
1

Thiago Delgado Pinto

Unifying Agile Requirements Specification
Quality Control and Implementation

Conformance Assurance

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-gradu-
ação em Informática of PUC-Rio in partial fulfillment
of the requirements for the degree of Doutor em
Ciências - Informática.

Advisor: Prof. Arndt von Staa

Rio de Janeiro
September 2018

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

2

Thiago Delgado Pinto

Unifying Agile Requirements Specification
Quality Control and Implementation

Conformance Assurance

Thesis presented to the Programa de Pós-gradu-
ação em Informática of PUC-Rio in partial fulfillment
of the requirements for the degree of Doutor em
Ciências - Informática. Approved by the undersigned
Examination Committee

Prof. Arndt von Staa
Advisor

Departamento de Informática - PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática - PUC-Rio

Prof. Alessandro Fabricio Garcia
Departamento de Informática - PUC-Rio

Prof. Leonardo Gresta Paulino Murta
UFF

Prof. Auri Marcelo Rizzo Vincenzi
UFSCar

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, September 6th, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

3

 All rights reserved.

 Thiago Delgado Pinto

He is currently professor at CEFET/RJ, where he teaches

subjects related to Software Engineering. Graduated in Infor-

matics from UNESA in 2003; obtained his Specialist degree

in Software Engineering from the Senac-Rio University in

2010; and his Master’s degree in Computer Science (Soft-

ware Engineering) from the PUC-Rio in 2013.

 Bibliographic data

Pinto, Thiago Delgado

Unifying Agile Requirements Specification Quality Con-
trol and Implementation Conformance Assurance / Thiago
Delgado Pinto; Advisor: Arndt von Staa. – 2018.

252 f.: il. ; 30 cm

Tese (Doutorado em Informática) – Pontifícia
Universidade Católica do Rio de Janeiro, Rio de Janeiro,
2018.

Inclui bibliografia.

1. Informática – Teses. 2. Agile. 3. Requirements
specification. 4. Verification. 5. Validation. 6. Testing. 7.
Generation. 8. Model-driven. I. Staa, Arndt von. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

To Idaiane, for her encouragement and love at all times.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

5

Acknowledgements

To my wife Idaiane, for the love, understanding, patience, encouragement, and

support that made this work possible.

To my advisor, Arndt von Staa, for the counseling, pondering, fruitful discussions,

reviews, and pleasant conversations.

To my friend Edgar Alexander, for the friendship during our travels between Nova

Friburgo and Rio and all the moments we had to stay in Rio.

To my coworkers at CEFET/RJ, for backing me up during the last months of my

research.

To all the companies involved with the multi-case study.

To all the members of the examining committee.

To all the professors at PUC-Rio who collaborate to my academic education or

growth, especially to Arndt, Alessandro, and Simone.

To all the collaborators from the Informatics Department’s administration office at

PUC-Rio, in particular to Regina and Alex.

To PUC-Rio, CAPES, and CEFET/RJ, which partly supported this work, and for

what I am grateful.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior – Brasil (CAPES) – Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

6

Abstract

Pinto, Thiago Delgado; Staa, Arndt von (Advisor). Unifying Agile

Requirements Specification Quality Control and Implementation

Conformance Assurance. Rio de Janeiro, 2018. 252p. D.Sc. Thesis -

Departamento de Informática, Pontifical Catholic University of Rio de

Janeiro.

Agile requirements engineering practices are being used more commonly by

software development teams. However, practices related to quality control still

depend heavily on testers’ expertise and manual labor, whilst produced require-

ments specifications are often imprecise and hard to verify statically by both stake-

holders and computers. This thesis jointly tackles the problem of verifying statically

agile requirements specifications and generating full-featured test cases and auto-

mated test scripts from them. Its main contributions include: (1) a new metalan-

guage, called Concordia, for writing agile requirement specifications that can be

used for both verification and validation (V&V) activities involving stakeholders;

(2) a novel approach to generate full-featured ready to use test cases and automated

test scripts from the requirements specified with the metalanguage; (3) the assess-

ment in industrial context of the approaches’ ability to reduce risk of remaining

defects and the costs of V&V.

Keywords

agile; requirements specification; verification; validation; testing; generation;

model-driven;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

7

Resumo

Pinto, Thiago Delgado; Staa, Arndt von (Orientador). Unificando Controle

de Qualidade de Especificação Ágil de Requisitos e Garantia de

Conformidade de Implementação. Rio de Janeiro, 2018. 252p. Tese de

Doutorado - Departamento de Informática, Pontifícia Universidade Católica

do Rio de Janeiro.

Práticas de engenharia de requisitos ágeis estão se tornando mais comuns em

equipes de desenvolvimento de software. Contudo, as práticas relacionadas ao

controle de qualidade ainda dependem fortemente do conhecimento, da experiência

e do trabalho manual de testadores, em adição as especificações de requisitos

produzidas são frequentemente imprecisas e difíceis de verificar estaticamente por

interessados ou por algum computador. Essa tese ataca conjuntamente o problema

de verificar estaticamente especificações de requisitos ágeis e de gerar casos de

teste e scripts de teste automatizados completos a partir delas. Suas contribuições

principais incluem: (1) uma nova metalinguagem, chamada Concordia, que permite

escrever especificações de requisitos ágeis que podem ser usadas para atividades de

verificação e validação (V&V); (2) uma nova abordagem para gerar casos de teste

e scripts de teste automatizado completos, a partir de requisitos especificados com

a metalinguagem; (3) a medição, em contexto industrial, da capacidade da

abordagem em reduzir o risco de defeitos e custos de V&V.

Palavras-Chave

ágil; especificação de requisitos; verificação; validação; teste; geração;

dirigida por modelos;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

8

Table of Contents

1 Introduction 17

1.1. Motivation 17

1.2. Problem definition 19

1.3. Main contributions 24

1.4. Scope and constraints 25

1.5. Overview of the solution 25

1.6. Organization 26

2 Terms and Definitions 28

3 Validation and Verification from Agile DSLs 34

3.1. Related work 36

3.2. Research gaps 43

3.3. Concluding remarks 45

4 Agile DSLs and Metalanguages 46

4.1. Common DSLs 47

4.2. Specification of non-functional requirements 51

4.3. Integration with source code 52

4.4. Metalanguages 53

4.5. Concluding remarks 69

5 Restricted Natural Language Processing 70

5.1. Related work 70

5.2. Techniques 73

5.3. Approaches 78

5.4. Solutions for Natural Language Processing 80

5.5. Intent recognition with Bravey 83

5.6. Intent recognition in Concordia 86

5.7. Concluding remarks 88

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

6 Concordia 89

6.1. Language constructions 90

6.2. A quick example 104

6.3. Concluding remarks 105

7 Approach 106

7.1. Overview 106

7.2. High-level architecture 108

7.3. Verification 110

7.4. Validation 129

7.5. Maintenance 135

7.6. Concluding remarks 137

8 Proof of Concept 138

8.1. Selected cases 138

8.2. Detecting problems in specifications 140

8.3. Generating test cases and test scripts 145

8.4. Concluding remarks 170

9 Multi-case Study 171

9.1. Study design 171

9.2. Quantitative data 186

9.3. Qualitative data 194

9.4. Discussion 199

9.5. Concluding remarks 205

10 Epilogue 206

10.1. Conclusions 206

10.2. Future work 210

Bibliography 215

Appendix A – Architecture of the Solution 227

Appendix B – Concordia Grammar 244

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

Appendix C – Static Checking 246

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

11

List of Figures

Figure 1 - Main problem and subproblems ... 22

Figure 2 - Approach ... 25

Figure 3 – An Activity Diagram produced by Rane's approach 41

Figure 4 – Example of test cases produced by Rane's work 41

Figure 5 - Example of a Class Diagram generated by Soeken et al.'s work 72

Figure 6 – Example of an application of the Stanford Parser 72

Figure 7 – Example of a dependency analysis .. 75

Figure 8 - Example of a semantic grammar parse ... 79

Figure 9 - Overview of the process ... 106

Figure 10 – High-level architecture ... 109

Figure 11 - Prioritization techniques ... 113

Figure 12 - Number of inputs needed to detect defects 115

Figure 13 – Example of a T-wise combination ... 116

Figure 14 - Example of test scenarios ... 118

Figure 15 - Test case generation process ... 127

Figure 34 - Verification Case 1 ... 140

Figure 35 - Verification Case 2 ... 141

Figure 36 - Verification Case 3 ... 142

Figure 37 - Verification Case 4 ... 143

Figure 38 - Verification Case 5 ... 144

Figure 39 – Some validations in the Login screen .. 145

Figure 40 - Execution of a test script ... 158

Figure 41 – Documentation artifacts and automated tests 187

Figure 42 - Usage of requirement specifications ... 187

Figure 43 - Features, maturity, and validation... 188

Figure 44 –Concordia’s reading comprehension ... 190

Figure 45 – Concordia's writing comprehension ... 191

Figure 46 - Perceived time writing Concordia specifications 191

Figure 47 - Perception about Concordia tests .. 192

Figure 48 - Overall perceptions on Concordia .. 194

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

12

List of Tables

Table 1 - Comparison criteria with related work .. 35

Table 2 - Comparison with related work ... 37

Table 3 - Comparison of Metalanguages .. 59

Table 4 - Tags in Penn Treebank ... 73

Table 5 - Selected relations from the Universal Dependency set 76

Table 6 – Solutions for Natural Language Processing .. 82

Table 7 - Language constructions in Gherkin and Concordia 90

Table 8 – Symbols in Concordia ... 92

Table 9 - Reserved tags ... 94

Table 10 - Database properties .. 97

Table 11 - UI Element properties .. 98

Table 12 - Test Events ... 103

Table 13 - Data test cases .. 120

Table 14 - Data test cases added according to declared properties 123

Table 15 - Compatibility between properties and data types 124

Table 16 - UI Element property compatibility .. 124

Table 17 - Strategies to mix data test cases ... 125

Table 18 - Roles and competences in requirements validation 131

Table 19 – Pre-test defect removal efficiency ... 132

Table 21 – Cases selected to exemplify problems detection 139

Table 22 - Cases selected to exemplify the produced tests 139

Table 23 - Companies' Profiles ... 172

Table 24 - Participants' Profiles... 174

Table 25 - Questionnaire rationale .. 175

Table 26 – Semi-structured interviews rationale ... 182

Table 27 - Defects found per participant and company 193

Table 28 - Defects found in the prototype tool with the help of participants 199

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

13

Listings

Listing 1 – A test scenario from Rane’s work ... 40

Listing 2 – DSL for User Story ... 47

Listing 3 – Example of a Feature .. 47

Listing 4 – DSL for a Scenario .. 48

Listing 5 - Example of a Scenario ... 48

Listing 6 –Scenarios that vary by values ... 50

Listing 7 - Example of a Parameterized Scenario ... 51

Listing 8 - Example of NFR as a feature ... 52

Listing 9 – Step definition in Ruby ... 52

Listing 10 – Step definition in Java ... 52

Listing 11 – Example in JBehave .. 55

Listing 12 – Example in Gherkin .. 56

Listing 13 – Example in Robot .. 57

Listing 14 – Example in Gauge ... 58

Listing 15 – Example in Concordia ... 68

Listing 16 – Example of a semantic grammar ... 78

Listing 17 – Example in Bravey .. 84

Listing 18 – Example of parameterization in Bravey .. 85

Listing 19 – Example of a syntax rule for a intent .. 88

Listing 20 – Comment in Concordia ... 93

Listing 21 – Language in Concordia ... 93

Listing 22 – Import in Concordia .. 93

Listing 23 – Tags in Concordia ... 93

Listing 24 – Feature in Concordia ... 94

Listing 25 – Scenario in Concordia ... 95

Listing 26 – Constants in Concordia ... 95

Listing 27 – Table in Concordia .. 96

Listing 28 – Database in Concordia .. 96

Listing 29 – A simple UI Element in Concordia ... 99

Listing 30 – UI Element with Otherwise steps .. 99

Listing 31 – UI Element with dynamic properties .. 100

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

Listing 32 – Variant in Concordia ... 102

Listing 33 – Test Case in Concordia ... 103

Listing 34 – Test Events in Concordia .. 104

Listing 35 – A Quick Example in Concordia .. 104

Listing 36 – Feature Login .. 147

Listing 37 - Partial Test Cases produced for Login .. 152

Listing 38 - Partial Test Scripts for Login ... 157

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

List of Abbreviations

ATDD Acceptance Test-Driven Development

ARE Agile Requirements Engineering

ASD Agile Software Development

BA Business Analyst

BDD Behavior-Driven Development

BFL Business-Friendly Language

BNF Backus-Naur Form

BRDSL Business-Readable Domain Specific Language

CSS Cascading Style Sheets

DSL Domain-Specific Language

GUI Graphical User Interface

HTML Hyper-Text Markup Language

JSON JavaScript Object Notation

MBT Model-Based Testing

NFR Non-Functional Requirement

RE Requirements Engineering

SbE Specification by Example

SM State Machine

SQL Structured Query Language

SUT System Under Test

TDD Test-Driven Development

UAT User Acceptance Testing

UI User Interface

UL Ubiquitous Language

UML Unified Modeling Language

V&V Verification and Validation

XML eXtensible Markup Language

XP eXtreme Programming

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

The hardest part of the software task is arriving at a complete and

consistent specification, and much of the essence of building a pro-

gram is, in fact, the debugging of the specification.

Freddy Brooks, in “No silver bullet” (1986)

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

17

1Introduction

It is easier to change the specification to fit the program than vice versa.

- Alan Perils (Turing award-winning, 1966)

Despite the need for software is increasing every day, small and medium soft-

ware companies still struggle to benefit from state-of-the-art techniques of software

development and testing. The pressure for deadlines, the difficulty of applying the-

ory, and the low technical training of software teams make such techniques intan-

gible or hard to adopt. The advent of agile practices and frameworks, such as Lean

Software Development (POPPENDIECK, 2007) and Behavior-Driven Develop-

ment (BDD) (NORTH, 2006), compensate the lack of formal software engineering

methods with frequent customer feedback, test automation, essential documenta-

tion, and focus on deliverables that bring value to the business. Nevertheless, many

problems persist. The quality and coverage of produced tests depend heavily on

testers’ expertise and manual labor; produced requirements specifications are often

imprecise and mix business and computing jargons, making them both difficult to

be statically validated by customers and other stakeholders (aiming to reduce errors,

imprecisions, inconsistencies, or incompleteness), and vague enough to not be use-

ful for testers and developers. These problems increase the chances of delivering

wrong or buggy software and the risk of useless rework. How can we mitigate them?

1.1.Motivation

It is well established that removing a defect corresponding to a software

requirement at the beginning of its construction can be up to ten times cheaper than

do it before construction and up to a hundred times cheaper than do it after

launching (BOEHM & TURNER, 2003a; BOOCH, 1999; FAGAN, 1976; JONES,

1996; LEFFINGWELL, 1997; SHULL et al., 2002). Debugging and fixing software

are costly activities, which may correspond to up to fifty percent of the time of a

software project (BOEHM & BASILI, 2001; JONES, 1998; MILL & WEINBERG,

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

18

1988; SHULL et al., 2002; WHEELER; BRYKCZYNSKI & MEESON JR, 1996;

WIEGERS, 2002; WIEGERS & BEATTY, 2013). Pre-test defect removal prac-

tices, such as formal inspections and static analysis, may cut development and

maintenance costs by about thirty percent (JONES & BONSIGNOUR, 2012;

MCCONNELL, 2004). To invest in validation practices like these, as well as in

“correctness by construction” (AMEY, 2002) and in software testing automation

may contribute substantially to help projects to stay on budget and schedule

(AMEY, 2002; JONES & BONSIGNOUR, 2012; MCCONNELL, 2004). Although

there are clear benefits of adopting effective verification and validation (V&V)

practices, and there are a plethora of approaches in the literature, there still exists a

big gap between real software systems1 and the practical usability of techniques

proposed by the research community (ANAND et al., 2013).

In the past few decades, a considerable amount of research effort has been spent

on V&V activities individually. Approaches to both deal with V&V are still meager

and have important open challenges (ANAND et al., 2013; DUBOIS et al., 2013).

Dubois et al. (2013), for instance, point out some challenges and related questions,

of which we highlight:

i) Gap between models and V&V formalisms: How do we express proper-

ties at the level of models in a way understandable to clients? How do we

formulate models and properties in a single language transparent to cli-

ents? How do we report the V&V results and diagnostics in an appropri-

ate form to clients? How do we bridge the gap between formally ex-

pressed and verified properties on one side and client attention on the

other side?

ii) Informal vs. formal vs. incomplete modeling: How do we handle incom-

plete or partial models in relation to V&V?

iii) Comparison and benchmarking: How do we compare existing V&V

tools employed for modeling with relation to functionality, coverage,

scalability, expressiveness, executing system (i.e., for models at

runtime)? Which criteria are appropriate for comparison?

1 Software systems produced in industry or academia to solve real-world problems.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

19

iv) Domain-specific languages: How can Domain-Specific Languages

(DSL) be defined so that they are close to the domain concepts on the

one hand, but still allow the generation of meaningful input files for ver-

ification tools? How do we express the properties to be verified at the

domain level in a user-friendly way? Can specifications be integrated

with the same DSL or model used for describing the to-be-verified sys-

tem without creating self-fulfilling prophecies? How can we lift the result

of a verification (e.g., an example program execution that demonstrates

the failure) back to the domain level and express it in terms of the DSL-

level input? Can incremental language extensions help to make programs

expressed in general-purpose languages more checkable?

Since such challenges hinder the practices above to effectively reducing costs

and time in software projects, new approaches to mitigating problems related to the

V&V are needed and welcome.

Nowadays, agile software development (ASD) is used to cope with the increas-

ing complexity in system development (SCHÖN; THOMASCHEWSKI &

ESCALONA, 2017). A growing number of software companies is adopting “Agile”

requirements engineering (RE) practices as a way to solve problems of traditional

RE – e.g., communication issues, requirements validation, requirements documen-

tation (CURCIO et al., 2018; INAYAT et al., 2015; SCHÖN; THOMASCHEWSKI

& ESCALONA, 2017). Are there integrated approaches for V&V that consider the

agile software development? Do they try to mitigate the aforementioned chal-

lenges? How they try to reduce the risks of delivering wrong or buggy software and

the risk of useless rework?

1.2.Problem definition

Correct software is an important research goal in Software Engineering and is a

permanent aim of any software company. Defects arising from incorrect or incom-

plete requirements specifications are admittedly expensive (BOEHM & TURNER,

2003b; BOOCH, 1999; FAGAN, 1976; JONES, 1996; LEFFINGWELL, 1997;

SHULL et al., 2002) and may lead to software that does not fit stakeholders’ needs.

On the other side, software that can meet their needs, may not work properly due to

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

20

defects arising from incorrect development and scarce or inadequate testing. Thus,

verifying the specification, validating its requirements with stakeholders and check-

ing (testing) properly whether the produced software complies with the require-

ments are imperative activities to create correct software. Furthermore, the availa-

bility of execution examples – i.e., test scripts – previous to initiating development

is expected to reduce the number of defects inserted into the software due to incor-

rect understanding of the specification (ADZIC, 2009, 2011; GÄRTNER, 2012).

Providing ways to reducing adequacy and quality control costs is a demanding chal-

lenge to pursuit (ANAND et al., 2013; DUBOIS et al., 2013).

IEEE 26515 (2012) affirms that “In agile development, it is important that the

development of the user documentation is part of the same processes as the software

product lifecycle, and performed in conjunction with the development of the soft-

ware. This enables the software and the user documentation to be tested, distrib-

uted, and maintained together. In agile development, the software cannot be con-

sidered complete without the production and validation of the associated user doc-

umentation.”. These practices are also fostered by methodologies like Acceptance

Test-Driven Development (ATDD) (GÄRTNER, 2012), Behavior-Driven Devel-

opment (BDD) (NORTH, 2006), and Specification by Example (SbE) (ADZIC,

2009). All of them use user documentation as a primary artifact to discuss and val-

idate requirements with stakeholders, for creating a shared understanding between

stakeholders and the software team, and to derive tests that help to verify the com-

pliance of the produced software with these requirements. Systematic mapping

studies on agile software development (CURCIO et al., 2018; INAYAT et al., 2015;

SCHÖN; THOMASCHEWSKI & ESCALONA, 2017) identify that user story is

the most common format to write such user documentation. This holds true in the

aforementioned methodologies. User stories capture the needs and desires of the

involved stakeholders in the form of features and scenarios (ADZIC, 2009, 2011;

NORTH, 2003). Features and scenarios are business readable DSLs (FOWLER,

2008), i.e., they are readable by business people and, thus, proper for validation.

However, are these “Agile DSLs” proper for verification? Current tools to support

ATDD, BDD, and SbE, such as Cucumber (HELLESØY, 2009) and JBehave

(NORTH, 2003), only generate test script skeletons from these Agile DSLs, i.e., the

software team still have to produce their content manually. Current approaches for

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

21

producing test cases from Agile DSLs – e.g., Rane (2017), Elghondakly et al.

(2015), Kamalakar et al. (2013) – cannot produce test data and test oracles, and

cannot produce test scripts that verify whether a software implementation corre-

spond to its specifications (e.g., functional tests). Furthermore, there are no ap-

proaches concerned with both V&V activities, e.g., none of them is concerned with

pre-test defect removal practices, such as static analysis, to identify problems in

requirements specifications prior to testing. Is it possible to provide an integrated

approach for ASD that tries to mitigate these gaps? A possible reason for the lack

of such approaches is the difficulty to make a computer to understand requirements

in natural language, due to the enormous variation on their writing style. Without

restricting the writing style and the adopted vocabulary, the problem can turn into

an undecidable problem. Approaches that tried somehow to restrict the input format

were able to extract the needed data for generating their output. Is it possible to do

the same for Agile DSLs? How can Natural Language Processing (NLP) help with

that?

Other important sub-problems to consider since we want to generate full-fea-

tured functional test cases and test scripts - i.e., test cases and test scripts with rele-

vant data and oracles - are (ANAND et al., 2013; BARR et al., 2015; LIU et al.,

2014):

1) Combinatory explosion – the difficulty to verify all the paths in an applica-

tion. Today’s applications are getting bigger and bigger, and solutions that

do not consider ways to adequately balance time and coverage can be unfea-

sible in practice. Which reduction criteria can be considered to make the test

generation feasible in an integrated solution for V&V? Can these criteria

use any information from the specification?

2) Choosing the relevant test data: model-based automatic test data generation

requires analyzing constraints and producing the right input values to satisfy

them – or to not satisfy them –, as well as to predict the associated execution

paths. When a constraint is unsatisfiable, the corresponding path is unfeasi-

ble. The analysis for choosing test data may involve symbolic execution.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

22

How can we generate relevant test data from Agile DSLs? How can we avoid

path explosion? How to detail with complex constraints?

3) Generating test oracles: test oracles must distinguish whether a certain sys-

tem behavior is correct (or not). In manual testing, a human plays the oracle

role. Computer-generated oracles should try to eliminate human interven-

tion. How to produce correct and relevant oracles from Agile specifications?

1.2.1.Summary

Figure 1 - Main problem and subproblems

Figure 1 tries to summarize the main problem and sub-problems tackled by this

thesis – although there are more involved. As mentioned, the approach involves

V&V techniques. Regarding validation, to find a way of providing a specification

that is easy-to-understand by stakeholders which are not fluent in computational or

application aspects, simple-to-write by the software team, and able to be verified

statically. Regarding verification, to find a way of helping software teams to check

whether their implementation of a system is in accordance with the requirements

specification, through tests, and a way of checking requirements for (syntactic, se-

mantic, logic) errors.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

23

The approach should also try to mitigate the following sub-problems:

(i) Avoiding combinatory explosion, aiming to find a balance between cov-

erage and feasibility;

(ii) Choosing the relevant test data;

(iii) Generating test oracles;

(iv) Providing traceability between generated test scripts and requirements

specifications.

1.2.2.Proposal

We propose an approach to reduce the number of defects stemming from incor-

rect or incomplete requirements specifications – so costly and longstanding – and

reducing the costs of producing acceptance tests. The approach introduces a busi-

ness-readable, Agile-friendly, state-based, statically verifiable, requirements speci-

fication metalanguage as the base model to verification and validation (V&V) ac-

tivities. It also provides means to use the metalanguage for generating traceable,

full-featured test cases and test scripts that can mitigate the aforementioned ap-

proaches’ limitations.

Therefore, this thesis investigates the use of a metalanguage based on Agile

DSLs to tackle the problems summarized in Figure 1. More specifically, whether

requirements specified with this metalanguage can be used for validation with

stakeholders and whether it can be used for preventing or detecting defects.

1.2.3.Research questions

The main research question (MRQ) of this work is:

MRQ: Can Agile DSLs combined with our approach serve for both validating

and automatically verifying applications effectively?

Secondary research questions (SRQ) arisen from the MRQ are:

SRQ1: How can Agile DSLs be used for generating full-featured test scripts?

SRQ2: Can test scripts generated from Agile DSLs reveal defects in existing ap-

plications?

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

24

SRQ3: Can an approach for V&V that uses Agile DSLs reduce test time and

costs?

SRQ4: Can an approach for V&V that uses Agile DSLs be used for preventing

defects?

1.2.4.Evaluation

We evaluated the proposed approach through a multi-case study with small soft-

ware companies. They received an initial one-day training about the metalanguage

and the prototype tool, and were supported during the case studies to make sure

they could use the approach with their applications. We collected quantitative data

(e.g., number of features involved, maturity level of applications and features) and

qualitative data (e.g., participants’ opinions and observations about the language

and generated tests) through questionnaires and semi-structured interviews. Results

are detailed in chapter 9.

In chapter 8, we present a proof of concept to illustrate the proposed approach’s

capacity to check errors in requirements specifications written with Concordia – the

introduced metalanguage – and its capacity to detect differences between an appli-

cation and a system under test.

1.3.Main contributions

Main contributions are:

(i) a new metalanguage for writing agile requirement specifications that can

be used for both V&V activities;

(ii) the first approach to generate full-featured ready to use test cases and test

scripts from agile requirements specifications;

(iii) the first integrated approach for V&V of agile requirements specifica-

tions;

(iv) the assessment in industrial context of the proposed approach.

Chapter 10 presents a detailed list of the contributions.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

25

1.4.Scope and constraints

We are currently narrowing our approach to information systems, due to research

time restrictions to verify other contexts.

The approach can only generate functional test cases. Although the presented

metalanguage, Concordia (chapter 6), can be used for specifying functional and

non-functional requirements, our approach cannot generate test cases for non-func-

tional requirements (NFR). The automatic test case generation from NFR consists

of a challenging problem to be resolved (ANAND et al., 2013), even for those NFR

verifiable via software, such as performance, security, availability or portability.

Despite that, since Concordia is compatible with the Gherkin metalanguage (section

4.4.2), it can be used by Gherkin-based tools like Cucumber or JBehave to generate

test script skeletons from NFR.

1.5.Overview of the solution

Figure 2 - Approach

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

26

Figure 2illustrates the proposed approach. The software team produces the

requirements specification collaboratively using Concordia, the introduced meta-

language. For example, Business Analysts (BA) write Features and Scenarios based

on business needs and desires; User Interface (UI) Designers, Testers, and Devel-

opers write Variants – i.e., templates of expected interactions with the system’s user

interface – and detail business rules related to the UI together with BA. The team

uses the tool to check the specification for errors or inconsistencies and to generate

test cases. Users and Stakeholders validate Features, Scenarios, and Variants – and

Test Cases when needed –, and the software team makes adjustments in the speci-

fication based on their feedback. The software team then uses the tool to generate

test scripts from the requirements specification and run them for checking the com-

pliance of implemented features with the specified functional requirements and for

discovering defects. Fixes in the application or adjustments in the application or in

the specification are eventually made. This entails a need to revise the specification

and to generate a new version of the test scripts. Finally, when the application is

released, the team validates it with users and stakeholders. New adjustments or fea-

tures are reflected in the specification and the process restarts.

Concordia is composed of Agile DSLs (chapter 4 details them). Agile DSLs usu-

ally adopt some words as prefixes and let the rest of the sentences be written in

natural language. Since their structure is not formal enough for generating test cases

automatically, the approach uses natural language processing (NLP) techniques

(chapter 5) and adopts a restricted (although flexible and adaptable) vocabulary.

1.6.Organization

The rest of this work is organized into the following chapters:

2. Terms and Definitions: presents terms and definitions used in the rest of

this thesis;

3. Validation and Verification from Agile DSLs: describes and compares

works related to this thesis and related research gaps;

4. Agile DSLs and Metalanguages: details commonly used Agile DSLs and

metalanguages, and compares these metalanguages with that introduced

by this thesis;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

27

5. Restricted Natural Language Processing: presents techniques for NLP,

compares industry-level solutions for NLP, and details the techniques

adopted in the proposed approach;

6. Concordia: presents the novel metalanguage to specify software require-

ments based on Agile DSLs;

7. Approach: details the approach proposed in this thesis;

8. Proof of Concept: illustrates the approach’s capacity to check problems

in Concordia specifications, and differences between these specifications

and a system under test.

9. Multi-case Study: details the multi-case study with software companies,

and discusses its results.

10. Epilogue: presents the contributions and proposes some future work.

Additional content includes:

 Appendix A – Architecture of the Solution: Details the architecture of the

proposed solution.

 Appendix B – Concordia Grammar: Grammar of the Concordia metalan-

guage in Backus-Naur Form (BNF).

 Appendix C – Static Checking: Presents a listing with the static verifica-

tions performed by the proposed approach.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

28

2Terms and Definitions

I welcome new words, or old words used in new ways, provided the result is

more precision, added color or greater expressiveness.

- William Safire (American writer)

This chapter presents the terminology adopted in the thesis.

A domain-specific language (DSL) is a computer programming language of lim-

ited expressiveness focused on a particular domain (FOWLER, 2009). This work

uses the term DSL as a synonym for a textual, grammar-based DSL. Model-driven

engineering (MDE) community also uses the term DSL as a synonym for domain-

specific modeling language (DSML), which may use meta-models to describe syn-

tax (instead of a grammar) and present different semantics (KOSAR; BOHRA &

MERNIK, 2016). Examples of (grammar-based) DSLs include HTML, CSS, SQL,

YACC grammars for creating parsers, GraphViz’s Dot (graphical rendering of

node-and-arc graphs), R (a language and platform for statistics), Mathlab (for

numerical and symbolic computing), JMock (library for defining mock objects in

test scripts), Unix shell scripts, regular expressions, etc. According to Mernik et al.

(2005), DSLs are also called application-oriented (SAMMET, 1969), special pur-

pose (WEXELBLAT, 1981), specialized (BERGIN; GIBSON & PRESS, 1996),

task-specific (NARDI, 1993), or application (MARTIN, 1985) languages. A sys-

tematic mapping study on DSLs is presented by Kosar et al. (2016).

A business-readable DSL (BRDSL) is one which business people can read and

understand (FOWLER, 2008). Such languages are not necessarily business-writa-

ble – that is, they are not intended to be directly used by business people, but rather

by business analysts or software developers, who translate the business knowledge

to the target language. Usually, a BRDSL facilitates a software team to use a

ubiquitous language.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

29

A ubiquitous language (UL) is a language structured around the domain model,

that can be used by all team members in a bounded context to connect all the activ-

ities of the team with the software (EVANS, 2003). It can be used in conversations

with domain experts to foster domain understanding and to avoid terms that are

awkward or inadequate to their communication, such as computer jargon. A clear

communication prevents misunderstandings about requirements and, thus, may re-

duce the number of defects originated from them.

A defect (a.k.a. fault) is a fragment of an artifact that, when used or executed,

may lead to an error (ISO; IEC & IEEE, 2017; STAA, 2017). An error is a deviation

between what is desired or intended and what is specified, required or expected

(ISO; IEC & IEEE, 2017; STAA, 2017). For instance, an error could be omission

or misinterpretation of user requirements in a software specification, incorrect

translation, or omission of a requirement in the design specification (ISO; IEC &

IEEE, 2017). Errors are caused by defects. A failure is an observed error (STAA,

2017). Thus, the occurrence of an error is always unknown until the error is

observed by some means. Error latency is the elapsed time until an error becomes

a failure (STAA, 2017). Failure Detection Rate (FDR) (a.k.a. Fault Detection Rate)

is the number of failures per unit of time, detected by a test suite (ELBAUM;

MALISHEVSKY & ROTHERMEL, 2002). Defects can appear in any artifact. For

example, a requirements specification may contain defects. Exercising them, i.e.,

developing in conformance to them will produce erroneous designs or architectures.

If these errors are not identified, they may propagate into other artifacts, ultimately

into code and test suites. Many specification defects correspond to inadequacies,

i.e., to specifications that do not conform to stakeholders needs. Furthermore, such

defects may not be observed even when formal specifications are used.

A test oracle – from now on referred just as oracle – is a person or mechanism

that can determine whether the output produced by a given input to some artifact is

correct or not (WEYUKER, 1982). Computer-generated oracles try to mimic the

human ability to observe failures. However, a human tester cannot always predict

all the expected outputs for an input with complex data. Sometimes partial oracles

may be produced for providing a verdict for these outputs (e.g., using inference

models) (FINOT et al., 2013). Relations among properties of inputs and outputs of

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

30

multiple executions, called metamorphic relations, may also serve to detect defects

(LIU et al., 2014).

Verification and validation (V&V) are confirmations, through the provision of

objective evidence, that the requirements for a specific intended use or application

have been fulfilled (ISO; IEC & IEEE, 2017). In the context of software systems,

verification is a way to decide whether a team is building the product right, while

validation is a way to decide whether a team is building the right product (BOEHM,

1984; ISO; IEC & IEEE, 2017). Usually the former is performed by the team and

the latter by users (customers), with or without the team (SOMMERVILLE, 2011).

Verification may occur statically or dynamically. Static verification can be

performed through (formal) inspections (BRIAND et al., 1998; LAITENBERGER,

2002; WHEELER; BRYKCZYNSKI & MEESON JR, 1996), revisions

(CIOLKOWSKI et al., 2002; CIOLKOWSKI; LAITENBERGER & BIFFL, 2003),

or static analysis of the model (i.e., by using a software tool) (BLASCHEK, 1985;

LANDI, 1992; ZHENG et al., 2006). Dynamic verification is usually performed

through tests.

Data-driven testing is a technique that consists of storing test data separately

from the sequence of actions (ISO; IEC & IEEE, 2016). For one test procedure with

a defined sequence of actions, multiple sets of data can be provided. The sequence

of actions is then executed for each of the sets of data. Depending on the implemen-

tation, the data is either stored in a table, spreadsheet or database. Data-driven test-

ing is an option to decouple the parameters from the test.

Keyword-driven testing is a way of describing test cases by using a predefined

set of keywords (ISO; IEC & IEEE, 2016). These keywords are names that are as-

sociated with a set of actions that are required to perform a specific step in a test

case. The fundamental idea is using these keywords to create manual or automated

test cases without requiring detailed knowledge of programming or test tool exper-

tise. The vocabulary included in these dictionaries or libraries of keywords is, there-

fore, a reflection of the language and level of abstraction used to write the test cases,

and not of any standard computer programming language. Related benefits include

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

31

ease of use, maintainability, test information reuse, and potential cost and schedule

savings (ISO; IEC & IEEE, 2016).

Functional testing (a.k.a. black-box testing) is a testing that ignores the internal

mechanism of a system or component and focuses solely on the outputs generated

in response to selected inputs and execution conditions (ISO; IEC & IEEE, 2017).

It can be conducted to evaluate the compliance of a system or component with spec-

ified functional requirements (ISO; IEC & IEEE, 2017).

Regression testing is selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component

still complies with its specified requirements (ISO; IEC & IEEE, 2017).

Acceptance testing is conducted to determine whether a system satisfies its ac-

ceptance criteria (set of stakeholder required conditions) and to enable the customer

or stakeholder to determine whether to accept or not the system (ISO; IEC & IEEE,

2017).

Acceptance Test-Driven Development (ATDD) is a practice in which the whole

team collaboratively discusses acceptance criteria, with examples, and then distills

them into a set of concrete acceptance tests before development begins (ADZIC,

2009; HENDRICKSON, 2008a).

Behavior-Driven Development (BDD) is a practice that uses conversations

around concrete examples of system behavior to help understanding how features

will provide value to the business. BDD encourages business analysts, software de-

velopers, and testers – usually called “the three amigos” – to collaborate more

closely by enabling them to express requirements in a more testable way, in a form

that both the development team and business stakeholders can easily understand

(SMART, 2014).

Specification by Example (SbE) is described by Gojko Adzic (2009) as a superset

of practices that include ATDD and BDD. He points out that ATDD focuses on

clearing the targets for development, creating automated tests, and preventing

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

32

functional regression, while BDD focuses on the process of specifying scenarios of

system behavior and building a shared understanding between stakeholders and

delivery teams through collaboration and clarification of specifications – although

BDD also considers functional regression an important thing. The key process pat-

terns adopted by SbE are discussed in Adzic’s book (2011).

A stakeholder is a role, an individual or an organization having a right, share,

claim, or interest in a system or in its possession of characteristics that meet their

needs and expectations (ISO; IEC & IEEE, 2017). In Scrum, it is the Product Owner

(SCHWABER, 2004). In Extreme Programming, it is the Customer (BECK, 2003).

A stakeholder usually defines the features to be implemented in terms of externally

verifiable behavior whilst the implementation team decides on the internal imple-

mentation details (HENDRICKSON, 2008b). In most cases when stakeholders are

mentioned, they are referring to business stakeholders, i.e., those interested or in-

volved with the business for which the system is being developed or is related with.

Despite, stakeholders may include supporters, trainers, maintainers, supplier organ-

izations, regulatory bodies, and any other interested parties (ISO; IEC & IEEE,

2017). Considering the multitude of physical stakeholders, the role or roles per-

formed by them are what matters, instead of their individual desires. Some stake-

holders can have interests that conflict with others. Business Analysts, System An-

alysts, and System Architects may work together to reconcile these opposed inter-

ests.

A feature is a functional or non‐functional distinguishing characteristic of a sys-

tem that end‐users and other stakeholders can understand (ISO; IEC & IEEE, 2015,

2017). In BDD terms, a feature is a fragment of software functionality that helps

users or other stakeholders to achieve some business goal (SMART, 2014). These

definitions are complementary and not conflicting, and this work will adopt the sum

of their meanings.

A user story is a simple narrative illustrating the user goals that a software func-

tion will satisfy (ISO; IEC & IEEE, 2017). This narrative may be a description of a

software requirement, function, feature, or quality attribute.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

33

A scenario is a step‐by‐step description of a series of events that occur concur-

rently or sequentially. It can be a user story, use case, operational concept, or se-

quence of events the software may encounter (ISO; IEC & IEEE, 2017). In BDD, a

feature may contain one or many scenarios that describe contexts in which it is used.

These contexts are usually subjected to validation by stakeholders. A successful

scenario (a.k.a. “happy scenario”) is one that produces its postconditions, due to all

inputs are considered correct. An error handling scenario is one that does not pro-

duce its postconditions due to one or more inputs – actions or data – considered

invalid are used and the system under test (SUT) criticizes them rather than com-

pleting the task. A failing scenario is one that does not produce its postconditions

due to unexpected defects.

A business rule is an independent formalism to represent business logic,

(HALLE, 2002) i.e., its rule defines or constraints some aspect of the business. A

system rule defines or constrains some aspect of the intended system. A system rule

may represent or implement a business rule. In this work, we may use them as syn-

onyms.

Agile development is a software development approach based on iterative devel-

opment, frequent inspection and adaptation, and incremental deliveries, in which

requirements and solutions evolve through collaboration in cross-functional teams

and through continuous stakeholder feedback (ISO; IEC & IEEE, 2012).

We define as Agile DSLs those business-readable DSLs used by Agile compa-

nies (i.e., companies that adhere to Agile methodologies) to specifying require-

ments, to discussing them with stakeholders, to developing features, or to producing

test cases or test scripts.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

34

3Validation and Verification from Agile DSLs

Incorrect documentation is often worse than no documentation.

- Bertrand Meyer

This chapter presents and compares approaches directly related to this thesis.

We analyzed approaches that use natural language specifications (NLS) writ-

ten with Agile DSLs for producing test scenarios, test cases or test scripts, or for

performing some type of static validation of such requirements. Much research has

been undertaken for extracting conceptual models from NLS written with Agile

DSLs (chapter 4 details these DSLs). These conceptual models include OWL on-

tologies, UML diagrams, Data Flow Diagrams (DFD), and Entity-Relationship Di-

agrams – e.g., (ROBEER et al., 2016; SOEKEN; WILLE & DRECHSLER, 2012;

VIDYA SAGAR & ABIRAMI, 2014; YUE; BRIAND & LABICHE, 2011). Just a

few works, however, propose approaches that deal with V&V activities – the next

section details them.

We defined a set of criteria to facilitate the comparison of approaches with ours’.

Table 1 presents these criteria and section 3.2 discuss some gaps that they may

represent. Criterion 18 concerns with the generation of relevant test cases, while

criterion 23 concerns with the generation of relevant test oracles. We define rele-

vant test cases as those that use testing techniques recognized as effective by liter-

ature, such as Equivalence Class Partitioning, Boundary Value Analysis, and Ran-

dom Values (MYERS; THOMAS & SANDLER, 2011). We detail this subject in

section 7.3.4. We define relevant test oracles as those that can check the expected

behavior when input data are considered invalid, according to the specification (we

detail this subject in the section 7.3.6).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

35

Table 1 - Comparison criteria with related work

Criterion Reason

1
S

p
ec

.
Input Evaluate the artifacts used as input

2 Agile DSLs Indicate the adopted Agile DSLs

3

Input from plain-text files Plain-text files do not require special tools and

are easy to use concurrently by software teams

with Version Control Systems (e.g., Git, Subver-

sion).

4
Support for more than one spoken

language

Evaluate if the specification is tied to a spoken

language

5
Used to minimize the generation of

test cases

Evaluate if there is test case minimization, which

is important to make the execution time feasible

6
Validation with stakeholders is ana-

lyzed

Evaluate if the approach analyzes the validation

of the specification with stakeholders

7
Static validation is addressed Evaluate if the approach analyzes the static vali-

dation of the specification

8

T
es

t
C

a
se

s

Generate test cases Evaluate if the approach generates test cases.

9
Accept test cases as input. Evaluate if the approach accepts test cases as in-

put.

10

Input from plain-text files Plain-text files do not require special tools and

are easy to use concurrently by software teams

with Version Control Systems (e.g., Git, Subver-

sion).

11
Support for more than one spoken

language

Evaluate if the specification is tied to a spoken

language

12
Can combine test scenarios of the

same feature

Evaluate if the approach can combine test scenar-

ios from the same feature

13
Can combine test scenarios of differ-

ent features

Evaluate if the approach can combine test scenar-

ios from different features

14 Covered test scenarios Indicate the covered test scenarios

15 Coverage criteria Evaluate if there are coverage criteria

16 Accept test data Evaluate if the test cases accept test data

17 Generate test data Evaluate if the approach generates test data

18
Generated test data cover relevant

cases

By covering important cases, test cases increase

the chances to discover defects

19
Can use test data from external data

sources

Evaluate if the test data can be loaded from ex-

ternal data sources

20
Can minimize test data from external

data sources

Evaluate if external test data can be filtered

somehow

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

36

Criterion Reason

21

Can define restrictions based on ex-

ternal data sources

Evaluate if external test data can be used to de-

fine business rules or restrictions that will be

used to generate test data

22 Generate test oracles Evaluate if the approach generates test data

23
Generated test oracles cover relevant

cases

By covering important cases, test oracles in-

crease the chances to discover defects

24

Used to prioritize the generation of

test scripts

Evaluate if test cases are used to prioritize the

generation of test scripts. This can reduce execu-

tion time.

25

T
es

t
S

cr
ip

ts

Generate test scripts Evaluate if the approach generates test scripts au-

tomatically

26
Verify the compliance with require-

ments

Evaluate if the test scripts verify the compliance

of the SUT with the specified requirements

27 Have test data Evaluate if the test scripts have test data.

28 Have test oracles Evaluate if the test scripts have test oracles

29

T
S

 E
x

ec
.

Executes automatically Evaluate if the approach can execute test scripts

automatically.

30

Minimizes the number of executed

test scripts

Evaluate if the approach can reduce the number

of executed test scripts and, thus, decrease exe-

cution time.

31

Analyze test script execution results Evaluate if the approach can analyze execution

results and track their relation with the specifica-

tion

3.1.Related work

Table 2 compares related work according to the criteria detailed in Table 1. Let-

ters were used to shorten their identification, due to space restrictions in the table:

R for Rane (2017); E for Elghondakly et al. (2015); and K for Kamalakar et al.

(2013).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

37

Table 2 - Comparison with related work

Criterion R E K This work

1

S
p

ec
.

Input Features, test

scenarios,

user-defined

dictionary

Features,

scenarios

Features,

scenarios

Specifications in Concordia

(see chapter 6)

2
Agile DSLs User story User story,

scenario

User story,

scenario

User story, scenario, and oth-

ers (see 4.4.5)

3 Input from plain-text files No Yes Yes Yes

4 Support for more than one spoken language No No No Yes

5 Used to minimize the generation of test cases No No No Yes

6 Validation with stakeholders is analyzed No No No Yes

7

Static validation is addressed Poorly (if user

stories follow

the DSL “As

I/I want/So

that”)

Maybe, it

mentions

using sym-

bolic

evaluation

but it does

not offer

details

No, it just

evaluates

generated

sentences

Yes, see 7.4.2

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

38

Criterion R E K This work

8
T

es
t

C
a

se
s

Generate test cases No Yes No Yes

9 Accept test cases as input. Yes No No Yes

10 Input from plain-text files No N/A N/A Yes

11 Support for more than one spoken language No No N/A Yes

12 Can combine test scenarios of the same feature N/A Unknown N/A Yes

13 Can combine test scenarios of different features N/A Unknown N/A Yes

14

Covered test scenarios All test case

paths

Unknown N/A All Variant (6.1.11) paths,

state-based paths, all con-

straints of UI Elements

(6.1.10), plus a set data test

cases (see 7.3.5)

15

Coverage criteria Paths of test

scenarios

Unknown N/A Paths of Variants, state-based

references, constraints of UI

Elements (see 7.3.4)

16 Accept test data No No N/A Yes

17 Generate test data No No N/A Yes

18 Generated test data cover relevant cases N/A N/A N/A Yes

19 Can use test data from external data sources No N/A N/A Yes

20 Can minimize test data from external data sources N/A N/A N/A Yes

21 Can define restrictions based on external data sources N/A N/A N/A Yes

22 Generate test oracles No N/A N/A Yes

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

39

Criterion R E K This work

23 Generated test oracles cover relevant cases N/A N/A N/A Yes

24 Used to prioritize the generation of test scripts No N/A N/A Yes

25

T
es

t
S

cr
ip

ts
 Generate test scripts No No Yes Yes

26 Verify the compliance with requirements N/A No No Yes

27 Have test data N/A N/A Yes Yes

28 Have test oracles N/A N/A Yes Yes

29

T
S

 E
x

ec
. Executes automatically N/A N/A Unknown Yes

30 Minimizes the number of executed test scripts N/A N/A Unknown Yes

31 Analyze test script execution results N/A N/A No Yes

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

40

Rane (2017) presents an approach for producing test cases in English language

and Activity Diagrams from features written in Gherkin (section 4.4.2), test sce-

nario descriptions, and a dictionary of synonyms. All the input is given through a

graphical user interface. Test scenario descriptions adopt a format based on period-

terminated sentences, like in the example from Listing 1.

Listing 1 – A test scenario from Rane’s work2

User inserts Card.

User enters PIN.

IF user authorized THEN Select Account Type ELSE Eject card.

Y: Enter Amount.

System checks balance.

IF amount<balance THEN Debit Amount ELSE Show Error.

N: Eject card.

Y: System disperses cash.

System prepares printer.

System prints receipt.

Eject Card.

If-Then-Else sentences accept only one instruction and always have to contain

Else. A sentence that starts with “Y:” will only execute whether the execution path

enters the previous If statement. A sentence that starts with “N:” will only execute

whether the execution path enters a previous Else statement. Synonym terms can

be defined in a dictionary, e.g., “Quantity” as a synonym of “Amount”.

Sentences from Listing 1 plus a dictionary with synonyms terms produce the

Activity Diagram presented in Figure 3 and the test cases presented in Figure 4.3

Letters “Y” and “N” in the Figure 3 represent “Yes” and “No”, respectively. Alt-

hough their Activity Diagram represents the activities “Start” and “End”, in some

cases (paths) it did not represent an “End” activity or an arrow to an existing “End”

activity, like in two activities named “Eject Card” in Figure 3. Test cases in the

Figure 4 are produced from the possible execution paths. Likewise, test coverage

criteria are based on path coverage.

2 Example retrieved from Rane (2017), op. cit., p. 47.
3 Both figures are extracted from Rane (2017), op. cit., pages 49 and 50.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 41

Figure 3 – An Activity Diagram produced by Rane's approach

Figure 4 – Example of test cases produced by Rane's work

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 42

Rane’s work also presents the adopted NLP techniques – we detail them in the

section 5.1 – and compares the time and the effort taken for generating test cases

with the manual approach. According to its findings, the tool increases the time

taken to generate test cases for a single feature by 7% but it reduces the effort by

31%. For multiple features, the time and effort are reduced by 61% and 87% re-

spectively. Since the participants of the study had no prior experience with the tool,

they expect that this time can reduce over time.

Although Rane’s approach can generate test cases, it does not generate test data,

test oracles, nor test scripts, and it cannot execute them. Since its input is not based

on plain-text files, it is highly probable that the specification artifacts are not

friendly to use with version control systems and, therefore, they have high mainte-

nance costs, especially when concurrent modifications occur. The work does not

address the static verification of the specification in detail. It only mentions

performing some “error handling” such as verifying the format of user stories and

checking for empty declarations.

Elghondakly et al. (2015) propose a requirement-based testing approach for au-

tomated test generation for Waterfall and Agile models. Their approach claims to

parse functional and non-functional requirements for generating test paths and test

cases. However, it does not discuss any implementation aspects such as techniques

for parsing, or the format of user stories that are parsed, and it does not follow a

model-based approach nor evaluate the coverage of the test cases. The generated

test cases are not full-featured, i.e., do not contain test data and oracles, and the

approach does not generate test scripts. The authors do not offer details about the

static verification of the specification.

Kamalakar et al. (2013) generate Java unit test scripts (JUnit) from features and

scenarios written in Gherkin (section 4.4.2) for the English language. Class names

are derived from feature names. Method names are derived from (camel-cased) sce-

nario names. Parameters’ data types from Given-When-Then sentences (see 4.1.2)

are inferred to create method parameters. Assertions are created from Then sen-

tences – string or numeric parameters are transformed into assertEquals; sen-

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 43

tences with a negative tone become assertFalse; otherwise, they become as-

sertTrue. We detail the adopted NLP techniques in the section 5.1. The approach

tries to facilitate the creation of unit level tests and, therefore, is not concerned with

functional tests (that can verify high-level requirements) or with the validation of

requirements with stakeholders. Static verification of the specification is not ad-

dressed by their work.

Verma & Beg (2013) propose the use of natural language to specify software

requirements in the mathematics domain for generating test cases that explore the

interval of numeric ranges using boundary value analysis. However, their work does

not use Agile DSLs nor details the input format or exemplifies or details the output

format (test cases). Thus, we decided to not include it in our comparison.

3.2.Research gaps

We identified many research gaps regarding the analyzed scope. In our opinion,

the main reasons are twofold: (i) the use of NLP for processing agile requirements

specifications has not been explored in depth; and (ii) researchers have not yet tried

to adapt existing techniques for an agile development.

Research on V&V with use cases, for example, received more attention on the

past decades. Although use cases can be used for agile development, both literature

and industry have been affirmed (recently, although) that agile companies often

adopt user stories and related DSLs for specification (CURCIO et al., 2018;

DINGSØYR et al., 2012; INAYAT et al., 2015; SCHÖN; THOMASCHEWSKI &

ESCALONA, 2017; STAVRU, 2014).

We enumerate ten important research gaps. Our approach tries to mitigate all of

them:

1. Static validation of requirements: just a basic checking is proposed, such as

validating if user stories follow their corresponding DSL. More verifications

can help users to detect problems in specifications and correct them before

they propagate to other artifacts;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 44

2. Support for more than one spoken language: current approaches do not offer

support for languages other than English, which reduces their broad applica-

tion;

3. Test cases and test scripts that combine different features and scenarios: this

a vital attribute for testing complex systems;

4. Minimization and prioritization of generated test cases and test scripts: ap-

proaches do not use information from requirements for reducing the number

of test cases to generate – e.g., to generate only test cases that cover error

handling, to select only those scenarios tagged with an importance value

higher than a certain number for generating test cases. They also do not apply

any technique to reduce the number of test scripts to execute, e.g., running

only test scripts of the feature “x”. All these practices are important to mak-

ing frequent tests feasible by reducing testing time;

5. Generation of test cases with (relevant) test data: Current approaches do not

generate test cases with test data. More than just generating test data, these

data need to try to reveal defects in the target applications;

6. Generation of test data from external data sources: To simulate or use real

input data or to create tests that use data from existing systems, testers may

need to access data from external data sources, such as test databases. This

requires to provide means of integrating specifications and data sources;

7. Generation of test cases with test oracles: Oracles need to be aligned with

the input data and the input actions. Their generation requires inferring the

data to use, selecting the appropriate path through the test scenario (i.e., the

path that matches the expected behavior), and producing the corresponding

verifiers;

8. Generation of full-featured test cases as examples for requirements valida-

tion: Current approaches only generate test cases that walk the specified sce-

narios without providing (new) data or oracles. To simulate different behav-

iors for validation with stakeholders, it may be necessary to create new ex-

amples;

9. Generation of functional tests scripts: Current approaches do not generate

tests that verify whether an application complies with its requirements spec-

ifications;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 45

10. Execution and analysis of test scripts: Automatic execution and analysis of

test scripts are important for the test automation and, consequently, for re-

ducing test costs and time.

3.3.Concluding remarks

This chapter analyzed and compared published works regarding the verification

and the validation of requirements specified with natural language and Agile DSLs

(chapter 4). The comparison used a set of 31 criteria that considered how the ap-

proaches deal with specifications, test cases, and test scripts. The approach pre-

sented by this thesis can fill most of their gaps about V&V (see Table 2).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

46

4Agile DSLs and Metalanguages

High thoughts must have high language.

- Aristophanes (450 BC-388BC), in The Frogs

This chapter presents DSLs commonly used in agile software development, re-

lated metalanguages, and discusses their adoption for test automation.

The increasing complexity of modern software systems instigates the need of

raising the level of abstraction at which software is designed, implemented and

tested. Domain-specific languages emerged in response to this need as an alterna-

tive to express software solutions in relevant domain concepts, thus hiding fine-

grained implementation details and favoring the participation of domain experts in

the software development process (JÉZÉQUEL et al., 2015).

In agile software development (ASD), DSLs have contributed to standardizing

the way in which requirements are specified and used to create test scripts. Domain-

specific languages for specifying requirements, like those presented in this chapter,

facilitate discussion among the software team and between the team and

stakeholders since they establish easy-to-read and simple-to-write textual patterns

(ADZIC, 2011). Business analysts, for example, may spend less time thinking on

how to write requirements and more on what they need to write. Software tools that

integrate with these DSLs help developers and testers to create test scripts focused

on the specified requirements (GÄRTNER, 2012). By amplifying collaboration

among participants and reducing the loopback from requirements to coding and to

testing, such DSLs may lead to an increase in the team’s productivity (PUGH,

2011).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 47

4.1.Common DSLs

User stories are the most frequently used artifact in agile software develop-

ment (CURCIO et al., 2018; INAYAT et al., 2015; SCHÖN; THOMASCHEWSKI

& ESCALONA, 2017). They present a low learning curve and have been success-

fully used to validate requirements with stakeholders (ADZIC, 2009, 2011;

SMART, 2014; WYNNE & HELLESØY, 2012). Features documented as user sto-

ries often represent acceptance criteria as scenarios, written in a form of examples.

The following subsections provide more details about the syntax commonly

adopted by DSLs used to document user stories and scenarios. Anti-patterns and

parameterization are also discussed.

4.1.1.User Story

Dan North (2006) introduced a DSL for a user story, aiming at helping compa-

nies to identify the business value of a feature and, hence, to prioritize features. The

DSL addresses three fundamental elements of requirement engineering

(WAUTELET et al., 2014): (i) who wants the functionality; (ii) what functionality

stakeholders want the system to provide; and (iii) why stakeholders need the func-

tionality. Listing 2presents the DSL’s template. The order of the sentences may vary

without losing the meaning. There are also commonly accepted variations, such as

“I want to” instead of “I would like to”, and “So that” instead of “In

order to”. Listing 3 shows an example of a feature described with this DSL.

Listing 2 – DSL for User Story

As a <role or person>

I would like to <some feature>

In order to <benefit or added value>

Listing 3 – Example of a Feature

Feature: Add product to the shopping cart

 As a visitor

 I would like to add a product to my shopping cart

 In order to buy it later

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 48

Our metalanguage adopts this DSL for describing features, but it does not use its

sentences for test case generation.

4.1.2.Scenario

North (2006) also introduced a DSL for describing scenarios, aiming at helping

to identify feature’s acceptance criteria and at breaking its user story into verifiable

fragments that can be checked by automated tests. Listing 4 presents the DSL’s

template. In case of having more than one precondition, action, or postcondition,

each of them must be written in the next line and be preceded by the connector

“And” – or eventually “But”. Listing 5 shows an example of a scenario described

with the DSL.

Listing 4 – DSL for a Scenario

Given <precondition or initial context>

When <action or event>

Then <postcondition or outcome>

Listing 5 - Example of a Scenario

Scenario: Add product by dragging and dropping

 Given that I have selected a product

 When I drag the product’s image to the shopping cart icon

 And I drop it

 Then the product is added to the shopping cart

Smart (2014) observes that:

 the Given step should contain all the preconditions or steps that must

have occurred before the actions of a scenario;

 the When step should contain actions or events in terms of what should

happen, not how; and

 the Then step should describe the postconditions or outcomes expected

from the scenario.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 49

Our metalanguage uses Given-When-Then (GWT) steps in the following lan-

guage constructions: Scenarios, Variants (section 6.1.11), Test Cases (section

6.1.12), and Test Events (section 6.1.13).

4.1.3.Anti-patterns

When developers not experienced with Agile DSLs start writing scenarios, they

may not pay attention to their meaning or intent. Smart (2014) points out common

anti-patterns (i.e., practices not recommended), such as:

a) Scenarios steps that reflect technical implementation, instead of the busi-

ness intent. New practitioners may try to describe scenarios in terms of

user interface interactions. Instead, they should describe what they are

trying to perform or to achieve, from a business point of view. Otherwise,

the specification will mix business and computing jargon, and business

needs will be permeated with expected system behavior. Our approach

addresses this problem by making a clear separation of these con-

cerns. Business needs are specified through Scenarios. Variants and

Test Cases reflect the expected user-system interaction to comply

with a Scenario.;

b) Too long scenarios: the length of a scenario may impact in its easiness to

read, which reduces its using as a communication medium. We believe

that business-related scenarios are shorter than those that describe

user-system interactions since they present a higher level of abstrac-

tion focused on the intent (“what”) instead of on the procedure

(“how”). In Variants, which are used to describe user-system inter-

actions, steps may refer to other features or scenarios by their pro-

duced states, instead of repeating the corresponding steps. Hence,

this modularization may reduce the number of steps;

c) A Given step that does not declare a verifiable precondition: the sentence

should not be vague about is precondition state, to enable its testing. Our

approach addresses this problem by letting a Variant to produce

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 50

postconditions in its Then steps, as a consequence of its prior actions,

and to refer to other Variant’s postconditions in Given and When

steps. These references are verifiable (the states should match).

Given steps without such preconditions can declare assertions about

the state of the user interface;

d) A Then step that does not declare a verifiable expected outcome: it should

focus on a postcondition whose state can be verified by a stakeholder.

Our approach let postconditions and assertions be declared in Then

steps of a Variant;

We propose the usage of Scenarios to specify expected behavior from a business

point of view – the “what” part. Their sentences are not considered for generating

test cases, but for discussing high-level business needs with stakeholders. We use

Variants and Test Cases to define expected user-system interactions, corresponding

to a Scenario – the “how” part. Section 6.1 presents details on these language con-

structions. Briefly, a Variant works like a higher-level template for generating Test

Cases.

4.1.4.Parameterization

Some Scenarios, like those in Listing 6, can be very similar and vary only by

some parameter values. These cases are candidates to become a Parametrized Sce-

nario – i.e., a kind of data-driven test.

Listing 7 shows an example of a Parameterized Scenario. Its values come from

tabular data declared in the specification. These tabular data works like a table

whose first row is the parameter name and the other rows are the values.

Listing 6 –Scenarios that vary by values

Scenario: Receive a discount of 5% with coupon

Given that I have selected the product Xpto

When I enter a coupon named “OFF5”

Then I receive a discount of 5 percent

Scenario: Receive a discount of 10% with coupon

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 51

Given that I have selected the product Xpto

When I enter a coupon named “OFF10”

Then I receive a discount of 10 percent

Listing 7 - Example of a Parameterized Scenario

Scenario: Receive a discount with coupon

Given that I have selected the product Xpto

When I enter a coupon named <name>

Then I receive a discount of <percent> %

Examples:

 | name | percent |

 | OFF5 | 5 |

 | OFF10 | 10 |

4.2.Specification of non-functional requirements

Some authors (AMBLER, 2008; COHN, 2004, 2009; DAVIES & SEDLEY,

2009) propose to represent non-functional requirements (NFR) as user stories or

acceptance criteria. Listing 8 illustrates an NFR specified as a feature’s user story.

The feature contains a verifiable scenario, which serves as a testable acceptance

criterion. Although simple, these examples can be verified by automated tests.

When an NFR becomes difficult or even impossible to automate (e.g., a usability

or regulatory NFR) it can be checked through exploratory testing or inspections

(AMBLER, 2008; LEFFINGWELL, 2011). Anyway, it is important to represent

them. Inayat et al. (2015) point out that neglecting non-functional requirements is

a challenge in agile requirements engineering.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 52

Listing 8 - Example of NFR as a feature

Feature: Run in old OS versions

 In order to run the app in some old mobile phones

 As a customer

 I want to be able to run the app on Android 4 or above

Scenario: Run on Android 4

 Given that I installed the app on Android 4

 When I start it

 Then it opens without errors

 And all the automated functional tests pass

4.3.Integration with source code

A pattern adopted by tools that work with the aforementioned DSLs is using a

regular expression to hook up a test method to a sentence from a requirement spec-

ification file. A sentence or step is transformed into a regular expression that

matches exactly the given text and ignores any parameters or values. For example,

the sentence “When I enter a coupon named <name>”, from Listing 7, will be

transformed into “^When I enter a coupon named (.*)$”.4 Depending on the

testing framework, a test skeleton – often referred to as step definition – can be

produced. Listing 9 shows an example of a step definition in Ruby and Listing 10

shows the same example in Java. Both can be produced by Cucumber

(HELLESØY, 2009). The Given- and Then-steps are defined in a similar way.

Listing 9 – Step definition in Ruby

When /^When I enter a coupon named (.*)$/ do | name |

 # TO-DO: add code here

End

Listing 10 – Step definition in Java

@When("^When I enter a coupon named (.*)$")

public void I_enter_a_coupon_named(String name) {

 // TO-DO: add code here

}

4 The symbol “^” means “starting with”; the symbol “$” means “ending with”; and “(.*)” can be interpreted as

“anything”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 53

Running such test methods will usually print the corresponding sentences, which

produces the effect of seeing the specification to execute, step-by-step. When these

test methods are filled with the code that corresponds to the sentence, they become

an “executable specification”. In functional tests, a very common outcome is seeing

the application under test being controlled through its GUI, while the sentences are

printed. This lets both stakeholders and the development team monitor their com-

pliance.

To reduce maintenance costs, text editors and IDEs (such as Visual Studio

Code5, Atom6, Eclipse7, NetBeans8) offer plugins that can keep requirement files

and test script files in sync – that is, a change in a step will update the corresponding

step definition.

4.4.Metalanguages

BDD and ATDD books found in literature usually bring examples of features

and scenarios written with the aforementioned DSLs. There are tools – like Cucum-

ber9, JBehave10, and Behat11 – that can integrate specifications written with these

DSLs to test scripts (i.e., source code). They support DSLs in different spoken lan-

guages (e.g., English, Portuguese, French), although these DSLs contain the same

language structures. These structures form a metalanguage. A lexer or parser writ-

ten for such metalanguages need to use dictionaries to recognize sentences accord-

ing to the target spoken language. Their syntax is often line-oriented and designed

to be human-readable although non-technical.

We adopted three approaches to gathering these metalanguages. The first one

consisted in searching for BDD and ATDD books12 and then evaluating adopted

5 https://code.visualstudio.com
6 https://atom.io
7 http://www.eclipse.org
8 https://netbeans.org
9 https://cucumber.io
10 http://jbehave.org
11 http://behat.org
12 Search for books was conducted on Amazon (https://www.amazon.com) and Google Books

(https://books.google.com), because of their abundance of computer science books.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 54

frameworks and tools. The second was searching for BDD and ATDD frameworks

and tools in source-code hosting services.13 Finally, using search engines.14 Key-

words used (in all approaches) were: “BDD”, “ATDD”, “SbE”, “Behavior-Driven

Development”, “Acceptance Test-Driven Development”, and “Specification by Ex-

ample”. Titles and summaries were used as exclusion criteria. Metalanguages not

used to specify requirements (e.g., Galen15, KarateDSL16, EasyAccept17) or whose

tools were not available for download were excluded as well.

4.4.1.JBehave

JBehave (NORTH, 2003) introduced the first metalanguage for BDD

(WIKIPEDIA, 2017).18 It uses the concepts of “Story” and “Narrative” instead of

“Feature”, with the same meaning and similar DSLs. It also adopts the concept of

“Meta” for categorization and “GivenStories” for defining preconditions. Listing

11 shows an example in JBehave. In the example, the keyword Meta adds alterna-

tive identifications to the scenario name. These identifications make it easier to fil-

ter a scenario for execution or for combination with other user stories. The keyword

GivenStories specifies one or more files whose scenarios are preconditions. It

can be used in the context of the entire user story or individual scenarios. Whether

the current user story or scenario does not need to depend on all the scenarios of a

certain user story file, it may use an anchor to specify the scenarios from which it

depends on, by their Meta (e.g., “GivenStories: path/to/select-prod-

uct.story#{id1:scenario1;id2:scenario2}”). A Meta can also be used

to filter the scenarios to execute.

13 Used platforms were GitHub (https://github.com), GitLab (https://gitlab.com), and SourceForge

(https://sourceforge.net), because of their current market share. Only the first 100 results of each keyword

were considered.
14 Used search engines were Google (https://www.google.com) and Bing (https://www.bing.com), because of

their current market share. Only the first 100 results of each keyword were considered.
15 http://galenframework.com/
16 https://github.com/intuit/karate
17 http://easyaccept.sourceforge.net/
18 Since the metalanguage did not receive a name, we refer to it as “JBehave”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 55

Listing 11 – Example in JBehave

Add product to the shopping cart

Narrative:

 As a visitor

 I would like to add a product to my shopping cart

 In order to buy it later

!-- A precondition to the entire user story

GivenStories: /path/to/select-product.story

Scenario: Add product by dragging and dropping

Meta: @id1 scenario1

 Given that I have selected a product

 When I drag the product’s image to the shopping cart icon

 And I drop it

 Then the product is added to the shopping cart

4.4.2.Gherkin

Gherkin (HELLESØY, 2009) is probably the most common metalanguage used

by tools that support BDD or ATDD. Currently, it supports over 70 spoken lan-

guages19, has syntax highlight supported by many text editors and IDEs (e.g., Visual

Studio Code, Sublime Text, Atom, TextMate, Vim, IntelliJ, Eclipse), and provides

integration with programming languages like Python, Ruby, JavaScript, Java, Go,

and Lua. Well known by being the language of Cucumber, it was heavily influenced

by JBehave, although they evolve in parallel (WYNNE & HELLESØY, 2012).

Listing 12 shows an example in Gherkin. Unlike JBehave, it does not have a way

to specify preconditions or to refer other features or scenarios. Categories are de-

noted by the character “@” and can be used to filter the scenarios to execute. In

order to avoid the repetition of steps in scenarios, it offers the construction “Back-

ground”, which is necessarily executed before every scenario. Background’s sen-

tences use the same DSL as Scenarios.

19 https://docs.cucumber.io/gherkin/reference/#spoken-languages

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 56

Listing 12 – Example in Gherkin

Feature: Add product to the shopping cart

 As a visitor

 I would like to add a product to my shopping cart

 In order to buy it later

@important

Scenario: Add product by dragging and dropping

 Given that I have selected a product

 When I drag the product’s image to the shopping cart icon

 And I drop it

 Then the product is added to the shopping cart

4.4.3.Robot

Robot Framework’s metalanguage (NOKIA CORPORATION, 2008) – refer-

enced here as “Robot” – is based on the Laukkanen’s thesis (2006). The thesis com-

pares data-driven and keyword-driven testing techniques and proposes a framework

concept for future implementation. The metalanguage – produced along with the

framework some months after the thesis – adopts a markup syntax and a keyword-

driven approach with a tabular test data. Markup syntax is based on reStruc-

turedText (GOODGER, 2002), a textual format created for writing technical docu-

mentation and simple web pages. A specification written in Robot must use sec-

tions, such as “Setting”, “Variables”, “Test Cases”, and “Keywords” to separate its

content. Test cases’ sentences can be declared with the Given-When-Then format,

although is not required. Their corresponding behavior is defined in section “Key-

words”. Fixed high-level commands that resemble natural language can be written

using a tabular format. Listing 13 shows an example in Robot.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 57

Listing 13 – Example in Robot

*** Settings ***

Documentation Add product to the shopping cart

...

... A visitor must be able to add a product to its

... shopping cart in order to buy it later

Resource select-product.robot

*** Test Cases ***

Add product by dragging and dropping

 Given that I have selected a product

 When I drag the product’s image to the shopping cart icon

 and I drop it

 Then the product is added to the shopping cart

*** Keywords ***

The keyword "That I have selected a product" is declared in

the file select-product.robot

I drag the product’s image to the shopping cart icon

 Drag And Drop #product-1-img #shopping-cart

I drop it

The product is added to the shopping cart

 ${cookie}= Get Cookie

 Should Be Equal ${cookie.name} Cart-Product-1

4.4.4.Gauge

Gauge (THOUGHTWORKS, 2014) is based on the Markdown format

(GRUBER, 2004)20, which has been supported by source-code hosting services

(e.g., GitHub, GitLab, SourceForge, BitBucket) and Wiki-based tools.

20 Markdown was standardized by IANA in 2016 under the RFC 7763.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 58

Listing 14 – Example in Gauge

Add product to the shopping cart

 A visitor must be able to add a product to its shopping cart in

order to buy it later

Add product by dragging and dropping

 * A product must be selected

 * Drag the product’s image to the shopping cart icon

 * Drop it

 * The product must be added to the shopping cart

4.4.5.Comparison

Table 3 compares the metalanguages and also includes Concordia – the metalan-

guage introduced in this thesis – for helping to recognize similarities and differ-

ences. A full syntax or approach comparison is out of the scope of this thesis, due

to the large number of details.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

59

Table 3 - Comparison of Metalanguages

Group Item Gherkin JBehave Robot Gauge Concordia

1

Info.

Website cucumber.io jbehave.org robotframework.org gauge.org concordialang.org

2
Open-sourced li-

cense?

Yes, MIT Yes, BSD Yes, Apache Yes, GPL Yes, AGPL

3 First release year 2011 2003 2008 2014 2018

4
Created by a com-

pany?

No No Yes,

Nokia

Yes, Thought-

works

No

5
Sponsored by a

company?

Yes,

Cucumber Ltd

No Yes, Robot Frame-

work Foundation

Yes, Thought-

works

No

6
Original program-

ming language

Ruby Java Python Go JavaScript

7 Spec. file extensions .feature .story .robot .spec, .md, .cpt .feature, .testcase

8
Plugins for test gen-

eration

14+21 1 2 6 2

21 https://cucumber.io/docs#cucumber-implementations

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 60

Group Item Gherkin JBehave Robot Gauge Concordia

9

Supported applica-

tion platforms

web, mobile

native, mobile

hybrid, mobile

web, desktop

web web, java GUI web web, mobile na-

tive, mobile hy-

brid, mobile web,

desktop

10

Approach

Translatable? Yes Yes No22 Not Applica-

ble23

Yes

11

Context-free gram-

mar available?

Yes24 Yes25 No, but there is a

well-defined syn-

tax26

No, just exam-

ples27

Yes, see Appen-

dix B

12 Data-driven testing? Yes Yes Yes Yes Yes

22 Internationalization support was cancelled (https://github.com/robotframework/robotframework/issues/2282). Given-When-

Then syntax in other languages than English was not implemented since 2014 (https://github.com/robotframework/robotframe-

work/issues/519). SeleniumLibrary, which is used by Robot Framework, did not translate its commands yet.
23 Gauge adopts Markdown which uses symbols instead of keywords.
24 https://github.com/cucumber/cucumber/blob/master/gherkin/gherkin.berp
25 http://jbehave.org/reference/stable/grammar.html
26 http://docutils.sourceforge.net/docs/ref/rst/roles.html
27 https://daringfireball.net/projects/markdown/syntax

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 61

Group Item Gherkin JBehave Robot Gauge Concordia

13

Can data-driven

tests use external

data sources?

No No Yes, Robot and

TSV files

Yes, CSV files Yes, CSV, Excel,

Ini, and JSON

files; Access,

Firebase, MySQL,

SQLServer,

PostgreSQL, and

SQLite databases

14

Can it filter data

from external data

sources?

No No No No Yes, using SQL,

even for files

15

Keyword-based test-

ing?

No No Yes No No, but it uses

State-based test-

ing, that works in

a similar way.28

16
Can it declare test

cases?

Yes, but as sce-

narios

Yes, but as sce-

narios

Yes Yes, but as sce-

narios

Yes

28 Concordia replaces required states by their producers’ steps, when it generates test cases. Keyword-based testing approaches

replaces keywords by their corresponding definition, when they generate test scripts.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 62

Group Item Gherkin JBehave Robot Gauge Concordia

17

Usage for

Testing

Can integrate with

test scripts?

Yes Yes Yes Yes Yes

18

Can be used to gen-

erate test scripts

skeletons?

Yes Yes Yes Yes Yes, with Gher-

kin-based tools

19
Can generate test

data automatically?

No No No No Yes

Can generate test

oracles automati-

cally?

No No No No Yes

Can combine sce-

narios or test cases

automatically?

No No No No Yes

Can generate test

cases automati-

cally?

No No No No Yes

21 DSL

Language Yes, with a

special com-

ment

No No Not Applicable Yes, with a spe-

cial comment

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 63

Group Item Gherkin JBehave Robot Gauge Concordia

22

Import declarations No Yes, but only

as precondi-

tions, with

“GivenStories”

Yes, with “Re-

sources”

No Yes, with “Im-

port”

23

Feature Yes, with “Fea-

ture”

Yes, as the first

line content or

using “Feature”

No Yes, with a

symbol (#)

Yes, with “Fea-

ture”

24 Feature description AIS AIS No free AIS

25

Scenario Yes, with “Sce-

nario”

Yes, with “Sce-

nario”

No Yes, with a

subsection

header

Yes, with “Sce-

nario”

26 Scenario description GWT GWT N/A Using bullets GWT

27

Shared base sce-

nario

Yes, with

“Background

Scenario”

Yes, with

“Background

Scenario”

No Yes, with Con-

text or Context

Steps

Yes, with “Back-

ground Scenario”

28
Parameterized sce-

nario description

Yes Yes Yes Yes GWT

29
Categorization Yes, with tags Yes, with tags

and meta

Yes, with meta Yes, with tags Yes, with tags

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 64

Group Item Gherkin JBehave Robot Gauge Concordia

30

Table Yes Yes No, but can simu-

late it by combining

tabulated parame-

ters with for loops

Yes Yes

31 Test case No No Yes No Yes

32
Test case descrip-

tion

N/A N/A free, but GWT is

recommended

N/A GWT

33

Test case events No Yes: “Lifecy-

cle” with “Be-

fore” or “Af-

ter” and

“Scope” with

“STORY” or

“SCENARIO”

Yes: “Suite Setup”,

“Suite Tear Down”,

“Test Setup”, “Test

Tear Down”

Yes: using con-

texts as setup,

and “___”

(three under-

scores) as tear

down

Yes: “Before All”,

“After All”, “Be-

fore Feature”,

“After Feature”,

“Before Each Sce-

nario”, “After

Each Scenario”

34 Variable or constant No No Yes, both29 No Yes, Constants

35
Data source No No Yes, with “file” Yes, with “file”

or “table”

Yes, with

“Database”

29 Robot has Constants and Variables, but Constants are accessed through Variables.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 65

Group Item Gherkin JBehave Robot Gauge Concordia

36
User interface ele-

ment

No No No No Yes, with “UI

Element”

37

DSL capa-

bilities

Avoids duplication

of steps in Scenarios

from the same Fea-

ture

Yes,

with

“Background”

Yes,

with

“Background”

Yes, with

“Keywords”

Yes, with Con-

texts or Context

steps

Yes,

with

“Background”

38

Allow to include

Scenarios or steps

from other Features

No Yes,

with “Giv-

enStories”

Yes, with “Re-

sources”

No Yes,

with states

39

Tags can be used to

identify related

cross-functional

concerns

Yes Yes Yes Yes Yes

40

Has reserved cate-

gories (tags/meta),

with some special

meaning

Yes, but it var-

ies according

to the used tool

(e.g., @issue)

Yes:

@issue, @tag,

@tags

No No Yes,

see 6.1.4

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 66

Group Item Gherkin JBehave Robot Gauge Concordia

41

Uses tags for refer-

encing other decla-

rations

No No No No Yes,

See 6.1.4

42
Uses tags for filter-

ing what to execute

Yes Yes Yes Yes Yes

43
Uses tags for priori-

tization

Yes No No No Yes,

see 7.3.2

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

67

All the approaches utilize data-driven testing, which enforces its adoption. Like-

wise, all but Gauge use GWT syntax for scenarios or test cases (although it is op-

tional in Robot). Robot, however, does not offer explicit support to features and

scenarios.

Gherkin, JBehave, and Gauge do not offer an explicit syntax for test cases. Since

test cases have to be declared as scenarios, the requirements specification may end

up mixing high-level and low-level scenarios. This mix makes it harder to read and

maintain and may affect the validation with stakeholders (e.g., to find only high-

level scenarios for discussion). Besides, these three metalanguages cannot be used

to convert low-level sentences into source code. Thus, developers or testers need to

codify them manually, which increases costs and schedule.

Robot does not support other languages than English, which probably limits its

adoption. Like other keyword-based approaches, its syntax may offer higher learn-

ing curve (ISO; IEC & IEEE, 2016). Supported commands need to be written ex-

actly as defined, and the tabulated syntax mixed with symbols refers to spreadsheets

or to programming, instead of a natural language specification – which makes the

specification harder to read and understand. Concordia, on the other hand, tries to

mitigate this problem by adopting a syntax based on restricted natural language.

Robot’s keywords can be reused in different test cases, but it may be necessary

to zigzag through the document (or documents) to understand all the context or

sequence of operations. A sequential declaration is possibly easier to validate with

stakeholders. In Concordia, the sentences of a Variant – i.e., a lower-level scenario

that establishes the expected interaction with the UI and serves as a template to

generate test cases – are declared sequentially. Listing 15 presents an example that

contains a Variant.

References to external content are represented differently by the metalanguages.

Gherkin does not have such references. Gauge uses links but does not validate them.

JBehave allows references to other feature files using “GivenStories” (which is de-

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 68

clared to define preconditions in features or scenarios) and to external test data (cur-

rently only CSV files) used by data-driven tests. Robot allows references to key-

words, test data and source code from other files, declared as resources. Concordia

allows references to external constants, states, user interface elements, tables, and

databases (all verifiable). States in Concordia are used to combine Variants and

produce Test Cases. For example, the sentence “Given that I have ~product se-

lected~” from Listing 15 has a reference to the state “product selected”, which is

produced by a Variant of the imported feature file. Whether the feature file has more

than one Variant with the referenced state, all of them can be combined with the

current Variant to form different Test Cases (section 7.3.4 has more details).

All the metalanguages can be used to produce test skeletons (Concordia can be

used by Gherkin-based tools since they are compatible). Robot and Concordia can

be used to generate test scripts from the specification.

Listing 15 – Example in Concordia

import "select-product.feature"

Feature: Add product to the shopping cart

 As a visitor

 I would like to add a product to my shopping cart

 In order to buy it later

@important

Scenario: Add product by dragging and dropping

 Given that I have selected a product

 When I drag the product’s image to the shopping cart icon

 And I drop it

 Then the product is added to the shopping cart

 Variant: Produces a cookie

 Given that I have ~product selected~

 When I drag <#product-1-img> to <#shopping-cart>

 Then I see the cookie "Cart-Product-1"

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 69

4.5.Concluding remarks

This chapter presented an overview of domain-specific languages commonly

used in ASD and compared the metalanguages created around similar concepts. The

metalanguage proposed by this thesis considered recurring practices and concepts

– aiming at trying to keep a low learning curve – and to improve their usage for

V&V.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

70

5Restricted Natural Language Processing

The limits of my language means the limits of my world.

- Ludwig Wittgenstein (Austrian philosopher)

This chapter briefly discusses some natural language processing (NLP) tech-

niques and their using in the thesis’ approach.

During our research, we investigated ways of recognizing natural language sen-

tences and of understanding their meaning. A promising approach that we came

across was intent recognition (IR), also known as plan recognition. We observed

that many current solutions to construct chatbots (or chatterbots), i.e., computer

programs that try to simulate a human being in a conversation, are using IR (section

5.4 presents some NLP solutions that use IR) and it could fit our approach’s needs.

We then decided to investigate a little further whether we could use it to recognize

the intent of some sentences, in relation to the desired actions, given values, etc.

After preparing a small experiment to recognize Given-When-Then sentences’ in-

tent and of having successful results, we decided to try it with our approach. To the

best of our knowledge, IR has not yet been used as the basis for recognizing Agile

DSLs. We also could not find its use with Use Cases or other artifacts for docu-

menting requirements.

5.1.Related work

We analyzed approaches that apply NLP to agile specifications as a mean of

extracting conceptual models or of generating test cases. Our intention was to de-

termine useful techniques that we could eventually use with our approach.

Rane (2017) produces test cases in English language and Activity Diagrams

from features and scenarios written in Gherkin (section 4.4.2), for the English lan-

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 71

guage. The approach also uses a dictionary as input. This dictionary stores key-

words commonly used in user stories and their associated steps. User input is per-

formed through a graphical interface and features and scenarios are stored in a da-

tabase. Adopted NLP techniques include lemmatization (section 5.2.2), part-of-

speech (POS) tagging (section 5.2.1), dependency parsing (section 5.2.3), and syn-

onym generation. The work uses the Stanford NLP library (DE MARNEFFE &

MANNING, 2008) and WordNet lexical database (MILLER, 1995).

Robber et al. (2016) extract OWL ontologies from user stories written with the

same DSL as the presented in section 4.1.1. Their process consists of parsing the

user stories into tokens, applying part-of-speech (POS) tagging (section 5.2.1), in-

ferring concepts and relationships to determine token weights, removing stop words

from the collection of tokens, attaching a weight to each term (based on the fre-

quency and on the weights that were specified as input parameters), and construct-

ing a conceptual model from the weighted terms. The conceptual model – expressed

as OWL ontologies – is transformed into a graphical representation and then pre-

sented to stakeholders for helping them to visualize dependencies and relationships

between user stories and unnecessary or redundant roles.

Kamalakar (2013) derives unit test scripts (specifically, tests for Java classes)

from features and scenarios written in Gherkin (section 4.4.2), for the English lan-

guage. His approach consists of parsing features and scenarios using regular ex-

pressions; performing lemmatization (section 5.2.2), applying part-of-speech

(POS) tagging (section 5.2.1), extracting quoted parameters from Given-When-

Then sentences (see parameterization in section 4.1.4), using a probabilistic

matcher to extract words, and generating source code from these words and param-

eters. Class names are derived from feature names. Method names are derived from

(camel-cased) scenario names. Parameters’ data types from Given-When-Then sen-

tences are inferred to create method parameters. Assertions are created from Then

sentences – string or numeric parameters are transformed into assertEquals; sen-

tences with a negative tone become assertFalse; otherwise, they become as-

sertTrue. The work also uses the Stanford NLP library and WordNet lexical data-

base.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 72

Soeken et al. (2012) proposes an assisted flow for BDD where the user enters

into a dialog with the computer which suggests code pieces extracted from the sen-

tences. Figure 5 shows an example of such piece of code. The work also uses the

Stanford NLP library and WordNet lexical database. Figure 6 shows an example of

a phrase three structure (Figure 6a) created with the Stanford Parser – which is part

of the Stanford NLP library – and a list of typed dependencies for the sentence

(Figure 6b). We detail these techniques (POS tagging and dependency parsing) in

5.2.1 and 5.2.3, respectively.

Figure 5 - Example of a Class Diagram generated by Soeken et al.'s

work30

Figure 6 – Example of an application of the Stanford Parser31

Our approach uses stemming, context-free grammar, and intent recognition,

through the adopted solution for NLP (section 5.2).

30 Figure retrieved from Soeken et al. (2012), Figure 5.
31 Figure retrieved from Soeken et al. (2012), Figure 2.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 73

5.2.Techniques

This section describes some common NLP techniques. They are used as building

blocks by many approaches – like those in the previous section – and NLP solutions

– like those from section 5.4.

5.2.1.Part-of-speech tagging

Part-of-speech (POS) tagging classifies each word of a speech lexically, as a

noun, verb, adjective, adverbs, etc. This classification usually adopts a database of

words – called treebank – organized in a tree form annotated with syntactic infor-

mation. Every tag receives an identification. Table 4 shows the tags of the Penn

Treebank (SANTORINI, 1990), used by some NLP solutions, such as the Stanford

Parser (DE MARNEFFE & MANNING, 2008). The Penn Treebank is a human-

annotated collection of 4.5 million words (MARCUS; SANTORINI &

MARCINKIEWICZ, 1993) which groups elements with POS tags and phrase tags

(i.e., NP for noun phrase, PP for prepositional phrase, VP for verb phrase, or ADVP

for adverb phrase). Phrase tags are assigned to a group of co-located words in a

phrase.

Table 4 - Tags in Penn Treebank

Id Description

CC Conjunction, coordinating

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Conjunction, subordinating or preposition

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Verb, modal auxiliary

NN Noun, singular or mass

NNS Noun, plural

NNP Noun, proper singular

NNPS Noun, proper plural

PDT Predeterminer

POS Possessive ending

PRP Pronoun, personal

PRPS Pronoun, possessive

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 74

Id Description

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Adverb, particle

SYM Symbol

TO Infinitival to

UH Interjection

VB Verb, base form

VBZ Verb, 3rd person singular present

VBP Verb, non-3rd person singular present

VBD Verb, past tense

VBN Verb, past participle

VBG Verb, gerund or present participle

WDT wh-determiner

WP wh-pronoun, personal

WPS wh-pronoun, possessive

WRB wh-adverb

To illustrate, the phrase “Concordia is a new metalanguage” would be

tagged as “NPP VBZ DT JJ NN”, according to Table 4.

5.2.2.Stemming and lemmatization

The goal of both stemming and lemmatization is to reduce inflectional forms and

sometimes derivationally related forms of a word to a common base form

(MANNING; RAGHAVAN & SCHÜTZE, 2008). For instance, “am”, “are”, and

“is” are reduced to “be”; “car”, “cars”, “car’s”, and “cars’” are reduced to

“car”; applying the reduction to the sentence “the boy's cars are differ-

ent colors” results in “the boy car be differ color”.

Stemming usually refers to a crude heuristic process that chops off the ends of

words in the hope of achieving this goal correctly most of the time, and often in-

cludes the removal of derivational affixes (MANNING; RAGHAVAN &

SCHÜTZE, 2008). Lemmatization usually refers to doing things properly with the

use of a vocabulary and morphological analysis of words, normally aiming to re-

move inflectional endings only and to return the base or dictionary form of a word,

which is known as the lemma (MANNING; RAGHAVAN & SCHÜTZE, 2008).

For instance, if confronted with the token “saw”, stemming might return just “s”,

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 75

whereas lemmatization would attempt to return either “see” or “saw” depending

on whether the use of the token was as a verb or a noun. Stemmers use language-

specific rules, but they require less knowledge than a lemmatizer, which needs a

complete vocabulary and morphological analysis to correctly lemmatize words.

Particular domains may also require special stemming rules. The most common al-

gorithm for stemming English, and one that has repeatedly been shown to be em-

pirically very effective (MANNING; RAGHAVAN & SCHÜTZE, 2008), is Porter's

algorithm (PORTER, 1980).

NLP solutions presented in section 5.4 use stemming or lemmatization in their

process to recognize entities or intents.

5.2.3.Dependency parsing

A dependency parser analyzes the grammatical structure of a sentence to indicate

its subject, objects, eventual verb phrase between subject and an object, conditional

statements, etc. Analysis’ output often assumes the form of a tree, where each word

is a node and a root node is head of the entire structure. Figure 7 illustrates such

output.32 Relations among the words are labeled with direct arcs from heads to de-

pendents. These labels usually receive dependency relations from the Universal De-

pendency set (DE MARNEFFE et al., 2014). Table 5 shows some of these rela-

tions.33

Figure 7 – Example of a dependency analysis

32 Figure retrieved from the book by Jurafsky & Martin (JURAFSKY & MARTIN, 2009), chapter 14, figure

14.1.
33 Table retrieved from the book by Jurafsky & Martin (JURAFSKY & MARTIN, 2009), chapter 14, figure

14.2.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 76

Table 5 - Selected relations from the Universal Dependency set

Causal Argument Relation Description

NSUBJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement

XCOMP Open clausal complement

Nominal Modifier Relation Description

NMOD Nominal modifier

AMOD Adjectival modifier

NUMMOD Numeric modifier

APPOS Appositional modifier

DET Determiner

CASE Prepositions, postpositions, and other case markers

Other Notable Relation Description

CONJ Conjunct

CC Coordinating conjunction

A major advantage of dependency grammars is the ability to deal with languages

that are morphologically rich and have a relatively free word order (JURAFSKY &

MARTIN, 2009) – that is, it abstracts away from word-order information and uses

links to represent relationships.

5.2.4.Entity recognition

Entity recognition (ER) is the task of detecting entities in a sentence. An entity

is an object or set of objects in the world. A mention is a reference to an entity.

Entities may be referenced in a text by their name, indicated by a common noun or

noun phrase, or represented by a pronoun. Named entity recognition (NER) is the

task of recognizing entities by their name. For example, the following are several

mentions of a single entity:

 Name mention: John Doe

 Nominal mention: The guy wearing a black shirt.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 77

 Pronoun mention: he, him

Common entities types include: quantity, currency, time, weather, location (ge-

ographical areas, landmasses, bodies of water, geological formations), person (in-

dividual or group), organization (corporations and agencies), geopolitical entity

(nation, region, government or people), facility (buildings, permanent man-made

structures), and place. All these types may have subtypes (e.g., the type “person”

may have a subtype “religious figures”).

To illustrate, the phrase “U.N. official John Doe heads for Iraq” contains the

organization “U.N.”, the person “John Doe”, and the location “Iraq”, and would

receive tags corresponding to each type. Entity detection depends on entity data-

bases for the desired types and subtypes (SANG & DE MEULDER, 2003).

5.2.5.Intent recognition

Intent recognition approaches are ultimately based on psychological and neuro-

scientific evidence for a theory of mind (PREMACK & WOODRUFF, 1978),

which suggests that the ease with which humans recognize the intentions of others

is the result of an innate mechanism for representing, interpreting, and predicting

other’s actions (KELLEY et al., 2012). The mechanism relies on taking the per-

spective of others (GOPNIK; SLAUGHTER & MELTZOFF, 1994), which allows

humans to correctly infer intentions.

Recognizing the intent of a textual sentence (e.g., an utterance) is a difficult task

(TAYLOR & MAZLACK, 2005). Sentences can have literal or non-literal meaning.

For example, the literal meaning of “Can you close the door?” is “Are you

capable of closing the door?”, while the indirect meaning is “Please close

it”. People can learn through experience the indirect meaning of such things. Com-

putational models can learn through examples and machine learning algorithms.

IR may involve stemming, POS tagging, dependency parsing, entity recognition,

and machine learning (ML) approaches. The next section presents some ML ap-

proaches to natural language processing that can be used for intent recognition. The

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 78

usage of IR for creating chatbots is well discussed in the books by Jurafsky & Mar-

tin (JURAFSKY & MARTIN, 2009).34 They classify chatbots in rule-based chat-

bots and corpus-based chatbots. The former uses rules to map user sentences into

system responses. The latter mines logs of human conversation to learn to automat-

ically map user sentences into system responses.

5.3.Approaches

Rule-based methods can be implemented with semantic grammars. A semantic

grammar is a context-free grammar (CFG) in which the left-hand side of each rule

corresponds to the semantic entities being expressed, i.e., the slot names,

(JURAFSKY & MARTIN, 2009) as in the fragment from Listing 16.

Listing 16 – Example of a semantic grammar35

SHOW → show me | i want | can i see|...

DEPART TIME RANGE → (after|around|before) HOUR |

 morning | afternoon | evening

HOUR → one|two|three|four...|twelve (AMPM)

FLIGHTS → (a) flight | flights

AMPM → am | pm

ORIGIN → from CITY

DESTINATION → to CITY

CITY → Boston | San Francisco | Denver | Washington

Semantic grammars can be parsed with regular expressions or CFG algorithms.

Figure 8 shows an example of a semantic grammar parse for a user sentence, using

slot names as the internal parse tree nodes.

34 A draft of the third version of the book is available at https://web.stanford.edu/~jurafsky/slp3/
35 Retrieved from the book by Jurafsky & Martin (JURAFSKY & MARTIN, 2009), op. cit., chapter 29.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 79

Figure 8 - Example of a semantic grammar parse36

Rule-based approaches are very common in industrial applications (JURAFSKY

& MARTIN, 2009). It has the advantage of high precision, and if the domain is

narrow enough and experts are available, can provide sufficient coverage as well.

On the other hand, the hand-written rules or grammars can be both expensive and

slow to create, and hand-written rules can have low recall when it is difficult to

predict all the possible variations for a slot.

A common alternative to rule-based approach is to use supervised machine

learning. Assuming a training set is available which associates each sentence with

the correct semantics, a classifier can be trained to map from sentences to intents

and domains, and a sequence model to map from sentences to slot fillers. For ex-

ample, a classifier (i.e., neural network, naïve bayes, logistic regression method,

etc.) can be applied to the sentence “I want to fly to San Francisco on

Monday, please” to determine that the intent is “SHOW_FLIGHT”, the domain

is “AIRLINE”, the destination is “San Francisco”, and the day of the week is “Mon-

day”. Intent recognition strategies adopt techniques of information extraction such

as entity recognition (ER) and named entity recognition (NER) – see section 5.2.4.

In the example, a list of airports, cities, and days of the week are used by the clas-

sifier to establish the proper slot names. Capitalized words can be used as markups

in the training corpus to help identifying entities.

Popular probabilistic models for supervised machine learning include Naïve

Bayes Classifier (NBC), Supporting Vector Machines (SVM), Averaged Perceptron

(AP), the Conditional Random Field (CRF) model, the Maximum Entropy Model

36 Retrieved from the book by Jurafsky & Martin (JURAFSKY & MARTIN, 2009), op. cit., chapter 29.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 80

(MEM), the Hidden Markov Model (HMM), and the Maximum Entropy Markov

Model (MEMM) – e.g., (CHEN et al., 2009a), (MEYER, 2001), (COLLINS, 2002),

(LAFFERTY; MCCALLUM & PEREIRA, 2001), (ADWAIT RATNAPARKHI,

1996), (CUTTING et al., 1992), (MCCALLUM; FREITAG & PEREIRA, 2000)

respectively. Different algorithms can be applied to these models, with applications

for parsing, POS tagging, Intent Recognition, and biological sequencing (e.g., iden-

tification of regions from genomic DNA). For unsupervised learning algorithms,

we recommend seeing those summarized by Christodoulopoulos & Steedman

(2010).

5.4.Solutions for Natural Language Processing

During our research, we decided to investigate solutions that were available to

use – that is, solutions that had libraries, frameworks or web services – and their

approaches. Table 6 presents the main solutions found,37 grouped by type (column

“Type”). They were collected using web search engines38, opensource software

hosting platforms,39 and some reputable Q&A websites.40 All of them support the

English language. Since we opted to conduct case studies with Brazilian companies

that specify requirements in Portuguese, we evaluated their support to Brazilian

Portuguese (Pt-Br) and Portuguese (Pt). Their support for IR was evaluated as well.

Some solutions were only available through web services and offered free plans

with limited access (e.g., a maximum number of requests).

We conducted small experiments with most solutions in Table 6 to evaluate

whether we could use them to recognize sentences that expressed interactions with

a user interface. Their capacity to recognize sentences varied a little, depending on

the number of samples used for training or the sentences’ structures – although, we

did not perform a formal evaluation in this matter. In our opinion, Bravey, API.AI,

Wit.AI, and Google NLP, were the friendliest approaches – i.e., they were eas-

ier to setup and use – and they presented very good results with little training.

37 Until June 2017
38 We searched with the most used web engines, according to Statista (www.statista.com) and Netmarketshare

(www.netmarketshare.com), i.e., Google (www.google.com), Bing (www.bing.com), and Yahoo (www.ya-

hoo.com).
39 GitHub (www.github.com), SourceForge (www.sourceforge.com), and GitLab (www.gitlab.com)
40 StackOverflow (stackoverflow.com), Reddit (www.reddit.com), and Quora (www.quora.com)

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 81

We decided to use Bravey in our prototype tool for the following reasons:

(i) it offers good results with little training;

(ii) it supports Pt and Pt-Br;

(iii) it supports Intent Recognition;

(iv) it is a local, offline solution;

(v) it is more concise and easier to adapt than other local solutions;

(vi) it is opensource and can be adapted freely.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

82

Table 6 – Solutions for Natural Language Processing

Name License Type Limit Prog. Lang. Approaches Pt-Br Pt I.R.

Algorithmia
41

 free plan web service 5k requests many N/A Yes Yes Yes

API.AI
42

 free plan web service per hour many N/A Partial Yes Yes

Google NLP
43

 free plan web service 5k requests many N/A No Beta Yes

MeaningCloud
44

 free plan web service 40k req/month many N/A No Yes Yes

Microsoft LUIS
45

 free plan web service 10k req/month many N/A Yes No Yes

Wit.AI
46

 free plan web service per hour many N/A No Yes Yes

Adapt
47

 open Local No Python CFG No No Yes

Apache OpenNLP
48

 open Local No Java MEM, AP, NBC No Yes No

Apache Stanbol
49

 open Local No Java MEM, AP, NBC No Yes No

Bravey
50

 open Local No JavaScript NBC, CFG Yes Yes Yes

NLTK
51

 open Local No Python NBC No Yes No

RASA.AI
52

 open Local No Python SVM, CRF, AP, CFG No No Yes

Stanford NLP
53

 open Local No Java CRF, CFG No Partial No

41 https://algorithmia.com/
42 https://docs.api.ai/docs/languages
43 https://cloud.google.com/natural-language/docs/languages
44 https://www.meaningcloud.com/products/pricing
45 https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-language-support
46 https://wit.ai/blog/2016/04/28/new-languages
47 https://adapt.mycroft.ai/
48 https://opennlp.apache.org/
49 https://stanbol.apache.org/docs/trunk/components/enhancer/nlp/#supported-languages
50 https://github.com/BraveyJS/Bravey
51 http://www.nltk.org/
52 https://rasa-nlu.readthedocs.io/en/latest/languages.html#adding-a-new-language
53 https://stanfordnlp.github.io/CoreNLP/human-languages.html

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

83

5.5.Intent recognition with Bravey

Bravey (VIDIEMME CONSULTING, 2016) is an opensource solution that of-

fers a simple API to create conversational interfaces, like those used in chatbots. Its

approach uses Naïve-Bayes Classifiers and provides customizable entity recogniz-

ers based on regular expressions chaining.

A Naïve-Bayes Classifier is a probabilistic model that uses a collection of labeled

training examples to estimate the parameters of the given model. Classification on

new examples is performed with Bayes’ probability theorem by selecting the class

that is most likely to have generated the example (MCCALLUM & NIGAM, 1998).

It assumes that all the attributes, i.e., words, are independent of each other given the

context of the class – this is the so-called “Naïve assumption”. Because of this in-

dependence assumption, the parameters for each attribute can be learned separately,

and this greatly simplifies learning, especially when the number of attributes is large

(MCCALLUM & NIGAM, 1998).

Naïve-Bayes Classifiers are a family of algorithms based on the Bayes’ theorem.

Although their performances are usually not as good as some other statistical learn-

ing methods such as nearest-neighbor classifiers (YANG & CHUTE, 1994), sup-

port vector machines (JOACHIMS, 1998), and boosting (SCHAPIRE & SINGER,

2000), it is very efficient and easy to implement compared to other learning methods

(MYAENG; HAN & RIM, 2006). A performance comparison of nearest-neighbors

and naïve-bayes techniques can be found in (RASJID & SETIAWAN, 2017).

Bravey provides two algorithms are provided to recognize intent: (i) fuzzy – does

not follow entity order, less precise but easier to hit with few training samples; (ii)

sequential – process entities in strict sequential order, more precise but harder to hit

with few training samples. We adopted the fuzzy algorithm because we want to rec-

ognize sentences with variations in the entity order. For instance, we consider the

sentences “Given that I inform 10 to {Quantity}” and “Given that I

fill {Quantity} with 10” equivalent.

Listing 17 presents an example in JavaScript that uses Bravey. Setup and use are

simple. Firstly, we create an object that corresponds to the desired algorithm (fuzzy

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 84

or sequential). Then we can train the library by adding example sentences (called

“documents”) and their correspondent intents. Whether we want to recognize spe-

cific entities – like a number, a date, a time, an email –, we can add the correspond-

ing recognizer as an entity. For instance, we can add a time recognizer for the Eng-

lish language by adding an object from the class Bravey.Language.EN.TimeEnti-

tyRecognizer. Bravey currently supports English, Italian, and Portuguese, hence

we can add recognizers for these languages. Custom recognizers can be defined

when needed. Finally, to recognize entities in a sentence, we can call the method

test, that receives a sentence and returns an object with information on the recog-

nized intents, their position in the sentence, related scores (i.e., probabilities), etc.

Listing 17 – Example in Bravey54

// Using the Fuzzy NLP processor

var nlp = new Bravey.Nlp.Fuzzy();

var options = { fromFullSentence: true, expandIntent: true };

// Adding an example and the related intent for training

nlp.addDocument("I want a pizza!", "pizza", options);

// Testing if it can recognize the intent (pizza)

console.log(nlp.test("Want pizza, please").intent); // "pizza"

// Adding a new entity recognizer for numbers

nlp.addEntity(new Bravey.NumberEntityRecognizer("quantity"));

// Adding an example for training

nlp.addDocument("I want 2 pizzas!", "pizza", options);

// Testing

console.log(nlp.test(

 "Want 3 pizzas, please").entitiesIndex.quantity.value); // 3

// Adding a time entity recognizer

nlp.addEntity(

 new Bravey.Language.EN.TimeEntityRecognizer("delivery_time"));

// Adding an example for training

nlp.addDocument("I want 2 pizzas at 12!", "pizza", options);

// Testing

console.log(nlp.test(

 "Deliver 3 pizzas for 2pm, please").entitiesIndex);

// { delivery_time: { value: "14:00:00" }, quantity: { value:3 }, … }

54 Example adapted from the examples available at https://github.com/BraveyJS/Bravey

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 85

Bravey also allows to define entities and parameterize them in training docu-

ments using brackets. This facilitates the training since it is not needed to use all the

different values, but only the respective entities. Listing 18 presents an example.

Listing 18 – Example of parameterization in Bravey55

var nlp = new Bravey.Nlp.Fuzzy();

// Adding an intent “order_drink”

nlp.addIntent("order_drink", [

 { entity: "drink_name", id: "drink_type" },

 { entity: "number", id: "quantity" }

]);

// Creating an entity to represent a drink

var drinks = new Bravey.StringEntityRecognizer("drink_name");

drinks.addMatch("coke", "coke");

drinks.addMatch("coke", "cola");

drinks.addMatch("mojito", "mojito");

drinks.addMatch("mojito", "moito");

nlp.addEntity(drinks);

// Creating an entity to recognize a number

nlp.addEntity(new Bravey.NumberEntityRecognizer("number"));

// Adding training examples with entities

nlp.addDocument("I want {drink_name}!", "order_drink");

nlp.addDocument("I want {number} {drink_name}", "order_drink");

// Recognizing

console.log(nlp.test("Want a cola, please"));

// {intent:"order_drink", entities: [

// {entity: "drink_type", value: "coke", …}] }

console.log(nlp.test("Want 2 mojitos, please"));

// {intent:"order_drink", entities: [

// {entity: "drink_type", value: "mojito", …},

// {entity: "quantity", value: "2", …}] }

55 Example adapted from the examples available at https://github.com/BraveyJS/Bravey

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 86

5.6.Intent recognition in Concordia

Concordia – the metalanguage introduced by this thesis – uses intent recognition

for processing the following constructions:

(i) Variant sentences, presented in the section 6.1.11.

(ii) Test Case sentences, presented in the section 6.1.12.

(iii) Test Events’ sentences, presented in the section 6.1.13.

(iv) User Interface Element restrictions, presented in the section 6.1.10.

(v) Database properties, presented in the section 6.1.9.

Variant sentences and Test Case sentences must be expressed in the Given-

When-Then format (see this format in the section 4.1.2) and use the first-person

singular. We decided to adopt the first-person singular to reduce the number of var-

iations when writing the sentences. The personal pronoun “I” represents the current

user or user role – sentences are always declared from his/her/its point of view. We

preferred to use first-person singular instead of, for example, third-person singular

– as adopted by Soeken et al. (SOEKEN; WILLE & DRECHSLER, 2012) for gen-

erating class diagrams –, because sentences become more concise and less repeti-

tive. A great part of these sentences describes interactions with a user interface.

User Interface Element (UIE) restrictions and Database properties usually con-

tain names and values. For example, a Database may have a sentence such as “-

username is "admin"” which defines the property “username” and the value

“admin”. UIE restrictions may contain Otherwise sentences (see 6.1.10.1) to de-

scribe the expected behavior in case of the restriction is not satisfied. These sen-

tences are recognized in the same way as Variant sentences.

Our approach uses dictionaries. Every spoken language can have its own dic-

tionary – we currently use JSON files as storage media, e.g., pt.json for Portu-

guese.56 A dictionary defines intents, entities, and training sentences. Every entity

contains words or small sentences that describe it. For example, the entity “click”

can be described by the words “click”, “activate”, and “trigger” in a dictionary

56 A dictionary can be customized by users whether needed, although we do not expect them to do so.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 87

for the English language or by the words “clico”, “ativo”, “aciono” and “dis-

paro” in a dictionary for the Portuguese language. A training sentence reinforces a

certain intent by describing examples that contain words or entities (or a mix of

words and entities). For example, the input sentence “Given that I activate

{Save As}” would be recognized as the intent “click”, with an entity also called

“click” and another entity identified (through a regular expression) as “Save As”.

Thus, we can define different entities to form a certain intent and use training sen-

tences to exemplify the intent for the learning algorithm.

Bravey removes diacritics and uses stemming (section 5.2.2) before compari-

sons. This greatly reduces the need for declaring different versions of the same word

or training sentences.

In addition to the IR techniques, we created a validator for intents. Firstly, we

define syntax rules for every intent. These rules constraint the type and number of

entities accepted by a certain intent. For example, the sentence “Given that I

inform {Name}, {Surname}, {Phone Number}, and {Address}”, has the

intent “fill” and references to four UI Elements. Listing 19 shows the syntax rule

for the intent “fill”, defined as a JSON object. The rule constraints the minimum

and the maximum number of accepted entities (minTargets and maxTargets), the

accepted entity types (targets), and details the number of accepted entities for

every accepted type (min and max). Since the prior example has 4 UI Elements and

the rules accepts up to 999, it passes the validation. However, a sentence like “Given

that I inform {Name} with "Bob" and "Alice"”, would not pass the valida-

tion, since it has two values and the rule defines a maximum of one.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 88

Listing 19 – Example of a syntax rule for a intent

{ name: "fill",

 minTargets: 0, maxTargets: 999,

 targets: ["ui_element", "ui_literal", "value", "number", "constant"

],

 ui_element: { min: 0, max: 999 },

 ui_literal: { min: 0, max: 999 },

 value: { min: 0, max: 1 },

 number: { min: 0, max: 1 },

 constant: { min: 0, max: 1 }

},

5.7.Concluding remarks

This chapter summarized natural language processing techniques adopted by ap-

proaches related to ours, as well as common techniques and approaches from liter-

ature. It also presents a comparison of solutions for NLP and intent recognition and

details the solution used by our approach, and how we used it.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

89

6Concordia

If your requirements aren’t changing it may be a sign that your stake-

holders aren’t interested in what you are building.

- Scott W. Ambler

This chapter presents Concordia, a novel metalanguage for agile requirements

specification.

Concordia is the name of a Roman goddess who was the personification of “con-

cord” or “agreement” (ENCYCLOPEDIA BRITTANICA, 2017). We decided to

adopt that name to reinforce the idea of creating a specification in which stakehold-

ers and the software team can discuss and agree.

Since Concordia is inspired in Gherkin (THE CUCUMBER TEAM, 2012) and

keeps compatibility with that metalanguage, we expected that: (i) existing Gherkin

feature files can be reused; (ii) Concordia may have a very low learning curve for

Gherkin users; and (iii) Gherkin-based tools can be used to generate test skeletons

for features that implement non-functional requirements.

Table 7 compares language constructions supported by Gherkin and Concordia.

Section 6.1 details many of these language constructions and section 6.2 shows an

example.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 90

Table 7 - Language constructions in Gherkin and Concordia

Construction Gherkin Concordia Max. declarations per file

Comment ✔ ✔ not limited

Language ✔ ✔ 1

Import ✕ ✔ not limited

Tag ✔ ✔ not limited

Feature ✔ ✔ 1

State ✕ ✔ not limited

Scenario ✔ ✔ not limited

Background ✔ ✔ not limited

Constants ✕ ✔ 1

UI Element ✕ ✔ not limited

Table 57 ✕ ✔ not limited

Database ✕ ✔ not limited

Variant ✕ ✔ not limited

Test Case ✕ ✔ not limited

Before All ✕ ✔ 1

After All ✕ ✔ 1

Before Feature ✕ ✔ 1

After Feature ✕ ✔ 1

Before Each Scenario ✕ ✔ 1

After Each Scenario ✕ ✔ 1

Total 6 20 -

6.1.Language constructions

Figure 9 gives an overview of Concordia declarations. Rectangles with back-

ground in white (i.e., Feature, Scenario, Background, and table DSL) refer to dec-

larations also available in Gherkin.

57 Table is not only the DSL for parameterization presented in section 4.1.4, but a construction that also supports

that DSL.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 91

Figure 9 - Overview of Concordia declarations

Keywords and names in Concordia are case insensitive. Syntax is line-based and,

therefore, keywords, names, values and other constructions must not be separated

by line-breaks.

Table 8 presents symbols adopted in some language constructions. Values must

be embraced with quotes, e.g., "Hello". Numbers do not need quotes. References

to Constants, Tables or Databases must be embraced with “[” and “]”, e.g., [Ap-

pName]. Script commands, i.e., database scripts or console scripts, (see 6.1.13)

must be embraced with single quotes, e.g., 'DELETE FROM sales'. Queries (sec-

tion 6.1.10.2) may use quotes instead of single quotes, e.g., "SELECT * FROM sales

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 92

WHERE date = '2017-12-25'", otherwise internal single quotes have to be es-

caped. States (see section 6.1.11) must be embraced with a tilde, e.g., ~user is

logged in~. UI Literals, i.e., widget identifications, must be embraced by “<” and

“>”, e.g., <quantity>. References to UI Elements (section 6.1.10) must be em-

braced with brackets, e.g., {Quantity}. Tags start with “@”, e.g., @critical.

Table 8 – Symbols in Concordia

Example Meaning

"hello" Value

"SELECT * FROM sale" Query (a value that starts with select)

'DELETE FROM sale' Script Command

[AppName] Reference to a Constant, Table or Database

<quantity> UI Literal

{Quantity} Reference to a UI Element

~user is logged in~ State

@critical Tag

Available data types are String, Integer, Double, Boolean, Date, Time, and

DateTime. They are inferred from declared Constants (section 6.1.7), User Interface

Element properties’ values (section 6.1.10), and Tables (section 6.1.8). Date values

must adopt the format “YYYY-MM-DD” or “YYYY/MM/DD” where “YYYY”

represents a four-digit year, “MM” represents a two-digit month, and “DD” repre-

sents a two-digit day. Time values must adopt the format “HH:NN:SS” or

“HH:NN”, where “HH” represents a two-digit hour, “NN” represents a two-digit

minute, and “SS” represents a two-digit second. DateTime values must also adopt

these formats for their date part and time part, respectively. Internationalization,

i.e., to use formats according to a country or region, may be supported in future

versions of the metalanguage.

6.1.1.Comment

A comment makes a content to be ignored (for processing purposes). Concordia

supports line comments, like those in Listing 20, which makes the content at the

right of the used symbol to be ignored. A line comment in Concordia starts with a

hashtag (#).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 93

Listing 20 – Comment in Concordia

This is a comment

Feature: Pay with credit card # This is also a comment

6.1.2.Language

The language used in the current specification file can be defined by a special

comment, which starts with the keyword “language” and is followed by a colon and

an ISO 639-1 language code. Listing 21 shows an example with the language con-

struction for Portuguese (pt). English (en) is assumed whether the language is not

defined in the document nor is parameterized to the parser.

Listing 21 – Language in Concordia

#language: pt

Funcionalidade: Pagar com cartão de crédito

6.1.3.Import

An import allows using declarations from feature files. A feature file can be im-

ported by its full path or relative path – like the examples in Listing 22.

Listing 22 – Import in Concordia

import "/path/to/buy-product.feature"

import "../../find-product.feature"

6.1.4.Tag

A tag adds information to a language construction. It can be used in Features,

Scenarios, UI Elements, Variants, and Test Cases, for referencing other construc-

tions, representing cross-cutting concerns, or defining filterable content. Tags start

with “@” and can receive numeric or textual parameters, embraced with parenthesis

and separated by comma. Listing 23 shows some examples.

Listing 23 – Tags in Concordia

@slow @report

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 94

Feature: Generate sales report

@importance(8) @issue(2, Alice)

Scenario: Report sales by month

Table 9 presents reserved tags, i.e., tags with defined purpose and syntax.

Table 9 - Reserved tags

Reserved tag Purpose Example

extends Allows a UI Element to inherit the properties

of another UI Element.

@extends(Full name)

fail Indicates that a Test Case should fail. @fail

generated Indicates that a Test Case was generated by

a computer.

@generated

global Indicates that a UI Element is global. @global

ignore Allows ignoring a Feature, Scenario, Variant

or Test Case.

@ignore

importance Defines the importance of a Feature, Sce-

nario, Variant or Test Case, varying from 1

(lowest) to 9 (highest).

@importance(8)

scenario Allows a Test Case to reference a Scenario

by its index.

@scenario(1)

variant Allows a Test Case to reference a Variant by

its index.

@variant(2)

6.1.5.Feature

A feature is represented like in Listing 24. It may have one or more scenarios.

The user story part is optional.

Listing 24 – Feature in Concordia

Feature: Generate sales report

 As a sales manager

 I would like to generate a sales report

 In order to keep abreast of company sales

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 95

Feature names are global, i.e., a specification cannot have a repeated feature

name.

6.1.6.Scenario

A scenario is represented like in Listing 25. Steps are optional, must adopt the

Given-When-Then format, and should be described from a high-level, business

point of view. A scenario may have one or more Variants (section 6.1.11). Scenario

names must be unique inside a Feature.

Listing 25 – Scenario in Concordia

Feature: Print sales report

Scenario: Print directly

 Given that I have generated the sales report

When I trigger the option to print

Then I see a message that the report was sent to the default printer

6.1.7.Constants

A Constants block allows to define constant values that can be used in Variant

steps, Test Case steps, User Interface Element properties, and queries. Every con-

stant declaration starts with a dash (-). Constants’ names are embraced with quotes.

Data types of constant values are inferred. Listing 26 shows an example with a

Constants block.

Listing 26 – Constants in Concordia

Constants:

 - "PI" is 3.14159

 - "AppName" is "My App"

Constants’ names are global, i.e., a specification cannot have a repeated constant

name, and they share the same namespace with Tables (section 6.1.8) and Databases

(6.1.9). A Constant can be referenced by its name inside “[” and “]”, e.g., [Ap-

pName].

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 96

6.1.8.Table

A Table defines values that can be used in properties of User Interface Elements

for creating dynamic constraints or generating dynamic test data. It works like a

consultable in-memory table. Listing 27 shows an example of a Table.

Listing 27 – Table in Concordia

Table: Users

 | login | password |

 | bob | bob123456 |

 | alice | 4l1c3p4s$ |

The first row of a Table defines column names, and the other rows define the

corresponding values. Data types are inferred according to the given values.

Tables names are global, i.e., a specification cannot have repeated table names,

and share the same namespace with Constants (section 6.1.7) and Databases (6.1.9).

A Table can be referenced by its name inside “[” and “]”, e.g., [Users].

6.1.9.Database

A Database represents an external data source, i.e., a database or a file. Listing

28 shows two examples: one with a MySQL database and the other with JSON file.

Listing 28 – Database in Concordia

Database: TestDB

- type is "mysql"

- name is "testdb"

- host is "localhost"

- username is "tester"

- password is "test123"

Database: TestDB2

- type is "json"

- path is "/path/to/testdb.json"

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 97

Properties start with a dash (-) and their values must be embraced with quotes.

Table 10 presents the database properties.58

Table 10 - Database properties

Property Description Required Default value

type Database type Yes No

host URL, DSN, or IP of the database No “localhost”

port Database port No Vary

name Database name Vary No

path Database path or file path Vary No

username Username No Vary

password Password No Vary

options Database options No Vary

Database names are global, i.e., a specification cannot have repeated database

names, and share the same namespace with Constants (section 6.1.7) and Tables

(section 6.1.8). A Database can be referenced by its name inside “[” and “]”, e.g.,

[TestDB].

6.1.10.UI Element

A UI Element represents a widget that belongs to a Feature. It can define related

constraints and business rules through properties. Table 11 presents available prop-

erties.59

58 Table cells with “Vary” means “vary according to the database type”. For instance, default value for “port”

can be 3050 whether the property “type” is “mysql”, or “5432” whether “type” is “postgres”.
59 More details in https://github.com/thiagodp/concordialang/blob/master/docs/language/en.md#user-interface-

element

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 98

Table 11 - UI Element properties

Property Description Required Default value Otherwise

steps60

id Widget identification. No The UI Ele-

ment name in

lowercase61

No

type Widget type. No textbox No

editable Whether it can accept in-

put data.

No Auto-de-

tected62

No

data type Data type (see 6.1). No string No

value Value, list of possible

values, query to retrieve

possible values, or other

UI Element that pro-

duces the value.

No Auto-gener-

ated.

Yes

minimum length Minimum length, query

to retrieve it, or other UI

Element that produces it.

No No Yes

maximum length Minimum length, query

to retrieve it, or other UI

Element that produces it.

No No Yes

minimum value Minimum value, query

to retrieve it, or other UI

Element that produces it.

No No Yes

maximum value Minimum value, query

to retrieve it, or other UI

Element that produces it.

No No Yes

format Regular expression that

defines the format.

No No Yes

required Whether is required to

inform a value.

No False Yes

60 Indicates whether the property can have Otherwise steps defined, in order to state what is supposed to happen

when an input data violates the property.
61 The default can be changed from Camel Case (e.g., “fullName”) to keep the original name as is or to change

it to Pascal Case (e.g., “FullName”), Snake Case (e.g., “full_name”), or Kebab Case (e.g., “full-name”).
62 Editable will be automatically true when the property type is “checkbox”, “fileInput”, “select”, “table”, “text-

box”, or “textarea”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 99

Listing 29 presents a simple UI Element named “Full Name”. By default, it as-

sumes the type “textbox”, the data type “string”, and the identification “fullName”

(i.e., the name in camel-case).

Listing 29 – A simple UI Element in Concordia

UI Element: Full Name

UI Element names must be unique inside a Feature (section 6.1.5). A global UI

Element can be defined by adding the tag “@global” (see section 6.1.4). In this

case, there must not exist two global UI Elements with the same name. A UI Ele-

ment from a Feature has precedence over a global UI Element.

Inheritance is possible through the tag “@extends” (see section 6.1.4), e.g., @ex-

tends(Full Name). The UI Element with that tag receives the properties from the

referenced UI Element.

6.1.10.1.Otherwise steps

Column “Otherwise Steps” from Table 11 indicates whether the property can

have Otherwise steps defined. Otherwise steps state what is supposed to happen

when an input data violates the property. These steps have the same syntax than

Then steps (from GWT format) and do not start with a dash. Listing 30 illustrates

the definition of two UI Elements that contain properties with Otherwise steps.

Listing 30 – UI Element with Otherwise steps

UI Element: Profession

- type is select

- value is in ["Professor", "Engineer", "Accountant"]

Otherwise I must see "The given profession is not allowed."

- required is true

Otherwise I must see "Please inform the profession."

UI Element: Annual Salary

- data type is double

- minimum value is 12000.00

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 100

Otherwise I must see "Salary must be greater than or equal to

12000.00"

6.1.10.2.Dynamic values

A UI Element property can have a dynamic value, to support cases in which the

value is only known at run-time. The values can be retrieved from a Table (section

6.1.8), a Database (section 6.1.9) or another UI Element. Instead of defining another

DSL to query them, we decided to adopt Structured Query Language (SQL) because

of its broad use in computer science and even business (i.e., business managers may

need to know SQL to create customized reports in report generators).

In Concordia, queries can have references to Tables (section 6.1.8), Databases

(section 6.1.9), Constants (section 6.1.7) or User Interface Elements (section

6.1.10). These references are checked when a query is processed and then trans-

formed to their corresponding values.

Listing 31 illustrates a case in which the properties “minimum value” and “max-

imum value” of the UI Element “Salary” vary according to the value of the UI El-

ement “Profession”. The value of “Profession” is also retrieved dynamically,

through a query.

Listing 31 – UI Element with dynamic properties

UI Element: Profession

- type is select

- value comes from "SELECT name FROM [Professions]"

Otherwise I must see "The given profession is not allowed."

- required is true

 Otherwise I must see "Please inform the profession."

UI Element: Annual Salary

- data type is double

- minimum value comes from "SELECT min_salary FROM [Professions]

WHERE name = {Profession}"

Otherwise I must see "Salary is lower than the minimum value."

- maximum value comes from "SELECT max_salary FROM [Professions]

WHERE name = {Profession}"

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 101

Otherwise I must see "Salary exceeded the maximum value."

 Table: Professions

 | name | min_salary | max_salary |

 | Professor | 12000.00 | 240000.00 |

 | Engineer | 15000.00 | 350000.00 |

 | Accountant | 13000.00 | 260000.00 |

In the above example, the properties query their values from a Table (section

6.1.8) named “Professions”. Instead, they could query them from an external data

source, defined as a Database (section 6.1.9). Queries of “Annual Salary” have ref-

erences to the UI Element “Profession”. These references make the value generator

to produce a value for “Profession” prior to running the query.

6.1.10.3.References

A reference to a UI Element is denoted by a name between brackets, e.g., {Pro-

fession}. References to UI Elements from other features must contain the feature

name and the UI Element name separated by two colons, e.g., {Register Em-

ployee::Profession}. References can be used in queries, Variant steps (section

6.1.11), and UI Element properties.

6.1.11.Variant

A Variant allows expressing interactions between a user (or user role) and the

system, in order to perform a Scenario. It also serves as a template for generating

Test Cases – it always generates at least one Test Case. The name “Variant” was

inspired in Tartare (TELEFÓNICA, 2016), a testing framework that adopts data-

driven tests for scenarios and names every input variation as a variant. In Concordia,

Variants represent variations of a same Scenario.

Variant steps must be expressed in the Given-When-Then format and use the

first-person singular. We decided to adopt the first-person singular for Variants and

Test Cases to reduce the number of variations when writing the steps. The personal

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 102

pronoun “I” represents the current user or user role. Steps always declare expecta-

tions from his/her/its point of view. Listing 32 shows an example of a Variant. Var-

iant steps may contain values, numbers, constants, states, script commands, UI Lit-

erals, and references to UI Elements

Listing 32 – Variant in Concordia

Variant: Usual login

 Given that I am on the [Login Page]

 When I inform my {Username} and {Password}

 and I click on {OK}

 Then I see a [Welcome Message]

 and I have ~user logged in~

The step in which a State is declared changes its meaning:

 Given step: the state is required;

 When step: the state is called;

 Then step: the state is produced (like in Listing 32).

When a state is declared in a Given step or in a When step, it must exist in a

Then step of another Variant. Whether that Variant belongs to another feature, that

feature must be imported. Otherwise, the compiler will not be able to locate the

referenced state.

6.1.12.Test Case

A Test Case is a kind of low-level Variant that contains generated combinations

of test scenarios, test data, and test oracles. It represents a test case that interacts

with the system through its UI, belongs to a Feature, and may have references to a

Scenario and a Variant through tags. Test Cases can be declared in .feature files,

but since they have a lower abstraction level than Scenarios and Variants, we en-

courage the declaration in .testcase files.

When a Test Case is generated from a Variant:

 Constants are replaced with their declared values – for instance, [PI] is re-

placed with 3.1416;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 103

 References to UI Elements are replaced with UI Literals – for instance,

{Full Name} is replaced with <#fullName>;

 Steps that have actions able to enter input data (e.g., “fill”, “select”, “ap-

pend”, “attach file”) but do not declare the data (i.e., value, number or con-

stant), are going to receive data. Whether the action target is a UI Literal, it

receives a random test data – for instance, the step “When I fill

<#fullName>” may become “When I fill <#fullName> with

"%8A#~kT^1"”. Whether the action target is a UI Element, it receives a value

that varies according to the approach’s target data test case – for instance,

the step “When I fill {Full Name}” may become “When I fill

<#fullName> with ""” whether the target data test case is generating an

empty value.

 States in Given steps and When steps are replaced by their producers’ steps,

that is, by the steps from the Test Cases that produce the required states;

 Then-steps with state are removed.

Listing 33 shows an example of a Test Case.

Listing 33 – Test Case in Concordia

Test Case: Usual login - 1

 Given that I am on "http://localhost/myapp"

 When I fill <#username> with "alice"

 and I inform <#password> with "4l1c3p4s$"

 and I click on <#ok>

 Then I see "Welcome"

6.1.13.Test Events

Concordia supports test events for environment configuration (e.g., preparing or

adjusting the application’s database, running commands on console). Table 12 pre-

sents them and Listing 34 shows an example.

Table 12 - Test Events

Event When it occurs

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 104

Before All Before all the tests start.

After All After all the tests execute.

Before Feature Before running the tests of a certain feature.

After Feature After running the tests of a certain feature.

Before Each Scenario Before running a test of a scenario.

After Each Scenario After running a test of a scenario.

Listing 34 – Test Events in Concordia

Feature: Login

...

Before Each Scenario:

 When I run the script 'DELETE FROM [TestDB].user'

 And I run the script 'INSERT INTO [TestDB].user (username, pass-

word) VALUES ("bob", "bob123"), ("alice", "4l1c3p4s$")'

6.2.A quick example

Listing 35 presents an example that gives an overview of the metalanguage. The

example specifies the login for a web application. The Feature and the Scenario are

written from a high-level perspective, while the Variant and the other declarations

give more details on the expected behavior.

Listing 35 – A Quick Example in Concordia

Feature: Login

 As a user

 I would like to authenticate myself

 In order to access the application

Scenario: Successful login

 Given that I can see the login screen

 When I enter with valid credentials

 Then I can access the application's main screen

 Variant: Usual login

 Given that I am in the [Login Screen]

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 105

 When I fill {Username}

 And I fill {Password}

 And I click on {OK}

 Then I see "Welcome"

 And I have ~user is logged in~

Constants:

 - "Login Screen" is "http://localhost/app/login"

Table: Users

 | username | password |

 | bob | 123456 |

 | alice | 4l1c3pass |

UI Element: Username

 - value comes from "SELECT username FROM [Users]"

 Otherwise I must see "Invalid username or password."

 - required is true

 Otherwise I must see "Please inform the username."

UI Element: Password

 - value comes from "SELECT password FROM [Users] WHERE username =

{Username}"

 Otherwise I must see "Invalid username or password."

 - required is true

 Otherwise I must see "Please inform the password."

UI Element: OK

 - type is button

6.3.Concluding remarks

This chapter provided an overview of Concordia by describing its syntax through

examples. It also presented Concordia’s basic concepts and compared Concordia

and Gherkin with respect to their supported language constructions.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

106

7 Approach

Stay committed to your decisions, but stay flexible in your approach.

- Tony Robbins (American writer)

This chapter details the proposed approach to mitigate the problems and gaps

identified in previous chapters.

7.1.Overview

Figure 10 - Overview of the process

Figure 10 illustrates the process involved with the proposed solution. Software

teams and stakeholders collaborate to create a shared understanding of needs, de-

sires, concerns, and related solutions. Requirements specification documents serve

as communication media, to capture that shared understanding in the form of fea-

tures and scenarios. Functional and non-functional requirements specifications

guide development and testing activities. Feedback is a fundamental source of

knowledge for validating and improving requirements and the application. Collab-

orative work avoids communication problems and contributes to ensuring that the

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 107

solution considers different points of view and that all the participants understand

the requirements specifications.

In this context, Concordia is used as a central model that enables the proposed

process, and the tool supports the involved activities for verification and validation.

After a requirements elicitation session with stakeholders, software team members

can meet to specify collaboratively (step 1) the features needed for the next release

(the desired increment for the next version). The team then reviews the produced

Concordia specification informally and uses the tool for checking errors (step 2)

and producing examples in the form of test cases (step 3). These test cases can give

stakeholders examples on how the system should behave in specific scenarios, such

as error handling scenarios. The verified specification is now ready for discussion

with stakeholders. The team uses their feedback to validate the specification, before

starting any development activities (step 4). Whether the stakeholders are not avail-

able for validation, the team should evaluate the risk of specified features and sce-

narios for the business, also considering their body of knowledge and experience.

Whenever possible, the team should avoid taking the risk of developing features

without prior feedback about their requirements. After validation (or taking the

risk), the team can use the tool to generate functional test scripts for the application

(step 5). The tool executes the test scripts and reports any nonconformance between

the application and its specifications (step 6). If the team did not implement the

features and scenarios in question, it can use the test scripts to drive their develop-

ment. In this case, the team creates the scenarios incrementally to pass the tests.

Anyway, the test scripts give the team feedback about any changes in the applica-

tion (step 7), in the form of new or regression tests. When the application passes all

the tests and it is ready for being released, the team schedules a validation meeting

with stakeholders or sends them the application for validation. Finally, whatever the

feedback received (step 8), the team reflects it in the specification. For example,

whether stakeholders found a bug, the team can specify a Concordia test case aim-

ing to confirm the sequence of inputs that caused the bug, before any changes the

application. A change in the specification restarts the process (step 1).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

108

7.2.High-level architecture

Figure 11 illustrates the architecture of the proposed solution. It defines interac-

tions among the software team, stakeholders, documents, tools, and the system un-

der test (SUT). Documents are referenced by letters from A to I. Generated docu-

ments are represented with icons in gray. The tool was divided into pieces that rep-

resent its roles, numbered from 1 to 5. The verifier (1) is responsible for checking

the specification for problems (as those detailed in section 7.4.2). It uses training

sentences and a dictionary for recognizing sentences of Concordia specifications,

considering the target spoken language. The test case generator (2) uses these spec-

ifications to produce functional test cases in natural language. These test cases can

serve as examples for validation with stakeholders and as models for producing test

scripts. The software team can write additional test cases using Concordia if they

need. Test cases can use external test data from test databases to simulate real (pro-

duction-like) data. The number of generated test cases can be reduced by minimi-

zation and prioritization strategies (section 7.3.2), aiming to make the test time fea-

sible. The abstract test script generator (3) converts all the Concordia test cases

into abstract test scripts. A plug-in that works as a test script generator and executor

(4) transforms the abstract test scripts into source code for a particular testing frame-

work. These test scripts (source code) executes the SUT according to the test cases

– simulating user inputs – and produces a report. The plugin converts the report

(file) into the format expected by the tool. The results analyzer (5) compares these

results with the expectations and produces a user-readable report (on the screen or

onto a file). Eventually, other tools may consume that report.

In our vision, a tool implemented according to this approach and architecture

must be easy to install and use – i.e., must have very few setup steps, commands to

run, and parameters to remember – and may adopt convention over configuration

whenever possible, e.g., default directories, algorithms, and patterns. These charac-

teristics aim to facilitate the tool’s adoption, mainly for companies without prior

experience with test automation. Members of the software team should be able to

adopt Concordia and start using its automated tests without knowing much about

how it works.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

109

Figure 11 – High-level architecture

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

110

7.3.Verification

This section details problems concerning the verification through test cases and

describes how the proposed approach deals with them.

7.3.1.Combinatory explosion

The combinatory explosion problem is associated with the difficulty to execute

or to verify all the paths of an application. Non-trivial applications often have a very

large number of possible paths and there is an overhead to execute them, principally

in feasible time (ANAND et al., 2013). Whereas that reducing the paths to verify

can make the execution time feasible, there are coverage losses in paths that could

expose defects. Thus, it is important to have reduction criteria that adequately bal-

ance time and coverage.

Over the years, many prioritization techniques proposed to select a small set of

test cases that can offer the highest path coverage (ELBAUM; MALISHEVSKY &

ROTHERMEL, 2002; ROTHERMEL et al., 1999; SRIKANTH; WILLIAMS &

OSBORNE, 2005). Reducing the number of test cases without sacrificing coverage

may make test execution viable.

Notwithstanding, input data sets also suffer from the same problem. Besides the

classical approaches – such as equivalence partitioning classes, limit-value analy-

sis, and random generation (BEIZER, 2003; MYERS; THOMAS & SANDLER,

2011) –, many approaches based on combinatory methods were proposed, with

good results. Considering the classification from Cohen et al. (2007), there are

search-based approaches (AHMED & ZAMLI, 2011; CHEN et al., 2009b, 2010;

COLBOURN et al., 2010; NURMELA, 2004; SHIBA; TSUCHIYA & KIKUNO,

2004), algebraic approaches (CALVAGNA & GARGANTINI, 2008; HARTMAN,

2005; WILLIAMS, 2002; YAN & ZHANG, 2008), those based on greedy algo-

rithms (COHEN et al., 1997; CZERWONKA, 2006; LEI & TAI, 1998; TUNG &

ALDIWAN, 2000), and those that mix algebraic and greedy approaches (LEI et al.,

2008; SHERWOOD, 1994).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 111

In the following sections, we present the techniques adopted for mitigating the

combinatory explosion.

7.3.2.Selection, minimization, and prioritization

A systematic mapping study by Catal and Mishra (2013) points out techniques

for improving the cost-effectiveness of the testing activity, especially those related

to regression testing:

A. Test Suite Minimization / Test Suite Reduction: remove redundant test cases

permanently to reducing the size of the test suite;

B. Test Case Selection / Regression Test Selection: select some of the test cases

and focus on the ones that changed parts of the software. They do not remove

test cases, but selects test cases that are related to the changed portion of an

artifact (e.g., related to a change in the source code);

C. Test Case Prioritization: identifies the efficient ordering of test cases for

maximizing specific properties, such as the failure detection rate or coverage

rate.

Techniques in A and B reduce testing time, but they can omit test cases that may

detect certain types of defects (DO et al., 2010). Techniques in C, on the other side,

do not omit test cases – which may make them unfeasible for large systems – and

reduce test time by using parallelization of testing activities (DO et al., 2010). Yoo

and Harman (2012) discuss all these techniques in deep. Since our approach in-

volves test case generation and test case execution, different techniques are used by

these operations.

Most prioritization techniques currently available in the literature are primarily

focused on improving regression testing efforts using white box, code level and

coverage-based approaches (CATAL & MISHRA, 2013; SRIKANTH;

HETTIARACHCHI & DO, 2016). Since a software system is built upon its require-

ments, to utilize requirements information can potentially help identifying more

important or error-prone test cases than just using source code information

(SRIKANTH; HETTIARACHCHI & DO, 2016). Our work proposes a prioritiza-

tion strategy based on the importance of requirements for business stakeholders.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 112

Figure 12 condenses techniques for prioritization, according to Mohanty et al.

(2011). The ones based on requirements and their risk are in accordance with the

study by Srikanth et al. (2016), which identifies six prioritization criteria: customer

priority (CP); implementation complexity (IC); failure proneness (FP);

requirements volatility (RV); business-criticality (BC); and random (RD). The

study concludes that:

i) RD is the most used technique in the industry;

ii) All the criteria were, individually or combined, better than RD;

iii) Individually, FP had the best results, followed by CP;

iv) The best combination was FP and CP;

v) There is a strong correlation between FP and CP.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

113

Figure 12 - Prioritization techniques

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

114

In a prior work (PINTO & STAA, 2013), we adopted a prioritization criterion

based on an importance value, computed from Business Criticality, Implementation

Complexity, and a Usage Frequency (UF) – not considered by Srikanth and col-

leagues (2016). Although we could not evaluate its effectiveness in practice, we

believe that UF has correlation with the failure detection rate. The reason is simple:

frequently used artifacts become well tested over time.

Despite the aforementioned prioritization criteria are promising and their com-

bination potentially effective, we preferred to adopt a single importance value that

can be attributed freely by business stakeholders or the development team to some

constructions of the requirements specification. It is up to them to decide on the

criterion that best fits their needs. Our recommendation, however, is to use the cus-

tomer priority by default, since it is one of the best strategies available

(SRIKANTH; HETTIARACHCHI & DO, 2016) and encourages customer involve-

ment. The reasons to use a single, adjustable criterion are twofold:

a) Simplicity: textual specifications should be simple to understand and

write. Adopting more than one criterion may confuse readers and make

prioritization more complex, and thus difficult to use;

b) Flexibility: different projects may have different needs. Customer Prior-

ity may apply better to some projects, while Usage Frequency, Failure

Proneness or Business Criticality may fit better to others, for example.

Srikanth et al. (2016) found that for applications that are being released

for the first time (i.e., version 1.0), in which the software team lacks field

data, CP can fit better than FP, while FP had better results for released

software (post version 1.0). Making users aware of the candidate criteria

and letting them choose which to use (for the importance value) may help

them to achieve superior results, compared to adopt a single criterion for

all their projects.

Therefore, our approach uses importance values for:

i) Classifying features, scenarios, and variants (see 6.1.11);

ii) Reducing the amount of generated test cases, i.e., it minimizes the test

suite;

iii) Selecting (prioritizing) the test cases to be executed.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 115

The evaluation of the impact of importance values in produced or executed

tests is out of the scope of this thesis.

7.3.3.Combination strategies

Different studies (BELL, 2006; KUHN & REILLY, 2003; KUHN; WALLACE

& GALLO, 2004; WALLACE D R, 2001) found that few combinations of inputs

are needed to detect defects in production. Figure 13 illustrates this finding. Inspired

by it, different approaches for combinatorial testing were proposed –e.g., those in

the surveys from Grindal et al. (2005) or Nie & Leung (2011). Most of them use

algebraic or greedy algorithms to produce pairwise (2-wise) or t-wise (a.k.a. n-wise)

combination of elements.

Figure 13 - Number of inputs needed to detect defects

Figure 14 exemplifies how T-wise combinations work. Briefly, the approach

combines elements one-by-one, or two-by-two, or three-by-three, and so on,

depending on the value of T, e.g., whether T is 2 (2-wise), the combinations are

two-by-two.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

116

Figure 14 – Example of a T-wise combination

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

117

The chart in the Figure 13 shows that to use combinations of 1 or 2 inputs can

make tests to detect up to 84% of applications’ defects. For combinations of 3 in-

puts, 95%. However, the smaller the number of combinations, the faster is the time

to run the tests. For that reason, we defined a set of combination strategies to use

in different stages of our approach. Given two set of elements, A and B:

1. One-wise: Performs a one-wise combination of the elements from A and

B;

2. Shuffled One-wise: Shuffles the elements from A and B before perform-

ing a one-wise combination;

3. Index of Each: Selects elements in a given position (index) from A and

B, or the highest position if the position does not exist in a set;

4. Single Random: Randomly selects a single element from A and B;

5. Pair-wise: Performs 2-way combinations of the elements from A and B;

6. Cartesian Product: Performs all the possible combinations from A and

B.

Other strategies (e.g., shuffled pairwise, t-wise, shuffled t-wise) can be added in

the future. Comparisons of these strategies are out of this thesis’ scope.

Approaches that use pseudo-random selection of elements for combination, such

as the Shuffled One-wise or the Single Random, consider an input random seed.

The sequence of numbers produced by a pseudo-random algorithm varies according

to its random seed, that is, whether we always use the same seed, the same sequence

of numbers will be produced. All the strategies and algorithms included in this

thesis’ approach considers a unique input random seed. By default, that seed

receives the current date and time. A user can change it if needed. If the random

seed is the same, all the algorithms produce the same results. This behavior makes

our approach predictable and its outcomes reproducible, when needed. However,

since we want to use random-based approaches to cover paths or combinations over

time, our approach always produces a new random seed –unless a seed is given.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 118

7.3.4.Test scenario generation

The generation of Test Scenarios is based on the combination of States (see

6.1.11). A Variant, B, can produce a State by declaring it in a Then sentence. For

example, the sentence “Then I have the ~item added to the cart~” makes

a Variant to produce the state “item added to the cart”. A Variant, A, can require or

call a Variant B by declaring a Given sentence, or a When sentence, that references

a State produced by B. For example, both the sentences “Given that I have the

~item added to the cart~” and “When I have the ~item added to the

cart~” requires the state “item added to the cart”. To create a Test Scenario, the

approach replaces steps that call States with their producers, and removes steps that

produce States. Figure 15 illustrates two features, A and B, and Test Scenarios cre-

ated for the Variant VB1 (from B). Since VB1 requires the state “State 1”, which is

both produced by the Variants VA1 and VA2 (from A), two Test Scenarios are

produced: one that combines VA1 and VB1, and other that combines VA2 and VB1.

Figure 15 - Example of test scenarios

We defined minimization strategies to reduce the number of produced Test Sce-

narios. It concerns with the selection and the combination of Variant, considering

their produced States. When a Variant requires a certain a State, the approach

searches in the current Feature and in the imported Features for all the Variants that

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 119

produces that State (e.g., all the Variants that declare the state “item added to the

cart”). However, different Variants may produce a same State. Thus, we may replace

a sentence that requires a State with many different State producers. This problem

becomes more prominent when we consider that a same Variant can require many

States. It becomes even bigger when we remember that a same State can be

produced by many Variants. Combining them using Cartesian product can be un-

feasible for many real-world applications. Hence, we define better strategies to se-

lect the Variants that produce these States and to combine them.

The algorithm uses topological sort to avoid starting from Features and Variants

that have dependencies. It sorts the specified Features according to their Imports

clauses, then sorts their Variants according to declared States. After that, it trans-

forms every Variant into a Test Scenario. A Test Scenario has the same structure as

a Variant, so the strategies above apply in the same way.

7.3.4.1.Variant selection and combination strategies

When a Variant requires a State – for example, it declares a sentence like “Given

that I have ~logged user~” to require the state “logged user” – the approach

must search it in the current Feature and in the imported Features for all the Variants

that produces that State (e.g., all the Variants that has a Then sentence which

declares the state “logged user”). Using one of the following strategies can reduce

the number of Variants to combine:

1. First Variant: always select the first Variant;

2. Single Random: selects a random Variant;

3. First Most Important: selects the first variant among the most important

ones, according to the tag @importance.

4. All Variants: does not minimize the selection.

By default, the approach adopts the Single Random strategy. The idea is covering

all possible combinations over time.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 120

To combine all the selected Variants, the approach may use one of the combina-

tion strategies defined in section 7.3.3. By default, it uses the Single Random strat-

egy, aiming to cover possible combinations over time.

7.3.5.Test data generation

Our approach combines well-known techniques to discover defects: equivalence

partitioning classes, limit-value analysis, and random generation (BEIZER, 2003;

MYERS; THOMAS & SANDLER, 2011). Table 13 presents the data test cases

included in our approach.63

Table 13 - Data test cases

Identification Description (produces…)

1 VALUE_LOWEST The lowest value applicable to the data

type of the UI Element

2 VALUE_RANDOM_BELOW_MIN A random value below the specified

minimum value

3 VALUE_JUST_BELOW_MIN The value exactly below the specified

minimum value

4 VALUE_MIN The minimum value

5 VALUE_JUST_ABOVE_MIN The value exactly above the specified

minimum value

6 VALUE_ZERO Zero (0)

7 VALUE_MEDIAN The median between the specified min-

imum and maximum values

8 VALUE_RANDOM_BETWEEN_MIN_MAX A random value between the specified

minimum and maximum values

9 VALUE_JUST_BELOW_MAX The value exactly below the specified

maximum value

10 VALUE_MAX The maximum value

63 Only the latter two data test cases from Table 13, about computation, were not included the prototype

tool. However, a user can simulate the expected outputs of computations directly in the specification (e.g., in a

Table or in a sentence).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 121

Identification Description (produces…)

11 VALUE_JUST_ABOVE_MAX The value exactly above the specified

maximum value

12 VALUE_RANDOM_ABOVE_MAX A random value above the specified

maximum value

13 VALUE_GREATEST The greatest value applicable to the data

type of the UI Element

14 LENGTH_LOWEST A string with length zero

15 LENGTH_RANDOM_BELOW_MIN A string with a random length below the

specified minimum length

16 LENGTH_JUST_BELOW_MIN A string with the length exactly below

the specified minimum length

17 LENGTH_MIN A string with the specified minimum

length

18 LENGTH_JUST_ABOVE_MIN A string with the length exactly above

the specified minimum length

19 LENGTH_MEDIAN A string whose length is the median be-

tween the specified minimum and max-

imum lengths

20 LENGTH_RANDOM_BETWEEN_MIN_MAX A string with a random length between

the specified minimum and maximum

lengths

21 LENGTH_JUST_BELOW_MAX A string with the length exactly below

the specified maximum length

22 LENGTH_MAX A string with the specified maximum

length

23 LENGTH_JUST_ABOVE_MAX A string with the length exactly above

the specified maximum length

24 LENGTH_RANDOM_ABOVE_MAX A string with a random length above the

specified maximum length

25 LENGTH_GREATEST A string with the greatest length appli-

cable

26 FORMAT_VALID A value with a valid format, according

to the specified format

27 FORMAT_INVALID A value with an invalid format, accord-

ing to the specified format

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 122

Identification Description (produces…)

28 SET_FIRST_ELEMENT The first value from the defined set of

possible values

29 SET_RANDOM_ELEMENT A random value from the defined set of

possible values

30 SET_LAST_ELEMENT The last value from the defined set of

possible values

31 SET_NOT_IN_SET A value that is not contained in the de-

fined set of possible values

32 REQUIRED_FILLED A random valid value

33 REQUIRED_NOT_FILLED An empty value

34 COMPUTATION_RIGHT A value produced by a given algorithm

35 COMPUTATION_WRONG A value that is not produced by a given

algorithm

The data test cases apply to a single UI Element, and their production varies

according to the declared UI Element properties. UI Literals always receive

pseudo-random values, i.e., the data test cases do not apply to them.

Since there are conflicting UI Element properties, it is not possible to apply all

the data test cases for a single UI Element. Furthermore, some data test cases are

not compatible with certain data types, which further reduces the number of

applicable data test cases. Table 14 shows UI Element properties and their related

data test cases. Table 15 presents the compatibility between UI Element properties

and data types. Finally, Table 16 shows the compatibility among UI Element prop-

erties.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 123

Table 14 - Data test cases added according to declared properties

Property Added data test case Added

<None> or Required REQUIRED_FILLED 2

 REQUIRED_NOT_FILLED

Minimum value VALUE_LOWEST 5

VALUE_RANDOM_BELOW_MIN

VALUE_JUST_BELOW_MIN

VALUE_MIN

VALUE_JUST_ABOVE_MIN

Maximum value VALUE_JUST_BELOW_MAX 5

VALUE_MAX

VALUE_JUST_ABOVE_MAX

VALUE_RANDOM_ABOVE_MAX

VALUE_GREATEST

Minimum value + maxi-

mum value

VALUE_ZERO 3

VALUE_MEDIAN

VALUE_RANDOM_BE-

TWEEN_MIN_MAX

Minimum length LENGTH_LOWEST 5

LENGTH_RANDOM_BELOW_MIN

LENGTH_JUST_BELOW_MIN

LENGTH_MIN

LENGTH_JUST_ABOVE_MIN

Maximum length LENGTH_JUST_BELOW_MAX 5

LENGTH_MAX

LENGTH_JUST_ABOVE_MAX

LENGTH_RANDOM_ABOVE_MAX

LENGTH_GREATEST

Minimum length + maxi-

mum length

LENGTH_MEDIAN 2

LENGTH_RANDOM_BE-

TWEEN_MIN_MAX

Value is/is not/in/not in SET_FIRST_ELEMENT 4

SET_RANDOM_ELEMENT

SET_LAST_ELEMENT

SET_NOT_IN_SET

Format FORMAT_VALID 2

FORMAT_INVALID

REQUIRED_NOT_FILLED

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 124

Property Added data test case Added

Computed by COMPUTATION_RIGHT 2

COMPUTATION_WRONG

Table 15 - Compatibility between properties and data types

Group Property

st
ri

n
g

in
te

g
er

d
o

u
b

le

d
a

te

ti
m

e

d
a

te
ti

m
e

b
o

o
le

a
n

VALUE
mininum value ⨯ ✔ ✔ ✔ ✔ ✔ ⨯

maximum value ⨯ ✔ ✔ ✔ ✔ ✔ ⨯

LENGTH
minimum length ✔ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

maximum length ✔ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

REQUIRED required ✔ ✔ ✔ ✔ ✔ ✔ ⨯

FORMAT format ✔ ✔ ✔ ✔ ✔ ✔ ⨯

SET value is/is not/in/not in ✔ ✔ ✔ ✔ ✔ ✔ ⨯

COMPUTATION computed by ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 16 - UI Element property compatibility

Property

m
in

.
va

lu
e

m
a
x.

 v
a
lu

e

m
in

.l
en

g
th

m
a
x.

le
n
g
th

re
q
u
ir

ed

fo
rm

a
t

va
lu

e
is

va
lu

e
is

 n
o
t

va
lu

e
in

va
lu

e
n
o
t

in

co
m

p
u
te

d
 b

y

min. value - ✔ ⨯ ⨯ ✔ ✔ ⨯ ⨯ ⨯ ⨯ ⨯

max. value ✔ - ⨯ ⨯ ✔ ✔ ⨯ ⨯ ⨯ ⨯ ⨯

min. length ⨯ ⨯ - ✔ ✔ ⨯ ⨯ ✔ ⨯ ✔ ⨯

max. length ⨯ ⨯ ✔ - ✔ ⨯ ⨯ ✔ ⨯ ✔ ⨯

required ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔

format ✔ ✔ ⨯ ⨯ ✔ - ⨯ ✔ ⨯ ✔ ⨯

value is ⨯ ⨯ ⨯ ⨯ ✔ ⨯ - ⨯ ⨯ ⨯ ⨯

value is not ⨯ ⨯ ✔ ✔ ✔ ✔ ⨯ - ✔ ⨯ ⨯

value in ⨯ ⨯ ⨯ ⨯ ✔ ⨯ ⨯ ✔ - ⨯ ⨯

value not in ⨯ ⨯ ✔ ✔ ✔ ✔ ⨯ ⨯ ⨯ - ⨯

computed by ⨯ ⨯ ⨯ ⨯ ✔ ⨯ ⨯ ⨯ ⨯ ⨯ -

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 125

The algorithm for analyzing compatible data test cases for a certain UI Element

have to consider the compatibilities from Table 15 and Table 16, as well to consider

the applicable data test cases, according to Table 14.

We also defined strategies to mix data test cases, i.e., strategies for choosing

the mix of data test cases that produces values considered invalid or considered

valid. For example, suppose that you are building a desktop application that vali-

dates an input data at a time (e.g., by showing the corresponding message). Irre-

spective whether the approach generates two invalid input data or not, the applica-

tion will only perform one validation at a time, and, hence, the produced oracles

(for both the input data) may not reflect the desired behavior (single oracle). In this

way, users can choose the strategy that fits better their applications.

Table 17 presents the strategies to mix data test cases. By default, we adopt the

UnfilteredMix.

Table 17 - Strategies to mix data test cases

Identification Number of data test cases that produce invalid values

OnlyValidMix 0

JustOneInvalidMix 1

InvalidPairMix 2

InvalidTripletMix 3

OnlyInvalidMix all of them

UnfilteredMix varies, since it leaves as is

Another important task is minimizing the combination of data test cases. Since

a single UI Element can have many data test cases, a Test Scenario that has many

UI Elements can culminate in a combinatory explosion. For that reason, we can use

one of the combination strategies defined in section 7.3.3. By default, our approach

uses the Shuffled One-wise strategy, that includes every data test case at least once

and selects different combinations every time it runs – considering the use of dif-

ferent random seeds. That strategy reduces the number of combinations for frequent

tests substantially and allows to cover all the possible combinations (i.e., the Carte-

sian product) over time.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 126

7.3.6.Test oracle generation

Oracles need to consider the effect of the selected test data in order to establish

whether they are valid or not. For example, the data test case VALUE_ZERO is

considered valid only if its UI Element has a minimum value less than or equal to

zero, or if it has a maximum value greater than or equal to zero. Whether we can

determine the validity of test data, we can produce or use the oracles that correspond

to the expected behavior.

UI Element properties can define constraints about the input data. They can also

define Otherwise sentences to determine the expected behavior for when these input

data do not satisfy the constraints (see section 6.1.10.1). Thus, if we can determine

whether an input data satisfy the constraints of a UI Element, then we can determine

its validity and the path that must be followed. For example, suppose that we can

determine that zero (0) is considered an invalid input value for a certain UI Element

(based on its minimum and maximum values), and the UI Element contains Other-

wise sentences that describe what should happen when the respective constraint is

not satisfied. In this case, we can produce a test case that uses the invalid input value

and replaces the original Variant postconditions (i.e., Then sentences) by those Oth-

erwise sentences. If zero would be considered valid, we could keep the postcondi-

tions in the test case.

In Concordia, therefore, Then sentences and Otherwise are used as oracles.

Otherwise sentences usually specify error handling behaviors, and they can replace

Then sentences when we want to simulate invalid inputs.

7.3.7.Test case generation

A test case is a combination of a test scenario, data test cases (one per UI Ele-

ment) and test oracles, produced according to the processes and strategies detailed

in the previous sections. Figure 16 illustrates how the test case generation process

works.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 127

Figure 16 - Test case generation process

The algorithm for producing the Test Cases must adjust Given-When-Then sen-

tences consistently, to keep them in line with the DSL. The algorithm can use the

dictionary (see 7.2) for modifying the beginning of the sentences. The same applies

when values need to be added to sentences. For example, a sentence like “Given

that I fill <age>” that does not have a value, must receive the preposition

“with” – according to the dictionary – plus the generated value (and needed spaces):

“Given that I fill <age> with 27”.

To help to track their origin, (generated) Test Case names are composed of a

Variant name plus an incremental number – e.g., “Logouts by pressing Esc – 1”.

Likewise, comments with relevant information are added to Test Case sentences.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 128

These comments can include the origin of values or UI Literals. For example,

whether the sentence “When I fill <price> with 100” had the value “100”

produced from a Constant named “Min Price”, the comment includes that name,

e.g., “When I fill <price> with 100 # [Min Price]”. Whether the value was

produced from a Data Test Case named “minimum value”, the comment includes

that name, e.g., “When I fill <price> with 100 # minimum value”. Whether

the UI Literal was produced from a UI Element named “Sale Price”, the comment

also includes it, e.g., “When I fill <price> with 100 # {Sale Price},

minimum value”.

7.3.8.Test script generation, execution, and analysis

Test Cases are converted into Abstract Test Scripts, aiming to have a simple for-

mat for transformation into source code. An Abstract Test Script (ATS) needs to

have the name of its Feature, Scenario, Variant, and Test Case. Entities resulting

from Intent Recognition (see 5.6) are used to produce ATS sentences. These sen-

tences are structured as follows:

 Action: the action performed in a sentence (usually a verb). For example,

“see” is the action of the sentence “Then I see <X>”;

 Action Modifiers: modifies the action of the sentence (usually an adverb

of negation). For example, “not” is the action modifier of the sentence

“Then I do not see <X>”;

 Action Options: Adds information to an action. For example, “disabled”

is the option of the sentence “Then I see that <X> is disabled”;

“seconds” is the option of the sentence “When I wait for 2 seconds”;

 Targets: the targets are the involved UI Literals – that is, identifications

of the involved UI Elements. For example, “x” is the target of the sen-

tence “Then I see <x>”; “a” and “b” are the targets of the sentence

“When I drag <a> to ”;

 Values: the values involved in the sentence. For example, “100” is the

value of the sentence “When I fill <price> with 100”; “Bob” is the

value of the sentence “When I fill <name> with "Bob"”;

 Comment: the comment retrieved from the Test Case sentence;

 Location: the line and column of the sentence in its file.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 129

A tool implemented according to our approach can adopt a plug-in structure to

produce test scripts – e.g., that described in Appendix C – in order to not be tied to

a specific testing framework. A plug-in must convert Abstract Test Scripts into

source code. These ATS contain the needed data (for most testing frameworks, we

suppose) to generate (GUI-based) functional test scripts. A plug-in must also be

able to run the produced test scripts. For that purpose, it may adopt default config-

urations or use the configurations produced during its setup process. Executed test

scripts can produce output files (e.g., JSON file or XML file), which the plug-in

reads for converting to the format expected by the tool.

Execution results must report whether the Test Scripts passed, failed or had er-

rors. A report must consider differences between results expected by Test Cases and

results obtained from Test Scripts. These differences should be reported with their

cause and their locations in the corresponding files.

7.4.Validation

The aim of a requirements validation is to certify that specified requirements

conform to the needs and desires of their stakeholders and they are complete (or

complete enough for the intended scope), consistent with standards, not conflicting,

not ambiguous, and do not contain technical errors (MAALEM & ZAROUR,

2016). Yousuf et al. (2008) point out that the most common techniques for valida-

ting requirements are:

a) Inspection: formal evaluation by a group of authors to detect faults or

infringements of standards in software requirement documents ;

b) reviews: multiple readers check for omissions and anomalies in require-

ment documents ;

c) prototyping: an operational model of the application created for discus-

sing and clarifying particular problems of the specification ;

d) animation: walks through specification fragments in order to follow

some scenario ;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 130

e) language paraphrasing: a technique which has been devised to tackle the

problem caused by two conflicting concerns – the concern of the analyst

to develop a formal requirements model, and the users’ need to commu-

nicate their requirements in their own universal, widespread terminology,

and

f) expert systems: use automated tools provided with domain knowledge to

assist the validation of requirements.

Table 18 presents roles and competencies of stakeholders in requirements vali-

dation, according to Sommerville (2011). Investing in the collaborative work

among all these stakeholders have been considered a good practice to achieve better

results in requirements validation. Inayat et al. (2015), for example, present a sys-

tematic review on agile requirements engineering practices in which they conclude

that agile RE practices like customer involvement, review meetings and sessions,

changes in requirement management, and cross-functional teams are distinct fea-

tures missing the traditional way of dealing with requirements. They also affirm

that such agile RE practices can outperform and remove the impediments of tradi-

tional RE practices, and improve the quality and success rate of outcomes. This

strengthens our belief that the proposed process (section 7.1) should be performed

with collaborative work for achieving better results.

Although we recommend the collaborative work among the software team, and

between stakeholders and the software team, we are neither supposing the practice

in studied companies (chapter 9) nor evaluating its impact for validating require-

ments specifications. The reader may encounter more information about collabora-

tive work in the book by Adzic (2011). He affirms having interviewed 30 teams that

implemented around 50 software projects and collaborative work was among the

common practices of the most successful teams.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 131

Table 18 - Roles and competences in requirements validation

Stakeholder Intervention Roles Competences and ex-

pertise

Analyst Complete pro-

cess

Prepares the meetings and ensures

the conduct of business objectives

Analysis of IS, animation,

and communication, order,

decision, negotiation

Customer Validation Identify needs read the requirements

to verify the correspondence with

needs.

Communication

Managers project Inspection Use of specifications to plan supply

and the development process of the

system

Problem domain manage-

ment cost, delay, technical

communication

Domain experts Validation Identify Functional requirements Domain problems and so-

lutions communication

End user Validation Spread Functional and non functio-

nal requirements, organization, con-

text, constraint

Domain problems and so-

lutions for computers

System engineers

and developers

Verification Use requirements to understand the

system under development

Communication HMI

System test engi-

neers

Verification Use the requirements to develop va-

lidation tests for the system

Test enable communica-

tion

System mainte-

nance engineers

Maintenance

of the valida-

tion

Use requirements to help understand

the system

Communication

Designers

Verification Detail and complete the require-

ments

Communication solution

domain

Our approach for validation concerns with two questions :

 Q1: Can Concordia be successfully used for validating requirements with

stakeholders?

 Q2: Can we detect problems in the specification by checking it statically?

Naturally, the first question is affected by the easiness to read and understand

the specification – including produced test cases that may serve as examples for

validation. We investigate this question in the study detailed in chapter 9.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 132

The second question is affected by algorithms or techniques used to verify decla-

rations in Concordia specifications. We detail these verifications in the following

sections, exemplify them in section 8.2, and evaluate the perceptions of users (about

them) in chapter 9.

7.4.1.Pre-test defect removal

Table 19 shows the defect removal efficiency of pre-test activities, according to

Capers Jones (2014). Its values are similar to those presented by McConnel (2004).

Static analysis has high efficiency and its combination with tests can achieve higher

defect removal levels, compared to other combinations (JONES, 1996, 2014).

Table 19 – Pre-test defect removal efficiency

Pre-test defect removal Minimum Average Maximum

Formal design inspections 65% 87% 97%

Formal code inspections 60% 85% 96%

Static analysis 65% 85% 95%

Formal requirement inspections 50% 78% 90%

Informal peer reviews 35% 50% 65%

Scrum sessions 35% 55% 70%

Desk checking 25% 45% 55%

Average 49% 69% 80%

In this context, our contributions are: (a) providing a list of verifications for

the automatic static analysis of Concordia specifications – which includes verifica-

tions for commonly used Agile DSLs (section 4.1); and (b) providing a prototype

tool that performs these verifications. The list is presented in Appendix C.

Additionally, we recommend that software teams conduct informal peer reviews.

They can detect problems such as ambiguity, imprecision, incompleteness, typo-

graphical errors, and grammatical errors of feature descriptions and scenario de-

scriptions. Although the software team writes such descriptions using Agile DSL

templates (section 4.1), the approach does not consider their sentences for testing

purposes and, thus, does not check their syntax. Informal peer reviews can also help

to detect incorrect priorities of features, scenarios, and variants.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 133

7.4.2.Static verification

In static verification, developers may undertake inspections, reviews or static

analyzers to detect errors, omissions, inconsistencies, and deviations from the es-

tablished standards (SOMMERVILLE, 2011). Literature already addresses inspec-

tions and reviews substantially for source code, e.g., program inspection was first

established by Fagan at IBM in 1976. Thus, we headed our investigations to the

static analysis of Agile DSLs, aiming to find defect classes or properties that can be

used to verify documents with such specifications – analogously to those used for

static code analysis (e.g., undeclared or uninitialized variables, possible array bound

violations, unreachable code, uncalled functions, type mismatches).

We could not find approaches for the automated static analysis of Agile specifi-

cations. Most approaches analyzed formal specifications, e.g., (DE ALMEIDA

FERREIRA & DA SILVA, 2012; HOLTMANN; MEYER & VON DETTEN,

2011), performed manual analysis and did not established ways to using natural

language processing or any other means for that purpose. Publications related to the

metalanguages from chapter 4 as well as the approaches from chapter 3 narrowed

their investigations to test automation. We also could not find the verifications per-

formed by the analyzed metalanguages in their documentation. Unfortunately, we

did not have enough time to read their source code – except for the Gherkin parser.

All the verifications performed by the Gherkin parser (which is limited to checking

the syntax) were included in our approach.

Rane (2017) – already mentioned in chapter 3 – only exemplifies error handling

messages produced by the GUI-based tool that reifies his approach. Only one of the

(four) exemplified messages checks the syntax of a declaration: whether the user

story uses the format “As a/I want/So that”.

Gaikwad & Joeg (2016) conducted an empirical study about user stories to ana-

lyze their correctness. Observed problems were classified in the following catego-

ries: (a) Grammatical and typo errors; (b) Big user stories; (c) Action and goal in-

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 134

terchanged; (d) Ambiguous user stories; (e) Incorrect acceptance criteria; (f) In-

complete acceptance criteria; (g) Incorrect goal; (h) Incomplete user story; and (i)

Incorrect priority. The authors propose a set of practices to mitigate them, i.e., to

improving the writing of user stories, such as adopting user role modeling and per-

sona support, using a template for writing user stories, using a scale (1-critical, 2-

high, 3-medium, 4-low) to prioritize user stories, using Given-When-Then consist-

ently, and proofreading to detect typos and grammatical errors. They evaluated the

proposed practices in two workshops and found that there was a substantial increase

in the accuracy of user stories. Both the verifications and analysis were, however,

performed manually.

Ernst et al. (2014) propose an approach for rewriting agile requirements in a

formal language called T1, in order to use a framework called RE-KOMBINE to

detect contradictory requirements. Their technique is based on paraconsistent rea-

soning (a.k.a. paraconsistent logic), and symbols represent sentences and logic con-

flicts are analyzed. The approach does not try to analyze the specification automat-

ically (e.g., using NLP and then trying to infer contradictions) and (since it deals

with a different problem) it does not provide a list of defect classes.

In Appendix C, we present a condensed list of verifications for the Concordia

language. We recommend seeing chapter 8 for some examples.

7.4.3.Stakeholders’ feedback

After static checking the specification and conducting informal peer reviews, it

is probably ready for discussion with stakeholders. Their validation is important to

attest whether the software team could capture the business needs and transform

these needs into Features, Scenarios, and Variants. Features and Scenarios are

discussed from the business point of view, whilst Variants give a good idea of how

the system is expected to work. Test Cases produced from Variants can exemplify

their behavior with different data. UI Elements capture system rules created from

business rules and define how the system should behave in case of the inputs are

considered invalid (according to these rules). Instead of having to define many Va-

riants for error handling, the software team can define a single Variant and let the

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 135

approach create the corresponding Test Cases. Stakeholders may opt to validate

the Variants plus the UI Elements or the Test Cases. Validating Variants and UI

Elements is probably faster than validating the Test Cases, one by one.

7.5.Maintenance

In this section, we describe basic recommendations that probably facilitate the

maintenance of Concordia specifications and test scripts produced from it.

A software team must consider putting all the specification files (extension

.feature), test case files (extension .testcase), and test script files (the file ex-

tension varies according to the user plug-in) under version control. These files can

live along – and evolve – with the source code. Although exact copies of test case

files and test script files can be generated using the same random seed as before,

keeping them under version control facilitates the teamwork, i.e., coworkers would

not need to generate the files, and changes are identified more easily by the team.

Nowadays, text editors and IDEs support the syntax highlighting of a plethora

of languages, including Gherkin. While they do not yet support Concordia, we rec-

ommend taking benefit of their Gherkin support. Syntax highlighting makes the

adopted DSLs easier to read and facilitates to encounter defects. Using a grammar

checker also helps to find problems in the text.

7.5.1.Variants and UI Elements

Variants are probably one of the parts of the specification that will receive more

maintenance. Since their sentences probably receive frequent feedback from cus-

tomers and other stakeholders, we strongly recommend to substitute some declara-

tions to make them easier to read – and, therefore, easier to validate. Whenever

possible, a team should use references to UI Elements instead of using UI Literals.

References to UI Elements are much easier to read since they use names (in busi-

ness language) instead of identifications. They also make the maintenance of iden-

tifications simpler, as they provide a single place of change. Another recommenda-

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 136

tion is replacing values with Constants when these values become difficult or con-

fusing to read. A Constant replaces a value with its meaning and may facilitate the

conversation with stakeholders.

7.5.2.Test cases

In Test-Driven Development, when a defect is discovered a test case is written

to simulate it, before any fixing (BECK, 2003). Whether the test case fails, it suc-

ceeded in reproducing the defect. The team can then fix the defect and rerun the

same test, in order to see if it passes. Other tests are run (as regression tests) to see

if the fix introduced defects. When all the test passes, the team gets confident that

it was able to remove the defect successfully. Our approach recommends this prac-

tice and provides a high-level DSL to describe test cases. Thus, the team can specify

a test case to simulate the system behavior that exposed the defect.

Test cases produced manually must be placed in different files from those gen-

erated – otherwise, they can be overwritten. Whenever the order (index) of Scenar-

ios and Variants are changed (in .feature files), such Test Cases must have their

tags updated. For example, if there are three Variants in a Scenario and the third one

was moved upwards (and becomes the second one), the tag @Variant(3) of the

manual Test Case should be updated to @Variant(2). The same applies to changes

in the order of Scenarios (i.e., it is needed to update the tag @Scenario). Test Cases

produced automatically do not need these manual updates.

7.5.3.Test scripts

Test scripts generated by a tool that implements our approach should not be

edited. Instead, the team should change the corresponding test cases (in .testcase

files). We also recommend creating additional test scripts in separate files, since the

test script generator should always overwrite existing files.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 137

7.6.Concluding remarks

This chapter presented many problems that should be addressed by a unified

V&V approach for real-world applications. The chapter also detailed how the pro-

posed approach tries to mitigate these problems. The approach defines – based on

the current state of the art – an integrated set of algorithms, processes, and practices

regarding verification, validation, and maintenance. It is the first approach to gen-

erate full-featured ready to use test cases and test scripts from agile requirements

specifications, as well as the first integrated approach for V&V of agile require-

ments specifications.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

138

8 Proof of Concept

Talk is cheap. Show me the code.

- Linus Torvalds

This chapter aims to illustrate the approach’s capacity to detect problems in

Concordia requirements specifications and to produce tests that can detect differ-

ences between such specifications and a system under test.

We built a prototype tool that implements most of the proposed techniques and

algorithms for V&V. This prototype was used in the case studies with software

companies for receiving feedback. Chapter 9 details these studies. In this chapter,

we use the tool for demonstrating some of the approach through examples.

The tool is available at http://concordialang.org,64 in which there are installation

procedures and some documentation about the language and the tool. During the

case studies with software companies, we also created a browser plug-in called Kat-

alon-Concordia65 that mitigates (and sometimes resolves) the problem related to

collecting identifications of user interface elements manually in existent web appli-

cations. The plug-in transforms interactions with web applications recorded with a

(record-and-playback) software called Katalon Recorder66 into sentences in Con-

cordia language. Since it is a complementary tool, we do not demonstrate it here.

We edited the exemplified specifications using (the text editor) VS Code.67

8.1.Selected cases

To demonstrate the prototype tool’s capacity to detecting problems in Concordia

specifications, we selected five cases. Table 20 presents them.

64 This domain currently redirects to the projects’ page, at https://github.com/thiagodp/concordialang.
65 Available at https://github.com/thiagodp/katalon-concordia
66 Available at https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
67.Available at https://code.visualstudio.com.

https://github.com/thiagodp/concordialang
https://github.com/thiagodp/katalon-concordia
https://www.katalon.com/resources-center/blog/katalon-automation-recorder/
https://code.visualstudio.com/
DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 139

Table 20 – Cases selected to exemplify problems detection

Case

1 Invalid Names and Unrecognized Entities

2 Syntax of Actions and the Order of Given-When-Then Sentences

3 Missing States

4 Missing UI Elements and Conflicting Properties

5 Connection with Databases

Table 21 presents the cases selected to exemplify the prototype tool’s capacity

to produce tests from Concordia specifications and to detect differences between

these specifications and a system under test. We used a simple, open source inven-

tory system collected from the Internet to produce the examples.68

Table 21 - Cases selected to exemplify the produced tests

Case

1 Testing a Single Feature

2 Testing Related Features

3 Using an External Database

4 Detecting Changes in the System Under Test

68 The system was selected due its simplicity for demonstration purposes and its easiness to setup and use. It is

available at https://github.com/siamon123/warehouse-inventory-system.

https://github.com/siamon123/warehouse-inventory-system
DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 140

8.2.Detecting problems in specifications

Case 1: Invalid Names and Unrecognized Entities

Figure 17 presents an example that checks a Feature name and declared Given-

When-Them sentences. Since Scenarios are not used for producing Test Cases, their

sentences are not validated using natural language processing. Variants sentences,

however, are validated. The NLP processor reports any sentences that it cannot rec-

ognize.

Figure 17 - Verification Case 1

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 141

Case 2: Syntax of Actions and the Order of Given-When-Then Sentences

Figure 18 illustrates the validation of actions’ parameters and the order of Given-

When-Then sentences. In the example, the Variant has four Given sentences, all of

them containing “am on”, which is recognized as an entity called “amOn”, and cor-

responds to being in a certain web page, URL, screen, or window. That entity is an

action that requires at least 1 value and at most 1 value. A Constant can be used

instead of a value. The NLP processor identifies the syntax correctly. The parser

identifies that the Variant starts with a Then sentence, instead of starting with a

Given sentence.

Figure 18 - Verification Case 2

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 142

Case 3: Missing States

Figure 19 presents a validation of a State. The Variant “Logout by pressing Esc”

requires the state “logged user”, but that state is not produced by the imported file.

The tool validates the State and then generates test cases.

Figure 19 - Verification Case 3

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 143

Case 4: Missing UI Elements and Conflicting Properties

Figure 20 presents an example with a UI Element called “Password” that was

not declared, but it was used in a Variant. Another UI Element called “Username”

has two conflicting properties: minimum length is greater than the maximum

length. The tool presents the corresponding errors and warnings. Some of these er-

rors are duplicated because they are produced when the tool tries to generate Test

Cases, i.e., the test case generator currently evaluates and reports the problems on

demand.

Figure 20 - Verification Case 4

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 144

Case 5: Connection with Databases

Figure 21 shows an example of database connection validation. The tool also

validates the existence of files used as databases. Warnings appear more than once

because different test cases produced from the feature cannot retrieve a value for

the UI Element that references the database through a query.

Figure 21 - Verification Case 5

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 145

8.3.Generating test cases and test scripts

Since we picked an existing system to exemplify the produced tests, we had to

use reverse engineering to produce the exemplified Concordia specifications. We

try to let the examples short in order to focus more on the approach and less on the

system.

Case 1: Single Feature

Figure 22 shows an example with validations performed by a login screen in two

different moments (Figure 22a and Figure 22b).

Figure 22 – Some validations in the Login screen

Listing 36 contains the specification created for the login. We defined a table that

contains the credentials considered valid, according to the system’s documentation.

The behavior expected for when the corresponding input is invalid is defined by

Otherwise sentences. We defined two simple Variants to illustrate different input

possibilities for a same Scenario. Since Concordia produces, by default, camel-

cased identifications for UI Elements and the evaluated system also uses this con-

vention, we did not have to define “id” properties in UI Elements.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 146

Feature: Login

 As a user

 I would like to authenticate myself

 In order to access the application

Scenario: Successful login

 Given that I can see the login screen

 When I enter with valid credentials

 Then I can access the application's main screen

 Variant: Login by pressing Enter

 Given that I am on the [Login Screen]

 When I fill my {Username} and my {Password}

 and I press "Enter"

 Then I see the [Welcome Message]

 and I have ~logged user~

 Variant: Login by clicking on Login

 Given that I am on the [Login Screen]

 When I fill my {Username} and my {Password}

 and I click on {Login}

 Then I see the [Welcome Message]

 and I have ~logged user~

Constants:

 - "Login Screen" is "http://localhost/wis/index.php"

 - "Welcome Message" is "Welcome to OSWA INV"

Table: Users

 | user | pass | description |

 | admin | admin | Administrator |

 | special | special | Special user |

 | user | user | Default user |

UI Element: Username

 - value comes from "SELECT user FROM [Users]"

 Otherwise I see the text "Sorry Username/Password incorrect."

 - required is true

 Otherwise I see "Username can't be blank."

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 147

UI Element: Password

 - value comes from "SELECT pass FROM [Users] WHERE user =

{Username}"

 Otherwise I see the text "Sorry Username/Password incorrect."

 - required is true

 Otherwise I see "Password can't be blank."

UI Element: Login

 - type is button

Listing 36 – Feature Login

Since the feature under test (FUT) presents a single error message at a time, we

parameterized the tool to produce a single invalid input value at a time (parameter

--comb-invalid=1). Thus, the produced oracles for invalid inputs verify a single

input at a time. We used the random seed “inventory” to produce the test cases (pa-

rameter --seed="inventory") and the plug-in “codeceptjs” (parameter --

plugin="codeceptjs") to produce the test scripts.

Listing 37 reproduces only the test cases generated for the first Variant. As

we explain in section 7.3.7, the approach also produces comments that identify the

origin of declarations, data test cases with expectations (valid/invalid), and oracles.

The reader may notice that, in every Test Case, the original sentence that contained

the action “fill” with two UI Elements was separated in two new sentences and these

sentences also received UI Literals (instead of UI Elements) plus the produced test

data and comments. For example, in the fourth Test Case, the original sentence

“When I fill my {Username} and my {Password}” produced the sentences “When

i fill <username> with "admin" # {Username}, valid: random element” and

“And i fill <password> with "" # {Password}, invalid: not filled”. The

produced oracles correspond to the input test data. In that fourth example, the orig-

inal oracle was changed from “Then I see the [Welcome Message]” to “Then I

see "Password can't be blank." # from <password>”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

148

Generated with ❤ by Concordia

THIS IS A GENERATED FILE - MODIFICATIONS CAN BE LOST !

import "login.feature"

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 1

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "¦dj¼6¡\`çEÎf\"ç\'TH®evëTä)ë·Ì«ç:\%ÑÏñh[5§½¶=f$À.k(Q[bd{Clÿo2«q\"û-

Íû¢3¢ïÅç®;zYª1 #øBúÌ¢îD¦.,+x¼ÎU1u?½³ìë@9Ý\%(ÃÒ\'·6" # {Username}, invalid: inexistent element

 And i fill <password> with "" # {Password}, valid: last element

 and I press "Enter"

 Then I see the text "Sorry Username/Password incorrect." # from <username>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 2

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 149

 When i fill <username> with "" # {Username}, invalid: not filled

 And i fill <password> with "" # {Password}, valid: first element

 and I press "Enter"

 Then I see "Username can't be blank." # from <username>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 3

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "´{-ááMEÞøaÂ±6(Äé§ \\V¸ët;¹@©\%B¨Sòoù²u^Åe¿²ö\`gúûã³¯©Siÿ09©d-

¤±HQRZLâj¢¼ârÑ?å ýDF5ã9Ïÿîw¢" # {Username}, invalid: inexistent element

 And i fill <password> with "" # {Password}, valid: random element

 and I press "Enter"

 Then I see the text "Sorry Username/Password incorrect." # from <username>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 4

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "admin" # {Username}, valid: random element

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 150

 And i fill <password> with "" # {Password}, invalid: not filled

 and I press "Enter"

 Then I see "Password can't be blank." # from <password>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 5

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "admin" # {Username}, valid: first element

 And i fill <password> with "íP¶lgßCè{T\'Îïe-

bYmÁY\>6·@!§\%ÜzÐ¹ôz$ÊÍ¬/Eôº)d,ú¤àÈA_µåßÖê(ãúõ7[L.}¬°A¼´v¾£dgÓû¤L×z¤\%©ÝÇì±âJ¤;ûU.!±¶vÚ·«väBg+äýç2~¿w©¾"

{Password}, invalid: inexistent element

 and I press "Enter"

 Then I see the text "Sorry Username/Password incorrect." # from <password>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 6

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "user" # {Username}, valid: last element

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 151

 And i fill <password> with "" # {Password}, invalid: not filled

 and I press "Enter"

 Then I see "Password can't be blank." # from <password>

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 7

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "admin" # {Username}, valid: first element

 And i fill <password> with "admin" # {Password}, valid: last element

 and I press "Enter"

 Then I see the "Welcome to OSWA INV" # [Welcome Message]

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 8

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "user" # {Username}, valid: last element

 And i fill <password> with "user" # {Password}, valid: random element

 and I press "Enter"

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 152

 Then I see the "Welcome to OSWA INV" # [Welcome Message]

@generated

@scenario(1)

@variant(1)

Test case: Login by pressing Enter - 9

 Given that I am on the "http://localhost/wis/index.php" # [Login Screen]

 When i fill <username> with "special" # {Username}, valid: random element

 And i fill <password> with "special" # {Password}, valid: first element

 and I press "Enter"

 Then I see the "Welcome to OSWA INV" # [Welcome Message]

Listing 37 - Partial Test Cases produced for Login

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

153

In the current version of the prototype tool, the constraint solver does not evalu-

ate the result of queries of related UI Elements to determine whether the produced

values are valid or not. For example, because of Password’s values are linked to

Username’s values, an invalid data test case selected for Username makes Password

receives an empty value (because the query cannot get a corresponding valid value).

The tool produces warnings to make users aware of this and the comments also help

users to identify the employed data test cases in case of failing tests. In features or

systems that verify a single restriction at a time – as occurs for Login –, this may

go unnoticed and not produce failing tests. For example, only when Login receives

an invalid input data that Password receives an empty value. Thus, the system crit-

icizes the input for Login and ignores the input for Password.

Listing 38 presents the test scripts that correspond to the test cases from Listing

37. As we informed, these test script were produced for the CodeceptJS testing

framework (in JavaScript language). We chose this framework because its methods

resemble the syntax of Concordia declarations – i.e., a user can probably notice the

correspondence between them. The plug-in for CodeceptJS uses instrumentation to

provide traceability between test cases and test scripts, i.e., code comments include

the corresponding column and line of Concordia declarations, as well as their orig-

inal comments.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

154

// Generated with ❤ by Concordia

// source: c:\code\tmp\wis\features\login.testcase

//

// THIS IS A GENERATED FILE - MODIFICATIONS CAN BE LOST !

Feature("Login");

Scenario("Successful login | Login by pressing Enter - 1", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (12,3) [Login Screen]

 I.fillField('username', "¦dj¼6¡\`çEÎf\"ç\'TH®evëTä)ë·Ì«ç:\%ÑÏñh[5§½¶=f$À.k(Q[bd{Clÿo2«q\"û-

Íû¢3¢ïÅç®;zYª1 #øBúÌ¢îD¦.,+x¼ÎU1u?½³ìë@9Ý\%(ÃÒ\'·6"); // (13,3) {Username}, invalid: inexistent element

 I.fillField('password', ""); // (14,5) {Password}, valid: last element

 I.pressKey("Enter"); // (15,5)

 I.see("Sorry Username/Password incorrect."); // (16,3) from <username>

});

Scenario("Successful login | Login by pressing Enter - 2", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (22,3) [Login Screen]

 I.fillField('username', ""); // (23,3) {Username}, invalid: not filled

 I.fillField('password', ""); // (24,5) {Password}, valid: first element

 I.pressKey("Enter"); // (25,5)

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 155

 I.see("Username can't be blank."); // (26,3) from <username>

});

Scenario("Successful login | Login by pressing Enter - 3", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (32,3) [Login Screen]

 I.fillField('username', "´{-ááMEÞøaÂ±6(Äé§ \\V¸ët;¹@©\%B¨Sòoù²u^Åe¿²ö\`gúûã³¯©Siÿ09©d-

¤±HQRZLâj¢¼ârÑ?å ýDF5ã9Ïÿîw¢"); // (33,3) {Username}, invalid: inexistent element

 I.fillField('password', ""); // (34,5) {Password}, valid: random element

 I.pressKey("Enter"); // (35,5)

 I.see("Sorry Username/Password incorrect."); // (36,3) from <username>

});

Scenario("Successful login | Login by pressing Enter - 4", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (42,3) [Login Screen]

 I.fillField('username', "admin"); // (43,3) {Username}, valid: random element

 I.fillField('password', ""); // (44,5) {Password}, invalid: not filled

 I.pressKey("Enter"); // (45,5)

 I.see("Password can't be blank."); // (46,3) from <password>

});

Scenario("Successful login | Login by pressing Enter - 5", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (52,3) [Login Screen]

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 156

 I.fillField('username', "admin"); // (53,3) {Username}, valid: first element

 I.fillField('password', "íP¶lgßCè{T\'Îïe-

bYmÁY\>6·@!§\%ÜzÐ¹ôz$ÊÍ¬/Eôº)d,ú¤àÈA_µåßÖê(ãúõ7[L.}¬°A¼´v¾£dgÓû¤L×z¤\%©ÝÇì±âJ¤;ûU.!±¶vÚ·«väBg+äýç2~¿w©¾");

// (54,5) {Password}, invalid: inexistent element

 I.pressKey("Enter"); // (55,5)

 I.see("Sorry Username/Password incorrect."); // (56,3) from <password>

});

Scenario("Successful login | Login by pressing Enter - 6", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (62,3) [Login Screen]

 I.fillField('username', "user"); // (63,3) {Username}, valid: last element

 I.fillField('password', ""); // (64,5) {Password}, invalid: not filled

 I.pressKey("Enter"); // (65,5)

 I.see("Password can't be blank."); // (66,3) from <password>

});

Scenario("Successful login | Login by pressing Enter - 7", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (72,3) [Login Screen]

 I.fillField('username', "admin"); // (73,3) {Username}, valid: first element

 I.fillField('password', "admin"); // (74,5) {Password}, valid: last element

 I.pressKey("Enter"); // (75,5)

 I.see("Welcome to OSWA INV"); // (76,3) [Welcome Message]

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 157

});

Scenario("Successful login | Login by pressing Enter - 8", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (82,3) [Login Screen]

 I.fillField('username', "user"); // (83,3) {Username}, valid: last element

 I.fillField('password', "user"); // (84,5) {Password}, valid: random element

 I.pressKey("Enter"); // (85,5)

 I.see("Welcome to OSWA INV"); // (86,3) [Welcome Message]

});

Scenario("Successful login | Login by pressing Enter - 9", (I) => {

 I.amOnPage("http://localhost/wis/index.php"); // (92,3) [Login Screen]

 I.fillField('username', "special"); // (93,3) {Username}, valid: random element

 I.fillField('password', "special"); // (94,5) {Password}, valid: first element

 I.pressKey("Enter"); // (95,5)

 I.see("Welcome to OSWA INV"); // (96,3) [Welcome Message]

});

Listing 38 - Partial Test Scripts for Login

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

158

Figure 23 illustrates the execution of the fourth test script from Listing 38. When

a test script is executed, CodeceptJS produces sentences that resemble sentences in

natural language. Therefore, users can follow test executions easily and realize their

correspondence to Concordia specifications.

Figure 23 - Execution of a test script

Case 2: Testing Related Features

In the system under test, the access to Category depends on the user’s level. The

user “admin” has access to the menu option “Categories” and can add, edit or re-

move categories. The user “special” can see the menu option “Categories” but

his/her access to categories is denied. Finally, the user “user” cannot see the menu

option “Categories”. Figure 24 illustrates the system module for Categories.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 159

Figure 24 - Access to Categories

Listing 39 - Feature Login modified to consider access rights

Feature: Login

...

Scenario: Successful login

...

 Variant: Login by clicking on Login

 Given that I am on the [Login Screen]

 When I fill my {Username} and my {Password}

 and I click on {Login}

 Then I see the [Welcome Message]

 and I have ~user logged in~

 Variant: Administrator Login

 Given that I am on the [Login Screen]

 When I fill my {Username} with "admin"

 and I fill my {Password} with "admin"

 and I click on {Login}

 Then I see the [Welcome Message]

 and I have ~administrator logged in~

 Variant: Special User Login

 Given that I am on the [Login Screen]

 When I fill my {Username} with "special"

 and I fill my {Password} with "special"

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 160

 and I click on {Login}

 Then I see the [Welcome Message]

 and I have ~special user logged in~

 Variant: Default User Login

 Given that I am on the [Login Screen]

 When I fill my {Username} with "user"

 and I fill my {Password} with "user"

 and I click on {Login}

 Then I see the [Welcome Message]

 and I have ~default user logged in~

...

Listing 40 presents the feature “Add Category” which needs the feature “Login”.

Three different Scenarios illustrate the expectations related to the user-level access

(explained earlier).

Listing 40 - Feature Add Category

import "login.feature"

Feature: Add Category

Scenario: Admin can add category

 Variant: Admin adds category sucessfully

 Given that I have ~administrator logged in~

 When I click "Categories"

 and I fill {Category Name}

 and I click on {Add category}

 Then I see "Successfully Added Category"

Scenario: Special user cannot add category

 Variant: Special user has no permission

 Given that I have ~special user logged in~

 When I click "Categories"

 Then I see "Sorry! you dont have permission to view the page."

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 161

Scenario: Default user cannot add category

 Variant: Default user cannot see the menu Categories

 Given that I have ~default user logged in~

 Then I do not see "Categories"

UI Element: Category Name

 - id is "category-name"

 - required is true

 Otherwise I see "Category name can't be blank."

UI Element: Add category

 - id is "add_cat"

For a sake of space, we will only reproduce some of the test cases and test

scripts generated from the feature Add Category. Figure 25 shows the first test

case generated from that feature. The reader may notice that the steps related to the

state “administrator logged in” were replaced by the corresponding steps of the Var-

iant that produces the state. Figure 26 shows the test script that corresponds to the

first test case.

Figure 25 - First Test Case from the Feature Add Category

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 162

Figure 26 - First Test Script generated from the Test Case “Admin adds

successfully - 1”

Figure 27 shows the third test case generate from the feature Add Category, and

Figure 28 shows the corresponding test script.

Figure 27 - Third Test Case generated from the Feature Add Category

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 163

Figure 28 - Test Script generated from the Test Case "Special user has

no permission - 1"

Case 3: Using an External Database

Databases can be used in UI Element properties and Test Events. These Test

Events can configure databases or their execution environments, aiming to have the

proper system states when the test scripts run.

In the system under test, Categories are unique and its database reflects that re-

striction. Whether we execute more than once a test script that adds a certain Cate-

gory, that test script will fail because of the database restriction. Hence, in order to

avoid such test scripts to fail, we can handle the database before or after they run.

Listing 41 shows the content of the file “db.feature” that contains a Database

declaration. Listing 42 shows the declaration of the test event Before Feature in the

feature Add Category. Listing 43 shows the corresponding source code produced

from that test event and Figure 29 shows the execution of a test script that triggers

the test event.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 164

Listing 41 - File db.feature

Database: WISDB

- type is "mysql"

- host is "localhost"

- name is "oswa_inv"

- username is "root"

- password is ""

Listing 42 – Test Event Before Feature declared for the feature Add

Category

import "db.feature"

...

Before Feature:

 When I connect to the database [WISDB]

 and I run the script 'DELETE FROM [WISDB].`categories`'

Listing 43 - Test Script generated from the event Before Feature from

Add Category

BeforeSuite(async (I) => { // Before Feature

 I.connect("WISDB",

 {"driverName":"mysql",

 "username":"root",

 "password":"",

 "hostname":"localhost",

 "database":"oswa_inv"}

); // (38,3)

 await I.run('WISDB', 'DELETE FROM `categories`'); // (39,5)

});

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

165

Figure 29 - Example of Execution of the Test Event

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

166

Case 4: Detecting Changes in the System Under Test

Test scripts that check the system’s state from its user interface are sensitive to

user interface changes. For example, they can break when UI elements are not found

or when the UI content (e.g., values, messages, text) differs from the expectations.

Both Actions and Oracles can break test scripts. The sensibility of test scripts

may also depend on the used testing framework, since they can adopt measures such

as smart wait, i.e., to give an extra time when waiting for UI elements or values

without delaying execution, or smart search, i.e., to search for different identifica-

tions for a same UI element.

To exemplify the approach’s capacity to detect changes in the SUT, we edited

the source code of the SUT to remove the constraint that defines the Category’s

name as a required input field. Listing 44 shows the code (in PHP language) before

and after the change. Figure 30 shows the test scripts passing before the change in

the SUT. Figure 31 shows that the test script that corresponds to the modified con-

straint fails after the change in the SUT – that is, it is able to detect the change.

Figure 32 shows the details of the failure, which evidence that the expected message

used as oracle was not found in the SUT.

Listing 44 - Change in a required constraint of the SUT

Before:

 $req_field = array('category-name');

 validate_fields($req_field);

After:

 $req_field = array(); // empty

 validate_fields($req_field);

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

167

Figure 30 –Test Script passing before the change in the SUT

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 168

Figure 31 - Test Script failing after the change in the SUT

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 169

Figure 32 - Details of the failure

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

170

8.4.Concluding remarks

This chapter illustrated the approach’s capacity to detect problems in require-

ments specifications written with Concordia language, the generated test cases and

test scripts, and the capacity of these test scripts detecting differences between such

specifications and the system under test.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

171

9Multi-case Study

If you’re relentlessly focused on lowering cost, you’ll quickly become

oblivious to opportunities to increase value.

- Michael Bolton

This chapter presents the design of the study, its results, and related conclusions.

We conducted a multi-case study with small and micro software development

companies to evaluate the effectiveness of the proposed approach in real software

projects. In section 9.1, we present its design. Sections 9.2 and 9.3 show the col-

lected quantitative and qualitative data, respectively. Finally, we discuss the results

in section 9.4.

9.1.Study design

9.1.1.Strategy

Case studies are a preferred strategy when the investigator has little control over

the events, and when the focus is a contemporary phenomenon within some real-

life context (YIN, 2003). Since our approach has a strong relation to the practice,

empirical research and observation through case studies fit better its context. Fur-

thermore, multiple-case designs are likely to be stronger than single-case designs

(YIN, 2003).

Case studies can be based on any mix of quantitative and qualitative evidence

(YIN, 2003). Our research collected quantitative data from the usage of the pro-

posed approach during the study, and at the end of the study through a question-

naire. The qualitative data were collected using a questionnaire and semi-structured

interviews. Section 9.1.5 details the procedures and measurements.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 172

9.1.2.Goal and research questions

The goal of our multi-case study is to evaluate the proposed approach with real-

world software projects in relation to its effort and benefits. More specifically, we

are interested in trying to answer the following research questions:

RQ1: How difficult is it for stakeholders to understand requirements specified

with Concordia?

RQ2: Is the metalanguage useful to validate requirements with stakeholders?

RQ3: How difficult is it to specify requirements with Concordia?

RQ4: How time-consuming is it to specify requirements with Concordia?RQ5:

Is the approach useful to verify the compliance of a system with its requirements?

RQ6: How complete are the tests generated with the approach?

RQ7: Is the approach useful to discover defects?

9.1.3.Participants

We offered a free course on functional testing aiming at attracting companies to

participate in the study and introducing them to the metalanguage (Concordia) and

the prototype tool. The case studies started after the course ended. All the partici-

pants took part in the case studies voluntarily.

Table 22 presents companies’ profiles, whose names were replaced by letters.

Table 22 - Companies' Profiles

Company D O H I

of employees 26 10 6 3

development

process

Prescriptive,

Agile

Prescriptive,

Agile

Prescriptive Agile

types of soft-

ware

Information

systems

Information

systems

Information

systems

Information

systems,

mobile ap-

plications

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 173

evaluated soft-

ware domains

Sales and

content

management

Veterinary

examinations

Enterprise

Resources

Planning

Account

manage-

ment (paya-

bles and re-

ceivables)

Req. spec. lan-

guage

Portuguese Portuguese Portuguese Portuguese,

English

Company “D” was founded in 2008 and its main activities are software devel-

opment and digital marketing. Its main product is an e-commerce platform and Con-

cordia was mostly used with features of the new version of that platform, which is

about to be released.

Company “O” was founded in 2013 and started developing web-based systems

in the last three years. It decided to adopt Concordia to continue developing features

of its software for veterinary examinations.

Company “H” was founded in 2010 and develops integrated commercial appli-

cations, such as enterprise resource planning (ERP) and point-of-sale software. It

used Concordia in features of the ERP software, which use web-based technologies.

Company “I” is a software development startup founded in 2017. It used Con-

cordia in its web-based software for managing payables and receivables.

Table 23 summarizes participants’ profiles, whose names were replaced by let-

ters.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 174

Table 23 - Participants' Profiles

Id Company Current position /

time in the co.

Education

1 D-D

D

Developer-Tester,

1 year, 2 months

Technical high school in Informatics,

Undergraduate student (6th semester)

2 D-G Developer, 1 year,

2 months

 Technical high school in Informatics,

Undergraduate student (6th semester)

3 O-A

O

Developer-Tester,

2 years, 7 months

 Technical high school in Informatics,

Undergraduate student (6th semester)

4 O-V Developer, 5

months

 Technical high school in Informatics,

Bachelor’s degree

5 O-R Developer, 3

months

Technical high school in Informatics

6 H-W

H

Developer/Tester,

7 years

Technical high school in Informatics,

Undergraduate student (7th semester)

7 H-V Developer/Tester,

3 months

Undergraduate student (10th semester)

8 I-W

I

Developer/Tester,

3 years, 4 months

 Technical high school in Informatics,

Undergraduate student (7th semester)

9 I-S Developer/Tester,

8 months

 Technical high school in Informatics,

Undergraduate student (5th semester)

9.1.4.Initial procedures

After the companies accepted the invitation to participate in the case studies, we

scheduled and performed a presentation to their management and employees. We

then scheduled a kickstart meeting in which we supervised the specification with

Concordia and the tool usage. The companies started specifying simple features and

proceeded to more complex ones as they learned. Additional meetings were

performed when needed to clarify doubts. We also offered support via e-mail, mo-

bile phone, Skype69, and Telegram70. The study lasted approximately two months

(March-July, 2018) and started immediately after finishing the prototype tool (July

2017 to February 2018) and the functional testing course (March 2018).

69 https://www.skype.com
70 https://telegram.org

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 175

9.1.5.Procedures and measurements

Basri & O’Connor (2010) point out that, in small companies, most of the man-

agement processes are performed through an informal way and less documented,

due to a small number of people involved in the project and the organization. During

the presentation with management or the kickstart meeting, we identified that the

companies did not collect metrics about their processes and they probably would

not do (during the case studies) due to different reasons, such as lack of time, com-

pany culture, or inappropriate qualification. We then decided to reduce the number

of quantitative metrics adopted in the case studies. For example, we did not include

Defect Removal Efficiency (DRE), a quality metric that can be used to evaluate the

capacity of a software team to detect defects in a software after releasing it to cus-

tomers (SOMMERVILLE, 2011) – in order to evaluate whether the company’s ef-

ficiency would improve after adopting our approach.

We asked the participants to take notes on: (i) defects found with the prototype

tool; (ii) unexpected inconsistencies between the requirements specification and the

system under test; and (iii) stakeholders’ feedback about specified requirements. We

also collected feedback during conversations, meetings and support tasks. At the

end of the study, we applied a questionnaire to the participants listed in Table 23.

The questionnaire is composed of ranked questions, Likert-scale questions, and

open-ended questions. Table 24 presents the questionnaire rationale, constructed

using Goal-Question-Metric (GQM) (BASILI, 1992). Finally, we conducted semi-

structured interviews with participants to gather additional qualitative feedback (see

9.3.1) and to validate some questionnaire’s answers. We also used GQM to formu-

late the base questions for these interviews, which are available in the Table 25.

Table 24 - Questionnaire rationale

Goal (to evalu-

ate…)
Question Metric

Number of applica-

tions involved

1 In how many applications did you use

Concordia?

Number of

applications

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 176

Goal (to evalu-

ate…)
Question Metric

Number of features

involved

2 In how many features did you use Con-

cordia?

Number of

features

Frequency of valida-

tion with the cus-

tomers

3 Whether you could validate features

with stakeholders, every how many days

did this validations occur?

Number of

days

Types of systems in-

volved

4 In which types of system did you use

Concordia? () Information Systems ()

Websites () Mobile applications ()

Games () Other

Type of sys-

tem

Maturity of features

5 Please indicate the number of evaluated

features according to the number of

months or years they have.

Not released yet: ___ Up to 3 months:

___ Up to 6 months: ___ Up to 12

months: ___ From 1 to 3 years: ___

More than 3 years: ___

Number of

features per

time interval

Participant’s back-

ground and experi-

ence

6 Please check the degrees that corre-

spond to your qualification: [] Ele-

mentary school [] Middle school []

High school [] Associate’s [] Bache-

lor’s [] Postgraduate’s [] Master’s [

] Doctor’s [] Other _______

Academic

background

7 Are you currently attending any course?

Please inform the corresponding semes-

ters.

Formation

8 Please inform which positions you occu-

pied in your company and for how long.

Months by

position

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 177

Goal (to evalu-

ate…)
Question Metric

9 Please check the types of requirements

specification documents that you have

prior experience: [] Wiki or textual

documentation [] Use cases [] User

Stories [] Other ___

Types of doc-

uments

10 Please check the types of automated

tests that you have prior experience. []

Unit or integration tests [] Web API

tests [] Functional or UI tests [] Non-

functional tests (load/performance/se-

curity/other)

Types of au-

tomated test

Quality con-

trol practices

11 Before using Concordia, which types of

requirements specification documents

did your company use? [] Wiki or tex-

tual documentation [] Use cases []

User Stories [] Other ___

Types of doc-

uments

12 Before using Concordia, how frequent

did your company validate requirements

with customers? () Never () Very

rarely () Rarely () Sometimes () Fre-

quently () Always

Frequency of

validation

13 Before using Concordia, how frequent

did your company use requirements

specifications for producing tests? ()

Never () Very rarely () Rarely ()

Sometimes () Frequently () Always

Frequency of

tests based on

specifications

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 178

Goal (to evalu-

ate…)
Question Metric

14 Before using Concordia, which types of

automated tests did your company use?

[] None [] Unit or integration tests [

] Web API tests [] Functional or UI

tests [] Non-functional tests (load/per-

formance/security/other)

Types of au-

tomated test

Language compre-

hension and usage

15 How hard was for customers to compre-

hend Concordia specifications? () I

could not show them () Very hard ()

Hard () Neither hard nor easy () Easy

() Very easy

Perception of

level of diffi-

culty

16 Please make additional comments about

any customers’ difficulties to compre-

hend Concordia specifications.

Observations

(descriptive)

17 Did you provide any explanations for

your customers before letting them read

Concordia specifications? What expla-

nations?

Observations

(descriptive)

18 Your difficulty to understand Concordia

specifications was: () None () Very

small () Small () Normal () High ()

Very high () Total

Perception of

level of diffi-

culty

19 Which parts of the specification were

harder to understand?

Observations

(descriptive)

20 Your difficulty to write Concordia spec-

ifications was: () None () Very small (

) Small () Normal () High () Very

high () Total

Perception of

level of diffi-

culty

21 Which parts of the specification were

harder to write?

Observations

(descriptive)

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 179

Goal (to evalu-

ate…)
Question Metric

 22 The time invested to write Concordia

specifications was: () Very short ()

Short () Reasonable () Long () Very

long

Perception of

time

23 When compared to the time that your

company used to invest on specification

documents, the time invested to write

Concordia specifications was: () The

company did not write specifications ()

Much faster () Faster () Equal ()

Slower () Much slower

Perception of

time

24 When compared to requirement specifi-

cation documents previously used in

your company, Concordia was: () The

company did not write specifications ()

Much easier () Easier () Equal ()

Harder () Much harder

Perception of

easiness

Produced tests

25 Compared to your company’s prior

practice to produce tests, Concordia

was: () Much easier () Easier ()

Equal () Harder () Much harder

Perception of

easiness

26 How do you classify the number of tests

produced by Concordia, in relation to

the practice previously adopted by your

company? () Much larger () Larger (

) Equal () Smaller () Much smaller

Perception of

number of

tests

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 180

Goal (to evalu-

ate…)
Question Metric

27 How do you classify the quality of tests

the produced by Concordia, in relation

to the practice previously adopted by

your company? () Much higher ()

Higher () Equal () Lower () Much

lower

Perception of

quality of

tests

Effectiveness

28 How many defects do you remember had

discovered with Concordia?

Number of

defects

29 Which other problems in your applica-

tion do you remember had discovered

with Concordia?

Observations

(descriptive)

30 In most of your Variants, you… () Fixed

all used test data () Fixed some of the

used test data () Let Concordia gener-

ate some of the used test data () Let

Concordia generate all the used test

data

Usage of

manually de-

fined test data

32 In most of your Features, you…

() Did not specify UI Elements ()

Specified some UI Elements but did not

specified properties related to their val-

ues. () Specified UI Elements with

properties related to their values.

Usage of data

properties

The capacity of be-

ing used for valida-

tion with stakehold-

ers

33 Concordia can be used to validate fea-

tures with the customer.

() Strongly agree () Agree () Neither

agree nor disagree () Disagree ()

Strongly disagree

Level of

agreement

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 181

Goal (to evalu-

ate…)
Question Metric

The capacity of de-

tecting problems in

the specification

34 Concordia can detect incorrect declara-

tions or other errors in the specification.

() Strongly agree () Agree () Neither

agree nor disagree () Disagree ()

Strongly disagree

Level of

agreement

The capacity of de-

tecting differences

between the SUT

and its specifications

35 The tests generated by Concordia can

detect differences between the system

under test and the requirement specifi-

cations

() Strongly agree () Agree () Neither

agree nor disagree () Disagree ()

Strongly disagree

Level of

agreement

In comparison with a

framework

36 Concordia is easier to use than a frame-

work.

() Strongly agree () Agree () Neither

agree nor disagree () Disagree ()

Strongly disagree

Level of

agreement

Additional

impressions about

the solution.

37 Please feel free to make additional com-

ments.
Observations

(descriptive)

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 182

Table 25 – Semi-structured interviews rationale

Goal (collect qualitative data

about…)

Question Metric

Possible advantages of the so-

lution

1 What are the good points in

using Concordia?

Perception

of the ad-

vantages

Possible disadvantages of the

solution

2 What are the bad points in us-

ing Concordia?

Perception

of the dis-

advantages

Possible improvements needed

for the metalanguage

3 Which improvements would

you do in the language?

List of im-

prove-

ments

Possible improvements needed

for the tool

4 Which improvements would

you do in the tool?

List of im-

prove-

ments

Possible improvements for the

generated tests

5 Which tests would you add to

those generated by the tool?

List of

tests

Possible improvements for the

solution

6 Are there any other improve-

ments that you think would be

useful?

List of im-

prove-

ments

Possible situations in which the

solution may not be useful

7 Are there any situations you

would not use Concordia?

List of sit-

uations

9.1.6.Controls and threats to validity

We employed the following controls for the questionnaire and interviews:

 Participants were instructed to inform if they had trouble understanding

any question;

 Participants were asked to avoid communication during the activities;

 Participants were allocated far from each other for the duration of the

interviews.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 183

We highlight the following threats to the validity of the study:

 Internal validity: this threat concerns the effect that the treatment can

cause in the outcome.

a) We used only one person to tabulate the data and to conduct in-

terviews. Although precautions were taken to not influence

participants along the process, it may have had some effect on

them;

b) Training may have been insufficient, which could increase the

difficulty to use the proposed metalanguage and the prototype

tool We tried to mitigate this threat by offering support during the

case studies and making the related documentation available;

c) Precision of collected data was reduced due to the impossibility

of participants to collect more quantitative metrics;

d) Fatigue effects during interviews were mitigated by keeping the

interviews short (10-15 minutes). We tried to reduce fatigue ef-

fects when participants answered the questionnaire by allowing

them to fill it incrementally for three days.

 External validity: this threat concerns the generalization of observed re-

sults to a larger population, outside the sample instances used in the ex-

periment. The study had a small sample size. We currently narrowed our

approach to information systems, in order to limit the generalization of

observations. Company selection also followed this criterion. Finally, the

short duration of the study could not be mitigated due to the existing time

restriction for the thesis.

 Conclusion validity: this threat concerns the relation between the treat-

ment and the outcome. The study was possibly affected by random facts

from environment (e.g., company culture, participants’ expertise, soft-

ware types). To mitigate it, we adopted different instruments to collect

quantitative and qualitative data (section 9.1.5).It was possible to inter-

sect evidence emerged from practice, participants’ opinions, researchers’

observations, and literature, strengthening the study findings.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 184

9.1.7.Analysis

The study used Technical Action Research (TAR). Wieringa (2014c) affirms

that “Technical action research is the use of an experimental artifact to help a client

and to learn about its effects in practice. The artifact is experimental, which means

that it is still under development and has not yet been transferred to the original

problem context. A TAR study is a way to validate the artifact in the field. It is the

last stage in the process of scaling up from the conditions of the laboratory to the

unprotected conditions of practice.”.

TAR has been used to validate methods in industry. For example, Morales-

Trujillo et al. (2015) report that the combination of TAR and case studies was a

successful experience to bridge the gap between academy and industry; Parra et

al. (2017) used TAR to validate a model-driven method for gesture-based soft-

ware interfaces; Morali & Wieringa (2010) used TAR to validate a method for

specifying confidentiality requirements of outsourced systems.

Considering an approach, technique or model that has been designed and suc-

cessfully tested with some artificial examples by the researcher, TAR can validate

whether it (the approach, technique or model) can be used in real-world situations

(WIERINGA, 2014c). In our case, TAR is used to validate if the proposed approach

works with information systems in software development companies, considering

our goal and research questions (section 9.1.2).

TAR consists of a five-step research cycle (WIERINGA, 2014c):

1. Problem investigation: determine what the unit of study is, what concepts

are used to state the research questions about the unit of study, and what

we already know about the research questions. We defined our problem

investigation strategy in section 9.1.1, the unit of study and the re-

search questions in section 9.1.2;

2. Design: consists of acquiring access to a client company, agreeing on an

improvement goal for the client cycle, agreeing on what the researcher

will do for the company and on how the researcher will collect data. We

provided details about how we contacted companies and participants

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 185

in sections 9.1.3 and 9.1.4, and about the procedures and measure-

ments in 9.1.5. All the participants were clarified about the case

study before they start participating and, again, in kickstart meet-

ings;

3. Validation: consists of assessing the risks of not being able to answer the

research questions if the researcher executes the research design. We de-

tailed the controls and threats to validity in section 9.1.6;

4. Execution: consists of the execution of the client cycle, part of which is

the operationalization of the treatment plan (i.e., to use the approach) al-

ready agreed on in the research design. Here, resources, people, time and

places have to be agreed on to perform the tasks of the treatment. The

analyzed companies adopted the approach and used its prototype

tool, and their feedback was collected every week during the studies.

At the end of the studies, we formalized the results and impressions

through a questionnaire and semi-structured interviews. We present

and discuss the results in section 9.4;

5. Evaluation: consists of analyzing the results. Observations are extracted

from the raw data, possible explanations are searched for, research ques-

tions answered, and generalizations to other cases from the same problem

class hypothesized. Limitations of these outcomes are stated explicitly,

and the increment of knowledge achieved identified. We evaluate the

results in section 9.4.

The entire TAR exercise is based on the assumption that what the researcher

learns in a particular case (i.e.., a company) will provide lessons learned that will

be usable in the next case (LEE & BASKERVILLE, 2003; SEDDON &

SCHEEPERS, 2012, 2006; WIERINGA, 2014c). During the case studies, we

identified problems and made adjustments in the prototype tool based on com-

panies and participants’ feedback. We discuss these lessons learned in section

9.4.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 186

9.2.Quantitative data

We organized the qualitative data in the following subsections. Subsection 9.2.1

details companies’ and participants’ profiles. Subsection 9.2.2 considers the evalu-

ated features’ maturity and frequency of validation with stakeholders. Subsection

9.2.3 concerns with the understanding of Concordia specifications. Finally, the sub-

section 9.2.4 details the participants’ perception about the approach and the proto-

type tool.

9.2.1.Profile

All the profile data consider the state-of-the-practice before using Concordia.

Figure 33 shows the prior experience of participants and the usage in companies

regarding documentation artifacts and automated tests. Although participants also

have prior experience with use cases and user stories, their great majority (89%)

uses wiki or textual documentation in companies. Only a few participants (22%)

had prior experience with automated functional or UI tests, and most (46%) do not

use any kind of automated tests in their companies.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 187

Figure 33 – Documentation artifacts and automated tests

Figure 34 shows the usage of requirements specifications for validation with

stakeholders (a) and for producing tests (b). The validation with stakeholders oc-

curred “occasionally” in most cases (67%). Since we also asked to participants

about the frequency of validation with stakeholders (Figure 27d), we could ascer-

tain that it occurred from 15 to 30 days on average. Requirements specifications

were not used to produce any kind of test in most cases (46%).

Figure 34 - Usage of requirement specifications

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 188

9.2.2.Features and validation

Figure 35a presents the average frequency of features specified with Concordia

per company. The great majority of the companies (75%) specified from 5 to 9

features, while the other companies specified 10 features or more. (Figure 35b

shows the average frequency in which these features that were validated with stake-

holders by participants. Most participants (56%) validated up to 4 features. Figure

35c presents the maturity of involved features, i.e., the elapsed time since they were

deployed. The majority of the features (36%) has 7 to 12 months and only 9% can

be considered mature (one to three years). Figure 35d shows the time interval in

which features were validated with stakeholders. Most participants (67%) validated

features with stakeholders in a range that varied from 15 to 30 days.

Figure 35

Figure 35 - Features, maturity, and validation

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 189

9.2.3.Concordia

Figure 36a presents the perception of participants about the difficulty of stake-

holders in comprehending requirements specifications written with Concordia.

Most participants (45%) affirmed that stakeholders could not understand some parts

(medium difficulty), 33% affirmed that stakeholders could understand almost eve-

rything (small difficulty), and the other participants (22%) could not evaluate. We

could verify from both the questionnaire and interviews that these parts were the

related to two declarations: properties (constraints) of User Interface Elements and

Databases. These parts of the metalanguage were not intended to be validated by

stakeholders but to allow the software team to express system’s constraints or prop-

erties aiming to generate tests. Participants did not report stakeholders’ difficulties

about any other parts of the language, such as Variants or Test Cases. Therefore,

the difficulty attributed to the results from Figure 36a are related to declarations

that should not have being validated with stakeholders. Furthermore, the question-

naire revealed that a hundred percent of the stakeholders did not receive any expla-

nation about the metalanguage (Concordia) or the format of the requirements spec-

ifications before reading them.

Figure 36b shows the perception of participants about the difficulty of their

coworkers to understand Concordia specifications. Most participants (56%) re-

ported that coworkers could understand everything (none difficulty), 33% affirmed

that they could not evaluate that, i.e., they did not pay attention to that matter during

the study, and 11% reported that their coworkers could understand almost every-

thing (small difficulty). We also could verify that the most common difficulty was

related to properties of User Interface Elements.

Figure 36c presents the initial perception of participants about their difficulty to

understand Concordia specifications. Most participants (56%) reported that they

could understand everything (none difficulty), and 44% reported that they could

understand almost everything (small difficulty). During questionnaires or inter-

views, they reported that they could solve any difficulties by contacting the support

or reading Concordia’s documentation.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 190

Figure 36 –Concordia’s reading comprehension

Figure 37 presents the perception of participants about writing requirements

specification with Concordia (Figure 37a), and the amount of Concordia’s docu-

mentation that they affirm to have read before reading or writing them (Figure 37b).

The great majority of participants (89%) reported that they had a small difficulty to

write Concordia specifications. These difficulties were solved with the help of sup-

porting tasks (i.e.., by contacting the researcher) or by reading the language’s doc-

umentation. Most of the participants (56%) affirmed that they read something of

the Concordia’s documentation, and 44% affirmed that they read most of it.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 191

Figure 37 – Concordia's writing comprehension

Figure 38a presents the participants’ perception of the time to write Concordia

specifications. The majority (60%) reported that the time to write them was short.

Figure 38b shows the participant’s perception about the time to write Concordia

specifications, compared to the time to write specifications using the document

adopted by the company before trying Concordia (e.g.,wiki, use cases). The major-

ity (56%) affirmed that it was faster to write specifications with Concordia.

Figure 38 - Perceived time writing Concordia specifications

9.2.4.Prototype tool and approach

Figure 39 presents the participants’ perception about the tests produced with

Concordia in comparison with the tests produced before adopting it. Figure 31a

considers the number of such tests. Most participants (67%) reported that the

number of tests produced with Concordia was much larger than before using it.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 192

Figure 31b concerns the easiness to produce such tests and the great majority of

participants (89%) considered that it was easier to produce tests with Concordia.

Figure 31c shows that 78% of participants considered the quality of the tests

produced with Concordia much higher than they had before using it. Figure 31d

shows that 67% of participants considered the time to produce tests with Concordia

was much shorter than before using it.

Figure 39 - Perception about Concordia tests

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 193

Table 26 shows the number of defects found per participant and company.

Table 26 - Defects found per participant and company

Participant Defects Company Defects per company

O-V 3 O

6 O-R 0

O-A 3

I-W 4 I

5
I-S 1

H-W 0 H

1
H-V 1

D-G 0 D

1
D-D 1

Total: 13 Avg: 3,25

Figure 40 presents the overall perception of participants about Concordia. Figure

40a reports that 89% of participants strongly agreed that Concordia can be used for

validation with stakeholders. Figure 40b shows that 78% of participants strongly

agreed that using Concordia is easier than developing tests with a framework. Fig-

ure 40c reports that 78% of participants strongly agreed that Concordia can detect

errors in specification documents. Finally, Figure 40d shows that 78% of partici-

pants strongly agreed that Concordia can detect differences between the system and

the specifications.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 194

Figure 40 - Overall perceptions on Concordia

9.3.Qualitative data

We collected most qualitative data from questionnaires and semi-structured in-

terviews, via smartphone or Skype71. Details are presented below.

9.3.1.Interviews

Interviewed participants were the same that answered the questionnaire. They

reported their impressions in an informal way, making oral comments about the

initial questions and any other subjects.

About the question “What are the good points in using Concordia?”, most par-

ticipants reported: (a) discussing requirements with customers; (b) writing require-

ments as a way of getting the tests done; (c) it is not complicated. Three participants

(O-A, O-V, I-W) reported that the language is easy to write: e.g., “it (Concordia) is

intuitive, I don’t need to consult the documentation to write things (…)” (O-V).

71 https://www.skype.com

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 195

About the question “What are the bad points in using Concordia?”, most par-

ticipants reported “none” or “none so far”. Two participants (O-V, D-G) reported

the needed to find the identification of widgets in the user interface: “…there are

cases in which the number of elements on the screen is large”. However, when

asked about whether they had used the browser plug-in created to capture these

identifications automatically via Record and Playback (Katalon Concordia, see

chapter 8), both reported that it helped them to mitigate the problem: “yeah, after

using the plugin, the problem was solved.” (D-G); “yes, I had just one problem with

a (third-party) multi-select component that I needed to inspect manually to find the

identification. The plugin resolved the other cases.” (O-V). One participant (D-D)

reported that “complex cases are harder to specify and the documentation could

have more examples (…)”.

About the question “Which improvements would you do in the language?”, most

participants reported “none” or “none so far”. Three participants (O-A, O-V, I-S)

made positive comments after reporting “none”: “from the customer point of view,

the language is very easy to understand” (O-A); “I really liked the states, the fact

that they avoid me to rewrite things” (O-V); “The language is easy. I wrote docu-

mentation for two projects: one in English and the other one in Portuguese. For the

project in Portuguese, I just tried to write the things in the same way and it worked.”

(I-S). One participant (O-A) also indicated that the constraint for required UI Ele-

ments (see UI Element) could be written as “required” instead of “required is true”,

because a customer asked about the “is true” part.

About the question “Which improvements would you do in the tool?”, all partic-

ipants reported “none”. Four participants (H-W, O-V, I-S, I-W) made additional

compliments, e.g., “I felt it is very complete for a prototype” (I-S).

About the question “What do you think of the tests generated by the tool?”, all

participants reported positive impressions. For example, I-W reported “Better than

I expected”; I-S reported “They cover very well the important cases”; H-W reported

“Very good, very complete”. One participant (O-V) also reported: “I also liked the

fact that I can write my own tests if I need to”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 196

About the question “Which tests would you add to those generated by the tool?”,

all the participants reported no tests.

About the question “Are there any other improvements that you think would be

useful?”, most participants answered “No” and some of these gave some compli-

ment, e.g., participant D-G reported “No, it already takes a screenshot when the

tests fail and generates a test report.”. Participant O-V reported “I had a complex

user interface component whose interaction took a series of steps. I would be inter-

esting if I could encapsulate these steps in that component instead of letting them

in the Variant. In this way, a single step that interacts with it (in the Variant) would

be replaced by the steps that I had encapsulated in the component. (…)”.

About the question “Are there any situations you would not use Concordia?”,

most participants reported answers like “I think there aren’t”. Participant O-V

reported “Maybe in a system with very strange rules or rules very difficult to specify,

like a game”.

9.3.2.Questionnaire

The questionnaire included open-ended questions to collect qualitative data.

About the question “Whether you validated requirements with customers, please

inform about any difficulties”, most participants left it blank. Three participants (O-

A, D-G, I-W) reported that they were asked about properties of UI Elements (see

6.1.10), e.g., “UI rules, such as "required is true"”(O-A).

About the question “Whether you had any difficulties to understand Concordia

specifications, please inform them”, all participants left it blank.

About the question “Whether you had any difficulties when writing Concordia

specification, please inform them”, most participants left it blank and the other ones

gave generic answers such as “In the beginning, when I was learning it (Concordia),

I needed to resort to the documentation” (I-W).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 197

About the question “What do you think takes longer when specifying require-

ments with Concordia? Why?”, all the participants agreed about being the time

taken to find the identification of the user interface elements, e.g., “In my case, it

was the time to find the elements on the page (…)” (O-A).

About the question “Did you discover any other problems in your application

while using Concordia? Which ones?”, four reported problems with the user inter-

face, e.g., “Yes. (…) input fields that should have a fixed width were growing

unexpectedly when they received long input data” (O-A). One participant (H-W)

reported four relevant problems: “Yes, I discovered problems related to business

rules, a problem with our testing environment, and it became clear to me that we

have some usability problems as well as the low maintainability of the application”.

Later we asked the participant (by phone) for details about this specific answer, and

it was informed that: (1) most business rules problems were related to differences

between implemented constraints and desired constraints, that is, constraints imple-

mented for some features of the application were behaving differently from what

they expected. The main reason was that the old documentation had no details about

them. Thus, probably the programmer adopted the constraints he/she judged more

appropriate for the moment; (2) the testing environment was getting complex to

configure and the team was wasting too much time to replicate the execution envi-

ronment. Concordia helped to make clear to management that they had to invest in

improving the testing environment; (3) Usability problems were detected when ex-

ecuting Concordia tests in different browsers and screen sizes. Some user interface

components were not rendering the way they expected (they were overlapping or

changed their position strangely); 4) The maintainability problem was related to the

lack of naming patterns for user interface components in some cases.

About the question “Please give us additional comments if you have some”, most

participants left it blank and one participant (D-D) reported “It would be nice to

have even more examples on the documentation.”.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 198

9.3.3.Support tasks

We collected some qualitative data from support tasks, through messages or dur-

ing in-loco visits. Many of these data are related to common doubts about the lan-

guage. The three most common doubts about the language were:

1) About how to write a particular sentence in a Variant, e.g., participant H-W

asked via e-mail “How can I (write a sentence to) select the option “legal

entity” (…)”;

2) About how to declare UI Element properties, e.g., participant D-D asked via

Skype: “How can I define the maximum number of characters (accepted by

a UI Element)?”;

3) About how to declare or use States, e.g., participant D-G asked via e-mail:

“Is it possible to create many features that produce the same state?”.

We also collected feedback about eventual problems with the prototype tool.

Five defects were identified by participants or with their help. Table 27 describes

them. Three of them (#1, #2, and #5) were due to simple coding mistakes or changes

in third-party libraries (#2), one (#3) was due to a mistake in how the algorithm was

implemented (not in the algorithm itself), and one (#4) was a problem in the adopted

algorithm. This latter was relevant to the approach since it influences the generated

test cases in specific cases. To summarize, a UI Element can have a property “for-

mat” declared with a regular expression that indicates the format accepted as valid.

In this case, our approach uses a finite-state automaton to produce two test data

values: a value that does not match the specified regular expression, i.e., a value

whose format is considered invalid, and a value that does match the regular expres-

sion (i.e., format considered valid). However, when another UI Element property

that constraints the accepted values in some way is defined – e.g., a property like

“value is in ["Bob", "Alice"]” would constraint the values accepted as valid

to “Bob” and “Alice”, and a property like “maximum length is 10” would con-

straint the values’ length to 10 –, these constraints cannot be satisfied together, due

to a current limitation in the constraint solver (the finite automaton also does not

accept any other constraints). Thus, we removed the test case that explores an inva-

lid format when another value constraint is used.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 199

Table 27 - Defects found in the prototype tool with the help of partici-

pants

Description Issue ID72

1 Parameter --language was being ignored. 9

2 Short flag aliases of the command line interface were not

working, e.g., to use -d instead of --directory.

13

3 Problem combining more than one precondition state. 20

4 When a UI Element had value or length constraints, a test

case that explores an invalid format should not be generated,

due to the lack of a more general constraint solver.

14

5 Spaces in files names were being replaced with %20 23

Another relevant feedback collected during support tasks was the need for spe-

cific actions in Variant sentences (section 6.1.11). Instead of trying to define all the

possible actions and variations beforehand, we defined a basic set and incremented

it on demand, based on users’ needs.

9.4.Discussion

Endres & Rombach (2003) point out that to validate an artifact in a real context

is the principal means to obtain knowledge in Software Engineering. Using our ap-

proach in software development companies allowed us to gain experience and gen-

erate knowledge through the perceived effects and lessons learned.

9.4.1.Lessons learned from the client cycle

The iterative approach of TAR helped us to reason about the incremental feed-

back received from companies and participants during the case studies. We used

this feedback for:

1. Validating the adequacy of the language vocabulary;

2. Augmenting the number of supported actions in Variants and Test Cases;

72 Issues IDs as they were registered at the project’s repository, available at: https://github.com/thiagodp/con-

cordialang/issues?q=is%3Aissue+is%3Aclosed.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 200

3. Fixing defects;

4. Validating the adequacy of generated test cases, including test data and ora-

cles;

5. Validating the correctness of generated test scripts;

6. Evaluating the usability of the tool, e.g., whether users had difficulties to

understand and use its parameters;

7. Improving the tool’s documentation.

We also had the opportunity to develop the three roles identified by Wieringa

(2014c): Designer, Helper, and Researcher. As designers, we created artifacts

whose objectives were to resolve problems present in industry. These artifacts were

inserted into companies during the engineering cycle, and we acted as helpers to

apply the proposed treatment (i.e., approach, language, and supporting tool) and

assess its functioning. As researchers, we gather feedback to learn, to improve the

artifacts, and to analyze the resulting effects. This analysis enables additional ad-

justments and improvements to the artifacts.

At the end of the studies, organizations achieved the stated objectives, i.e., they

increased the number and quality of their test cases, and gained an artifact that can

be adopted incrementally and used to both discussing requirements with customers

and checking whether their software corresponds to the specified functional re-

quirements. Their employees also benefit from the case studies since they received

some training in Agile DSLs, test automation, and learned a new metalanguage,

Concordia.

An increase in the number of tests, especially in regression tests, provides a

safety net (BECK, 2003) that allow developers to be more confident about main-

taining legacy systems or changing new systems. Companies that participated in

the case studies identified during informal conversations that changes that produce

“ripple effects” in other features are recurrent and often cause problems due to the

lack of regression tests – notedly in legacy systems. Since we observed that using

Concordia has motivated them to invest in writing specifications because they noted

all the collateral benefits, we expect that they can mitigate such problems and keep

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 201

improving the quality of their systems, including the legacy ones. Rosa (2011) in-

dicates that using tests to support maintenance can reduce the number of introduced

defects and improve maintainability.

All the companies in the case studies affirmed that they shall continue using

Concordia and will adopt it for new systems. Some of them also showed interest in

adopting it for older systems, incrementally, in the short to medium term.

9.4.2.Research questions

Regarding RQ1 (How difficult is it for stakeholders to understand requirements

specified with Concordia?), Figure 27 shows that stakeholders had some difficulty

to understand Concordia specifications: 33% could understand almost everything

and 45% could not understand some parts. However, as we pointed out in section

9.2.3, we could determine – through the questionnaire and interviews – that those

difficulties were only related to parts of the metalanguage that were not intended

to be validated by stakeholders, i.e., UI Elements’ properties and Databases’ prop-

erties, or not intended to be validated without the support of the team. The ques-

tionnaire also revealed that a hundred percent of the stakeholders did not receive

any explanation about the metalanguage (Concordia) or the format of the require-

ments specifications before reading them.. Considering these data, and mainly con-

sidering that stakeholders did not report any difficulties with other parts of the met-

alanguage, we could conclude that stakeholders had few difficulties with the

parts addressed to them (i.e., Features, Scenarios, Variants, and Test Cases). This

comprehension is important because it details the results from Figure 27 and

clarifies our conclusions about the overall context – and, thus, about RQ1.

Regarding RQ2 (Is the metalanguage useful to validate requirements with stake-

holders?), when participants were asked about whether they think that Concordia

can be used for validating requirements with stakeholders (Figure 40a), the great

majority (89%) rated as strongly agree and the others (11%) as agree. Considering

these data and also considering that the metalanguage is based on Agile DSLs that

has been used in industry (CURCIO et al., 2018; INAYAT et al., 2015; SCHÖN;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 202

THOMASCHEWSKI & ESCALONA, 2017) to validate requirements with stake-

holders (ADZIC, 2009, 2011; SMART, 2014; WYNNE & HELLESØY, 2012), we

answer it positively, that is, we claim that Concordia is useful to validate require-

ments with stakeholders. Besides, Features and Scenarios in Concordia can be

written in natural language without any computing jargon. Even if a software team

does not succeed in validating Variants or Test Cases (whose sentences describe

expected interactions with the user interface) or even UI Elements (that define con-

straints related to business rules), the metalanguage could be used partially to get

successful validations.

Regarding RQ3 (How difficult is it to specify requirements with Concordia?),

the great majority of participants (89%) evaluated the difficulty to write

specifications in Concordia as small. When asked about the amount of documenta-

tion about Concordia that they had read (Figure 37b), 56% answered something of

it, while the other participants (44%) answered most of it. Qualitative data showed

that doubts were clarified with the help of the documentation – as is normal and

expected in any new language, tool, or approach. Common doubts clarified through

support tasks are identified in section 9.3.3. Most of them could have been clarified

using the language documentation. Therefore, we claim that Concordia has a small

to medium-difficulty for writing specifications. Most of that difficulty – as we

pointed out in 9.3.3 – was about the vocabulary for writing Variant sentences, the

properties of User Interface Elements, and the use of States. All of them could be

solved by reading the documentation or contacting the support.

Regarding RQ4 (How time-consuming is it to specify requirements with Con-

cordia?), the majority (60%) considered the time to write Concordia specifications

as short, in comparison to what they used to do before (Figure 38b). None of them

considered it long or very long. Qualitative data also indicates that most of the time

invested in writing specifications is consumed by the identification of user interface

elements, which often occur for systems that were already implemented. We also

identified that participants could decrease this time by using a complementary tool,

created by us (Katalon-Concordia, see chapter 8), although it is only available for

web applications. Furthermore, the prototype tool can help software teams that

adopt naming patterns (e.g., camel case, pascal case, snake case, kebab case) for

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 203

identifying user interface elements. Thus, specifying requirements in Concordia is

usually fast, especially for applications that have at least one of these characteris-

tics: (a) follow a naming pattern; (b) have not yet defined identifications (i.e., spec-

ifications are written before the features are implemented); or (c) can benefit from

the complementary tool.

Regarding RQ5 (Is the approach useful to verify the compliance of a system with

its requirements?), when asked about whether Concordia can detect differences be-

tween their system and its requirements (Figure 40d), the great majority of partici-

pants (78%) answered strongly agree and the others (22%) answered agree. Fur-

thermore, the tests produced by Concordia are sensitive to changes in requirements

(both actions, test data, and oracles) – as demonstrated in section 8.3. Therefore, we

can answer it positively.

Regarding RQ6 (How complete are the tests generated with the approach?), the

great majority of participants (78%) considered the quality of the tests generated by

Concordia as much higher than before using it (see Figure 39c). Moreover, com-

pared to before, the time to produce them (Figure 39d) was considered much shorter

(67%) or shorter (33%), and the easiness to produce them (Figure 39d) was con-

sidered easier (89%) or much easier (11%).

Finally, regarding RQ7 (Is the approach useful to discover defects?), Concordia

detected a total of 13 defects in the four companies’ systems, during the case studies

(see Table 26). The average maturity of evaluated features is low – only 9% has 1-

3 years, and none has more than 3 years, see Figure 35c. However, it is less probable

that Concordia can detect defects in mature features since they were supposedly

more tested and used in production for a longer time. Nevertheless, it was useful

for detecting defects and, in some cases, it was also useful for detecting other prob-

lems, such as user interface problems and maintainability problems (section 9.3.2).

9.4.3.Conclusions of the study

The object of study in engineering sciences is an artifact in a context of use

(WIERINGA, 2014a; WIERINGA; DANEVA & CONDORI-FERNANDEZ,

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 204

2011). Engineering researchers iterate between (re)designing artifacts for use in a

class of contexts and investigating artifacts that interact with contexts of this class.

In this strategy, researchers start their investigations under ideal conditions in the

lab and finish them under realistic conditions in the field. During the process, arti-

facts are scaled up to practice, and generalizations are increasingly targeted at field

conditions – a process referred to as lab-to-field generalizations (WIERINGA &

DANEVA, 2015). Lab-to-field generalization is a form of technology validation

(R. GLASS; VESSEY & RAMESH, 2001; ZELKOWITZ & WALLACE, 1997).

Research methods that can be used in technology validation include simulation,

technical action research, and statistical difference-making experiments in the lab

or in the field (WIERINGA, 2014b).

In our case studies, we used TAR to validate the artifacts in field conditions (see

9.1.7). Although we could not apply more measures that could strengthen our find-

ings – due to companies’ shortage of time to adopt more controls –, the data and

feedback received during our studies and collected at their end, give us enough ev-

idences to conclude that the artifacts can be used successfully in field conditions, in

similar environments, for achieving the desired outcomes. More specifically, we

can use analytical induction (WIERINGA & DANEVA, 2015; ZNANIECKI, 1968)

to confirm that an explanation constructed for one case study is also valid for other

cases studies with similar architecture, but also differ from each other

(ROBINSON, 1951; TACQ, 2007; YIN, 2003).

Studied companies have a similar architecture (i.e., environment) in relation to

they be small or micro software companies that develop information systems. Dif-

ferences are related to the type of (information) systems produced (see Table 22),

the size and heterogeneity of their teams, and the adopted technologies (e.g., frame-

works, programming languages, tools). In this context, they had very similar results

(9.2 and 9.3), and our research questions could be answered in the same way con-

sidering all of them (9.4.2).

Therefore, we argue that for small or micro software companies that develop

information systems:

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 205

1. Requirements specifications written in Concordia can be used to validate

features with stakeholders;

2. Concordia specifications are considered easy to understand;

3. Concordia specifications are considered having medium easiness to write;

4. Static verification is capable of detecting wrong declarations and other prob-

lems in the specification;

5. The tests generated from Concordia specifications can detect differences be-

tween these specifications and the systems under test;

6. The tests generated from Concordia specifications can detect defects in fea-

tures with low maturity.

Although we expect that medium-sized software companies may also have suc-

cessful results, we could not evaluate that yet. The same holds true for other types

of software.

9.5.Concluding remarks

This chapter detailed the evaluation of our approach through case studies with

software companies. During the study, these companies specified requirements us-

ing the Concordia metalanguage, validated the requirements with stakeholders, and

used a prototype tool for statically checking the specification and generating func-

tional tests. Generated functional tests aimed at both verifying the compliance of

companies’ systems with the specification and discovering defects. Companies

were accompanied during the studies and feedback was collected incrementally and

used to improve the studied artifacts (approach, language, tool). Technical action

research was used during the process. At the end of the studies, data were collected

through questionnaire and semi-structured interviews. All the data were analyzed,

research questions answered, lessons learned were presented, and their effects and

conclusions were weighted. In summary, the approach presented in this thesis had

positive results in the analyzed companies, regarding both validation and verifica-

tion activities.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

206

10Epilogue

The battle of getting better is never ending.

- Antonio Brown (NFL player)

This chapter presents the conclusions of this thesis.

10.1.Conclusions

The following sub-sections consider the research questions and contributions

of this thesis.

10.1.1.Research questions

Revisiting the main question of this work, “Can Agile DSLs combined with our

approach serve for both validating and automatically verifying applications effec-

tively?”, we can argue that:

 About their use for automatic verification: Our approach adopted a

(flexible and adaptable) restricted natural language and used a lexer, a

parser, and Intent Recognition to understand its sentences – written with

Agile DSLs. The approach could use a series of techniques and algo-

rithms to produce state-based test scenarios and relevant test data and

oracles, also considering traceability and reduction concerns. The pro-

duced test scripts were able to reveal defects in studied companies’ ap-

plications (13 defects in 4 companies). No manual intervention was used

to complete or change these test scripts. Some companies also found that

these test scripts could help them to detect usability and maintenance

problems in their applications. Furthermore, the approach could reveal

syntactical, semantic, or logical errors in requirements specified by the

studied companies. Therefore, we consider that the approach was

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 207

effective for automatically verifying requirements and applications. Fu-

ture research can investigate its use with more mature applications and

other types of applications.

 About their use for validation: Agile DSLs are already used for vali-

dation in most companies that adopt agile requirements engineering

practices (CURCIO et al., 2018; INAYAT et al., 2015; SCHÖN;

THOMASCHEWSKI & ESCALONA, 2017). Book authors (ADZIC,

2009, 2011; GÄRTNER, 2012; GREGORY & CRISPIN, 2010;

SMART, 2014) also have been shown their efficacy in discussing and

validating requirements with stakeholders. During our multi-case study

with software companies, few of them could validate Concordia speci-

fications – that use Agile DSLs – with stakeholders. Although software

team members did not provide prior explanations about Concordia to

stakeholders (customers), they affirmed having received positive feed-

back about the comprehension of Concordia specifications – i.e., cus-

tomers considered them easy to understand. Due to time restrictions and

the impossibility to participate in the projects more intensively, the eval-

uation of validation aspects did not consider usage scenarios in the form

of Test Cases. Variants served as usage examples and their validation

with stakeholders got very positive results. Therefore, we can affirm that

Concordia can be effectively used for validating requirements. We can-

not yet affirm whether the produced usage scenarios – in the form of

Test Cases – help (or not) with this validation.

Revisiting the secondary research questions:

 How can Agile DSLs be used for generating full-featured test scripts?

Briefly, we: (a) combined a restricted natural language, a lexer, a parser,

and NLP techniques to recognize declarations; (b) used a state-based

approach to generate test scenarios; (c) mixed classical testing techniques

(as data test cases), user interface properties’ constraints, a SQL-like

query language, external data sources, and a constraint solver, to produce

test input data and test oracles; (d) mixed test scenarios, test input data,

and test oracles to produce test cases and used NLP to transforming them

into natural language declarations; (e) transformed test cases into abstract

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 208

test scripts and, finally, used plug-ins to transform abstract test scripts

into test scripts (source code). We detail the approach in chapter 7.

 Can test scripts generated from Agile DSLs reveal defects in existing ap-

plications?

Yes, the generated test scripts revealed 13 defects during the case studies

(in 4 companies). Involved applications were already tested using tradi-

tional approaches, which shows the efficacy of the produced test scripts.

The mentioned defects were discovered using the default configurations,

that adopts minimization strategies. These minimization strategies re-

duce the number of generated test cases (aiming to reduce test time) and,

therefore, also reduce test coverage. This coverage is reached over time

– the more tests a company generates and executes, the more defects can

be detected. Algorithms use new random seeds to pick different paths on

each execution. Defects can be detected earlier by avoiding minimization

strategies. However, test time increases substantially.

 Can an approach for V&V that uses Agile DSLs reduce test time and

costs?

Yes, test time and costs are reduced by at least four components: (i) static

error checking can detect problems before the tests start (e.g., vague or

erroneous declarations in Variants, conflicts between constraints) (ii) test

scripts are produced much faster than by the equivalent manual approach;

(iii) coverage is usually greater than the manual approach (i.e.,

developers frequently would not remember of all the test cases that the

approach generates) in less time (i.e., developers frequently would not

have time to program all the test cases that the approach generates); (iv)

produced test scripts become regression tests and can detect defects

introduced by maintenance tasks.

 Can an approach for V&V that uses Agile DSLs be used for preventing

defects?

Yes. Informal reviews and collaborative work can detect imprecisions,

incompleteness, and ambiguity in requirements, especially in business-

related declarations, i.e., Features and Scenarios. Static error checking

can detect problems in technological-related declarations, e.g., vague or

erroneous declarations in Variants, conflicts between constraints in UI

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 209

Elements. Validation with stakeholders can detect confusing or inappro-

priate requirements, in Features, Scenarios, Variants, UI Element prop-

erties, and Test Cases. Since changes in the specification make the

approach to produce new test cases, their impact in the application can

be evaluated prior to its maintenance, e.g., the software team can know

which parts of the application do not pass the tests anymore. Hence, the

approach allows test-driven maintenance. Regression tests can also de-

tect problems introduced by maintenance tasks before a version is

released to customers.

10.1.2.Contributions

The main implications of this work are:

1. a new metalanguage for writing agile requirement specifications that can

be used for both V&V activities;

2. the first approach to generate full-featured ready to use test cases and test

scripts from agile requirements specifications;

3. the first integrated approach for V&V of agile requirements specifica-

tions;

4. the assessment in industrial context of the proposed approach.

5. new techniques for producing test scenarios, test data, and test oracles

based on agile requirement specifications;

6. integration of state-of-the-art techniques for minimization, selection, and

prioritization of requirements, test cases, and test scripts;

7. an open source prototype tool that implements most of the proposed ap-

proach and can support its adoption by companies.

Additional contributions include:

a) A comparison of metalanguages for agile requirements specifications;

b) A comparison of solutions for natural language processing;

c) A mini-process and its maintenance recommendations to increase the

chances of adopting the approach successfully;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 210

The proposed metalanguage, Concordia, has the following possible uses:

1. Specifying requirements in more than one spoken language and using

plain-text format;

2. Validating requirements with stakeholders;

3. Discussing requirements and test cases among the software team (use as

communication media);

4. Specifying functional test cases in (restricted) natural language;

5. Checking requirements specifications for syntactical, semantic, and logic

errors;

6. Generating, executing, and analyzing full-featured functional test cases

and test scripts;

7. Using external data sources, such as databases, for creating constraints

about user interface elements and producing test cases;

8. Discovering defects, especially in recent applications;

9. Verifying the compliance of an application with its Concordia specifica-

tions;

10. Supporting Behavior-Driven Development, Acceptance Test-Driven De-

velopment, and Specification by Example;

11. Supporting the adoption of functional tests in novel or legacy applica-

tions;

12. Supporting test-driven maintenance;

13. Using a requirements-first approach for test-driven maintenance – that

is: change requirements, use the tool to produce the respective tests, and

then modify the application to pass these tests;

14. Separating business declarations from test-level declarations;

15. Defining test case events in (restricted) natural language, for configuring

the state of applications before or after the test scripts run;

10.2.Future work

The following sub-sections describe ideas and possibilities for research and other

improvements.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 211

10.2.1.Approach

Future research directions may consider:

1. Conducting broader studies with software companies:

a) Accompanying software projects from requirements elicitation to

the release of versions, aiming to observe the effects of the pro-

posed approach with respect to the validation with stakeholders,

the communication among the team (with different company

sizes), the development and maintenance of features (e.g., test-

driven development with Concordia, test-driven maintenance

with Concordia), final tests before releases, etc.;

b) Investigating how the approach performs with other types of soft-

ware (e.g., text editors, spreadsheet software, presentation edi-

tors, diagram editors, e-mail programs, database designers, mul-

timedia software, simulation software); and

c) Investigating whether there are significant differences between

software platforms in relation to the vocabulary of Variants and

Test Cases for validation with stakeholders. We could only verify

the approach with web applications. Currently, the approach al-

ready supports the generation of test scripts for web applications,

mobile applications (both native and web-based), and desktop ap-

plications;

2. Comparing and improving involved approaches and techniques:

a) Comparing combination approaches, selection approaches, and

prioritization approaches – to evaluate which approach (of each

group) has the best effectiveness, i.e., which balances better de-

fect detection (coverage) and execution time;

b) Comparing approaches for Intent Recognition – in terms of pre-

cision and recall, aiming to evaluate which one has better results

with Concordia;

c) Improving the constraint solver or adopting a new constraint

solver, to expand the flexibility of supported constraints, aiming

to detect new types of defects in test cases;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 212

d) Investigating an additional approach for the oracle generator: to

use NLP to negate Variant oracles in specific cases. Currently,

when the approach selects a data test case that produces an invalid

input value and the corresponding behavior for handling that in-

valid input is not specified (in an Otherwise sentence), the gener-

ated test case is flagged with “@fail” to indicate that its oracle

should fail. A more precise technique is probably negating the

original oracles using natural language processing, to ensure that

their original expectations do not happen;

e) Analyzing the impact of changes in Concordia specifications to

determine all the scenarios necessary to be retested. We believe

that since our approach uses State-based dependencies between

Variants, when a Variant is changed, we can determine all the

affected Variants. Consequently, we can determine the Test

Cases to update (generate again), to transform into test scripts,

and to run. This can reduce significantly the time to execute re-

gression tests without losing effectiveness. Another important in-

formation is about the Import declarations. Since we can use it to

determine which files are affected by a particular file, we can also

reduce retest time when declarations other than Variant are

changed. In both situations (States and Imports), it may be neces-

sary to use a version control system to establish what was changed

in a specification file (i.e., retrieving the changed lines and col-

umns to determine the changed declarations);

f) Creating an approach for symbolic execution of Concordia dec-

larations (which includes a constraint solver) to improve its static

verification;

3. Comparing the effectiveness of the produced test cases to those produced

from other requirements specification documents, such as Use Cases;

4. Investigating whether the adopted approach and techniques can be used

with other requirement specification documents, such as Use Cases. This

may include NLP techniques, test case generation approaches, etc.;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 213

5. Generating user interface prototypes from Concordia declarations. Con-

cordia specifications declare interactions with user interfaces and in-

volved UI elements. These declarations can probably be transformed into

low-fidelity UI prototypes such as wireframes or mockups.

10.2.2.Metalanguage

Future research about the metalanguage may include:

 Investigate whether the keyword-based approach can help to improve

Concordia in some way. For example, a participant of the multi-case

study indicated that it would be interesting whether Concordia could al-

low declaring a high-level sentence that had corresponding low-level

sentences declared somewhere. The participant affirmed that such

declaration could allow replacing a small group of sentences whose only

purpose is to interact with a complex user interface component with a

single sentence that abstracts the interaction. This kind of declaration is

common in the keyword-based approach;

 Improving the syntax and vocabulary aiming to increase language flexi-

bility, supported actions, and its capacity to express constraints and ex-

pectations;

 Performing a full syntax comparison with other metalanguages, such as

those presented in chapter 4. Such comparison can help organizations or

individual developers to know the metalanguages and decide which to

choose. It may also give researchers insights about the most helpful lan-

guage declarations, in order to improve existing languages.

10.2.3.Tools

Possible improvements for the prototype tool are:

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 214

a) Generating graphs of relationships, such as dependency or usage among

features, scenarios, states, or files. This feature can provide better visu-

alization about the specification and help to identify the impact of

changes;

b) Allowing to watch modifications in files that contain requirements speci-

fications with the purpose of generating test scripts on demand, automat-

ically. Some testing frameworks (e.g., Mocha, Jest, AVA) provide tools

with a similar capability, i.e., they monitor file changes and when a test

script file is changed or a file imported by a test script file is changed,

they trigger the respective test scripts automatically. This feature can re-

duce the manual labor to execute tests when specification files change;

c) Implementing plug-ins for more testing frameworks, aiming at fostering

the tool’s adoption by companies that already use or plan to use them;

d) Providing integration with more test reporters, to help testers to monitor

results over time;

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

215

Bibliography

ADWAIT RATNAPARKHI. A maximum entropy model for part-of-speech

tagging. In Proceedings of the Empirical Methods in Natural Language

Processing Conference, 1996.

ADZIC, Gojko. Bridging the Communication Gap: Specification by Example

and Agile Acceptance Testing. [s.l.] Neuri Limited, 2009.

ADZIC, Gojko. Specification by Example: How Successful Teams Deliver the

Right Software. [s.l.] Manning, 2011.

AHMED, Bestoun S.; ZAMLI, Kamal Z. A variable strength interaction test

suites generation strategy using Particle Swarm Optimization. Journal of

Systems and Software, v. 84, n. 12, p. 2171–2185, 2011.

AMBLER, Scott W. Beyond Functional Requirements On Agile Projects.

Disponível em: <http://www.drdobbs.com/architecture-and-design/beyond-

functional-requirements-on-agile/210601918#>.

AMEY, Peter. Correct by Construction: Better Can Also Be Cheaper. The

Journal of Defense Software Engineering, n. March, 2002.

ANAND, Saswat; BURKE, Edmund K.; CHEN, Tsong Yueh; CLARK, John;

COHEN, Myra B.; GRIESKAMP, Wolfgang; HARMAN, Mark; HARROLD,

Mary Jean; MCMINN, Phil. An orchestrated survey of methodologies for

automated software test case generation. Journal of Systems and Software,

v. 86, n. 8, p. 1978–2001, 2013.

BARR, Earl T.; HARMAN, Mark; MCMINN, Phil; SHAHBAZ, Muzammil; YOO,

Shin. The oracle problem in software testing: A survey. IEEE Transactions

on Software Engineering, v. 41, n. 5, p. 507–525, 2015.

BASILI, Victor R. Software modeling and measurement: the

Goal/Question/Metric paradigmQuality, 1992.

BASRI, S.; O’CONNOR, R. V. Evaluation on Knowledge Management Process

in Very Small Software Companies : A Survey. Proceedings of Knowledge

Management 5th International Conference 2010, 2010.

BECK, Kent. Test-Driven Development By Example. Rivers, v. 2, n. c, p. 176,

2003.

BEIZER, Boris. Software Testing Techniques. [s.l: s.n.].

BELL, K. Z. Optimizing Effectiveness and Efficiency of Software Testing: A

Hybrid Approach. [s.l.] North Carolina State University, 2006.

BERGIN, Thomas J.; GIBSON, Richard G.; PRESS, A. C. M. History of

Programming Languages II. [s.l: s.n.].

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 216

BLASCHEK, G. Static program analysis. Elektronische Rechenanlagen, v. 27, n.

2, p. 89–95, 1985.

BOEHM, B. W. Verifying and Validating Software Requirements and Design

Specifications. IEEE Software, v. 1, n. 1, p. 75–88, 1984.

BOEHM, Barry; BASILI, Victor R. Software Defect Reduction Top 10 List.

Computer, v. 34, p. 135–137, 2001.

BOEHM, Barry; TURNER, Richard. Balancing Agility and Discipline: A Guide

for the Perplexed. [s.l: s.n.]. v. 22

BOEHM, Barry; TURNER, Richard. Balancing Agility and Discipline: a guide

for the perplexed. [s.l.] Addison-Wesley, 2003b.

BOOCH, Robert Grady. An Economic Release Decision Model: Insights into

Software Project Management. Applications of Software Measurement.

Anais...Institute for Software Quality, 1999

BRIAND, L.; EL EMAM, K.; LAITENBERGER, O.; FUSSBROICH, T. Using

simulation to build inspection efficiency benchmarks for development

projects. Proceedings of the 20th International Conference on Software

Engineering. Anais...1998Disponível em:

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=671387>

CALVAGNA, Andrea; GARGANTINI, Angelo. A logic-based approach to

combinatorial testing with constraints. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics). Anais...2008

CATAL, Cagatay; MISHRA, Deepti. Test case prioritization: A systematic

mapping study. Software Quality Journal, v. 21, n. 3, p. 445–478, 2013.

CHEN, Jingnian; HUANG, Houkuan; TIAN, Shengfeng; QU, Youli. Feature

selection for text classification with Naïve Bayes. Expert Systems with

Applications, v. 36, n. 3 PART 1, p. 5432–5435, 2009a.

CHEN, Xiang; GU, Qing; LI, Ang; CHEN, Daoxu. Variable strength interaction

testing with an ant colony system approach. Proceedings - Asia-Pacific

Software Engineering Conference, APSEC. Anais...2009b

CHEN, Xiang; GU, Qing; QI, Jingxian; CHEN, Daoxu. Applying particle swarm

optimization to pairwise testing. Proceedings - International Computer

Software and Applications Conference. Anais...2010

CHRISTODOULOPOULOS, Christos; STEEDMAN, Mark. Two Decades of

Unsupervised POS induction: How far have we come? 2010 Conference on

Empirical Methods in Natural Language Processing, 2010.

CIOLKOWSKI, Marcus; LAITENBERGER, Oliver; ROMBACH, Dieter H.;

SHULL, Forrest; PERRY, Dewayne. Software inspections, reviews and

walkthroughs. Proceedings of the 24th international conference on Software

engineering - ICSE ’02. Anais...2002Disponível em:

<http://dl.acm.org/citation.cfm?id=581339.581422>

CIOLKOWSKI, Marcus; LAITENBERGER, Oliver; BIFFL, Stefan. Software

Reviews: The State of the PracticeIEEE Software, 2003.

COHEN, D. M.; DALAL, S. R.; FREDMAN, M. L.; PATTON, G. C. The AETG

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 217

system: an approach to testing based on combinatorial design. IEEE

Transactions on Software Engineering, v. 23, n. 7, p. 437–444, jul. 1997.

COHEN, Myra B.; DWYER, Matthew B.; SHI, Jiangfan. Interaction testing of

highly-configurable systems in the presence of constraints. Proceedings of

the 2007 international symposium on Software testing and analysis - ISSTA

’07, p. 129, 2007.

COHN, Mike. User stories applied: For agile software development. [s.l: s.n.].

COHN, Mike. Non-functional Requirements as User Stories. Disponível em:

<https://www.mountaingoatsoftware.com/blog/non-functional-requirements-

as-user-stories>.

COLBOURN, C. J.; KÉRI, G.; RIVAS SORIANO, P. P.; SCHLAGE-PUCHTA, J.

C. Covering and radius-covering arrays: Constructions and classification.

Discrete Applied Mathematics, v. 158, n. 11, p. 1158–1180, 2010.

COLLINS, Michael. Discrimative Training Methods for Hidden Markov

Models: Theory and Experiments with Perceptron Algorithms.

Proceedings of the Conference on Empirical Methods in NLP (EMNLP 2002).

Anais...2002

CURCIO, Karina; NAVARRO, Tiago; MALUCELLI, Andreia; REINEHR, Sheila.

Requirements engineering: A systematic mapping study in agile software

development. Journal of Systems and Software, 2018.

CUTTING, Doug; KUPIEC, Julian; PEDERSEN, Jan; SIBUN, Penelope. A

practical part-of-speech tagger. Proceedings of the third conference on

Applied natural language processing -. Anais...1992

CZERWONKA, Jacek. Pairwise testing in the real world: Practical extensions

to test-case scenarios. Proceedings of 24th Pacific Northwest Software

Quality Conference, Citeseer. Anais...2006

DAVIES, Rachel; SEDLEY, Liz. Agile Coaching. 1. ed. [s.l.] Pragmatic

Bookshelf, 2009.

DE ALMEIDA FERREIRA, David; DA SILVA, Alberto Rodrigues. RSLingo: An

information extraction approach toward formal requirements

specifications. 2012 2nd IEEE International Workshop on Model-Driven

Requirements Engineering, MoDRE 2012 - Proceedings. Anais...2012

DE MARNEFFE, Marie-Catherine; DOZAT, Timothy; SILVEIRA, Natalia;

HAVERINEN, Katri; GINTER, Filip; NIVRE, Joakim; MANNING,

Christopher D. Universal Stanford Dependencies: A cross-linguistic

typology. In Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC’14), 2014.

DE MARNEFFE, Marie-Catherine; MANNING, Christopher D. The Stanford

typed dependencies representation. Coling 2008: Proceedings of the

workshop on Cross-Framework and Cross-Domain Parser Evaluation, 2008.

DINGSØYR, Torgeir; NERUR, Sridhar; BALIJEPALLY, Venugopal; MOE, Nils

Brede. A decade of agile methodologies: Towards explaining agile software

development. Journal of Systems and Software, v. 85, n. 6, p. 1213–1221,

2012.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 218

DO, Hyunsook; MIRARAB, Siavash; TAHVILDARI, Ladan; ROTHERMEL,

Gregg. The effects of time constraints on test case prioritization: A series

of controlled experiments. IEEE Transactions on Software Engineering, v.

36, n. 5, p. 593–617, 2010.

DUBOIS, Catherine; FAMELIS, Michalis; GOGOLLA, Martin; NOBREGA,

Leonel; OBER, Ileana; SEIDL, Martina; VÖLTER, Markus. Research

questions for validation and verification in the context of model-based

engineering. CEUR Workshop Proceedings. Anais...2013

ELBAUM, S.; MALISHEVSKY, A. G.; ROTHERMEL, G. Test case

prioritization: a family of empirical studies. IEEE Transactions on Software

Engineering, v. 28, n. 2, p. 159–182, 2002.

ELGHONDAKLY, Roaa; MOUSSA, Sherin; BADR, Nagwa. Waterfall and agile

requirements-based model for automated test cases generation. 2015 IEEE

7th International Conference on Intelligent Computing and Information

Systems, ICICIS 2015. Anais...2015

ENCYCLOPEDIA BRITTANICA. Concordia, 2017. (Nota técnica).

ENDRES, A.; ROMBACH, D. A Handbook of Software and Systems

Engineering: Empirical Observations, Laws and Theories. Fraunhofer ed.

[s.l.] Pearson/Addison Wesley, 2003.

ERNST, Neil A.; BORGIDA, Alexander; JURETA, Ivan J.; MYLOPOULOS,

John. Agile requirements engineering via paraconsistent reasoning.

Information Systems, 2014.

EVANS, Eric. Domain-Driven Design: Tackling Complexity in the Heart of

Software. [s.l.] Addison-Wesley Professional, 2003.

FAGAN, M. E. Design and code inspections to reduce errors in program

development. IBM Systems Journal, v. 15, n. 3, p. 182–211, 1976.

FINOT, Olivier; MOTTU, Jean Marie; SUNYÉ, Gerson; ATTIOGBÉ, Christian.

Partial Test Oracle in Model Transformation Testing. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). Anais...2013

FOWLER, Martin. Business-Readable DSL. Disponível em:

<https://martinfowler.com/bliki/BusinessReadableDSL.html>.

FOWLER, Martin. Domain-Specific Languages. [s.l.] Addison-Wesley

Professional, 2009. v. 5658

GAIKWAD, Vandana; JOEG, Prasanna. An Empirical Study of Writing

Effective User Stories. International Journal of Software Engineering and Its

Applications, v. 10, n. 11, p. 387–404, 2016.

GÄRTNER, Markus. ATDD by Example: a practical guide to Acceptance Test-

Driven Development. [s.l.] Addison-Wesley, 2012.

GOODGER, David. reStructuredText. Disponível em:

<http://docutils.sourceforge.net/rst.html>.

GOPNIK, Alison; SLAUGHTER, Virginia; MELTZOFF, Andrew N. Changing

your views: how understanding visual perception can lead to a new theory

of the mind. In: Children’s Early Understanding of Mind: Origins and

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 219

Development. [s.l: s.n.].

GREGORY, Janet; CRISPIN, Lisa. ATDD vs. BDD vs. Specification by Example

vs …. Disponível em: <http://janetgregory.ca/atdd-vs-bdd-vs-specification-

by-example-vs/>. Acesso em: 1 ago. 2017.

GRINDAL, Mats; OFFUTT, Jeff; ANDLER, Sten F. Combination testing

strategies: A survey. Software Testing Verification and Reliability, 2005.

GRUBER, John. Markdown. Disponível em:

<https://daringfireball.net/projects/markdown/>.

HALLE, Barbara Von. Business Rules Applied — Business Better Systems

Using the Business Rules Approach. [s.l: s.n.].

HARTMAN, Alan. Software and Hardware Testing Using Combinatorial

Covering Suites. In: Graph Theory Combinatorics and Algorithms. [s.l: s.n.].

v. 34p. 237–266.

HELLESØY, Aslak. Cucumber. Disponível em: <https://cucumber.io/>.

HENDRICKSON, Elisabeth. Acceptance Test Driven Development (ATDD): an

Overview. Disponível em: <http://testobsessed.com/2008/12/acceptance-test-

driven-development-atdd-an-overview/>.

HENDRICKSON, Elisabeth. Driving development with tests: ATDD and TDD.

Quality Tree Software, Inc. http://www. qualitytree. com, p. 1–9, 2008b.

HOLTMANN, Jörg; MEYER, Jan; VON DETTEN, Markus. Automatic

validation and correction of formalized, textual requirements. Proceedings

- 4th IEEE International Conference on Software Testing, Verification, and

Validation Workshops, ICSTW 2011. Anais...2011

INAYAT, Irum; SALIM, Siti Salwah; MARCZAK, Sabrina; DANEVA, Maya;

SHAMSHIRBAND, Shahaboddin. A systematic literature review on agile

requirements engineering practices and challengesComputers in Human

Behavior, 2015.

ISO; IEC; IEEE. Systems and software engineering -- Developing user

documentation in an agile environmentISO/IEC/IEEE 26515 First edition

2011-12-01; Corrected version 2012-03-15, 2012.

ISO; IEC; IEEE. ISO/IEC 26550:2015 Software and systems engineering —

Reference model for product line engineering and managemen. [s.l: s.n.].

ISO; IEC; IEEE. ISO/IEC/IEEE 29119-5:2016 - Software and systems

engineering -- Software testing -- Part 5: Keyword-Driven Testing.

ISO; IEC; IEEE. ISO/IEC/IEEE 24765:2017 - Systems and software

engineering - Vocabulary. [s.l: s.n.].

JÉZÉQUEL, Jean Marc; MÉNDEZ-ACUÑA, David; DEGUEULE, Thomas;

COMBEMALE, Benoit; BARAIS, Olivier. When systems engineering meets

software language engineering. Complex Systems Design and Management

- Proceedings of the 5th International Conference on Complex Systems Design

and Management, CSD and M 2014. Anais...2015

JOACHIMS, Thorsten. Text Categorization with Suport Vector Machines:

Learning with Many Relevant Features. Proceedings of the 10th European

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 220

Conference on Machine Learning ECML ’98, p. 137–142, 1998.

JONES, Capers. Software defect-removal efficiency. Computer, v. 29, n. 4, p. 94–

95, 1996.

JONES, Capers. Estimating Software Costs. New York, NY, USA: McGraw-Hill,

1998.

JONES, Capers. Evaluating Software Metrics and Software Measurement

Practices. Namcook Analytics, 2014.

JONES, Capers; BONSIGNOUR, Olivier. The Economics of Software Quality.

1st. ed. [s.l.] Addison-Wesley, 2012.

JURAFSKY, Daniel; MARTIN, James H. Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Speech and Language Processing An Introduction

to Natural Language Processing Computational Linguistics and Speech

Recognition, 2009.

KAMALAKAR, Sunil; EDWARDS, Stephen H.; DAO, Tung M. Automatically

generating tests from natural language descriptions of software behavior.

ENASE 2013 - Proceedings of the 8th International Conference on Evaluation

of Novel Approaches to Software Engineering. Anais...2013Disponível em:

<http://www.scopus.com/inward/record.url?eid=2-s2.0-

84887061776&partnerID=tZOtx3y1>

KELLEY, Richard; TAVAKKOLI, Alireza; KING, Christopher;

AMBARDEKAR, Amol; NICOLESCU, Monica; NICOLESCU, Mircea.

Context-based Bayesian intent recognition. IEEE Transactions on

Autonomous Mental Development, 2012.

KOSAR, Tomaž; BOHRA, Sudev; MERNIK, Marjan. Domain-Specific

Languages: A Systematic Mapping Study. Information and Software

Technology, v. 71, p. 77–91, 2016.

KUHN, D. R.; REILLY, M. J. An investigation of the applicability of design of

experiments to software testing. Proceedings - 27th Annual NASA Goddard

/ IEEE Software Engineering Workshop, SEW 2002. Anais...2003

KUHN, D. R.; WALLACE, D. R.; GALLO, A. M. Software fault interactions

and implications for software testing. IEEE Transactions on Software

Engineering, v. 30, n. 6, p. 418–421, 2004.

LAFFERTY, John; MCCALLUM, Andrew; PEREIRA, Fernando C. N.

Conditional random fields: Probabilistic models for segmenting and

labeling sequence data. ICML ’01 Proceedings of the Eighteenth International

Conference on Machine Learning, 2001.

LAITENBERGER, Oliver. A survey of software inspection technologies. In:

Handbook on Software Engineering and Knowledge Engineering. 2. ed. [s.l:

s.n.]. p. 517–555.

LANDI, William. Undecidability of static analysis. ACM Letters on

Programming Languages and Systems, v. 1, n. 4, p. 323–337, 1992.

LAUKKANEN, Pekka. Data-Driven and Keyword-Driven Test Automation

Frameworks. [s.l: s.n.].

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 221

LEE, Allen S.; BASKERVILLE, Richard L. Generalizing Generalizability in

Information Systems Research. Information Systems Research, 2003.

LEFFINGWELL, Dean. Calculating the return on investment from more

effective requirements management. Cutter IT Journal, v. 10, n. 4, p. 13–16,

1997.

LEFFINGWELL, Dean. Agile Software Requirements: Lean Requirements

Practices for Teams, Programs, and the EnterprisePearson Education Inc,

2011.

LEI, Y.; TAI, K. C. In-parameter-order: a test generation strategy for

pairwisetesting. IEEE International High-Assurance Systems Engineering

Symposium. Anais...1998

LEI, Yu; KACKER, Raghu; KUHN, D. Richard; OKUN, Vadim; LAWRENCE,

James. IPOG-IPOG-D: Efficient test generation for multi-way

combinatorial testing. Software Testing Verification and Reliability, v. 18, n.

3, p. 125–148, 2008.

LIU, Huai; KUO, Fei-Ching; TOWEY, D.; CHEN, Tsong Yueh. How Effectively

Does Metamorphic Testing Alleviate the Oracle Problem? IEEE

Transactions on Software Engineering, v. 40, n. 1, p. 4–22, 2014.

MAALEM, Sourour; ZAROUR, Nacereddine. Challenge of validation in

requirements engineering. Journal of Innovation in Digital Ecosystems,

2016.

MANNING, Christopher D.; RAGHAVAN, Prabhakar; SCHÜTZE, Hinrich.

Introduction to Information Retrieval. 1st. ed. [s.l.] Cambridge University

Press, 2008.

MARCUS, Mitchell P.; SANTORINI, Beatrice; MARCINKIEWICZ, Mary Ann.

Building a large annotated corpus of English: The Penn Treebank.

Computational Linguistics, 1993.

MARTIN, J. Fourth-Generation Languages. Vol. I: Pr ed. [s.l.] Prentice-Hall,

1985.

MCCALLUM, Andres; NIGAM, Kamal. A Comparison of Event Models for

Naive Bayes Text Classification. AAAI/ICML-98 Workshop on Learning for

Text Categorization, p. 41–48, 1998.

MCCALLUM, Andrew; FREITAG, Dayne; PEREIRA, Fernando. Maximum

Entropy Markov Models for Information Extraction and Segmentation.

Proceedings of the Seventeenth International Conference on Machine

Learning. Anais...2000

MCCONNELL, Steve. Code Complete: A Practical Handbook of Software

Construction. Design, p. 919, 2004.

MERNIK, Marjan; HEERING, Jan; SLOANE, Anthony M. When and how to

develop domain-specific languages. ACM Computing Surveys, v. 37, n. 4, p.

316–344, 2005.

MEYER, David. Support Vector Machines. R News, 2001.

MILL, Harlan D.; WEINBERG, Gerald M. Software Productivity. [s.l.] Dorset

House Publishing Company, 1988.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 222

MILLER, George A. WordNet: a lexical database for English. Communications

of the ACM, 1995.

MOHANTY, Sanjukta; ACHARYA, Arup Abhinna; MOHAPATRA, Durga

Prasad. A Survey on Model-Based Test Case Prioritization. International

Journal of Computer Science and Information Technologies. Anais...2011

MORALES-TRUJILLO, Miguel; OKTABA, Hanna; PIATTINI, Mario. Using

Technical-Action-Research to Validate a Framework for Authoring

Software Engineering Methods. Proceedings of the 17th International

Conference on Enterprise Information Systems, 2015.

MORALI, Ayşe; WIERINGA, Roel. Risk-based confidentiality requirements

specification for outsourced IT systems. Proceedings of the 2010 18th IEEE

International Requirements Engineering Conference, RE2010. Anais...2010

MYAENG, Sung Hyon; HAN, Kyoung Soo; RIM, Hae Chang. Some effective

techniques for naive bayes text classification. IEEE Transactions on

Knowledge and Data Engineering, v. 18, n. 11, p. 1457–1466, 2006.

MYERS, Glenford J.; THOMAS, Todd M.; SANDLER, Corey. The Art of

Software Testing 3rd Edition. [s.l: s.n.]. v. 1

NARDI, Bonnie A. A Small Matter of Programming: Perspectives on End User

Computing. [s.l: s.n.]. v. 26

NIE, Changhai; LEUNG, Hareton. A survey of combinatorial testing. ACM

Computing Surveys, v. 43, n. 2, p. 1–29, 2011.

NOKIA CORPORATION. Robot Framewok. Disponível em:

<http://robotframework.org/>.

NORTH, Dan. JBehave. Disponível em: <http://jbehave.org/>.

NORTH, Dan. Introducing BDDBetter Software Magazine, 2006. Disponível em:

<http://dannorth.net/introducing-bdd/>

NURMELA, Kari J. Upper bounds for covering arrays by tabu search. Discrete

Applied Mathematics. Anais...2004

PARRA, Otto; ESPANA, Sergio; PANACH, Jose Ignacio. Extending and

validating gestUI using technical action research. Proceedings -

International Conference on Research Challenges in Information Science.

Anais...2017

PINTO, Thiago Delgado; STAA, Arndt Von. Uma Ferramenta para Geração e

Execução Automática de Testes Funcionais Baseados na Descrição

Textual de Casos de Uso. [s.l.] Pontifical Catholic University of Rio de

Janeiro (PUC-Rio), 2013.

POPPENDIECK, Mary. Lean software development. 29th International

Conference on Software Engineering (ICSE). Anais...IEEE, 2007Disponível

em:

<https://www.computer.org/csdl/proceedings/icsecompanion/2007/2892/00/2

8920165.pdf>

PORTER, Martin F. An algorithm for suffix stripping. Program, v. 14, n. 3, p.

130–137, 1980.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 223

PREMACK, David; WOODRUFF, Guy. Does the chimpanzee have a theory of

mind? Behavioral and Brain Sciences, 1978.

PUGH, Ken. Lean-Agile Acceptance Test-Driven Development: better

software through collaboration. [s.l.] Addison-Wesley, 2011.

R. GLASS; VESSEY, I.; RAMESH, V. Research in software engineering: an

empirical study. [s.l: s.n.].

RANE, Prerana Pradeepkumar. Automatic Generation of Test Cases for Agile

using Natural Language Processing. [s.l.] Faculty of the Virginia Polytechnic

Institute and State University, 2017.

RASJID, Zulfany Erlisa; SETIAWAN, Reina. Performance Comparison and

Optimization of Text Document Classification using k-NN and Naïve

Bayes Classification Techniques. Procedia Computer Science, v. 116, p. 107–

112, 2017.

ROBEER, Marcel; LUCASSEN, Garm; VAN DER WERF, Jan Martijn E. M.;

DALPIAZ, Fabiano; BRINKKEMPER, Sjaak. Automated Extraction of

Conceptual Models from User Stories via NLP. Proceedings - 2016 IEEE

24th International Requirements Engineering Conference, RE 2016.

Anais...2016

ROBINSON, W. S. The logical structure of analytic induction. American

Sociological Review, 1951.

ROSA, Otávio Araújo Leitão. Test-Driven Maintenance: uma abordagem para

manutenção dos sistemas legados. [s.l.] Pontifical Catholic University of Rio

de Janeiro, 2011.

ROTHERMEL, Gregg; UNTCH, Roland H.; CHU, Chengyun; HARROLD, Mary

Jean. Test Case Prioritization: an Empirical Study. Proceedings of the IEEE

International Conference on Software Maintenance, p. 179, 1999.

RUNESON, Per; HOST, Martin; RAINER, Austen; REGNELL, Björn. Case

Study Research in Software Engineering. [s.l: s.n.].

SAMMET, Jean E. Programming languages: history and fundamentals. [s.l.]

Prentice-Hall, 1969.

SANG, Erik F. Tjong Kim; DE MEULDER, Fien. Introduction to the CoNLL-

2003 Shared Task: Language-Independent Named Entity Recognition.

CONLL ’03 Proceedings of the seventh conference on Natural language

learning at HLT-NAACL 2003, 2003.

SANTORINI, Beatrice. Part-of-Speech Tagging Guidelines for the Penn

Treebank Project (3rd Revision). University of Pennsylvania 3rd Revision

2nd Printing, 1990.

SCHAPIRE, Robert E.; SINGER, Yoram. BoosTexter: A Boosting-based System

for Text Categorization. Machine Learning, v. 39, p. 135–168, 2000.

SCHÖN, Eva-Maria; THOMASCHEWSKI, Jörg; ESCALONA, María José. Agile

Requirements Engineering: A systematic literature review. Computer

Standards & Interfaces, 2017.

SCHWABER, K. Agile Project Management with Scrum. [s.l: s.n.]. v. 7

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 224

SEDDON, Peter B.; SCHEEPERS, Rens. Towards the improved treatment of

generalization of knowledge claims in IS research: Drawing general

conclusions from samples. European Journal of Information Systems, 2012.

SEDDON, Peter; SCHEEPERS, Rens. Other-Settings Generalizability in IS

Research. ICIS. Anais...2006

SHERWOOD, George. Effective testing of factor combinations. Proc. Third

International Conference on Software Testing, Analysis and Review

(STAR’94). Anais...1994

SHIBA, T.; TSUCHIYA, T.; KIKUNO, T. Using artificial life techniques to

generate test cases for combinatorial testing. Proceedings of the 28th Annual

International Computer Software and Applications Conference, 2004.

COMPSAC 2004., p. 1–14, 2004.

SHULL, F.; BASILI, V.; BOEHM, B.; BROWN, A. W.; COSTA, P.; LINDVALL,

M.; PORT, D.; RUS, I.; TESORIERO, R.; ZELKOWITZ, M.; ALLEN, Ed;

ANGER, Frank; CHULANI, Sunita; DAVIS, Noopur; DYER, Michael;

EBERT, Christof; ELLIOTT, Bill; FAGAN, Eileen; FEATHER, Martin;

GREEN, Liz; FORMAN, Ira; HENNINGER, Scott; JOHNSON, Philip;

LAITENBERGER, Oliver; MADACHY, Ray; MATSUMOTO, Yoshihiro;

MCGIBBON, Tom; MILLER, James; MOORE, James; O’NEILL, Don;

RIFKIN, Stan; ROMBACH, Dieter; ROY, Dan; SAIEDIAN, Hossein; SUCCI,

Giancarlo; THOMAS, Gary; VINTER, Otto. What we have learned about

fighting defects. Proceedings - International Software Metrics Symposium.

Anais...2002

SMART, John Ferguson. BDD in action. [s.l.] Manning Publications, 2014.

SOEKEN, Mathias; WILLE, Robert; DRECHSLER, Rolf. Assisted Behaviour

Driven Development Using Natural Language Processing. 50th

International Conference on Objects, Models, Components, Patterns (TOOLS),

2012.

SOMMERVILLE, Ian. Software Engineering. 9th. ed. Boston, MA, USA:

Pearson, 2011.

SRIKANTH, Hema; HETTIARACHCHI, Charitha; DO, Hyunsook.

Requirements based test prioritization using risk factors: An industrial

study. Information and Software Technology, v. 69, p. 71–83, 2016.

SRIKANTH, Hema; WILLIAMS, Laune; OSBORNE, Jason. System test case

prioritization of new and regression test cases. 2005 International

Symposium on Empirical Software Engineering, ISESE 2005. Anais...2005

STAA, Arndt Von. Lecture Notes on Software Testing (INF1413) - Software

Quality - Concepts (in Portuguese)Rio de JaneiroPontifical Catholic

University of Rio de Janeiro, , 2017. Disponível em: <www.inf.puc-

rio.br/~inf1413/>

STAVRU, Stavros. A critical examination of recent industrial surveys on agile

method usage. Journal of Systems and Software, v. 94, p. 87–97, 2014.

TACQ, Jacques. Znaniecki’s analytic induction as a method of sociological

research. Polish Sociological Review. Anais...2007

TAYLOR, J.; MAZLACK, L. Toward computational recognition of humorous

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 225

intent. Proceedings of the Annual Conference of the Cognitive Science

Society, 2005.

TELEFÓNICA. Tartare. Disponível em:

<https://github.com/telefonicaid/tartare>.

THE CUCUMBER TEAM. Gherkin. Disponível em:

<https://github.com/cucumber/cucumber/wiki/Gherkin>.

THOUGHTWORKS. Gauge. 2014.

TUNG, Yu-Wen; ALDIWAN, W. S. Automating test case generation for the

new generation mission software system. Proceedings of the IEEE

Aerospace Conference, v. 1, p. 431–437, 2000.

VERMA, Ravi Prakash; BEG, Md. Rizwan. Generation of Test Cases from

Software Requirements Using Natural Language Processing. 2013 6th

International Conference on Emerging Trends in Engineering and Technology.

Anais...IEEE, dez. 2013Disponível em:

<http://ieeexplore.ieee.org/document/6754807/>. Acesso em: 2 fev. 2017

VIDIEMME CONSULTING. Bravey.

VIDYA SAGAR, Vidhu Bhala R.; ABIRAMI, S. Conceptual modeling of natural

language functional requirements. Journal of Systems and Software, v. 88,

n. 1, p. 25–41, 2014.

WALLACE D R, Kuhn D. R. Failure modes in medical device software: An

analysis of 15 years of recall data. International Journal of Reliability Quality

and Safety Engineering, 2001.

WAUTELET, Yves; HENG, Samedi; KOLP, Manuel; MIRBEL, Isabelle.

Unifying and extending user story models. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Anais...2014

WEXELBLAT, Richard L. History of Programming Languages (ACM

SIGPLAN). ACM SIGPLAN History of Programming Languages.

Anais...1981Disponível em:

<http://dl.acm.org.proxy.library.cornell.edu/citation.cfm?id=1198340&bnc=1

>

WEYUKER, Elaine J. On testing non-testable programs. Computer Journal, v.

25, n. 4, p. 465–470, 1982.

WHEELER, David A.; BRYKCZYNSKI, Bill; MEESON JR, Reginald N.

Software Inspection: An Industry Best Practice for Defect Detection and

Removal. [s.l.] IEEE Computer Society Press Los Alamitos, 1996.

WIEGERS, Karl. Peer Reviews in Software: A practical guide. Boston, MA,

USA: Addison-Wesley, 2002.

WIEGERS, Karl E.; BEATTY, Joy. Software Requirements. [s.l: s.n.].

WIERINGA, Roel. Design Science Methodology for Information Systems and

Software Engineering. [s.l.] Springer, 2014a.

WIERINGA, Roel. Empirical research methods for technology validation:

Scaling up to practice. Journal of Systems and Software, 2014b.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 226

WIERINGA, Roel; DANEVA, Maya. Six strategies for generalizing software

engineering theories. Science of Computer Programming. Anais...2015

WIERINGA, Roel; DANEVA, Maya; CONDORI-FERNANDEZ, Nelly. The

Structure of Design Theories, and an Analysis of their Use in Software

Engineering Experiments. 2011 International Symposium on Empirical

Software Engineering and Measurement. Anais...2011

WIERINGA, Roel J. Technical Action Research. Design Science Methodology

for Information Systems and Software Engineering, 2014c.

WIKIPEDIA. Behavior-Driven Development. Disponível em:

<https://en.wikipedia.org/wiki/Behavior-driven_development>. Acesso em:

26 nov. 2017.

WILLIAMS, Alan Webber. Software component interaction testing: Coverage

measurement and generation of configurations. [s.l.] University of Ottawa

(Canada), 2002.

WYNNE, Matt; HELLESØY, Aslak. The Cucumber Book: Behaviour-Driven

Development for Testers and Developers. [s.l.] Pragmatic Bookshelf, 2012.

YAN, Jun; ZHANG, Jian. A backtracking search tool for constructing

combinatorial test suites. Journal of Systems and Software, v. 81, n. 10, p.

1681–1693, 2008.

YANG, Yiming; CHUTE, Christopher G. An example-based mapping method

for text categorization and retrieval. ACM Transactions on Information

Systems, v. 12, n. 3, p. 252–277, 1994.

YIN, Robert K. Case Study Research . Design and MethodsSAGE Publications,

2003.

YOO, S.; HARMAN, M. Regression testing minimization, selection and

prioritization: A surveySoftware Testing Verification and Reliability, 2012.

YOUSUF, Farzana; ZAMAN, Zahid; IKRAM, Naveed. Requirements validation

techniques in GSD: A survey. IEEE INMIC 2008: 12th IEEE International

Multitopic Conference - Conference Proceedings. Anais...2008

YUE, Tao; BRIAND, Lionel C.; LABICHE, Yvan. A systematic review of

transformation approaches between user requirements and analysis

modelsRequirements Engineering, 2011.

ZELKOWITZ, Marvin V.; WALLACE, Dolores. Experimental validation in

software engineering. Information and Software Technology, 1997.

ZHENG, J.; WILLIAMS, L.; NAGAPPAN, N.; SNIPES, W.; HUDEPOHL, J. P.;

VOUK, M. a Software Engineering Ieee Transactions On. On the value of

static analysis for fault detection in software. Software Engineering, IEEE

Transactions on, v. 32, n. 4, p. 240–253, 2006.

ZNANIECKI, F. The Method of Sociology. 2nd editio ed. [s.l.] Octagon Books,

1968.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

227

Appendix A – Architecture of the Solution

Simple things should be simple; complex things should be possible.

- Alan Kay

This appendix details the architecture of the solution that reifies our approach.

Figure A1 - Processing Stages

Figure A1 shows the stages that can be followed by a tool that implements our

approach. Input is composed of a set of text documents written in Concordia and a

set of execution parameters. Output is composed of messages describing the pro-

cessing results and a set of files that includes test scripts (one test script file per

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 228

feature file), test script configuration (a single file), and test script execution results

(one file per test execution or a single file).

The first group of stages performs the language processing. Lexer detects se-

quences of characters that match a pattern – called lexemes – and labels these lex-

emes, forming tokens. Parser receives these tokens, checks their syntax, and con-

structs an abstract syntax tree (AST). The Natural Language Processor receives

the AST and analyzes its syntax deeply aiming to augment it and, thus, to create an

extended abstract syntax tree (EAST). Semantic Analyzer checks properties and

relations among tokens in the EAST, which include their scopes, types, parameters,

and references. Information about detected properties and relations are attached to

the EAST, creating an annotated abstract syntax tree (AAST). Finally, the Logic

Analyzer checks the AAST for logic conflicts in declarations, such as constraints

with conflicting value ranges and cyclic references. The AAST is then ready to be

processed by the test case generator.

The second group of stages addresses the generation, execution, and analysis of

test cases. Requirements Selector filters the AAST according to the parameterized

selection strategy – we describe the strategies over the section 7.3. Test scenarios

are generated from the filtered AAST, along with test data and test oracles, and then

transformed into Test Cases. The Test Cases are exported to files with the extension

.testcase, and transformed into Abstract Test Scripts – i.e., a format simpler to

be processed by plugins. The next three steps are executed by a single plug-in: Test

Script generator transforms abstract test scripts into test scripts (source code); Test

Script Executor executes the test scripts; Test Script Results Converter reads exe-

cution results and transforms them into a format that Concordia can understand.

Finally, the transformed results are analyzed and reported to the user.

The next sections give more details about the structure, with the help of the Uni-

fied Modeling Language (UML).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 229

A1. Lexer

Figure A2 shows the structure of the lexer (class Lexer). Since Concordia has

line-based declarations, new lines can be recognized from the method addNode-

FromLine. A node represents a declaration. The lexer uses node lexers (interface

NodeLexer) for detecting different node types – there are more than 30 of them.

These node lexers are instantiated when the lexer is created. Every node lexer has

a specific purpose, such as identifying tags (class TagNodeLexer), identifying con-

stants (class ConstantNodeLexer), etc., and is responsible for suggesting node

types that are often declared after it, to speed up the detection.

Figure A2 - Lexer

Figure A3 presents the structure of the language loader, used by the lexer. When

a document contains a language declaration (section 6.1.2), e.g., “#language: pt”,

the lexer automatically loads the language content (class LanguageContent) using

a loader (class LanguageContentLoader). That content contains the vocabulary

used in DSLs, Intents, Entities, training examples, and data test case names.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 230

Figure A3 - Language Content Loader

A2. Parser

Figure A4 - Parser

Figure A4 shows the structure of the parser (class Parser). It uses specialized

node parsers (interface NodeParser) for analyzing the given nodes and putting

them into the given document (class Document), which serves as an abstract syntax

three.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 231

Figure A5 represents the specification (class Spec) and its documents (class

Document).

Figure A5 - Specification

A3. Natural language processor

Figure A6 shows the basic structure adopted for using a natural language

processor. The interface NLPStrategy can have different implementations in order

to support alternative techniques – such as those mentioned in section 5.3, e.g.,

Supporting Vector Machines, Conditional Random Field, Averaged Perceptron,

Hidden Markov Model. As mentioned in section 5.4, we chose an implementation

based on a Naïve-Bayes Classifier called Bravey (used by the class BraveyStrat-

egy). Future research directions may include the comparison of such implementa-

tions. We detailed how we used Bravey in section 5.6.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 232

Figure A6 - Structure for NLP

The class NLP provides a high-level interface for training and recognizing sen-

tences for a certain spoken language. Training data is loaded from a dictionary, cre-

ated for every supported spoken language. The class NodeSentenceRecognizer

uses the class NLP for recognizing sentences of parsed nodes (resulting from the

parsing process) and can validate sentences using the syntax rules (class Syn-

taxRule) defined for the expected intents. Warnings and errors detected (we omit-

ted them from the parameters of the method validate) contain their locations in

these sentences.

A4. Semantic and logic analyzers

For performance reasons, semantic analysis and logic analysis are executed by

the same classes. We differentiated the analysis of a single document from the anal-

ysis of the entire specification. Figure A7 shows the structure of a document ana-

lyzer (interface DocumentAnalyzer), while Figure A8 shows the structure of a

specification analyzer (interface SpecificationAnalyzer). Both have implemen-

tations that vary according to the node types. For example, the class ImportDA (an

implementation of DocumentAnalyzer) analyzes duplicated imports, self-refer-

ences, and the existence of the declared import files. The class ImportSSA (an im-

plementation of SpecificationAnalyzer) checks for cyclic references. We exem-

plify the analysis performed by our approach in section 8.2. All these analyzers are

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 233

executed in a specific order, in batch. Specification analysis occurs only after all the

documents have been analyzed individually.

Figure A7 - Document Analyzer

Figure A8 - Specification Analyzer

A5. Test scenario generator

Figure A9 represents the combination strategies explained in section 7.3.3. As

mentioned before, a combination strategy (i.e., an implementation of the interface

CombinationStrategy) can be used in different moments in the test case genera-

tion.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 234

Figure A9 - Combination Strategies

Figure A10 represents the variant selection strategies (interface VariantSelec-

tionStrategy) used in the test scenario generation (Figure A11). Section 7.3.4.1

explains these strategies’ approaches.

Figure A10 - Variant Selection Strategy

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 235

Figure A11 represents the test scenario generator (class TestCaseGenerator).

It generates test scenarios (class TestScenario) for a certain Variant and maps

these scenarios (class TSMaps) to facilitate their combination with other test scenar-

ios. The generator uses a strategy to select Variants (interface VariantSelec-

tionStrategy) that produces certain States, and use a strategy to combine Test

Scenarios of these Variants (interface CombinationStrategy).

Figure A11 - Test Scenario Generator

A6. Test data and test oracle generators

As we explain in section 7.3.5, the adopted mix of data tests has a direct impact

on the number of produced test cases, on their capability to detect defects, on their

oracles, and on their behavior. Users may adopt the mix that fits better their systems,

time, and rigor for testing. Figure A12 represents an interface to mix data test cases,

DataTestCaseMix, whose approaches were detailed in Table 17 (section 7.3.5).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 236

Figure A12 - Mix of Data Test Cases

Figure A13 - Analyzer for Data Test Cases

We defined an analyzer (class DataTestCaseAnalyzer), presented in Figure

A13, that evaluates the results (enumerated type DTCAnalysisResult) of every

data test case (enumerated type DataTestCase) for a certain UI Element. It consid-

ers the UI Element properties and their values in this analysis – according to the

approach described in section 7.3.5. In this way, we can establish the effect of inputs

in UI Elements of a Test Scenario, and adjust its oracles accordingly. The method

analyzeUIElement also returns the Oracle steps – retrieved from Otherwise sen-

tences – associated with the result (DTCAnalysisResult). When a data test case is

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 237

considered valid or incompatible, no Oracle steps are returned (empty array). Oth-

erwise, which means that the input produces a result considered invalid, the corre-

sponding Otherwise steps are returned – whether they were specified.

Later, in the test case generation, when a data test case is considered invalid and

no Otherwise steps are specified (i.e., the analyst did not specify the expected be-

havior for an invalid input in the corresponding UI Element), we are currently flag-

ging the Test Case as “invalid”, which means that we expect it to fail. For example,

whether a UI Element called “Price” has a minimum value defined as “0.01” (one

cent), but it does not define what should happen when an invalid value is given

(e.g., what happens if we inform “0.00”?), we are flagging the test case because its

test scenario should not terminate successfully. We are considering to negate Vari-

ant’s postconditions (using NLP) in future versions, i.e., transforming Then sen-

tences into their negated versions, to invert the original expectations – instead of

letting the original oracle fails, as we currently do. For example, suppose that a

Variant interacts with the UI Element “Price” mentioned above and also declares an

oracle “Then I see the text "Saved."”. When we give an invalid price, such

as “0.00”, we do not expect that the application shows “Saved” because we did not

produce the needed conditions for that happens. Currently, we are flagging the Test

Case with a tag “@fail”, to make the failure expectation clear. In future versions,

we want to negate the oracle using NLP, to produce “Then I do not see the

text "Saved."”, instead of flagging the test case.

A7. Test case generator

Figure A14 presents the structure of a Test Planner (class TestPlanner), that

produces test plans (class TestPlan). A Test Plan is a combination of UI Elements,

data test cases (enumerated type DataTestCase), and respective oracles (retrieved

from Otherwise sentences). Later, the Test Case Generator (Figure A15) will apply

a Test Plan into a Test Scenario to produce a Test Case. For producing test plans,

the planner uses the strategies mentioned earlier (interfaces CombinationStrategy

and DataTestCaseMix).

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 238

Figure A14 - Test Planner

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 239

Figure A15 - Test Case Generator

Figure A15 shows the structure of the test case generator (class TestCaseGen-

erator). The generation considers parameters (class TCGOptions) such as the de-

fault language and the random seed, the generation context (class GenContext) –

which includes the current document and the specification –, and a set of test plan-

ners (class TestPlanner). The process uses dictionaries – loaded by an implemen-

tation of LanguageClassLoader – to adjust Given-When-Then sentences’ content.

These sentences are analyzed again – with a GivenWhenThenSentenceRecognizer

– to ensure that they have the right structure, i.e., the right Intents and Entities, to

that they can be transformed into Abstract Test Scripts later.

A8. Test script generator

Figure A16 shows the structure of an abstract test script (ATS) generator (class

AbstractTestScriptGenerator). An abstract test script (class AbstractTest-

Script) contains all the needed information for producing test scripts, such as a

feature, scenarios, and test cases (class ATSTestCase), and may have test events

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 240

(class ATSEvent). Both test cases and test events have commands (class ATSCom-

mand) that can be converted into source code, later, with a plugin. Each of these

commands (as well as any object possessed by an ATS) has the location of its re-

spective sentence in the specification file. These locations provide traceability for

the source code.

Figure A16 - Abstract Test Script Generation

Figure A17 presents the adopted plug-in-based architecture for test script gener-

ation. The interface Plugin can be implemented to generate source code for the

desired testing framework. For example, currently there is a class named

CodeceptJS that implements Plugin in order to generate test scripts for the frame-

work CodeceptJS73. The interface Plugin defines three methods:

 generateCode: transforms the given abstract test scripts (objects of the

class AbstractTestScript) into source code, considering the given op-

tions (class TestScriptGenerationOptions);

73 https://github.com/Codeception/CodeceptJS

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 241

 executeCode: executes the test scripts according to the given options (class

TestScriptExecutionOptions);

 convertReportFile: read the execution results (class TestScriptExecu-

tionResult) from a report file produced by the testing framework.

Figure A17 - Plug-in Architecture for Test Script Generation

A9. Test script executor and analyzer

The same plugin described in Figure A17 is responsible for executing test scripts

and converting their results to the expected format. However, since the execution

of test scripts may involve additional steps, such as starting a testing server that

controls a browser (for web applications) or starting a mobile phone simulator (for

mobile applications), we defined a structure (class PluginData) to define plugin

data – see Figure A18. These data include a “serve” command that can be executed

to setup a testing server, and commands to install and uninstall needed dependen-

cies. Plugin data are currently stored as JSON files and loaded by a plugin finder

(class JsonBasedPluginFinder). The “serve” command is only executed when a

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 242

user gives the parameter “--plugin-serve” to the tool, with the respective plugin

name (e.g., concordia --plugin-serve codeceptjs).

Figure A18 - Plug-in Data

The plugin data do not include a command to execute test scripts since there are

(execution) options to be interpreted – the method executeCode from the class

Plugin does that.

After using the plugin to read execution results from the corresponding testing

framework, the tool analyzes these results to inform the user. For example, whether

is expected that a certain test script fails (i.e., when the test script is generated from

a Test Case flagged with the tag @fail) and it really fails – which also means that

the target testing framework does not offer a way to defining expectations of failure

–, the tool can convert the failure into a success-like result (since the failure is ex-

pected). In this case, the result is reported as “adjusted” instead of as “successful”.

A10. Final Remarks

This appendix detailed the architecture produced to make the approach possible.

It works like a compiler, transforming a high-level language (Concordia) into a low-

level language (test scripts), using a large set of algorithms and natural language

processing. The architecture can be extended to accommodate new algorithms (e.g.,

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 243

new combination approaches, new NLP algorithms) and new plugins for test script

generation.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

244

Appendix B – Concordia Grammar

The following listing presents the Concordia grammar in Backus-Naur Form

(BNF) :

feature ::= white comment tags header background? feature_elements

comment?

header ::= (!(scenario_outline | scenario | background | vari-

ant_background) .)*

feature_elements ::= (scenario | scenario_outline)*

scenario ::= comment tags scenario_keyword space* lines_to_keyword

white steps

scenario_outline ::= comment tags scenario_outline_keyword space*

lines_to_keyword white steps testcase_sections white

background ::= comment background_keyword space* lines_to_keyword?

(eol+ | eof) steps

variant_background ::= comment variant_background_keyword space*

lines_to_keyword? (eol+ | eof) steps

tags ::= white (tag (space|eol)+)*

tag ::= '@' ([^@\r\n\t])+

comment ::= (comment_line white)*

comment_line ::= space* '#' line_to_eol

steps ::= step*

step ::= comment step_keyword keyword_space line_to_eol (eol+ | eof)

multiline_arg? white

testcase_sections ::= testcase*

testcase ::= comment space* testcase_keyword space* lines_to_keyword?

eol table white

multiline_arg ::= table | py_string

py_string ::= open_py_string (!close_py_string .)* close_py_string

open_py_string ::= space* '"""' space* eol

close_py_string ::= eol space* '"""' white

cell ::= [^\r\n|]+ '|'

row ::= space* '|' cell+ eol

table ::= row+

step_keyword ::= 'Given' | 'When' | 'Then' | 'And' | 'But'

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 245

import_keyword ::= 'Import'

testcase_keyword ::= 'Test Case:'

scenario_outline_keyword ::= 'Scenario Outline:'

scenario_keyword ::= 'Scenario:'

background_keyword ::= 'Background:'

variant_keyword ::= 'Variant:'

variant_background_keyword ::= 'Variant Background:'

property_line ::= '-' space* property connectors content

property ::= [^\r\n|]+

connectors ::= [^\r\n|]+

content ::= value | number

value ::= '"' [^\r\n|]+ '"'

number ::= [0-9]+(\.[0-9]*)?

table_keyword ::= 'Table:'

database_keyword ::= 'Database:'

constants_keyword ::= 'Constants:'

ui_element_keyword ::= 'UI Element:'

ui_element_step_keyword ::= 'Otherwise' | 'And' | 'But'

test_event ::= 'Before All' | 'After All' | 'Before Feature' | 'After

Feature' | 'Before Each Scenario' | 'After Each Scenario'

lines_to_keyword ::= (!(eol space* reserved_words_and_symbols) .)*

reserved_words_and_symbols ::= (step_keyword keyword_space) | (var-

iant_background_keyword keyword_space) | scenario_keyword | sce-

nario_outline_keyword | variant_keyword | variant_background_keyword |

table_keyword | database_keyword | constants_keyword | ui_element_key-

word | test_event | table | tag | comment_line | property_line

line_to_eol ::= (!eol .)*

space ::= ' ' | '\t'

eol ::= '\r'? '\n'

white ::= (space | eol)*

keyword_space ::= ' '

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

246

Appendix C – Static Checking

The following table presents the static checking performed by the proposed ap-

proach. It is a condensed list of verifications for the Concordia language. We

merged some items to keep the list shorter.

Subgroup Type74 Description

1 Any named declaration E Empty name

2 Any named declaration E Invalid name

3 Language E Language not available

4 Language E Just one declaration is sup-

ported

5 Language E Must be declared before an

Import

6 Language/Import E Must be declared before a

Feature

7 Import E Must have a file.

8 Import E Duplicated import

9 Import E File not found

10 Import E Imported file is a self-refer-

ence

11 Import E Cyclic reference

12 Feature E Feature has a duplicated

name.

13 Scenario E Must be declared after a Fea-

ture

14 Scenario E Duplicated Scenario name.

15 Given/When/Then/And/Otherwise

step

E Must be declared for the fol-

lowing language construc-

tions: …

74 Types are: E=Error, W=Warning

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 247

Subgroup Type74 Description

16 Given/When/Then/And/Otherwise

step

E Must be declared after the

following steps types:…

17 Given/When/Then/And/Otherwise

step

E Must have an owner.

18 Given/When/Then/And/Otherwise

step

E Referenced UI Element not

found: …

19 Given step of a Variant E A Given step cannot be de-

clared after a step other than

Given.

20 Given step of a Variant E Given steps with state must

be declared before other

Given steps.

21 Any NL sentence W Unrecognized entity

22 Any NL sentence W Unrecognized intent

23 Any NL sentence W Different entity recognized

24 Any NL sentence W Different intent recognized

25 Any NL sentence E Sentence expects different

entities

26 Any NL sentence E Sentence expects an entity in

different quantity

27 Any NL sentence W The sentence %s could not be

validated due to an inexistent

rule for property: …

28 Any NL sentence W The property %s expects at

least %d values, but it was in-

formed %d'

29 Any NL sentence W The property %s expects at

most %d values, but it was in-

formed %d'

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 248

Subgroup Type74 Description

30 Any NL sentence W The sentence %s could not be

validated due to an inexistent

rule for the target %s of the

property %s

31 Any NL sentence W The property %s must be

used with %s

32 UI Element E Must be declared after a Fea-

ture

33 UI Element E Duplicated local name.

34 UI Element E Duplicated global name.

35 UI Element E UI property must be declared

after a Feature

36 UI Element W UI property not recognized

37 UI Element E Duplicated property

38 UI Element E Incompatible properties: …

39 UI Element E Incompatible property opera-

tors: …

40 UI Element E Referenced Constant not

found: …

41 UI Element E Referenced UI Element not

found: …

42 UI Element E Referenced Table not found:

…

43 UI Element E Referenced Database not

found: …

44 UI Element E Minimum value is greater

than the maximum value

45 UI Element E Minimum length is greater

than the maximum length

46 Tag E Invalid tag declaration

47 Tag E This tag must have a number.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 249

Subgroup Type74 Description

48 Tag E The tag content must be a

number greater than zero.

49 Database E Duplicated database name

50 Database E Database property must be

declared after a Database

block

51 Database W Unrecognized database prop-

erty

52 Database W Database property expects a

value

53 Database E Could not connect to the de-

clared database

54 Database E Error while disconnection

from the database

55 Database E Database has no properties

56 Database E Database should have a type

57 Database E Database should have a prop-

erty name or a property path

58 Query E Query cannot have both a ref-

erence to a Database and a

reference to a Table.

59 Query E Query cannot have more than

one Database reference.

60 Query E Error trying to process a da-

tabase query.

61 Query E Query cannot have more than

one Table reference.

62 Query E Query must have a Database

reference or a Table refer-

ence.

63 Table E Duplicated Table name

64 Table E Invalid table row declaration

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 250

Subgroup Type74 Description

65 Table E A table row must be declared

after a Table declaration.

66 Table E Table must have at least two

rows

67 Table E Error creating the in-memory

table

68 Table E Error inserting declared data

in the in-memory table

69 Constant E Duplicated constant name

70 Constant E Must be declared after a Con-

stants block

71 Constant E Constant does not have a

name

72 Constant E Constant does not have a

value

73 Before All/After All/Before Fea-

ture/After Feature/Before Each

Scenario/After Each Scenario

E Event already declared

74 Before All/After All/Before Fea-

ture/After Feature/Before Each

Scenario/After Each Scenario

E Event must be declared after

a feature

75 Feature/Background/Con-

stants/any event

E Already declared

76 Background E Must be declared after a fea-

ture

77 Background E Must be declared once

78 Background E Must be declared before a

scenario

79 Variant E Duplicated Variant name

80 Variant E Required state is not pro-

duced by one of the imported

Features.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 251

Subgroup Type74 Description

81 Variant E Preconditions refer to post-

conditions produced by the

owner Variant

82 Variant/Test Case E Must be declared after: …

83 Variant/Test Case W Action not recognized

84 Test Case E No Imports or Feature de-

clared before the Test Case.

85 Test Case E Imported document does not

have a Feature.

86 Test Case E None of the imported docu-

ments have a Feature.

87 Test Case E Test case has no tag that re-

fers to its Feature

88 Test Case E Tag refers to a non-existing

Feature

89 Test Case E The referenced Feature does

not have Scenarios

90 Test Case E Test Case has tag @variant

but it does not have a tag

@scenario. Please declare it.

91 Test Case E The index informed in @sce-

nario is less than 1.

92 Test Case E The index informed in @sce-

nario is greater than the num-

ber of scenarios.

93 Test Case E No Scenarios ware found

with the informed index.

94 Test Case E No Variants were found in

the referenced Scenario.

95 Test Case E The index informed in @var-

iant is less than 1.

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

 252

Subgroup Type74 Description

96 Test Case E The index informed in @var-

iant is greater than the num-

ber of variants in the sce-

nario.

97 Test Case Gen. E Error retrieving Test Scenar-

ios from the Variant

98 Test Case Gen. E Error generating test case file

99 Test Case Gen. W Combination strategy not

supported

100 Test Case Gen. W Data selection strategy not

supported

101 Test Case Gen. W Variant selection strategy not

supported:

102 Test Case Gen. E Could not generate a value

for the following UI Element:

…

103 Test Case Gen. E Could not generate a value

for the following UI Element

property: …

104 Test Case Gen. E Error trying to process the

following database query: …

105 Test Case Gen E A producer of the state was

not found: …

106 Test Case Gen. E Could not retrieve a value

from the UI Element: …

107 Test Case Gen. E Could not produce a UI Lit-

eral from the UI Element: …

DBD
PUC-Rio - Certificação Digital Nº 1412735/CA

