
Daniel Alejandro Mesejo-León

Approximate Nearest Neighbor Search for the
Kullback-Leibler divergence

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
January 2018

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Daniel Alejandro Mesejo-León

Approximate Nearest Neighbor Search for the
Kullback-Leibler divergence

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática – PUC-Rio

Dr. Alexandre Roberto Rentería
Jobzi

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, January 9th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



All rights reserved.

Daniel Alejandro Mesejo-León

Graduated in Computer Science from the University of Ha-
vana (UH), Havana - Cuba in 2013. Joined the Master Pro-
gram in Informatics at the Pontifical Catholic University of
Rio de Janeiro (PUC-Rio) in 2015.

Bibliographic data
Mesejo-León, Daniel Alejandro

Approximate Nearest Neighbor Search for the Kullback-
Leibler divergence / Daniel Alejandro Mesejo-León; advisor:
Eduardo Sany Laber. – Rio de janeiro: PUC-Rio, Departa-
mento de Informática, 2018.

v., 59 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Engenharia Informática – Teses. 2. Divergencia
Kullback-Leiber;. 3. Busca de Vizinhos Mais Próximos;. 4. Ín-
dices Invertidos;. 5. Hash sensível a localidade;. 6. Árvores de
Bregman.. I. Laber, Eduardo Sany. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD:004

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



A Yeyi y a mi familia

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Acknowledgments

First and foremost I would like to thank my advisor Eduardo Sany Laber for
giving me the freedom to choose my own research topic and guiding me during
the whole process. Also to my co-workers at Jobzi, specially Paula Guedes and
Alexandre Renteria for their continuous support and advice. To my family for
always been there, in particular to my parents Angela and Alejandro. Last but
no least, I would like to thanks my wife Haydée for everything she does.

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Abstract

Mesejo-León, Daniel Alejandro; Laber, Eduardo Sany (Advisor).
Approximate Nearest Neighbor Search for the Kullback-
Leibler divergence. Rio de Janeiro, 2018. 59p. Dissertação de
mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

In a number of applications, data points can be represented as
probability distributions. For instance, documents can be represented as
topic models, images can be represented as histograms and also music
can be represented as a probability distribution. In this work, we address
the problem of the Approximate Nearest Neighbor where the points are
probability distributions and the distance function is the Kullback-Leibler
(KL) divergence. We show how to accelerate existing data structures such
as the Bregman Ball Tree, by posing the KL divergence as an inner
product embedding. On the practical side we investigated the use of two,
very popular, indexing techniques: Inverted Index and Locality Sensitive
Hashing. Experiments performed on 6 real world data-sets showed the
Inverted Index performs better than LSH and Bregman Ball Tree, in terms
of queries per second and precision.

Keywords
Kullback-Leibler divergence; Nearest Neighbor Search; Inverted

Index; Bregman Ball Tree; Locality Sensitive Hashing.
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Resumo

Mesejo-León, Daniel Alejandro; Laber, Eduardo Sany. Busca
Aproximada de Vizinhos mais Próximos para divergência
de Kullback-Leibler. Rio de Janeiro, 2018. 59p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Em uma série de aplicações, os pontos de dados podem ser repre-
sentados como distribuições de probabilidade. Por exemplo, os documentos
podem ser representados como modelos de tópicos, as imagens podem ser
representadas como histogramas e também a música pode ser representada
como uma distribuição de probabilidade. Neste trabalho, abordamos o pro-
blema do Vizinho Próximo Aproximado onde os pontos são distribuições de
probabilidade e a função de distância é a divergência de Kullback-Leibler
(KL). Mostramos como acelerar as estruturas de dados existentes, como a
Bregman Ball Tree, em teoria, colocando a divergência KL como um produto
interno. No lado prático, investigamos o uso de duas técnicas de indexação
muito populares: Índice Invertido e Locality Sensitive Hashing. Os experi-
mentos realizados em 6 conjuntos de dados do mundo real mostraram que
o Índice Invertido é melhor do que LSH e Bregman Ball Tree, em termos
de consultas por segundo e precisão.

Palavras-chave
Divergencia Kullback-Leiber; Busca de Vizinhos Mais Próximos;

Índices Invertidos; Hash sensível a localidade; Árvores de Bregman.
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1
Introduction

Nearest neighbor search (NNS) is one of the most important optimization
problems, with applications in a wide range of fields including, but not limited
to, machine learning, information retrieval and pattern recognition. Loosely
speaking, the problem is that of finding the point in a given set that is closest
(most similar) to a given point. The measure of closeness is, in general, a metric
distance or a well defined similarity. One of the first mentions of this problem
is attributed to Donald Knuth in vol. 3 of The Art of Computer Programming
(1973), who called it the post-office problem, referring to an application of
assigning the nearest post office to a residence. Concrete examples of NNS
problems, in the above mentioned fields are k-nearest neighbors classification
and regression, collaborative filtering, content-based image retrieval, coding
theory, among others.

There are many versions of the NNS problem, one of the most well-
known is the fixed-radius nearest neighbor (r-NN problem): given a query q,
a set of points P , a distance dist and a radius r the goal is to find pi ∈ P

so that dist(p, q) ≤ r. Another related version is the k nearest neighbor
search (k-NNS), or in a more formal manner: let U be the universe of points,
P = {p1 . . . pn} ⊂ U, a query q and a distance function dist : U × U → R,
the problem consists of finding k points pi for which dist(pi, q) is minimum.
If defined with respect to a similarity function s : U × U → R the problems
becomes the Top-k most similar problem (Top-k).

Obviously, these problems can be solved iterating over the entire dataset
P and computing the distance from q to pi for each pi and keeping those
points that are below the radius r or are in the set of k nearest neighbors.
This results in a complexity of O(mnd) where m = |Q| is the cardinality of
the set of queries, n = |P | and d is the dimension of the points in P ∪ Q.
This complexity assumes that calculating the distance between two points is
proportional to d. So the challenge is how to preprocess (index) P so it can
support multiple queries in a sub-linear fashion.

The k-NNS and r-NNS problems are well solved for spaces of 2 or 3
dimensions. However extending these results to higher dimensions (of about
100), have proven to be a difficult task. This together with the fact that in most
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Chapter 1. Introduction 12

Figure 1.1: Representation of the r-NN and (c, r)-NN problems

practical scenarios the input data is noisy have motivated the focus on solving
approximate versions of these problems where returning an approximate
solution is acceptable.

A possible formalization for the approximate nearest neighbor search
(ANNS) problem is given below:

Definition 1.1 (ε-Near Neighbor Search Problem) Given a distance function
dist, a set of points P in a space (U, dist) and ε > 0, the problem consists of
preprocessing P so as to efficiently return a point p ∈ P for any given query
point q, such that dist(q, p) ≤ (1+ε)dist(q, p∗), where dist(q, p∗) is the distance
of q to its closest point in P .

This easily generalizes to the k-NNS by setting p∗ to be the k-th nearest
neighbor. The approximate version of the r-NN problem is known as the
(c, r)-NN problem, simply put, given a query q return all neighbors where
dist(q, p) ≤ cr. Figure 1.1 shows an example of r-NN and (c, r)-NN, in the
r-NN version only x is allowed as an answer, while in (c, r)-NN both x and x′

are possible answers. Finally both instances of the problem admit randomized
versions, i.e. given a query q report an accurate answer with probability 1− δ
where 0 ≤ δ ≤ 1.

1.1
Probability Distributions and the Kullback-Leibler divergence

Most indexing schemes in the literature implicitly or explicitly make use
of metric properties like triangle inequality and symmetry to deliver good
performance. However, it is often the case in real world applications, that the
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Chapter 1. Introduction 13

Figure 1.2: An image of simple graph where the distance between the nodes is
not symmetric

distance measure of choice is not a metric. Such measures arise when comparing
probability distributions, time series, images and matrices among others.

A very basic example is that of a directed graph D such as the one in
Figure 1.2, where the distance from node 0 to node 2 is the sum of the edges
(0, 1), (1, 2) and the distance from node 2 to node 0 is given by the edge between
them. The notion of distance in this context violates the triangular inequality,
as well as the symmetry of metric distances. Moreover it illustrates the richness
offered by such type of non-metric dissimilarity measures especially on complex
data types.

Probability distributions can be naturally used to represent data in many
applications. For instance, documents (20) (19), images and music (28) have
been represented as probability distributions. A popular dissimilarity measure
in information theoretic settings where probability distributions are evaluated
in terms of their entropy or the amount of information they contain is the
Kullback-Leibler (KL) divergence (26). This divergence measures the difference
between the relative entropy and the self entropy of two distributions, moreover
it has been extensively used in the context of information retrieval (30), texture
similarity search (31), clustering (29) among others. In some tasks, it has
proven its effectiveness over other dissimilarity measures such as the euclidean
distance (30).

Given two (normalized) histograms p = (p1, p2, . . . , pd) and q =
(q1, q2, . . . , qd) the Kullback-Leibler divergence between the two distributions
is defined as:
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Author AI Application Bioinformatics Database Hardware Software System Theory
Jim Gray 0.109 0.109 0.059 0.314 0.0987 0.091 0.123 0.093

R1 0.141 0.101 0.069 0.276 0.094 0.089 0.123 0.103
R2 0.1 0.1 0.1 0.299 0.1 0.1 0.1 0.1

Table 1.1: Each row represents an author as a probability vectors over major
computer science topics. This table was originally presented in (9)

KL(p, q) =
d∑
i=1

pi ln
pi
qi
− pi + qi (1-1)

=
d∑
i=1

pi ln
pi
qi
−

d∑
i=1

pi +
d∑
i=1

qi (1-2)

=
d∑
i=1

pi ln
pi
qi

(1-3)

To illustrate the effectiveness of KL-divergence, let us borrow a concrete
example from Zhang et. al (9). In Table 1.1, three vectors generated from
the DBLP data set are presented, with each representing an author. Each
dimension of the vector represents the probability of the author publishing in
a major field of computer science. From the record of Jim Gray, it is apparent
that he is closely connected to database community.

If one were to use the Euclidean distance to search for an author similar
to Jim Gray, the distances between Jim Gray and authors R1, R2 are exactly
the same. However, when the KL-divergence is applied the distances from Jim
Gray to R1 and R2 become 0.008 and 0.01 respectively implying that R1 is
more similar to Jim Gray than R2. This can be explained by the fact that both
Jim Gray and R1 have a higher probability of publication on System and lower
probability of publication on Bioinformatics while R2 have equal probability
to publish in almost all the fields except Database. KL-divergence generally
captures such kinds of dissimilarities between distributions more accurately
than Euclidean distance, since it gives higher weights to dimensions with larger
probabilities.

1.2
Our Contributions

In this work, we address the ANNS problem where the points are
probability distributions and the distance function is the KL divergence. Using
the fact that the Kullback-Leibler can be expressed as an inner product (9) and
the recent developments of Neyshabur and Srebro (8) we show that the (one
sided) KL-divergence can be embedded into the Euclidean distance. Expressing
the KL-divergence as an inner product provides a natural way of using indexing

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Chapter 1. Introduction 15

methods like Locality Sensitive Hashing (1) (LSH) and Inverted Index (43).
We explore these ideas here by comparing both LSH and Inverted Index
data structures with Bregman Ball Trees (BBTree) over 6 real-world datasets.
The experiments showed the Inverted Index performs better than LSH and
Bregman Ball Tree, in terms of queries per second while achieving comparable
precision measurements. On the theoretical side, we show how to obtain an
ordinal embedding that leads to a theoretically faster search and construction
procedures for the Bregman Ball Tree.

The organization of the dissertation is as follows. In Chapter 2, we
describe the mathematical preliminaries that set the theoretical framework
of this work. Chapter 3 discusses, in detail, all the three mentioned indexing
methods and overviews related work. The theoretical analysis is presented in
Chapter 4. In Chapter 5, we describe experimental evaluations on several real-
world data sets. Finally, in Chapter 6, we summarize the main contributions
and discuss some research directions concerned with a generalization of the
KL divergence, the Bregman divergences.
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2
Mathematical Preliminaries

In this chapter we introduce the main concepts needed to understand the
rest of the work, discuss some properties that will be useful in the chapters
ahead and develop the terminology and main notation that we will refer back
throughout this dissertation.

2.1
Basic Notation

For vectors p, q ∈ Rd we use pi (respectively qi) to denote the value entry
i of the vector, p,q (bold) will be used to refer as a unique identifier of the
vectors p, q. For a set of vectors we will use upper case letters such as P, S,M ,
in some cases it will be useful to think of these sets as matrices, for instance
as P n×d where n = |P |, i.e. the elements of the set are the rows of the matrix.
The l2 norm of the vector will be ‖p‖2 or more simply ‖p‖, while the l1 norm
will be |p|. Unless otherwise stated we will assume the vectors are normalized
with respect to the l1 norm, and the term normalized histogram, or probability
distribution will be used to refer to those vectors.

2.2
Some Properties of the Kullback-Leibler Divergence

The KL divergence belongs to the class of f -divergences and Bregman
divergences (26). The Bregman divergence Df (x, y) associated with function
f on points x, y ∈ Rd, is the difference between the value of f at point x and
the value of the first-order Taylor expansion of f around point y evaluated at
point x:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉

It follows that the generalized Kullback-Leibler divergence is generated
by:

f(x) =
∑

xi log xi

Despite being positive and fulfilling the identity of indiscernibles
(KL(p, q) = 0 ⇔ p = q), is not symmetric (KL(p, q) 6= KL(q, p)) and
unbounded, i.e., for any given c > 0, one can construct histograms whose
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Chapter 2. Mathematical Preliminaries 17

Kullback-Leibler divergence exceeds c. In order to avoid these singularities,
we assume that the histograms are β-constrained. In the discussion below we
assume the histograms to be normalized.

Definition 2.1 (α-constrained histogram). A histogram p = (p1, p2, . . . , pd) is
said to be α-constrained if pi ≥ α

d
for i = 1, 2, . . . , d

For convenience, we will denote α
d
by β. A d-dimensional β-constrained

distribution will then imply a distribution that is α-constrained with α = βd

Proposition 2.2 Given two β-constrained histograms p, q, 0 ≤ KL(p, q) ≤
ln 1

β

Proof. The lower bound follows directly from Jensen inequality (40). For the
upper bound, since we know that pi

qi
≤ 1

β
for all i = 1, 2, . . . , d we can write:

KL(p, q) =
d∑
i=1

pi ln
pi
qi
≤

d∑
i=1

pi ln
1
β

= ln 1
β

For β = O(1
d
), the upper bound is tight up to a constant factor

�

One of the major problems of the KL-divergence is the lack of symmetry,
which induces the definition of two NN problems (10):

– (left-NN) return minp∈P Df (p, q)

– (right-NN) return minp∈P Df (q, p)

Luckily the Bregman divergences, including the KL-divergence, satisfy a
duality property with respect to the convex conjugate. The convex conjugate
of a function f : X → R ∪ {+∞} can be defined defined in terms of the
supremum by:

f ∗(x∗) = sup{〈x∗, x〉 − f(x)|x ∈ X}

where X is a real topological vector space, X∗ is the dual space to X and
〈·, ·〉 : X∗ ×X → R is a dual pairing. In the case of the Bregman divergences
the dual space x∗ ∈ X∗ is given by x∗ = ∇f(x). Now we can state the following
proposition:

Proposition 2.3 Let f ∗ the convex conjugate of f then:

Df (q, p) = Df∗(p∗, q∗)
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Proof. (10) The convex conjugate of f is defined as f ∗ ≡ supx{〈x, y〉 − f(x)}.
The supremum is realized at a point x satisfying ∇f(x) = y thus

f ∗(y′) = 〈y, y′〉 − f(y)

we use this identity to rewrite df (·, ·):

Df (x, y) = f(x)− f(y)− 〈y′, x− y〉 (2-1)

= f(x) + f ∗(y′)− 〈y′, x〉 (2-2)

= D∗f (y′, x′) (2-3)

�

This relationship can be used to construct data structures that only solve
one of the problems of the Bregman divergences. Another interesting property
of the Bregman divergence concerns centroids. For a set of points, the mean
under any Bregman divergence is well defined and, interestingly, is independent
of the choice of divergence:

µX ≡ argminµ
∑
x∈X

Df (x, µ) = 1
|X|

∑
x∈X

x

This can be used to extend the well-known k-means clustering algorithm
to the family of Bregman divergences (54).

2.3
Inner Product and Cosine Similarity

By inner product of two vectors p = (p1, . . . , pd), q = (q1, . . . qd) ∈ Rd we
will be referring to the following scalar quantity:

〈p, q〉 =
d∑
i=1

piqi

The above definition is equivalent to:

〈p, q〉 = cos(p, q)‖p‖‖q‖

This quantity takes into account both the orientation and the magnitude
of the vectors. When the vectors are normalized (‖p‖ = 1), the quantity
represents the cosine similarity that measures the cosine of the angle between
the vectors. For example, two vectors forming an angle of 0◦ have a similarity
of 1, two vectors at 90◦ have a similarity of 0, and two vectors diametrically
opposed have a similarity of -1. In general cosine similarity is used in positive
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space, where the outcome is bounded in [0, 1]. Simply, the cosine similarity is
as follows:

cos(p, q) = 〈p, q〉
‖p‖‖q‖

The inner product and therefore the cosine similarity meet the following
property, let p′ be the prefix of length k of p and p′′ the suffix of length d− k
i.e. p′ = (pi, . . . , pk, 0, . . . , 0) and p′′ = (0, . . . , 0, pk+1, . . . , pd)

〈q, p〉 = 〈q, p′〉+ 〈q, p′′〉

for every index k. As a final note, the version of the ANN for cosine similarity
is known as Cosine Similarity Search (CSS), that is given q ∈ R one seeks
for pi ∈ P such that cos(pi, q) is maximum. Similarly, the Maximum Inner
Product Search (MIPS) problem is the version of the NN problem where the
similarity function is the inner product. More formally, given a collection of
vectors S ⊂ Rd and a query q ∈ Rd, find a vector p ∈ S such that

p = arg max
x∈S

qTx.

Notice that the while cos(q, q) = 1 is maximum, this do not imply that the
inner product of q with itself is maximum. For example take the vectors
v = (1, 1) and u = (2, 2) so we have that cos(v, u) = cos(v, v) = 1 but using
inner product we have 〈u, u〉 = 1 < 〈u, v〉 = 4, this makes MIPS a considerably
harder problem that CSS.
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3
Overview of Indexing Methods

In this chapter, we overview the inner workings of three indexing meth-
ods: Bregman Ball Tree (10), Locality Sensitive Hashing (1) and Inverted Index
(43). In the last part of the chapter we review previous work on indexing the
Kullback-Leibler divergence, or the more general class of Bregman Divergences.

3.1
Bregman Ball Tree

In this section we detail the Bregman Ball Tree, to keep the discussion
in agreement with the original paper we will review the method using the
Bregman divergence, the analysis also sustains for the KL-divergence. The
Bregman Ball Tree (BBTree) was proposed by Cayton (10), the method is
an extension of Ball Tree for Bregman Divergences. It partitions the search
space using a Bregman Ball. Recalling, a Bregman divergence can be defined
as follows:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉

where f is a strictly convex differentiable function, in the case of the Kullback-
Leibler divergence this function is ∑xi log xi. A Bregman divergence Df (x, y)
is convex in x, but not necessarily in y.

A Bregman Ball of radius R around some point µ is defined as:

B(µ,R) = {x : Df (x, µ) ≤ R}

Given that Df (x, µ) is convex in x, B(µ,R) is a convex set. The search
algorithm of the BBTree uses the same underlying principle as its metric
counterparts, but instead of metric balls, the fundamental geometric object
that creates the hierarchical space partition is a Bregman ball.

A space partition is a binary tree where each node ni is associated with a
subset of the database Pi ⊂ P . The subset Pi contains those elements that are
inside a Bregman ball B(µi, Ri) with center µi and radius Ri. Each non-leaf
node has two children nodes, left (l) and right (r). Each of the points p ∈ Pi
is in l or r and appears in exactly one of Pl or Pr.
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Chapter 3. Overview of Indexing Methods 21

125 6

3

4

3.1(a): Point Clusters
1 2 3 4

5 6

3.1(b): Tree Representation

Figure 3.1: On the left side an example of a hierarchical partition of the
space by a Bregman Ball Tree, on the right side a tree representation of the
hierarchical partition

Although the sets Pl and Pr are disjoint, the associated balls B(µl, Rl)
and B(µr, Rr) may overlap. The entire set is encapsulated in the root node,
each leaf is supposed to cover a small fraction of P and the set of all leaves
covers P as a whole.

3.1.1
BBTree construction

The performance of the search algorithm depends on how many nodes can
be pruned; the more, the better. Intuitively, the balls of two siblings should be
well separated and compact. If there is a clear separation of the balls, a query
is likely to be much closer to one than the other. Compactness means, that the
distance from a query point q to a ball will be a good proxy of the distance
from q to the nearest point within the ball. Therefore at each level we’d like
to split the points into compact, well-separated sets.

A rather straightforward way to do this is to use k-means, which has
already been extended to Bregman divergences (54). The algorithm for building
the tree follows a top-down approach. Starting at the top, the algorithm runs
k-means to partition the points into two clusters. This process is repeated
recursively for each subset until a threshold t is reached on the numbers
of points on a leaf node. For a fixed number of iterations r the complexity
of k-means is O(rnd), given the recursive fashion of the algorithm the total
complexity is roughly O(rnd log n).

For instance, take as an example the points in Figure 3.1, the algorithm
first creates a global cluster represented by the dashed ball, it then divides the
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cluster in two smaller clusters, represented as the two blue clusters. In one case
it reaches the minimum number of samples (the points 5 and 6) and stops the
procedure. The other branch continues, and subdivide again the cluster again
creating two leaf nodes. The right side of 3.1 is a graphical representation of
the binary search tree generated from the hierarchical partition.

3.1.2
Search on a BBTree

This subsection describes the exact retrieval process of a query’s nearest
neighbor with a BBTree. Let P = {p1, . . . , pn} be the set of points in the
database, q is a query and Df is a (fixed) Bregman divergence, in our case the
Kullback-Leibler divergence. All the analysis will be done with respect to the
left NN p = argminpi∈PDf (p, q).

The tree is traversed using a branch and bound routine; at each node,
the search algorithm chooses the child for which Df (u, q) is smallest and
temporarily ignores the sibling node. This is repeated until reaching a leaf
node ni. Once in ni the algorithm then calculates Df (p, q) for all p ∈ Pi, the
closest point is the candidate pc. From this node the algorithm backtracks up
the tree and considers the previously ignored sibling, it explores the sibling
node nj if

Df (pc, q) > min{Df (x, q)|x ∈ B(µj, Rj)},

otherwise the node nj and all of its children can be ignored since the NN cannot
be found in that subtree. The algorithm hinges on the computation of the
Bregman projection onto a Bregman ball, since general Bregman divergences
do not satisfy the triangle inequality, the main technical contribution of Cayton
(10) is a fast way of computing the right side of the previous equation, which
is a convex program:

min
x

Df (x, q)
s.t. Df (x, µ) ≤ R

(3-1)

The search algorithm will need to solve (3-1) many times in the course
of locating q’s NN, so to compute a solution very quickly is an imperative
requirement. Let xp denote the optimal solution to 3-1 and x′p ≡ ∇f(xp). The
main result of (10) is summarized in the following theorem, recalling that f ∗

is the convex conjugate of f , defined in Section 2.2:

Theorem 3.1 Suppose ‖∇2f ∗‖2 is bounded around x′p. Then a point x satis-
fying

‖Df (x, q)−Df (xp, q)‖ ≤ ε+O(ε2)
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can be found in O(log(1/ε)) iterations. Each iteration requires one divergence
evaluation and one gradient evaluation.

The details of the proof can be found in the original work of Cayton (10).

3.1.2.1
Approximate Search

To determine if a node must be explored during the backtracking phase
we must solve (3-1). One can evaluate the right side of (3-1), using the bisection
method described previously but an exact solution is not needed. Suppose we
have bounds a and A satisfying:

a ≤ min
x∈B(µ,R)

Df (x, q) ≤ A

If Df (xc, q) ≤ a the node can be pruned; if Df (xc, q) ≥ A the node must
be explored, the search proceeds until Df (xc, q) ≤ a or Df (xc, q) ≥ A. We
now describe how to compute the lower and upper bounds at each step of the
bisection search. Throughout the discussion, we use q′ ≡ ∇f(q), µ′ ≡ ∇f(µ)
to simplify notation. Let xθ = ∇f ∗(θµ′ + (1− θ)q′) and define Lagrange dual
function as

L(θ) ≡ Df (xθ, q) + θ

1− θ

(
Df (xθ, µ)−R

)
(3-2)

By weak duality, for any θ ∈ [0, 1) :

L(θ) ≤ min
x∈B(µ,R)

Df (x, q) (3-3)

For the upper bound, we use the primal. At any θ satisfying Df (xθ, µ) ≤
R, we have

Df (xθ, q) ≥ minx∈B(µ,R)Df (x, q) (3-4)
Let us now put all of the pieces together. We wish to evaluate whether

(3-1) holds. The algorithm performs bisection search on θ, attempting to
locate the θ satisfying Df (xθ, µ) = R. At step i the algorithm evaluates
θi on two functions. First, it checks the lower bound given by the dual
function L(θi) defined in (3-2). If L(θi) > Df (xc, q), then the node can be
pruned. Otherwise, if xθi ∈ B(µ,R), we can update the upper bound. If
Df (xθi , q) < Df (xc, q), then the node must be searched. Otherwise, neither
bound holds, so the bisection search continues. For a detailed pseudo-code
of the algorithm, called CanPrune, see Algorithm 3.1.1. This algorithm is
executed during the backtrack phase of the search algorithm of the BBTree.
The first time the algorithm is called xc is the best point found so far, q is the
query, µ and R are the center and radius of the sibling node.
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Algorithm 3.1.1: Can prune node (CanPrune)
input : θl, θr ∈ [0, 1) , q, xc, µ ∈ Rd, R
output: If the node must be explored or not

1 Set θ = θl+θr
2

2 Set xθ = ∇f ∗(θµ′ + (1− θ)q′)
3 if L(θ) ≥ Df (xc, q) then
4 return YES
5 end
6 if xθ ∈ B(µ,R) and Df (xθ, q) ≤ Df (xc, q) then
7 return NO
8 end
9 if Df (xθ, µ) ≥ R then

10 return CanPrune(θl, θ, q, xc, µ)
11 end
12 if Df (xθ, µ) ≤ R then
13 return CanPrune(θ, θr, q, xc, µ)
14 end

The complexity of the exact search algorithm is O(nd + od log(1/ε)),
where o is the number of nodes, so it follows that the complexity of the worst
case for the search algorithm of BBTrees exceeds the simple linear search. A
simple way to speed up the retrieval time of the BBTree is to simply stop
after only a few leaves have been examined. This idea originates from the
empirical observation that ball trees often locate a point very close to the NN
quickly, then spend most of the execution time backtracking. This reduces the
complexity significantly, at the cost of precision, therefore solving the ANNS
version of the problem.

3.2
Locality Sensitive Hashing

In this section we discuss, in depth, the indexing method used by Locality
Sensitive Hashing. The concept of LSH was introduced by Indyk et al. (5)
with the motivation of solving ANNS problems. Here, we use a more general
definition of LSH proposed in (8).

Definition 3.2 Let c > 1 be a constant, let r be a threshold and let 0 ≤ p2 <

p1 ≤ 1 be some pair of probabilities. A pair (F,G) of families of functions h, g
are said to be (r, c · r, p1, p2)-LSH for a distance dist over the pair of spaces X
and Y if for q ∈ X and p ∈ Y

– if dist(p, q) ≤ r then P(F,G)[h(p) = g(q)] ≥ p1

– if dist(p, q) ≥ c · r then P(F,G)[h(p) = g(q)] ≤ p2
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L k p1 p2
4 4 0.8784974493 0.0063846564
2 2 0.8704 0.0784
3 3 0.883785728 0.023808512
4 4 0.8784974493 0.0063846564
4 5 0.7956831789 0.0012793857
4 6 0.7035943671 0.0002559754

Table 3.1: Effect of amplification on probabilities, original probabilities are
p1 = 0.8 and p2 = 0.2

This definition differs from the one in (5) because the distance function
is defined over a pair of spaces rather than a single space. The motivation is to
distinguish between the query space and the dataset space, which will be useful
in the discussion of the Maximum Inner Product Search (MIPS) problem in
Section 3.2.2.

The probabilities p1, p2 in the definition are considered with respect to
the random choice of the pair of functions (h, g) from the families F and G.
Clearly, the choice of the families of functions F and G depends on the distance
function. A pair of families is useful when p1 > p2. Alternatively a LSH can
be defined with respect to a universe of items U and a similarity function
sim : U × U → [0, 1] in the following manner:

Definition 3.3 Let 0 ≤ c < 1 be a constant, let S ∈ (0, 1] be a similarity
threshold and let 0 ≤ p2 < p1 ≤ 1 be thresholds. A pair of families F,G of
functions h, g are said to be (S, cS, p1, p2)-LSH for a similarity sim over the
pair of spaces X and Y if for q ∈ X and p ∈ Y

– if sim(p, q) ≥ S then PF [h(p) = g(q)] ≥ p1

– if sim(p, q) ≤ cS the PF [h(p) = g(q)] ≤ p2

Ideally one would expect to have p1 high (close to 1) and p2 very low
(close to 0), but in general this is not possible, Figure 3.2 shows a comparison
of the ideal versus the commonly obtained pair of probabilities. The ideal pairs
of probabilities will be close to 1 for pairs of objects that are very close, and at
the same time sharply fell for no so close objects, this is shown on the left side
of Figure 3.2. In general, the design of such family of functions is elusive and
one ends up with a pair of probabilities that resemble that of the right part of
Figure 3.2. This problem is overcome composing an LSH family several times
and using AND and OR constructions to amplify the original probabilities as
shown in the next theorem.
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Theorem 3.4 Let h ∈ H and g ∈ G be two locality sensitive family of
functions, h ∈ H the family of functions obtained by concatenating k hash
functions h and g ∈ G equally for G, i.e. h(x) = [h1(x)h2(x) . . . hk(x)] and
g(x) = [g1(x)g2(x) . . . gk(x)], where h(p) = g(q) if and only if hi(x) = gi(y)∀i.
If H is (r, c · r, p1, p2) then H is (r, c · r, pk1, pk2)

Concatenating functions shrinks the probability of collision but choosing
k properly can make the lower probability p2 approaches 0 while the higher
does not. Similarly, one could concatenate the functions and allow to be equals
if any of the functions is equally, precisely;

Theorem 3.5 Let h ∈ H and g ∈ G be two locality sensitive family of func-
tions, h ∈ H the family of functions obtained by concatenating L hash functions
h and g, i.e. h(x) = [h1(x)h2(x) . . . hL(x)] and g(x) = [g1(x)g2(x) . . . gL(x)],
where h(p) = g(q) if and only if hi(x) = gi(y) for some i. If H,G are
(r, c · r, p1, p2) then the pair H,G is (r, c · r, 1− (1− p1)L, 1− (1− p2)L)

The construction built in Theorem 3.5 makes all the probabilities grow,
but by choosing L correctly p1 can approach 1 while p2 does not. It follows
from Theorem 3.4 and Theorem 3.5 that each of the two probabilities p can be
transformed into 1−(1−pk)L. Simply take H and construct H ′ using Theorem
3.4 then from H ′, construct H′ by Theorem 3.5.

The effects of amplification can be seen in Table 3.1. Suppose we have
a pair of families H,G such that p1 = 0.8 if dist(p, q) ≤ r and p2 = 0.2 for
dist(p, q) ≥ c · r for some c and r. The original probabilities in the example
of Table 3.1 are p1 = 0.8 and p2 = 0.2. Applying theorems 3.4 and 3.5, with
k = 4 and L = 4 for example, we have: p1

∗ = 1 − (1 − p1
4)4, by substitution

p1
∗ ≈ 0.878, analogously p2

∗ = 1− (1− p2
4)4 ≈ 0.0063. While the chosen pair

of probabilities will be application dependent, one can perform some analysis
to come out with good approximations for k and L.

Notice that we expect np2,h = npk2 far points collisions, where n is the
cardinality of |P |. So, we want npk2 = O(1). Thus we take pk2 = 1/n so that the
expected number of far points encountered is 1. This implies:

pk2 = 1/n⇒ k log(1/p2) = log n⇒ k = log n
log(1/p2)

Now for each table (hash function) we have a success probability of pk1, that
is the probability of a good collision. If we have L tables in total, taking an
union bound, we want to choose L = O(1/pk1). For this choice we get:

pk1 = p
logn

log(1/p2)
1 = n

− log 1/p1
log 1/p2
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3.2(a): Ideal probabilities 3.2(b): Common probabilities

Figure 3.2: A comparison of the ideal pair of probabilities vs the commonly
obtained. The pair of probabilities is defined with respect to some distance
function.

Given a LSH function family one can build a data structure for efficient
ANNS by using the algorithm specified in Algorithm 3.2.1. We first set k and
L in line 1, and then for each l we build a hash table Tl to store the points.
We then pick k hash functions from F , line 4. Based on the k hash functions
we assign a hash code h to each point, lines 5-9. Finally we store each p in Tl
using h as a key. Actually, the value of each key is a sub-collection of points
p, given that two points pi and pj can have the same hash code.

Algorithm 3.2.1: Preprocessing of the set P
Result: Preprocess P

1 Set k and L ;
2 for l = 1 . . . L do
3 Initialize a hash table Tl
4 Pick k hashing functions hi from F randomly
5 for p ∈ P do
6 Set h = []
7 for hi=1...k do
8 h[i] = hi(p)
9 end

10 Store p in Tl using h as key
11 end
12 end

Once the set P is preprocessed, to answer a query q we simply retrieve
the collection K of items in each of the h1(q), . . . ,hL(q). An alternative ending
criterion is to stop searching after finding the first 3L points (5), (including
duplicates). Then to refine the results an exhaustive search is performed on S
to retrieve the ε-Nearest Neighbors. We refer to the full search version of the
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algorithm as Strategy 1 and to the second as Strategy 2; the algorithm for
Strategy 1 is detailed in Algorithm 3.2.2.

Algorithm 3.2.2: Retrieval of ε-Nearest Neighbors
input : A query point q
output: The set K of the ε-Nearest Neighbors

1 S = ∅
2 for l = 1 . . . L do
3 Set h = []
4 for hi=1...k do
5 hl[i] = hi(q)
6 end
7 K = S ∪ Tl[hl]
8 end
9 Return the n nearest neighbors in K as the ε-Nearest Neighbors

Given an (r, cṙ, p1, p2)-LSH, and using algorithm 3.2.1 it is possible to
construct a data structure that can be used to separate, with high probability,
pairs of points with distance at most r from those with distance at least
c · r. Such a data structure can be constructed in time O(nρ log n) and space
O(n1+ρ) (5), where ρ = log p1

log p2
. For the search Strategy 2, we have a query

time complexity of O(nρd), in expectation.

3.2.1
On LSH for solving Cosine Similarity Search

Due to the multiple applications of Cosine Similarity Search (CSS), the
problem has received considerable attention. The first to propose the use of
LSH for solving CSS was Charikar in (3). There the author proposed a family
of functions F for dealing with the cosine similarity. The approach is based on
the random hyper-plane rounding technique proposed in the seminal work of
(2) for approximating the MAX − CUT problem.

Given a collection of vectors in Rd, the family of hash functions hr is
defined as follows:

hr(u) =

 1 if r · u > 0
0 if r · u < 0

where each vector r follows d-dimensional Gaussian distribution (i.e. each
coordinate is drawn from the 1-dimensional Gaussian Distribution). The
cardinality of the family F must be in the order of O(log2 n) for the LSH
to function properly (3).

Numerous works have built on random projections, in particular Super-
bit LSH (39) aims to improve the above hashing functions for cosine similarity,
by dividing the random projections into G groups then orthogonalizing B
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random projections for each group, obtaining new GB random projections
and thus G B-super bits. It is shown that the Hamming distance over the
super bits is an unbiased estimation of the angular distance and the variance
is smaller than the above random projection algorithm.

More recently, in 2015, Andoni et al. (38) showed the existence of a
Locality-Sensitive Hashing (LSH) family for the euclidean distance over the
unit sphere Sd−1 ⊂ Rd, this distance is known to be equivalent to the cosine
similarity. Their new family of functions is based on cross-polytopes, basically
it applies a random rotation to a point x and assigns the nearest vertex of the
cross-polytope as the hash value. In detail, let A ∈ Rd×d be a random matrix
of i.i.d Gaussian entries. To hash a point x ∈ Sd−1, their method computes
y = Ax

‖Ax‖ ∈ S
d−1 and then find the closest point to y from {±ei}1≤i≤d, where ei

is the i-th standard basis vector of Rd. The algorithm uses the closest neighbor
as a hash of x. The collision probability of two points under the above family
is bounded by the following theorem:

Theorem 3.6 Suppose that p, q ∈ Sd−1 are such that ‖p − q‖ = τ , where
0 < τ < 2. Then,

ln 1
P [h(p) = h(q)] = τ 2

4− τ · ln d+Oτ (ln ln d)

The main implication of the cross-polytopes LSH is that it yields an
ANNS algorithm with the asymptotically optimal running time exponent.
Unlike earlier algorithms with this property, their algorithm is also practical,
improving upon the well-studied hyperplane LSH (3) in practice.

3.2.2
On LSH for solving MIPS

Despite the relation between the cosine similarity and the inner product,
providing a LSH for the later proved to be considerably harder. Both Shri-
vastava and Ping (7) and Neyshabur and Srebro (8) shown that there is no
symmetric LSH over the entire space Rd for Maximum Inner Product Search
(MIPS) problem. Recalling that the MIPS problem was defined in Section 2.3.

Theorem 3.7 There is no LSH for Maximum Inner Product Search over Rd

Proof. Assume for contradiction h is an (S, cS, p1, p2)− LSH (with p1 > p2).
Let x be a vector such that ‖x‖ = cS. Let q = x and y = 1

c
x. Therefore we

have qTx = cS and qTy = S. However, since q = x, we have P [h(x) = h(q)] =
1 ≤ p2 ≤ p1 = P [h(q) = h(y)] ≤ 1 �
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With the aim of solving MIPS using LSH, Shrivastava and Ping (7)
introduce the novel concept of Asymmetric Locality Sensitive Hashing (ALSH),
that is the one we have used so far. The asymmetry refers to the difference
between the random hash function over the query space and the dataset space,
but even this approach can’t be used to index the entire Rd. Luckily, one does
not needs Rd entirely to solve MIPS, for a given dataset.

It is possible to assume w.l.g. that every point in P has l2 norm at most 1.
In fact, each point in P can be divided by the maximum norm among the points
in P without changing MIPS’s solution. Moreover, we can also assume that
q has norm 1 (‖q‖2 = 1) because normalizing it does not affect the solution.
These observation were made in (7).

Taking into account these considerations, Neyshabur and Srebro (8)
approached MIPS by proposing a simple LSH for the inner product similarity
over the spaces X = {x ∈ Rd : |x| = 1} and Y = {y ∈ Rd : |y| ≤ 1}. Here, X
corresponds to the possible query points and Y to the database points.

The key observation here is that under the above conditions one can
transform the MIPS problem into the cosine similarity search (CSS) problem.
For that, it is employed a function P : Rd 7→ Rd+1 that maps v = (v1, . . . , vd)
into

P (v) = (v1, . . . , vd,
√

1− |v|2).

It follows that if v ∈ X ∪ Y , then |P (v)| = 1 and so the inner product
becomes equivalent to the cosine similarity. This allows to use LSH for CSS
such as the ones in (3) and (38). Notice that for this specific case where ‖q‖ = 1
the LSH family is symmetric, the same transformation is applied to both the
query space and the dataset space. If one consider the case where the query is
not normalized, the following transformation can be applied:

Q(v) = (v1, . . . , vd, 0,
√

1− |v|2)

for the dataset space (the points in P ) an analogous mapping function is
defined:

P (v) = (v1, . . . , vd,
√

1− |v|2, 0)

This ALSH offers the same guarantees that the case where ‖q‖ = 1 and
the norm of the dataset space is bounded.

3.3
Inverted Index

The inverted index is one of the core data structures used by search
engines (43). Formally, an inverted index representation of a matrix P , is a set

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Chapter 3. Overview of Indexing Methods 31

of m lists, I = {I1, . . . , Id}, one for each column (coordinate) of P , where list
Ii contains pairs (p, pi), subject to p is a row of (a vector in) P and pi > 0.
This data structure has been particularly successful for the problem of All-
Pairs-Similarity Search problem (44), which is a generalization of the NNS
problem.

The indexing phase is pretty straightforward and is described in the
Algorithm 3.3.1

Algorithm 3.3.1: Inverted Indexing of P
Result: Index P

1 I = ∅
2 for j = 1 . . . d do
3 I [j] = ∅
4 end
5 for i = 1 . . . |P | do
6 for j = 1 . . . d do
7 if spi [j] > 0 then
8 I [j] = I [j] ∪ 〈si, si [j]〉
9 end

10 end
11 end

Once the index is built one can search on it using two main classes of
search strategies, as defined by Turtle and Flood (42).

– Term-at-a-time (TAAT): strategies process query terms one by one and
accumulate partial document scores as the contribution of each query
term is computed.

– Document-at-a-time (DAAT): strategies evaluate the contributions of
every query term with respect to a single document before moving to
the next document.

These search strategies arose in the information retrieval community,
hence the names. In our scenario, term will correspond to coordinate and doc-
ument to vector. Both TAAT and DAAT strategies can be optimized signifi-
cantly by relaxing on the requirement that all document scores are complete
and accurate. Optimization strategies have been studied extensively in the in-
formation retrieval literature. For a comprehensive overview of optimization
techniques see Turtle and Flood (42). An important optimization technique
for DAAT strategies is termed max-score by Turtle and Flood. Given a recall
parameter k, it operates by keeping track of the top k scoring documents seen
so far. Evaluation of a particular document is terminated as soon as it is clear
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that this document will not place in the top k. As the focus of our research
is not in evaluating both strategies, we only consider on a representative of
TAAT, that is simple to implement. From this point on we will refer to TAAT
as Coordinate-at-a-Time (CAAT) Search.

3.3.1
Coordinate at a Time Search

For CAAT strategies the basic idea behind such optimization techniques
is to process query coordinates in some order that let the system identify
the Top-k scoring documents without processing all query coordinates. This
is achieved by maintaining k + 1 candidates instead of k and computing an
upper bound of the maximum achievable inner product value w by the k + 1
candidate. If this score w is less than the score of the k candidate the process
can be stopped. A detailed description of the search strategy can be found in
Algorithm 3.3.2

Algorithm 3.3.2: Retrieval of Top k-Nearest Neighbors
input : A query point q
output: The set K of the k-Nearest Neighbors

1 Let I be the inverted index
2 Sort qi in decreasing order
3 Initialize sim as an array of size |P |
4 Initialize top as an array of size k + 1
5 Set numtop = 0
6 Let C the list of indexes c | qc > 0
7 Let Cv = ∅ the list of visited indexes
8 for c ∈ C do
9 Append c to Cv

10 for pi, p ∈ I [c] do
11 sim [p] = sim [p] + pi
12 UpdateTop(top, numtop, sim)
13 end
14 if numtop = k + 1 then
15 maxsim = 0
16 for c′ ∈ C \ Cv do
17 maxsim = maxsim +maxc′
18 end
19 maxsim = sqrt(maxsim)
20 if sim [top [k + 1]] +maxsim < sim [top [k]] then
21 return top
22 end
23 end
24 end
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The UpdateTop routine is described in Algorithm 3.3.3, basically it
describes how to process each cumulative score for a single candidate pi. We
add a new candidate to top if we have fewer candidates that k or if this new
candidate p has a greater cumulative score than the least candidates. Finally,
we reorder top to keep the invariant than the minimum is found at the position
numtop.

Algorithm 3.3.3: Algorithm for updating the Top k-Nearest Neigh-
bors

input: The array top, numtop and the cumulative score sim
1 if numtop ≤ k or sim [p] > sim [top [numtop]] then
2 if p 6∈ top then
3 if numtop < K + 1 then
4 Set numtop = numtop + 1
5 end
6 Set top [numtop] = p

7 end
8 Restore top sorted order
9 end

In order to compute the upper bound of candidate k+1 we will make use
of the Cauchy-Schwarz inequality as in (45), in conjunction with the properties
of the previous chapter:

〈u, v〉 ≤ ‖u‖‖v‖

This inequality follows from the very definition of inner product. More-
over as normalizing the query q does not affect the order of the Top-k nearest
neighbors we will consider q to be normalized. Therefore we can state the
following

〈q, p〉 ≤ ‖p‖ | ∀p ∈ P

Consider now a vector composed of the maximum values across all
dimensions

v = (v1, . . . , vd) | vi = max
s∈S

si

Is clear from the definition of v that ‖v‖ ≥ ‖p‖ | ∀p ∈ P and also
‖v′′‖ ≥ ‖p′′‖ | ∀p ∈ P and a fixed k. Recall that ‖p′′‖ was defined in Section
2.3 as p′′ = (0, . . . , 0, pk+1, . . . , pd). Combining the two properties from above
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we have that:

〈q, p〉 = 〈q, p′〉+ 〈q, p′′〉 (3-5)

≤ 〈q, p′〉+ ‖p′′‖ (3-6)

≤ 〈q, p′〉+ ‖v′′‖ (3-7)

So for MIPS it suffices to store for each coordinate c, maxc = maxp∈P p2
c . This

bound is used in lines 15-22 of Algorithm 3.3.2. For each of the coordinates
that still need to be visited we compute the bound, if the k + 1 candidate
cannot surpass the k candidate we terminate the search.

To clarify let use the following example suppose that the k-th candidate
has a sim value of 10 and the k + 1-th candidate has a sim value of 4, and
we have two more dimensions remaining with max values of 2 and 1. Now the
maximum sim value that the k+1-th candidate can obtain is 4+

√
22 + 1 ≤ 10

so it can not become one of the k candidates. The rest of possible candidates
can be divided into two sets: (1) those that have already been evaluated and
(2) those that not. In the first case the sim value is less than the value of
the k + 1-th candidate therefore it also cannot be included in the set of k
candidates. Now a point p that has not been evaluated can have a maximum
of
√

22 + 1 as it has no previous coordinates in common with q, so it also cannot
be included in the set K and the search can be terminated.

3.3.2
Sampling Techniques for Matrix Sparsification

The techniques discussed in the previous section, return the exact top-k
(k-nearest neighbors) most similar neighbors, very efficiently (44). Unfortu-
nately the efficiency only holds for sparse vectors, but in our application the
vectors are dense. So we will use sampling techniques to approximate our ma-
trix P of vectors, this will allow applying the CAAT algorithm at the cost of
exactness. We study different techniques for approximating our vectors with
sampling techniques, namely:

1. Simple Sampling: In this sampling for each p ∈ P we sample pi propor-
tionally to |pi||p|1 .

2. CUR Sampling: This scheme is inspired by the CUR decomposition
algorithm, so we sample entire columns (rows) based on pi, i ∈ |C|
where |C| is the number of columns (rows), so we have three samplings:
RowSelect, ColumnSelect and both.
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3. Diamond Sampling: Finally Diamond Sampling is inspired by the re-
cently proposed sampling scheme by Ballard et. al. (46).

The result P ′ obtained from this sampling schemes has the same dimen-
sions as P , only that the non-zero entries are those that we sampled, then P ′

is sparse. To the best of our knowledge we are the first to propose the Simple
Sampling technique. We also applied it to select the entries from the query q.
The CUR matrix approximation, of some matrix M is a set of three matrices
C, U and R dependent on M , that when multiplied together, closely approx-
imate M . A CUR approximation can be used in the same way as a low-rank
approximation of the Singular Value Decomposition. C and R are made of
columns and rows of M . The CUR matrix approximation is not unique and
there are multiple algorithms for computing one. The algorithm by Mahoney
and Drineas (47) samples rows and columns proportionally to the l2 norm of
the column (vector).

A problem related to Top-k MIPS retrieval is that of finding the Top-
k largest values in a matrix-matrix multiplication QTP . Diamond Sampling
(46) was proposed to avoid direct computation of inner product for all pairs,
as a sampling approach that selects diamonds from the weighted tripartite
representations of Q and P (46).

Algorithm 3.3.4: Diamond Sampling
input : A dense matrix M ∈ Rm×d

output: A sparse matrix A′
1 Let s be the number of possible entries in A′
2 forall aki 6= 0 do
3 wki = |aki|‖a∗i‖1
4 end
5 A′ all-zero matrix of size m× d
6 for l = 1 . . . s do
7 Sample (k, i) with probability wki/‖W‖1
8 Sample (k′, i) with probability ak′i/‖a∗i‖1
9 Set A′ [i, k] = A [i, k]

10 Set A′ [i, k′] = A [i, k′]
11 end
12 return A′

The general idea of Diamond Sampling is inspired by 4-vertex motif
detection in large graphs. In their work the authors provide probabilistic
bounds on the number of sufficient samples to guarantee a desired accuracy
for the retrieval of the top-k inner products. To prove the bounds the authors
assume that the set Q is known in advance, which is not the case in our
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application. We merely study the algorithm as inspiration for a heuristic, the
details of it are specified in Algorithm 3.3.4.

The sampling algorithms provide a sparse approximation P ′ of the matrix
P , so the k nearest neighbors of q in P ′ may not be the same that the k nearest
neighbors in P . In order to provide a better approximation instead of searching
for the k nearest neighbors we search for the set B of the b > k nearest
neighbors, once the search is terminated we compute the actual similarity
(distance) value of q with respect to pi ∈ B and return the k nearest neighbors.

3.4
Nearest Neighbor Search for Kullback-Leibler Divergence

The methods for constructing indexes for the efficient search under the
KL divergence, or more generally, the Bregman divergence are relatively new
(10). As in the rest of the literature of NNS for high dimensional data there
are two relevant approaches: space partitioning methods and hashing.

3.4.1
Space Partitioning Methods

Space partitioning methods, often referred as hierarchical space parti-
tioning algorithms are methods that create a decomposition of the space, com-
monly represented by a tree. These methods were developed by the compu-
tational geometry community as one of the first attempts at solving the NN
problem in low dimensions. Examples of such methods are the KD-Tree, Van-
tage Point (VP)-Tree, and Ball Tree.

We already describe one of such approaches for Bregman Divergences,
the BBTree of Cayton (10). Building on the work by Cayton, Coviello et
al. (28) developed a new approach for deciding whether to explore nodes
during backtracking, based on a variational approximation of the optimization
problem. This scheme reduces the number of computations per node(28) which
leads to a faster algorithm in higher dimensions.

In (36) Nielsen et al. proposed a generalization of VP-Trees for Bregman
divergences. The main contribution of their work is to replace the triangle
inequality by an analogous criterion based on the intersection of Bregman
balls, which allows checking for pruning conditions. Zhang et al. (9), propose
to map the points in the original space to an extended space and poses the
problem as an inner product minimization problem. This formulation is similar
to ours, but the work overlooks the potential to improve the Bregman Ball Tree
and uses structures such as VA-file and R-tree.
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3.4.2
Locality Sensitive Hashing for related distances

Additionally, several hashing schemes have been defined for alternative
measures of probability distributions such as the Chi-squared distance (12),
and the Hellinger distance (13). Also, Mu and Yan (25) proposed a family of
LSH functions for dealing with non-metric distances, but they considered a
symmetric version of the KL divergence. To the best of our knowledge, there
hasn’t been proposed an LSH scheme for the asymmetric KL divergence.
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4
Embeddings for Kullback-Leibler Divergence

In this chapter we present the core of our theoretical results. The chapter
is organized as follows: Section 4.1 overviews some negative results regarding
the embedding of the Kullback-Leibler divergence in metric spaces such as
the euclidean distance. Next, Section 4.2 describes how to embed (convert)
the one sided Bregman divergence into an asymmetric inner product space.
Section 4.3 builds on Section 4.2 and shows how to use the ideas of (8) to
devise an ordinal asymmetric embedding into an euclidean space. Finally in
Section 4.4 we combine the theoretical insights to propose provably efficient
algorithms for the ANN problem under the Kullback-Leibler divergence

4.1
On Low Distortion Embeddings of the Kullback-Leibler divergence

We begin by defining a few preliminary concepts related to metric spaces
and embeddings

Definition 4.1 (Metric Space) Let X be a set and dist : X×X → R+∪{0} a
distance measure. A pair M = (X, dist) is called a metric space provided that
dist satisfies the properties of the identity, symmetry and triangular inequality.

Definition 4.2 (D-embedding and Distortion) Given two metric spaces
(X, dist1) and (Y, dist2), a mapping f : X → Y is called a D-embedding where
D ≥ 1, if there exists a number r ≥ 0 such that for all x, y ∈ X,

r · dist1(x, y) ≤ dist2(f(x), f(y)) ≤ D · r · dist1(x, y)

The infimum of all numbers D such that f is a D-embedding is called the
distortion of f .

In general, the factor r is intended to allow the distances to be scaled
by some constant factor and does not affect the definition of embedding. This
notion of distortion can be naturally extended to non-metric spaces as well.

Bhattacharya et. al. (32) showed that low distortion embeddings for the
Kullback-Leibler divergence into metric spaces cannot exist. The proof exploits
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the fact that the Kullback-Leibler is not symmetric and violates the triangle
inequality. We report the main result of Bhattacharya et. al., the proof can be
found in the original work (32):
Theorem 4.3 For sufficiently large d and small β, there exist a set S of d-
dimensional β-constrained histograms such that any embedding of S into a

metric space incurs a distortion of Ω
(

ln 1
dβ

ln(d ln 1
β

)

)
It follows from the previous theorem that the distortion into any metric

space can be made arbitrarily large. This result implies that there is no em-
bedding for the KL divergence when considering both sides of the parameters
of the function.

4.2
Inner Product Embedding of the One Sided Bregman divergence

Although the result from Bhattacharya et. al. can be discouraging,
in order to retrieve the k nearest neighbors of a point we only need a
transformation that maintains the order of the distances of the points p ∈ P
with respect to a query q. This type of embedding is known as an ordinal
embedding (55), an asymmetric definition can be posed as follows:
Definition 4.4 Let (Qd,Pd) be a pair of spaces equipped with some distance
function dist : Qd × Pd → R+. Moreover let q ∈ Q and pi, pj ∈ P be a triplet
of points (q, pi, pj). An asymmetric ordinal embedding is a pair of functions
(o, e), o : Qd → Rm and e : Pd → Rm such that for all triplets (q, pi, pj):

dist(q, pi) ≤ dist(q, pj)⇒ ‖o(q)− e(pi)‖2 ≤ ‖o(q)− e(pj)‖2

We show that assuming the query can only be in one side e.g. right-side, and
the data points in the left-side, we can devise such transformation even for a
larger class of functions such as the Bregman divergences. First, recall that a
Bregman divergence is defined as follows:

Df (p, q) = f(p)− f(q)− 〈∇f(q), p− q〉 ,

and that we want to minimize Df (p, q) for a given query q and p ∈ P . Lets
define a pair of functions h : Rd → Rd+2 and g : R → Rd+2, in the following
way:

h(p) = (f(p), p1, . . . , pd, 1) (4-1)

g(q) = (1,∇f(q)1, . . . ,∇f(q)d, 〈∇f(q), q〉 − f(q)) (4-2)
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So,
Df (p, q) = 〈h(p), g(q)〉

therefore

min
p∈P

Df (p, q) = min
p∈P
〈h(p), g(q)〉 (4-3)

= −max
p∈P
〈h(p), g(q)〉 (4-4)

= max
p∈P
〈−h(p), g(q)〉 (4-5)

both 4-4 and 4-5 follows from properties of addition and multiplication. This
not only provides a natural way to use LSH, Inverted Index and other data
structures (9) to solve the ANNS under the Bregman divergence, but also it
can be used to accelerate the Bregman Ball Tree, which we show in the next
section.

4.3
A simple ordinal embedding

Before further stepping into the creation of the ordinal embedding notice
that multiplicative factors do not alter the order of the inner product similarity,
therefore we can multiply h(p) by 1/2. From now on we call h2(p) = −1/2h(p).
Assuming p and q are bounded normalized histograms and f (of Df ) is a
continuous function we can state that there is some L that ‖h2(p)2‖ ≤ L and
some C that ‖g(q)2‖ ≤ C. So we have:

h+(p) = (h2(p);
√
L− ‖h2(p)‖2; 0) (4-6)

g+(q) = (g(q); 0;
√
C − ‖g(q)‖2) (4-7)

where ; is the coordinate concatenation operator. So maximizing 〈h+(p), g+(q)〉
is equivalent to minimizing Df (p, q). Finally it turns out that:

max
p∈P

〈
h+(p), g+(q)

〉
= minp∈P‖h+(p)− g+(q)‖2 (4-8)

= minp∈P
√
L+ C +Df (p, q) (4-9)

Now we are ready to prove the following, which is the main theoretical result
of this work:

Theorem 4.5 Given a ball B(µ,R) = {x : Df (x, µ) ≤ R} the following
inequality minx∈B(µ,R) Df (x, q) ≤ t holds if and only if minx∈B(µ,R)‖h+(x) −
g+(q)‖ ≤ t′ holds, where t′ =

√
L+ C + t
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Proof. For the first part of the proof suppose that there is some x that
Df (x, q) ≤ t, so:

Df (x, q) ≤ t (4-10)

Df (x, q) + L+ C ≤ t+ L+ C (4-11)√
Df (x, q) + L+ C ≤

√
t+ L+ C (4-12)

‖h+(x)− g+(q)‖ ≤ t′ (4-13)

The second part is analogous to the first one in the sense that one assumes
some h+(x) exists such that ‖h+(x)−g+(q)‖ ≤ t′ and then derive the inequality
through algebraic transformations.

�

4.3.1
A faster pruning algorithm for Bregman Ball Trees

The previous result states that the pair (h+, g+) is an ordinal embedding.
So we can substitute the CanPrune procedure detailed in Algorithm 3.1.1 by
Algorithm 4.3.1.

Algorithm 4.3.1: Can prune node (FastCanPrune)
input : g+(q), h+(µ) ∈ Rd+4, R′, distpc
output: If the node must be explored or not

1 if ‖h+(µ)− g+(q)‖2 −R′ ≥ distpc then
2 return YES
3 end
4 return NO

In Algorithm 4.3.1 distpc is the best distance found so far, µ is the centroid
of the ball and R′ = maxp∈P ‖h+(p) − h+(µ)‖ is the radius of the euclidean
ball. The value R′ is computed during the construction and ‖h+(µ)− g+(q)‖2 is
computed while descending the tree so the cost of this verification is constant.
The Algorithm simply uses the inequalities 4-14 and 4-15:

‖h+(x)− g+(q)‖2 ≥ ‖h
+(µ)− g+(q)‖2 −R

′ (4-14)

‖h+(x)− g+(q)‖2 ≤ ‖h
+(µ)− g+(q)‖2 +R′ (4-15)

The previous inequalities make use of the triangle inequality (50). Given that
the complexity of computing the previous inequalities is constant then the
complexity of the Bregman Ball Tree querying algorithm becomes O(nd+ o),
where o is the number of nodes, the original complexity wasO(nd+od log(1/ε)),
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this is a multiplicative improvement over the original Bregman Ball Tree
querying algorithm. The new method is detailed in Algorithm 4.3.1

On a second note, notice that this transformation can be used to
accelerate the construction phase of the Bregman Ball Tree. Simply transform
all p ∈ P up front with h+, once the points are transformed any acceleration
technique (52) for euclidean k-means can be used. Moreover, other construction
techniques such as the one for k − d-trees can also be used resulting in faster
versions of the construction algorithm.

4.4
Some notes on the embedding to the Kullback-Leibler divergence

The previous results apply to all Bregman divergences including the
KL divergence but a closer look provides some insight on how to adapt the
embedding methodology specifically for the Kullback-Leibler divergence. In
particular, we deduce two results, one that saves computations and the other
one simplifies the sampling strategies.

Theorem 4.6 The nearest neighbor p∗ in P of q under the KL divergence is
the one that maximizes 〈q, p+〉 where p+ = (ln p1, . . . , ln pd)

Proof.
First lets rewrite the KL divergence between q and p where q is on the

left side of the divergence:

KL(q, p) =
d∑
i=1

qi ln
qi
pi

=
d∑
i=1

qi ln qi −
d∑
i=1

qi ln pi
(4-16)

Since ∑d
i=1 qi ln qi is constant, the maximization of the inner product

corresponds to the minimization of the KL divergence.
�

Now we can instantiate the pairs of functions (f, g) for the embedding, in
the following way f(q) = q is the identity function and g(p) = (ln p1, . . . , ln pd)
is a function that applies the natural logarithm to each individual coordinate.
We can also express the KL divergence as the multiplication of the only positive
vectors. This will be useful when using the sampling schemes. We show a simple
transformation that keeps the ordering of the value of the inner products while
keeping the coordinates positives.

Proposition 4.7 Let S be a set of vectors s ∈ Rd, and let m be the mapping
m : Rd → Rd, m(s) = (s1 + c, s2 + c, . . . , sd + c) where c is the |mins,i si|∀s ∈
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S, i ∈ [d], i.e. the minimum value across all coordinates for all vectors in S.
Then f preserves the ordering of the inner products of S with respect to some
query vector q

Proof. Let u, v ∈ S and q a query vector, with 〈u, q〉 ≤ 〈v, q〉 moreover let
v′ = m(v) and u′ = m(u) by construction of the mapping m all the coordinates
of v′, u′ are positive. Also 〈u′, q〉 = 〈u, q〉 + c

∑
qi and 〈v′, q〉 = 〈v, q〉 + c

∑
qi

then by properties of the sum we have 〈u′, q〉 ≤ 〈v′, q〉, which completes the
proof �

In order to prove Proposition 4.7 (the above proposition) we use the fact
that in a given finite set there is minimum coordinate value. In our particular
case we need not the set to be finite, due to our points p being β-constrained,
this means that ln pi is bounded, and we can use c = ln pi.
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5
Experiments

In this section, we report our experimental study. In all the nearest
neighbor was retrieved (1-NN) with respect to the left-NN problem.

5.1
Experimental Setup

All experiments were carried on an Intel i7-4500U CPU with 16 GB of
RAM. We ran experiments on 6 of the originals datasets proposed by Cayton
(10):

– Corel Image Collection: This dataset corresponds to roughly 60K 64-
dimensional histograms corresponding to color images in HSV format.

– Reuters Corpus: We select a subset of nearly 400K documents of
the RCV collection and for each document we used Latent Dirichlet
Allocation (LDA) (19) to generate topic vectors of dimension D ∈
{64, 128, 256} 1. We refer to each individual dataset as LDA-D.

– Semantic Space: The SemSpace dataset consists of a sample of 4500
images of the Corel Stock photo collection. Each image is represented as
a distribution over 371 description keywords (56).

– SIFT signatures: This dataset contains 10K histograms of quantized
SIFT features. Each histogram has dimension 1111 and corresponds to
an image in the PASCAL 2007 dataset (57).

In the original datasets of Cayton (10), the author also applied LDA for
dimension 8 and 16, we left out those as, in general, a dimension d is considered
high when d is close to 100. We used the same evaluation protocol as the one
described in (51). For all datasets we randomly selected 500 query points and
report the average number of queries per second as a performance measure
and the average precision for the k-NN for k = 1. We define precision as:

p = |Re ∩Rel|
|Re|

1We use the lda library in http://pythonhosted.org/lda/
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Figure 5.1: Effect of caching logarithm computations during search on a
Bregman Ball Tree

where Re is the set of retrieved points and Rel is the set of relevant points. In
our case as k = 1, the average precision amounts to the percentage of queries
the method was able to retrieve the true nearest neighbor.

5.2
Implementation Details

We discuss the implementation details for reproducibility, but we remark
that the implementation is not our primary contribution. Nevertheless, careful
thought has gone into the process and we show that a clever implementation
of the Bregman Ball Tree can improve its performance significantly. We
implemented three methods:

– BregmanBallTree: The Bregman Ball Tree (BBTree) of Cayton (10),
this is our baseline method.

– FALCONN: We used the LSH proposal of Andoni et. al (38) for cosine
similarity using the transformations formulated in the previous section
in conjunction with the adaptations of Neyshabur and Srebro (8) of LSH
for MIPS. The method is named after the library that was used.

– Inverted-Index: A Maximum Inner Product Search using our proposal
of inverted index.

All methods were implemented in Python, most of the algebraic compu-
tations were implemented using the SciPy stack (48).
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5.2.1
Bregman Ball Tree Implementation

For the implementation of the BBTree we use the pattern "Structure of
Arrays" (SoA), this pattern is the same used by the library Sklearn (49) for
their implementation of the metric Ball Tree. In SoA the elements of each data
point (record) are stored in a layout of parallel arrays, one array per field.

The implementation uses pre-allocated numpy arrays. The main advan-
tage of pre-allocations is that the objects can be quickly iterated, this iterative
interface gives more control over the heap, and leads to speed. In the downside
readability of the code suffers and once the tree is built, augmenting or pruning
it is not as straightforward. Also, the size of the tree must be known from the
start, so there is not as much flexibility in building it.

During our experimentation, we found that pre-computing the value of
the natural logarithm of the points in the data set could lead to an improvement
of 4x in execution time. This is illustrated in Figure 5.1 over three datasets.

We found this discovery to be of some significance, the implementation
provided by Lawrence Cayton, the author of the Bregman Ball Tree does not
take into account this fact. Most of the comparisons performed don’t take this
into account. For instance, Zhang et. al. (9) compared an implementation of
Bregman Ball Tree that did not store (preprocess) the values of the logarithmic
function against a proposal that did store the values of the logarithmic
function. The experiments were conducted on synthetic datasets of dimension
d ∈ [2, 4, 8, 16, 32] In their experiments, the BBTree consumes considerable less
CPU time that the rest of proposed methods up to dimension 8. For dimension
16 and 32 the gain of the competitors is less than 4x, so given that the methods
of Zhang et. al. store the values of the computation, one could conclude that
the speed of the methods came from storing this values and not from the
methods themselves. Is difficult to provide an exact conclusion as Zhang et. al
(9) does not report exact numbers and the comparison is made via plots.

5.2.2
LSH for KL implementation

As mentioned before we used the family of LSH functions proposed by
Andoni et. al. (38) which is known to be theoretically optimal as well as
practical. We used the implementation of the authors found in the FALCONN
library. Besides the fact that the library is implemented in Python, one of
the main motivations behind our choice was that this library implements a
multi-probe version of LSH which leads to lower memory consumption.

DBD
PUC-Rio - Certificação Digital Nº 1522004/CA



Chapter 5. Experiments 47

5.2.3
Inverted Index Implementation

The Inverted Index together with the CAAT strategy is very simple to
implement, which was one of the reasons why we chose this method. The only
implementation aspect that shall be discussed is the method UpdateTop given
that there are two plausible implementations: one using a heap to keep sorted
the array top, which results in a O(n log c) complexity where c ≥ k is the size
of the set of candidates and k is the number of nearest neighbors required.
The other strategy is to not maintain no top structure at all and at the final
select the top k using the selection algorithm QuickSelect (53), also known as
Hoare’s selection algorithm, this implies a complexity of O(n) but with large
constants, so if k is small we use the first version, otherwise the second version
is used. As we performed all the experiments for k = 1 the first version was
always the one chosen.

The best sampling method, among those discussed in Section 3.3.2,
was Simple Sampling as illustrated in Figure 5.2. Each point in the curve
corresponds to a set of parameters, for each set is plotted the precision vs the
number of queries per second. The sampling by column inspired by CUR is the
worst of the three methods. In particular the precision of this method is pretty
low, it does not reach 0.6. On the other hand, Diamond Sampling reaches a
precision of 0.9, but at a performance of 100 queries per second. The best of
them was Simple Sampling, for a precision of 0.9, similar to the highest of
Diamond Sampling, it performs at almost 900 queries per second, nine times
more than Diamond Sampling; plus the highest precision is 0.95 at 200 queries
per second.

5.2.4
Parameter Setting

Each of the methods has a different set of parameters, with little or no
relation at all. The following list details the set of parameters for each method:

– BregmanBallTree: This method has two parameters the number of
data points per leaf node and the number of leaf nodes to visit during
the back-track part of the search algorithm.

– FALCONN: Locality Sensitive Hashing has two parameters L and k,
but following the methodology discussed in Section 3.2, one can set L as
a function of k. Also suitable thresholds p1 and p2 must be chosen.
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Figure 5.2: Performance of sampling methods on the SIFT dataset

– Inverted-Index: For this method one must set the number of coordi-
nates to sample from the query, the number of samples for each data
point and the number of candidates.

In the case of the BregmanBallTree method we choose the number
of data points per leaf from {60, 100, 500}, the number of leaf nodes to be
visited is chosen from {5, 10, 15}. For FALCONN we set k as a function of
p1 and p2 as specified in Section 3.2 and derived L accordingly, the pair of
probabilities was chosen from the cross product of p1 ∈ {0.9, 0.8, 0.7, 0.6} and
p2 ∈ {0.5, 0.4, 0.3, 0.2}. In the case of Inverted-Index we chose the number
of samples for the query and the dataset from the power of 2 up to the half
of d, i.e. {2, 4, 8, . . . , 2log d−1}, and the number of candidates was chosen from
{5, 10, 50, 75, 100, 125, 150}.

5.3
Results

In this section we report our results using a plot of the Pareto frontier for
each method. In the plots a curve represents the results of a method, each point
represents a set of parameters, and for a given set of parameters we report the
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Figure 5.3: Precision of each method vs number of queries per second. The
legend is in the plot.

number of queries per seconds and the precision. We split the results into three
categories according to the dimensionality of the data:

– Low Dimensionality: Corel, LDA-64

– Medium Dimensionality: LDA-128, LDA-256

– High Dimensionality: SemSpace, SIFT

The results for the Low Dimensionality are plotted in Figure 5.3. In
the case of the Corel dataset, for the set of parameters chosen, the Bregman
Ball Tree achieves a maximum of 0.6 precision. For the same performance of
roughly 102 queries per second the LSH proposal reaches a precision of 1.0. The
best performance, however, is achieved by the Inverted Index; for a precision
of 0.6 its speed is an order of magnitude (a factor of 10) better than the two
other proposals. This dominance is maintained up to a precision mark of 0.9
where it began to lose to FALCONN but the speed of both methods is in the
same order of magnitude.

For the LDA-64 dataset, all the methods performed very well achieving a
minimum precision above the mark of 0.8. And in terms of queries per second
the performance is comparable, but FALCONN and Inverted Index are slightly
better. In particular, Inverted Index obtains a precision of 0.9 at almost 4 times
better than the others but then it loses for LSH right away. FALCONN starts
a little slow in comparison to BBTree, but surpasses it for higher precision
values.

In general for the Low Dimensionality datasets we consider that
Inverted Index is the best overall, it manages to achieve good values of precision
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Figure 5.4: Mean cumulative sum of each of the probabilities sorted in non-
increasing order. The line across each graph marks the value of 0.9

at a minimum of 0.5 for any set of parameters over the two datasets while, at
some points achieving a speed of an order of magnitude better than the other
two method proposals.

A possible explanation for this behavior can be found in Figure 5.4.
In the graphs is shown the mean cumulative distribution of the values of
the coordinates for each data point sorted in non increasing order. In other
words, for each p ∈ P we sorted the coordinates pi from maximum to
minimum, compute the cumulative sum and found the mean of the values
of the cumulative sum across each dimension pi.

The cumulative sum gives an idea of how many dimensions one will need
to sample in order to get a good estimate of the norm of the vectors p which
is a proxy for the value of their inner product. In the case of the LDA-64
dataset with nearly 10 dimensions we manage to obtain an approximation of
90 percent of the total sum, in the other hand, for Corel it needs almost the
double, around 20 dimensions.

The number of dimensions to sample impacts the performance of Inverted
Index, as more dimensions are sampled more candidates are added which
translates not only in a bigger final set, but also in an increase in the number
of operations to perform. Moreover the impact also extends to precision, as one
needs a larger number of dimensions to have a good approximation value. All
the above factors provide a plausible explanation of why the Inverted Index
curve of LDA-64 in Figure 5.4 achieves a high precision at a high speed, also
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Figure 5.5: Precision of each method vs number of queries per second. The
legend is in the plot.

why in Corel the first value for precision is so low.
Notice that despite the values of queries per second are similar for both

datasets, the number of data points in LDA-64 is almost 10 times the number
of data points in Corel. Finally Figure 5.4 also gives a hint of why FALCONN
(LSH) and BBTree also worked well for LDA-64, as it suggests that the data
lies in a space of much lower dimensionality.

For both datasets of Medium Dimensionality FALCONN (LSH)
performs poorly and is dominated by both BBTree and the Inverted Index.
The results can be seen in Figure 5.5. In the case of the Inverted Index for the
LDA-128 dataset the precision is not as good as in the Low Dimensionality
datasets, but its performance in terms of queries per second is better than the
other two methods for a similar precision level of 0.8 in particular is nearly
two order of magnitude better than LSH. Bregman Ball Tree offers the best
speed vs precision of the methods, it achieves a higher precision than Inverted
Index and at the same time a better speed than LSH.

We plotted the distribution of the maximum inner product, once is
normalized, to understand the behavior of FALCONN (LSH) . The results
can be seen in Figure 5.6. For instance in the case of the LDA-256 dataset
the value of the maximum similarity is below 0.08 while for LDA-128 is nearly
0.10, this low similarity values posed a problem for LSH, because setting the
parameters is tricky, as L would need to be very large. Consider the scenario
for LDA-128, the size of the dataset is 500000, if one choose p1 = 0.085 and
p2 = 0.035, that is a gap of 0.05 and computes L and k as suggested in Section
3.2, this leads to L = 15509 and k = 3, leading to a blowout in storage and to
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Figure 5.6: Distribution of values of the maximum inner product for the
datasets SIFT, SemSpace, LDA-256, LDA-128 and LDA-64

a really large set of candidates.
This behavior is caused because for high dimensional data (dimension

above 100) the maximum inner product is often small in comparison to the
vector’s norm, that is after normalizing. In fact it can be seen in Figure 5.6 the
largest value is for LDA-64, also Corel is not shown as the magnitude was not
the same as the others so it will cause a distortion in the data presentation,
the mean value was around 0.4.

Figure 5.7 shows the norm distribution for each dataset. It is expected
that if the norm of all vectors is roughly the same, the values of the inner
product will be close to one. In Figure 5.7 is obvious that this is not the case
for real world datasets.

Moreover, the norm distributions can help understand the causes behind
the low similarity values. Before we proceed with the explanation, notice that
the range of norms is normalized between (0, 1], and that the maximum is
always 1 and it corresponds to the maximum value found in the dataset. In
the case of LDA-256 and LDA-128, it can be seen that the bulk of the norms
is below 0.4 and nearly centered at 0.3 if one assumes a corresponding value
of 0.3 for the queries the expected maximum inner product is in the range of
0.16 and 0.09 as shown in Figure 5.6. Also in the case of Corel the distribution
is roughly centered at 0.6 which gives an expected value of 0.36 that is close
to mean value found of 0.4.

Finally the results for the High Dimensionality datasets are shown
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Figure 5.7: Distribution of norm values for each the datasets

in Figure 5.8. LSH and Inverted Index dominates Bregman Ball Tree in both
datasets. In particular Inverted Index excels in SemSpace as the minimum
precision threshold is above 0.9 and it manages to reach the maximum value of
precision possible, at almost 6 times the speed of LSH for the same precision
value. In the case of the SIFT dataset Inverted Index dominates both LSH
and BBTree, the precision is almost 1, but in this case the performance is
comparable to that of LSH. The BBTree performs very badly in this dataset,
for maximum precision of around 0.7, Inverted Index is almost two orders of
magnitudes faster than BBTree for a similar precision.

Summarizing our results, we implemented three different methods: BB-
Tree, LSH (FALCONN) and Inverted Index. We found that for BBTree stor-
ing already calculated values of the logarithmic function leads to almost a 4
times improvement in terms of time consumption, over a naively implemented
BBTree. Of the three sampling techniques, we tried for the Inverted Index,
sampling the coordinates of each the data point according to it’s value was the
best, for all the set of parameters it dominated the alternatives both in terms
of queries per second and precision.

The FALCONN based implementation was able to compete with the
baseline proposal in some datasets, but it performed poorly in others. A
possible explanation for this behavior could be the low values of the norm of
the vectors, that make the approach unfeasible due to memory requirements.
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Figure 5.8: Precision of each method vs number of queries per second. The
legend is in the plot.
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6
Conclusions

In this work we explored the approach of posing the problem of k-NN
under the Kullback-Leibler divergence as a Maximum Inner Product Search.
We showed in particular how this technique can be used to obtain better theo-
retical bounds for existing data structures such as the Bregman Ball Tree. On
the practical side we investigated the use of two, very popular, indexing tech-
niques: Inverted Index and Locality Sensitive Hashing. Experiments performed
on 6 real world data-sets showed the Inverted Index performs better than LSH
and Bregman Ball Tree, in terms of queries per second and precision.

Future research directions include an empirical comparison of our theoret-
ical proposal to accelerate Bregman Ball Trees, and also it would be interesting
to extend our result to the general class of Bregman divergences.
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