jumping 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

734.8
694.2

721.6

838.33 835.33
806.33

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Figure 5.7: Maximum CEP Query (Jumping 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000
821.75

777.5 787.5

951.67

871

799.75

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 51

Table 5.6: Maximum CEP Query (Jumping) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 266 347 264
ART (kb) 278 296 256

1 minute 1 3 6

Dalvik (kb) 68 92 64
ART (kb) 71 78 65

Sliding Windows

Queries in the Codes 5.8 and 5.9 process the maximum value as well, but

using sliding windows of ten seconds and one minute respectively.

Code 5.8: Maximum CEP Queries (Sliding 10 seconds)

1 SELECT max(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time (10 sec);

Code 5.9: Maximum CEP Queries (Sliding 1 minute)

1 SELECT max(sensorValue [0]) FROM SensorData

2 (sensorName=’Humidity ’).win:time(1 minute);

Figure 5.8: Maximum CEP Query (Sliding 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

583.8

512.43 500.86

704
655.5 649.8

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

The results using jumping windows (Figures 5.6, 5.7 and Table 5.6) and

sliding windows (Figures 5.8, 5.9 and Table 5.7) are very similar to the ones

presented in section 5.3.1 that processed the average value. Even though the

maximum and the average CEP queries have a different kind of processing, the

difference in their results is not much. This is due to the fact that only major

differences will appear if the outbound frequency varies significantly, which is

not the case.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 52

Figure 5.9: Maximum CEP Query (Sliding 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000

595.2

532.17

459.58

737.25

583
562

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Table 5.7: Maximum CEP Query (Sliding) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 3,393 6,115 11,745
ART (kb) 2,452 6,148 8,553

1 minute 1 3 6

Dalvik (kb) 2,860 6,184 10,512
ART (kb) 2,775 5,535 8,141

5.4
Aggregation Queries with Heavy Processing

In the following experiments we tested a more complex processing, in

which the magnitude of the accelerometer sensors3 was calculated in a window

of time. These experiments were performed to show in a more clearly way, the

relation between processing and outbound events frequency in regard to the

energy consumption. The accelerometer used can measure acceleration in three

directions simultaneously. The magnitude of the accelerometer was defined as

||a|| =
√

a20 + a21 + a22. Similar to the previous experiments, we used different

window types and varied their size.

5.4.1
Jumping Windows

The query in Code 5.10 process the magnitude value by using a jumping

window of ten seconds, while the query in Code 5.11 uses a jumping window

of one minute.

3The accelerometer is a device that measures the acceleration in a specific direction from
gravity and movement.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 53

Code 5.10: Heavy Processing CEP Query (Jumping 10 seconds)

1 SELECT Math.sqrt(

2 Math.pow(avg(sensorValue [0]), 2.0) +

3 Math.pow(avg(sensorValue [1]), 2.0) +

4 Math.pow(avg(sensorValue [2]), 2.0)

5) as value FROM SensorData(sensorName=’Accelerometer ’)

6 .win:time_batch (10 sec);

Code 5.11: Heavy Processing CEP Query (Jumping 1 minute)

1 SELECT Math.sqrt(

2 Math.pow(avg(sensorValue [0]), 2.0) +

3 Math.pow(avg(sensorValue [1]), 2.0) +

4 Math.pow(avg(sensorValue [2]), 2.0)

5) as value FROM SensorData(sensorName=’Accelerometer ’)

6 .win:time_batch (1 minute);

Figure 5.10: Heavy Processing (Jumping 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

757.75

693.5 694.2

870.33

797.5

739.75

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Table 5.8: Heavy Processing (Jumping) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 268 331 255
ART (kb) 266 316 245

1 minute 1 3 6

Dalvik (kb) 78 148 62
ART (kb) 74 82 92

The results presented for the energy (Figures 5.10 and 5.11) and the

bandwidth (Table 5.8) consumption are very similar to the ones in section 5.3,

that made a simpler processing using jumping windows as well.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 54

Figure 5.11: Heavy Processing (Jumping 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000

721.2
672.8

649.2

951.46

862.67

728.5

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Queries with a more complex processing can consume a reasonable

amount of energy depending on their outbound frequency. Hence, using

complex CEP queries in mobile devices could be counterproductive if the events

have a high rate of occurrence. Furthermore, heavy processing could also affect

other applications execution and thus, user’s experience. In such cases we have

to consider divide the complex queries in two or more sub-queries, in order

to send the most heavy part to the cloud. Nevertheless, queries like the ones

presented in the former experiments can still be executed if the frequency of

outbound events is low enough to compensate the energy consumption for the

processing.

5.4.2
Sliding Windows

Queries in the Codes 5.12 and 5.13 also process the magnitude of

the accelerometer data, but using sliding windows of ten seconds and one

minute. Sliding windows increase the processing load and the outbound events

frequency.

Code 5.12: Heavy Processing CEP Query (Sliding 10 seconds)

1 SELECT Math.sqrt(

2 Math.pow(avg(sensorValue [0]), 2.0) +

3 Math.pow(avg(sensorValue [1]), 2.0) +

4 Math.pow(avg(sensorValue [2]), 2.0)

5) as value FROM SensorData(sensorName=’Accelerometer ’)

6 .win:time (10 sec);

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 55

Code 5.13: Heavy Processing CEP Query (Sliding 1 minute)

1 SELECT Math.sqrt(

2 Math.pow(avg(sensorValue [0]), 2.0) +

3 Math.pow(avg(sensorValue [1]), 2.0) +

4 Math.pow(avg(sensorValue [2]), 2.0)

5) as value FROM SensorData(sensorName=’Accelerometer ’)

6 .win:time(1 minute);

Figure 5.12: Heavy Processing (Sliding 10 seconds) - Energy consumption

1 3 6
0

200

400

600

800

1,000

609.6

528.67

425.57

699.5

579.33

482.57

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Figure 5.13: Heavy Processing (Sliding 1 minute) - Energy consumption

1 3 6
0

200

400

600

800

1,000

691

519
480.14

682

566.6

491.2

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

The results in Figures 5.12 and 5.13 present a higher energy consump-

tion than the simpler aggregation experiments. This is due to the heavier pro-

cessing, but mainly to the fact that sliding windows include a higher outbound

frequency of events, which increased the use of the network interfaces.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 56

Table 5.9: Heavy Processing (Sliding) - Bandwidth consumption
10 seconds 1 3 6

Dalvik (kb) 2,998 5,764 10,997
ART (kb) 2,766 5,912 11,345

1 minute 1 3 6

Dalvik (kb) 3,026 4,933 10,630
ART (kb) 2,472 5,330 11,113

5.5
Aggregation and Pattern Match Queries

Here we tested two different queries (see Codes 5.14 and 5.15) executing

at the same time. The first one processed the average temperature in a jumping

window of 10 seconds, while the second expected four consecutive temperature

values, each one higher than the previous and the first one higher than 20. In

the case of the second query we don’t have control over the number of outbound

events, since it depends on the sequence of temperature events that fulfill the

pattern. This experiment is intended to show the energy consumption with

two queries executing at the same time. Figure 5.14 and Table 5.10 present

the energy and bandwidth measurements. Results show that even with two

CEP queries executing, if they have a low rate of outbound events, it is still

possible to see a reduction in the energy consumption.

Code 5.14: Aggregation CEP Query

1 SELECT avg(sensorValue [0]) as value FROM SensorData

2 (sensorName=‘Temperature ’).win:time_batch (10 sec);

Code 5.15: Pattern Match CEP Query

1 SELECT * FROM SensorData(sensorName=‘Temperature ’)

match_recognize (

2 measures

3 A as temp1 , B as temp2 , C as temp3 , D as temp4

4 pattern (A B C D) define

5 A as A.sensorValue [0] > 20,

6 B as (A.sensorValue [0] < B.sensorValue [0]),

7 C as (B.sensorValue [0] < C.sensorValue [0]),

8 D as (C.sensorValue [0] < D.sensorValue [0])

9);

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 57

Figure 5.14: Aggregation and Pattern Match - Energy consumption

1 3 6
0

200

400

600

800

1,000

750.25 733.25

789.5

895

814.67

867

Number of Sensors

T
im

e
to

co
n
su

m
e

1%
(s

ec
) Dalvik

ART

Table 5.10: Aggregation and Pattern Match - Bandwidth consumption
No. of Sensors Dalvik (kb) ART (kb)

1 258 270
3 389 326
6 298 264

5.6
Discussion

One of the most important aspects of CEP is that it helps to abstract

away the complexities of data processing, allowing to replace code with

expressive queries. Such queries can represent different kinds of data stream

processing that may be adequate or not to be executed in mobile devices.

In fact, there could be situations where no processing is desired at all. The

experiments showed that in most of the cases (with a continuous generation

of sensor data) the MEPA service can significantly decrease the energy and

bandwidth consumption compared with sending all the data to the cloud. The

graphic in Figure 5.15 presents a comparison of bandwidth consumption from

all the experiments with six M-OBJs, however the pattern is similar with the

experiments with one and three M-OBJs.

Moreover, the results in sections 5.3 and 5.4 indicate that jumping

windows CEP queries are better suited to be executed on mobile devices than

sliding windows, since sliding windows impose a significant use of CPU, and

have a high rate of outbound events. If the data produced by sliding windows

is directly send to the cloud, it will generate a significant use of the Internet

connection (limiting the available bandwidth), and reduce the idle states of the

network interfaces. Additionally, if the communication is being made by using

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 58

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

No Processing
Filtering

AVG Jumping 10 sec
AVG Jumping 1 min

AVG Sliding 10 sec
AVG Sliding 1 min

MAX Jumping 10 sec
MAX Jumping 1 min

MAX Sliding 10 sec
MAX Sliding 1 min

Heavy Jumping 10 sec
Heavy Jumping 1 min

Heavy Sliding 10 sec
Heavy Sliding 1 min

Two Queries

Bandwidth (KB)

Figure 5.15: Six CEP Queries - Bandwidth consumption

mobile networks, it could generate elevated costs to the users. For example,

the results for a heavy processing query using a jumping window of one minute

shown in Figure 5.11 are much better, in terms of energy consumption, than the

ones using a sliding window of the same size in Figure 5.13. To see the bigger

picture, Figure 5.16 presents the energy consumption for all the experiments

with six M-OBJs, which has a similar pattern to experiments with one and

three M-OBJs.

Nevertheless, there are other scenarios where it is possible to use the

output of the CEP queries that use sliding windows as the input for another

query X in the MEPA Service. In such case, if the query X is the one

that communicates with the cloud and can significantly reduce the outbound

frequency, energy consumption can still be reduced. It could be also possible

to use sliding windows when the frequency of incoming sensor data is low

enough to avoid using the Internet communication constantly. Moreover, as it

is shown in Figures 5.2 and 5.2, the bigger the size of the jumping windows, the

more energy consumption that can be reduced. Since it will allow to increase

the time the network interface remains in idle state. In the case of pattern

match query, we have no control over the amount of generated events, thus the

expected frequency of the pattern will determine if they are suitable as mobile

processing.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 5. Performance Experiments and Results 59

N
o

P
ro

ce
ss

in
g

F
ilt

er
in

g

A
V

G
Ju

m
pi

ng
10

se
c

A
V

G
Ju

m
pi

ng
1

m
in

A
V

G
Sl

id
in

g
10

se
c

A
V

G
Sl

id
in

g
1

m
in

M
A

X
Ju

m
pi

ng
10

se
c

M
A

X
Ju

m
pi

ng
1

m
in

M
A

X
Sl

id
in

g
10

se
c

M
A

X
Sl

id
in

g
1

m
in

H
ea

vy
Ju

m
pi

ng
10

se
c

H
ea

vy
Ju

m
pi

ng
1

m
in

H
ea

vy
Sl

id
in

g
10

se
c

H
ea

vy
Sl

id
in

g
1

m
in

T
w

o
Q

ue
ri

es

0

200

400

600

800

1,000
T

im
e

to
co

n
su

m
e

1
%

(s
e
cs

)

Dalvik
ART

Figure 5.16: Six CEP Queries - Energy consumption

Finally, we can conclude that the impact of having one or more queries

depends on the frequency of detected events (see results in Section 5.5). As we

explained before, energy savings in wireless communication are strongly-related

to reducing the duty cycles (active states) of the network interfaces (specially

the 2G/3G/4G interfaces (Carroll e Heiser, 2010)). Hence, local processing

should as much as possible reduce the frequency and the number of message

transmissions to the cloud. However, if the complexity of the processing is high,

and the probing of the sensor data transmission is infrequent, then sending

them to the cloud could be better (but only as bulk messages with many

sensor data). In the results we can also see that using ART the decrease of

energy is mitigated. The use of ART also resolves many performance related

issues that was previously seen with Dalvik (Eggum, 2014).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

6
Related Work

Several works in both industry and academia (Zachariah et al., 2015;

Pereira et al., 2013; Billet e Issarny, 2014; Min et al., 2014; Chung et al., 2014)

propose the use of average things (moderately powerful things, e.g. arduino1,

edison2) and personal mobile devices (smartphones and tablets) as the enablers

of the Internet of Things (IoT). These devices could act as temporary IP routers

and opportunistic context providers (e.g. provide location, local time) for

simpler Things. Nevertheless, only recent works are concerned with the amount

of transferred data and energy consumption of the IoT-gateways, which are

usually energy-constrained devices. (Billet e Issarny, 2014) argue that WSAN-

and Web-based techniques need to be integrated within a fully-distributed

streaming middleware that is able to run directly in every type of average thing.

So, it will allow the sensor network to perform as much in-network processing

as possible before sending any data to a proxy or the cloud. However, in-

network processing depends on the available resources (sensors/actuators) in

the current location of the IoT-gateways, for example the sensors deployed in

a university could be different from the ones in a hospital. Hence, it imposes

an important requirement of adaptability of the processing of the streaming

data.

Novel proposals (Stipkovic et al., 2013; Dunkel et al., 2013; Saleh e

Sattler, 2013; Schilling et al., 2010; Govindarajan et al., 2014; Chen et al., 2014;

Stojanovic et al., 2014; Kim et al., 2009) follow the idea of Fog Computing

(Bonomi et al., 2012), which is a cloud close to the ground, typically, but

not exclusively located at the edges of the network. The main characteristics

of Fog Computing are low latency and location awareness, mobility, wide-

spread geographical distribution, very large number of nodes, predominant

role of wireless access, strong presence of streaming and real time applications,

and heterogeneity. Contrary to the more centralized Cloud, the Fog needs to

communicate directly with mobile devices in order to provide services, creating

a requirement for a widely spread deployment. Large-scale sensor networks will

constantly monitor a wide variety of environments (heterogeneity), requiring

distributing computing and storage resources. It is very important for Fog

application to involve (near) real-time interactions instead of batch processing

(Bonomi et al., 2012). Most of Fog’s characteristics are important requirements

1https://www.arduino.cc/
2http://www.intel.com/content/www/us/en/do-it-yourself/edison.html

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 6. Related Work 61

for IoT, for example fog nodes can provide real-time processing, location and

context awareness, while the Cloud provides global centralization.

(Stipkovic et al., 2013; Dunkel et al., 2013) argue that recently several

works have proposed the use of Complex Event Processing (CEP) to process

sensor data in backend servers, using mobile devices only as event sources.

Hence, they propose the use of CEP directly in mobile devices, avoiding the

use of the cloud in order to reduce transmission load, save resources, and

ensure privacy of data since it remains only on the mobile devices (e.g. GPS).

They mentioned that this is a novel field of application since few years ago

smartphones weren’t as powerful as they are today, so the idea of having

a mobile CEP was discarded. Moreover, they imply that CEP is a software

technology which is very well suited for IoT specific processing in mobile

devices since it has in-memory processing with low latency which enables (near)

real-time operations and correlates heterogeneous data.

Edge devices are starting to have significant processing capabilities, in

this regard (Govindarajan et al., 2014) introduce a new approach where CEP

processing is distributed among edge nodes (e.g. wireless sensors, smartphones)

and the Cloud (VMs). The pipeline of CEP queries is represented by a graph,

where the vertices are the sets of queries, and the edges the event streams

that connect the output of a query to the input of the next query. They

make use of CEP because it has a fast detection on high traffic event streams

(heterogeneous data), allowing to execute different actions in (near) real-time.

Moreover, the need for a distributed CEP processing solution arises from the

performance impact of the systems as they scale to a town or a city, where

there will appear a different number and types of sensors. Their proposal only

covers the system’s architecture and representation of CEP queries. They don’t

consider a dynamic deployment of CEP queries, nor have any evaluation over

the system.

(Chen et al., 2014) propose an architecture for distributed CEP to

meet the needs of real-time streaming of information processing. The authors

advocate that traditional centralized CEP is unsuitable for IoT because devices

have to send large amounts of raw data to central servers, and network quality

could not be always good enough to provide sufficient bandwidth. Thus, they

imply that if the data can be pre-processed at the the gateways side, and

only sent the intrinsic information to the back-end servers, then not only the

transfer speed will be increased but also the processing burden will be reduced.

To simplify the use of their system, the authors included a web interface, where

each user will have their own workspace to deploy their CEP queries, save them

and create their own applications. An application may contain many query sets,

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 6. Related Work 62

where each query set is called as Event Processing Network (EPN). However,

their work doesn’t have support for mobile IoT, where gateways can be moved

to different environments (e.g. hospital, university), and thus be connected

with different sets of sensors.

(Stojanovic et al., 2014) implies that with the increase of data collected

by mobile devices, there is a need to include local processing to detect real-

time situations. Hence, they propose a system that will handle heterogeneous

data with the use of CEP in both mobile devices and server. Their system

will also adapt the CEP queries to different use cases (context-aware), because

it is not the same to monitor a person who is running, to a person sitting

in a living room. Moreover, since there are several CEP technologies with

different processing languages, they also included a translator of CEP logics

to work with different engines. By doing this, better recommendations will be

sent, better actions will be taken and battery will be saved, since it won’t be

necessary to have unused queries running on the mobile devices or cloud. As

an example; if some sensor became unavailable, and the sensor data cannot be

replaced, the query that uses such information will be un-deployed, in order to

save battery. Nevertheless, the authors still allow all the information to be sent

to the server in order to increase their complex knowledge (historical data),

moreover they only cares about situations related to health and fitness.

In the work of (Kim et al., 2009), the main concern is the execution of

CEP processing only in the cloud, so the authors moved the processing to

the mobile devices in order to reduce the latency for the responses. Authors

make use of the Data Distribution Service (DDS) (Pardo-Castellote, 2003)

to exchange data/events (sensor data) among nodes, and use CEP to create

useful information to the users (e.g. the combination of data as heartbeat

rate and blood pressure could represent the quality of blood circulation). First

data is collected from various devices (publishers, e.g. sensors, GPS, cameras)

and transmitted to each user (subscribers, e.g. PDA, smartphone) through the

DDS network. The data is processed in each mobile device depending on the

user’s demands, and delivered to the different applications. CEP queries can

be changed depending on the requirements of the applications.

There is an increasing number of sensor networks that provide data

(events) that can be useful for a lot of different applications that goes from

health to disaster detection (e.g. air quality detection, toxic substances in the

environment). Moreover, the vast majority of sensor network’s solutions only

cares about the transmission of the events to the cloud (central processing

entity). Such approaches are not adequate for resource-limited systems, it

would deplete the node’s resources (e.g. energy), and overload the network

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 6. Related Work 63

with unnecessary information. In this regard, (Saleh e Sattler, 2013) propose

to distribute CEP queries among the network as a graph, where each node

communicates with each other using a publish/subscribe mechanism. A sensor

catalog will make possible to find information about the different sensor

devices, such as their computational power, memory size, communication cost

and availability. These information will be used at the moment of decide which

CEP rules go to which nodes (e.g. server, sensors). Thus, it will reduce the

amount of useless information sent among nodes and to the cloud, and for

instance, reduce the energy consumption of the system.

Authors in (Schilling et al., 2010) state that ”Almost none of the

distributed CEP approaches proposed in the scientific literature has made it

into industrial applications so far”. Current solutions are centralized because

important context information (related to business processes) is usually located

in the data centers. Thus, they propose an architecture, where CEP queries

can be dynamically deployed to the different nodes in the cloud. They use

a meta language to model the CEP queries, in order to adapt them to the

different CEP implementations that support such processing. Their system

can benefit from placing latency-relevant queries on nodes with good network

connection, and independent queries on any node within the network to reduce

the overall detection time by using parallel computation. CEP queries are

deployed according to their requirements, for example some rules could have

some restrictions on the computational power required on the machine they

shall run on. The system has been developed and created in collaboration

with the IBM Research and Development Laboratory Böblingen, where it is

currently running.

6.1
Discussion

To compare the presented works we used the following criteria: Current

IoT solutions are server and mobile based, meaning that the data processing is

executed in the cloud or in the edge networks. Newer approaches proposed an

Hybrid Architecture, where the processing is distributed between the cloud

and the edge devices. This can be regarded as a kind of preprocessing step

to mitigate the transmissions to the cloud to reduce energy and bandwidth

consumption. Moreoever, a key technology considered by several works is

Complex Event Processing (CEP), which allows to abstract the operations

that form the event processing logic, and thus separate it from the application

logic. Additionally, event processing frequently deals with events that occur,

or could occur, in the real world (Etzion e Niblett, 2010).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 6. Related Work 64

Another criteria is the use of Mobile Devices (MD) as IoT gate-

ways for transparent access to the Internet and cloud-powered applications.

Nowadays, mobile devices possess a sufficient processing power to include CEP

for local processing. Furthermore, mobile devices can be found in several en-

vironments (e.g. universities, hospitals, houses) with different resources (i.e.

sensors, actuators), and hence different CEP queries may need to be swapped

with the ones that are already executing (processing Adaptability). Finally,

energy is scarce resource in mobile devices, therefore, not any CEP query can

be installed in them (Energy awareness). It is important to provide a bench-

mark that could work as a guideline for the interested people that want to

include CEP for in-network processing, to decide which kind of CEP queries

should be executed in mobile devices.

Authors Hybrid CEP MD Adaptability Energy

(Billet e Issarny, 2014) X X

(Stipkovic et al., 2013) X X

(Govindarajan et al., 2014) X X X

(Chen et al., 2014) X X X

(Stojanovic et al., 2014) X X X X

(Kim et al., 2009) X X X

(Saleh e Sattler, 2013) X X

(Schilling et al., 2010) X X

Table 6.1: Comparison of related works

(Stipkovic et al., 2013; Dunkel et al., 2013) approach is based on Am-

bient Assisted Living (AAL), and don’t handle adaptability of CEP queries.

Moreover, they leave all the processing to the mobile devices, avoiding the use

of the cloud and thus, it can’t handle situations where a global view of the data

is required. For example, when aggregation of data is required from different

mobile devices in different geographic locations. (Govindarajan et al., 2014)

proposal only covers the architecture and representation of the CEP queries.

They don’t consider a dynamic deployment of queries, nor have any evaluation

over the system. (Chen et al., 2014) approach is based on static environments

where gateways are always connected to the same devices. It doesn’t have sup-

port for mobile IoT, where gateways can be moved to different environments

(e.g. hospital, university), and thus be connected with different sets of sensors.

The work that handles the most issues as our work does is (Stojanovic

et al., 2014). However, they only care about situations related to health and

fitness, and don’t present any benchmark/experiments of their system (e.g.

throughput, energy) but instead they only present a software infrastructure.

(Kim et al., 2009) don’t consider that mobile devices can act as data sources

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 6. Related Work 65

and node processors at the same time. All sensor data is sent to the mobile

devices where the processing takes place. (Saleh e Sattler, 2013) propose

the use of CEP on the sensor nodes, differently from ours where we intent

to include CEP processing in more powerful devices (smartphone, tablets)

that act as gateway for the sensor nodes. In fact, authors don’t consider

mobility, where CEP queries need to be deployed dynamically depending on

the current available resources and relevant situations. (Schilling et al., 2010)

don’t consider processing at the edges, but only distribute it on the cloud.

Nevertheless, the work have a dynamic exchange of rules and events among

the different nodes on the network.

Although there are many approaches that try to include CEP in mo-

bile devices, almost none of them explores its capacity for adaptation (re-

configuration). However, even though we propose processing adaptability, and

created an environment that can allow such behavior, since our focus is on

energy and bandwidth consumption, we don’t have any experiments that can

validate this characteristic. A similar situation occurs for the works that also

include adaptability, none of them have a validation for this characteristic.

Moreover, none of the previous works provide a benchmark about the en-

ergy/bandwidth impact of the use of CEP in mobile devices, which we believe

(as explained in chapter 3) are some of the most important aspects at the

moment of including it in the IoT-gateways.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

7
Conclusion and Future Work

The popularity and proliferation of mobile handheld devices (smart-

phones, tablets) have led to propose their use as IoT gateways. Mobile devices

are starting to have substantial processing capabilities, and a myriad of features

such as short-range wireless communication. Hence, several works have started

to research how these devices with Internet connectivity can act as temporary

Internet access providers to simpler things (sensors/actuators) that only have

short range wireless interfaces. Most research however, focuses only on using

mobile devices as sources of data (sensor and user data) to be processed by

a cloud service, leaving aside their processing power and energy consumption

for Internet communication.

In this regard, this dissertation presents an IoMT sensor gateway solution

with dynamic local processing of sensor data using conventional mobile devices.

It is an extension of the Mobile Hub which is a mobile middleware that

allows any smart thing/object with some short-range communication protocol

(WPAN technology) to be opportunistically connected to the Internet. A

prototype was implemented for Android; it communicates with a mobile

communication middleware called Scalable Data Distribution Layer (SDDL),

and has Bluetooth Low Energy (BLE) as the showcase WPAN. BLE turned out

to be an excellent choice as a first WPAN technology for its high efficiency,

connectivity, and low energy consumption. Moreover, BLE is being widely

adopted for smart objects, and is being supported by most smartphone makers.

In order to gain some meaning, the enormous volumes and varieties

of continuous data streams are usually correlated in the cloud since it has

a virtually unlimited processing, energy capacity and the ability to analyze

collectively data obtained from different mobile devices. Nevertheless, WMAN

and WLAN network interfaces (e.g. WiFi and specially 2G/3G/4G) are

strong battery-draining components in mobile devices, where their energy

consumption is largely defined by their frequency of active states. Using

handhelds only to transmit such data would drain their batteries and overcrowd

the bandwidth with naive information. Thus, local processing should as much

as possible reduce the frequency and the number of message transmissions

to the cloud. In this regard, the characteristics of Complex Event Processing

(CEP), allow an easy specification of event patterns, on-the-fly reconfiguration

and fast detection of events over continuous data streams. In fact, recent studies

have shown that it is possible to use CEP in mobile devices, which led us

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 7. Conclusion and Future Work 67

include it for local processing in our IoT-gateway (the M-Hub).

Furthermore, we argue that since mobile devices have limited memory

and processing capacity (in comparison with powerful cloud servers), it is

recommended that they only execute the CEP queries that are corresponding

to the currently available sensors in the device’s vicinity. Such sensors may

vary as the M-Hub is connected with different M-OBJs during its lifetime and

in different situations. Thus, since CEP allows an on-the-fly reconfiguration,

we built a software framework around CEP to decouple the processing queries

from the application. It will allow the M-Hub to deploy/un-deploy CEP queries

using the connection link with the cloud. However, processing also consumes

a reasonable amount of energy. If the CEP processing doesn’t manage to

increase the idle intervals between transmissions, it will result terrible for

the activity time of mobile devices. In order to address this problem, we did

performance experiments using BLE SensorTag devices that measured and

compared the energy and bandwidth consumption between sending all the

sensor data, and only pre-processed data to the cloud. The results obtained

from these experiments are quite encouraging and show that CEP queries that

represent events with a low frequency of occurrence (except for very complex

computations) are more adequate for mobile devices. This is due to the fact,

that low frequency situations will reduce the active states of wireless network

interfaces. Nevertheless, if the complexity of processing is high and the probing

of the sensor data transmission is infrequent, then sending it to the cloud could

be better (but only as bulk messages with many sensor data).

Finally, most of the related works focus in the still limited processing

capacity of mobile devices in comparison with powerful workstation machines.

Hence, their experiments are mainly about the current throughput supported

by mobile CEP. Nevertheless, IoT gateways are not supposed to process the

same amount of information as cloud servers. Besides, since Dalvik and ART

were separately studied, we can conclude that Android is becoming a more

adequate environment for CEP, since ART showed an improvement in the

battery consumption in comparison with Dalvik. The results presented in

this dissertation can be used as a benchmark for the interested researchers

by showing the impact that CEP has in the activity time of mobile devices.

7.1
Future Work

Although, the presented results have proved the efficiency provided by

using CEP to pre-process sensor data in IoT gateways, we are aware that

interesting improvements, research, software development and applications

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 7. Conclusion and Future Work 68

can be derived from this work. Thus, this section intends to present some

of the future directions that this work may take. In particular, our future work

includes: a way for balancing the CEP processing among cloud and mobile

nodes, investigate the problems and possible approaches inter M-Hub handover

protocols aiming to deliver detected events to nearby M-Hubs, in case a M-Hub

is unable to establish an Internet connection.

As explained before, energy consumption is a critical issue in mobile

devices towards their adoption by end-users as the generic propagator devices

for IoMT. Users wants to extend the operation time of their devices as

much as possible. Hence, an enhanced energy manager could be included to

automatically start and stop queries depending on certain aspects of mobile

devices (e.g. battery level, number of running applications, type of network

connection). Such energy manager could be build by using the MEPA Service,

with queries that analyze the status of the mobile device in order to modify

other services behavior (e.g. the connection and location services).

Additionally, given that our approach can deploy/un-deploy CEP queries

from the cloud, it is important to limit the mobile CEP operators by avoiding

to deploy queries with a high-outbound frequency (e.g. sliding windows) in

the M-Hub. Another possible study, includes means of sending commands to

M-OBJs with actuators, and thus support any Internet-wide remote control of

smart things, such as home appliances where an event can start an action

locally without the need to sent any information to the cloud. In fact, it

brings other important challenges such as conflict resolution, which arises when

multiple applications attempt to actuate over the same device in opposing ways

(Teixeira et al., 2011).

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

8
Bibliography

BALASUBRAMANIAN, N.; BALASUBRAMANIAN, A.; VENKATARAMANI, A.

Energy consumption in mobile phones: A measurement study and implications

for network applications. In: Proceedings of the 9th ACM SIGCOMM

Conference on Internet Measurement Conference. New York, NY, USA:

ACM, 2009. (IMC ’09), p. 280–293. ISBN 978-1-60558-771-4. Dispońıvel em:

<http://doi.acm.org/10.1145/1644893.1644927>.

BILLET, B.; ISSARNY, V. Dioptase: a distributed data streaming middleware

for the future web of things. Journal of Internet Services and Applic-

ations, Springer London, v. 5, n. 1, 2014. ISSN 1867-4828. Dispońıvel em:

<http://dx.doi.org/10.1186/s13174-014-0013-1>.

BONOMI, F. et al. Fog Computing and Its Role in the Internet of Things. In:

Proceedings of the First Edition of the MCC Workshop on Mobile Cloud

Computing. New York, NY, USA: ACM, 2012. (MCC ’12), p. 13–16. ISBN 978-1-

4503-1519-7. Dispońıvel em: <http://doi.acm.org/10.1145/2342509.2342513>.

CARROLL, A.; HEISER, G. An analysis of power consumption in a

smartphone. In: Proceedings of the 2010 USENIX Conference

on USENIX Annual Technical Conference. Berkeley, CA, USA:

USENIX Association, 2010. (USENIXATC’10), p. 21–21. Dispońıvel em:

<http://dl.acm.org/citation.cfm?id=1855840.1855861>.

CHEN, C. Y. et al. Complex Event Processing for the Internet of Things and its

Applications. In: Automation Science and Engineering (CASE), 2014 IEEE

International Conference on. [S.l.: s.n.], 2014. p. 1144–1149.

CHUNG, T.-Y. et al. Design and implementation of light-weight smart home gate-

way for social web of things. In: Ubiquitous and Future Networks (ICUFN),

2014 Sixth International Conf on. [S.l.: s.n.], 2014. p. 425–430.

DACOSTA, F. Rethinking the Internet of Things: A Scalable Approach

to Connecting Everything. 1st. ed. Berkely, CA, USA: Apress, 2013. ISBN

1430257407, 9781430257400.

DAVID, L. et al. A DDS-based middleware for scalable tracking, communication

and collaboration of mobile nodes. Journal of Internet Services and Ap-

plications, Springer London, v. 4, n. 1, 2013. ISSN 1867-4828. Dispońıvel em:

<http://dx.doi.org/10.1186/1869-0238-4-16>.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 8. Bibliography 70

DUNKEL, J.; BRUNS, R.; STIPKOVIC, S. Event-based smartphone sensor pro-

cessing for ambient assisted living. In: Autonomous Decentralized Systems

(ISADS), 2013 IEEE Eleventh International Symposium on. [S.l.: s.n.],

2013. p. 1–6.

ECKERT, M.; BRY, F. Complex Event Processing (CEP). Informatik-Spektrum,

v. 32, n. 2, p. 163–167, 2009.

EGGUM, M. Smartphone Assisted Complex Event Processing.

Tese (dissertation) — University of Oslo, 2014. Dispońıvel em:

<https://www.duo.uio.no/bitstream/handle/10852/41663/Marcel-Eggum—

Thesis.pdf>.

ETZION, O.; NIBLETT, P. Event Processing in Action. 1st. ed. Greenwich,

CT, USA: Manning Publications Co., 2010. ISBN 1935182218, 9781935182214.

GOVINDARAJAN, N. et al. Event processing across edge and the cloud

for internet of things applications. In: Proceedings of the 20th Interna-

tional Conference on Management of Data. Mumbai, India, India: Com-

puter Society of India, 2014. (COMAD ’14), p. 101–104. Dispońıvel em:

<http://dl.acm.org/citation.cfm?id=2726970.2726985>.

GUBBI, J. et al. Internet of Things (IoT): A Vision, Architectural Ele-

ments, and Future Directions. Future Generation Computer Systems, El-

sevier Science Publishers B. V., Amsterdam, The Netherlands, The Nether-

lands, v. 29, n. 7, p. 1645–1660, set. 2013. ISSN 0167-739X. Dispońıvel em:

<http://dx.doi.org/10.1016/j.future.2013.01.010>.

JAEIN, K. et al. A study on cep performance in mobile embedded system. In: ICT

Convergence (ICTC), 2012 International Conference on. [S.l.: s.n.], 2012.

p. 49–50.

KIM, D. et al. Embedded cep engine used in dds-based mobile devices for

differentiated services for customers. In: Consumer Electronics, 2009. ISCE

’09. IEEE 13th International Symposium on. [S.l.: s.n.], 2009. p. 645–646.

LI, D.; HALFOND, W. G. J. An investigation into energy-saving programming

practices for android smartphone app development. In: Proceedings of the 3rd

International Workshop on Green and Sustainable Software (GREENS).

[S.l.: s.n.], 2014.

MAYER, R. Real-time distributed complex event processing for big data scenarios.

In: Distributed Event-Based Systems (DEBS) Ph. D. Forum. [S.l.: s.n.],

2013.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 8. Bibliography 71

MIN, D. et al. Design and implementation of heterogeneous iot gateway based

on dynamic priority scheduling algorithm. Transactions of the Institute of

Measurement and Control, SAGE Publications, v. 36, n. 7, p. 924–931, 2014.

PARDO-CASTELLOTE, G. OMG Data-Distribution Service: architectural over-

view. In: Distributed Computing Systems Workshops, 2003. Proceedings.

23rd International Conference on. [S.l.: s.n.], 2003. p. 200–206.

PARDO-CASTELLOTE, G. OMG Data-Distribution Service: architectural over-

view. In: Distributed Computing Systems Workshops, 2003. Proceedings.

23rd International Conference on. [S.l.: s.n.], 2003. p. 200–206.

PATHAK, A.; HU, Y. C.; ZHANG, M. Where is the energy spent inside my app?:

Fine grained energy accounting on smartphones with eprof. In: Proceedings of

the 7th ACM European Conference on Computer Systems. New York, NY,

USA: ACM, 2012. (EuroSys ’12), p. 29–42. ISBN 978-1-4503-1223-3. Dispońıvel

em: <http://doi.acm.org/10.1145/2168836.2168841>.

PENTIKOUSIS, K. In search of energy-efficient mobile networking. Comunica-

tions Magazine, IEEE, v. 48, n. 1, p. 95–103, January 2010. ISSN 0163-6804.

PEREIRA, P. P. et al. Enabling Cloud Connectivity for Mobile Internet of Things

Applications. In: Proceedings of the 2013 IEEE Seventh International

Symposium on Service-Oriented System Engineering. Washington, DC,

USA: IEEE Computer Society, 2013. (SOSE ’13), p. 518–526. ISBN 978-0-7695-

4944-6. Dispońıvel em: <http://dx.doi.org/10.1109/SOSE.2013.33>.

SALEH, O.; SATTLER, K.-U. Distributed Complex Event Processing in Sensor

Networks. In: Proceedings of the 2013 IEEE 14th International Confer-

ence on Mobile Data Management - Volume 02. Washington, DC, USA:

IEEE Computer Society, 2013. (MDM ’13), p. 23–26. ISBN 978-0-7695-4973-6.

Dispońıvel em: <http://dx.doi.org/10.1109/MDM.2013.60>.

SCHILLING, B. et al. Distributed heterogeneous event processing: Enhancing

scalability and interoperability of cep in an industrial context. In: Proceedings

of the Fourth ACM International Conference on Distributed Event-Based

Systems. New York, NY, USA: ACM, 2010. (DEBS ’10), p. 150–159. ISBN 978-1-

60558-927-5. Dispońıvel em: <http://doi.acm.org/10.1145/1827418.1827453>.

SCHMIDHäUSER, S. Dynamic operator splitting in mobile CEP scenarios.

2014. Monograph (Informatic Student), University of Stuttgart. Dispońıvel em:

<http://elib.uni-stuttgart.de/opus/volltexte/2014/9766>.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 8. Bibliography 72

SILVA, M. E. L. D.; RORIZ., M. Mr-udp: Yet another reliable user datagram

protocol, now for mobile nodes. Monografias em Ciência da Computação, nr,

Institute for Informatics, Pontifical Catholic University of Rio de Janeiro, v. 1200,

p. 06–13, 2013. ISSN 0103-9741.

SKORIN-KAPOV, L. et al. Energy efficient and quality-driven continuous sensor

management for mobile iot applications. In: Collaborative Computing: Net-

working, Applications and Worksharing (CollaborateCom), 2014 Interna-

tional Conference on. [S.l.: s.n.], 2014. p. 397–406.

STIPKOVIC, S.; BRUNS, R.; DUNKEL, J. Pervasive computing by mobile complex

event processing. In: e-Business Engineering (ICEBE), 2013 IEEE 10th

International Conference on. [S.l.: s.n.], 2013. p. 318–323.

STOJANOVIC, N. et al. Mobile CEP in Real-time Big Data Processing: Chal-

lenges and Opportunities. In: Proceedings of the 8th ACM International

Conference on Distributed Event-Based Systems. New York, NY, USA:

ACM, 2014. (DEBS ’14), p. 256–265. ISBN 978-1-4503-2737-4. Dispońıvel em:

<http://doi.acm.org/10.1145/2611286.2611311>.

TALAVERA, L. et al. The Mobile Hub concept: Enabling applications for the

Internet of Mobile Things. In: Pervasive Computing and Communication

Workshops (PerCom Workshops), 2015 IEEE International Conference

on. [S.l.: s.n.], 2015. p. 123–128.

TARKOMA, S. et al. Smartphone Energy Consumption: Modeling and Op-

timization. Cambridge University Press, 2014. ISBN 9781107042339. Dispońıvel

em: <https://books.google.fi/books?id=ai0DBAAAQBAJ>.

TEIXEIRA, T. et al. Service oriented middleware for the internet of things:

A perspective. In: Proceedings of the 4th European Conference on

Towards a Service-based Internet. Berlin, Heidelberg: Springer-Verlag,

2011. (ServiceWave’11), p. 220–229. ISBN 978-3-642-24754-5. Dispońıvel em:

<http://dl.acm.org/citation.cfm?id=2050869.2050893>.

VASCONCELOS, R. O. et al. Autonomous load balancing of data stream pro-

cessing and mobile communications in scalable data distribution systems. Inter-

national Journal On Advances in Intelligent Systems (IARIA), Citeseer,

v. 6, n. 3,4, p. 300–317, 2013. ISSN 1942-2679.

VASCONCELOS, R. O.; Nery e Silva, L.; ENDLER, M. Towards efficient group

management and communication for large-scale mobile applications. In: Pervasive

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

Chapter 8. Bibliography 73

Computing and Communications Workshops (PERCOM Workshops),

2014 IEEE International Conference on. [S.l.: s.n.], 2014. p. 551–556.

ZACHARIAH, T. et al. The internet of things has a gateway prob-

lem. In: Proceedings of the 16th International Workshop on Mo-

bile Computing Systems and Applications. New York, NY, USA: ACM,

2015. (HotMobile ’15), p. 27–32. ISBN 978-1-4503-3391-7. Dispońıvel em:

<http://doi.acm.org/10.1145/2699343.2699344>.

DBD
PUC-Rio - Certificação Digital Nº 1412717/CA

	An Energy-aware IoT Gateway, with Continuous Processing of Sensor Data
	Resumo
	Contents
	Introduction
	Problem Statement
	Objective and Contribution
	Methodology
	Outline

	Background
	Complex Event Processing
	Scalable Data Distribution Layer Middleware

	Energy Consumption in Mobile Devices
	Mobile Environment Evolution
	Components of Mobile Devices
	Energy-Saving Strategy

	The Mobile Hub
	Communication Infrastructure
	Local Processing Infrastructure
	Summary

	Performance Experiments and Results
	Experimental Setup
	Filtering Query
	Aggregation Queries
	Aggregation Queries with Heavy Processing
	Aggregation and Pattern Match Queries
	Discussion

	Related Work
	Discussion

	Conclusion and Future Work
	Future Work

	Bibliography

