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Abstract

Fernández, Liander Millán; Rodriguez, Noemi de La Rocque (Advisor).
Concurrent Programming in Lua - revisiting the Luaproc
library. Rio de Janeiro, 2016. 68p. MSc. Dissertation — Departamento
de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

In recent years, the tendency to increase the performance of a

microprocessor, as an alternative solution to the increasing demand for

computational resources of both applications and systems, has decreased

significantly. This has led to an increase of the interest in employing

multiprocessing environments. Although many models and libraries have been

developed to offer support for concurrent programming, ensuring that several

execution flows access shared resources in a controlled way remains a complex

task. The Luaproc library, which provides support for concurrency in Lua, has

shown some promise in terms of performance and cases of use. In this thesis,

we study the Luaproc library and incorporate to it new functionalities in order

to make it more user friendly and extend its use to new scenarios. First, we

introduce the motivations to our extensions to Luaproc, discussing alternative

ways of dealing with the existing limitations. Then, we present requirements,

characteristics of the implementation, and limitations associated to each of

the mechanisms implemented as alternative solutions to these limitations.

Finally, we employ the incorporated functionalities in implementing some

concurrent applications, in order to evaluate the performance and test the

proper functioning of such mechanisms.

Keywords
Concurrency; Parallelism; Lua; Messages exchange; Luaproc;
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Resumo

Fernández, Liander Millán; Rodriguez, Noemi de La Rocque.
Programação Concorrente em Lua - revisitando a biblioteca
Luaproc. Rio de Janeiro, 2016. 68p. Dissertação de Mestrado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Nos últimos anos, a tendência por aumentar o desempenho de um

microprocessador, como uma solução alternativa para a crescente demanda por

recursos computacionais de aplicações e sistemas, diminuiu significativamente.

Isto levou a um aumento do interesse em utilizar ambientes multi-processados.

Embora muitos modelos e bibliotecas tenham sido desenvolvidos para oferecer

suporte à programação concorrente, garantir que vários fluxos de execução

acessem recursos compartilhados de forma controlada continua a ser uma tarefa

complexa. A biblioteca Luaproc, que oferece suporte para a concorrência em

Lua, mostrou alguma promessa em termos de desempenho e casos de uso.

Nesta tese, nós estudamos a biblioteca Luaproc e incorporamos-lhe novas

funcionalidades a fim de torná-la mais amigável e estender o seu uso a novos

cenários. Primeiro, nós apresentamos as motivações para nossas extensões a

Luaproc, discutindo formas alternativas de lidar com as limitações existentes.

Em seguida, nós apresentamos requisitos, caracteŕısticas da implementação e

limitações associadas a cada um dos mecanismos desenvolvidos como soluções

alternativas a essas limitações. Finalmente, nós utilizamos as funcionalidades

incorporadas na implementação de algumas aplicações concorrentes, a fim de

avaliar o desempenho e testar o funcionamento adequado de tais mecanismos.

Palavras-chave
Concorrência; Paralelismo; Lua; Troca de mensagens; Luaproc;
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1
Introduction

In the search for the necessary computing power to execute increasingly

demanding applications, microprocessors maintained, during many years, a

constant evolution [1], mainly by increasing their processing speed. However,

in recent years that evolution has stopped [5], mainly due to either high

consumption of energy or the inability to dissipate the generated heat. This has

led to an increase of the interest on employing multiprocessing environments.

The use of multiprocessing environments introduces the concept of

multithreading [10], in which two or more threads can coexist simultaneously.

However, this does not mean they are necessarily executed in parallel, as they

can also be executed concurrently. Parallelism refers to existence of two or

more threads running simultaneously on different cores, while concurrency is

used to denote the context where two or more threads are active in a same

time interval, but not necessarily executed at the same time.

Concurrency occurs in both single-core and multi-core environments.

This is possible because modern operating systems support multithreading by

switching context of existing threads, that is, they offer mechanisms to execute

threads alternately, even if only one of them at a time can be processed by

systems with a single CPU. Depending on how the context switch is made, we

will be in the presence of a preemptive or cooperative multithreading.

One of the biggest advantages of multithreading relies on the ability

to maintain the execution of more than one thread at a same time interval,

without the need to wait until execution of one of them is completed to proceed

with the execution of some another thread. This allows us to implement

applications in which certain processes are executed in background without

the risk of getting blocked due to the call to blocking functions in another

thread (e.g. a process interacting with an user through I/O operations).

Multithreading allows an optimal use of CPU processing capacity, because

a blocked thread would not cause CPU to remain idle, having other threads

waiting to be executed.

Many approaches, models and languages [17], [18], [19], [20], [6], [14]

have been proposed to provide support for concurrent programming. How-
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ever, concurrent programming still presents several challenges to the program-

mer, mostly related to ensuring proper interaction between threads sharing

resources. The Luaproc library[21], which provides support for concurrency

in Lua, has shown some promise in terms of performance and ease of use. It

adopts messages exchange as the only means for communication between exe-

cution flows, so mechanisms synchronizing accesses on shared memory are not

required.

The goal of our work is the study of the Luaproc library in order to

provide alternative solutions to the limitations that the library still presents

and incorporate to it mechanisms for exploring parallelism in scientific comput-

ing, thus extending its use to new scenarios. Our work is structured as follows:

Chapter 2 presents several related works, Chapter 3 discusses the extensions

incorporated to the Luaproc library, Chapter 4 presents the experiments and

their corresponding results, and Chapter 5 presents the conclusion and future

works.
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2
Related Work

In this chapter, we first present a brief description of support for concurrency

in some scripting languages. The main features of the concurrency models they

adopt and some of their corresponding disadvantages are presented. We then

focus on the exploration of concurrency in Lua, by introducing some libraries

created with this purpose. For each of them, both the implemented concurrency

model and its main characteristics are presented.

2.1
Concurrency in scripting languages

Scripting languages have become widely used in the implementation of

applications with different purposes and several models have been designed

in order to support concurrency in them. In this section, we describe how

Javascript, Perl and Python support concurrency.

Javascript

JavaScript is a dynamic language mostly used in web-oriented program-

ming. It provides support for concurrency [8] through web workers, thus allow-

ing expensive tasks to be executed concurrently by web workers in background

and without blocking the UI thread of the web application. When instantiating

a web worker, we are instantiating a new JS VM which creates a new kernel

thread in order to run the code assigned to that web worker. Many browsers

limit the number of web workers that can be created.

In the Javascript concurrency model, Web workers share no data at all,

and communication among them takes place either by message cloning or

ownership transfer. The first option clones all data to be exchanged between

web workers, which results in a significant overhead when sending large objects.

In scenarios where the exchange of large volumes of data between web workers

is necessary, ownership transfer may be appropriate. In this case, a reference to

the object is sent, but the source web worker looses access to this object. This

allows a message to transfer references while avoiding memory references to
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be shared among web workers. In the exchange of data between web workers,

basic types of JavaScript, JSON objects, TypedArrays and recently ImageData

types are supported.

The concurrency model adopted by Javascript, although allowing costly

tasks to be executed in background, has some disadvantages. For example,

the parallel execution of a set of tasks working on an shared object can not be

performed by using ownership transfer, as only one web worker could access

the object at a time. On the other hand, the use of message cloning for such

purposes results in an additional overload when creating new copies of the ob-

ject to be sent. Furthermore by using message cloning, the tasks are executed

on different copies of an object, so it is necessary to create mechanisms to

unify the different results obtained by each web worker into a single object.

Perl

Perl provides support for concurrency through its thread model [9], in

which each thread runs in a separate virtual machine. By default, no data is

shared. Threads may only share access to data explicitly marked as shared.

Perl allows scalars, arrays and hashes to be shared.

Shared data are subject to data races, so Perl provides the lock function

as a synchronization mechanism. This functionality places a kind of lock on

a particular object, although it does not forbid other threads to access the

object, unless they also request the same lock.

Perl 6 [31] introduces the Lock class as part of its low-level API for

concurrency. The protect method defined in this class allows us to encapsulate

code blocks, ensuring that they will be executed by only one thread at a

time (as a kind of critical section). On the other hand, as part of its high-

level API for concurrency, Perl 6 defines the Channel class, whose objects

represent thread-safe queues. Objects sent to a channel are delivered to readers

in the same order in which they arrived at it. The channels are used as

high-level mechanisms for communication between threads. In fact, the Perl 6

documentation recommends using them instead of locks.

One of the disadvantages of Perl thread model is the high cost associated

with creating threads, since for each new thread a new instance of the

interpreter is created and the existing data in the current thread copied to

the new instance.
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Python

Python supports concurrency through its threading library [16], which

supports the creation of threads. These are mapped to kernel threads in a

1:1 relation and represent a concurrent execution flow, sharing all data in the

process where they are created. The threading library provides synchronization

primitives (locks, semaphores, conditions, among others) for guaranteeing

controlled accesses to shared data.

Although Python threads can communicate through shared memory, the

language provides a library for handling thread-safe queues. These are mostly

aimed at concurrent programs structured in a providers/consumers model, but

can be used as a generic communication mechanism between Python threads.

One of the disadvantages of the Python concurrency model is the inab-

ility to execute threads in parallel, due to the existence of the GIL (Global

Interpreter Lock). This is a kind of lock ensuring that only one Python thread

can be executed in the interpreter, at a time.

The disadvantages identified above and the complexity of using synchroniza-

tion mechanisms in preemptive multithreading models demonstrate the need

to search for models for concurrent programming in dynamic languages.

Lua [4] provides support for concurrent programming by using co-

routines, a mechanism for cooperative multhreading. Skyrme, Rodriguez and

Ierusalimschy [21] designed a model for concurrent programming, which al-

lows multiple execution flows to be executed concurrently, communicating only

through messages exchange. They implemented this model as a Lua module,

resulting in the Luaproc library [7]. Subsequently, they structured a commu-

nication model intended to safely share data in shared memory environments.

The implementation of this model in Lua resulted in the Luashare library [22].

These models and libraries are described in next section.

2.2
Message exchange in Lua libraries

Lua is a scripting language, characterized by being simple, efficient,

portable and extensible. The language was designed for integration with

software written in C, so it is possible both to call Lua from C and to create

modules in C in order to extend Lua. Much of Lua’s power comes from its

extensible nature, as many of the functionalities that enable it to be used for

numerous purposes come from libraries.

Lua states encapsulate an execution environment. Each Lua state has
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its own global variables and structures. Two or more Lua states can coexist

without the risk that uncontrolled accesses to global variables occur.

When creating a C module in order to extend Lua, generally we imple-

ment a set of functions that will subsequently be called from Lua applications.

These functions must be registered previously in the Lua state where the mod-

ule is loaded. Moreover, these functions may have input parameters, which will

be provided upon their invocation in the Lua code, and return values, which

must be moved from C to Lua.

In order to provide communication between C and Lua, regardless of

which way it needs to do so, each Lua state has a virtual stack that acts as

a bridge in that communication. When we call a function defined in C from

Lua code, its input parameters are placed in this stack and at the end of its

execution, possible return values are obtained from this stack. By using a

set of functions (C API) of the Lua library, it is possible to manipulate (e.g.

push, insert, remove, etc.) items in this stack. In this way, functions in C

modules can obtain from and place back to the stack its input parameters and

return values respectively. Some libraries supporting concurrency in Lua allow

creating execution flows from Lua states, and establish the message transfer as

a means of communication between them. To transfer a message between Lua

states, such libraries use their corresponding virtual stacks. Next, we present

some examples of such libraries.

Lanes

Lanes[29] is a C module providing concurrency in Lua. It allows for

executing several Lua states in parallel, thus enabling us to exploit parallelism

on multicore machines. The architecture supporting Lanes is composed of the

following elements: lanes, which are basically Lua states executing in parallel;

universes, which are sets of lanes; and keeper states, which are Lua states

responsible for storing the data sent through Linda[3] objects.

Lanes are created and executed by a call to a generating function, which

receives the function (let’s call it func) to be executed in parallel. The lanes

execute the code of func, sharing their upvalues and global variables. When

calling the generating function, the values passed to func allow each lane to

follow its own execution path. The concept of universe organizes the lanes into

groups and establishes limitations about how a memory space can be shared

among them. Universes share no data with each other, that is, there can be

data exchange only between two lanes belonging to a same universe.

Two lanes can exchange data through Linda objects. Lanes implements
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a Linda object as a gateway to a tuple space, through which the lanes can

send and receive tuples (messages). Furthermore, it defines a set of atomic

operations on Linda objects, so that different lanes can access a same tuple

space, in a controlled manner. The func function can access a Linda object as

upvalue, parameter or as part of a message.

Luaproc

Luaproc defines a hybrid architecture that employs both kernel threads

and user threads. The use of kernel threads allows the exploration of parallelism

in multiprocessing environments, which would not be possible through user

threads. On the other hand, the use of user threads enables the creation of a

large number of concurrent execution flows which would be too costly using

only kernel threads. User threads are scheduled by an user-level scheduler

following an MxN model. The combined use of kernel threads and user threads

by Luaproc decreases scalability restrictions when exploring multithreading.

Luaproc user threads are called Lua processes and communicate only

through messages. The model includes functions for sending and receiving

messages, which are used for communication and synchronization. Messages

are exchanged through channels, identified by a name.

Lua processes execute Lua code fragments. Each Lua process corresponds

to a separate Lua state. Lua processes do not share memory at all, and there is

no need to worry about uncontrolled accesses to the same object from different

Lua processes. This characteristic facilitates the development of concurrent

applications because it avoids the need for synchronization mechanisms to

control accesses to shared memory.

The Luaproc library allows the creation of an arbitrary number of Lua

processes and a different number of worker threads, which are kernel threads

created by using POSIX Thread library [11]. The Luaproc scheduler distributes

the pending Lua processes among worker threads. Worker threads draw Lua

processes, one at a time, from a ready queue in order to start or resume their

execution.

Early versions of Luaproc supported only strings as message data. Any

other value had to be serialized to be exchanged. The current version of the

Luaproc library extends message transfer to booleans and numbers without

previously converting them to strings. The authors argue that the remaining

restrictions can be overcome by sending Lua code in the form of messages.

A Lua process can send a string containing a function with arbitrary return

values.
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Message sending is synchronous, that is, the call to the send function only

returns when a Lua process is ready to receive this message. So, when sending

a message, a Lua process remains blocked until the message is delivered.

Receiving a message is also a synchronous operation. However, you can

also perform an asynchronous receipt, in which the call to the receive function

returns control to the Lua code immediately. In this case, a message is received

from the specified channel if there is one pending. Otherwise, the nil value

and a specific status indication are received.

Luaproc implements sending/receiving of messages basically through

the copy of values from the stack of the Lua state associated with the sender

Lua process to the stack of the Lua state associated with the Lua process that

receives them.

Luashare

Luashare is another library for concurrent programming in Lua. The

model implemented by this library enables safe sharing of data in shared

memory environments. This model results from making several changes in the

Luaproc model. It was implemented through changes to the Luaproc library

but also required making changes to the Lua interpreter. The Luashare library

is composed by a Lua module and another one written in C, plus a modified

Lua interpreter.

The model implemented by Luashare is the result of the combination of

three concurrency patterns [9]. The first pattern taken into account was no-

default sharing. In this pattern all data are by default local to an execution

flow, and the only way to share them is through shared objects. The second

pattern considered was data ownership, which allows only one execution flow

at a time to have read/write permission on a shared object. Finally, Luashare

offers shared access to read-only, immutable, data.

Luashare uses capabilities to enforce the concept of read-only and read-

write shareable objects. Capabilities represent the permissions (read-write or

read-only) through which a shared object can be shared. Shared objects subject

to future modifications must be shared in read-write mode, while those ones

that are to be only read by multiple execution flows must be shared as read-

only.

Sharing a shared object as read-write implies the loss of access by the

execution flow that sends it; at the same time, the execution flow that receives

it gains a read-write permission on this shared object. On the other hand,

an execution flow sharing a shared object as read-only loses write access to
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this, and the receiver execution flow obtains a read-only access to this shared

object. Shared objects shared as read-only become immutable objects without

the possibility of being shared as read-write again.

Similar to Lua processes in Luaproc, Lua threads in Luashare represent

parallel execution flows of Lua code fragments. However, unlike Lua processes,

which are created from different Lua states, Lua threads are created from co-

routines within the same Lua state. This feature enables Lua threads to have

access to the global state of the Lua state through which they share data.

Luashare provides functions for sending (sharing) and receiving shared

objects through channels, as Luaproc does. As in Luaproc, the functions

intended to send/receive shared objects are blocking. We can also call the

receive function asynchronously.

A verification is performed when sharing a shared object, including both

the types associated to the encapsulated values and the proper correspondence

between the capabilities of each of these values and the capability specified in

the call to the sending function.

In Luaproc, Lua processes are associated to different Lua states, so a

Lua state can be accessed by only one worker thread at a time. However, in

Luashare, Lua threads are created in the same Lua state, thus sharing its

global state. This implies that the worker threads executing them have access

to this global state simultaneously, which might introduce data races on the

data stored in it. Modifications had to be made to the Lua interpreter, in

order to ensure controlled access to these data.

Comparison between Luaproc and Luashare

A previous work [22]established comparisons between both libraries. In

terms of time spent for transferring a data set between execution flows, Luaproc

showed, in most cases, a better performance than Luashare. This is mainly

due to the cost associated with the creation and transfer of shared objects.

However, with respect to required memory resources, Luashare showed better

results than Luaproc, since only references to immutable or shared objects are

transferred between execution flows. In contrast, Luaproc must perform a copy

of each sent message, making use, therefore, of a greater amount of memory

resources.

We performed a test in which we implemented a parallel solution to the

knapsack problem (see Appendix A), employing both the Luaproc and Lu-

ashare library. The purpose of the test was to determine which of the two

libraries provided better performance. The fragments defined in that solu-

DBD
PUC-Rio - Certificação Digital Nº 1421944/CA



Concurrent Programming in Lua - revisiting the Luaproc library 19

tion are actually tables, which are transferred between execution flows. Be-

cause Luaproc does not support the transfer of tables between Lua processes,

the implementation using Luaproc employs the Luabins library for serializa-

tion/deserialization.

As a measure of performance, we used the time it takes an implementa-

tion to compute the solution of the problem. We executed each implementation

a total of 4 times with a specific number of threads (kernel threads created

by using the POSIX Thread library) and workers (processes or Lua threads

employed for computing the solution), taking as an execution time (T) of the

implementation the average of times resulting from the runs. We also computed

the standard deviation (SD) associated to these times in order to know how

irregular they are. The instance used in this test consists of: a knapsack with

12x103 units of capacity; and 12x102 objects, each of them with an associated

weight of 20 units. Objects with odd and even identifiers have an associated

value of 50 and 2 units, respectively. All the runs were executed on a desktop

computer with the following features: Intel(R) Core(TM) processor (i5-4210U,

1.70 GHz, 2 Cores), 8 GB (RAM) and a 64-bits architecture. Table 2.1 shows

the execution times (in seconds) obtained by both implementations.

Threads Workers
Luashare Luaproc

T(s) SD T(s) SD

2
2 60.24 0.83 15.38 0.16

4 94.29 0.17 18.10 0.45

8 163.52 0.90 23.92 0.22

4
2 60.63 0.60 15.42 0.35

4 90.94 0.85 19.46 0.11

8 163.62 0.20 24.37 0.16

8
2 60.72 0.79 15.58 0.26

4 91.15 0.67 18.44 0.17

8 158.39 0.65 24.59 0.33

Table 2.1: Comparing the Luaproc and Luashare libraries.
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Figure 2.1: Comparing the Luaproc and Luashare libraries.

The best performance achieved by each library is shown in Figure 2.1.

This confirmed the pattern we have observed in previous comparisons between

the two libraries: Luaproc employs a lesser time for transferring data between

execution flows, regarding Luashare. Therefore, we focused on making the use

of Luaproc more suitable to new scenarios by incorporating new functionalities.

DBD
PUC-Rio - Certificação Digital Nº 1421944/CA



3
Extensions to Luaproc

In this chapter, we first introduce the motivations to our extensions to Luaproc,

discussing alternative ways of dealing with the existing limitations. We then

describe in more details how these solutions were implemented. Finally, we

present a brief discussion about the benefits that the implemented solutions

may offer to Luaproc.

3.1
Motivations and goals

After studying both the model and the implementation of Luaproc

library, we identified a set of limitations. The first of these is that Luaproc

does not support the table, userdata and function basic types on messages

transfer, although these data types are commonly used in the implementation

of Lua applications. Another limitation we found was the absence of support

for either asynchronous messages sending or the implementation of collective

communication operations. Applications employing simulating mechanisms for

such purposes may not reach their maximum performance in certain scenarios.

Next, we present the motivations that led us to provide solutions to these

limitations, as well as the goals defined in our work for such purposes. For some

limitations we consider a simulating mechanism providing a solution. In that

case, we discuss the main disadvantages of using that mechanism.

3.1.1
Tables

Tables are a key element in any implementation with some degree of

complexity, because they represent the only data structuring mechanism in

Lua. They are associative arrays of variable size, which can be indexed by

values of any types excepting nil, and can have values of any types. Tables

support the traditional operations (e.g. insertion, removal, access and updating

of elements) performed on arrays. In the current Luaproc version, tables must

be serialized before sending them (see Figure 3.1). It would be useful, and more

efficient, if tables could be transferred between Lua processes without having to
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serialize them previously. As part of our work, we incorporate support for the

direct transfer of tables between Lua processes. Alves[34] implemented a basic

scheme to support table data type on message transfer, but the communication

costs were higher than expected. We used this implementation as a basis.

Figure 3.1: Transferring a table between Lua processes, by serializing it
previously.

3.1.2
Userdata

In Lua, an userdata value represents a raw memory area, normally used

for storing user-defined types in C. An userdata has no predefined operations

in Lua, so operations for handling it must be implemented in C and stored in a

metatable associated to it. There are several ways of creating an userdata, but

usually, we use two of them, either a pointer to the structure to be manipulated

or the structure itself is stored in an userdata.

Using userdata gives us some benefits. This data type can be used in the

implementation of applications in which data structures store a large amount

of elements and the required memory resources could affect performance. Tests

have been performed in order to compare the memory resources required when

representing a same collection of elements by using tables in Lua, as well

as by using instances of user-defined types in C. The results show a lower

demand for memory resources by the second representation in comparison with

demand required by the first one[15]. Userdata is also useful when dealing with

external objects such as sockets or files, allowing such objects to be stored and

manipulated from Lua. Figure 3.2 shows a Luasocket’s socket as an example

of an userdata allowing us to manipulate a system’s socket.
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Figure 3.2: Luasocket’s socket as an example of an userdata value.

A second goal of our work is thus to include support for transferring

userdata between Lua processes. For this, we may copy either the pointer or

structure stored in the userdata to the receiver Lua process. However, without

taking appropriate measures, this would introduce shared memory in Luaproc,

because two or more Lua processes would be able to access the same memory

block in an uncontrolled manner. Furthermore, if one of the copies were reached

by the garbage collector, the structure associated to the userdata would be

finalized. This would cause the remaining copies to become invalid. Figure 3.3

illustrates the consequences from transferring userdata without certain cares.

Having this in mind and, in line with the Luaproc model, we must design

and implement a mechanism that transfers userdata between Lua processes

but disallows shared accesses to these data. A similar behaviour to that we

desire is implemented by the Luashare library and Javascript language. When

transferring a shared object in read-write mode, the sender Lua thread no

longer has access to this. Similarly, transferring data between web workers by

using the ownership transfer pattern causes the source to loose access to these

data.
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Figure 3.3: Consequences from transferring an userdata without taking the
proper cares.

3.1.3
Lua functions

Lua provides first-class functions with lexical scoping. Lua functions are

in fact closures[4] with their own environment. The environment of a function

is a table storing values used by it.

Following our desire to extend the support to basic Lua types on messages

transfer, our next goal is to allow the transfer of functions in Luaproc. It would

be useful to extend the Lua semantics of first-class functions to messages

transfer, allowing the transfer of functions between Lua processes.

Transferring a closure between Lua processes could be useful in imple-

menting some applications. For example, a Lua process defining and distrib-

uting tasks processing to a set of Lua processes could encapsulate one or more

tasks in a closure, and transfer them to a Lua process, in which these tasks

would be executed concurrently.

3.1.4
Asynchronous message sending

There are several advantages and disadvantages of using either synchron-

ous or asynchronous sending in concurrent and distributed applications[2]. As

one of the advantages of using synchronous sending, a sender process can en-

sure that a sent message has been received, before resuming its execution.

However, a disadvantage is the limitation imposed to the concurrency degree

that the execution flows can reach. In scenarios in which parallelism is em-
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ployed for high-performance computing, the use of synchronous sending is often

considered a limitation to the exploitation of parallelism.

Despite the synchronous nature of messages sending in Luaproc, we can

simulate asynchronous message sending to approach such scenarios (see Figure

3.4), to facilitate the exploration of parallelism using Luaproc. Let’s consider

a sender and receiver Lua processes that exchange messages continuously.

According to the semantics of the send function, when sending a message, the

sender Lua process will remain blocked until the receiver Lua process receives

it. For each message, the sender Lua process A can create a temporary Lua

process C and, send the message to C. At this point A can proceed execution

and C will remain blocked waiting for the receiver Lua process B. However, A

will still block until C finishes receiving the message. Furthermore, creating a

temporary Lua process for each asynchronous sending increases the demand for

memory resources. To avoid this, we have opted for providing an asynchronous

sending in Luaproc.

Figure 3.4: Simulating an asynchronous message sending.

3.1.5
Support for collective communication operations

Messages exchanged among processes may be either point to point, from

a source to a destination process, or collective, in which two or more processes

participate[12]. Collective communication operations are communication pat-

terns often used for exchanging data and establishing synchronization between

execution flows in parallel and distributed applications. These may be useful in

several scenarios, such as that of parallel scientific computing. The PVM [26]

and MPI [27] interfaces include a set of collective communication operations.

Next, we describe some of them.
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– Broadcast: broadcasts data from a single sender process to a set of

receiver processes.

– Reduce: computes a single value out of the data sent from different

sender processes and stores it in a single receiver process.

– Gather: gathers data sent by different sender processes and stores them

in a single receiver process.

– Scatter: distributes different data from a single sender process on a set

of receiver processes.

– Barrier: synchronizes the execution of multiple processes.

The broadcast, reduce, gather and scatter collective communication oper-

ations have in common the establishment of a point of synchronization among

the participating execution flows, so that none of them can continue their exe-

cution unless the operation is completed. This characteristic is present in most

collective communication operations. As an example of these operations, Fig-

ure 3.5 illustrates the functioning logic of the scatter operation. Establishing

a synchronization point corresponds to the behavior defined by the barrier

operation, so we may use this operation as a basis for implementing collective

communication operations.

Figure 3.5: Basic steps of a scatter operation.

Luaproc supports point-to-point communication operations through the

send/receive routines. It would be useful for Luaproc to offer support for

the implementation of collective communication operations. This would allow

extending the set of communication operations that can be executed on

Lua processes and, consequently, its usage scenarios. To offer support for

the implementation of collective communication operations, a key task is to
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incorporate the barrier operation to Luaproc. In addition to serving as a basis

for the implementation of collective communication operations between Lua

processes, the use of the barrier operation as part of Luaproc does not restrict

the implementation of these operations to a specific set.

Without extending Luaproc, we could simulate a barrier by using syn-

chronous channels and a coordinator Lua process (see Figure 3.6). A Lua

process involved in a barrier operation uses a first channel for sending a noti-

fication to the coordinator, indicating that it is participating in the operation,

it then remains waiting for the coordinator to send a notification through a

second channel. When the coordinator receives notifications from all the Lua

processes involved in the operation, it sends as many notifications as it has

previously received to these Lua processes, through the channel where they

are waiting.

Figure 3.6: Simulating a barrier operation.

This mechanism includes several messages exchanges between the in-

volved Lua processes, potentially increasing resource usage and execution time.

Moreover, the channels used when simulating a barrier operation should not

be used for sending messages through send/receive communication routine, as

sending and receptions from different communication operations could match

and lead to an undesired behavior of the application. This would imply the

creation of a large number of channels, if the application includes Lua processes

involved in both communication routines.

Therefore, we opted for implementing a new barrier function. This is

called by all the Lua processes involved in the operation, and accepts the

following parameters: chn, the channel through which the operation will be

executed; and num, the number of involved Lua processes. As a result, barrier
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blocks the execution of the Lua process executing it, returning after num Lua

processes have executed this function on chn channel. Unlike the simulating

mechanism, this function does not require messages exchanges between the Lua

processes involved in the operation, and allows using both the send/receive

communication routine and barrier collective operation on a same channel.

3.2
Implementing the extensions

In this section, we present requirements, characteristics of the imple-

mentation, and limitations associated to each functionality incorporated to

Luaproc. When possible, we present mechanisms implemented by other librar-

ies or languages for similar purposes. When applicable, we discuss the differ-

ences between a simulating mechanism and that we implemented. Furthermore,

we mention modifications on the API of the library, resulting from implement-

ing these functionalities.

3.2.1
Tables

Currently, we must employ a mechanism to serialze Lua values for

transferring tables between Lua processes. Luabins[30] is one of the libraries

developed for such purpose. When transferring a table t by using Luabins,

we must first call the save function offered by this library. This function first

allocates a memory block to store the string resulting from serializing t. It

then builds that string by copying each key-value pair in t to the allocated

memory block. After transferring this string between Lua processes, we must

employ Luabins’s load function for performing the deserialization process in

the receiver Lua process. This function creates a table t’ equivalent to t,

by travelling the transferred string and inserting into t’ the key-value pairs

previously stored in that string. As mentioned in Section 3.1.1, the serialization

process may affect the time it takes for transferring a table. Therefore,

we implemented a mechanism for transferring tables directly between Lua

processes, which presents a similar behaviour to that recently described but

avoids the use of serialization/deserialization processes.

Our mechanism traverses a table t, and at the same time, builds an

equivalent one in the receiver Lua process by copying to it each key-value pair

in t (see Figure 3.7). This mechanism includes both a recursive traversal of the

table to be sent, if at least one of its values is a table in turn, and detection of

values for which messages transfer is not supported.
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Figure 3.7: Direct transfer of tables between Luaproc processes.

The tables to be transferred are subject to certain limitations on their

composition. Both table keys and values must be supported basic types on

messages transfer and the table itself must be acyclic. Furthermore, our

mechanism limits the number of nesting levels that a table may have: tables

going further that limit will not be transferred. However, restrictions on

supported types in the serialization process, cyclic character of tables and

number of allowed nesting levels also apply among existing mechanisms for

serialization/deserialization of Lua values. Therefore, the limitations do not

represent a loss in flexibility.

3.2.2
Userdata

Some Lua libraries supporting concurrency have implemented mechan-

isms to transfer userdata between execution flows. Before describing the mech-

anism we implemented, let’s see briefly how the Lanes and Leda[24] libraries

transfer userdata between Lua states.

The concept of deep userdata is introduced by Lanes in order to allow

multiple lanes to access a same Linda object. The deep userdata are a kind

of proxy or wrapper userdata for a memory block shared among several Lua

states. This memory block stores the structure of an object (e.g. Linda objects

in Lanes) to be shared and must have no links with Lua states. The Lanes

mechanism implementing this concept shares an object among Lua states by

creating an userdata (the deep userdata) in the receiver Lua state, which points

to its memory block. As a result, this object can be accessed from several Lua

states.

This mechanism requires the programmer to provide an identity function

(let’s call idfunc) for each object to be shared, whose main tasks are creating

and finalizing the memory block storing the object. Lanes uses this function for
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creating an object to be shared, and then creates the deep userdata through

which said object can be accessed. This allows using the mechanism for sharing

userdata among Lua states in both Lanes itself and other applications. In that

case, the idfunc function associated to an userdata is responsible for creating

the memory block to be shared and storing in it the structure of this userdata.

This mechanism ensures a shared userdata to be finalized just in case the

garbage collector reaches the last deep userdata pointing to it. However, Lanes

guarantees synchronization on accesses to a shared userdata by a different

mechanism to the one implementing the deep userdata concept. Therefore,

using this mechanism outside Lanes requires the programmer to guarantee a

controlled access on the shared userdata.

Leda is a library intended to add support for multi-threaded processing

based on SEDA[33] principles to the Lua programming language. It provides

Lua interfaces to explicitly define the event workflow of an application. Each

workflow’s step is defined by a Stage, which basically is a Lua state, and is

implemented by an event handler. Each event is tied to a stage through generic

interfaces called Connectors. Stages implement part of the application logic and

decide which are the next events fired from there. Thus, workflow is defined as

a stage graph which are bonded together through connectors.

This library allows userdata to be transferred between stages through

triggered events. For this, Leda requires the programmer to provide a wrapper

and a re-builder function for an userdata to be transferred. The first one is

responsible for both disabling access to the userdata from the sender stage

and returning the re-builder function. When executed, this last function must

allow access to the userdata previously wrapped from the receiver stage. The

wrapper function must be stored in the metatable of the userdata to be

transferred. Thus, Leda is able to execute this function in the sender stage

and, in representation of the userdata, place the returned re-builder function

in the event to be triggered. Once the event is received, Lanes proceeds to

execute the sent re-builder function. Unlike Lanes, Leda allows only one Lua

state to access a transferred userdata.

When transferring some kinds of userdata between Lua processes, it is

necessary to know their structures, because these require some updates once

transferred. However, the structure of an userdata may vary from one to

another, thus impeding to design a mechanism for transferring any userdata

without having information about its structure. That is the main reason why

both Lanes and Leda establish some requirements on the userdata to be

supported on the message transfer. Lanes requires an identity function that is

able to handle the structure of the userdata to be shared. In addition, it creates
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said userdata only once and, sharing it turns into transferring a pointer to the

userdata between the involved Lua states. On the other hand, Leda requires

two functions, which must also be able to interact with the structure of the

userdata to be transferred.

Having this in mind, the mechanism we implemented for userdata transfer

optionally allows the programmer to define new transfer functions. For each

type of userdata to be supported on the messages transfer, both a sender and

receiver transfer function may be provided. These functions are responsible

for transferring an userdata to and from a Lua process, taking into account a

set of requirements we will address later. If no transfer functions are provided

for an userdata, the mechanism tries to transfer it in a predefined way. The

implemented mechanism ensures that a transferred userdata is accessed by only

one Lua state, in compliance with the characteristic of no-sharing adopted by

Luaproc. Regarding to requirements and guarantees, our mechanism shows

certain similarity only with that implemented by Leda, as Lanes basically uses

the identity function to create/finalize the userdata to be shared, and allows

this userdata to be accessed by several Lua states.

Message exchange in Luaproc may occur in two different scenarios: a

sender Lua process sends the message to a receiver Lua process r or a receiver

Lua process receives a message from a sender Lua process s. Both r and

s are Lua processes blocked in a channel, while waiting for matching Lua

processes. When transferring an userdata with associated transfer functions,

our mechanism uses either the sender or receiver one, depending on which of

these scenarios the transfer is carried out. In that case, we must previously

register these functions in the Lua process, by using the regudata function.

This function accepts, as a parameter, a table storing a transf funcs

function. When invoked, transf funcs must return a table whose indexes are

names of userdata metatables, and its values, tables storing the corresponding

transfer functions. In each Lua process, regudata registers the types of those

userdata which can be transferred by that Lua process and their transfer

functions in a transferable udata table (see Figure 3.8). The regudata function

executes transf funcs and checks whether any of the entries in the returned

table have previously been registered in the transferable udata table. If so,

regudata registers none of them and returns a notification. Otherwise, it adds

each of these entries to the transferable udata table.
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Figure 3.8: Characteristics of the regudata function.

The transfer functions must be C functions following a behaviour indic-

ated by our mechanism. When executed, a sender transfer function receives,

as parameters: a transfer type integer indicating a behaviour to follow, the

userdata to be transferred and the receiver Lua process. The receiver transfer

function receives, as parameters: a transfer type integer; the sender Lua pro-

cess; and the index, within the stack of that Lua process, in which the userdata

to be received is stored (for more details about these functions and their para-

meters, see Appendix B). Both the sender and receiver transfer functions must

first transfer the userdata to the receiver Lua process, resulting in an equivalent

userdata with no links to the sender Lua process. They must then associate

the corresponding metatable to the resulting userdata, therefore the library

from which the transferred userdata is created must be loaded in the receiver

Lua process. If the transfer is successfully completed, leaving the resulting

userdata in the receiver Lua process should be the only modification made by

these functions on the Lua processes participating in the transfer. Otherwise,

both the sender and receiver transfer function must leave a nil value plus an

error message, in each of these Lua processes. Figure 3.9 illustrates a behaviour

these transfer functions could follow.
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Figure 3.9: An alternative behaviour for userdata transfer functions.

For those userdata with no associated transfer functions, the mechanism

performs the above routine by default. However, it is not able to perform

updates on the structure of the resulting userdata. Therefore, not to provide

transfer functions for userdata with these needs results in an impediment

for transferring them successfully, as the structures of the resulting userdata

become inconsistent.

When a Lua process sends or receives an userdata, our mechanism checks

whether the type of the userdata is registered in that Lua process 1. If so,

it gets either the sender or receiver transfer function from the transferable -

udata table. It then executes this function and, if no errors occur during the

transfer process, associates a blocking metatable as the new metatable of the

transferred userdata in the sender Lua process (see Figure 3.10). This blocking

metatable inhibits further use of the object, returning an error: when a call to a

method on the userdata occurs. The blocking metatable prevents the userdata

structure both to be finalized when the garbage collector reaches the userdata

and to be accessed by two or more Lua processes. Our mechanism returns a

nil value plus an error message, if during the transfer process an error occurs.

1In versions prior to Lua 5.3, the implemented mechanism requires the metatable of an
userdata to store its name in a name field. This allows our mechanism to check whether
the type of the userdata is registered in the transferable udata table of a Lua process.
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Figure 3.10: Restricting access to a transferred userdata.

The support for asynchronous messages sending in Luaproc, which we

will address later, incorporates two new scenarios to the messages exchange.

In each of them, both the mechanism and transfer functions must adopt a

different behavior to those described above. Depending on how a message must

be transferred, our mechanism adopts a behavior and indicates to a transfer

function the behavior it must take, through the transfer type parameter. We

will address these scenarios in more detail in Section 3.2.4.

To evaluate the proper functioning of our mechanism, we implemented

transfer functions for files, and sockets (see Appendix B) created by the

Luasocket library[32]. We incorporated these functions to the Luaproc library,

so that transferring these userdata does not require the programmers to provide

transfer functions.

3.2.3
Lua functions

Before describing the mechanism we implemented for transferring Lua

functions, we present a brief description of the implementation of the same

mechanism in Lanes, as both of them have several characteristics in common.

When transferring a funcLua Lua function between two lanes, Lanes

generates its corresponding binary code and loads it into the receiver lane, thus

resulting in an equivalent funcLua’ Lua function. Then, it gets the funcLua’s

upvalues, transfers them to the receiver lane, and finally establishes them as

upvalues of funcLua’. Figure 3.11 shows the two main steps of this mechanism.

The upvalues can take as values: tables, deep userdata, functions, booleans,

string, integers and nil. When transferring an upvalue, Lanes checks whether

its value matches the global environment of the sender lane. If so, the result
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of the transfer is the global environment of the receiver lane; otherwise, Lanes

transfers this value by using its transfer mechanism.

Figure 3.11: Transferring Lua functions between Lua processes.

In order to allow the transfer of C functions as upvalues, Lanes imple-

ments the following mechanism. As mentioned in Section 2.2, creating and

executing a lane requires the execution of a generating function. This function

accepts, as optional parameters, two lists storing the names of the standard Lua

libraries and C modules to be loaded. Lanes uses a customized require func-

tion for such purposes, which after loading a C module by employing the Lua

require function scans all the functions that this module registers, and stores

them in the path func and func path tables. Each function in path func has, as

a key, a string (let’s call it path) composed of the set of keys by which the func-

tion can be accessed (e.g.“io.read” is associated to the read function of the io

Lua library). The func path table is the result of swapping roles between keys

and values in the path func table. When a C function is transferred between

lanes, Lanes first searches for its associated string in the func path table of the

sender lane. It then uses this string for retrieving the equivalent function from

the path func table of the receiver lane. Lanes transfers C functions between

lanes, as long as the sequences of keys providing access to them are similar

in both lanes. Moreover, Lanes will not allow those C functions that have not

been registered when creating a lane to be transferred (e.g. functions belonging

to C modules loaded by the body of a lane).

Each lane has a cache table storing all the Lua functions it has received

so far. Lanes uses this table for preventing transfers on already transferred

functions and allowing the transfer of a Lua function with upvalues referencing

it, recursively. Despite these benefits, the use of the cache table has the

following disadvantage: when transferring again the funcLua function, Lanes

will not be able to preserve the equivalence between the upvalues of the funcLua
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and funcLua’ functions. This may cause the result of a transfer not to be an

equivalent function to the one that was transferred.

The mechanism we propose for supporting the transfer of Lua functions

between Lua processes presents some difference when compared to that imple-

mented by Lanes. With respect to the transfer of upvalues storing C functions,

our mechanism locates and stores only those functions to be transferred, in-

stead of storing all the C functions registered in a Lua state. Therefore, there

is no need to implement a behavior similar to the customized require of Lanes.

As a consequence, our mechanism must employ the package.loaded tables of

the involved Lua states for transferring a C function for the first time. This

implies that the mechanism takes more time for performing such a transfer

in comparison to Lanes. However, it does not invest time to store those C

functions that will not be transferred. Unlike Lanes, our mechanism is able to

transfer all the registered C functions regardless of when their corresponding

libraries have been loaded.

When loading a C module, usually we get a table storing the functions it

exports. To transfer upvalues storing such tables, our mechanism does not

perform a function-by-function transfer. In that case, it first searches for

the equivalent table in the package.loaded table of the receiver Lua process,

by using the name employed by the C module for registering that table

in the sender Lua process. Next, it places the equivalent table onto the

stack of the receiver Lua process, as a result of the transfer. Therefore, our

mechanism requires that the names employed by the C module for registering

its corresponding table in the Lua processes involved in a transfer match.

Similarly to Lanes, we employ a cache table for transferring a Lua

function with upvalues referencing it, recursively. However, we create this table

for each transfer. Although this implies our mechanism transfers a function over

and over again, regardless of it having already been transferred, we guarantee

with this, an equivalence between the function to be transferred and that

created in the receiver Lua process.

The Lua functions that our mechanism transfers may have upvalues

storing values of type string, nil, boolean, integer, userdata or function; and

tables, as long as they store transferable values. Upvalues storing the global

environment are not transferred. In that case, the global environment of

the receiver Lua state is placed onto its stack, as a result of the transfer.

Therefore, both environments must define the global variables used by the

transferred functions, in a similar way. Moreover, the alternative employed by

our mechanism for transferring C functions requires the libraries associated to

them to be loaded in both sender and receiver Lua process.
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3.2.4
Asynchronous message sending

Many approaches can be considered when designing a mechanism for

transferring messages asynchronously, as this is a functionality supported by

several languages and libraries providing support for concurrency. Let’s see

how some of them implement the asynchronous message sending between their

concurrent execution flows. We then describe our implementation.

Perl6 adopts messages passing as model of communication between the

different threads of a process. As we mentioned in Section 2.1, Perl6 defines the

Channel class, whose objects are thread-safe queues providing support mostly

to the provider/consumer programming style. The call to the send method on

a ch Channel’s instance causes the message passed as a parameter to be placed

in the queue represented by ch. The execution of this method does not block

the thread executing it regardless of whether the sent message is consumed or

not. When the receive method is invoked on ch, it extracts and removes the

message at the front of the queue represented by ch. If there are no messages

in ch, receive will block the current thread until a message is queued in this

channel. Although the receipt of messages in Perl6 is blocking, the use of the

channels allows sending messages asynchronously between different threads of

a process.

The Lanes library, mentioned in Section 2.2, allows exchanging messages

between lanes through the Linda objects. The messages exchange mechanism

implemented by this library employs Lua states (defined as keeper states) for

storing the tuple spaces associated to the Linda objects. When creating a Linda

object A, the group identifier of a keeper state can be optionally passed as a

parameter. In this way, Lanes creates a t table representing the tuple space

associated to A, in the keeper state corresponding to group. Each entry in t is

indexed by a specific key and has a queue storing all the tuples associated to

that key, as a value.

The send method of a Linda object accepts, as parameters, the tuple of

values to be sent and the k key associated to it. This method places a copy of

the tuple passed as a parameter in the queue associated to k, within the table

corresponding to the Linda object on which it is invoked. Moreover, the tuples

stored under a v key within the table corresponding to a B Linda object can be

retrieved by calling the receive method on B, with v as a parameter. Copying

the values composing a sent tuple to a keeper state allows the asynchronous

message sending between lanes.

As we mentioned in Section 2.2, Luaproc implements the synchronous

message sending between Lua processes by using channels. These hold two
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queues, in which those Lua processes blocked while sending or receiving

messages through a channel wait for a matching Lua process to arrive.

The support for asynchronous sending requires buffering those sent

messages that have not yet been received. So, we created a new kind of channel.

When creating a new channel, the programmer must now specify whether

it supports synchronous or asynchronous messages. We now denominate a

channel as either synchronous or asynchronous, depending on how messages

are transferred through it.

Asynchronous channels must provide support for storing pending mes-

sages. These channels are composed of a Lua state (the container Lua state),

storing messages in transit, and a queue (the receivers queue), holding those

receiver Lua processes waiting for asynchronous sending (see Figure 3.12). An

asynchronous message will be stored in the container Lua state as a table, so

that each of the values of the message is stored in an entry. Messages in the

container Lua state will be delivered to the receiver Lua processes in the same

order in which they were stored. Because they are used for storing messages

temporarily, container Lua states have some similarity with the keeper states

in the Lanes library and the thread-safe queues in Perl6.

Figure 3.12: Structure of an asynchronous channel.

The support for asynchronous sending also requires making certain

modifications in both API and implementation of some functionalities of

the Luaproc library. We incorporate a mechanism for creating asynchronous
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channels to the newchannel function. This now accepts as an optional second

parameter, a boolean value indicating the kind of channel to be created. We

also added a mechanism for messages transfer through asynchronous channels

to send and receive functions. When invoked on an asynchronous channel, send

verifies the existence of at least one Lua process in the receivers queue. If so, it

draws that Lua process at the beginning of this queue and copies to it the sent

message. Otherwise, send stores the message in the container Lua state. On the

other hand, when the receive function is called on an asynchronous channel,

it checks whether the container Lua state stores at least one message. If so,

receive draws it and copies the corresponding values to the receiver Lua process.

Otherwise, receive places the Lua process executing it in the receivers queue

and releases the corresponding worker thread. Similarly to what is done in

newchannel, we incorporate a mechanism for destroying asynchronous channels

to the delchannel function.

The use of container Lua states for storing messages sent asynchronously

implies taking some care when transferring userdata and certain Lua func-

tions. The mechanisms implemented for transferring these values require the

libraries associated to these values to be loaded in the receiver Lua process.

Although this requirement can be guaranteed by the programmer, messages

sent asynchronously may be first stored in the container Lua states, in which

these libraries will not be loaded. Therefore, transfer mechanisms must adopt a

different behavior when transferring userdata or Lua functions asynchronously.

As we mentioned in Section 3.2.2, the support for asynchronous message

sending introduces two new scenarios to the messages exchange in Luaproc, so

that a message may be sent from a Lua process to either another Lua process

or a container Lua state, or received by a Lua process from either another Lua

process or a container Lua state. Because the behaviours of the userdata and

Lua functions transfer mechanisms, both described in Sections 3.2.2 and 3.2.3

respectively, correspond to the transfer of messages between Lua processes, we

focus on their behaviours when transferring a value from or to a container Lua

state.

Due to the impossibility of associating the corresponding metatable to

an userdata transferred to a container Lua state, a sender transfer function

must associate to it a metatable, whose name equals the name associated to

the userdata’s metatable. When receiving an userdata from a container Lua

state, its metatable will allow our transfer mechanism to check whether the

type of the userdata is registered in the receiver Lua process, and if so, obtain

the corresponding receiver transfer function. Even if an error occurs while

transferring an userdata from and to a container Lua state, both the sender
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an receiver transfer function should leave no error message in it. In versions

prior to Lua 5.3 the metatables do not store their names. So, in those versions,

sender transfer functions must associate to an userdata in a container Lua

state, a metatable storing its name.

Regarding the transfer of Lua functions, as a result from transferring an

upvalue storing a table registered by a C module to a container Lua state, the

transfer mechanism creates a specific table, in this Lua state, indicating that

this upvalue must store a table registered by a C module once transferred to a

Lua process. This table stores the name used by the C module for registering

the table to be transferred in the sender Lua process. The transfer mechanism

uses this name to search for the equivalent table in the package.loaded table of

a Lua process receiving this upvalue from a container Lua state. To transfer

upvalues storing C functions through container Lua states, we proceed in a

similar way.

Because in the container Lua states no libraries are loaded, it is not pos-

sible to assign to the userdata stored in them their corresponding metatables.

Therefore, if the garbage collector reached these userdata, the structures asso-

ciated to them would not be finalized. This required us to make changes in the

implementation of Luaproc, in order to ensure that both an application does

not close successfully unless all the messages sent asynchronously have been

received and asynchronous channels cannot be destroyed if its container Lua

state still stores at least one message.

3.2.5
Support for collective communication operations

Implementing the barrier function requires certain modifications on the

structure defining a channel. The channels involved in barrier operations will

now able to hold an additional queue (let’s call it barrier queue), storing Lua

processes that perform such operations. When executed on a chn channel,

barrier verifies whether the barrier queue of chn stores num−1 Lua processes.

If so, it puts them all in the queue of Lua processes that are ready for execution;

otherwise, barrier enqueues the Lua process executing it in this barrier queue

and releases the corresponding worker thread.

After knowing how the barrier function was implemented, we may ana-

lyse in more details the differences it presents with the mechanism simulating

this operation. The latter performs several calls to send and receive functions

for exchanging notifications between the involved Lua processes. This could

cause a larger number of context switches; that is, there is a greater possibility

that a Lua process calling these functions does not match any correspond-
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ing receiver or sender Lua process and proceeds to release the worker thread

executing it. Resuming its execution, after the corresponding operation (re-

ceive or send) is carried out by another Lua process, implies placing it in the

queue of Lua processes that are ready for execution and waiting for a worker

thread to execute it. This characteristic may increase the execution time of

this simulating mechanism.

On the other hand, executing the barrier operation by using the barrier

function requires at most one context switch by each of the involved Lua pro-

cesses, because these processes do not have to send notifications to a coordin-

ator Lua process neither do they have to wait for worker threads to execute

them in order to remain blocked through a second channel, while waiting for

a notification to be sent by the coordinator. Therefore, the implementation of

the barrier function decreases the time it takes synchronizing the executions

of the Lua processes participating in the operation, in comparison with the

simulating mechanism.

3.3
Discussion

We began this chapter by defining some limitations associated to the

Luaproc library. In order to offer solutions to these limitations, we extended

Luaproc with new functionalities. In this section, we will discuss the benefits

provided by each of these to Luaproc. In some cases, we address requirements

or limitations associated to these functionalities.

Programmers are no longer required to serialize a table before sending it.

In applications employing libraries for serializing tables, using the implemented

mechanism removes the dependencies associated to them, thus facilitating the

portability of such applications. Another advantage offered by this mechanism

is the reduction of the time it takes for transferring a table, since it is not

necessary to perform serialization/deserialization on it.

By using either a serializer mechanism or the direct transfer of tables, we

must not employ tables as keys of tables to be transferred; every time a table is

transferred, an equivalent but not equal under comparison is created. Moreover,

we established a limit on the number of nesting levels that a table may have,

to prevent an application transferring a table to crash due to memory issues.

The direct transfer of tables does not allow cyclic tables to be transferred,

although in future works, the mechanism we implemented to transfer Lua

functions could be used as a model to implement a solution that removes this

limitation. Because the limitations of the mechanism do not represent a loss in

flexibility, its incorporation to Luaproc facilities the transfer of tables between
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Lua processes.

We next implemented a mechanism for transferring userdata between Lua

processes, ensuring that they are only accessed by the receiver Lua process.

If the userdata requires specific handling, the programmer can register the

transfer functions to be used. Otherwise, the mechanism transfers any userdata

in a predefined way.

The requirements defined by regudata on the table it accepts as an

argument allow all the transfer functions provided by a library to be registered

in a simple way. The author of the library may put together these functions in

a table, and export a transf udata function that returns this table. Moreover,

regudata allows a programmer to take transfer functions separately and make

up a table fitting these requirements with them. This introduces flexibility in

registering transfer functions.

The transfer functions must transfer an userdata maintaining no links

with the sender Lua process, thus avoiding that the sender’s lifecycle affects the

userdata’s structure. In order to allow the proper manipulation of a transferred

userdata, these functions associate the userdata metatable to the transferred

object, thus requiring the library creating the userdata to be loaded in the

receiver Lua process. The use of different transfer functions for sending and

receiving userdata allows the programmer to define different transfer logics for

each of these operations.

The use of transfer functions incorporates flexibility to our mechanism,

as any userdata can be transferred regardless of its structure. To transfer an

userdata, the transfer mechanism uses the name of its metatable. Because in

versions prior to Lua 5.3 the metatables do not store its name, we require that

the metatables of userdata to be transferred in such versions store its name.

Transferring Lua functions was the next goal in our work. The mechanism

we implemented allows transferring most basic Lua types as upvalues, including

those which perform recursive calls to the corresponding function. As we cannot

serialize C functions, we decided to look for the equivalent functions in the

receiver Lua state, as an alternative for transferring them as upvalues. This

gives rise to the main requirement of this mechanism: the libraries associated to

those C functions which are employed by the transferred Lua function must be

loaded in the Lua processes involved in the transfer. This requirement does not

represent a disadvantage, as it is a characteristic of mechanisms transferring

those values that maintain a link with libraries loaded in the Lua states where

they are stored.

The alternative we considered for transferring C functions as upvalues,

mentioned in Section 3.2.3, also allows us to transfer them as values of a
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message. Therefore, we do not necessarily have to transfer C functions as

upvalues of a Lua function.

By using our mechanism in the introducing scenario mentioned in Section

3.1.3, we may define routines in the distributor Lua process and send them

to the worker Lua processes, which simply execute the received routine.

Furthermore, if it were necessary to customize the execution of a routine by

changing the values stored in some of its upvalues, this alternative allows us

to do so without the intervention of the worker Lua process responsible for

executing it.

In such scenarios, the implemented mechanism allows us to define most

of the functioning logic of the application in the distributor Lua process,

facilitating modifications. For this sample application, the utility of this

mechanism is not to provide performance improvements, but to provide

flexibility.

The mechanism for asynchronous message sending stores the messages

in transit in a Lua state, thus allowing a sender Lua process to continue its

execution without having to wait for the message to be consumed. We tried to

incorporate this functionality to Luaproc making the fewest possible changes to

its API. If we want to create an asynchronous channel, we only have to pass an

extra parameter to the newchannel function. The send/receive and delchannel

functions can be employed to send/receive messages and destroy asynchronous

channels respectively, with no modifications on their use. The programmer only

has to choose between a synchronous or asynchronous channel to define the

kind of sending to be performed. Furthermore, not to make changes on the

library’s API allows using this version of Luaproc in already implemented

applications without causing compatibility issues.

In Luaproc, the application will remain active until all Lua processes have

terminated; similarly, with the asynchronous extension, an application will

remain active until all the messages sent asynchronously have been received.

This is important because such messages may store userdata, which need to

be finalized properly.

Moreover, this mechanism demands less memory resources than the

simulator one, because it employs a single Lua state for storing messages in each

asynchronous channel, instead of creating a new Lua state for each sending.

However, the fact that no other Lua process can interact with an asynchronous

channel while a Lua process accesses its corresponding container Lua state may

affect the communication through asynchronous channels, because the longer

the time it takes for send to perform the copy of the sent message, the longer

will be the time in which all the Lua processes attempting to interact with this
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channel will remain blocked.

One final objective defined in our work consists of providing support for

the collective communication operations among Lua processes, by incorporat-

ing the barrier function to the Luaproc library. In order to evaluate the benefits

provided by this extension when implementing such operations, we established

a comparison between implementations of the scatter operation using both the

mechanism simulating a barrier and the barrier function itself.

For this, we implemented two functions (let’s call them scattersend and

scatterrecv) simulating sending and receive scatter operations. The scattersend

function divides the collection of items to send into n groups, and sends them

to the n receiver Lua processes. It then sends n notifications to a barrier

channel; that is, a channel where the receiver Lua processes wait for the arrival

of the remaining ones, after receiving their corresponding elements. Moreover,

scatterrecv receives the sent items and waits for a notification to arrive, through

the barrier channel, indicating that the Lua process executing this function

may resume its execution. This description corresponds to the implementation

of the scatter operation, which employs the mechanism simulating a barrier.

Instead of sending and receiving notifications through a barrier channel, the

scattersend and scatterrecv functions in the second implementation execute

the barrier function on this channel.

We performed a test by employing both implementations. In this test,

the application consists of a Lua process distributing the elements of a table

on a set of Lua processes, by using the scatter operation. The goal of the test

was to establish a comparison between the execution times obtained by both

implementations, after distributing a specific table several times. As a result,

the implementation using the barrier function achieved a better performance

regarding to that achieved by the simulating mechanism. As we mentioned

in Section 3.2.5, the fact that this mechanism performs several calls to the

send and receive functions for exchanging notifications could imply a greater

number of context switches in comparison to those required by the barrier

function, thus influencing in the results obtained in this test.

This extension basically minimizes the number of messages exchanges

required for synchronizing the executions of a set of Lua processes, thus con-

stituting an efficient synchronization mechanism on which collective commu-

nication operations can be implemented. Furthermore, the implementation of

the barrier function avoids creating specific channels for performing this oper-

ation, thus allowing greater simplicity and flexibility in designing the logic of

a concurrent application using collective communication operations.
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4
Experiments and Results

In this chapter, we will use the extensions incorporated to Luaproc in imple-

menting a set of test applications to evaluate to what extent these extensions

make the use of Luaproc in such scenarios more appropriate. We will first

see how the direct transfer of tables allows concurrent applications perform-

ing large amounts of table exchanges between Lua processes to achieve good

performance. Next, we see how the asynchronous message sending allows con-

current applications to take advantage of the benefits provided by parallelism.

Finally, we test the proper functioning of the mechanisms implemented for

transferring userdata and Lua functions.

We performed all the tests presented in this chapter on a desktop

computer with the following features: Intel(R) Core(TM) processor (i7-4790,

3.60 GHz, 4 Cores), 8 GB (RAM) and a 64-bit architecture. For those tests

in which we analyze demand for memory resources, we employ the lmprof [23]

tool. This is an automatic memory profiler that helps Lua programmers deal

with memory bloat. It provides detailed reports regarding the amount of

memory allocated for each of the functions executed within a chunk of Lua

code.

4.1
Direct transfer of tables

We conducted a test in order to evaluate to what extent the incorporation

of the direct transfer of tables to Luaproc may improve the performance of a

concurrent application. Using the current version of Luaproc and that resulting

from our modifications, we developed two implementations of a concurrent

solution to the knapsack problem (see Appendix A). The large number of table

exchanges between Lua processes required by this solution motivated us to use

it in our test. Because the current version of Luaproc does not support the

transfer of tables between Lua processes, the implementation using it employs

the Luabins library for serializing/deserializing them.

We compared the two implementation measuring total execution time

for each of them with different number of workers (Lua processes employed
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for computing the solution) and threads (kernel threads created by using the

POSIX Thread library).

We executed each run 3 times, taking as the execution time (T) of the run

the average result. For all the executions we employed an instance consisting

of: a knapsack with 12x103 units of capacity; and 8x103 objects, each of them

with an associated weight of 3 units. Objects with odd and even identifiers

have an associated value of 50 and 5 units, respectively. In order to know how

irregular each group of executions is, we computed the standard deviation (SD)

associated with their resulting times. Table 4.1 shows the execution times (in

seconds) obtained by these implementations in each run. The implementation

employing the current Luaproc library is denoted by Current, while Modified

is used for that employing the Luaproc’s version modified by us. The “%”

column shows, in percent, the improvement provided by the mechanism we

implemented relatively to the Current implementation.

Threads Workers
Current Modified

%
T(s) SD T(s) SD

4

4 30.33 0.47 18.33 0.47 39.5

8 29.0 0.82 20.0 0.82 31.0

16 40.33 0.47 23.33 0.47 42.1

32 76.33 0.94 40.33 0.47 47.1

8

4 34.0 0.82 23.0 0.82 32.3

8 31.33 0.47 20.67 0.47 34.0

16 41.33 0.94 23.0 0.82 44.3

32 67.33 0.47 38.0 0.82 43.5

16

4 32.67 0.47 20.33 0.47 37.7

8 33.33 0.94 21.67 0.94 35.0

16 44.67 0.47 25.33 0.47 43.2

32 75.67 0.94 43.33 0.94 42.7

Table 4.1: Improvement provided by the direct transfer of tables.

Regardless of the implementation employed for obtaining them, the

results shown in Table 4.1 show the existence of two patterns regarding the

number of both threads and workers to be used in a run. The first one shows

us that an increase in the number of threads does not improve the resulting

performance. In preemptive multithreading, the system performs context

switches among threads in order to alternate their executions. Therefore,

creating a large number of threads introduces a greater number of context

switches, which represents an overhead for the performance of an application.

Furthermore, this implies for some threads, a greater time interval between
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two consecutive executions. This causes the execution of the corresponding

process to be slower, also affecting the performance of the application. Usually,

a number of threads near to the number of cores in the system offers the best

performance.

The second pattern indicates that an increase in the number of workers

affects the performance achieved on a run. Something similar happens here,

but the context switches to alternate the executions of the workers are now

controlled by the scheduler implemented in Luaproc. In addition, a greater

number of workers introduces a greater amount of message exchanges to the

application, which also affects its performance. Because increasing the number

of either threads or workers does not provide better performance for any of

the implementations, we can establish the comparison between them by using

the results shown in Table 4.1. By taking into account the best performance

achieved by each implementation, we obtain Figure 4.1. It shows how the

Current implementation takes, as a average, almost twice the time required

by the Modified implementation to compute the solution of the problem.

Figure 4.1: Performance of Luaproc when transferring tables.

When implementing an application, ensuring the minimum possible ex-

ecution time is not the only point to consider. Demand for memory resources

may restrict the usage scenarios of an application, since in those with insuf-

ficient memory the application will not reach the expected performance and

could even crash. Because the serialization process performed by Luabins al-

locates a memory block to store the string representation of a table, the de-

mand for memory resources associated to the Current implementation could

suffer an increase in comparison to that associated to the Modified implement-

ation. Therefore, we established a comparison between the amount of memory
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required by each of these implementations when executed on the instances

shown in Table 4.2.

Instances Knapsack’s capacity
Amount
of objects

Weight of
each object

A 1000 500 4

B 3000 2000 3

C 6000 4000 3

D 9000 6000 3

Table 4.2: Instances of the knapsack problem.

For all these instances, the values associated to the objects are the same

as those we established for the instance we defined initially.

As the table exchanges between Lua processes occur when computing the

matrix A, we focus on measuring the memory required by each implementation

from the moment where workers begin computing the first row of A to the

moment where each of them sends its corresponding collection rows to the main

Lua process. We executed each implementation a total of 3 times on each of the

above instances, and took the average required memory as a measure. Table 4.3

shows the demand for memory resources associated to each implementation.

The “%” column shows the percent that the amount of memory required by

the Modified implementation represents regarding to that associated to the

Current implementation.

Instances
Current Modified

%
(Mb) (Mb)

A 53.6 20.6 38.42

B 670.7 316.7 47.22

C 2675.9 1258.4 47.03

D 6387.8 3762.6 58.9

Table 4.3: Memory required by Luaproc when transferring tables.

The results in Table 4.3 show that, as we had assumed, the serialization

process increases the demand for memory resources in comparison to that

required by the mechanism we implemented, when transferring a table. In the

Current implementation, the serialization process is performed by calling the

save function. For instance D, this function requires approximately 3004488840

bytes (2865.3 Mb) of memory in a total of 36004 calls. This amount of memory

approximates the difference between those required by both implementations

when processing the instance D, which corresponds to the fact that such

implementations only differ on whether the serialization process is employed.
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The improvement shown by the direct transfer of tables, regarding to

both execution time and amount of required memory associated to an instance

may vary depending on the alternative employed for serializing/deserializing

a table. However, beyond the fact that direct transfer of tables has achieved

better results when compared with those associated to Luabins, this test shows

that the use of serialization/deserialization processes for transferring a table

implies an increase in both the time interval and the amount of memory

resources.

4.2
Sending messages asynchronously

In this section, we will evaluate the impact that asynchronous message

sending has on those applications which are implemented following a provider-

/consumer style. For this, we defined a scenario and established comparisons

between different implementations of a concurrent solution described below.

In this scenario we want to achieve two different objectives. The first is

to sort a set of integer arrays, which are previously stored in files. Each file

stores an array per line, varying the number of lines from one file to another.

The second objective is to obtain information about the set of arrays. In this

test, the amount of arrays to be processed, the amount of arrays with a same

length, minimum and maximum integer found globally in such arrays and

amount of both odd and even numbers in the set, make up the summary we

want to obtain from the set to be processed. We would also like to obtain this

summary as soon as possible, that is, without having to wait for the whole set

of arrays to be processed.

We could define an arbitrary number of Lua processes processing the

arrays stored in such files and gathering the required information. In this way,

we will not be able to achieve our second goal. We need to separate the task of

gathering the information from that of sorting arrays. We then implemented

a concurrent solution, by following a provider/consumer style.

In this solution, each file is handled by one provider. This provider reads

a line from a file and draws from it the information required to make up the

summary. It then sends this line, which actually is an array, to an available

consumer. Once the consumer receives an array, it is responsible for sorting it

and storing the result in a file.

The application routine defines an arbitrary number of providers and

consumers, in addition to a main Lua process which assigns the reading of a

file to a provider. This provider reads a file line by line, sending each of them

along with the name of a file to consumers. A provider draws the information
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required to make up the summary at each reading, and once it has finished

reading a file, performs the same routine with the next one. Once all files have

been read, the providers send the data they were able to gather to the main

Lua process, which composes the required summary. On the other hand, a

consumer receives a message and sorts the corresponding array. Once it has

stored the resulting array in a file, the consumer becomes available to process

the next one.

Although the provider/consumer style allows us to achieve our goals

separately, the semantics of message sending may influence the time it takes to

obtain the summary. Therefore, we developed several implementations of the

above routine by employing both a synchronous and an asynchronous message

sending, and compared the time each of them takes. For the asynchronous

sending, we consider both the simulating mechanism and the one implemented.

Each run of the concurrent solution is defined by the number of providers

and consumers to be employed. In all the runs we employed a same data set,

which is composed of 4 files. Each of them stores between 31505 and 31510

arrays, each of which in turn stores between 595 and 600 integers. In each case,

we considered the time that it takes to obtain the summary. We took this time

as a performance measure for an implementation. In order to measure a time

interval, we employed the time function that the os Lua library provides. We

again took the average result (P) of three executions. We employed 4 kernel

threads in all the executions, as usually employing an amount of these close to

the number of cores in the system provides the best results. Table 4.4 shows

the performance achieved by these implementations in each of the defined runs.

We employ Sync, Async sim, and Async for denoting the implementation using

a synchronous, simulated asynchronous or asynchronous sending, respectively.

This table also shows the time (T) that an implementation took for

sorting the set of arrays, and in “%” column, the improvement provided by

the mechanism we implemented regarding the best performance obtained by

employing either the synchronous or simulated asynchronous sending. In this

way, we can see how far in advance we can get the summary information in

relation to the time the implementation takes for sorting all the arrays.

We observe that for both synchronous and asynchronous sending a

continuous increase in the number of consumers does not provide better

performance. Increasing the number of consumers increases the number of

context switches that the Luaproc’s scheduler must perform, which has a

negative influence on the gain we could get from processing a greater number of

arrays concurrently. Increasing the number of providers would not be useful to

us, because in this test we employ only 4 files. Therefore, in the comparison, we
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Providers Consumers
Sync Async sim Async

%
P(s) T(s) P(s) T(s) P(s) T(s)

1

2 53.0 53.0 28.33 40.33 20.33 39.33 28.2

4 32.33 32.33 31.67 31.67 22.67 25.66 28.4

8 29.33 29.33 37.33 37.33 29.33 29.33 0.0

16 29.67 29.67 38.33 38.33 29.33 29.33 1.1

2

2 37.33 37.33 13.67 38.66 11.33 41.33 17.0

4 33.67 33.67 22.67 25.66 19.33 25.33 14.7

8 24.67 24.67 24.67 24.67 20.33 24.33 17.5

16 24.67 24.67 25.0 25.0 20.67 24.66 16.2

4

2 38.33 38.33 10.33 41.33 9.67 40.66 6.4

4 23.67 23.67 13.67 15.66 11.33 26.33 17.0

8 24.67 24.67 25.67 25.67 11.67 26.66 52.7

16 25.0 25.0 26.0 26.0 12.67 27.66 49.3

Table 4.4: Synchronous and asynchronous sending in Luaproc.

take into account those runs in which each of these implementations achieves

its best performance. Figure 4.2 illustrates the performances achieved by each

implementation in those runs where 4 providers are employed.

Figure 4.2: Synchronous and asynchronous sending in Luaproc.

This figure shows us that employing a synchronous sending in such a

scenario, and generally in those where an independence among the executions

of two different tasks communicating with each other is required, is not

suitable. In this scenario, sorting the set of arrays takes a grater time interval in

comparison to drawing the required information from them. As we mentioned

in Section 3.1.4, two Lua processes communicating through a synchronous

sending must synchronize to transfer a message. This is the reason why the
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implementation sending messages synchronously takes a greater time interval

for making up the summary in comparison to the others.

The use of an asynchronous sending is ideal for these scenarios. It allows

two Lua processes to communicate without affecting the executions of their

corresponding tasks. The fact that messages sent asynchronously are stored

in a channel or received by temporary Lua processes, allows providers to send

an array to consumers and immediately begin processing the next one. The

obtained results reflect the benefits of this characteristic of the asynchronous

sending.

Figure 4.2 shows that both implementations sending messages asynchron-

ously achieve a similar performance regarding to the times they take for making

up the summary. However, the mechanism simulating an asynchronous send-

ing creates temporary Lua processes continuously, which could increase the

demand for memory resources by the implementation employing it. Moreover,

storing a message in transit in a container Lua state may cause the asyn-

chronous messages sending to require a greater amount of memory resources

in comparison to the synchronous sending. We then established a comparison

between these implementations, regarding to the demand for memory resources

associated to each of them when sending messages. In order to evaluate how

the corresponding demands vary regarding to the number of arrays to be sor-

ted, we defined the data sets shown in Table 4.5. Each of them only differs on

the number of arrays stored in each file, regarding to the data set we defined

initially.

Data sets Number of arrays
stored in each file

A In range [5505..5515]

B In range [10505..10515]

C In range [20505..20515]

D In range [31505..31515]

Table 4.5: Sets of integer arrays.

We executed each implementation a total of 3 times on each of the

above data sets, taking the demand for memory resources resulting in each

execution. The average amount of memory required for processing each data set

is shown in Table 4.6. The “%” column shows the percent that the amount of

memory required by the implementation using the mechanism we implemented

represents, regarding to that associated to the simulating mechanism.

As we had assumed, the continuous creation of temporary Lua processes

by the simulating mechanism increases the demand for memory resources
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Sets
Synchronous Simulating Asynchronous

%
(Mb) (Mb) (Mb)

A 40.0 89.3 50.7 53.84

B 80.3 170.4 96.8 53.83

C 153.0 332.5 189.0 53.83

D 223.5 510.9 290.3 53.83

Table 4.6: Memory required by Luaproc when sending messages.

associated to the implementation employing it. A Lua process is created by

calling the newproc function, which requires approximately 1828 bytes (1.78

KB) of memory in its execution. When the number of calls to this function is

large, the amount of memory required by this becomes remarkable. According

to reports provided by the lmprof tool, for the data set D, the newproc

function required about 230391980 bytes (219.7 Mb) of memory in a total

of 126035 calls. This amount of memory approximates the difference between

those required for both implementations when processing the data set D, which

corresponds to the fact that such implementations only differ on whether this

function is employed. Moreover, the mechanism we implemented creates only

one Lua state in each asynchronous channel, to store messages in transit.

Table 4.6 also shows that buffering messages in the asynchronous mes-

sages sending implies an extra cost. When there are no receiver Lua processes

waiting for messages in an asynchronous channel, the sender process stores the

message in the container Lua state. When any receiver Lua process eventu-

ally reaches this channel, Luaproc again copies the message from the container

Lua state to this process. This does not happen in the synchronous sending,

as sent messages are always stored in the receiver Lua states. That different is

the reason why the asynchronous messages sending tends to require a greater

amount of memory resources than the synchronous one.

Employing this scenario for the experiment allowed us to test the proper

functioning of our mechanism and observe how the asynchronous sending fa-

cilitates the use of the parallelism in multiprocessing environments. Moreover,

the study performed on the amount of memory required by the simulating

mechanism showed us that an alternative initially considered for implement-

ing our mechanism was not adequate. Similarly to the simulating mechanism,

this alternative creates temporary Lua states for each asynchronous sending.
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4.3
Distributed web server

We employed the mechanisms described in Sections 3.2.2 and 3.2.3,

which are intended to transfer userdata and Lua functions respectively, for

implementing a test application. Our main purposes with this application were

to evaluate the proper functioning of these mechanisms and to illustrate their

utility.

The test application simulates a distributed web server, which is com-

posed of a controller Lua process and a set of worker Lua processes. This server

offers a set of services, which are defined in the controller and implemented

by using Lua functions. The controller is responsible for establishing a connec-

tion with a client application and, depending on the service requested by it,

transferring both the corresponding function and the established connection

to one of the workers. Moreover, a worker executes the received function as

many times as required by the client. In each execution, a worker employs the

transferred connection for either receiving the input data of this function or

sending the corresponding response.

The set of services offered by this server is composed of two algorithms for

sorting arrays of integers. Because such algorithms may use different criteria

for comparing two integers, we also defined two Lua functions representing

comparison criteria. In this way, we can employ a same algorithm for sorting

a set of integers according to either the parity or the sign that these have.

Defining comparison criteria for the sorting algorithms allowed us to check

that Lua functions with at least one upvalue were transferred in a proper way.

When a connection attempt is accepted by the controller, the client

application selects both the sorting algorithm and the comparison criteria

it needs to employ. The controller then customizes the execution of the

corresponding function, by updating the upvalue storing the function used

for comparison, and sends it along with the established connection to an

available worker. This worker can then receive an array to be sorted through

the transferred connection, execute the sorting algorithm on it, and send back

the sorted array. Once it has finished processing all the client’s requests, a

worker notifies to the controller about its availability.

The distributed web server allows established connections to be handled

concurrently by the workers. These client-server connections are established

through Luasocket’s sockets, which are instances of userdata. Therefore, we

need to employ the userdata transfer mechanism for transferring the estab-

lished connections between coordinator and workers. If userdata could not be

transferred, instead of having a distributed web server we would have a sequen-
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tial one, in which only one connection could be processed at a time regardless

of whether the server was executed in a multiprocessing environment or not.

Despite executing the services requested by a set of clients concurrently, a

sequential server can only receive a request or send a response at a time.

Therefore, a benefit provided by the userdata transfer for this application is to

make use of the processing capacity of multiprocessing environments in order

to provide better response times to the client applications.

We executed the distributed web server and established connections

with some client applications, which are modified instances of the application

described in the previous section. We performed some modifications on that

application, so that the consumers it defines employ the services provided by

this server, for sorting arrays of integers. Each of the client applications selected

the sorting algorithm to employ and, consequently, sent several arrays to be

sorted. As a result, these arrays were sorted by the workers and sent back

to these applications. In this way, we checked that both userdata and Lua

functions were transferred between Lua processes successfully.
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5
Conclusion

In this work we incorporated a set of functionalities to Luaproc[25], as

alternative solutions to limitations that the library still presents. Some of these

functionalities are aimed at expanding the support to basic Lua types on

messages transfer, while others are intended to make the use of Luaproc more

suitable for the exploration of parallelism.

Because the table, userdata and function data types are often employed

in the implementation of Lua applications, we incorporated mechanisms to

support them on messages transfer to Luaproc. On the other hand, providing

support for both an asynchronous message sending and the implementation of

collective communication operations allows for a better use of the processing

capacity of multiprocessor environments by concurrent applications.

The direct transfer of tables between Lua processes removes the need to

serialize a table before transferring it. By avoiding the serialization/deserializ-

ation processes, this mechanism reduces both the time interval and the amount

of memory resources that transferring a table requires, in comparison to using

a serializer mechanism.

We implemented a mechanism to transfer userdata, which ensures that

these are accessed by only one Lua process at a time. The fact that the

mechanism optionally employs transfer functions allows any userdata to be

transferred regardless of its structure, as well as employing different transfer

logics when sending and receiving an userdata. For those userdata that do

not require updates on their structure once transferred, a predefined transfer

function is available. This exempts the programmer from providing transfer

functions in that cases. The mechanism also defines simple interfaces for both

the implementation of transfer functions and registration of these, thus making

it easier for programmers to transfer userdata between Lua processes.

A function to be transferred can have all those basic Lua types supported

in the messages exchange so far as upvalues. We implemented an alternative to

transfer upvalues storing C functions, since we cannot serialize these functions.

As a consequence, we may now transfer C functions as part of messages, under

certain conditions.
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To support asynchronous message sending, we created a new kind of

channel in Luaproc. This channel acts as a container for messages in transit,

so that the Lua processes sending messages through this channel may continue

their executions without having to wait for receiver Lua processes to arrive.

This removes the limitation that the synchronous sending often imposes on

the concurrency realizable by an application, and therefore, facilitates the

use of parallelism in multiprocessing environments. We tried to make as

few modifications as possible in the Luaproc’s API when incorporating the

corresponding mechanism, avoiding compatibility issues in the use of the

library for already implemented applications. The fact that the mechanism

does not remove a message in transit until it has received a confirmation of

receipt by the receiver Lua process gives guarantees on a safe delivery of those

messages sent asynchronously.

The incorporation of the barrier function to Luaproc provides an efficient

mechanism for establishing synchronization points among Lua processes, which

is a key piece for the implementation of collective communication operations.

Instead of employing synchronous channels and coordinator Lua processes,

using this function decreases the number of message exchanges, and therefore

the number of context switches, that synchronizing the executions of several

Lua processes requires. Moreover, the characteristics of the implementation of

this functionality allow us to transfer messages and establish synchronization

points on a same channel, without generating conflicts in the communication

of the involved Lua processes.

Each of the implemented functionalities, with its corresponding require-

ments and limitations, contributes to expanding the use of Luaproc to new

scenarios, and therefore, the support for concurrency that it offers to the Lua

language. However, we can keep increasing the power of Luaproc. Incorpor-

ating functionalities aimed at making it easier for programmers to implement

concurrent applications or improve the performance of those functionalities

already defined are some of the tasks we may perform for such a purpose.

Next, we present briefly some insights to explore.

Because a Lua process is an user-defined C type storing basically a Lua

state, we could use userdata for handling its execution from the application

level. This control may include associating priority levels to the execution

of a Lua process. An alternative to do so is to incorporate a functionality

to such userdata (through its metatable) allowing us to assign a certain

priority to the execution of a Lua process. This may involve making some

changes to the Luaproc’s scheduler, so that it can take these priorities into

account when executing Lua processes. The fact that we can convey to
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Luaproc our preferences on the execution of several sets of tasks would increase

even more the flexibility provided by Luaproc when implementing concurrent

applications.

We could also take control over the lifecycle of a Lua process, that is,

make Lua processes cancellable. Currently, if we wanted a Lua process to finish

its execution due to factors external to its execution scope (e.g. a task to be

performed by several Lua processes, this process included, is accomplished by

some other), we should implement stop conditions using messages exchange.

Having control of a Lua process through an userdata, an alternative that we

could consider is to incorporate a functionality to such userdata to notify a

Lua process that it must finish its execution. Since a Lua process must employ

a way for finishing its execution (if necessary), we could provide a mechanism

for such a purpose as a new function or as a part of those functions already

defined by Luaproc. In this way, the execution of a cancelled Lua process would

end when it executes some of the functions registered by Luaproc (e.g. send,

receive). In this case, no messages exchange to finish the execution of a Lua

process from outside is required.

Once these functionalities have been implemented, we would get a kind

of ownership on the execution of a Lua process. Considering that we are now

able to transfer userdata, it would be interesting to investigate whether both

handling the execution of a Lua process and transferring such an ownership

offer some benefit (e.g. flexibility, simplicity) in implementing concurrent

applications.

Moreover, we could re-use a Lua state for several asynchronous channels.

This may allow an application sending messages asynchronously to require

less amount of memory resources than that it may require using the current

asynchronous sending.

Finally, we could evaluate the performance of the mechanism implemen-

ted to support the asynchronous sending on larger scale applications. This

would allow us to study the impact the fact that no other Lua process can

interact with an asynchronous channel while a Lua process accesses its corres-

ponding container Lua state may cause on that performance.
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A
Knapsack Problem

The knapsack problem[13] is a well known NP-Complete problem in

combinatorial optimization. We may define it as follows: given a set of items,

each of them with an associated identifier, weight and value; the goal is to

determine the identifiers of the objects conforming a collection so that its

total weight is less than or equal to a given limit and its total value, gained by

means of each object, is as large as possible.

By using dynamic programming, we may implement a solution for the

knapsack problem that runs in pseudo-polynomial time. Let’s assume that the

weights w1, w2, w3, . . . , wn, and the values v1, v2, v3, . . . , vn, are strictly positive

integers. An nxC matrix A (named solution matrix) is defined, where: C is the

capacity of the knapsack; n, the amount of objects; and A[i, c], represents the

maximum value that can be gained using items whose identifiers are less than

or equal to i and leaving the knapsack with weight less than or equal to c.

A[i, c] is defined recursively as follows:

A[i, 0] =

{
-1, if i6=0

0, if i=0

}

A[i, c] = max(A[i− 1, c], A[i− 1, c− wi] + vi)

The solution can then be found by computing A[i, c] for all items and

possible capacities.

Based on this solution, we designed a concurrent one to solve the

knapsack problem. Next, we briefly describe it.

Similarly to the dynamic solution, we execute a set of steps, in each

of which a row of the matrix A is computed as defined above. However, the

solution involves an arbitrary number of worker Lua processes (let’s call them

workers), on which a block distribution [12] of matrix A is applied. In this way,

each worker is responsible for computing the values associated with a set of

cells (let’s call it fragment), in each step. In order to determine a fragment in

step i, a worker must access the row computed in the previous step. Therefore,

each worker must share the fragment it computed in step i−1 before beginning
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the step i. Each worker defines a collection prevrow for storing in each step,

all those shared fragments to which it must access. A worker also defines a

collection rows storing the fragments that it computed in each step, which will

be used for rebuilding the matrix A, once all the rows have been analyzed.

A worker starts the processing corresponding to step i, by checking

whether at least one row of A must be analyzed. If so, it shares (sends) the

fragment computed in the previous step through a chshare channel, which is

created specifically for each worker. A worker shares a fragment as many times

as workers requiring access it there. It then receives and stores in prevrow those

fragments shared by workers responsible for processing the columns previous

to theirs. A worker uses both fragments in prevrow and that it computed in

step i − 1 for computing the fragment corresponding to step i. Once it has

computed such a fragment, a worker stores the fragment it computed in step

i− 1 in rows and continues with the step i + 1.

If all the rows of the matrix A have been computed, a worker adds the

fragment computed in the last step to the collection rows and sends this to

the main Lua process. This uses the collections rows sent by all the workers

for rebuilding the matrix A, which it then employs for determining the set of

objects that generates the greater possible gain without exceeding the capacity

of the knapsack.
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B
Functions for transferring userdata

B.1
An example of a sender transfer function for Luasocket’s sockets

1 static int luaproc_send_socket(lua_State *L){

2

3 /* userdata ’s metatable name */

4 const char *mt_name = NULL;

5

6 size_t len;

7

8 /* size of the memory block associated to the userdata to

be transferred */

9 int size_udata = 0;

10

11 /* validating the function ’s parameters */

12 luaL_checktype(L, 2, LUA_TUSERDATA);

13 luaL_checktype(L, 3, LUA_TLIGHTUSERDATA);

14

15 /* getting the function ’s parameters */

16

17 /* "transfer_type" may be either "1" (indicates the

userdata is being transferred to another Lua processs)

18 or "3" (indicates the userdata is being transferred to a

container Lua state)*/

19 int transfer_type = luaL_checkinteger(L, 1);

20

21 /* getting a pointer to the userdata to be transferred */

22 const void *udata_pointer = lua_touserdata(L, 2);

23

24 /* getting a pointer to the receiver Lua state */

25 lua_State *Lto = (lua_State *) lua_touserdata(L, 3);

26

27 /* getting the userdata ’s metatable name in the sender Lua

state */

28 lua_getmetatable(L, 2);

29 lua_pushstring(L, "__name");

30 lua_rawget(L, -2);
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31

32 mt_name = lua_tolstring(L, -1, &len);

33

34 /* getting the userdata ’s metatable in the receiver Lua

state */

35 luaL_getmetatable(Lto , mt_name);

36

37 if(lua_isnil(Lto , -1)){

38 /* userdata ’s metatable is not registered in the

receiver Lua state */

39

40 if(transfer_type == 1){

41 /* userdata is being transferred to another Lua state

*/

42 /* this function must leave error messages in both Lua

states */

43 lua_pushnil(L);

44 lua_pushstring(L, "userdata ’s metatable must be

registered in the receiver Lua process");

45

46 lua_settop(Lto , 1);

47 lua_pushnil(Lto);

48 lua_pushstring(Lto , "userdata ’s metatable must be

registered in the receiver Lua process");

49

50 return 2;

51 }

52 else{

53 /* userdata is being transferred to a container Lua

state */

54 /* this function must create (or get) the metatable to

be associated to the resulting userdata */

55 lua_pop(Lto , 1);

56 luaL_newmetatable(Lto , mt_name);

57

58 /* storing the metatable ’s name , in versions prior to

Lua 5.3 */

59 #if (LUA_VERSION_NUM < 503)

60 lua_pushstring(Lto , "__name");

61 lua_pushlstring(Lto , mt_name , len);

62 lua_rawset(Lto , -3);

63 #endif

64 }

65 }

66

67 /* getting the size of the memory block associated to the

userdata , in the sender Lua state */
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68 size_udata = lua_rawlen(L, 2);

69

70 /* creating the resulting userdata in the receiver Lua

state */

71 p_tcp tcp = (p_tcp)lua_newuserdata(Lto , size_udata);

72

73 /* copying the userdata ’s structure to the receiver Lua

state */

74 memcpy ((void *)tcp , udata_pointer , size_udata);

75

76 /* updating the structure of the resulting userdata */

77 p_io io = &tcp ->io;

78 io ->ctx = &tcp ->sock;

79

80 p_buffer buf = &tcp ->buf;

81 buf ->io = io;

82 buf ->tm = &tcp ->tm;

83

84 /* associating the corresponding metatable to the

resulting userdata */

85 lua_pushvalue(Lto , -2);

86 lua_setmetatable(Lto , -2);

87 lua_remove(Lto , -2);

88

89 /* if no error occurs , a sender transfer function returns

no values */

90 return 0;

91 }

B.2
An example of a receiver transfer function for Luasocket’s sockets

1 static int luaproc_recv_socket(lua_State *L){

2

3 /* userdata ’s metatable name */

4 const char *mt_name = NULL;

5

6 /* size of the memory block associated to the userdata to

be transferred */

7 int size_udata = 0;

8

9 size_t len;

10

11 /* validating the function ’s parameters */

12 luaL_checktype(L, 3, LUA_TLIGHTUSERDATA);

13

14 /* getting the function ’s parameters */
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15

16 /* "transfer_type" may be either "2" (indicates the

userdata is being received from another Lua processs)

17 or "4" (indicates the userdata is being received from a

container Lua state) */

18 int transfer_type = luaL_checkinteger(L, 1);

19

20 /* getting the index within the stack of the sender Lua

state in which the userdata to be transferred is stored

*/

21 int udata_idx = luaL_checkinteger(L, 2);

22

23 /* getting a pointer to the sender Lua state */

24 lua_State *Lfrom = (lua_State *) lua_touserdata(L, 3);

25

26 /* getting a pointer to the userdata to be transferred */

27 const void *udata_pointer = lua_touserdata(Lfrom ,

udata_idx);

28

29 /* getting the userdata ’s metatable name in the sender Lua

state */

30 lua_getmetatable(Lfrom , udata_idx);

31 lua_pushstring(Lfrom , "__name");

32 lua_rawget(Lfrom , -2);

33

34 mt_name = lua_tolstring(Lfrom , -1, &len);

35

36 /* getting the userdata ’s metatable in the receiver Lua

state */

37 luaL_getmetatable(L, mt_name);

38

39 if(lua_isnil(L, -1)){

40 /* userdata ’s metatable is not registered in the

receiver Lua state */

41

42 if(transfer_type == 2){

43 /* userdata is being received from another Lua process

*/

44 /* this function must leave error messages in both Lua

processes */

45 lua_pushnil(Lfrom);

46 lua_pushstring(Lfrom , "userdata ’s metatable must be

registered in the receiver Lua process");

47 }

48

49 /* if the userdata is being received from a container

Lua state */
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50 /* this function cannot leave an error message in the

container Lua state */

51

52 lua_settop(L, 1);

53 lua_pushnil(L);

54 lua_pushstring(L, "userdata ’s metatable must be

registered");

55

56 return 2;

57 }

58

59 /* getting the size of the memory block associated to the

userdata , in the sender Lua state */

60 size_udata = lua_rawlen(Lfrom , udata_idx);

61

62 /* creating the resulting userdata in the receiver Lua

state */

63 p_tcp tcp = (p_tcp)lua_newuserdata(L, size_udata);

64

65 /* copying the userdata ’s structure to the receiver Lua

state */

66 memcpy ((void *)tcp , udata_pointer , size_udata);

67

68 /* updating the structure of the resulting userdata */

69 p_io io = &tcp ->io;

70 io ->ctx = &tcp ->sock;

71

72 p_buffer buf = &tcp ->buf;

73 buf ->io = io;

74 buf ->tm = &tcp ->tm;

75

76 /* associating the corresponding metatable to the

resulting userdata */

77 lua_pushvalue(L, -2);

78 lua_setmetatable(L, -2);

79 lua_remove(L, -2);

80

81 /* leaving nothing in the sender Lua state */

82 lua_pop(Lfrom , 2);

83

84 /* if no error occurs , a receiver transfer function

returns the resulting userdata */

85 return 1;

86 }
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