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Abstract

Nóbrega, Filipe Bellio da; Craizer, Marcos (Advisor). Representa-
tion of generic curves by their singularities. Rio de Janeiro,
2018. 67p. Dissertação de Mestrado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this work is to study the topological and geometric
properties of closed generic immersed curves in the plane. In this case,
generic means that the curve can only have double points without a common
tangent. One can label the singularities using n symbols, such as a1, ... , an.
Going around the curve, a cyclic word of length 2n is produced. However,
not every word is related to a planar curve, there are requirements on its
combinatorics, the first of which was found by Gauss. Advances were made in
the study of locally convex curves on the plane, the sphere and the projective
plane.

Keywords
Double points Double tangents Locally convex curves Arnold’s

invariant Whitney’s formula
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Resumo

Nóbrega, Filipe Bellio da; Craizer, Marcos. Representação de
curvas genéricas por suas singularidades. Rio de Janeiro,
2018. 67p. Dissertação de Mestrado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo desta pesquisa é estudar as propriedades geométricas e
topológicas de curvas genéricas imersas no plano. Neste caso ser genérica
significa que a curva só pode ter pontos duplos sem tangentes comuns
nas duas passagens. Pode-se nomear as n singularidades da curva usando
símbolos como a1, ... , an. Percorrendo a curva, produz-se uma palavra
cíclica de tamanho 2n. Entretanto, nem toda palavra está relacionada a uma
curva plana, há requisitos sobre a sua combinatória, o primeiro dos quais
foi descoberto por Gauss. Avanços foram realizados no estudo de curvas
localmente convexas no plano, na esfera e no plano projetivo.

Palavras-chave
Pontos duplos Tangentes duplas Curvas localmente convexas In-

variantes de Arnold Fórmula de Whitney
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1
Introduction

The study that originated this work began in January 2017 when
Professor Étienne Ghys gave a summer course at IMPA named “Tópicos da
Teoria das Singularidades: Combinatória, Topologia e Álgebra”. At a given
point some topological questions about closed curves on the plane were
presented and it sparked curiosity and interest on the subject.

The main focus of the research is the relation between the combinatorics
of cyclic words and geometric and topological properties of closed generic
curves. In this way, established results in those areas of Mathematics were
considered and applied to the study of the singularities of planar curves.

The main achievement of the work is the approach dedicated to locally
convex curves that led to the discovery of a necessary condition on the
combinatorics of the cyclic words of their double points. Furthermore, this
study was not restricted just to the Euclidean plane R2; curves were also
considered on the sphere S2 and on the real projective plane RP2.

In the second chapter, the original problem posed by Gauss is explained
and discussed. A solution presented by Ghys in his most recent book is
displayed and proved.

The third and fourth chapters are dedicated to the analysis of locally
convex curves on the plane. First we define some classes of curves on the
sphere that bring together curves that have the same cyclic word of double
points. Then, we define cycles and use them to state the newfound necessary
condition.

The fifth chapter is dedicated to the work of two authors who made
major contributions on the subject, namely Arnold and Whitney. We present
Arnold’s theory of invariants for generic immersions of closed curves and
discuss Whitney’s formula that relates the double points to the index of the
curve. A new proof for this theorem is also provided.

Another author is highlighted in the sixth chapter, Fabricius-Bjerre. His
work concerns the double tangents of the closed curves. We present some
formulas that he has derived and point out a special family of curves with
particular properties.

The final chapter is reserved for closed curves on the projective plane. We
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Chapter 1. Introduction 10

give some examples in order to better understand their fundamental properties.
The theory developed thus far is applied to this new setting and the concept
of duality is explored. Some questions remain open, but hopefully this work
will encourage more people to study this fascinating subject.

f

b

a
c

d

e
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2
Cyclic Words of Planar Curves

2.1
Closed curves, cyclic words and chord diagrams

This work concerns the planar curves and their topological properties,
which is a subject that has been studied for hundreds of years. Gauss himself
wrote some notes about it, and this will be our starting point. Consider a
closed generic oriented immersed curve i : S1 → R2 in the plane. In this case,
generic means that the curve can only have double points without a common
tangent, i.e., if the curve crosses itself at a point, there can only be two arcs
passing through that point and they cannot have the same tangent there.

Such a curve has only finitely many double points, so we can label
them using n symbols, such as a1, ..., an. If one goes around the curve, each
double point is passed by twice, and we get a cyclic word of length 2n, where
each of these ai’s appears two times. Therefore, it is possible to construct a
chord diagram which represents the topological behaviour of the curve’s self-
intersections.

a

e

b

c

d

a b c d b e d c e a

a

a

b

cd

b

e

d

c e

The problem that interested Gauss was how to determine whether a
chord diagram is related to a planar curve or not. So given a cyclic word with
n pairs of symbols, is there a planar curve whose double points generate it?
Gauss found out a first necessary condition.
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Chapter 2. Cyclic Words of Planar Curves 12

Proposition 2.1 If a cyclic word with n pairs of symbols is associated to a
planar curve, then given any ai there must be an even number of letters between
each of its occurrences.

To see why this is true, first we need a lemma.

Lemma 2.2 Any two closed planar curves that intersect transversally have an
even number of intersection points.

Proof of the Lemma.
Take one of the curves and slide it through a generic path of translations until
the curves are separated. We just need to examine how intersection points
appear or disappear under such generic processes. It is easy to see that they
do so in pairs. Therefore, as at the end there are zero intersection points, there
must be an even number of them at the beginning. �

Proof of the Proposition.
Now, consider a closed generic oriented immersed curve γ and a double point
ai, like the following.

a

e

b

c

d

a b c d b e d c e a

γ

Its chord on the chord diagram divides the circle into two intervals I1

and I2, each of which represents a closed curve, γ1 and γ2, that begin and end
at ai. Moving them slightly so they become transversal and do not cross near
ai, we have two closed planar curves.

a

e

b

c

d

a b c d b e d c e a

a

a

b

cd

b

e

d

c e

I1

I2
γ1

γ2
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Chapter 2. Cyclic Words of Planar Curves 13

By the lemma, they must have an even number of intersection points.
Looking back at the chord diagram, we see that the letters in the interval I1

either correspond to double points of the curve γ1, in which case the letter
appears twice in I1, or to intersection points between γ1 and γ2, in which case
it appear only once in each interval. Therefore, the number of letters in each
interval must be even. �

However, as Gauss knew very well, this condition alone is not enough.
There have been many different ways to solve the problem, mainly topological
and combinatorial ones. The following is an interesting solution presented by
Étienne Ghys in his most recent book (1). We will follow his reasoning closely.

2.2
The signed Gauss’ problem

We will consider an easier version of the problem, the signed problem
of Gauss. If the plane is oriented, it is possible to define an order to the two
tangent vectors of each double point, so that one is “the first” and the other
“the second”. Going around the curve, if we cross a double point ai along “the
first” branch we will denote it as a+

i , and we will use a−i otherwise. In that
way, we obtain signed words and we can think, equivalently, of oriented chord
diagrams, where each chord goes from the positive + end to the negative −
one. So the signed Gauss’s problem is to determine whether a signed cyclic
word comes from some generic curve in the plane.

To solve this problem we will construct a topological surface in a clever
way. For each letter a1, ..., an we will construct a cross with a positive and a
negative oriented arm.

ai
+

−

A signed cyclic word determines uniquely how to glue those crosses. The
result of this process is an oriented surface S with boundary containing an
immersed oriented curve γ which originates our original signed cyclic word.
So if S is planar, i.e., if it is possible to embed it in the plane, the problem
is solved, since we constructed a curve in the plane. Conversely, if the word
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Chapter 2. Cyclic Words of Planar Curves 14

comes from a curve in the plane, it is clear that some neighbourhood of its
image is a union of crosses assembled as in S.

Therefore, a signed cyclic word w is associated to an immersed planar
curve if and only if S is planar.

How does one find out if S is planar? Let k be the number of boundary
components os S. Now glue a disc to each of its boundary components to obtain
a new surface Ŝ. Because the surface S has the homotopy type of a graph with
n vertices and 2n edges, the Euler-Poincaré characteristic of Ŝ is n−2n+k. It
is well known that compact oriented surfaces without boundary are classified
by their Euler-Poincaré characteristic, and as corollary, S is planar if and only
if k − n = 2.

So there is an algorithm to decide whether w is realizable: just glue the
crosses and count the number of components of the border. There is a planar
curve with that signed word if and only if such number is n+ 2. However, this
algorithm doesn’t give us a complete understanding of the matter, and it can
be quite hard to manage the surface S.

Fortunately, there is another way to solve the problem. It follows from the
classification of compact oriented surfaces with boundary that such a surface
is planar if and only if any two closed transverse curves intersect in an even
number of points. If the genus of the surface is greater than or equal to 1, it
contains a punctured torus which contains two curves that intersect at a single
point. Hence, to verify if the genus of S is 0, it suffices to find a basis of its
homology H1(S;Z/2Z) modulo 2, and to compute the intersection.

We start to consider some closed curves on S. First, there is γ, the original
curve that goes over every cross. For every i = 1, 2, . . . , n, we consider the
interval from a+

i to a−i , which defines a loop γi. It begins at the center of
ai’s cross, leaving it through the positive arm. Then it goes straight over the
other crosses, that is, it never turns to change its direction. When it finally
comes back to its original cross through the negative arm, it connects at the
center, giving the closed curve γi. In that way the intersection of γi with a
cross different from the one labled ai is either empty, or a straight segment, or
two perpendicular segments.

ai
+

−

γi
aj

+

−

γi

ak
+

−

al
+

−

γi

am
+

−

γi
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Chapter 2. Cyclic Words of Planar Curves 15

Lemma 2.3 The classes [γ], [γi]1≤i≤n define a basis of H1(S;Z/2Z).

Proof. The surface S has the homotopy type of a connected graph with n

vertices and 2n edges, thus its Euler-Poincaré characteristic is −n. Since this
invariant is related to the Betti numbers bi, which are the the rank of the i-th
homology group, through the following formula:

χ = b0 − b1 + b2 − b3 + . . .

and bj = 0, j ≥ 2, we can conclude that −n is equal to 1 minus the rank of
H1(S;Z/2Z). Therefore this rank is (n+ 1).

In order to prove the lemma we just have to show that the elements
[γ], [γi]1≤i≤n are linearly independent in H1(S;Z/2Z).

Any arc σ in S with endpoints in the boundary of S defines a linear form
in H1(S;Z/2Z): just count intersection points with σ modulo 2. Consider an
arc such as the following on an arbitrary cross. One can see that γ intersects
it in only one point, so [γ] is not trivial.

ai
+

−

σ

For [γi], consider σi as the sum of the two curves in the cross associated
to the letter ai, as in the image below.

ai
+

−

σi

The intersection of γj with σi is 0 if i 6= j and 1 if i = j. In addition,
the intersection of γ with σi is always 0. Therefore one can use these n + 1
linear forms σi and σ to show that [γ], [γi]1≤i≤n are linearly independent and
the lemma is proved. �

Now, the surface S has genus zero if and only if the intersection number
of the loops γ, γi are all 0 modulo 2.

The self intersection number of any closed curve on any orientable surface
is 0 (over Z and hence over Z/2Z).
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Chapter 2. Cyclic Words of Planar Curves 16

Let us compute the intersection number of γ and γi, denoted by γ · γi.
In order to make them transversal, move γ slightly to its right, originating γ′.
It follows that the intersection number of γ and γi is the number of letters
between a+

i and a−i . In this way, we recovered Gauss’s necessary condition. We
will assume from now on that it is satisfied.

Next, we will compute the intersection number modulo 2 of γi and γj,
namely γi · γj. We find two different situations.

If the letters a±i , a±j are not linked, there are two disjoint intervals I, J
in the circle (or in the cyclic word) whose endpoints are a+

i , a
−
i and a+

j , a
−
j

respectively. Since γi can be replaced by γi − γ in the computation of the
intersection number, it follows that γi · γj is the number of letters in the word
with one occurrence in I and the second in J in this unlinked case. This is
therefore a second parity condition, necessary for the realizability of w.

If the letters a±i , a±j are linked, the loops γi and γj are not transversal;
they coincide on some non-trivial interval. Move γi slightly to the right to get
some γ′i, and move γj to the left to produce γ′j. These new curves are parallel
on this common part.

To count the intersections, first we take a close look at the crosses
associated to ai and aj.

ai
+

−

γ′i

γ′j

aj
+

−

γ′i

γ′j

a+j

a−i

a−j

a+i

J

I

One can see that there are no intersections in the cross ai, and there is a
single one in the cross aj. The other intersections correspond to letters between
a+
i and a−i whose second occurence is between a+

j and a−j , except if both are
in I ∩ J , since in this case there are two intersection in the same cross, so it is
irrelevant modulo 2. Hence, when a±i , a

±
j are linked, the intersection number

γi · γj is equal to 1 plus the number of letters with one ocurrence in I and the
other in J \ I or with one ocurrence in J and the other in I \ J .

We therefore get a very simple answer to the signed Gauss’s problem.
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Chapter 2. Cyclic Words of Planar Curves 17

Theorem 2.4 A signed Gauss word is realizable by a planar immersed curve
if and only if the following conditions are satisfied:

1. For every letter ai, there is an even number of letters between a+
i and a−i

(Gauss’s parity condition).

2. For every i, j such that the letters a±i and a±j are not linked, let I, J be
the disjoint intervals whose endpoints are a+

i , a
−
i and a+

j , a
−
j (excluding

these points). The number of letters in the word with one occurrence in
I and the other in J is even.

3. For every i, j such that the letters a±i and a±j are linked, the number of
letters between a+

i and a−i whose other occurence is between a+
j and a−j ,

and that do not appear twice in I ∩ J , is odd.
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3
Classes of Curves on the Sphere

3.1
Defining classes of curves

In the previous chapter, the conditions that a signed cyclic word w must
meet in order to correspond to an immersed closed planar curve were shown.
In this chapter we will develop the necessary tools to investigate a particular
family of planar curves, namely the locally convex curves.

Definition 3.1 An immersed planar curve is said to be locally convex if it
does not have any inflection point.

Since these curves have no inflection points, their concavity is always
well-defined and never changes sign. Equivalently, one can say that the curve
always “turns to the same side”; if you imagine yourself driving a car along
the curve, you should keep steering to the same side all the way.

The main goal is to find conditions on the words of locally convex curves.
First of all, there are curves which are not locally convex that can easily
become so by slightly moving it, and the letters in its word cannot detect
such movement.

Therefore, we must consider classes of curves under continuous deforma-
tions for the reasoning to make sense. Since we want all the curves from a given
class to have the same signed cyclic word, creating or getting rid of intersec-
tion points is clearly not allowed. In fact, given two closed generic oriented
immersed curves γ1 and γ2, if one considers a generic connecting path of im-
mersions between them, there are only three types of singular events that can
occur. These are triple crossings of the immersion and self-tangencies of two
types, direct self-tangencies if the tangent vectors of both branches coincide,
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Chapter 3. Classes of Curves on the Sphere 19

and inverse self-tangencies otherwise. This fact was shown by Arnold (2) and
we will examine it thoroughly in the next chapter.

Triple Crossing

Direct Self-Tangency

Inverse Self-Tangency

Considering two curves as being from the same class if there is a
connecting path of immersions that avoids all singular events guarantees that
the class has a well-defined cyclic word associated with it, because every curve
in it shares the same word. However, there can be two distinct classes with the
same cyclic word as it is defined so far, unfortunately. To see this, consider the
trivial example of the word a+a− and look at the following two curves.

a

a

There is no generic path in the plane between these curves without a
singular crossing, they nevertheless have the same word. Thus, we seek a new
way to define the classes such that those curves are considered as the same.
The small tweak we need is to allow the arcs of the curve to pass through
infinity. Imagine the bottom arc of the figure eight curve expanding until it
“reaches infinity”, passes through it and appears on the other side. In this
way, we connect the original curves without singular crossing and, therefore,
we group them in a single class.
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Chapter 3. Classes of Curves on the Sphere 20

To formally define the equivalence relation over the curves, we must con-
sider curves on the sphere rather than on the plane. The geometric interpre-
tation of “passing through infinity” comes from the gnomonic projection.

Set a point on the sphere as its north pole and consider the tangent plane
at that point. The gnomonic projection maps any point p on the northern
hemisphere to a point p′ on the plane by taking the line through the center of
the sphere and p. Its intersection with the plane defines the image p′.

This map sends a hemisphere into the plane and it has the useful property
of mapping arcs of great circles to straight lines, so the geodesics of the sphere
are mapped to the geodesics of the plane. This implies that locally convex
curves on the hemisphere are mapped to locally convex curves on the plane.
We will use the gnomonic projection and its inverse function to work with
the curves either on the sphere or the plane. Fortunately, since the sphere is
orientable we can keep the sign as we defined it for the double points.

Definition 3.2 Two closed generic oriented immersed curves on the sphere
are in the same equivalence class if and only if there is a connecting path of
immersions that avoids all singular events.

At this point we have a satisfactory definition for the equivalence relation,
for we have the following result.

Proposition 3.3 Every equivalence class of curves on the sphere has a unique
signed cyclic word related to it and no word is related to more than one class.

Proof. Since there is a connecting path of immersions that preserves the signed
cyclic word between any two curves in the same class, it is clear that all curves
in the class have the same word.
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Chapter 3. Classes of Curves on the Sphere 21

To show that no word is related to more than one class, consider an
arbitrary signed cyclic word w. We shall draw a curve on the sphere according
to the word’s instructions and we will notice that there is no choice in the
process, thus we always end on the same class when we finish. Choose any
letter of w to be the “first” one. We start at an arbitrary point on the sphere
and draw an arc until we get to the first double point, corresponding to that
first letter of the word. It is important to notice its sign, so we draw a small
transversal arc appropriately oriented. Keep doing so for the new double points,
until the next letter is a repeat.

a

b

c

d

a−b+c+d−b−

At this point we have to connect the curve to the small transversal arc
already drawn crossing that double point. If we were on the plane, there would
be two ways to do so, each one going around the curve drawn so far in a
different way. However, on the sphere these arcs are equivalent. Since the set
that cannot be crossed is connected and the extremities of the arc are in the
same path-component, it is possible to pass it through the back of the sphere;
so we can choose either.

a

b

c

d

a−b+c+d−b−
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Chapter 3. Classes of Curves on the Sphere 22

Now we have divided the sphere into two connected componentes. Since
we are keeping track of the double points, we know exactly at which points
the curve will cross the boundary between them.

We continue our construction, possibly adding new double points. When
we come across another repeat, we might have two equivalent options as before
or a previous arc might block us, leaving only one way to proceed. Either way,
any curve we draw is equivalent.

a

b

c

d

a−b+c+d−b−e+d+

e

e a

b

c

d

Compare

?

e

Provided that the word w is realizable, i.e., it follows the conditions
presented in Chapter 1, there won’t be any problem that prevents us from
completing our drawing, and so we get a closed curve on the sphere. As we
saw, any curve we construct in that way is equivalent, therefore every realizable
word is related to a single class of equivalent curves on the sphere. �

a

b

c

d

a−b+c+d−b−e+d+c−e−a+

e

a

b

c

d

Equivalent curves on the sphere

e

An interesting reward of the construction in the proof is that by means
of the equivalent choices we get all possible different appearances of the
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Chapter 3. Classes of Curves on the Sphere 23

curve back on the plane. Actually, the closed curve divides the sphere into
a finite number of connected components as a consequence of the Jordan
Curve Theorem, and by picking a point in the interior of one of them as the
“south pole” and pulling up the whole curve to the northern hemisphere, the
domain of the gnomonic projection, and applying it we get a planar view of
a representative of the equivalence class. This process provides every distinct
planar view of the class.

a b

a

b

a b

a

b

Example: a−a+b−b+

I) II)

III) IV )

In fact, there are many ways to show that a generic immersed closed
planar curve with n double points divides the plane into exactly n+2 connected
components. The curve on the plane can be seen as a planar graph, so Euler’s
formula applies. It has n vertices, all of which have degree 4, so the number of
edges is 2n by a double counting argument. Thus we have:

v − e+ f = 2

f = n+ 2

Another way to prove this is by taking the double points away one by one.
Consider the neighbourhood of a double point, it is divided into four regions.
Delete the double point and then reconnect the branches without crossings in
a way that keeps the curve connected.

12

3 4

1

3

2

DBD
PUC-Rio - Certificação Digital Nº 1613078/CA



Chapter 3. Classes of Curves on the Sphere 24

In the figure, we know that the righthand side of the curve eventually
comes back from the bottom since the curve was oriented. So the only way
to maintain it connected is to violate its original orientation and proceed as
shown in the figure. By doing so, the regions numbered 2 and 4 come together,
thus if they were not one and the same to begin with, the number of regions
has decreased by 1.

One can prove by contradiction that those regions were two distinct ones.
Suppose 2 and 4 were part of the same region, so there is a path µ that does
not cross the original curve going from 2 to 4. After the maneuver we did
around the double point, it is possible to close such a path µ and the Jordan
Curve Theorem states that the two portions we can see of the original curve
are in different connected components. Since the curve is still connected, we
find that there must be a intersection between the curve and µ, which is a
contradiction.

12

3 4

1

3

2

µ µ

To conclude the proof, we just need to give any orientation to the new
curve we have and repeat the process. After taking all n double points away,
we end with a closed curve with no singularities, which is topologically the
same as a circle. Since it divides the plane into 2 connected components, we
conclude that the original curve divides the plane into n+ 2 regions.
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In the fifth chapter there is a third proof of this fact using Arnold’s
theory.

3.2
Study of cycles

Now that we have the desired equivalence relation, we search for require-
ments for there to be a locally convex curve among the representatives of the
class.

One such condition was found; it concerns the orientation of cycles
defined by the curve.

Definition 3.4 A cycle is a connected component of the complement of an
oriented closed curve on the sphere such that its boundary’s orientation never
flips. Equivalently, it is possible to go around its boundary, turning corners at
the double points, and never be against the original curve’s orientation. The
length of a cycle is the number of arcs that compose its boundary.

Fortunately, the cycles defined by the curve can be discovered just by
looking at its signed cyclic word. For a pair of consecutive letters in the cyclic
word to represent an arc in the boundary of a cycle, they must have opposite
signs. This can be easily seen in the following picture.

a b a b

bba a

No cycle

No cycle

Possible cycle

Possible cycle

a+b+

a−b+

a+b−

a−b−

One can identify a cycle of length n in the word as a sequence of n pairs of
letters with opposing signs, which represent the n oriented arcs in the cycle’s
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boundary. The simplest example is a cycle of length 1 such as a+a−. Also,
every pair must have the same order of signs, either (+,−) or (−,+). To see
this, take a look back at the previous figure, if we begin with a+b− there must
be an arc that begins with b+, so it could be b+c−, for example. This process
goes on until we get back to a−, where the cycle closes itself. The reasoning is
the same for the other case. The order of the signs also determines the sense
of rotation of the cycle; this can be seen in the picture above.

There are three important remarks. If the cycle has length greater than 1,
its pairs do not have to come one right after the other; they can be spread out
throughout the word. In addition, they do not have to appear in any particular
order; they build the cycle in steps. Finally, the same letter can be part of two
different cycles, so we must look closely not to miss any. Here we have some
examples to see these behaviours.

ba

c

a−b+c−a+b−c+

Cycles:

(a−b+, b−c+, c−a+) External Cycle

(b+c−, c+a−, a+b−)

a

b c

a−a+c−c+b−b+

Cycles:

(a−a+) ; (b−b+) ; (c−c+)

(a+c−, c+b−, b+a−)

(−)

(+)

(−)

(+)

a+b−c+c−b+a−

Cycles:

(a+b−, b+a−) ; (c+c−)

(−)

(+)

(b−c+, c−b+) ; (a−a+)

a

b

c

DBD
PUC-Rio - Certificação Digital Nº 1613078/CA



Chapter 3. Classes of Curves on the Sphere 27

These pictures were planar views of the curves, usually it is easier to
understand them. However, they might provide an exceptional phenomenon,
the external cycle. It is simply a cycle in the unbounded component of the
plane. What is extraordinary is that the sense of rotation of the cycle as viewed
from the plane is reversed if it is external, that is, it is the opposite of what
the signed word depicts.

Before we get to the requirement for a word to have a locally convex
representative on its class, there is an interesting consequence of the Poincaré-
Hopf Theorem (3) to consider. This result and its proof were provided by the
author.

Proposition 3.5 Every generic oriented immersed curve on the sphere has at
least 2 cycles.

Proof. Given such a curve on the sphere, it is possible to define a continuous
tangent vector field v with isolated zeroes by following the curve’s orientation.

Close to an arc, but far from the double points, a vector field v0 is defined
via the Constant Rank Theorem. Therefore, there are no singularities in these
regions.

In a neighbourhood of a double point we will have to adjust a little bit.
Erase the curve near the double point and connect the branches in a way that
respects the curve’s original orientation and without crossings, there is only
one way to do so. Now it is possible to use the Constant Rank Theorem once
again to define the vector field v0 near double points. The following image
ilustrates this construction and it shows that v0 has no singularities near the
curve’s double points.

Due to the Jordan-Schönflies Theorem (4), we know that the curve
divides the sphere into a finite number of connected and simply connected
components, and we have already defined v0 close to their boundary, now we
must look at the interior.
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Consider such a region. Its boundary is composed of n ≥ 1 regular arcs
and n double points. Topologically, they are the same as regular polygons with
oriented edges. (If n = 1 or n = 2 we can’t take regular polygons, evidently.
In these cases, consider the layouts shown in the next figure).

n = 1 n = 2 n = 3 n = 4 . . .

We will define v with a single singularity in the center O of the polygon.
Since we have v0 well-defined in a tubular neighbourhood of the boundary,
it is defined over a closed convex curve σ : S1 → S2 next to it inside the
polygon. We can define v radially inside the convex region D defined by σ, in
the following way:

Given a point p on the curve σ, consider the segment σp going from the
center of the polygon to p. We define v using the value of v0 over σ

σp : [0, 1]→ D σp(0) = O σp(1) = p

v(σp(t)) = tv0(p)

O

σp

σ

D

p

In the open set outside D where v0 is defined, we take v = v0. Thereby
we have successfully defined v over an open set that contains the whole
connected and simply connected component. Repeating this construction for
each component, we obtain the continous tangent vector field v with isolated
zeroes on the sphere that we wanted.

DBD
PUC-Rio - Certificação Digital Nº 1613078/CA



Chapter 3. Classes of Curves on the Sphere 29

The index Ii of a singular point Oi is an integer given by the degree of
the map u : ∂D → S1; u(p) = v(p)/‖v(p)‖ where D is a neighbourhood of Oi

which does not contain any other singularity, so D as we have defined suits
our purposes.

The Poincaré-Hopf Theorem states that if Oi are the zeroes of v, then

∑
i

Ii = χ(S2)

Since the Euler-Poincaré characteristic of the sphere is 2, the sum of the
indexes of the singularities of v must be 2 as well. Let us figure out these
indexes.

As we saw, the singularities are in the center of polygons with n ≥ 1
edges and vertices. We must compute it going around σ in the positive sense
since ∂D = σ. Actually, v|σ is similar to v on the border of the polygon; we
just have to notice what happens near the double points.

If the consecutive edges have the same orientation, the vector field turns
with the curve. For example, if the region is a cycle, v makes a full rotation
yielding Ii = +1, independently of the cycle’s sense of rotation, and the
singularity is of type center.

However, if the orientation on the edges flips, v turns a fraction of 2π
in the negative sense. In general, the index depends on how many times the
orientation of the edges is flipped.

Since we can ignore the vertices where the orientation doesn’t change, we
end up with a regular 2n-gon, n ≥ 1, with alternating orientation on its edges,
presuming the region is not a cycle. Now that we have reduced the situation
to a very simple scenario, it is easy to see that if n = 1, there was no need for
a singularity and Ii = 0. If n ≥ 2 there are 2n hyperbolic sectors and thus, by
Bendixson’s index formula (5) displayed below, the singularity in the center
has index Ii = 1− n.
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Bendixson’s index formula: I = 1 + e− h
2

where e is the number of elliptic sectors and h is the number of hyperbolic sectors.

In fact, this formula holds for all cases. If the region is a cycle, then
(e = 0 , h = 0)⇒ I = 1. If n = 1 we have a 2-gon and (e = 0 , h = 2)⇒ I = 0.

O O

n = 3
I = −2 I = 0

n = 1

Finally, as ∑
i Ii = 2 and only cycles contribute with positive indexes of

Ii = +1, every curve must have at least 2 cycles. �
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4
The Words of Locally Convex Curves

4.1
Necessary condition on the combinatorics

Now that we have the tools needed to study locally convex curves, we can
look for further requirements on the combinatorics of their cyclic words. We
present in this chapter a necessary condition on the cyclic word w in order for it
to have a locally convex representative in its class. This newfound requirement
concerns the curve’s cycles. Also, there is a clear distinction between the
behaviour of these curves on the plane and on the sphere.

Since such a curve always turns in the same sense of rotation, one could
suspect that all cycles should turn the same way. That is not the case if the
cycle has length n ≥ 3. The following curves are counterexamples.

n = 3 n = 4

. . .

Nevertheless, cycles of size 1 or 2 cannot use that trick on the plane
because the Gauss-Bonnet Theorem (3) doesn’t allow it. Recall what it states:

Theorem 4.1 (Gauss-Bonnet) Let R ⊂ S be a regular region of an oriented
surface and let C1, . . . , Cn be the closed, simple, piecewise regular curves which
form the boundary ∂R of R. Let kg denote the geodesic curvature and K denote
the Gaussian curvature. Suppose that each Ci is positively oriented and let
θ1, . . . , θp be the set of all external angles of the curves C1, . . . , Cn. Then

n∑
i=1

∫
Ci

kg(s)ds+
∫∫

R
Kdσ +

p∑
l=1

θl = 2πχ(R)

where s denotes the arc length of Ci, and the integral over Ci means the sum
of the integrals in every regular arc of Ci.
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In our case, the locally convex curve delimits a cycle R which is a
simple region, that is, homeomorphic to a disk, so χ(R) = 1. Suppose kg > 0
throughout the curve and that the cycle is oriented in the opposite sense of the
curve, as in the curves from the previous figure. The arcs in the boundary must
be positively oriented in order to apply Gauss-Bonnet, so one must reverse the
orientation of the curve, resulting in kg < 0.

If the curve is immersed in the plane, K = 0 and the second term
vanishes. Remember that we are considering the region R to be simple, so
this doesn’t apply to external cycles. Thus we have:

p∑
l=1

θl > 2π

Since there is an upper bound θl < π on the external angles, the cycle must
have length greater than or equal to 3.

If the curve is immersed in the sphere, K > 0, so the last argument is
not enough. In fact, it is possible to have a cycle of length less than 3 with
the opposite sense of rotation of a locally convex curve. However, it cannot be
contained in a hemisphere, otherwise we could use the gnomonic projection to
get such a cycle in a locally convex curve on the plane which would contradict
Gauss-Bonnet.

One can make the area of the cycle arbitrarily small.
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Now we just have to understand what happens if R is an external cycle.
In the plane, the region R is unbounded and has the homotopy type of a circle,
so χ(R) = 0. In this case, we have:

p∑
l=1

θl = −
n∑
i=1

∫
Ci

kg(s)ds

This equation doesn’t impose restrictions on the curve; actually the sole
constraint is that there can only be a single external cycle. As seen previously,
its sense of rotation is the opposite to what the signed word indicates.

Finally, we can present the result. As seen above, the situation is not the
same for the plane and the sphere, so we must be careful in our statements.
Next we give a necessary condition on the combinatorics of a signed cyclic
word for its class to have a locally convex representative on a hemisphere;
equivalently, it is a necessary condition for there to exist a locally convex
planar curve with that word.

Proposition 4.2 In order for a signed cyclic word w to represent a locally
convex curve on the plane, it cannot have two cycles with each sense of rotation
and length less than or equal to 2.

Proof. Consider that w has at least two cycles of length less than or equal to 2
with each sense of rotation. By picking a sense of rotation for the curve, it is
not a problem to create as many cycles as needed with that same orientation.
However, there are at least two that turn in the opposite sense. One can be
managed as an external cycle, but another one would create a simple region R
that contradicts Gauss-Bonnet. �

Nevertheless, this condition is not sufficient to ensure the existence of a
locally convex curve on the plane for the word w. To see this, consider the
following example:

a−b+c+d−b−e+d+c−e−a+

(+)Cycles : (c+d−, d+c−) ; (a+a−)

(−)Cycles : (a−b+, b−e+, e−a+)

One could hope to immerse a−b+b−e+e−a+ as a cycle that goes against
the orientation of the curve and that isn’t an exterior cycle, just as in the
counterexample presented previously, but that is not possible. The only way
to draw a locally convex curve on the plane with that word is if a−b+b−e+e−a+

is an external cycle.
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So if we introduce another (-)cycle of length 1, as below, it will be
impossible to create a planar locally convex curve with that word, even though
it doesn’t have two cycles of length less than or equal to 2 with each sense of
rotation. Therefore, there is still more to learn about this subject.

a−b+c+d−f−f+b−e+d+c−e−a+

(+)Cycles : (c+d−, d+c−) ; (a+a−)

(−)Cycles : (a−b+, b−e+, e−a+) ; (f−f+)

a

c

d

f

d

b

a

c

e

?

Setting f−f+ as an external cycle

e
b

To conclude this chapter, it is important to clarify that it is possible to
have a locally convex curve on the sphere with more than two cycles of length 1
or 2 with each sense of rotation, although it cannot fit into a single hemisphere.
Just consider the following example:

a+b−c−c+d+e−e+d−f−f+b+a−

(+)cycles : (a+b−, b+a−) ; (d+e−, e+d−)

(−)cycles : (a−a+) ; (c−c+) ; (e−e+) ; (f−f+)
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f

b

a
c

d

e
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5
Arnold and Whitney’s Contribution

Moving forward with the study of planar curves, there are other ways
to find interesting information on their topology. The contributions of Arnold
and Whitney to the matter will be presented and explored throughout this
chapter.

5.1
Arnold’s generic curve invariants

In his very rich and dense book named Topological Invariantes of Plane
Curves and Caustics (2), Arnold presents us the singularity theory approach
to the topological classification of mathematical objects. We will follow closely
the first two sections of the said reference. The standard strategy, which goes
back to Poincaré, is to consider the infinite-dimensional space F of objects. In
such a space there are both generic and degenerate elements. The degenerate
objects form a hypersurface Σ, i.e., a codimension one subvariety which divides
F into parts. Each connected component of the complement of the discriminant
hypersurface Σ consists of nondegenerate objects of the same topological type,
so they share the same discrete invariants.

Those invariants form the ring H0(F \ Σ), the zero-dimensional coho-
mology classes of the complement of Σ. They are locally constant functions
on F \ Σ. One can use the natural stratification of the discriminant hyper-
surface according to different singularities to obtain information about the
(co)homology of Σ. Subsequently, using the infinite-dimensional version of
Alexander duality, one can obtain information about the (co)homology of the
complement.

We shall apply this theory to the space of immersions of a circle into
the plane, which we called planar curves. As previously discussed, the generic
elements of this space are curves with finitely many double points and no self-
tangency. If two curves are in the same component of the space of immersions,
there exists a one-parameter family of immersions connecting those two generic
ones. However, it may be inevitable to find some degenerate elements along the
way. If the path is generic, three types of events can occur: The instantaneous
triple crossings of the immersion, and the instantaneous self-tangencies of two
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types; the direct self-tangencies when the two tangent branches are oriented
by the same tangent vector, and the inverse self-tangencies otherwise. Here is
an example of each kind of event.

The idea is that the infinite-dimensional space of immersions of the
circle into the plane has 3 hypersurfaces that divide it into many connected
components of generic curves. A point in this space corresponds to a planar
curve, so a path connecting two points corresponds to the one-parameter
family of immersions described above. It may be that this path must cross
the hypersurfaces a few times and, in fact, it is possible to define a sign to the
crossings, because these hypersurfaces are cooriented.

For self-tangencies the definition is quite simple. For the
direct self-tangency the crossing is positive if the number of double points
increases. For the inverse self-tangency, on the other hand, the crossing is
positive if the number of double points decreases.

For triple points the rule is more complicated, it is an outcome of
the detailed study of the topology of codimension one singularities in the
discriminant hypersurface. One must take a close look at what happens as
the moving curve passes over a triple point. Close to it, there is a triangle that
shrinks until it disappears and another one that is born and grows larger. We
will define an orientation for the triangles which will give rise to a sign for
them as well.
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2 3

1

1

23

q = 3 q = 0

2 3

1

1

23

q = 2 q = 1

If one fixes an orientation on the curve, the three arcs that define the
triangle have a well-defined cyclic order (numbered in the previous figure). So
the order in which the immersed curve visits its sides defines the orientation
on the face of the triangle. Each side also has its own direction, since the curve
is oriented, and it may coincide with the orientation on the face or it may go
against it. Let q be the number of sides whose orientations coincide with that
given by the cyclical order. Then we define the sign of the triangle as (−1)q.

It is important to remark that the orientation of the curve used in the
definition of the sign of the triangle is irrelevant. If one changes it, both the
orientation on the face of the triangle and the orientations on the sides are
flipped, so q remains unchanged. Therefore, this definition works for non-
oriented curves on a non-oriented plane.

Finally, it is easy to verify that the vanishing and the newborn triangles
always have opposite signs. That is due to the fact that their faces share the
same orientation and if an arc goes against it in one triangle, it must coincide
with it in the other and vice versa. Therefore, if we add the corresponding
values of q for both triangles the result is always 3, which implies that they
must have opposite signs.

Going back to the crossing, we say that for triple points the crossing is
positive if the sign of the newborn triangle is positive (and hence the vanishing
one is negative).

Arnold states that each of the three discriminant hypersurfaces may be
considered as an “infinite-dimensional algebraic hypersurface”, which is not
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irreducible. Actually, each of them consists of an infinite countable set of
irreducible components, and they are all cooriented by the rules above. The
intersection numbers with these cooriented hypersurfaces define an infinite
set of invariants, but the invariants corresponding to the union of all the
components of the triple points discriminant (and similarly for the two self-
tangency types discriminants) have nice properties and are in a sense the most
basic invariants of the immersed curves.

To define the invariants, one must choose a value at one point in each
path-component of the space of immersions. Thankfully, the components have
been described by H. Whitney.

Theorem 5.1 (Whitney’s Theorem) The space of the immersions of a
circle into the plane with the same index is pathwise connected.

The index of an immersion of an oriented curve into the oriented plane
is the rotation number of its tangent vector. In other words, if one considers
the derivative of the immersion and normalizes it so that its target set is the
unit circle S1, then the index of the immersion is the degree of the said map.

It is easy to see that if two curves are in the same path-component,
they must have the same index. This is a result of the continuity of the index
along the path of immersions that connects the two curves. Since the index
takes values over the integers, it must be constant. To see why the converse
proposition is also true, refer to Whitney’s On regular closed curves in the
plane (6); where there is a detailed proof.

There is a family of standard representatives of the components which
are shown in the next figure. The sign of the index depends on the orientations
of the curve and of the plane.

K0 K1 K2

K3 K4
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Now it is time to define the basic invariants St (strangeness), J+ and
J−. We just have to assign a starting value for each standard representative
and choose the value a(·) of the jumps at positive crossings of the cooriented
discriminant hypersurfaces. This is shown in the following table.

a( ) a( ) a( ) . . .
St 1 0 0 0 0 1 2 3 . . .
J+ 0 2 0 0 0 -2 -4 -6 . . .
J− 0 0 2 -1 0 -3 -6 -9 . . .

These choices might seem arbitrary at first glance, but their necessity is
explained by the theorems that are to come. The choice of the jumps of J±

to be 2 makes the increment of J+ equal to the increment of the number of
double points and the increment of J− is equal to the decrement of the number
of double points. Since the difference J+−J− is equal to the number of double
points for the standard curves Kn, it is equal to the number of double points
for any curve.

Next there is a table that shows the values of the basic invariants for all
immersions with two double points.

|ind| 1 1 1 3 3
St 0 0 1 2 3
J+ 0 0 -2 -4 -6
J− -2 -2 -4 -6 -8

In order to understand the choices of constants normalizing the basic
invariants, we need some new definitions first. We shall see that the invariants
satisfy three properties, they are independent of the orientation of the circle,
additive and local.

We already saw that the invariant St is independent of the orientation
of the immersed curve and of the plane. This is also true for J±, and it is not
hard to check it.

Definition 5.2 The connected sum of two immersions is defined as a new
immersion obtained through the following process: place the first curve into the
left half-plane and the second on the right half-plane, then connect them by
embedding a bridge into the complement to their images.
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K2 K3

+ = ∼
K4

This summation is not an operation on the classes of immersions, since
the bridges might be different. In fact, sometimes the sum is not even defined,
which is the case for K1 +K−1, because their orientations do not allow a valid
embedding of the bridge. However, all three basic invariants are additive under
any choice of the bridge.

For example, the basic curves Kn, n ≥ 2 presented in the first table are
the connected sums of the curve K2.

Ki+1 = iK2 (i > 0)

Ki+1 +Kj+1 = Ki+j+1 (i, j ≥ 0)

Definition 5.3 An invariant of a nondegenerate immersion is called local
if its increments under a generic crossing of the corresponding discriminant
hypersurface depends only on the behaviour of the family of immersions in the
neighbourhood of the singularity.

Now we can formulate the axiomatic definitions of the basic invariants,
explaining the choices of the normalizing constants.

Theorem 5.4 There exists one and only one invariant (St) related to triple
points of immersions of the circle into the plane that satisfies the following
axioms:
(1) It is local;
(2) It is additive;
(3) It is independent of the orientation of the circle;
These three properties determine the invariant uniquely up to a multiplicative
constant, which is fixed by the last condition.
(4) St(K2) = 1.

Similar theorems hold for the other two basic invariants, switching the
triple points for direct tangencies or inverse tangencies, and changing the value
of the fixed initial constant.

As an application of this theory, here is a third proof of the claim first
presented in chapter two: A generic immersed closed planar curve with n double
points divides the plane into exactly n + 2 connected components. First we
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check that the formula holds for all standard curves Ki that represent the
components of the space of immersions. Now it suffices to study what happens
when one crosses the discriminant hypersurfaces, that is, take a close look
at the number of double points and regions when the value of St, J+ or J−

changes.
The easiest one is the St invariant, because both the number of double

points and regions remain the same when a curve passes over a triple point.
For J+ and J−, consider the following picture.

1 3 2

4

5

1 3 2

The orientation here doesn’t matter, so the argument is the same for both
cases, we just have to see how many new regions there are when we create two
new double points. As shown in the last figure, the region labelled 3 gets split
into three regions, so we get two new ones. The only thing we have to verify
is that regions 4 and 5 are truly two distinct regions of the plane. We have
faced a similar problem in the second proof in chapter 2, and we shall apply
the same reasoning here.

Suppose that 4 and 5 are the same region on the plane, then there is a
path µ that does not cross the original curve going from 4 to 5. If that is the
case, then before the J± crossing, there was a closed curve µ′ separating two
portions of the original curve. By the Jordan Curve Theorem the original curve
cannot be connected, which is a contradiction. So 4 and 5 are indeed two new
regions and the formula holds after one crosses the discriminant hypersurface.
This implies that any generic planar curve with n double points divides the
plane into exactly n+ 2 connected components, which concludes the proof.

1 3 2

µ′

1 3 2

4

5

µ
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5.2
Whitney’s formula for double points

In his article, besides proving his aforementioned theorem, Whitney also
presents a formula relating the index of a curve with its double points. In this
section we’ll investigate the concepts dealing with it and provide a new proof.

First we need some new definitions to make sense of Whitney’s formula.
Consider a generic immersed closed planar curve γ. Setting a regular point p
on γ as the starting point one can pick a direction and go around the curve.
Under these circumstances, we call γ an oriented pointed curve with base point
p. Also, if p belongs to the border of the unbounded component of the plane,
we say that γ has an outside starting point.

Now, one can associate a sign to each double point. To do so, Whitney
has chosen the opposite orientation to the one we have considered thus far. In
chapter 1 we gave a sign to each crossing of the double point according to the
orientation of the plane, assigning + to “the first one” and − to “the second”.
Departing from p we pass twice over a double point ai, either in the order
a+
i a
−
i or a−i a+

i . Whitney defined that the double point is positive if the order is
(−,+) and it is negative if the order is (+,−). Notice that the sign of a double
point depends on the choice of the starting point p, and if the orientation of
the curve is inverted, the sign of the double point also changes.

Given an oriented pointed curve γ, one can count the number of positive
double points (N+) and the number of negative ones (N−). Finally, we can
state the theorem that contains Whitney’s formula.

Theorem 5.5 If γ is an oriented pointed curve with an outside starting point
p, then

ind(γ) = N+ −N− + µ

where µ = 1 if the orientation of the curve sets the unbounded component
of the plane to the right of p, and µ = −1 if it is to the left of p.

The simplest interpretation of this formula is to consider that an oriented
pointed curve with an outside starting point with the unbounded component
to its right “starts” with index 1. To see this just consider the oriented circle.
Now imagine that the positive double points contribute with positive turns
and the negative double points add negative turns, which can easily be seen
in the following example. However, it might not be clear yet for an arbitrary
curve.

DBD
PUC-Rio - Certificação Digital Nº 1613078/CA



Chapter 5. Arnold and Whitney’s Contribution 44

+

−

p

Here is a new proof for the theorem with a more geometric flavour. We
just have to reduce it to simpler cases by taking the double points away one
by one, so the proof is by induction.

Proof. Let γ be an oriented pointed curve with an outside starting point with
the unbounded component to its right, the other case is analogous. The base
case is the circle, which has no double point and trivially satisfies the formula.
For a curve γ with n double points, start at p and go around the curve until the
first double point is reached. One can delete it and reconnect the four branches
in its neighbourhood without crossings in a way that disconnects the curve, as
in the figure below.

p

γ̄1γ̄2

Now there are two curves γ1 and γ2 and the following relation:
ind(γ) = ind(γ1) + ind(γ2), since the two small dashed arcs γ̄1 and γ̄2 that
were introduced have opposite contributions to the index. The other double
points of the original curve are divided into three classes. They can be double
points of γ1, double points of γ2, or intersections of those two curves.

In chapter 1 we saw that two generic curves must intersect at an even
number of points (2k), and in fact they split evenly between positive and
negative double points in the original curve γ. To see why, consider a generic
translation of γ2 until there are no more intersections with γ1. If we hadn’t
removed the first double point, such movement would represent a generic path
of immersions, so we can apply Arnold’s theory of invariants. One can verify
that the triple point crossings preserve the signs of the double points, and the
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self-tangencies can create or remove two double points, but always of opposing
signs. As the 2k intersections between γ1 and γ2 are the only ones to disappear,
one concludes that half of them must have been positive and the other half
must have been negative in γ.

Before we apply the induction step, the problem splits into two cases
depending on the sign of the removed double point.

If it was positive, then we set points p1 and p2 on γ̄1 and γ̄2 as base points
for γ1 and γ2, respectively.

p

p1p2

Considering them individually, both are oriented pointed curves with an
outside starting point with the unbounded component to the right, so we apply
the induction step.

ind(γ1) = N+
1 −N−1 + 1

ind(γ2) = N+
2 −N−2 + 1

Since a positive double point was removed from γ, we have:

N+ = N+
1 +N+

2 + 1 + k

N− = N−1 +N−2 + k

So we derive:

N+ −N− = (N+
1 +N+

2 + 1 + k)− (N−1 +N−2 + k)

= (N+
1 −N−1 ) + (N+

2 −N−2 ) + 1

= (ind(γ1)− 1) + (ind(γ2)− 1) + 1

= ind(γ)− 1

ind(γ) = N+ −N− + 1
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If the removed double point was negative, we do the same for the base
points, but this time γ2 has the unbounded component to its left.

p

p1

p2

The calculation is similar.

ind(γ1) = N+
1 −N−1 + 1

ind(γ2) = N+
2 −N−2 − 1

N+ = N+
1 +N+

2 + k

N− = N−1 +N−2 + 1 + k

N+ −N− = (N+
1 +N+

2 + k)− (N−1 +N−2 + 1 + k)

= (N+
1 −N−1 ) + (N+

2 −N−2 )− 1

= (ind(γ1)− 1) + (ind(γ2) + 1)− 1

= ind(γ)− 1

ind(γ) = N+ −N− + 1

This concludes the proof. �

The study of Whitney’s formula traversed the twentieth century. Arnold
himself has worked on it, and he has mentioned in his book from 1994 (2):

“As far as I know, this Whitney formula, proved in 1937, has not yet been
absorbed by modern mathematics, and its higher-dimensional generalizations
are still to be found”.

Fortunately, research did not stop there. The work of a contemporary
mathematician stands out, the many papers of Michael Polyak and his co-
authors. They have successfully generalized Whitney’s formula in several ways.
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One can define an index of a point with respect to a curve to extend the
result to other situations (7), there are generalizations for oriented punctured
surfaces (8), new formulas have been found for higher dimensions (9), and
even relations with Arnold’s invariant St were deduced. So one can say that
the subject is much better understood nowadays and it is still rich and active
in the twenty-first century.
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6
Bjerre and Double Tangents

So far the double points of generic immersions of S1 into the plane have
been addressed from multiple viewpoints, but we have not given any thought to
its double tangents yet. A double tangent is a line on the plane that is tangent
to an immersed curve at two distinct points. In order to better understand their
properties, we will look into some papers on the subject written by Fabricius-
Bjerre (10),(11),(12).

6.1
Relating double points, double tangents and inflectional points

First of all, it is important to point out that just as with double points, a
generic curve on the plane can have some double tangents, but triple tangents
are not generic, like triple points. If one moves the curve slightly, a triple
tangent can be undone. Furthermore, the points of inflection of the curve will
play a special role, so we will assume that no double tangent is tangent at
such a point. This phenomenon is also singular; it represents a higher contact
order between the curve and the tangent line. It is good to highlight that any
generic closed curve must have an even number of inflectional points, since
they represent a change in the sign of the curve’s concavity.

We need some terminology for the double tangents. Consider a double
tangent r whose points of contact with the curve are R1 and R2. The convex
arcs in the neighbourhood of those points can be either on the same half-plane
defined by r or not. If they are on the same side, we call r an exterior double
tangent, otherwise it is called an interior double tangent.

The tangent line can be divided into two rays with initial point at the
point of contact. If the curve is oriented, one can give signs to them, appointing
as the positive half-tangent the ray that points at the same direction as the
tangent vector of the curve. Naturally, the other ray is called the negative
half-tangent.

At a double tangent, the positive half-tangents at R1 and R2 may point
the same way or at opposite directions, in which case they might be one against
the other or they might point away from one another. So there is a total of
six types of double tangents named E1, E2, E3, I1, I2, I3 which are explained in
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the following figure. Notice that if we change the orientation of the curve, E2

and E3 interchange, as well as I2 and I3, while E1 and I1 stay invariant.

E1 E2 E3

I1 I2 I3

Bjerre uses these definitions to attain a formula relating the number of
exterior double tangents (t), interior double tangents (s), double points (d)
and inflectional points (2i), which is:

t− s = d+ i

Here is the proof presented in his paper On the Double Tangents of Plane
Closed Curves (10). Consider a generic closed curve on the plane γ. We will
count the number of points of intersection of the half-tangents and γ as a
base point P traverses the curve. Let p denote the tangent line at P , and we
will call p+ the positive half-tangent and p− the negative half-tangent. The
number of intersections remains unchanged unless P passes a double point or
an inflectional point, or if the tangent p passes a double tangent.

If P passes a double point, a common point of p+ and γ is lost and it
becomes a common point of p− and γ. The same happens when P passes over
a inflectional point.

p+

p p−

p

p

p

p−

p+
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When p passes a double tangent, its type determines the event. For E1

and I1, the points of contact R1 and R2 are not symmetrical, in the sense that
p+ contains the other point in one passing, but not in the other. At the passing
in which p+ contains the other point, it gains two new intersection points in
the case of E1 and loses two points in the case of I1. At the other passing it is
p− that loses two points at E1 and gains two points at I1.

E1

p
p+

p
p+

p
p− p

p−

I1

p p+ p

p+

p

p−

p
p−

For E2 and I2, only p+ is affected. At each passing it gains two points at
E2 and it loses two points at I2. Finally, for E3 and I3 similar events happen
to p−. At each passing it loses two points at E3 and it gains two points at I3.
These statements are intuitively clear, but exact proofs can also be given.

E2

p
p+

p
p+

E3

p p+ p

p+

I2

I3

p
p−

p
p−

p

p−

p p−
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If we imagine P going around γ once, we can count the number of points
gained and lost both for p+ and p−. The total number of intersection points
must be the same at the start and at the end of the lap. Consider t1, t2, t3
as the numbers of exterior double tangents of types E1, E2, E3 respectively,
and s1, s2, s3 as the numbers of interior double tangents of types I1, I2, I3

respectively. Recall that the curve has d double points and 2i inflectional
points.

The previous analysis shows that p+ gains 2t1 + 4t2 points and it loses
2s1 + 4s2 + 2d + 2i, while p− gains 2s1 + 4s3 + 2d + 2i points and it loses
2t1 + 4t3 points. Therefore, we have the following equations:

2t1 + 4t2 = 2s1 + 4s2 + 2d+ 2i

2t1 + 4t3 = 2s1 + 4s3 + 2d+ 2i

Adding both equation we obtain:

4(t1 + t2 + t3)− 4(s1 + s2 + s3) = 4d+ 4i

t− s = d+ i

Here is the Theorem in Bjerre’s words:

Theorem 6.1 For the closed curve γ, the difference between the number of
exterior and interior double tangents is equal to the sum of the number of
double points and half the number of inflectional points. Hence, the number of
exterior double tangents is greater than or equal to this sum. Equality holds if
and only if γ has no interior double tangents.

One can also consider special cases, such as for locally convex curves,
which have no inflectional points. A direct consequence of the theorem is that:

Corollary 6.2 A locally convex curve γ has at least as many double tangents
as it has double points, since i = 0⇒ t− s = d.

In fact, there is a special family of locally convex curves whose members
have the minimum number of double tangents, i.e., s = 0, and thus the formula
for this family is t = d. This special set of curves will be studied later on.

Another fine result relates the index ind(γ) = v of a curve with the
number of double tangents.

Corollary 6.3 A curve γ with index v = 0 has at least two double tangents.
A curve γ with index v ≥ 1 has at least v − 1 double tangents. Any curve that
attains this bound is necessarily locally convex, i.e., if it is not locally convex,
then the lower bound is v.
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Proof. We must recall Whitney’s formula: v = N+ −N− ± 1. If v = 0 we have

N+ −N− = ±1

So this implies that γ must have at least one double point. Furthermore,
a curve with index 0 must have at least two inflectional points. Since d ≥ 1
and i ≥ 1, we have that t− s ≥ 2, which implies that the curve must have at
least two double tangents.

If v ≥ 1 Whitney’s formula provides that v ± 1 = N+ − N−, and thus
d ≥ v − 1. Bjerre’s theorem gives us that t − s ≥ v − 1 + i, so the original
statement is true and γ can only have v − 1 double tangents if i = 0, that is,
if it is locally convex. �

6.2
The special family B

Now we will consider a special family of curves, let’s call it B as a tribute
to Bjerre, who has presented and analysed it in his paper On a class of locally
convex closed curves (11). For a generic curve γ to be in this set, it must be
locally convex and there must exist in the plane a line u and a point U ′ not
on u, such that γ has no points in common with u and possesses no tangent
through U ′.

Any curve γ ∈ B defines two regions in the plane, namely the Exterior
Domain (ω) and the Kernel (ω′).

The exterior domain is an open set in the unbounded component of the
plane. It is the complement of the convex hull of the set of points in γ. We will
denote its boundary by h; it consists of parts of the most external arcs of γ,
i.e., those that border the unbounded component of the plane, and segments
of double tangents. The totality of lines u that have no intersection with γ fill
up the exterior domain ω, and if the curve is convex, then it coincides with h.

The kernel is a dual to the exterior domain. It consists of the totality of
points U ′ through which no tangent of γ passes. Its boundary is a convex curve
h′ composed of the innermost arcs of γ, joined one to another by some double
points. Again, if the curve is convex, it also coincides with the boundary of the
kernel h′

Therefore, the curve γ lies in a ring-shaped domain between the exterior
domain and the kernel which is bounded by h and h′. Since γ is locally convex
and one cannot draw tangent lines to it from points in the kernel, it follows
that γ is always concave towards the kernel ω′ and it is always convex towards
the exterior domain ω. Here are some examples of curves γ ∈ B.
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ω′

ω′

ω
ω

ω′

ω

ω′

ω
ω

ω′

As previously stated, the curves in this family have no interior double
tangents. To see why, suppose there was such a double tangent. It cannot go
through the kernel ω′, so it must look like this:

h′

h

Therefore, there is a portion of the curve that is concave towards the
exterior domain, which is impossible.

The curve in the family B must go around the kernel remaining inside
the ring-shaped domain. Traversing the curve, one gets “closer” to the kernel
or “moves away” from it. This can be noticed when crossing the double points,
because when we cross the curve from the convex to the concave side we
approach the kernel, whereas the opposite happens when we get closer to h.

Using this fact, Bjerre defines a new way to give signs to the double
points. Starting from a point H on the curve situated at the boundary of the
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exterior domain, we say that a double point D is positive if the first time we
cross it we get closer to the kernel. On the other hand, D is negative if the first
time we pass it, we go from the concave to the convex side of γ.

The partition between positive and negative double points is independent
of the orientation of the curve. Although the sign of a particular double point
depends on the choice of H, the total number of positive and negative double
points remain invariant.

Since the curve must always be concave towards the kernel, this orienta-
tion given by Bjerre actually coincides with the orientation defined by Whitney
if the curve turns counter-clockwise. Every time we approach the kernel, the
tangent vector at D is to the left of the tangent vector of the second passing,
so if D is positive to Bjerre, it is also positive according to Whitney. The same
reasoning applies for the negative double points. However, if γ turns clock-
wise, Bjerre’s and Whitney’s orientations disagree, they are the opposite of
one another.

H H

HH

+

+

−

−

It is not surprising, therefore, that Bjerre derives the formula

k1 − k2 = |v| − 1

where, according to his orientation, k1 is the number of positive double points,
k2 is the number of negative double points and v is the index of γ. The absolute
value of v appears on the formula in order to correct the difference in the
signs for clockwise oriented curves. Bjerre mentions the work of Whitney in
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his paper, but it is fruitful to have a new proof, even if it applies only to a
restricted class of curves.

Furthermore, he also assigns signs to the double tangents and arrives at
a corresponding formula for them. The definition of the sign is dual to the
previous definition for double points. We shall begin at a point H ′ in h′ and go
around the curve. Let P be the traversing point and p the tangent to γ at that
point. A double tangent d is called positive if p loses two points of intersection
with γ at the first passage, and hence it gains two points of intersection at
the second time it passes d. If that occurs in the opposite order, then d is a
negative double tangent.

Again, this partition does not depend on the orientation of the curve, but
the sign of each double tangent can change if we choose a different H ′. If k′1
denotes the number of positive double tangents and k′2 the number of negative
double tangents, then we have the following formula.

k′1 − k′2 = |v| − 1

Moreover, Bjerre also proves that the number of signed double points
and signed double tangents is further related for this family, because it holds
that:

k′1 = k1 k′2 = k2

It follows from these results that a curve γ in B with index v that has
the minimum number of v − 1 double points, which must all be positive, has
also the minimum number of v−1 double tangents, which must all be positive
as well. In addition, if one increases by q the number of positive double points
of γ, by continuously moving its arcs for example, then it must also get q extra
negative double points, q extra positive double tangents and q extra negative
double tangents. So basically these four objects come together in a bundle.

+ −

−+

+

+

H

H ′
H

H ′

+

+
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Bjerre comments on the subset S ⊂ B of curves with the minimum
number of double points. As an outcome of his arguments to prove the equation
k1 − k2 = |v| − 1, we get that a curve γ ∈ S must be of a very specific shape.
After setting H ∈ h ∩ γ and H ′ ∈ h′, we can consider that γ is divided into
two arcs, namely HH ′ and H ′H. The finding is that both of them must be
simple spirals and since there can only be positive double points, one only
gets closer to the kernel going along HH ′, whereas the opposite holds for
H ′H. Consequently, there isn’t much room for variations. Here are a couple of
examples.

HH ′

v = 1 v = 2 v = 3

HH ′
HH ′

6.3
Possible routes for generalisation

There are a couple ways to develop this theory presented by Bjerre. He
published a more general formula for t − s = d + i in another paper (12) in
which he considered closed planar curves with cusps.

In a nutshell, the curve γ can have two types of cusps. Consider the line l
that is the limit of the tangents to γ as we approach the cusp c. As one passes
it, the curve can go to the other side of l, in which case we call c a cusp of the
first kind, or it can stay on the same half-plane as before, then we call c a cusp
of the second kind. Notice that in the latter case the sense of rotation of γ is
inverted.

Cusp of the first kind Cusp of the second kind

l l
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If γ has t exterior double tangents, s interior double tangents, d double
points, i inflectional points, c1 cusps of the first kind and c2 cusps of the second
kind, then

t− s = d+ 1
2i+ c1 + 1

2c2

Another path we could take to expand the investigation is to consider
curves on the projective plane. In fact, when Bjerre originally presented the
family B, he defined it as a class of closed curves in the projective plane.
However, the property that there must be a line u such that the curve γ
doesn’t cross it allows us to set it as the line at infinity and hence we can
picture γ as a planar curve. In the next and final chapter we will shift our
perspective and consider closed curves on the projective plane.
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7
Closed curves on the projective plane

7.1
Relocating to the projective plane

The aim of this chapter is to introduce to the projective plane the study
done so far on generic closed curves. We shall apply the theory developed in
the previous chapters and analyse a couple of examples in the hope that new
ideas might arise. We’ll have to adapt many definitions to this new setting,
starting by the curves themselves.

Our current object of study are immersions i : S1 → RP2 into the real
projective plane. As before, we are interested in generic curves, so they can
only have double points and double tangents as singularities. Notice that if
there exists a line u in RP2 that does not intersect a curve γ, then one can
apply a projective transformation in order to set it as the line at infinity and
thus we essentially get γ as a curve in R2. We are already familiar with this
type of curve, so let’s consider one that cannot be drawn in the plane.

a

b

We can define the cyclic word of double points for projective curves too.
Notice that the word for the curve above is a b a b, which is an impossible word
for planar curves since it goes against Gauss’s necessary condition presented
on chapter 2. Thus we can already conclude that there are less restrictions to
the words of projective curves.
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Since the projective plane is a non-orientable surface, we will not give
signs to the double points, nor consider signed cyclic words. It would be
interesting to adapt the problem set in chapter 1 for this new space and seek
necessary conditions on the combinatorics of a cyclic word for it to be realizable
by some curve on the projective plane. Similar topological arguments might
provide some results, but this is not the goal of this work.

If we wish to talk about locally convex curves, we must understand how
the concavity behaves when we pass through infinity and how to identify
inflectional points at infinity. In order to do so, it is worthwhile to consider
the universal covering space of RP2 which is the sphere S2. It is a double cover
that sends antipodal points on the sphere to the same point on the projective
plane. Therefore, we can picture the equator sent to the line at infinity and each
hemisphere as a copy of the remainder of the projective plane. Now if we draw
a small convex arc that crosses the equator, we can see how its antipodal pair
reenters the original hemisphere and thus understand what a locally convex
curve looks like on the projective plane.

Let’s study an example of a locally convex curve γ to explore some of its
properties and to get used to working with curves on the projective plane.
Its cyclic word is a b c d e a f e c d b f , which again defies Gauss’s necessary
condition because there is an odd number of letters between the two copies
of c.

a

f
b

e

c c

d

d

a b c d e a f e c d b f
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There are some points at infinity that we cannot draw. Actually, the
point at infinity by which the curve passes can be more easily spotted if the
curve is asymptotic to a line, so we will only consider such a kind of curve.
It is important to pay attention to the direction of the asymptotes, since it
determines the point at infinity. Thus, in our example there are in fact two
double points at infinity (c and d), since there are two vertical asymptotes and
two horizontal ones.

This is a good opportunity to describe the tangent lines to the curve
at a point at infinity. Consider the double point c. It is reached by vertical
asymptotes. If one tracks the tangents to γ as we go to c, there is a clear limit
line, its very own asymptote. That line passes over the point c and it is tangent
to γ at that crossing. Each vertical line represents a different possible tangent
at c, and there is also a last possible tangent which is the line at infinity. For
example, if we consider the parabola y = x2 as a curve on the projective plane,
it also passes by that same point c but the curve is tangent to the line at
infinity. One can perceive this by looking at the tangent lines to the parabola
as one moves towards infinity, their direction converges to the vertical but no
vertical line on the euclidean plane is the limit of those tangents, the limit
“slips” and “hides” at infinity.

Going back to γ, we now see that it passes by c twice and that each
crossing has a distinct tangent, so the curve has no self-tangency, as it should
be for any generic curve. It can be useful to leave some double points at infinity,
but there are occasions in which it is preferable to have them all in plain sight.
Naturally, one just has to move γ slightly to push every singularity out of
infinity. It is a good exercise to picture that in our example.

a

f
b

e

c

d

d

a

f
b

e

c

d

a

f

b e

c d
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As illustrated above, if one gently budges one of the asymptotes, the
double point appears on the plane. First we did it for c, then d and finally we
pulled the small arc on the bottom through infinity to get a prettier picture
of γ. Notice that by doing so, two asymptotes could be discarded and the figure
has become simpler and easier to understand.

Hopefully this example was useful to realize the nature of locally convex
curves on the projective plane. A result that can be pointed out is that any
locally convex curve must cross the line at infinity an even number of times
(tangency to the line at infinity should be counted doubly). This is easy to see
why, every time the curve passes through infinity its concavity seen as a planar
curve is inverted. Since the curve is closed and it has no inflectional points,
the concavity must flip an even number of times.

7.2
The word of double tangents

In the spirit of Bjerre, we will now consider the cyclic words of the
tangents of a curve in the projective plane. Each double tangent is designated
by a capital letter and as one traverses the curve, its tangent crosses each
double tangent twice. By writing down the letters along the way, one gets a
cyclic word for the double tangents of the curve. Let’s inspect γ from the last
example and uncover its word of tangents.

A

B

It turns out it has quite a simple word for its double tangents AABB.
As we did in chapter 3, it would be nice to gather curves with the same
words into equivalence classes. This time each curve has two words, one for its
double points and another one for its double tangents, so the classes will be
more specific.

Previously, two curves were in the same class if one could connect them
with a path of immersions that avoided all singular events. In that case, we
were not paying much attention to the tangents of the curves, so we only
considered the singular events described by Arnold, namely triple crossings of
the immersion and self-tangencies. This time, however, we must also prevent
the crossing of triple tangents.
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Definition 7.1 Two closed generic oriented immersed curves on the projective
plane are in the same equivalence class if and only if there is a connecting path
of immersions that avoids all singular events between them, including triple
tangent crossings.

In chapter 3 we’ve proved a one-to-one correspondence between cyclic
words of realizable curves on the plane and the classes defined then. In the
present case, it is not clear whether there is also a one-to-one correspondence,
although each class is uniquely represented by an ordered pair of cyclic words
since every singular event is prohibited.

In the following figure there are two curves that we used to consider as
the same, but that have distinct words for their double tangents due to a triple
tangent crossing. From now on, these curves are in distinct classes, so they are
no longer the same.

A

B

C

AB C AB C

A

BC

BAAC C B

7.3
The dual curve

There is a very interesting and useful notion of duality on RP2 that
interchanges points and lines. This map is a polarity, which means that it
is a duality and also an involution. If we consider homogeneous coordinates
(x : y : z) for the projective plane, then the point (a : b : c) is mapped to
the line of equation ax + by + cz = 0, and vice versa. Geometrically, this
correlation is directly related to the concept of reciprocation, that takes points
to their polars and lines to their poles. For more information on that, see (13).

If we consider a generic closed curve γ on the projective plane, it is
possible henceforth to define its dual curve γ∗. To do so, apply the polarity
to the envelope of tangent lines to γ, the result is a new closed curve on the
projective plane.

Interestingly, there is a connection between certain elements of γ and γ∗.
Firstly, their double points and double tangents are interchanged, i.e., each
double point of γ becomes a double tangent of γ∗ and each double tangent of
γ turns into a double point of γ∗. Furthermore, the same phenomenon happens
between inflectional points and cusps. Therefore, if we wish to avoid cusps, we
should focus on locally convex curves. Finally, if we consider curves in the
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family B defined by Bjerre and presented in chapter 5, the exterior domain ω
and the kernel ω′ are also swapped. Consequently, one can already realise that
if γ ∈ B, then γ∗ ∈ B.

It is a fun exercise to pick a curve γ and try to draw γ∗. It is a great
strategy to first write down both cyclic words derived from it, they will serve as
guidelines. It is also a good ideia to look for an exterior domain and a kernel.
If γ has no kernel, then we already know that γ∗ has no exterior domain,
and hence it cannot be drawn as a planar curve, passing through infinity is
inevitable. Let’s observe some examples.

A

B

a

f

b e

c d

γ
a b c d e a f e c d b f

AABB

B

CD

E

A

F

b

a

γ∗

a a b b
AB C DE AF E C DB F

ω′

ω

γ1 γ∗1
a b c a b c a b c a b c

ABCABC ABCABC

a

bc

A

B C

γ∗2
a b c a b c

ACCBBA

γ2
a c c b b a

ABCABC

ω′

ω

ω ω

ω′ ω′

C B

bc

a

A

C B

bc

a

A

A

BC
a

b c
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Compare the last two pairs of dual curves. The difference between γ1 and
γ2 is a triple point crossing. Notice that the corresponding difference between
γ∗1 and γ∗2 is a triple tangent crossing. In addition, as from γ1 to γ2 the kernel
is undone, from γ∗1 to γ∗2 the exterior domain is lost.

There is a vast interest in self-dual curves, that is, curves that are
projectively equivalent to their duals. Arnold himself has manifested his
curiosity as he has posed the following problem among his extensive collection
of open problems: Problem 1994-17. Find all projective curves equivalent to
their duals. The answer seems to be unknown even in RP2 (14).

We will adapt this question to the classes of projective curves that we
have defined. The duality sends a class represented by the words (w1, w2) to
another class whose words are (w2, w1). So we will call self-dual class those
classes that remain invariant under duality. One can easily see that a necessary
condition is that w1 = w2.

So far, we have seen an example of a self-dual class whose words were
both a b c a b c. Such a curve was in the family B and it seems that the duality
restricted toB is the identity. However, we know that there are self-dual curves
which are locally convex but are not in B. We thank Prof. Nicolau Saldanha
for the following example.

a

b

c

A B

C

a b b c c a
AB B C C A
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Due to Bjerre’s formula t − s = d + 1
2i + c1 + 1

2c2, one can see that if
γ is a planar curve and it has any inflectional point or cusp, then it must
have more double tangents than double points, thus it cannot be a self-dual
curve. Nevertheless, this formula was deduced for planar curves, so it does not
prevent a curve with cusps and inflections but no exterior domain from being
self-dual.

Let’s consider an algebraic example, the curve γ on RP2 defined by the
equation zy2 = x3. The planar view for z = 1 has a cusp on (x = 0, y = 0),
since the equation reduces to y2 = x3. One can already check that this curve
has no exterior domain, even vertical lines x = c , c < 0 intersect γ at infinity.
To see where the curve passes at infinity, one just has to take z = 0, which
yields x3 = 0, thus the only point at infinity is (0 : 1 : 0).

Now changing our perspective to the plane y = 1, we’ll have the said
point (0 : 1 : 0) right at the center of the xz-plane, thus we can analyse its
properties. The new equation is z = x3, so we can already draw some pictures
and reach some conclusions.

x

y

z = 1

y2 = x3

x

z

y = 1

z = x3

The curve has an inflectional point at (0 : 1 : 0) and a cusp at (0 : 0 : 1),
those are all of its singularities, γ has no double points or double tangents.
Therefore this is an exemple of a self-dual curve that is not locally convex.

We have only scratched the surface of this subject. To further develop
the study some authors considered the more restrictive problem of self-dual
algebraic curves; there is some sophisticated mathematics on the matter.
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