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Abstract

Axelle Dany Juliette Pochet; Marcelo Gattass (Advisor). Mode-
ling of Geobodies: AI for seismic fault detection and all-
quadrilateral mesh generation. Rio de Janeiro, 2018. 128p. Tese
de Doutorado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Safe oil exploration requires good numerical modeling of the subsur-
face geobodies, which includes among other steps: seismic interpretation and
mesh generation. This thesis presents a study in these two areas. The first
study is a contribution to data interpretation, examining the possibilities
of automatic seismic fault detection using deep learning methods. In parti-
cular, we use Convolutional Neural Networks (CNNs) on seismic amplitude
maps, with the particularity to use synthetic data for training with the goal
to classify real data. In the second study, we propose a new two-dimensional
all-quadrilateral meshing algorithm for geomechanical domains, based on an
innovative quadtree approach: we define new subdivision patterns to effici-
ently adapt the mesh to any input geometry. The resulting mesh is suited
for Finite Element Method (FEM) simulations.

Keywords
Seismic fault; Convolutional Neural Network; Transfer Learning;

Mesh generation; Quadtree.
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Resumo

Axelle Dany Juliette Pochet; Marcelo Gattass. Modelagem de
objetos geológicos: IA para detecção automática de falhas
e geração de malhas de quadriláteros. Rio de Janeiro, 2018.
128p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A exploração segura de reservatórios de petróleo necessita uma boa mo-
delagem numérica dos objetos geológicos da sub superfície, que inclui entre
outras etapas: interpretação sísmica e geração de malha. Esta tese apresenta
um estudo nessas duas áreas. O primeiro estudo é uma contribuição para
interpretação de dados sísmicos, que se baseia na detecção automática de fa-
lhas sísmicas usando redes neurais profundas. Em particular, usamos Redes
Neurais Convolucionais (RNCs) diretamente sobre mapas de amplitude sís-
mica, com a particularidade de usar dados sintéticos para treinar a rede com
o objetivo final de classificar dados reais. Num segundo estudo, propomos
um novo algoritmo para geração de malhas bidimensionais de quadrilaterais
para estudos geomecânicos, baseado numa abordagem inovadora do método
de quadtree: definimos novos padrões de subdivisão para adaptar a malha
de maneira eficiente a qualquer geometria de entrada. As malhas obtidas
podem ser usadas para simulações com o Método de Elementos Finitos
(MEF).

Palavras-chave
Falhas Sísmicas; Redes Neurais Convolucionais; Transferência de

aprendizado; Geração de Malha; Quadtree.
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1
Introduction

1.1
Motivations

The exploitation of oil and gas reservoirs is a process facing many
uncertainties. Reservoirs are located kilometers under the ground surface,
where the presence and quantity of resources can only be estimated. Complex
geological structures react to resource extraction in ways that can cause severe
environmental damages, as well as huge economic losses. The only available
direct observation at such depth is through well drilling, a process extremely
expensive, which only gives local information on areas that extend over several
cubic kilometers.

Experts thus extensively rely on indirect methods to assess information
on the sub-surface. Among them, seismic reflection allows building images
covering the entire volume of interest, in which the important geological
features, called here geobodies, can be interpreted. Horizons delimit different
types of rocks; faults can block flow or on the contrary be preferential fluid
paths, breaking the continuity of horizons; salt domes and channels can also
be important to locate hydrocarbon traps.

The manual interpretation of geobodies in seismic data is a tedious task.
In the past decades, the amount of data have increased from hundreds of
megabytes to hundreds of gigabytes and seldom even terabytes today (Wang
et al, 2018). The majority of recent seismic surveys are three-dimensional, com-
prising hundreds of seismic images organized in seismic cubes. For that reason,
computational tools that allow automating or even assisting interpretation are
of great value in the industry. Such tools face challenges related to the quality
of the processed seismic signal and the complexity of the geological structures
involved (Figueiredo, 2007).

The finality of the interpretation step is to build numerical models of
the sub-surface, in which geobodies are represented as separation lines in
2D and surfaces in 3D models. Numerical simulations in those models aim
at understanding the mechanical, hydraulic and thermal behavior of rocks in
different scenarios, helping experts to take strategic decisions for production.
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Chapter 1. Introduction 14

One important decision is, for example, the number and location of injection
and production wells. Simulations are carried out using numerical methods
that require the subdivision of the domains in small elements, forming a mesh
over the interest area. Methods like the Finite Element Method imply a set
of constraints on the mesh generation, including restrictions on the number of
elements, their arrangement and their quality.

Data interpretation and mesh construction are thus two crucial steps for
reservoir characterization. The accuracy of both processes as respect to the
in-place geobodies is essential to reduce environmental and economical risks
during reservoir production, overall allowing for a safe reservoir exploitation.
In this thesis we propose a work in each of these two fields.

1.2
Goals

The first study presented in this work focuses on seismic faults. We
investigate the use of Convolutional Neural Networks (CNNs) for automatic
interpretation of fault location. CNN is a deep learning method that has been
recently growing in interest due to its high performances in a great variety
of object detection tasks (Rawat et al, 2017; Zhiqiang and Jun, 2017). Works
applying such technique recently achieved state-of-the art results for faults
and salt domes detection (Wang et al, 2018). One of the obstacles of using this
method in the seismic area is the difficulty of obtaining a significant number of
well-interpreted data to train the networks. To face this issue, we propose to
work with a synthetic dataset, however our final goal remains the classification
of real data.

In a second work, we try to develop a mesh generator adapted to any
geobody configuration, and suited for Finite Element Method simulations.
Mesh generation remains until today a challenge in both 2D and 3D, especially
for quadrilateral (resp. hexahedral) elements, which are usually preferred in the
industry (Zienkiewicz et al, 2008). We tackle the problem in two-dimension and
try to develop an automatic tool which produces meshes of good quality even
in complex geological domains. For clarity, we note here that this work does
not imply any method related to artificial intelligence.

Both works aim at reducing the manual effort for building models of the
sub-surface, through process automation.

DBD
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1.3
Contributions

The first study, on automatic seismic fault detection, presents an inno-
vative method, where a CNN trained with synthetic seismic images is used to
classify real seismic images through the use of Transfer Learning techniques.
This method presents an interesting solution for two common problems re-
searchers face when applying CNNs to seismic data: the obtention of a great
number of well-annotated data for training, along with the generalizability of
the method to different types of seismic data. This contribution is presented
in two articles submitted in 2018: (Pochet et al, 2018b) and (Pochet et al,
2018a).

The second study, on all-quadrilateral mesh generation for FEM simu-
lations, proposes an algorithm based on a new data structure, the extended
quadtree. This new structure allows the division of a quadrilateral element
into six quadrilaterals, giving more flexibility than the classical quadtree for
the adaptation to the domain geobodies. The application of the technique is
not bounded to geological domains and is also interesting for meshing curves
representing human-made objects. We published an article to present this in-
novation: (Pochet et al, 2017).

1.4
Document layout

This thesis is divided into two parts.
Part I includes chapters 2 to 6 and investigates the use of CNNs for

seismic fault detection in seismic images. We base our redaction on the content
of two articles submitted in 2018: (Pochet et al, 2018b) and (Pochet et al,
2018a).

In Chapter 2, we present the concepts needed for the understanding of
the proposed methodology. First, we introduce the basics of seismic imagery
and describe the method we use to build synthetic seismic data. Second, we
explain the principles of deep learning and the specificities of CNNs. Chapter
3 presents the related works: we focus on fault detection in seismic images, and
do not treat other geobodies or other types of seismic data. In Chapter 4, we
describe our methodology to build a fault classifier on synthetic seismic data,
and show examples on test images where we apply a post-process to extract
the exact fault locations. In Chapter 5, we present, test and discuss different
strategies to apply the synthetic classifier to real data. Finally, Chapter 6 draws
the conclusions of this first part and proposes potential lines of research for
future works.
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Part II includes chapters 7 to 12 and details an innovative algorithm for
adaptive all-quadrilateral mesh generation suited for Finite Element Method
simulations. It is based on the content of a published article: (Pochet et al,
2017).

Similarly to Part I, we begin by introducing important concepts in
Chapter 7, describing some aspects of quadrilateral meshes and the data
structures we use to develop our meshing method. Chapter 8 then presents
an overview of the works related to quadrilateral mesh generation. Chapter
9 describes our extended quadtree, a new data structure at the core of our
mesh construction method. Then, in Chapter 10, we detail the mesh generation
algorithm. In Chapter 11, we present and discuss results on a set of models, and
examine the performances and the limitations of the method. We also present
an application of the algorithm as part of a software currently in development.
We conclude on the method in Chapter 12, and give suggestions for further
research.

Finally, we close this thesis with a few general words on our work in
Chapter 13.
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Part I

Seismic fault detection using
Convolutional Neural Networks
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2
Concepts

2.1
Seismic Data

Seismic reflection is a technique widely used in the oil and gas reservoir
exploration industry. It is an indirect method that permits the construction of
images of the sub-surface, based on the study of the seismic waves’ travel
time, frequency and waveform (Sheriff and Geldart, 1995; Goldner, 2014).
Compared to direct methods like well drilling, seismic reflection allows to cover
large volumetric areas at a lower cost. The acquisition and processing of the
seismic signal in the interest area result in the visualization of the sub-surface
where geologists and geophysicists can interpret the principal geobodies, such
as faults, horizons, channels or salt domes, in order to further construct a 3D
model of the exploration volume.

In this section we briefly describe the steps of seismic imagery in order to
establish the notation used in this thesis and provide some understanding of
the overall process in which our automatic fault detection method is inserted.
For a deeper understanding we suggest (Robinson and Treitel, 2000; Gerhardt,
1998; Yilmaz and Doherty, 1987).

2.1.1
Acquisition

Seismic acquisition begins with the emission of elastic waves from a source
that can be a dynamite explosion for terrestrial surveys or an airgun detonation
when performed in the sea. A wave propagates with a velocity depending on
the medium it is passing through. In fluids, such as air or water, there is only
a compression wave that is an oscillatory movement in the direction of the
wave propagation. In solids, there is also a shear wave that is an oscillation in
the direction perpendicular to the propagation. Here we will consider only the
compression wave which, for simplicity, will be referred as seismic wave.

At the interface between two different mediums, part of the seismic wave
is reflected to the surface and is registered by a receiver, while the other
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part refracts and keeps on propagating further in the sub-surface. Figure 2.1
illustrates this process.

Figure 2.1: Seismic reflection acquisition. Figure adapted from (Gerhardt,
1998).

Receivers commonly register two quantities for each reflected wave: its
time of arrival, which gives information on the position of the interface it
reflected on, and its intensity, which gives the signal amplitude signature for
this interface. This amplitude is referred here as the seismic amplitude, X.

As the wave hits an interface, the intensity of the reflected wave is
proportional to the relative difference in acoustic impedance, Z, between the
two types of rocks on each side of the interface. This is a property intrinsic
to the rock that is defined as the product between its density, ρ, and the
velocity of the seismic wave , V, through its medium:

Z = ρV (2-1)

In practice several explosions are performed, varying the position of the source
and receivers. In 2D acquisitions, receivers are commonly positioned in a line
with a fixed spacing between them, while in 3D acquisitions receivers are placed
along parallel lines to create a grid, and each sensor can register a signal coming
from various directions. The lateral and vertical resolution of the acquired data
depends on the spacing between sensors and on the sampling frequency.
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2.1.2
Processing

Signal processing aims at minimizing the signal noise and distortions,
removing artifacts or unwanted seismic events in order to provide a visual
result where the position of the geobodies is the most accurate as possible.

One important step in the process is the seismic migration that trans-
forms recorded amplitudes to simulate an explosion where the source and re-
ceiver are at the same location. We can then consider that the signal prop-
agated in the vertical direction and associate the reflected wave arrival time
with depth. This vertical signal is called the seismic trace, and its maximal am-
plitude values (positive or negative peaks) correspond to the reflection events.
It is important to this study to note that the actual value of the seismic ampli-
tude is dependent of decisions made in the seismic migration step. The same
data can be processed from different interpreters, yielding amplitudes in dif-
ferent scales. For this reason, when comparing different seismic images, it is
better to put them in the same amplitude range. If the data is kept with float
this may be values in the range between -1.0 and 1.0. If it is converted to a
small integer (0 to 255) one must be carefull with the quantization procedure.
The noise in the data may artificially increase the amplitude range, yielding
many classes with no elements.

Figure 2.2(a) shows an example of a seismic trace. Its amplitude can be
coded with color. By stacking seismic traces represented in a color scale along
the acquisition lines, the seismic image appears. Figure 2.2(b) and 2.2(c)
show the visual results for a 2D acquisition line (seismic section) and a 3D
acquisition grid (seismic cube). All voxels of the grid (2D or 3D) contain a
value of the trace amplitude, here painted with a grayscale. We assess the
coordinates of each voxel through the in-line, cross-line and time (or equivalent
depth) positions in the grid.
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Figure 2.2: (a) Seismic trace; (b) seismic section; (c) seismic cube.

2.1.3
Interpretation

Theory on rock deformation and deposit behavior allows performing
structural interpretation of the seismic image features. Figure 2.3 shows an
example of the common organization of rocks and fluids around oil and gas
reservoirs. Rock deformations are consequent to natural compression and
traction forces applying in the Earth’s crust, and can eventually result in
break surfaces called seismic faults. Faults can trap the resources if filled with
a sealing material, or on the contrary let them leak by opening a path through
the surrounding rocks. The interface between rocks are called seismic horizons.
As faults, sealing horizons can trap resources by blocking their natural upward
propagation.

Figure 2.3: Common rock configuration around oil and gas reservoirs. Figure
from (Robinson and Treitel, 2000).
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In the seismic image, we can delineate horizons by following amplitude
peak values of a same range in lateral traces (Sheriff, 2002; Goldner, 2014),
since seismic waves reflected on a given interface with a fixed intensity. Faults
then appear as a sudden loss in the lateral continuity of horizons. Figure 2.4
shows the interpretation of one horizon and two faults in a seismic image.

Figure 2.4: Simple interpretation of one horizon and two sub-vertical faults.
Faults appear when the horizon’s lateral continuity is lost.

As opposed to fractures, faults imply a relative displacement of the
horizons on each side the breaking surface. They are generally sub-vertical,
with a dip angle higher than 45° (Machado, 2008). They can curve with
depth as shown in Figure 2.5. Fault scale goes from less than 1m to several
km. They can branch to each other, organizing in networks. It is common
to observe homogeneous orientations for groups of faults formed under the
same mechanical conditions. Seismic surveys generally try to align acquisition
lines perpendicular to the main faults’ direction in order to make them appear
clearly in the seismic sections.

Figure 2.5: Typical fault network appearing in compressional conditions.
Figure from (Suppe, 1985).
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Because of noise and events location uncertainties in seismic images, a
same input can result in many different interpretations: real seismic images
have no ground truth.

2.1.4
Synthetic data

In our automatic fault detection method, part of the input are synthetic
seismic data. We present here the basic concepts behind their construction.

There are two main possibilities when it comes to generating synthetic
seismic images. The first approach is to simulate the seismic wave acquisition
process: artificial source and receivers are placed upon a simplified sub-surface
model made of rock layers with realistic properties, and the wave propagation
is simulated using ray tracing (Fagin, 1991) or full waveform modeling (Hilter-
man, 1970; Kelly et al, 1976). The generated synthetic signal has to pass
through all the seismic processing steps in order to produce a seismic section
(or cube). Generating realistic seismic images with such technique requires
substantial time and effort for both the acquisition simulation process and the
seismic processing steps.

Consequently we consider here a second approach, which uses a simplified
description of the seismic signal propagation process: the convolutional model.
In this model, the reflection of the seismic wave at a rock interface is due to
the contrast in acoustic impedance Z between the two mediums. This contrast
is described through the reflectivity coefficient, RC:

RCi = Zi − Zi−1

Zi + Zi+1
(2-2)

where i is the index of a rock in the stratigraphic column. This representation is
only valid for a planar wave with normal incidence to the rock interface (Yilmaz
and Doherty, 1987). The convolutional model then simply defines the seismic
trace as the result of the convolution of a seismic impulse (wavelet, W) with
the reflectivity coefficients:

Seismic trace = W ∗RC (2-3)

It is common to simulate the seismic impulse as the Ricker wavelet:

W (t) =
(
1− 2(πfpt)2

)
exp−(πfpt)2 (2-4)

where fp is the wavelet peak frequency. Figure 2.6 illustrates the whole process.
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Figure 2.6: Convolutional model. Figure adapted from (Gerhardt, 1998).

Using this simple theory, Hale (2014) offers an open source code, IPF
(Seismic Image Processing for Geological Faults), which allows the easy
creation of synthetic seismic images. This tool first generates a random
sequence of reflectivity coefficients RC. In the real world, rock layers present
small variations in RC because rock properties are not perfectly homogeneous
inside the layer. To mimic this effect, IPF adds a contrast parameter in the
random RC function. This way, higher peaks can be seen as real horizons while
smaller peaks are considered as RC noise:

fRC(t) = [2(rand01 − 0.5)]n (2-5)

with fRC the random reflectivity function, rand01 a uniform random number
between 0 and 1, and n the contrast parameter. Figure 2.7 shows an example
of such signal and its corresponding amplitude map.

The RC column is then copied laterally to obtain a two-dimensional RC
amplitude map representing horizontal rock layers, as shown in Figure 2.8.

Simple geometrical deformations are then applied to reproduce the effects
of rock shearing, folding and eventually faulting. For each deformation type,
the first amplitude column at position x = 0 is set as reference and all values
indexed along t, from 0 to the number of samples in depth. Indices in the
section are then updated according to the deformation type and final amplitude
values are computed through interpolation, given the reference values and the
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Figure 2.7: Random reflectivity for n = 5, with 100 samples. (a) discrete signal,
corresponding to the amplitude map of the reflectivity signal, painted in grey
scale from black = -1 to white = 1. (b) Corresponding continuous signal.

Figure 2.8: Flat section of size 100x100.

updated indices.

Shearing

Shearing performs a translation of amplitude values along the vertical
direction, given the following index update:

t = t− (ax+ b) (2-6)

with a and b constant parameters. This vertical translation is called the throw,
hence shearing applies a linear throw along x in the section. Figure 2.9 shows
an example of applying shearing on the flat section.
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Figure 2.9: Shearing with a = −0.05 and b = 0.

Folding

Horizons’ folding is performed using a squared sinus function:

t = t− f(t)sin(f(x)x) (2-7)

where f is a linear function f(k) = ak + b. Here, f(t) represents the
variation in folding amplitude with depth, and f(x) describes the variation in
folding frequency along direction x. Figure 2.10 shows an example of applying
folding on the flat section.

Figure 2.10: Folding with a = 0.05 and b = 0 for folding amplitude and a = 0
and b = 0.1 for folding frequency.

Faulting

IPF allows describing a fault as a straight line with a certain angle θ

from the vertical. The general equation of a plane gives us the set of points
(x, t) lying on the fault:
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xnx + tnt + d = 0 (2-8)

with nx, nt the two components of the fault’s normal vector, and d the distance
to the origin. Using simple trigonometry we can find the expression of the
normal ~n: Figure 2.11 shows the relation between angle θ and normal ~n.

Figure 2.11: Relation between fault angle and normal on the unit circle. Thick
blue line is the fault.

We can deduce that:

~n = (cosθ,−sinθ) (2-9)

From Equation 2-8, we need one point (x, t) on the fault to obtain the
distance to the origin, d. This point is an input parameter of the faulting
process. To perform the index updates, the code first compares Equation 2-8
to 0: if the result is positive, the point is on the right side of the fault, and a
throw is applied, constant along x but linear along t:

throwfault = at+ b (2-10)

with a and b constant parameters. Figure 2.12 shows an example of applying
faulting on the flat section.

After all deformations were performed, the synthetic sub-surface struc-
ture appears and the convolutional model can be applied. In order to maintain
the validity of the convolution operation, the code keeps track of the hori-
zons’ normal along the deformation process. This way, the convolution can be
performed considering the normal incidence of the synthetic seismic signal.

Finally, noise is added to make the resulting image more realistic.
The amount of noise is controlled through a constant C which modifies the
signal-to-noise ratio (SNR):

SInoise = SI + InoiseSNR(SI, Inoise)C (2-11)
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Figure 2.12: Faulting with reference point (50, 0), θ = 10◦, and throw
parameters a = 0, b = 4.

where SI is the seismic image and Inoise is an image of equal dimension
containing random values of high frequency between -1 and 1. SNR represents
a way to scale the noise values with the image values, and is computed using
the root mean square (RMS) of both images. Given a signal f with n values,
the RMS is defined as:

RMS(f(x)) =
√√√√ 1
n

n∑
i=1

x2
i (2-12)

and the SNR is:

SNR(SI, Inoise) = RMS(SI)
RMS(Inoise)

(2-13)

Figure 2.13 shows an example of the final image. In this synthetic section
we applied the shearing, folding and faulting of Figures 2.9, 2.10 and 2.12, a
Ricker wavelet with peak 0.5 and noise with C = 0.5.

This method presents the great advantage of being simple and fast. As
every step of the process is parameterizable, we can create many seismic images
automatically in few minutes. However, generated images only present simple
configurations: faults are straight lines crossing the image entirely, it is difficult
to generate more than a few faults per image, and other geobodies like channels
or salt domes cannot be created. The code also lacks in documentation.

However, deep learning techniques used in this thesis for automatic
seismic fault detection require large amounts of data where the position of
the faults is known a priori: IPF remains thus a powerful tool to use with such
methods, which concepts are presented in the next section.
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Figure 2.13: Example of a synthetic seismic image generated with IPF.

2.2
Convolutional Neural Networks

Convolutional neural networks (CNNs) are powerful mathematical mod-
els suited for image classification. In this work, we use CNNs to perform auto-
matic fault detection in seismic images, for that reason we present here their
basic concepts and features. We first present artificial neural networks’ general
principles, then explain the learning process, before introducing the peculiari-
ties of CNNs and presenting the method to evaluate the model’s performance.

2.2.1
Artificial neural networks

Artificial neural networks (ANNs) are biologically inspired computa-
tional models, which try to mimic processes occurring in animal brains for
learning specific tasks. The first neural network was developed by McCulloch
and Pitts (1943), motivated by the observation that brains perform better
than computers at a couple of tasks (Haykin, 2009). This remains true today
for object recognition. The field however really gained in momentum in the
1980’s after researchers managed to overcome some of the main limitations
of the technique (notably Rumelhart et al (1986) as a response to Minsky
and Papert (1972) critics). Since then, the increase in computer power allowed
building deep neural networks that can fully exploit the method’s potential.

The base unit of an ANN is the artificial neuron. It is a function that
receives a set of inputs, performs a weighted sum on them and produces an
output, according to an activation function, σ:
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f(x) = σ(
n∑
i=1

xiwi + b) (2-14)

with xi the input i, wi the weight associated with xi, n the number of inputs
and b a bias term.

Activation functions perform a type of thresholding on the neuron’s
output. Figure 2.14 shows some popular non-linear activation functions. The
Rectified Linear Unit (ReLU) is preferred in many applications since it can
accelerate the learning process by up to 6 times compared to other activation
functions (Krizhevsky et al, 2012). ReLU also avoids problems with vanishing
gradient and promotes model sparsity (Glorot et al, 2011). It is also possible to
use the simple linear activation function f(x) = x. However complex learning
tasks can´t be achieved without non-linearity representations.

Figure 2.14: Activation functions. (a) sigmoid; (b) signal; (c) hyperbolic; (d)
ReLU.

If it is possible to implement learning algorithms with one single neu-
ron (Rosenblatt, 1957), achieving complex learning tasks requires organizing
neurons in networks. ANNs are systems where neurons connect to each other
such that the output of a set of neurons serves as input to the next neuron,
according to given connection weights, w. For simplicity, we often describe the
bias term as an input neuron of value 1, with connection weight w0 (Figure
2.15).

The learning process then aims at updating connection weights in order to
minimize the error between the network’s prediction and the expected ground
truth. We detail this process in the next section.
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Figure 2.15: Structure of an artificial neural network. Ni are neurons, xi their
output, wi the weight associated to the connections and σ the activation
function.

2.2.2
Learning mechanism

Let us consider a common ANN, the Multilayer Perceptron (MLP). As
shown in Figure 2.16, MLP are composed of three kinds of neuron layers:
an input layer, which contains the input signal components, one or more
hidden layers, and the final output layer which gives the final classification.
With the exception of the bias terms, each neuron in a layer receives as input
signal the output of all the neurons of the previous layer, so that the network is
fully connected. In classification problems, the output layer contains a number
of neurons equal to the number of classes to predict.

Figure 2.16: Structure of the Multilayer Perceptron.
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Given a set of training examples (x(i), y(i)), where x(i) represents the input
signal and y(i) the expected output, the network performs classification in the
following way.

First, all connection weights are initialized randomly. The input signal
x(i) propagates forward in the network until reaching the output layer. The
given output, called the prediction, is compared to the expected ground truth
y(i) through an error calculated with a loss function. The error then propagates
backward in the network and weight values are adjusted consequently. The
network learns by repeating this process a number of times through all training
examples, until reaching the desired minimal error. Connection weights are
hence called learnable parameters, as opposed to a set of fixed parameters which
describe the learning algorithm.

To explain those steps more in details, let us introduce some notations:

− i is the training example index, with Ni the total number of examples;

− c denotes the index of a neuron in the current layer, with Nc the number
of neurons in that layer;

− p denotes the index of a neuron in the previous layer, with Np the number
of neurons in that layer;

− wab is the weight connection between neurons a and b. Bias terms have
index 0.

− as the output of a layer is the input of its next layer, we denote by x the
output of a neuron.

For the input layer, output x(i)
c are the components of the input signal.

For the output layer:

x(i)
c = ŷ(i)

c (2-15)

with ·̂ denoting the prediction. For the intermediate layers, Figure 2.15 shows:

x(i)
c = σ(

Np∑
p=0

x(i)
p wpc) (2-16)

Loss function

In this work we use the popular cross-entropy loss. To calculate it, we
set the last layer activation function as the Softmax function, which outputs
a normalized probability for each class (hence for each output neuron):
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x(i)
c = ŷ(i)

c = exp
∑Np

p=0 x
(i)
p wpc∑Nc

k=1 exp
∑Np

p=0 x
(i)
p wpk

∈ [0, 1] (2-17)

The cross-entropy loss for training example i is then computed as follows:

L(i) = −
Nc∑
k=1

y
(i)
k log(ŷ(i)

k ) (2-18)

with y(i) the ground truth vector. The cross-entropy loss for a set of k examples
is assessed through the mean:

L = 1
Nk

Nk∑
i=1

L(i) (2-19)

Weight update

Updates of connection weights aim at minimizing the loss value. The
common method to perform this optimization in neural networks is to use the
Gradient descent algorithm coupled with backpropagation.

Gradient descent exploits the fact that a function’s gradient reaches 0 at
its optima. The gradient of a function is the vector of its partial derivatives.
Given our loss function:

grad L(i) =
{
∂L(i)

∂w0
,
∂L(i)

∂w1
, ...

∂L(i)

∂wNw

}
(2-20)

with Nw the total number of weights in the network, initialized with random
values. Gradient descent tries to reach the null gradient by taking small
negative steps for all weights j:

wj = wj − α
(
∂L(i)

∂wj

)
(2-21)

with α the learning rate, a fixed parameter controlling the convergence speed.
Negative steps ensure that the method converges to a minimum. If the loss
function is convex (which is desirable), the gradient will find the unique (hence
global) minimum of the function.

One problem with neural networks is that the loss of training example i
is computed in the last layer, knowing only the output of its previous layer: it
is not straightforward to access to the derivatives for all connection weights.
The backpropagation method resolves this issue through the computation of
neurons’ local error δc, which can be seen as the contribution of each neuron
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to the global loss, and defined as:

δc = ∂L(i)

∂(∑Np

p=0 x
(i)
p wpc)

(2-22)

Details on the computation of δc for each neuron can be found in (Haykin,
2009). We note here that computing such local error in layer l involves knowing
local errors of all neurons in layer (l + 1), so that the errors propagate layer
by layer, backward in the network. Given the local error of a neuron in the
current layer, the derivative of the loss function regarding this neuron’s input
weights can be computed as :

∂L(i)

∂wpc
= δcx

(i)
p (2-23)

Backpropagation hence allows using the gradient descent algorithm in
any neural network. In practice, weights are updated only after a set of training
examples have passed through the network (forward and backward). These
sets are called batches, and the update occurring after each batch is called an
iteration. With this method, one iteration only estimates the gradient on a
subset of training examples. As batches do not represent the entire dataset
and can contain a varying number of data outliers, this gradient estimate
may provide poor gradient steps. Adding a momentum term in the gradient
update helps preventing this effect (Rumelhart et al, 1986; Qian, 1999). When
all training examples have passed through the network once, an epoch was
concluded. For example, a dataset of 2000 training examples with a batch size
of 500 would result in 4 iterations per epoch. The process reaches convergence
after several epochs. Batch size and number of epochs are fixed parameters.

Deep learning

The depth of a network is related to the number of non-linear opera-
tions it performs (Bengio, 2009). Deep networks consequently contain more
neurons and more layers than shallow networks. The strength of neural net-
works is to extract new information dynamically during training through the
use of the hidden layers. Each neuron corresponds to a feature, which can
be seen as a puzzle piece used for building class discrimination. In neural
networks, shallow features contain general information, while deep features
are insights specific to the task. For example, in image classification, a shallow
feature would allow recognizing edges, while a deep feature would hold for
example the information of a particular stripe pattern on an animal’s back.
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The capacity of deep neural networks to dynamically learn features at different
levels of abstraction allows the network to map complex inputs to the output
directly from the data, without the need to manually select the features,
as it would be the case with other learning techniques. This is particularly
interesting for data with a high level of abstraction, like images, where it is
difficult to specify features in terms of raw sensory input (Bengio, 2009).

Deep networks are thus better than shallow networks at differentiating
classes. However, they can be difficult to train, as they are prone to overfitting.
When the number of parameters in the network is high compared to the
number of training data, some features will capture the dataset noise instead of
meaningful task-related information (Srivastava et al, 2014). The training loss
will be low, but the classifier will perform poorly when applied to new data:
the network has a bad generalization capacity. A popular technique to avoid
overfitting is the use of dropout (Srivastava et al, 2014). It consists in training
different architectures of the network for each training example, by randomly
“dropping” some neurons: the neuron and its input and output connections are
temporarily removed from the network. This way, the training is averaging the
predictions of different networks. Figure 2.17 shows an example of applying
dropout on an MLP.

Figure 2.17: Applying dropout to a MLP. (a) A standard MLP with 2 hidden
layers. (b) An example of dropout: cross units have been dropped. Figure
from (Srivastava et al, 2014).

Transfer learning

We introduce here an interesting learning method which we use in our
automatic fault detection process when training with real seismic data.

Transfer learning(TL) is a technique aiming at adapting a trained net-
work to a different classification task, by using all or part of its learned features
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to train a new network. Here again, TL researches are based on the observa-
tion of a biological process: the presence of a knowledge learned previously
can help solving new problems faster and / or better (Pan and Yang, 2010).
For example, it may be simpler to learn playing the piano if we already know
how to play the electric organ. In the neural network context, this translates
as follows: the connection weights in the new network are not initialized ran-
domly but come from a first training process. This initial network is called the
pre-trained model. It can be any network trained on any classification task, but
the method is more efficient if the two networks share a similar task.

In practice, there are many ways to apply TL, depending on each
particular situation. First, part of the weights of the pre-trained model can
be frozen, meaning that they will not be updated in the new training session.
This makes sense if we consider that some features (neurons) already hold
relevant information for the current classification task. The more similar the
tasks are, the more pre-trained model weights can be frozen. Second, it is
possible to use only a part of the pre-trained model’s architecture: some layers
can be removed, new ones can be added. This is particularly interesting when
the pre-trained model is deep but the new network dataset is small. In this
case some pre-trained model layers are removed to avoid overfitting.

TL is hence particularly suited for building powerful classifiers with small
datasets. In addition, the drop in number of learnable parameters due to
the freezing of parts of the network weights allows for fast training. Transfer
learning is often used with CNNs, as the different layers of such networks have
a rather good interpretability.

2.2.3
CNN architecture

CNNs are a type of ANN where the layers’ organization is adapted to
image classification. Images are basically a set of pixels organized in a matrix.
This matrix is defined by its height, width and number of channels (for example
channels R, G, B of colored images). In terms of neural networks, we can thus
see the image as an input signal where all pixel values represent an input
neuron. Using such input in the MLP structure would lead to a very large
amount of learnable parameters. For example, let us consider the synthetic
seismic image created in section 2.1.4, Figure 2.13. Its height and width is 100,
and it has only one channel, the seismic amplitude. Considering a very simple
network with only one hidden layer of 10 neurons and an output layer of two
neurons (a binary class which indicates if the image contains a fault, or not),
the number of learnable weights in the network would be: 100 x 100 x 10 + 10
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x 2 = 100 020. In practice, we want to train with deeper networks.
CNNs exploits the spatial organization of the image to reduce the number

of parameters while efficiently extracting relevant features. It does so through
a sequence of specific layers illustrated in Figure 2.18.

Figure 2.18: Architecture of a CNN, with: [@] = learnable filters; [w] =
learnable weights. The example input is a seismic image, the output could be
a binary class with value 1 if the image contains a seismic fault, 0 otherwise.

The first part of the network performs feature extraction through a
series of convolution and pooling layers. In this part, layers are organized in
feature maps, which are sets of neurons that share sets of weights called filters.
Neurons in feature maps are connected to only a small region of the previous
layer. Layer outputs are here again controlled by activation functions. At the
end of the feature extraction part, neurons are flatten into a single vector and
serve as input to a fully connected network. Here we describe in details each
layer for the case of two-dimensional images (i.e with only one channel), which
are the kind of images used in this thesis.

Convolutional layers

Convolutional layers are at the core of the feature extraction process.
The convolution operation computes a weighted sum on a small region of the
input neurons, as shown in Figure 2.19(a). The weight matrix, called filter, is
applied throughout the input at different locations and outputs a feature map,
where neurons’ location roughly corresponds to their input region location
(Figure 2.19(b)). Weights and bias are hence shared by all neurons of the
feature map.
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Figure 2.19: Convolutional layer. (a) Convolution operation on one region
of the input. (b) Correspondence between position of neurons in the output
feature map and position of input regions.

Convolutional filters are applied in the input in a sliding scheme. In this
thesis, we apply filters on all possible pixels: filter stride is 1 (filter slides one
pixel at a time), and there is no padding (a filter cannot have weights outside
the input). This leads to a reduction of the size of the feature map compared
to its input.

A convolutional layer is composed of n feature maps, each applying a filter
of fixed size but different weights. All filters’ weights are learnable parameters,
while the number of filters and their size are fixed.

Compared to the MLP fully connected architecture, convolutions allow
a drastic reduction of the number of learnable parameters. Taking as example
the simple 4x4 input of Figure 2.19, we see that one filter of size 3x3 outputs
4 neurons. The number of learnable parameters involved is (3x3 + 1) = 10.
In a fully connected architecture, all inputs are connected to all outputs, so
that this number reaches (4x4x4 + 1) = 65. Moreover, with the convolutional
architecture, increasing the size of the input and thus the size of the output
does not change the number of learnable parameters involved: only the size of
the filter matters. Simonyan and Zisserman (2014) showed that 3x3 filters are
sufficient when training deep CNNs. As discussed before, the drop in number
of learnable parameters is beneficial for computational efficiency and also helps
preventing overfitting.

Pooling layers

Pooling layers perform downsampling of the feature maps. In this the-
sis we use the classic max pooling operation, which slides a filter on the input
and keeps only the highest value within the filter (Figure 2.20).
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Figure 2.20: Pooling Layer. (a) Pooling operation on one region of the input.
(b) Correspondence between position of neurons in the output feature map
and position of input regions.

The idea behind max pooling is that important features will hold a high
value after activation. We can thus discard neighboring features of lower value.
Moreover, it suggests that the most valuable information is not the exact
position of the features in the map, but rather their relative position. The
pooling operation does not involve any learnable weight. Fixed parameters are
the size and stride of the filters. In this work we use a classic configuration:
2x2 filters with stride 2, which reduce the size of the input feature map by 2 as
illustrated in Figure 2.20(b). This operation reduces the spatial representation
without losing important information, this leading to a global reduction of the
network’s learnable parameters.

Fully connected layers

The fully connected layers represent a classical MLP. In CNNs, this
part is used exclusively for classification, as feature extraction was performed
by the sequence of convolutions and pooling. Consequently, there is no need
for deep networks and the number of layers can be low.

CNN with Support Vector Machine

As the CNN classification part does not need to involve deep learning,
another popular option is to use the Support Vector Machine (SVM) classi-
fier (Cortes and Vapnik, 1995), which is not a deep learning technique but
often proved better at differentiating classes if the set of input features are
well-designed (Tang, 2013).

SVM separates classes in a way that maximizes the confidence in a
new prediction. Given two classes, there exist multiple hyperplanes which
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separate them correctly, as illustrated in 2.21(a). We see that moving slightly
an hyperplane position can easily change the classification of the samples that
are close to it. Intuitively we then understand that we can give more credit to
a sample which is far from the decision line, than to a sample which is close to
it. SVM aims at finding the hyperplane which maximizes the distance between
the classes, as shown in Figure 2.21(b). This distance is called the margin.
We detail here the mechanics of the SVM, beginning with the simple case
of linearly separable classes, then explain how to adapt it to find non-linear
solutions.

Figure 2.21: Separating two classes in 2-dimension. (a) Example of 3 hyper-
planes correctly separating the two classes. (b) Best hyperplane maximizes the
margin 2m.

We consider the case of two classes defined by the labels -1 and 1. The
separation hyperplane is defined by the equation:

wTx+ b = 0 (2-24)

where the normal vector w contains learnable weights and b is the bias term,
as defined before. If we consider the optimal hyperplane of Figure 2.21(b), its
closest points x(s1) and x(s2) are equidistant on each side of it. They are each
support of a parallel hyperplane of equation:

wTx(s1) + b = a (2-25)

wTx(s2) + b = −a (2-26)

with a some constant > 0. Now, let us also define the distance from the
hyperplane to any point x(i) of the dataset:

d = |w
Tx(i) + b|
||w||

(2-27)
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with | · | the modulus and || · || the norm. We can easily see that d is invariant
to the scale of vector w. Indeed, multiplying w (and hence b which is w0) by a
constant does not change the above expression. Hence, we can choose to scale
it by w′ = w/a, since a > 0. From equation 2-25, 2-26 and 2-27, at points x(s1)

and x(s2) the distance then becomes:

d = m = 1
||w′|| (2-28)

x(s1) and x(s2) are called support vectors. Geometrically we see that
support vectors are few compared to the number of data examples: candidates
lay exclusively on the convex hull of each class point set. As support vectors
are the points which are the closest to the hyperplane, no point can enter the
margin, in other words:

wTx(i) + b ≥ 1 if y(i) = 1 (2-29)

wTx(i) + b ≤ −1 if y(i) = −1 (2-30)

Finally, our optimization problem is to maximize the margin, that is

to say minimize 1/2m. And as minimizing ||w′|| = ||w/a|| is the same as

minimizing ||w||, we can write:

min
w,b

1
2 ||w||

2

s.t. y(i)(wTx(i) + b) ≥ 1
(2-31)

This optimization problem is a quadratic problem with linear restrictions
and it can be solved with classic optimization techniques. The single restriction
expresses both equation 2-29 and 2-30. This optimization problem defines the
hard margin SVM, since no point can enter the margin. In practice, data
present outliers, points that do not respect the general tendency of their
class. Softening the margin constraints can help taking into account this noise.
Hence, the soft margin SVM allows some errors in the classification, letting
some points enter the margin. To do so, it introduces slack variables in a
regularization term, scaled by a constant C which controls the penalization of
outliers.

In order to solve problems where the data is not linearly separable, Cortes
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and Vapnik (1995) proposed to map the input vector to a higher dimensional
feature space in which the data becomes linearly separable. An example of
such mapping is shown in Figure 2.22.

Figure 2.22: Example of a non-linear separation between classes in two di-
mensions (left). In the three-dimensional feature space (x2

1,
√

2x1x2 , x2
2), the

classes become linearly separable (right). Figure from Müller et al (2001).

It is possible to explore different mappings efficiently, without explic-
itly defining the mapping function Φ, using kernels. Kernels compute inner
products in high dimensionality without effort. In the example of Figure 2.22,
taking two data points a and b in the initial feature space, we can write:

Φ(a) • Φ(b) = (x2
1,a,
√

2x1,ax2,a, x
2
2,a)(x2

1,b,
√

2x1,bx2,b, x
2
2,b)T

= x2
1,ax

2
1,b + 2x1,ax2,ax1,bx2,b + x2

2,ax
2
2,b

= (x1,ax1,b + x2,ax2,b)2

= (abT )2 := k(a, b)

where k is here a polynomial kernel. In this thesis we use linear, polynomial
and radial basis function kernels, describe in Table 2.1.

Table 2.1: Common kernels used in this thesis. θ ∈ R, d ∈ N, c ∈ R.

In order to apply kernels in SVM, it is necessary to use the dual form of
the optimization problem, using the Lagrange multipliers. This form makes the
optimization problem related to the data x through the inner product x(i)x(j)
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only. SVM with kernel trick can then be defined as:

max
α

Ni∑
i=1

α(i) − 1
2

Ni∑
i,j=1

α(i)α(j)y(i)y(j)k(x(i), x(j))

s.t. 0 ≤ α(i) ≤ C and
Ni∑
i=1

α(i)y(i) = 0

with w =
Ni∑
i=1

α(i)y(i)x(i) and k(x(i), x(j)) = Φ(x(i)) • Φ(x(j))

(2-32)

Using SVM with the kernel trick, complex classification tasks can be
performed efficiently at the end of the CNN architecture.

2.2.4
Network’s performance

When building neural networks, it is important to quantify the quality
of the results in order to compare different parameterizations and / or
architectures: quality metrics are essential to the network’s tuning. In this
section we present a set of metrics, then discuss some aspects of the proper
way to perform dataset training and evaluation.

Quality metrics

We use a set of five metrics to evaluate the CNN results: accuracy, sen-
sitivity, specificity, ROC AUC and F1-score. They each extract a different
information from the confusion matrix, a table counting the number of true
and false predictions for each class (Table 2.2).

Table 2.2: Confusion matrix for a binary class problem.

Accuracy is a global quality metric that gives the total proportion of good
predictions of the model.

accuracy = (TP + TN)
(TP + FN + FP + TN) (2-33)
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It allows quickly evaluating the model, as a high accuracy is desirable.
However, it does not provide details on the performance of each class, conse-
quently it should not be used alone.

Sensitivity is the probability for the model to predict class 1, knowing
the ground truth is 1. This corresponds to the proportion of good predictions
for the positive class:

sensitivity = TP

(TP + FN) = TP

Number of positive samples
(2-34)

A high sensitivity ensures the validity of negative predictions (FN are
scarce). However, it does not guarantee that a positive prediction is true,
because it does not take into account the FP samples. If the model predicts
all samples as class 1, it will have a 100% sensitivity while being always wrong
about class 0 samples.

Specificity is the counterpart of sensitivity, for the negative class. It
corresponds to the probability to predict class 0 knowing that the ground
truth is 0.

specificity = TN

(TN + FP ) = TN

Number of negative samples
(2-35)

A combination of high sensitivity and high specificity for the model
should ensure that both classes are predicted correctly. The ROC (Receiver
Operating Characteristic) curve plots sensitivity against (1− specificity) and
allows to quickly compare models (Figure 2.23). The ideal classifier would
output 1 for each sensitivity and specificity, hence curves closer to that point
represent better models. The diagonal of the graph represents a value of 0.5
for each metric, meaning the model did no better than chance. We can then
assess the quality of a model numerically by computing the area under the
curve, i.e the ROC AUC.

Finally, another interesting measure is the F1-score:

F1-score = 2TP
(2TP + FP + FN) (2-36)

This is a global measure of quality which, unlike accuracy, gives more
importance to the results of the positive class. This is particularly interesting
when the positive class is under represented. For example, consider seismic
images: in this thesis, we develop a method in which seismic amplitude values
are presented to a classifier, which outputs true if the values show the presence
of a fault, false if no fault is detected. Consider a dataset of 10 faulted samples
and 90 non-faulted samples. If the classifier outputs false for all samples:
accuracy = 90%, F1-score = 0%. The F1-score thus emphasizes the error on
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Figure 2.23: ROC space.

the positive class and allowed here to detect that the classifier was of very bad
quality, since it detected no fault at all.

Training, validation and test

For good interpretability of the quality metrics, it is important to compute
them on data that have not been seen by the network. Consequently, the
dataset is divided into a training set and a validation set. The training set is
used to train the network as described earlier, while the validation set serves
specifically for metrics computation. Training and validation can occur many
times before finding the configuration that gives the best results. Thus, there
is a risk that the designed model overfits the validation data. To avoid this, a
third set, the test set, is used only once at the end of the training, in order to
test if the metrics are really representative.

In proportion, the training set should have the highest number of data,
in order to learn complex relationships. The validation set should have enough
data to represent well the entire dataset. The test set is generally the smallest.

Another important aspect to take into account when dividing the samples
is the data balance. In the training set, all classes should be equally represented,
while in the validation and test set the natural imbalance of the classes should
be reproduced.

Finally, with small datasets it can be difficult to extract a good validation
set, representative of the data. A popular technique for this matter is the
cross-validation, in which each training session selects a different set of data
for validation. First, the entire dataset is divided into n folds. Then, the dataset
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is trained n times using (n−1) folds for training and 1 fold for validation. The
final metrics are the mean of all n results. With this method, it is important
to respect the proportion of each class in each fold.
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3
Related works

The past decades have seen the development of many tools for computer-
aided fault detection in migrated seismic data. The vast majority of methods is
based on the use of seismic attributes, which can be defined as « the quantities
that are measured, computed or implied from the seismic data » (Subrah-
manyam and Rao, 2008). They mainly consist in a set of mathematical opera-
tions highlighting a certain type of information in the seismic image. Fault at-
tribute maps allow visually enhancing possible fault location by looking at the
local continuity of the seismic signal (coherence (Bahorich and Farmer, 1995;
Luo et al, 1996), semblance (Marfurt et al, 1998), variance (Van Bemmel and
Pepper, 2000), chaos (Randen et al, 2001), edge detection (Di and Gao, 2014)),
or at the geometry of the reflectors (curvature (Lisle, 1994; Roberts, 2001; Al-
Dossary and Marfurt, 2006), flexure (Gao, 2013)). Among them, the coherence
is the best known attribute for highlighting faults (Wang et al, 2018). An al-
ternative to seismic attributes is to use the information of interpreted horizons
to find fault locations (horizons dip and azimuth maps, (Rijks and Jauffred,
1991)).

Each seismic attribute has its pros and cons, and fails at enhancing faults
only; numerous artifacts remain, other structures appear. Seismic attributes
usually require massive computation, and, alone, are not suited for efficient
fault identification: a human interpreter must spend time finalizing the study
manually. Consequently, many authors propose to post-process the attribute
maps to extract fault location automatically, usually using some kind of image
processing technique. For example, Pedersen et al (2002) used Artificial Ants
tracking on one or more attribute cubes to extract fault surfaces. Gibson et
al (2005) used semblance to extract a set of high faultiness points that they
join in a multi-resolution scheme to build fault surfaces. Hale (2013) built
surface meshes by connecting a selection of high fault likelihood points. Wang
et al (2014) performed color transformations on semblance maps, followed by
a skeletonization of the highlighted fault regions. Recently the same authors
proposed the combination of the Hough Transform and tracking vector to
extract faults from binarized coherence maps (Wang and AlRegib, 2017). Those
methods generally fall into two categories: faults are well extracted but many
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artifacts remain, or the result is clean, but not all faults are detected (Wang
et al, 2018; Di and Gao, 2017).

Another approach is to combine attributes using machine learning al-
gorithms. Supervised methods extract meaningful information from a set of
inputs (the features) and observations (here, the fault location), then apply
acquired knowledge to predict new samples. Such methods allow building com-
plex relationships within large amounts of seismic data. One of the first works
in this direction is a study from Tingdahl et al (2005), where they used a
set of 12 seismic attributes as input features of an Artificial Neural Network,
generating fault probability maps that can be seen as a new attribute. More
recently, Support Vector Machine (SVM) achieved promising results when ap-
plied on a selection of seismic attributes (Di et al, 2017) or image texture
attributes (Guitton et al, 2017). These techniques imply a tedious step of at-
tribute selection and computation, an operation which can be avoided with
deep learning methods.

Compared to standard machine learning techniques, deep networks can
learn new features dynamically during training, explaining their success in
solving complex tasks (Voulodimos et al, 2018). Among them, image-oriented
methods like CNNs are especially promising as they recently achieved state-
of-the-art results in automatic fault detection (Wang et al, 2018). The use of
CNNs is recent in the seismic field, as the first work for fault detection was
by Huang et al (2017), in which the authors built many CNNs in parallel
on a set of 9 seismic attribute cubes, then fed the extracted features to a
single MLP. In other words, they did not take advantage of the ability of
CNNs to automatically extract features from the data: as seismic attributes
are derived from the seismic amplitude, a CNN should be able to compute
relevant attributes from the amplitude input automatically during training. In
this direction, Di et al (2018) proposed to classify amplitude patches on a real
cube and showed promising results. Overall, despite very encouraging results,
deep learning techniques present some drawbacks. As supervised learning
methods, they require a large amount of marked seismic data as input; the
generalizability of the proposed networks to other seismic cubes is hard to
assess, as studies generally train and classify in the same field; building a CNN
model on new data involves a long tuning step, due to the substantial amount
of hyper-parameters to adjust.

In this thesis, we propose a two-step scheme to build a good fault
classifier, addressing each of the aforementioned CNN drawbacks. First, we
build a classifier on a set of synthetic data: a huge amount of error-free labeled
data is thus easy to obtain. Second, we apply TL methods to adapt the classifier
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to real data. In this step, only a small number of marked data is needed, and
the number of parameters to tune is also greatly reduced. TL methods also
ensure the generalizability of the technique, by providing a way to adapt to
any seismic cube.
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4
Fault detection in synthetic amplitude maps using CNNs

Compared to real data, synthetic seismic data present several advantages
for deep networks training. First, they allow total control of the ground
truth and thus avoid marking errors. Second, the marking being automatic
and fast, synthetic data provide an easy scaling regarding the number of
training examples. Finally, they avoid problems with data privacy, allowing
free distribution.

We propose a methodology in four steps. First, we generate synthetic
seismic images where we control the location of the faults. Second, we extract
Fault and Non-fault patches from the generated dataset. Then, we train and
fine-tune different CNN architectures focusing on maximizing quality metrics.
Finally, we classify pixels in new synthetic images and post process the results
for fault segmentation.

4.1
Synthetic dataset generation

The open source code IPF from Hale (2014) allowed us to reproduce
the results of migrated seismic data. Beginning with a randomly generated
reflectivity model extended along the section, simple image transformations
recreate sequential rock deformations along time: shearing, folding and fault-
ing. We can then apply convolution with a Ricker wavelet and add random
noise. Each step of the process can be parameterized. We built a dataset of
500 images of 572x572 pixels, all containing one straight fault crossing the
section entirely, modifying randomly fault angle, position and throw, shearing
slope, folding amplitude and frequency, wavelet peak and amount of noise.
Resulting images present amplitude values between -1 and 1. Along with the
seismic amplitude information, we generated for each image its corresponding
binary mask, indicating in white the location of the fault. Figure 4.1 shows an
example of such a pair.
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Figure 4.1: (a) Example of a synthetic seismic image from our dataset (b)
Corresponding binary mask.

4.2
Patch extraction

Many machine learning techniques use features extracted from images
as input. Features are relevant information that we think could be efficiently
combined to achieve the desired classification. One of the advantages of the
CNN is that it does not require an explicit feature extraction step. Instead,
the neural network uses the image itself as input and attempts to extract the
best features implicitly. Applying these principles to the seismic imagery area,
good feature candidates are naturally any fault enhancing seismic attribute.
Such attributes are computed using a small neighborhood of seismic amplitude
values. Seismic amplitude is thus at the core of the fault detection problem,
and a small neighborhood of amplitude values can be used as input to a CNN,
that will hopefully find and compute the best seismic attributes dynamically,
without the need of explicitly passing them as input. This small neighborhood
is what we call here a patch.

Since faults may be located anywhere in the seismic image, all pixels are
fault candidates. Our approach seeks to classify all pixels as fault or non-fault
pixels. A patch is composed by the candidate pixel itself at the center and its
neighbor pixels. The classification of a pixel is the classification of its patch.
To separate the pixels in our two target classes, Fault and Non-fault, we use
binary mask images, which contain the marking of the faults. If a pixel in the
seismic image is masked by a white pixel in the binary image, this pixel is
considered as Fault. Similarly, black pixels in the binary masks are considered
Non-fault. Additionally, if a pixel is Non-fault but the fault passes somewhere
in its patch (partial faulting), we discard the patch: in this work, such patches
are simply not trained. Figure 4.2 shows the three types of patches in the binary
domain. Figure 4.3 shows an example of one Fault patch and one Non-fault
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patch extracted from a synthetic seismic image.

Figure 4.2: Types of binary patches. The center pixel is highlighted.

Figure 4.3: Extracting patches. (a) Seismic image crossed by a fault. The fault
location is highlighted; (b) fault patch; (c) non-fault patch.

Follows how the sets of patches are used as input to the CNNs:

− For training images, we extract all possible Fault patches and one Non-
Fault patch every 23 pixels. This generates a balanced number of patches
for the two classes, which is desirable for training.

− For validation images, we extract all possible Fault patches and one Non-
Fault patch every 10 pixels, to account for classes’ natural imbalance in
practice, and thus obtain interpretable quality metrics.

− For test images, we extract one patch every 3 pixels, regardless of the
binary mask. This small pixel step ensures the fault will be crossed, while
efficiently generating classifications suited for visualization.
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4.3
CNN training

We applied and tested different CNN architectures and parameters, along
with the input patch size and resolution.

Beginning with a common LeNet architecture (Lecun et al, 1998),
we added complexity, applying results from the VGG-Net (Simonyan and
Zisserman, 2014): deeper networks are better at differentiating classes, and
with deeper networks small convolution filters of 3x3 pixels should give good
results. However, adding too many layers to a network can have negative
effects: the training time increases dramatically, and the classification can fall
into overfitting the training data. Consequently, there is a trade-off to find.
Following this method, we tuned the number of convolution, pooling and fully-
connected layers, the number and size of learnable filters and the number of
neurons in the MLP hidden layers.

All training sessions also shared some parameters: we used a learning
rate value of 0.001, momentum value of 0.9 and input batch of 30 patches.

To choose the input patch size, we considered two aspects. First, large
patches can contain more than one fault: using too large patches we may lose
in precision. However, small patches contain less information and may lead to
poor classifiers. We consequently tried to find the right trade-off.

We also tested two different patch resolutions:

− Integer values between 0 and 255, corresponding to common grey scale
images;

− Floating point values.

We used 400 seismic images for training (381,079 patches), 50 images
for validation (148,632 patches) and kept the remaining 50 images to perform
tests.

For each configuration, we estimated the quality of the classifier on six
common criteria, considering the Fault class as the positive class: accuracy,
sensitivity, specificity, F1-score, Area Under the ROC curve (ROC AUC) and
a visual evaluation on entire sections of the test set. Sensitivity, the capacity of
the network to output true positives, should be high enough to underline the
faults. Specificity should be as close to 1 as possible as even a small number
of false positives tend to give poor visual results on the test sections.

We used Python with the Keras library (Chollet, 2015) to implement our
CNNs.
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4.4
CNN classification and post-processing

Once a good model is obtained, new images can be classified. Depending
on the image size and fault scale, one can choose to classify all pixels or just
a subset. In any case, the result will be a binary image with sets of white
pixels at the predicted fault location. Extracting the fault thus requires a
post-processing. We chose a simple sequence of morphological operations:

− Dilation adds white pixels to the boundary of detected objects. It tends
to close holes and join adjacent parts of the objects: this operation aims
at reducing the number of false negatives (pixels wrongly classified as
Non-Fault).

− Erosion removes white pixels from the boundary of detected objects. It
tends to clean the object’s boundary and erase isolated white pixels: this
operation aims at reducing the number of false positives (pixels wrongly
classified as Fault).

− Thinning extracts the skeleton of the object. It reduces the number of
Fault pixels without losing information.

Those steps clean the image and result in smaller Fault point sets. We
then apply the Hough Transform (Hough, 1962) to finally extract the faults:
the method allows detecting alignments of white pixels in our post-processed
classification images. The method is here restricted to straight lines and we
also give a restriction on fault angles, which should be sub-vertical.

4.5
Results

The network architecture which gave the highest metrics is described in
Table 4.1. Input are patches of size 45x45, with a floating point precision. The
network gave an accuracy of 0.98, a sensitivity of 0.95, a specificity of 0.99,
F1-score of 0.97 and ROC AUC of 0.99.

Figure 4.4 shows the classification and fault extraction of sections from
the test set. Classification is performed every three pixels. The fault is clearly
highlighted, but still coarse because patches of type Partial fault are present
and mainly classified as Fault. Since the training step did not include such
patches, as stated in section 4.2, those results are unsurprising. Note also that
such patches did not enter in the calculation of the quality metrics, over-
estimating all values except sensitivity since the number of false positives was
underestimated.
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Table 4.1: CNN Architecture that achieved the best results on synthetic data,
after 50 epochs. With: Conv = Convolution, Max Pool = Max-Pooling, FC
= fully connected layer. Convolution steps are followed by a ReLU activation.
The MLP part activation functions are ReLU. Last layer is a softmax classifier
with 2 output neurons.

We observed similar results on all test sections, including sections with
configurations that were not shown during training: varying fault throw
(Figure 4.4(center)), faults crossing each other (Figure 4.4(bottom)). Indeed,
as patches contain local image information, a variety of fault geometries can
be detected even when not specifically trained.

Figure 4.4: Classification and fault extraction on synthetic test sections. (a)
Input section with expected fault marked in dashed lines; (b) raw classification
of 1 over 3 pixels; (c) results of erosion, dilation and thinning on (b); (d)
extracted faults using the Hough transform on (c).
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Fault detection in real seismic data

5.1
Applying the synthetic classifier to real data

5.1.1
Synthetic and real data comparison

We use as case study a real data from the North Sea, the F3 cube (Opend-
Tect, 1987). It contains 650 in-lines, 950 cross-lines and 462 time sections. We
assessed the frequency content of the data by performing the Fourier trans-
form on seismic traces. We compared with the frequencies of our synthetic
dataset. It appears that our synthetic dataset does not match real data: while
real seismic signal ranges between 20 and 50 Hz, the synthetic dataset does
not present patches with a higher frequency than 20 Hz, as shown in Figure
5.1.

Figure 5.1: (a) Frequency range of the F3 cube; (b) frequency range of the
synthetic dataset. Unit is Hz.

As a result, patches of size 45x45 present different amplitude patterns in
the real and synthetic data. Figure 5.2 shows an example of patch extracted
in both cases.

However, a proper scaling of real patches allows minimizing this differ-
ence: indeed, selecting smaller patches in the real data and resizing them to
the proper input size of 45x45 should naturally lower their frequency content.
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Figure 5.2: (a) Real section from the F3 cube and an extracted patch of size
45x45; (b) Synthetic section from our dataset and an extracted patch of size
45x45. We observe more thin horizons in the real patch, due to the higher
frequency of seismic traces in real data.

We propose here a method to automatically select the proper patch size, based
on patch texture comparison.

5.1.2
Automatic patch size extraction

We begin by randomly selecting 500 patches in the synthetic dataset,
and extracting 500 patches of constant size in the real dataset. We clip the
histogram of the real data to remove common outlier values. We smooth the
real patches to minimize noise, and resize them to the expected size of 45x45
using a bicubic interpolation. Then, for each patch we compute six of the
Haralick textural features (Haralick et al, 1973), a set suggested by Conners
et al (1984): Inertia, Cluster Shade, Cluster Prominence, Local Homogeneity,
Energy, and Entropy. For efficiency, we calculate them in the grey-level domain:
amplitude values are normalized between 0 and 255.

Using these texture values as coordinates, we build the proximity matrix,
which contains the Euclidean distance between each patch pair. This distance
represents here the texture dissimilarity between patches inside and between
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sets, in 6-dimension.
We then use the classical Multidimensional Scaling (MDS)

method (Kruskal, 1964) to represent computed distances in 2-dimension.
Given the proximity matrix for dimension n, classical MDS allows visualizing
the coordinates of the objects in a dimension m ≤ n, by minimizing the Stress
function:

Stress =

√√√√∑i<j(dij − d̂ij)2∑
i<j d

2
ij

(5-1)

where dij are the input distances between pairs of objects and d̂ij are the
predicted distances in the output space, called disparities. Resulting is a 2D
graph in which each point corresponds to a patch and distance between points
represent their texture dissimilarity. Figure 5.3 plots the synthetic patch set
along with real patches initially of size 45x45, 20x20 and 8x8.

Figure 5.3: Relative texture dissimilarity between patches, using MDS to plot
the computed 6-dimensional Haralick texture distances in 2-dimension. Each
point corresponds to a patch. The different symbols distinguish sets of same
size patches, synthetic or real.

For each set, texture is roughly homogeneous and patches appear as clus-
ters. The distance between cluster centroids give us the relative dissimilarity
between patch sets. We found that the closest textures between synthetic and
real data are obtained for real patches of size 20x20.

5.1.3
Best architecture

In the case of real data, we do not have access to the ground truth, and
thus cannot compute quality metrics. We thus estimate the model performance
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visually, comparing the results on real sections where faults are interpreted.
We select two time sections where some faults are clearly visible, and perform
classification on all in-line sections around the faulty region. The time section
allows assessing the continuity of the classification throughout in-lines.

Classification on in-lines follows a specific process: first, we clip the
histogram under a threshold (+- 6000) to enhance visualization, and smooth
the section to reduce noise. Then, we set the amplitude values of the entire
section between -1 and 1 in order to be close to the training conditions. Next,
we extract patches of size 20x20, and resize them to the expected classification
size of 45x45 using bicubic interpolation. We finally classify every pixel in the
images.

We test different CNN architectures, including Table 4.1 CNN. The best
architecture was obtained with the CNN summarized in Table 5.1.

Table 5.1: CNN Architecture that achieved the best results on real data, after
60 epochs. With: Conv = Convolution, FC = fully connected layer. Convolution
steps are followed by a ReLU activation. The FC activation functions are
ReLU. Last layer is a softmax classifier with 2 output neurons.

Interestingly, the CNN with the highest performance in both synthetic
and real case is different: Table 5.1 CNN reveals a greater generalization
capacity than Table 4.1 CNN, despite poorest quality metrics if tested against
the synthetic validation set (accuracy: 0.94, sensitivity: 0.69, specificity: 0.99,
F1-score: 0.80, AUC : 0.96).

Figure 5.4 shows the results of this CNN on the two selected time sections,
where we provide our fault interpretation. We see that the classifier manages
to find parts of the faults, but is totally missing other parts. It also outputs
few false positives, which is good. Overall, those visual results are promising
but are not sufficient to make the method valuable in practice. In the next
section, we show how we can use transfer learning methods to improve our
classification.
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Figure 5.4: (a) (left) Time slice 924 (inlines 150 to 350, cross-lines 840 to 1050)
with simple interpretation; (a) (right) classification results. (b) (left) Time slice
1736 with simple interpretation (inlines 110 to 240, cross-lines 390 to 590); (b)
(right) classification results.

5.2
Using Transfer Learning

We propose to use our synthetic classifier as a pre-trained model for
applying TL methods on real data. The classifier is a sequence of adjusted
weights for each convolution filter and neuron connection. TL methods use
all or part of those weights as the initial state for training a new dataset on
a different classification task. While training a CNN from scratch requires a
large amount of input data, TL allows working with small datasets, and usually
performs well if the classification tasks are similar. Here, we extract a small
dataset from the real data and apply TL for the same task: fault detection.
Figure 5.5 illustrates the concept.
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Figure 5.5: Process to build a good classifier for real seismic data. Step 1.:
construction of a classifier on a huge amount of synthetic data, as presented in
section 3. Step 2.: training of a small dataset of real patches, using classifier 1
as pre-trained model and applying TL.

5.2.1
Building the real dataset

In this step, we focus on minimizing the manual effort for real dataset
patch extraction. First, we select a single, small section of the seismic cube
where some faults are clearly visible: cross-line number 900. We then format
the section to enhance fault visualization and to match the pre-trained model
training conditions: we clip the histogram between amplitude values of +- 6000,
then smooth the section to minimize the effect of noise, finally we normalize
amplitude values between -1 and 1. We manually pick some visible faults and
generate the binary mask for the section, as shown in Figure 5.6.

As we know that marking all faults is difficult, we suppose that all faults
of the section were not marked. Consequently, if we extract Non-Fault patches
directly using this mask, the dataset will contain errors: many Non-Fault
patches may indeed contain faults. To minimize this error, we thus select some
regions where we are confident that no fault exist.
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Figure 5.6: (a) Cross-section 900 with simple marking of the faults; (b)
corresponding binary mask.

Finally, we extract all Fault patches using the binary mask and a set of
Non-Fault patches using the defined non-faulted regions. The resulting dataset
is highly imbalanced: extracting 1 Non-Fault patch every 7 pixels for example
results in 3252 Non-Fault for 252 Fault patches. We thus performed data
augmentation on the Fault class: this method consists in artificially increasing
the dataset by applying some kind of operation on the existing data. One of
the only relevant operation in the case of seismic images is horizontal flipping.
Indeed, vertical flipping or rotation may lead to unrealistic configurations,
while scaling would change the patch amplitude patterns as discussed in section
5.1.1.

We finally resize all patches from 20x20 to the expected input size of
45x45. The final dataset contains 504 Fault patches, resulting of a balance of
13.4% for the Fault class, which is still very low.

5.2.2
TL strategies

TL strategies rely on the observation that the different parts of the CNN
learn different things. In particular, earlier convolutional layers learn general
features such as edges or blobs, while deeper convolutional layers learn specific
features related to the given classification task and dataset. As we ensured
similarity between tasks and datasets, we assume that the pre-trained model
specific features should be of good quality. Promising visual results of Figure
5.4 (section 5.1.3) tend to reinforce that guess.

We thus investigated two common TL strategies: fine tuning the whole
network, and using the CNN as a Feature Extractor with a tuning of the
classification layers. In the latter strategy, we test two types of classifiers: the
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Multi-Layer Perceptron (MLP) and the Support Vector Machine (SVM).

Full fine tuning (FFT)

We train the entire network with initial weights the pre-trained model
weights instead of random ones. In this context, the learning rate should be
low in order to avoid a sudden change in weights during back-propagation.
The number of epochs should also be low to avoid overfitting.

Feature extractor with MLP (FE-MLP)

We freeze the weights of the whole convolutional part of the CNN, in
order to extract fixed features that we feed in the fully connected layers. We
fix the number of hidden layers to 2 with dropout between layers, and the
learning rate to 0.01. We tune the number of neurons in each layer, and the
number of epochs.

Feature extractor with SVM (FE-SVM)

In many deep learning applications, SVM proved better than MLP at
predicting classes, given good input features (Tang, 2013). To find a good
SVM classifier, we tune the SVM kernel type (linear, polynomial and RBF)
and the value of constant C controlling the penalization of outliers and thus
the softness of the SVM margins.

5.2.3
Results

We use as benchmark the pre-trained model applied on real data without
TL, presented in section 5.1.3, Table 5.1. Table 5.2 shows the parameters and
the numerical performances of each model. Benchmark metrics were calculated
over the entire real dataset. For TL models, due to the small size and high
imbalance of the dataset, metrics were averaged over a 5-fold cross-validation,
respecting in each fold the class proportions. We considered the Fault class as
the positive class.

The benchmark model shows a high specificity, confirming our visual
conclusions that it outputs few false positives: it is good at discarding faults.
However, it has a very low sensitivity, indeed as we saw it misses a lot of faults
in practice.
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Table 5.2: Quantitative evaluation of benchmark and TL models. Pa-
rameters were tuned manually. Training times were obtained with an
Intel@ CoreTM i7− 5960X Processor Extreme Edition, with 16 threads.

TL models all manage to drastically increase sensitivity without losing
in specificity, despite the under representation of the Fault class in the dataset.
Feature extractor strategies present overall better results than the Full Fine
Tuning method. In particular, they have a better sensitivity, meaning they
should highlight most of the faults.

All TL models were trained in few minutes on CPU. Note that the 5-folds
cross-validation increased the training time by 5 compared to a single training
and validation step.

In order to better assess the models’ quality, Figure 5.7 and 5.8 show
classification over the two study time sections of the F3 cube. Once again,
we classified all inlines of the regions and painted to white the Fault patches’
central pixels on the time slice. We provide our simple fault interpretation in
order to help following the faults.

FFT model performs surprisingly well on the section of Figure 5.7,
however it completely misses some of the faults of Figure 5.8 section. Both
FE methods give similar classification, but FE-SVM seems to provide slightly
cleaner results.

DBD
PUC-Rio - Certificação Digital Nº 1413519/CA



Chapter 5. Fault detection in real seismic data 65

Figure 5.7: (a) Time slice 924 (inlines 150 to 350, cross-lines 840 to 1050) with
simple interpretation. (b) Benchmark classification. (c) FFT. (d) FE-MLP. (e)
FE-SVM.

Figure 5.8: (a) Time slice 1736 with simple interpretation (inlines 110 to 240,
cross-lines 390 to 590). (b) Benchmark classification. (c) FFT. (d) FE-MLP.
(e) FE-SVM.
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6
Conclusions for Part I

6.1
Summary

This part presented a methodology for the detection of faults in seis-
mic amplitude images, using a patch-based CNN approach for training and
classification. CNNs were first trained with synthetic data only and yielded
good results when applied to new synthetic data, with a perfect match of the
predicted and ground truth fault after applying the Hough Transform post pro-
cess. They also revealed promising when classifying pre-processed real data,
leading us to use our best CNN architecture as base model to TL processes in
order to adapt the classifier to our real data case study. With a small dataset
generated by marking only some of the faults on a single cross-section, we were
able to build a satisfying classifier trained in a few minutes on CPU.

6.2
Conclusions

The use of CNN allowed us to train with the seismic amplitude map
as the only input feature: explicit feature extraction through computation
and selection of seismic attributes was unnecessary. However, we highlighted
the large number of empirical parameters used in CNNs, which makes model
fine-tuning difficult. We were able to overcome this drawback with the use of
TL. Detecting real faults using TL from the synthetic seismic data classifier
showed powerful despite the naturally high imbalance of classes in real data.
The proposed strategies implied a tuning of a small number of parameters, the
Feature Extractor with SVM model being the easiest to adjust. Using a CNN
trained with synthetic data, this work shows that it is not necessary to have
a large amount of well-marked real data to build a good fault detector with
supervised techniques. However, results tend to mimic the interpretation and
their quality thus depends on the quality of the marking.

DBD
PUC-Rio - Certificação Digital Nº 1413519/CA



Chapter 6. Conclusions for Part I 67

6.3
Suggestions for further research

There are several research directions we can suggest to improve this work
and go further.

First, we could improve the synthetic dataset by generating data with
the commonly seen frequencies in real seismic signals. With this new data, we
could investigate multi-scale CNNs, as in Schlegl et al (2015).

Second, we could improve the synthetic classifier in different ways.
Patches of the type Partial Fault could be added as a new class during train-
ing. One idea could also be to assign a value of the distance of a patch to the
fault instead of a fixed class. Patches far from the fault would receive a higher
penalization if classified as Fault, taking as, for example, the work from Araya-
Polo et al (2017). Also, the architecture of the CNN could be improved: we
could try to visualize and better understand the generated features, for exam-
ple using the Layer-Wise Relevance Propagation (LRP) method (Bach et al,
2015). We could also use evolutionary or other optimization algorithms to find
the best architecture automatically (for example, see the work from Yamasaki
et al (2017)).

Concerning TL results, a straightforward test to improve the classifica-
tion is to increase the size of the real dataset, for example by classifying another
section. Also, we could test other balance between the two classes. Other pre-
trained models could also be studied. As shown in (Wang et al, 2018), there
are many ways to build the main classifier, using synthetic or real data and
even non-migrated data. Powerful pre-trained classification models like VGG-
Net (Simonyan and Zisserman, 2014) are readily available online, and it would
be interesting to compare the TL performances using such models, trained on a
tremendous amount of images from the ImageNet database (Deng et al, 2009),
with TL from models designed explicitly for fault detection as presented here.

Another line of research to improve the method is to work on the post-
processing step used to extract the exact fault location from the classification
results. In the synthetic case, faults are straight lines and simple morphological
operations coupled with the Hough transform were enough to obtain a perfect
match between predictions and ground truth. With real data, this process
should be adapted to faults with any geometry, for example in the fashion
proposed by Wang and AlRegib (2014).

One interesting research direction is also the exploitation of the three-
dimensional information contained in seismic cubes. A simple way to do this
would be to classify not only in-line sections but also cross-line sections: this
should help us detecting some false positives, and faults in various directions.
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More interesting, the IPF code used to generate synthetic data allows building
3D cubes: we could develop a CNN taking as input 3D patches.

Finally, during the few months of writing this thesis, many articles
and expanded abstracts have been published on seismic fault detection using
deep learning, showing the interest of the community in this approach. Two
conferences in particular present many works which directions seem very
similar to our CNN, patch-based approach: the 80th EAGE Annual Conference
and Exhibition (June 2018) and the SEG International Exposition and 88th
Annual Meeting, which will be held in October 2018. All those works can
indeed be an excellent source of inspiration for future research in our field. We
also wish to cite two interesting published articles during this period. Xiong et
al (2018) trained a CNN with seven annotated synthetic and real seismic cubes
to compute fault probability maps which showed better results than coherence
maps: the number and the diversity of their data ensure the generalization
capacity of their method, but require a considerable effort for preparing the
data. Lu et al (2018) proposed a pre-process based on a Generative Adversarial
Networks (GAN) to enhance the performances of an existing fault detection
network: this is an interesting alternative to our TL method for improving the
results of a pre-existing CNN.
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Adaptive all-quadrilateral FEM
mesh generation

DBD
PUC-Rio - Certificação Digital Nº 1413519/CA



7
Concepts

7.1
FEM meshes

The Finite Element Method (FEM) is a numerical tool used to
solve complex space and time-dependent physical problems, described by
partial differential equations (PDEs). For example, in geomechanics it is
used for the analysis, estimation, and investigation of the behavior of rocks
regarding several problems such as reservoirs compaction and subsidence,
reactivation of geological faults, hydraulic fracturing, well stability or well
casing integrity. In these cases, the PDEs cannot be solved with analytical
methods, and the FEM provides a numerical approximation by dividing the
complex domain into smaller parts and solving simple equations in each of
them. The solutions are then assembled in a larger system which describes
the whole problem. The discretization of the domain in small elements is done
through the construction of a mesh.

A mesh is a collection of connected entities described by their topology
and geometry: the topology defines the neighboring relationships between the
mesh entities, while the geometry stores their spatial position. Typically, a
two-dimensional mesh is composed of elements, edges and vertices, though the
appellation can vary with the type of data structure. Quadrilateral elements
are usually preferred because they reduce the approximation errors and the
number of needed elements compared to triangles for example (Zienkiewicz et
al, 2008). The discretization of a domain with only these elements is referred
here as all-quadrilateral mesh generation.

In order to ensure the quality of the FEM approximations, FEM meshes
have to respect a series of constraints related here to the nature of geomechan-
ical domains. Geomechanical domains depict a portion of the Earth’s crust de-
limited by artificial frontiers on the bottom and sides, and the actual ground
surface on the top. They usually extend on some kilometers. They contain
geological discontinuities represented by curves (in our 2D case): horizons sep-
arate pseudo-horizontal rock layers, and faults are sub-vertical discontinuities
which can be of various scales (from a few cm to several km). In this thesis,
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we call all curves the domain boundaries. Figure 7.1 shows an example of such
a domain.

Figure 7.1: Example of a two-dimensional geomechanical domain.

Inside a rock layer, properties such as porosity or permeability are consid-
ered constant. Consequently, any flow or pressure propagation simulation will
present the highest variability at the vicinity of faults and at the discontinuity
between rock layers: the horizons. Those facts allow understanding some of the
restrictions a FEM mesh has to respect in order to produce a good solution:

− alignment with the discontinuities: properties have to be constant at the
scale of each finite element, so it cannot cross any curve in the domain.
An element can touch a curve by a vertex or an entire edge only;

− precision: alignment with the discontinuities have to be as precise as
possible in order to minimize the approximation errors at their vicinity;

− adaptivity: the size of the elements should be small enough near the
discontinuities to catch the variations of the studied field. Far from them,
they can be larger since properties vary less. Varying the size of the
elements throughout the domain also allows for creating less elements,
thus minimizing the FEM computational effort.

Additionally, any FEM mesh should respect some topological and geo-
metrical constraints:

− conformity: neighboring elements must share entire edges and vertices;
− element’s quality: the quality of the solution depends on the elements’

quality, related to their shape. Ideally, elements must be close to perfect
squares, as local deformations lower the method’s accuracy and can even
be a blocker to calculations if any element presents a null or negative
area.
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The ideal all-quadrilateral mesh should hence be only composed of
vertices with a valence of 4, as shown in Figure 7.2. The valence of a vertex
counts the number of its neighbors, i.e the number of vertices connected to it
by an edge.

Figure 7.2: The valence of a mesh vertex describes its number of neighboring
vertices, connected to it by an edge. Valence 4 (center) is the only way to
obtain perfect squares for all involved elements.

This can only be achieved with structured meshes, where the connectivity
is constant. However, this type of mesh usually lacks of flexibility when it comes
to adapting to complex domains. In this thesis, we use unstructured meshes,
where the valence is not constant in the mesh. Defining precise quality metrics
is thus of great importance to evaluate the mesh viability. In the next section,
we detail the quality metrics used in this thesis.

7.2
Quality metrics

In order to numerically assess the deformation of the elements as respect
to perfect squares, we present three quality metrics that we use in this thesis
to evaluate meshes.

7.2.1
The distortion factor

This factor described by El-Hamalawi (2000) estimates the angle distor-
tion on the mesh element. For one element, the deviation of each angle i to 90°
is calculated:

δθi = |π2 − θi| (7-1)

A deviation vector is defined as the sum of the deviations of the four
angles of the quadrilateral. Its norm is the distortion factor for the element:

||~fq|| =

√√√√ 3∑
i=0

(δθi)2 (7-2)
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A perfect quadrilateral would have its four angles equal to 90°; therefore,
the best distortion factor corresponds to ||~fq|| = 0. The element is flat if every
angle has a deviation of 90°, i.e., when ||~fq|| reaches π; above this value it is
concave. In the following, we thus consider π as being the upper bound of the
quality factor. According to El-Hamalawi (2000), a good quality for an element
is ensured if ||~fq|| < 1.5.

7.2.2
The Jacobian

The jacobian is a criterion often encountered in FEM mesh generators. It
is also an estimation of the distortion of the elements, where we consider the
transformation between the reference space (η, ξ) where elements are perfect
squares, to the real space (x, y) where elements are distorted (Figure 7.3).

Figure 7.3: (a) Reference element in the reference space. The reference element
has fixed coordinates. (b) Real element in the real space, after transformation
T.

The transformation that maps the reference element into the real element
can be written as follows (Nikishkov, 2004):

x(η, ξ) =
n∑
i=1

Ni(η, ξ)xi (7-3)

y(η, ξ) =
n∑
i=1

Ni(η, ξ)yi (7-4)

with η and ξ the coordinates of a point in the reference element, x(η, ξ) and
y(η, ξ) the coordinates of a point in the real element, n the number of corners
in the element, xi and yi the real coordinates of the i-th corner and Ni(η, ξ)
the so-called shape functions.

If this transformation is bijective, the ordination of points in the reference
space will be the same in the real space. If the ordination is lost, this means
that the element is highly distorted, as shown in Figure 7.4.
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Figure 7.4: Taking p1 as reference point: (a) corners are ordered anti-clockwise;
(b) a slight deformation does not affect the corners ordination; (c) when the
element is highly distorted the ordination is lost as p3 comes in second in the
increasing angle θ sequence.

The local bijectivity of the transformation can be assessed through
the determinant of its Jacobian matrix: if the transformation is bijective,
the determinant should be strictly positive. The Jacobian matrix of the
transformation and its determinant can be written as follows:

J =
∂x∂ξ ∂y

∂ξ
∂x
∂η

∂y
∂η

 =
∂N1

∂ξ
. . . ∂Ni

∂ξ
. . . ∂Nn

∂ξ
∂N1
∂η

. . . ∂Ni

∂η
. . . ∂Nn

∂η





x1 y1
... ...
xi yi
... ...
xn yn


=
J11 J12

J21 J22

 (7-5)

det J = J11J22 − J12J21 (7-6)

In the case of a quadrilateral, the shape function and its derivative are
given as:

[N ]T = 1
4


(1− ξ)(1− η)
(1 + ξ)(1 + η)
(1 + ξ)(1 + η)
(1− ξ)(1 + η)

 (7-7)

[
∂N

∂ξ

]T
= 1

4


−(1− η)

1− η
1 + η
−(1 + η)

 (7-8)

[
∂N

∂η

]T
= 1

4


−(1− ξ)
−(1 + ξ)

1 + ξ
1− ξ

 (7-9)

In practice, the Jacobian factor corresponds to a single value for each
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element, calculated as the ratio between the minimum and the maximum
value of the determinant on a set of integration points in the reference space.
We use the four corners of the element as integration points. We scale the
Jacobian criterion between -1 and 1, the latter corresponding to a perfect
shaped element. The Jacobian factor reaches 0 when the area of the element is
null and is negative for concave elements. For FEM simulations, it is important
to have all mesh elements with a positive jacobian.

7.2.3
Aspect ratio

The two presented factors only consider the distortion of the elements
as respect to their angles. However, the aspect ratio of the elements is also to
consider, because an elongated element will not capture local flux variations
as well as a perfect square: the elements’ aspect ratio does not have an impact
on the calculations accuracy but rather on their precision.

We simply calculate the aspect ratio of an element as the ratio between
it shortest and longest edge. A good aspect ratio will be close to 1.

7.3
Data structures

In this section we present the different data structures used in this thesis
for quadrilateral mesh construction.

7.3.1
The quadtree

Our mesh construction algorithm is based on a tree struc-
ture: the quadtree. It is a graph defined by its root node, depth, and
parent-child relationships (Samet, 1982). The root is the initial node of
the graph (it has no parent) and is recursively divided into four nodes. Nodes
that are not subdivided are the leaves of the tree (they have no children). The
level of a node is the number of subdivisions that were necessary to create it.
The depth of the tree is the highest level. Figure 7.5 shows an example of a
quadtree of depth 3, with 10 leaves.

By associating each node with four 2D coordinates called corners, we
obtain a spatial representation of the tree. The four corners of a node implicitly
define its four edges. Corners are shared by adjacent nodes (Figure 7.6).

The subdivision step, called refinement, consists in spatially splitting the
nodes into quadrants of equal areas. The size of a node at refinement level i
can be assessed through the formula:
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Figure 7.5: Graph representation of a quadtree of depth 3. Leaves are circled.
Node 0 is the root of the tree.

Figure 7.6: Nodes 3 and 4 of Figure 7.5 quadtree. Node corners ci are ordered
anticlockwise. Neighboring nodes share corners.

edge length level i = edge length root

2i (7-10)

Figure 7.7 shows the quadtree from Figure 7.5 in the spatial representa-
tion.

Figure 7.7: Quadtree of Figure 7.5 in the spatial representation. In this
representation, only leaves are visible.

In practice, each non-leaf node stores a pointer to each of its children.
The children are ordered using their relative position within the parent node,
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defined by the frontiers they have in common with the parent, using the
four cardinal directions (Figure 7.8). The pointer list is always ordered as
follows: {SW, SE, NW, NE}. The distinctive advantage of this structure is that
the neighboring information between nodes is quickly recovered. As explained
by Samet (1982), to find a horizontal or vertical neighbor to a node, a common
ancestor is found by going up in the tree, then following a backtracking path
mirroring the axis formed by the common boundary of the two nodes.

Figure 7.8: Parent-children relationship in a quadtree. (a) Orientation of
parent frontiers; (b) Position of children correspond to the parent frontier they
are in contact with.

The spatial quadtree can be seen as a quadrilateral mesh, however
adjacent nodes of different refinement level present hanging corners and this
is hence not a conform structure. Schneiders et al (1996) proposed a set of
transition patterns shown in Figure 7.9 to conform the tree.

Figure 7.9: (a) Transition patterns from (Schneiders et al, 1996); (b) usual
refinement pattern is also involved in the tree conformation; (c) unconform
tree; (d) conform tree.

The conventional quadtree structure does not have the flexibility to in-
clude those patterns, since the children position and implicit neighborhood
relationships are not preserved. However, in this thesis we develop a modifica-
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tion of the quadtree structure which allows including the conforming patterns.
We then map the generated tree to another structure, the half-edge mesh.

7.3.2
The half-edge mesh

Another important data structure for our study is the half-edge
mesh (Mäntylä, 1987). It is composed of a list of faces, half-edges and vertices.
Figure 7.10 shows how these entities are related. A half-edge, HE, is an ori-
ented edge specific to a face. Two neighboring faces share an edge composed
of two HE that are opposite to each other. A face points at one of its HE. A
HE points at its opposite HE, its previous and next HE, its face and its initial
vertex. Each vertex points at one of the HE it is initial to.

Figure 7.10: The half-edge data structure. “HE” for half-edge. The thick black
arrow is the face’s reference half-edge. Dotted arrows are pointers.

This structure allows traveling into the mesh very efficiently, knowing at
any moment the local neighboring information.

7.3.3
Half-edge versus quadtree

First, for clarity, we sum up the relationships between the entities of each
structure in Table 7.1.

Both structures are suited for different operations. The refinement pro-
cess is easier in the quadtree structure, since creating new nodes is straight-
forward. It only implies the creation of corners and the assignment of children
position. In the half-edge structure, adding a face would imply a series of op-
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Table 7.1: Entities of the quadtree structure and their corresponding entities
in the half-edge structure.

erations to maintain the consistency of the mesh: inserting new vertices, new
half-edges, and updating the pointers of all neighboring entities.

The parent-children information of the quadtree structure makes it easy
to find hanging corners and thus unconformities. In the half-edge structure,
this information is lost.

Running through the entities of a structure is more efficient in the
half-edge mesh, since it stores lists of each entity. For example, computing
quality metrics for each face is straightforward. In the quadtree structure, this
operation would first imply to recover all the leaves of the tree.

Finally, neighboring information is relatively fast to compute in quadtree
only for nodes (through the relative position of children), while it is very
efficient in half-edge for all entities (through the use of local pointers). For
example, let us consider the operation of finding the star of a corner (resp. the
star of a vertex), which is the set of corners linked to it by an edge. In the
quadtree structure, this would imply to first find all leaves which contain the
corner, then pick the next corner in the local corner list. However, this would
only work for a conforming tree. In the half-edge structure, for any topology we
can find the star by simply "walking around" the vertex, knowing its reference
HE and following the pointers to local HE neighbors.

In this thesis, we use a tree structure for the mesh construction process.
Once the topology is fixed, we use the half-edge structure to compute metrics
and perform mesh smoothing.

7.4
Mesh smoothing

A common step in mesh generation is to optimize the mesh quality by
relocating vertices in order to lower the elements distortion. In this thesis we
perform an isoparametric Laplacian smoothing (Herrmann, 1976), where we
try to move each internal vertex at the average of its star coordinates, applying
the following formula:

DBD
PUC-Rio - Certificação Digital Nº 1413519/CA



Chapter 7. Concepts 80

v′i = 1
N

N∑
j=1

vj (7-11)

where v′i is the new location of vertex vi, N is the number of vertices in the
star and vj the coordinates of the j-th neighbor. This process is performed
on each vertex of the mesh iteratively. This method is straightforward and
efficient, the computation time varying linearly with the number of vertices in
the mesh. However it can generate bad and even inverted quadrilaterals after
a few iterations, and tends to make the elements size uniform. In our case it
should hence be used with few iterations.
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Related works

There are two categories of techniques to generate unstructured all-
quadrilateral meshes: indirect and direct methods.

Indirect methods first create a triangle mesh and then convert it into
a quadrilateral mesh. The triangle mesh is usually generated using the con-
strained Delaunay triangulation (Chew, 1987). Methods then differ in the step
of converting the triangles into quadrilaterals. A common strategy is to subdi-
vide the triangles as introduced by Catmull and Clark (1978): one triangle is
divided into three quadrilaterals by adding a vertex at the centroid of the tri-
angle and at the middle of each edge. Generated quadrilaterals tend to have a
poor aspect ratio, and Liu et al (2011) improved the resulting mesh by propos-
ing a post-processing method based on local topological operations. Another
strategy to convert triangles into quadrilaterals is to combine them. Borouchaki
and Frey (1998) joined pairs of triangles and divided the remaining ones us-
ing the Catmull subdivision. The Q-morph method (Owen et al, 1999) guides
the combination of triangles using an advancing front strategy. Lee et al
(2003) extended the Q-morph method to include open boundaries. Ebeida et al
(2010b) introduced the Q-tran method, which joins a combination of triangles
with a new subdivision scheme to generate good-quality quadrilaterals. Re-
cently, Araújo and Celes (2014) proposed an algorithm to obtain good-quality
mesh for complex crossing boundaries using a deferred constraint insertion
strategy coupled with a new triangle mesh generation scheme. In general, in-
direct methods generate good-quality elements, but meshes suffer from a large
number of vertices with a valence different from 4.

Direct methods generate quadrilaterals directly. We can group the direct
methods into three categories: advancing front, domain decomposition, and
grid-based methods.

Advancing front algorithms generate a first set of elements on the
boundaries of the domain and then recursively project the elements toward
the interior, moving the elements front until the domain is totally covered. As
an example, the paving method by Blacker et al (1991) successfully generates
meshes with good quality. However, advancing front methods tend to lack
stability for complicated regions, especially at the meeting of the fronts, and
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usually require post cleanup operations.
Domain decomposition techniques subdivide the domain into a set of

simple regions where conventional mapping methods can be applied to generate
quadrilaterals. Talbert and Parkinson (1990) proposed a recursive algorithm
that subdivides the complex domain until only basic shaped regions remain; the
algorithm was then improved by Chae and Jeong (1997) and Nowottny (1997).
Medial axis decomposition was introduced by Tam and Armstrong (1991)
and uses the center of a maximal circle rolled through the area to subdivide
the domain. Miranda and Martha (2013) proposed a template strategy for
domain decomposition. These methods generate good-quality meshes but
usually require heavy user intervention for complex domains.

Grid-based methods superimpose a grid to the domain and try to adapt
it to the boundaries by modifying the grid geometry. It can be any type of
grid, but quadtrees are often used because they allow a control on the local
refinement, with a smooth size transition. To increase the refinement level
around domain boundaries, Frey and Marechal (1998) proposed a simple size
criterion. Ebeida et al (2010a) used a criterion based on the boundary curva-
ture, assessed through an initial boundary discretization. The main challenge
in such methods remains to adapt the grid points to the domain boundaries.
For example, Yerry and Shephard (1983) intersected quadtree leaves with the
boundaries, allowing the formation of non-quadrilateral elements. This is not
a limitation to them since they aim at building a triangle mesh: they simply
triangulate the elements at the end of the process. Rushdi et al (2015) recently
presented a similar idea to create all-quadrilateral meshes: they first repel some
quadtree grid points based on their distance to the boundary to guarantee a
clean intersection; then they apply local midpoint subdivisions to turn ele-
ments into quadrilaterals. Another method is to remove all elements crossing
the boundary and then reconstruct the missing layer with a post process. This
can be done simply with a projection technique (Schneiders and Bünten, 1995)
or using some reconstruction patterns (Liang et al, 2009). However, as stressed
by Liang et al (2009), these techniques present some difficulties when the buffer
layers face each other and must conform. In any case quadtrees have to undergo
a conforming step before being usable as meshes (Schneiders et al, 1996). These
methods are easy to implement and generate meshes of good quality. They also
usually allow to bound maximum and minimum angles (Rushdi et al, 2015;
Atalay et al, 2008). However, they can easily generate inverted elements and
tend to gather lower quality elements on the boundaries.

All those methods tend to be dependent of the domain geometrical
complexity. In the present work we aim at developing a method that would
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be robust for all kinds of boundaries. Moreover, the method should be
usable in the industry and consequently have to be efficient and user-friendly.
The quality of the resulting mesh should be adapted to FEM calculations
requirements. We opted for a grid-based method using a new quadtree-based
hierarchical data structure: the extended quadtree.
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The extended quadtree

Our 2D quadrilateral mesh generation method is based on the creation of
a new tree structure, called the extended quadtree: it includes new refinement
patterns in the conventional quadtree structure to allow more flexibility for
the domain boundary approximations.

In the extended quadtree, we allow splitting a node into six children. Two
patterns are defined, and we call them S1 and S2 (“S” for “six”) (see Figure
9.1). The parent edges are still divided at their midpoints, so patterns S1 and
S2 can easily neighbor the usual four-child pattern.

Figure 9.1: The different split patterns of the extended quadtree and the
relative position of the children in the parent node. (a) Parent node with the
definition of its frontiers; (b) usual four-child split pattern; (c) new six-child
split patterns S1 and S2.

In our extended quadtree, each node stores eight pointers to its children,
ordered as follows: {SW, SE, NW, NE, S, E, N, W}. Looking at Figure 9.1,
we can see that neither the usual split pattern nor the new S1 and S2 pat-
terns present all eight nodes. Any subdivided node will consequently present
some null pointers. Nevertheless, the eight fixed positions keep the neighbor-
ing information organized. Inside the usual pattern, neighbor information is
implicit: child NE has a west neighbor, NW, and vice versa. In the new S1
and S2 patterns, this duality is lost and thus we define neighbor information
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explicitly: in S1, child E has a west neighbor, S. However, S’s east neighbor
is SE in our definition. In other words, each child has its own local compass
(Figure 9.2). Each node is given an attribute called the Split_Pattern_Type
{USUAL, S1, S2} to help navigate through its children.

Figure 9.2: Definition of the split patterns’ internal nodes with their neighbor-
ing relationships, and their corresponding pointer list. (a) Usual pattern; (b)
pattern S1; (c) pattern S2.

The extended quadtree structure allows including new patterns very
easily in the subdivision scheme. As for an example, we can define the transition
patterns from Schneiders et al (1996) as extended quadtree nodes (Figure 9.3).

Figure 9.3: Definition of the extended quadtree transition patterns. From left
to right, patterns T1, T2, T3, and T4 (“T” for “transition”).
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Adaptive mesh generation using the extended quadtree

We propose to exploit the flexibility of the extended quadtree to auto-
matically build a quadrilateral mesh adapted to any geometrical constraint.
The tree adapts to the boundaries dynamically during the refinement process.
This section presents the whole procedure.

10.1
Overview

The input of the method is a set of polyline curves. Each curve corre-
sponds to an ordered sequence of 2D points:

curvei = {(x1, y1), (x2, y2), . . . , (xm, ym)},m ≥ 2

If the curve is not closed, endpoints are considered as hard constraints:
they must correspond to a corner in the final tree. We allow curves to cross each
other, but we consider each part as a different curve and the intersection point
as an endpoint shared by the intersecting curves. The polygonal geometry of
each curve, defined by its sequence of 2D points, must correspond to a sequence
of edges in the final tree, and this approximation has to meet a predefined error
tolerance. The simple example in Figure 10.1 illustrates the approximation
process sequence:

− We define the tree root as a square around the curves (Figure 10.1(a));
− We build a quadtree aligned to the curves, accommodating the tree

geometry during its construction by moving the corners (Figure 10.1(b));
− We apply new split patterns S1 and S2 to ensure that the curves are

approximated by edges only (Figure Figure 10.1(c));
− We make the tree conform (Figure 10.1(d)).

The extended quadtree refinement scheme depends on a tolerance re-
garding the accuracy of the final approximation. In Figure 10.1, this tolerance
is high but already shows that the algorithm tends to refine more around high
curvature areas. The final tree is then mapped into a half-edge mesh structure,
then Laplacian smoothing is applied.
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Figure 10.1: Workflow of the construction of the extended quadtree adapted
to the given curve. (a) A curve and its bounding box; (b) construction of a
quadtree with corners or edges on the curve; (c) addition of new refinement
patterns to accommodate the whole curve geometry with node edges only; (d)
balanced and conformed tree.

10.2
Tree geometry deformation

In this section we begin with defining the different destinations a corner
can have onto a curve. Then we explain how we choose between those different
possibilities and guarantee a smooth geometry deformation by introducing
a local control parameter called the attraction zone. Finally, we explain the
practical use of this parameter by presenting the global tree construction
algorithm.

10.2.1
Destination points

Let us consider a single curve crossing a single node. For any corner of
the node, there are three possible destinations on the curve:

− the intersection between the curve and one of the node edges (Figure
10.2, A);

− the projection of the corner on the curve (Figure 10.2, B);

− one of the curve’s endpoints (Figure 10.2, C);

To choose which destination the corner should move to, we define a local
controlling attraction zone.
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Figure 10.2: All considered destination points for a given corner onto a curve
crossing a node.

10.2.2
The attraction zone

In order to ensure a smooth deformation of the tree geometry at each
refinement step, we define a local parameter based on each node dimensions
to control the movement of its corners. Indeed, the deformation of a node is
transmitted to all of its children, and, thus, we must not allow big deformations
at low refinement levels.

For each node corner, we define an area called the attraction zone: if the
corner’s destination point is inside the attraction zone, then the corner can
move to its new position. This area corresponds to a proportion of the total
node area around the corner: it is a quadrilateral which dimensions are given
by a proportion of the two edges adjacent to the corner (Figure 10.3). This
proportion is given by the ratio parameter:

ratio = ratiomax −
reflevel(ratiomax − ratiomin)

refmax
(10-1)

where ratiomax is the maximum value of ratio, defined by the user and superior
to ratiomin; ratiomin is the minimum value of ratio and is fixed to 2, which cuts
the edge at its mid length; reflevel is the node’s current refinement level; and
refmax is the user-defined refinement level from which ratio reaches ratiomin.

ratiomax defines the smallest proportion of the attraction zone, which
will be considered at the lowest refinement level. The attraction zone then
increases smoothly at each refinement step, reaching its maximum proportion
for the refinement level refmax. At this stage, the total area of the node is
covered by its four corners’ attraction zones. This means that, for any curve
crossing the node, at least one corner should be able to move onto it. It is
important to use the real length of the edges in the definition of the attraction
zone to account for node deformation and avoid building an area that exceeds
the limits of the node. Above the user-defined value of parameter refmax, ratio
is maintained to ratiomin.
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Figure 10.3: Definition of the attraction zone. The parameter ratio is defined
in Equation 10-1.

When several destination points enter the attraction zone we use an order
of priority to select the final destination:

1) curve endpoints. In practice we first treat all endpoints and construct a
first tree. We then consider the curves’ intermediate geometry;

2) corner’s projection on the curve;

3) curve intersection with the node edges adjacent to the corner. In addition
this destination is considered only when ratio = ratiomin = 2.

For each case, if several candidates enter the attraction zone we chose
the closest one. Once a corner has been associated to a curve, its position is
fixed and the corner is not allowed to move anymore.

The attraction zone is defined locally for each corner, in each node. Next
section explains how we use it globally to control the tree refinement.

10.2.3
Tree construction algorithm

Using the definitions of the destination points and of the attraction zone
we construct the tree in two main steps:

− Step 1: build a tree adapted to curve endpoints

The first step is to build a tree adapted to curve endpoints only. This
includes curves’ intersection points since we cut the curve in several sub-curves
in this case. This first step ensures that all hard constraint points will be
included as node corners in the tree. The pseudo-code for this step is presented
in Figure 10.4.

DBD
PUC-Rio - Certificação Digital Nº 1413519/CA



Chapter 10. Adaptive mesh generation using the extended quadtree 90

Node list ← add tree Root
For each node in the list {

If no endpoint inside the node: continue;
Else {

MoveCorners();
}

}

Figure 10.4: Pseudo code for tree construction, step 1.

− Step 2: adapt the tree to the intermediate geometry

We adapt this first tree to the curve intermediate geometry, snapping
corners and refining the tree when necessary. The procedure, described in
Figure 10.5, starts with the root of the tree, then processes all children
in a top-down scheme (low to high refinement levels) using a list with a
pop_front/push_back strategy. If exactly 1 curve enters a leaf node, we try
to move the corners to the curve. If several curves enter a node, we refine it.
This ensures that two close curves will be properly separated. This also forces
this step to be performed several times over sets of non-intersecting curves,
otherwise the node containing the intersecting point would be endlessly refined.

For each curve set {
Node list ← add tree Root
For each node in the list {

If the node has children: add children in node list and continue;
If no curve intersects the node: continue;
If more than 1 curve intersect the node: refine, add children in node list and

continue;
If 1 curve intersects the node {

MoveCorners();
}

}
}

Figure 10.5: Pseudo code for tree construction, step 2.

Both steps use the MoveCorners function, presented in Figure 10.6. In
this function, all four corners are candidates for moving onto the curve. We
consider a heuristic method in which the best candidate:

− is free to move (no curve was already attributed to it);

− has its destination point inside its attraction zone;

− is the closest to the curve.

Corners move until no candidate remain for the node. At this point, there
are two possibilities:
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− no destination point remains in the node. In this case, the process is
stopped for this node;

− at least one destination point remains in the node. In this case, the node
is refined and its four children are added to the list.

Figure 10.7 illustrates the process for two different configurations.

(a) Find best candidate corner
(b) Move corner to its destination
(c) If any candidate remains: got to (a);
(d) If no candidate remains {

If any intersection with curve(s) remains: refine, add children in node list and
return;

If no intersection with curve(s) remains: return;
}

Figure 10.6: Pseudo-code for function MoveCorners.

Figure 10.7: (a) local process for ratio = ratiomin = 2; (b) same situation for
ratio=3.

In addition, an important aspect is that a corner can move only if all
nodes sharing it have the same refinement level. This is to avoid creating
non-quad elements, as illustrated in Figure 10.8(b). Before moving a corner,
neighboring nodes are hence refined if necessary. If the current node has to
be refined during this process, we add its children to the node list and stop
processing it: the corner does not move until the moving parameter is verified
in the concerned child. Figure 10.8(c) shows this process.

The refinement process stops when no corner can move in the tree, that
is to say when the curves are entirely approximated by node edges or node
diagonals. This implies that parameters ratiomax and refmax defining the local
attraction zones are not strong constraints to the refinement process. A node
can indeed be refined above refmax if for example it still contains several curves
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Figure 10.8: Local refinement process around a corner chosen to move on a
curve. (a) Initial configuration: (blue) the current node; (red) the corner to
move; (b) creation of non-quad elements; (c) our method: in the end, the
initial candidate corner for moving did not move.

at this level. The process can also stop before reaching refmax if the curves
were entirely approximated in lower levels. Parameters ratiomax and refmax

rather control the convergence of the procedure: the higher they are, the more
refinement levels will be needed to reach large attraction zones, where corners
are easily snapped to the curves. Thanks to this definition of the attraction
zone and the dynamic snapping of the corners onto the curves, we do not need
to pre-define a precise refinement level criterion.

In the end, there are two main configurations for a curve crossing a node:

− the curve corresponds to an edge (two adjacent corners are attributed to
it);

− the curve cuts the node through its diagonal.

The second configuration is a problem because it will create two adjacent
triangles in the final mesh. We use patterns S1 and S2 of our extended quadtree
to resolve this configuration.

10.3
Application of patterns S1 and S2

Patterns S1 and S2 allow aligning children with the diagonal of the parent
node and applying them at the end of the tree deformation process results
in a tree where all geometrical constraints are approximated by node edges.
We do not apply them during the tree deformation because it appears that
deformation of those patterns leads to badly shaped elements.
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However, there is a specific configuration where we have to apply S1
and S2 during the tree deformation process. Indeed, a refinement problem
can appear at the intersection between curves: the algorithm can easily get
involved in an endless refinement process illustrated in Figure 10.9, preventing
the algorithm from reaching an end.

Figure 10.9: The curve–curve intersection degenerate configuration. In this
configuration (left), no corner can move to the blue curve even for the
parameter ratio set to ratiomin: the projection of the free corner to the curve
will always fall outside its attraction zone. The node is consequently cut with
the usual four-child pattern, and the left configuration is repeated endlessly in
the SW child (blue node on the right).

This problem can be handled with refinement patterns S1 and S2, as
explained in Figure 10.10. To simplify we show it in a non-deformed element.
In this case, we apply pattern S1 or S2 as soon as we detect the degenerate
configuration, to allow further refinement inside them as shown in Figure
10.10(b).
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Figure 10.10: Curve-curve intersection configuration and its resolution. (a)
The initial configuration presented in a perfect square to simplify. Pattern S1
is applied because no corner could be attracted to the blue curve. (b) The
process continues in children where normal subdivision pattern or S1 or S2
patterns can be applied again. (c) If the angle between the curves was a little
wider initially, there is no need to refine the children because corners can be
directly attracted to the blue curve. (b), (c) The element presenting the blue
curve in diagonal can be applied a pattern S1, we did not show it here for
clarity of the figure.

10.4
Curve approximation accuracy

To ensure a good adaptation of the final tree edges with the curves, we
can calculate a simple error as the maximum distance between the edge and
the curve, as shown in Figure 10.11. If the error is higher than a user defined
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tolerance, the node has to be refined. This presents the great advantage to
automatically refine more around high curvature areas. This error is calculated
each time an edge or a node diagonal is associated with one curve, all along
the process.

Figure 10.11: Process to handle curvature. (a) Initial approximation and
definition of distance d; (b) refinement with the usual pattern; (c) final
approximation.

In addition, we use this parameter to detect fake intersections: artifacts
that can appear at lower resolutions. In computational geometry, two points
are generally considered equal if their coordinates differ from less than 1.e−7m.
However, in our approximation process, we sometimes do not want to differ-
entiate points so precisely. Let us consider for example the configuration of
Figure 10.12. If the user defined the tolerance parameter at 10m, the detected
intersection must be considered as an artifact, the curve being approximated
by the edge c4-c2: the intersection point is considered as being c4. However if
the tolerance was set to 0.5m, the intersection point and c4 are considered as
different and the process results in refining the node or maybe attracting c3
to the curve.

Consequently each time we detect an intersection between a curve and
a node edge, we apply the following rule:

If the intersection point is close to an attracted corner and the error
between the curve and the concerned edge is lower than the tolerance, then
reject the intersection.

An intersection point is "close to an attracted corner" if they share the
same edge and the distance between the corner and the intersection is inferior
to edgelength/2.
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Figure 10.12: True intersection or artifact? Red points are the node’s corners
already attracted to the curve. The blue point is the remaining intersection
curve-node. The dot line corresponds to the possible final approximation.

With the tolerance parameter, we guarantee that the curve will be
approximated precisely. However, we do not yet have guarantees on the quality
of the nodes. Next section tries to address this issue.

10.5
Node quality improvement

At this point of the process, the extended quadtree is capable of aligning
itself automatically with all the curves, accommodating curves crossing a node
diagonal and resolving curve–curve intersection problems using patterns S1
and S2, thus fully representing the curves’ polygonal geometry with tree edges,
with a satisfying tolerance.

However, one bad configuration appears when three consecutive corners
are attracted to the same curve. This can easily happen when ratio reaches
ratiomin. Indeed, the angle formed by those three corners can be very wide.
This is a problem because once the corners are fixed, they will never have
the possibility to move again; thus, this wide angle can never be improved
by further smoothing operations. Consequently, we apply a post-processing
technique to overcome this issue: at the end of the tree construction, when
such a configuration is detected, the central corner can be freed and the curve
is now approximated by the diagonal of the node. Pattern S1 or S2 can then
be applied to fit the curve.

To ensure that the local approximation tolerance is respected, we apply
the process of freeing the central corner only when the distance from the central
corner to the concerned diagonal is lower than the set tolerance, and while it
is not, the node is refined with the usual pattern (Figure 10.13).
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Figure 10.13: Keeping track of the approximation error. (a) Initial config-
uration where the three black corners are associated to a same curve, and
pseudo-code; (b) the refinement with pattern S2 generates a bad approxima-
tion of the curve; (c) our process: the approximation of the curve meets the
initial tolerance.

10.6
From the extended quadtree to the conform mesh

In the quadtree structure, hanging corners appear on edges shared by
nodes of different refinement levels. In order to obtain a conform mesh we
must get rid of those corners. To do this, we first balance the tree, meaning
that we refine nodes locally until two adjacent nodes can only have 1 level of
difference, so only one hanging corner will remain on their frontier. Then we
apply common transition patterns described earlier (see Figure 9.3, chapter
9). We use an efficient algorithm proposed by Ebeida et al (2011), adapted
from Schneiders et al (1996). The method first marks the corners of the
transition patterns with a flag: active or inactive (Figure 10.14(a)). Then, three
consecutive levels {n, n − 1, n − 2} with n ∈ [2,∞] are processed, beginning
with the highest levels and then recursively treating lower ones. This is valid
since unconformity can only appear from level 2.

Level n − 1 first marks the corners lying on level n − 2 edges as edge
corners. In the extended quadtree, we have to additionally mark the central
corner of patterns S1 and S2 as edge corners (Figure 10.14(b)). Then, if an
edge corner at level n − 1 is part of a non-conforming edge at level n, the
corner receives the active flag. Else, it is set inactive (Figure 10.14(c)). Finally,
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transition patterns are inserted by matching their active corners with the tree
active corners (Figure 10.14(d)).

Figure 10.14: (a) Transition patterns with fixed active corners in black.
(b) Tree configuration with edge corners in grey; (c) edge corners on non-
conforming edges are set active (black points); (d) conform extended quadtree.

The final step of our method is to smooth the mesh in order to optimize
the elements quality.

10.7
Mesh smoothing

Our method implies local deformations of the tree that can result in
the creation of highly distorted elements. The distortion of an element lowers
the FEM calculations accuracy and can invalidate the mesh, even if a few
elements are concerned. Thus, we map the tree to the half-edge mesh structure
in order to efficiently apply Laplacian smoothing on all the mesh vertices. The
mapping is straightforward, since the tree topology and geometry correspond
exactly to the mesh topology and geometry. To compute the opposite half-edge
information we applied the algorithm from Lage et al (2017). In the Laplacian
smoothing, we apply some restrictions specific to our problem:

− hard constraint points and root corners are fixed: they are not affected
by the Laplacian smoothing;

− vertices on curves and on the root’s edges can only move along their
curve or edge.

Next section quickly summarizes the whole meshing process, before we
present some applications.
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10.8
The final algorithm

Figure 10.15 shows the algorithm for the proposed automatic all-
quadrilateral mesh generation method.

1. Approximate hard constraint points only
Input:

- all hard constraint points
- refmax, ratiomax: specific for endpoints

Output: a first extended quadtree
2. Separate curves in groups of non-intersecting curves
3. For each group {

Add curve intermediate geometry
Input:

- current group point sequence
- refmax, ratiomax: specific for intermediate geometry

Output: updated extended quadtree
4. Apply local node quality improvement
5. Apply patterns S1 and S2 on all nodes where a curve corresponds to a

diagonal
6. Conform the tree
7. Map the extended quadtree into a half-edge mesh structure
8. Apply global Laplacian smoothing (10 iterations)

Figure 10.15: Algorithm for the proposed all-quadrilateral mesh generation
method.

Steps 1 to 5 correspond to the construction of the tree. In step 2, we
manually separate the curves into groups following this rule: curves in the same
group do not intersect each other; curves from different groups can intersect
each other. In step 3, we construct the extended quadtree by iteratively
updating it, adding new constraints to the grid. We apply patterns S1 and
S2 at the end of the tree construction for nodes where the curve corresponds
to a diagonal (step 5). In steps 6 we conform the extended quadtree, before
mapping it into a half-edge mesh structure in step 7. Finally step 8 applies a
Laplacian smoothing to improve global element quality.

Next chapter presents and discusses our results.
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Results

We present the application of our method on a set of geometries. First,
we study the quality of meshes created on three hand-made models, each
presenting a different type of geometrical complexity: varying curvature, curve
intersections and multi-scale resolution. Second, we examine the robustness of
the method on more complex models, involving many curves with intersections
at sharp angles and thin regions. Then, we present the performances of the
algorithm in terms of computation time. Finally, we discuss some aspects of
the method before showing an example of its application in a geomechanical
software currently in development.

11.1
Mesh quality on three hand-made models

We created three test cases to study the behavior of the method on
different geometries. The smooth star (Figure 11.1) allows observing the
refinement around varying curvature areas. It corresponds to one single closed
curve (no endpoints). The Olympic rings (Figure 11.2) shows the behavior of
the algorithm on curve intersections. Each ring was cut into different curves
at the intersection points, and they were manually separated into four groups
where curves do not intersect each other. The Brazil map (Figure 11.3) presents
details at a small scale. To ensure the insertion of hinge points, we cut the
contour into several curves: if three consecutive points form an angle inferior
to 90° or superior to 270°, the central point is set as a new curve endpoint.
Table 11.1 shows the mesh quality in the three cases.

We see that the quality of the elements is good as regards our quality
criteria. For each model, a very small proportion of the elements are above the
limit of ||~fq|| = 1.5. In addition, the quality is consistent at the different scales
and remains good in the case of narrow regions as can be seen particularly in
Figure 11.3, detail A. Lower quality elements are mainly due to the conforming
transition patterns. Moreover, when neighboring, those patterns can create
vertices with a high valence: we can see vertices with a valence 8 in Figure
11.1 for example. They also present an aspect ratio close to 0.5, explaining the
mean aspect ratio of 0.6 for all meshes. Patterns S1 and S2 introduce elements
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Table 11.1: Quality results for the given mesh examples. The edge length of
the biggest and smallest elements in the mesh is an approximation deduced
from the tree depth and the domain size, considering the elements as perfect
squares, to give an idea of the scale variation within models.

of good quality along the curves (||~fq|| < 1), but when neighboring, they can
create vertices with a valence of 6.

Figure 11.1: Smooth star. (a) Global view and details; (b) histogram of ||~fq||.
There is only one closed curve and no endpoints. Parameters: refmax = 7;
ratiomax = 10; tolerance = 5m.
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Figure 11.2: Olympics rings. (a) Global view and details; (b) histogram of ||~fq||.
There are 15 curves divided into four groups where curves do not intersect each
other. The parameters for the endpoints are the same as the parameters for
the intermediate geometry: refmax = 8; ratiomax = 10 ; tolerance = 5m.
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Figure 11.3: Brazil map. (a) Global view and details; (b) histogram of ||~fq||.
There are 75 curves divided into two groups where curves do not intersect each
other. The parameters for the endpoints are the same as the parameters for
the intermediate geometry: refmax = 10; ratiomax = 20 ; tolerance = 5m.
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11.2
Complex geometries

To better assess the robustness of the process as regards to the curve
geometry, we first generated a multiple curve intersection model. In Figure
11.4, we insert one after the other curves that intersect at a same point, with
a random angle. By adding the curves one by one we guarantee that we can
treat the intersection locally as only a two curve intersection: at the intersection
point, we can look at the configuration as being the intersection of the new
curve with any previous one. Patterns S1 and S2 help resolving degenerated
cases as explained in Section 10.3, Figure 10.10. The algorithm finds a solution
even in the case of very sharp angles.

Figure 11.4: Multiple curve intersections. From top left to bottom right we
added one curve after the other in the approximation process. Results show
the final mesh.

We also applied our method on two structural models built from real
interpretations of horizons and faults. Figure 11.5 shows the curves of each
model. Following the classification from Pellerin et al (2015), we can describe
the complexity of each model as follows:

− Model 1 presents thin layers: in its center, layers have a spacing of less
than 5m, for a lateral extension of several km.

− Model 2 presents a complex network of small displacement faults and
Y faults.
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According to Pellerin et al (2015) the complexity of a structural domain
also increases with the number of features, here the number of curves. Model
1 presents 56 curves and model 2 is made of 252 curves. This makes those
models very challenging for any meshing method.

Figure 11.5: Models built from real interpretation of horizons and faults.

The number of curves in each model makes it difficult to tune the
parameters for each curve, and also implies a substantial effort to separate the
curves in groups of non-intersecting objects. Here, we simply gave the same
parameterization for all curves and hard constraint points, and added each
curve one by one in the tree. Figure 11.6 and 11.7 show the mesh generated for
each model, along with some details. For a better visualization, we removed
elements outside the model frontiers. We present the quality in Table 11.2.

The mean quality of both meshes is close to the one of simpler models
of Table 11.1. However, the worst elements are more distorted, probably due
to the sharp angles imposed by the complex geometries. Nevertheless, the
jacobian remains positive for all elements. The thin layers configuration of
Model 1 highlights one of the possible limitations of the method. Indeed, the
algorithm refines the tree until properly separating the curves, maintaining a
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Table 11.2: Quality results for models 1 and 2.

Figure 11.6: Mesh generated on Model 1.

good aspect ratio while refining: this can lead to the creation of a huge number
of elements in thin regions. As thin layers extend in the whole model, the total
number of elements is large in Model 1. As a consequence, the FEM simulation
time can be too long to consider this mesh in practice. One of the drawbacks
of the method is thus the lack of local control: in this situation, it could be
advantageous to lose in elements’ quality in the thin layers, while gaining in
computation time when performing simulations.

Both meshes were created in a few seconds. In the next section, we study
the relation between the number of elements and the mesh construction time.
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Figure 11.7: Mesh generated on Model 2.

11.3
Method’s performances

We tested the method’s performances on a test case made of test case
made of 140 curves, all non-crossing arc circles with a random spacing (Figure
11.8(a)). We built different meshes on this model, modifying parameters
refmax, ratiomax, and the tolerance. In this way, we generated 6 meshes with
an increasing number of elements.

We first measured the computation time of the approximation process,
i.e., steps 1 to 5 in our workflow (Figure 10.15, section 10.8), corresponding
to our contribution: the construction of the extended quadtree. We list the
parameters used to generate the different trees in Table 11.3. We plot the
performances in Figure 11.8(b). The experimental results show that the process
is fast and that the computation time is linear with the increasing number of
elements in the tree.

We then measured the computation time of the whole process, i.e., all
steps of our workflow. Table 11.4 shows the details of the performance results
for our 6 meshes. The steps of balancing and conforming the extended quadtree
increase drastically the number of elements generated. Table 11.4 shows that
the longest process is the final smoothing step. Figure 11.9 plots the results
and shows that the final computation time is still linear with the increase in
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Table 11.3: Parameters used to generate the different extended quadtrees.
Parameters are the same for the curve endpoints and for their intermediate
geometry.

Figure 11.8: Test case and performance results. (a) The test case, made of
140 non-crossing arc circles with random spacing. (b) Computation time as a
function of the number of elements generated in the different trees, showing
linear evolution. Data points correspond to the trees presented in Table 11.3.

number of elements in the mesh. The whole process does not exceed 1min even
for meshes with a large number of elements.
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Table 11.4: Details of the computation time for the different parts of our
workflow. The parameters used to obtain these meshes are given in Table 11.3.

Figure 11.9: Performance results for the whole process show that the compu-
tation time is linear with the increase in the number of elements in the final
mesh. Data points correspond to the meshes presented in Table 11.4.

11.4
Limitations

In this section we list some limitations of the method. First, the deforma-
tion of the tree nodes is not bounded to a certain angle, making it impossible
to give robust guarantees on the final mesh quality. However, the node quality
improvement step presented in section 10.5 should prevent the formation of de-
generated elements. All our results showed positive jacobian, even for complex
structural models.

The quadtree-based approach implies the use of conforming transition
patterns, which present elements of low aspect ratio and vertices of valence
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3, and valence 8 when neighboring. Patterns S1 and S2, meanwhile, introduce
vertices of valence 6 when neighboring.

Another limitation of the method is the presence of heterogeneities in the
refinement level that are not justified by the local curvature. This is because
vertical, horizontal, and 45° lines are easy to approximate with our process
and tend to require less refinement steps than lines with other angles to the
horizontal. Figure 11.10 illustrates this: we built an extended quadtree on
a circle to show the behavior of the algorithm along a curve with constant
curvature. We can see that horizontal, vertical, and 45° lines are approximated
with a lower refinement level than other inclinations. This can be a problem in
simulations because the precision of the calculations will vary along the curve
for a same level of details.

Figure 11.10: Extended quadtree built on a circle shows the preferential
orientations where the process quickly approximated the curve: black dot lines,
corresponding to the horizontal, vertical, and ±45° lines.

Our parameters can also be hard to tune on a large number of curves.
Finally, the lack in local control is both a strength and a limitation to the

method. In one hand, the total automation of the refinement process avoids the
laborious task of defining precise refinement parameters and allows a fast and
easy construction of meshes even in complex structural domains. In the other
hand, as shown in the results section 11.2, some configurations may trigger
the creation of a large number of small elements, which can, in the worst case,
make the mesh unusable in practice. This paradox highlights the difficulty of
creating an automatic method which attends all kinds of configurations.
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We present in the next section the application of the method in a software
currently in development, to show how some of those limitations can be handled
in practice.

11.5
Application: full-automatic mesh generation for the SABIAH software

SABIAH is a software currently in development for the modeling of reser-
voirs and the simulation of various problems like critical region deformation or
other geomechanical threats. It provides support for stress and pore pressure
non-uniform distributions, heterogeneous lithology and multiple depleted and
injected regions, among others. The tool is built as a wizard where the user
enters a series of data related to the problem, then runs the simulation without
having to handle nor the mesh generation neither the solver management. This
makes it easy to test many configurations without having to pass the problem
between different softwares for each expertise field.

The mesh generation is meant to be full-automatic and uses the extended
quadtree mesh presented in this thesis. First, the reservoir domain is defined
through the importation of a set of polyline curves. Curves are automatically
ordered to define regions, in which different properties can be attributed.
Curves of the domain also receive a type: reservoir, horizons, or sides. Figure
11.11 shows such a model.

Figure 11.11: Structural model with several horizons and a single reservoir.

We divide curves at hinge points, then automatically set their refinement
parameters as follows:
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− ratiomax is fixed to 10, this value was found empirically to always give
satisfying results;

− refmax is deduced from the default expected length of elements along the
curves: 50m for reservoirs, 300m for others. We remind here the equation
giving the size of an edge length in a quadtree as a function of its depth:

edge length level i = edge length root

2i (7-10)

We can invert the equation to find level i, given the edge length:

i = log2
(
edge length root

edge length level i

)
(11-1)

We then set refmax = i;

− the tolerance is set to the relatively high value of tolerance =
expected edge length/2. Doing this, the refinement process is driven by
the expected edge length and not by a tight tolerance to the curve, which
would in many cases refine more than expected;

− the parameters for the curve endpoints are the same as the parameters
for the intermediate geometry.

With this method, we can set all parameters for all curves in the
domain very quickly. The mesh is expected to refine until refmax. However,
as explained, the algorithm makes local decisions that can lead to refining a
little more, or a little less. The large tolerance should prevent the algorithm
to refine a lot more, except in high curvature areas, which is good. To ensure
that the process refines at least to the expected depth, we add a post-process
in the tree construction: all nodes touching a curve with a refinement depth
lower than the curve refmax are refined until meeting refmax.

We also give the possibility to make the refinement uniform along a curve.
To do so, in the tree, we find the smallest refinement level along a curve and
then refine all the elements touching the curve to this level. In the same fashion,
we can make the refinement uniform for all elements in a region.

In the curve approximation process, curves are added one by one in order
to avoid the step of building groups of non-intersecting objects.

Figure 11.12 shows the resulting mesh for the domain presented in Figure
11.11. The refinement along the reservoir curve is forced uniform. For this type
of mesh, if horizons create thin layers, our process will generate a lot of small
elements. We plan on detecting such configurations in a pre-processing.
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Figure 11.12: Example of a generated mesh for the model of Figure 11.11.
Refinement is forced uniform along the reservoir curve.

Figure 11.13 shows another configuration, where the reservoir is viewed
from top. There is no horizons, but two artificial circles to define the domain
external boundaries. The central circle contains an extended quadtree mesh,
while the region between the two circles is a structured mesh, showing an
interesting mixture between two meshing methods. The refinement is made
uniform along the internal circle only. The algorithm managed to catch the
high curvature of the reservoir despite the large tolerance. This type of model
is suited for building 3D models, by extrusion.

We plan on building several meshes for a same model, modifying slightly
the parameters, then selecting the mesh with the best quality, in order to avoid
the creation of models with bad or degenerated elements.
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Figure 11.13: A single reservoir view from the top. Circles are artificial
boundaries. Refinement is forced uniform along the internal circle only.
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Conclusions for Part II

12.1
Summary

In this work, we presented a new method for 2D all-quadrilateral mesh
generation. The method is based on our extended quadtree structure, which
allows building a simple algorithm for the domain adaptation around any
curve geometry, with few parameters involved and automatic refinement in
high curvature areas. The key to this process was the inclusion of two new
subdivision patterns, which we call S1 and S2, in the quadtree node refinement
operation. The final mesh is obtained after a conforming step, followed by
smoothing. The process proved efficient, building trees of over 400,000 elements
in less than 5s, and generated meshes of reasonable quality even for complex
structural domains.

12.2
Conclusions

The presented method is a fast and user-friendly mesh generator which
finds a solution for any curve configuration. Local adaptation processes allow
adaptive refinement without the need to define precise refinement criteria.
Compared to other meshing methods, the extended quadtree mesh thus avoids
heavy pre-processing of the input geometry and complex parameterization.
In return, the user does not have control on local decisions such as, for
example, the number of elements along the curves. To some extent, local
control is possible through the underlying tree structure, which allows easy
and fast refinement for local adjustments in a post-processing step. This can be
advantageous in situations where the refinement must be uniform along curves
or in specific mesh regions. However, coarsening is much more difficult than
refining because of the tree corners adaptation to the curves. Thus, a problem
appears in configurations where the extended quadtree tends to generate many
elements, for example in the presence of thin layers extended throughout the
domain. This situation remains the main limitation to the method, since it
can generate unusable meshes. Another limitation of the method is the lack
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in robust quality guarantees, as the elements can deform freely. However, the
generation of a degenerated element can be easily detected by quality metrics
such as the jacobian, and the mesh can be reconstructed in few seconds with
other parameters in order to attempt reaching a better quality.

12.3
Suggestions for further research

As discussed, the two main limitations of the method are the behavior
of the algorithm in thin layer configurations and the lack of robust quality
guarantees for the elements.

The first problem could be handled by detecting the configuration and
defining a specific refinement scheme in the concerned nodes. For example, if
two curves with a given spacing cross one node, we could snap corners directly
without having to first separate the curves in different children.

The lack of quality guarantees could lead to locally bad shaped elements.
We could investigate processes based on local topological operations to locally
improve the mesh, taking as example the works from Kinney (1997), Canann
et al (1998) and Anderson et al (2008).

Finally, a natural continuation to this work is the adaptation of the
method to the 3D case: we could try to develop an extended octree. However,
two major problems arise that have to be treated in parallel in the 3D case.
First, the dynamic adaptation of tree corners to the geometrical constraints is
much more complex in 3D. The number of configurations with which a surface
can cross a cube is finite (Lorensen and Cline, 1987), however the subdivision of
an hexahedron into smaller hexahedron aligned with the crossing surface and
with a good quality for each child may be a real challenge. Second, supposing
a set of subdivision patterns provides the desired adaptation, neighboring
hexahedron will have to conform not only by matching edges and vertices, but
also by matching faces, which is not trivial. Some authors have investigated
3D transition patterns (Mitchell, 1999; Yamakawa and Shimada, 2002). None
of them guarantees the quality of the created elements, and transition patterns
tend to create many small elements, overall presenting techniques which are
not adapted to the FEM mesh constraints. The interesting work of Schneiders
et al (1996) proposes octree conforming patterns in the case of a 27-children
scheme octree, consisting in cutting a node in 27 hexahedron instead of 8
(resp. 9 quadrilateral instead of 4 in the 2D case). Owen et al (2017) adapted
it to the usual 8-children pattern octree. These works may be interesting
for mesh extrusion. Mesh extrusion allows easily creating 3D meshes from
2D meshes by projecting elements in the third dimension. In the case of
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geomechanical reservoirs, conformation to the geometrical constraints can be
discarded in certain regions. 3D transition patterns could help reduce the
number of elements in those regions by coarsening the mesh, without having
to handle mesh alignment with boundaries.
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Final words

This thesis is part of a research that aims to generate simulation models
directly from the seismic data. The final goal is to construct the first model
of a digital twin of the oil field as soon as the exploration begins to improve
the safety of the operation. As one of the early work, we did not achieve this
goal. Both parts of this thesis discuss relevant aspects of the problem. The
use of a 2D model was enough to reveal challenges that automatic tools have
to face to replace humans in tedious activities that are heavily dependent on
interpretation and experience.

In the future, we hope to join the two parts of this work in a general
tool. First, we could couple our fault detector with other geobodies’ automatic
extractors, like horizons or salt domes for example. Clean delineation of faults,
horizons and salt domes would then build a structural model that could be the
input to our mesh generator.

Merging the different steps of a complex workflow in a single tool is
always of great value to reduce the accumulated errors and give the users a
clear and general view of their models.
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