
Olouyèmi Ilahko Anne Bénédicte Agbachi

Identifying Design Problems with a
Visualization Approach of Smell

Agglomerations

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Informática, of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2018

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Olouyèmi Ilahko Anne Bénédicte Agbachi

Identifying Design Problems with a
Visualization Approach of Smell

Agglomerations

Dissertation presented to the Programa de Pós-graduação em
Informática, of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, April 13th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



All rights reserved.

Olouyèmi Ilahko Anne Bénédicte Agbachi

Anne Bénédicte is a bachelor in Computer Engineering at
Matanzas University “Camilo Cienfuegos” of Cuba (2015).
She has worked on research projects in software engineering
and information systems. She has received the second best
paper award from the 11th Brazilian Symposium on Software
Components, Architectures, and Reuse (SBCARS’17). Anne
Bénédicte is a research scholar in software engineering for
Opus Research Group at PUC-Rio.

Bibliographic data
Agbachi, Anne Bénédicte

Identifying Design Problems with a Visualization Appro-
ach of Smell Agglomerations / Olouyèmi Ilahko Anne Béné-
dicte Agbachi; advisor: Alessandro Fabricio Garcia. – Rio de
janeiro: PUC-Rio, Departamento de Informática, 2018.

v., 100 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Abordagem de visualização.
3. Problema de design. 4. Anomalia de código-fonte. 5.
Experimento. I. Garcia, Alessandro Fabricio. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



To my beloved parents and brothers.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Acknowledgments

Firstly, I would like to thank my Lord. I do not know who I would have been
without His love even before my birth.

I thank all my family, especially my dear parents and my beloved
brothers, for their support and advice to follow my dream.

I would like to thank my advisor. Prof. Alessandro Garcia, who gave me
the opportunity to work with him. I welcome his unconditional support, as
the extraordinary and pertinent way as he accompanied the realization of this
work. His constructive criticisms, discussions, and reflections were fundamental
throughout my Master’s. I thank him for his availability, even in holiday period,
patience, and advice. I am always grateful for his great contribution to my
growth as a researcher.

I thank Eduardo Fernandes. I do not have words to describe all your
support in the realization of this work. I have not seen a person as requested
as you but who is always willing to help everybody. Thanks for your availability
and fellowship. Having worked with you has made me more confident; you are
a person with good energy and optimistic.

I also thank all the members of the Opus Research Group for their
support. In particular, I would like to thank Alexander Chávez, Ana Carla
Bibiano, Anderson Oliveira, Anderson Uchôa, Diego Cedrim, Isabella Ferreira,
Leonardo Sousa, Rafael de Mello, Roberto Oliveira, and Willian Oizumi, who
have given me their unconditional help during my research since the beginning
of my Master’s.

I thank all my friends in Brazil, as my Cuban friends; all those even afar
have always given me the support I needed to finish this Master’s degree.

I thank the members of this Master’s dissertation defense, especially
Prof.ª Simone Barbosa Junqueira Diniz for providing me feedback since I
started my Master.

I also thank the Informatics Department, and the group of professors,
who always supported me throughout the course.

Finally, I thank the National Council for Scientific and Technological
Development (CNPq) and the Coordination for the Improvement of Higher
Education Personnel (CAPES). I appreciate every opportunity that I had,
including the financial support. Thank you very much.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Abstract

Agbachi, Anne Bénédicte; Garcia, Alessandro Fabricio (Advisor).
Identifying Design Problems with a Visualization Appro-
ach of Smell Agglomerations. Rio de Janeiro, 2018. 100p. Dis-
sertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.
Design problems are characterized by violations of design principles

affecting a software system. Because they often hinder the software mainte-
nance, developers should identify and eliminate design problems whenever
possible. Nevertheless, identifying design problems is far from trivial. Due
to outdated and scarce design documentation, developers not rarely have
to analyze the source code for identifying these problems. Past studies sug-
gest that code smells are useful hints of design problems. However, recent
studies show that a single code smell might not suffice to reveal a design
problem. That is, around 80% of design problems are realized by multiple
code smells, which interrelate in the so-called smell agglomerations. Thus,
developers can explore each smell agglomeration to identify a design pro-
blem in the source code. However, certain smell agglomerations are formed
by several code smells, which makes it hard reasoning about the existence of
a design problem. Visualization approaches have been proposed to represent
smell agglomerations and guide developers in identifying design problems.
However, those approaches provide a very limited support to the identifica-
tion of specific design problems, especially the ones affecting multiple design
elements. This dissertation aims to address this limitation by proposing a
novel approach for the visualization of smell agglomerations. We rely on
evidence collected from multiple empirical studies to design our approach.
We evaluate our approach with developers from both academy and industry.
Our results suggest that various developers could use our visualization ap-
proach to accurately identify design problems, in particular those affecting
multiple program elements. Our results also point out to different ways for
improving our visualization approach based on the developers’ perceptions.

Keywords
Visualization approach; Design problem; Code smell; Experiment.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Resumo

Agbachi, Anne Bénédicte; Garcia, Alessandro Fabricio. Identifi-
cando Problemas de Design através de uma Abordagem de
Visualização para Aglomerações de Anomalias de Código.
Rio de Janeiro, 2018. 100p. Dissertação de Mestrado – Departa-
mento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.
Problemas de design decorrem de violações de princípios de design em

um sistema de software. Tais problemas podem prejudicar a manutenção de
sistemas e, logo, devem ser identificados e eliminados sempre que possível.
Porém, identificar problemas de design não é trivial. Isso pois a documen-
tação de design desses sistemas é em geral obsoleta ou inexistente. Assim,
o desenvolvedor de um sistema tende a analisar o código-fonte em busca de
problemas de design. Estudos sugerem anomalias de código-fonte como in-
dicadores úteis desses problemas. Porém, outros estudos recentes mostram
que uma única anomalia não é indicador suficiente. De fato, em torno de
80% dos problemas de design estão associadas com múltiplas anomalias.
Estas inter-relacionam-se na forma de aglomerações de anomalias. Embora
as aglomerações de anomalias possam ajudar o desenvolvedor a identificar
problemas de design, certas aglomerações contêm muitas anomalias. Isso en-
tão dificulta o raciocínio sobre a existência de um problema de design. Além
disso, mesmo as propostas mais recentes de abordagens para a visualização
de aglomerações de anomalias provêm suporte bastante limitado à identifica-
ção de problemas de design. Essa limitação é evidente quando um problema
de design afeta múltiplos elementos na implementação de um sistema. Esta
dissertação objetiva tratar essa limitação ao propor uma abordagem ino-
vadora para a visualização de aglomerações de anomalias. Tal abordagem
baseia-se em evidências coletadas a partir de vários experimentos propos-
tos e conduzidos por nós. Contamos com a participação de desenvolvedores
da academia e da indústria em cada experimento. Nossos resultados de es-
tudo sugerem que vários desenvolvedores podem utilizar nossa abordagem
de visualização para identificar de forma precisa problemas de design, es-
pecialmente aqueles que afetam múltiplos elementos de programa. Nossos
resultados também apontam melhorias necessárias à abordagem com base
na percepção dos desenvolvedores.

Palavras-chave
Abordagem de visualização; Problema de design; Anomalia de

código-fonte; Experimento.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Table of contents

1 Introduction 13
1.1 Motivation 15
1.2 Visualizing Smell Agglomerations 18
1.3 Proposing a Graph-based Visualization Approach 20
1.4 Re-thinking our Visualization Approach 20
1.5 Dissertation Outline 22

2 Background and Related Work 23
2.1 Design Problems 24
2.2 Code Smells and Smell Agglomerations 26
2.3 Existing Visualization of Smells and Agglomerations 29
2.3.1 Visualization of Smells 30
2.3.2 Visualization of Smell Agglomeration 33
2.4 Desiderata of Code Smell Agglomeration Visualization 36
2.5 Summary 39

3 A Graph-Based Visualization of Agglomerations: First Study 40
3.1 Graph-Based Visualization for Code Smell Agglomeration 41
3.2 Study Protocol 43
3.2.1 Goal and Specific Research Questions 43
3.2.2 Study Participants 44
3.2.3 Study Procedure 46
3.2.4 Instrumentation 47
3.2.5 Data Analysis 49
3.3 Results 49
3.4 Limitations 52
3.5 Threats to Validity 53
3.6 Summary 56

4 Re-thinking the Visualization of Smell Agglomerations 57
4.1 Represented Information of VISADEP 58
4.2 VISADEP Mockups: Visualizing Agglomerations across Components,

Classes and Methods 60
4.3 Support Tool 63
4.4 Summary 66

5 Assessing the VISADEP Approach: Second Study 69
5.1 Study Protocol 69
5.1.1 Goal and Research Questions 69
5.1.2 Instrumentation 71
5.1.3 Subject Selection and Cross over Design 74
5.1.4 Experiment Procedures 76
5.2 Results and Discussion 78
5.3 Threats to Validity 83

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



5.4 Summary 86

6 Conclusion 87
6.1 Main Findings and Contributions 88
6.2 Limitations 91
6.3 Future Work 93

Bibliography 95

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



List of figures

Figure 1.1 Partial Design View of the Workflow Manager Module 16

Figure 2.1 Hierarchic Agglomeration Example 28
Figure 2.2 Intra-component Agglomeration Example 29
Figure 2.3 Concern-based Agglomeration Example 29
Figure 2.4 Stench Blossom Ambient View 31
Figure 2.5 Incode Packages Overview 32
Figure 2.6 SourceMiner Views 33
Figure 2.7 JSpIRIT:Intra-component and Hierarchic Agglomerations 34
Figure 2.8 JSpIRIT:Intra-class 35
Figure 2.9 Organic Visualization 36

Figure 3.1 Graph-based visualization for agglomeration 41
Figure 3.2 Relevance Classification for the Graph-based Visualization 51

Figure 4.1 Component View 61
Figure 4.2 Class View 62
Figure 4.3 Method View 63
Figure 4.4 VISADEP Agglomeration View in Eclipse IDE 64
Figure 4.5 Component View in Eclipse IDE 65
Figure 4.6 Class View in Eclipse IDE 66
Figure 4.7 Method View in Eclipse IDE 67

Figure 5.1 Enhanced Graph-based Visualization 74
Figure 5.2 Graph Dependencies 74

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



List of tables

Table 2.1 List of Design Problem Types 25
Table 2.2 Types of Code Smell 26
Table 2.3 Categories of Agglomeration 27
Table 2.4 Comparative Study of Visualization Approaches 37

Table 3.1 Software System Details 45
Table 3.2 Characterization of the Participants 46
Table 3.3 Visualization Relevance and Design Problem Responses 50

Table 4.1 Technical Details of VISADEP 68

Table 5.1 Characteristics of Subsystems 72
Table 5.2 Information of Approaches being Compared 75
Table 5.3 Characterization of Subjects 75
Table 5.4 Experiment Cross Design 76
Table 5.5 Overall Precision and Recall 78
Table 5.6 Precision and Recall per Type of Design Problem 79
Table 5.7 Quality Degree of the Visualization Elements 82
Table 5.8 Effect of VISADEP on Precision and Recall per Participant 83

Table 6.1 Expected Publications from this Master’s Dissertation 91

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



You never fail until you stop trying.

Albert Einstein, (1879-1955).

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



1
Introduction

Design problems are characterized by violations of one or more key design
principles affecting a software system (1). These design principles encompass
the best practices recommended by a specific programming paradigm. We did
split into many, one per responsibility, so it would not violate such principle.

Each type of design problem is characterized by a different set of violated
design principles (1). We describe two of the main principles of the object-
oriented programming as follows. The Single Responsibility principle (2)
states that each design element should realize a single responsibility of the
software system. Thus, a design element that realizes two or more non-
cohesive responsibilities, e.g., data persistence and user access, violate that
principle. The Interface Segregation principle (2) states that each interface
should address a cohesive set of functionalities. Thus, one interface that
provides multiple non-cohesive functionalities should types affecting software
systems are Concern Overload (3) and Scattered Concern (2, 4), which we
explain as follows. Concern Overload occurs when a design element realizes
multiple non-cohesive responsibilities of the software system. In other words, a
design element is affected by Concern Overload whenever it violates the Single
Responsibility principle. As a consequence, this design problem tends to hinder
the maintenance tasks applied to the affected design element. That is because
the variety of responsibilities realized by the same element makes it difficult
for developers to understanding and change the affected design element.

Design problems often hinder the software maintenance (1). Thus, de-
velopers should identify and correct design problems whenever possible. Oth-
erwise, it could lead to either the discontinuation or the re-engineering of the
affected system (5). However, identifying a design problem is far from triv-
ial (6). That is because developers eventually have to analyze the source code
due to outdated and scarce design documentation (7). Such analysis has often
been driven by the identification of code smells (8), i.e., anomalous code struc-
tures that might indicate design problems. There is empirical evidence that
developers actually perceive code smells as useful indicators of design prob-
lems (9). In addition, studies (3, 10, 11) reveal that design problems are likely
to affect those design elements also affected by code smells.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 14

Recent studies (10, 12) show that a single code smell might not suffice to
identify a design problem. They suggest that design problems are often realized
by multiple code smells that interrelate. These interrelations form the so-called
smell agglomerations, which could boost the identification of design problems.
A recent study (10) observes that smell agglomerations and design problems
are closely related in a system. This study observes that 80% of the smell
agglomerations are located in elements affected by design problems. Several
research challenges have emerged from this observation. A particular challenge
regards the fact that a single smell agglomeration might contain several code
smells (and their interrelations). Thus, it might be very hard for developers to
reason about each smell agglomeration while identifying design problems.

Various factors contribute to the complexity of reasoning about a smell
agglomeration towards the identification of code smells. For instance, each
single smell agglomeration can crosscut the structures of several program
elements, such as methods, classes, and packages (12, 10). By crosscutting
multiple program elements, it becomes hard for developers to understand to
what extent the code smell interrelations contribute to the realization of a
design problem. As a consequence, developers might find difficult to: obtain a
general view of the smell agglomeration; navigate through each affected design
element in order to understand the code smell relations, which might be many;
and decide whether there is a design problem affecting the program or not.

Software visualization approaches (13, 14, 15, 16, 17) have been proposed
for summarizing source code information with the aim of assisting developers
in identifying potential issues in the source code. For instance, CodeCity (13)
aims to support large-scale code analysis via software metrics. It visually
represents all code elements as city buildings; each property of the building
represents certain metric values of a program. CodeCity could help identify
code elements with anomalous metric values that require some restructuring.
Class Blueprint (14) is an approach for visualizing the internal structure of
classes. It visually represents the interrelations between attributes and methods
of a single class. This approach aims at guiding the cohesion assessment of a
class.

Both CodeCity and Class Blueprint are visualization approaches that
somehow provide either a too abstract source code representation (e.g.,
CodeCity that represents all program elements together in a general abstrac-
tion level) or a fine-grained representation (e.g., Class Blueprint shows internal
elements and interrelations of a class). Thus, they seem not to be suitable for
the identification of design problems. That is because identifying design prob-
lems often requires: reasoning about the design elements of a program; and

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 15

reasoning about the implementation elements of the program. As a general-
ization, we observe that conventional approaches for software visualization are
not tailored to explicitly represent smell agglomerations. Nevertheless, software
visualization emerges as a promising mechanism for summarizing all informa-
tion about the smell agglomeration in order to help developers identify design
problems.

As aforementioned, a single smell agglomeration might have several code
smells, whose interrelations might be difficult to assess without an information
summary. In addition to the information that characterizes code smell agglom-
eration, the identification of design problems requires additional information
about the design of a system. This is because a software design has two main
elements: structural elements (components, classes, etc.), which represent how
the system is structured or decomposed; and concerns that represent the main
considerations taken until the design stage. Each concern might be embodied
by one or more structural elements. Thus, unifying all information in a single
visualization is a differential with respect to previous studies, which provide
very limited information about the smell agglomerations.

1.1
Motivation

The literature (3, 10) states that most design problems are somehow
associated with various code smell types. Thus, each code smell might be
useful a partial hint of the design principle violations affecting the source code.
For example, a class affected by God Class (8, 18) tends to be very large and
implement too many non-cohesive functionalities. On the other hand, a method
of this class that is affected by Feature Envy (8, 18) has at least one call for
methods from other classes. By observing the occurrence of both God Class
and Feature Envy in a single class, developers might obtain a wider view of the
violations affecting the class than it could be obtained by assessing each code
smell in isolation (10, 12). Thus, agglomerations are powerful mechanisms to
reveal design problem that hinder the maintainability of a software system.

In the following, we discuss how a visualization approach could help
the identification of design problems through smell agglomerations. Figure 1.1
presents a partial design view of the Workflow Manager module from Apache
OODT. OODT is a framework for managing large-scale data. Workflow
Manager describes, executes, and monitors data processing workflows. The
figure presents two components (Engine and Instrepo) with their respective
classes. We represent components, classes, and interfaces similarly to the
Unified Modeling Language (UML) (19). We represent the dependencies

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 16

between the program elements by arrows, code smells affecting each class
or interface through circles, and the concerns implemented by a class or an
interface through lozenges. A concern is a conceptual unit that represents a
relevant consideration made when producing the software, which can impact
on the software design (20). According to this definition, concerns may vary
from software functionalities to design patterns and non-functional properties.

NonBlockingThreadPool
WorkflowEngine

NonBlockingIterative
WorkflowProcessorThread

NonBlockingShepardThread

IterativeWorkflow
ProcessorThread

Engine Instrepo

FE

ThreadPoolWorkflowEngine

DC C1

BMGC

C3

FE C2

<<Abstract Class>>
AbstractPaginatible
InstanceRepository

IC C6

<<Interface>> 
WorkflowInstanceRepository

C4

IC

DC C1 DCGC C3C1

FEGC BM

FE

C1

C2

FE

DC IC

GC C2
C1

SS C4 C5

LuceneWorkflowInstance
Repository 

DataSourceWorkflow
InstanceRepository

C5

C4

C4

C6

MemoryWorkflow
InstanceRepository 

Package

 Class / Interface

GC God Class

    Legend

FE Feature Envy

IC Intensive Coupling

DC Dispersed Coupling

BM Brain Method

SS Shotgun Surgery

C# Concerns

References, Calls, Accesses

Implementation

Inheritance

TB IC

DC

RB

FE C4
C3IC DC

RBFETB

IC

DC

RBFE

GC

TB Tradition Breaker

RB Refused Bequest

Figure 1.1: Partial Design View of the Workflow Manager Module

From Figure 1.1, we observe that at least one code smell affects each
class or interface located in both components. Several code smells are spread
over the classes, either within a single component or in different components.
For instance, Shotgun Surgery (8) affects the WorkflowInstanceRepository in-
terface. It implies that every change applied to this interface might propagate
to several other classes (8). Moreover, multiple classes implement a common
concern. For instance, all classes from the Engine component implement the
C1 concern. In addition, the implementation of concerns is very difficult to
capture through manual code analysis (21). It is very difficult because the
developer needs to look line by line the code snippets that implement each
concern. After that, the developer identifies what concerns are implemented
in each method, in each class. The visualization of concerns by design element
facilitates the analysis of code to identify design problem. All the aforemen-
tioned observations about Workflow Manager could be hard for developers to
obtain from source code analysis. The difficulty stems from both the complex
nature of code smells (9, 22) and the diffused nature of concerns (23, 24), which

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 17

we glimpse from the figure. In this scenario, a developer, who is in charge of
identifying design problems, needs to analyze most of these code smells to
identify the Scattered Concern design problem. This design problem happens
whenever multiple code elements implement a concern that should have been
implemented by only a few elements. We rely on the example of Figure 1.1 to
illustrate how two different smell agglomerations help reveal design problems
affecting Workflow Manager.

Agglomeration 1 revealing Scattered Concern and Concern Overload. In
the Engine component, circles colored in yellow are part of a concern-driven
agglomeration. In other words, these smells are occurring due to the fact that
the Engine component is implementing various concerns (C1, C2, and C3). The
component elements contain code smells Feature Envy (8, 25) and Dispersed
Coupling (8, 25) that are related to the implementation of concerns. These are
indicators of a Concern Overload design problem. In addition to the design
problem Concern Overload, the component also suffers from the Scattered
Concern design problem because concerns C2 and C3 are spread throughout
several classes of the component, and also C3 is in the Instrepo component.

Agglomeration 2 revealing Scattered Concern and Concern Overload.
The Instrepo component implements tree concerns: the main concern C4 and
the additional concerns C5 and C6. Instrepo has several code smells affecting
its class and interface. By analyzing the abstract class AbstractPaginatibleIn-
stanceRepository we can see that it could be a problematic element because
all classes that inherit have several code smells associated with the implemen-
tation of more than one concern. Circles in orange represent the code smells
that form an agglomeration in the inheritance. This is because the classes that
inherit from the abstract class have in common the code smell Dispersed Cou-
pling (8, 25). All this information that the visualization provided are indicators
of Concern Overload. Moreover, the agglomeration also reveals Scattered Con-
cern since the additional concerns (C5, C6) were spread in 4 classes of the
component and the Dispersed Coupling code smell affecting the classes is re-
lated to the implementation of more than one concern.

In addition to the excessive number of code smells affecting the system,
developers still have to decide which code smells can help them to identify a
design problem. At this point, developers can use the code smell agglomeration
to focus on those code smells that may be related to a design problem. Although
the agglomeration has the potential to help developers to focus on the code
smells potentially related to a design problem, they still have to analyze several

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 18

code smells. They also need to understand how these code smells are related
to each other in order to understand how they embody together the design
problem. In other words, these multiple tasks would quickly turn into a very
complex, cumbersome process. Developers would feel discouraged to perform
all these tasks without a proper visualization of the agglomeration.

In summary, we hypothesize that visualization for code smell agglomer-
ation could help developers to (i) grasp how the design problem is spread in
the system, and also (ii) understand better how the code smells are related to
each other in the source code. Such knowledge could alleviate the process of
analyzing code smells to identify design problems.

1.2
Visualizing Smell Agglomerations

Previous studies (15, 26, 27, 28) propose approaches for visualizing
code smells. Due to the recent introduction of smell agglomerations in the
literature (10), these studies support the visualization of single code smells
only. More recently, other studies (29, 30) provide the first attempts to
support the visualization of smell agglomerations. Vidal et al. (30) proposed
a preliminary visualization for code smell agglomerations (Figures 2.7 and
2.8). The authors had proposed a tool for detection of code smells, which also
included a feature to represent code smell agglomerations. However, the tool
presents very limited and abstract representation of the agglomerations. For
instance, the visualization does not show the relationships between the code
smells. Also, it does not provide any mechanisms that allow the user to navigate
from the design level representation of the agglomerations to the coding level
representation of each smell. Moreover, they share similar limitations as the
visualization proposed by Oizumi and colleagues (29).

Oizumi et al. (29) investigated whether developers could accurately
identify design problems through smell agglomerations. They compared the
use of smell agglomerations against the use of a flat list of code smells. During
the experiment, they provided a mechanism for supporting the visualization of
smell agglomerations. Their study results indicated that smell agglomerations
potentially help developers to identify more design problems when compared
with the flat list; agglomerations provided 64% of accuracy versus 38.24% for
the flat smell list, which showed the potential of agglomeration to help reveal
a design problem. However, the support provided by smell agglomerations was
far from sufficient due to low recall rates. Thus, the authors also conducted
a qualitative study to investigate the reasons behind the limitations of smell
agglomerations. They have found that the lack of a proper visual representation

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 19

of smell agglomerations was the main reason for these limitations.
In fact, the visualization proposed by Oizumi et al. (29) had some

drawbacks, as found by the authors later. First, their approach does not
unify the information about agglomerations and information needed for design
problem identification. Second, the textual information provided for each smell
agglomeration uses an excessively complex terminology. Many terms employed
by the visualization were hard to be understood by developers, such as the
names of the different types of agglomeration. All these disadvantages were not
only related to the underlying terminology but were mainly caused by the poor
visual representation. For instance, important details about the agglomeration,
as the relationships between smells, were presented in separated views, without
showing the full extension of the agglomeration in a single view. This led
participants to analyze each code smell individually rather than together.

Overall, the study performed by Oizumi et al. (29) suggests that devel-
opers often start reasoning about a smell agglomeration from a general to a
specific viewpoint. It has helped us understand how a visualization approach of
smell agglomerations should support developers in identifying design problems.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 20

1.3
Proposing a Graph-based Visualization Approach

As stated in Section 1.2, most previous studies (15, 26, 27, 28) propose
visualization approaches for code smells rather than for smell agglomerations.
That is because smell agglomerations have been introduced in the literature
very recently. Moreover, the existing visualization approaches for smell agglom-
erations are very limited (10, 30). Aimed at addressing such limitation, this
dissertation introduces a novel graph-based visualization approach (Section 3).
We chose to represent smell agglomeration through a graph-based abstraction
for the following reason. Our approach is based on the finding of a recent study
of ours (29), which observed that it is good to start with a general view of ag-
glomeration and then see a specific view. The graph-based structure gives the
whole view of the agglomeration and the developer can analyze later for each
smell.

The study (29) suggests that the structure of smell agglomerations
might fit a graph representation since each smell agglomeration has multiple
code smells; and these code smells interrelate. Thus, representing each design
element (i.e., a class or an interface) d as a node, and the interrelation between
two design elements d1 and d2 as an edge e(d1, d2), seems promising. In our
visualization approach, an interrelation might be either a method call, an
inheritance relationship, or an interface implementation.

After proposing the graph-based visualization approach for smell agglom-
erations, we implement it as a Web application using the D3 API1. Finally, we
evaluate to what extent our approach supports developers in identifying de-
sign problems through an empirical study. By recruiting ten developers from
the industry, we asked the developers to identify design problems affecting the
software systems that they have helped implement via the graph-based visual-
ization approach. Our results suggest that developers reached an up to 100%
of precision and 42% of recall in the identification of design problems. The
most useful features of our approach were the graph-based abstraction and the
representation of dependencies among design elements affected by code smells.
However, the low rate of recall reached by the participants suggests that our
approach was not sufficient to properly support developers in their daily basis.

1.4
Re-thinking our Visualization Approach

Evaluating our graph-based visualization approach has allowed us to
refine it based on precision and recall results, but also on the developers’

1https://d3js.org/

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 21

feedback about the missing information (Section 3.4). However, we have
observed that our approach required even more complex refinements. Because
of that, this dissertation proposes another visualization approach for smell
agglomerations called VISADEP. VISADEP approach evolves the previous
one by combining multiple views of a single smell agglomeration at three
design abstraction levels: component (or package), class, and method. The
component view is the view of the highest level of abstraction. The purpose of
the component view is to provide a more general view of the organization
of design elements by showing code smells that affect a component and
concerns implemented in a component. The class view is a zoom-in to the
component view; it represents the classes of a component that are affected
by an agglomeration by showing concerns implemented in each class, the
code smells that affect each class and the relationships between the classes.
The last view, which is the method view, serves to offer another possibility
of zoom-in, but now applied to a single class. The method view is the one
that is as fine-grained as possible because it represents how the agglomeration
is affecting the methods of the classes. Our approach supports developers
to navigate through these views so they can better reason about the smell
agglomeration towards the identification of design problems. Our approach
relies on the Unified Modeling Language (UML) (19) notation for representing
classes, text for code smells, arrows for interrelations, and colors for concerns.
We proposed an Eclipse (31) plugin, also called VISADEP, to support our
approach to visualization.

Then, we conducted a controlled experiment to evaluate our novel
approach with developers from both academy and industry comparing the new
approach with an improved graph-based visualization approach. We refined the
initial proposition adding the feature like concern representation and textual
information about concerns. During the experiment, participants identified
design problems in 2 steps; at each step, they used different tools analyzing
2 different subsystems of Apache OODT. The results of the study reveal that
for Concern Overload and Ambiguous Interface (4) design problems, our novel
approach supported by the tool VISADEP was better than the enhanced
graph-based visualization. Although there is not much difference between the
two tools, for Scattered Concern, VISADEP was not better than the graph
representation, but it did not underperformed with respect to the graph-based
approach. During the experiment, we also asked the participants to report the
elements of the visualization that helped them to find the design problems,
in order to improve our approach based on what the developers mentioned
more. Based on the results, we plan to improve our visualization approach to

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 1. Introduction 22

better support the identification of Fat Interface (2), where VISADEP did not
achieve a satisfactory result. For instance, VISADEP could represent other
information such as the method parameters.

1.5
Dissertation Outline

The remainder of this dissertation is organized as follows.
Chapter 2 provides background information aimed at supporting the

understanding of this dissertation. This chapter also discusses related work in
order to contextualize this dissertation with respect to the literature.

Chapter 3 describes our preliminary visualization approach for smell
agglomerations based on a graph visual structure. This chapter also discusses
the results of an empirical study aimed at evaluating our approach. We
conducted this study with software developers from the industry.

Chapter 4 introduces VISADEP, our novel approach for visualizing
smell agglomerations. Based on the results of our evaluation described in Chap-
ter 3, we re-think the visualization of smell agglomeration. We also introduce
the VISADEP tool that implements our novel visualization approach.

Chapter 5 presents and discusses the results of an empirical study aimed
at evaluating VISADEP. This study was conducted with software developers
from both industry and academy.

Finally, Chapter 6 summarizes the dissertation. This chapter discusses
our main contributions and suggests future work.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



2
Background and Related Work

Design problems (1) indicate violations of key design principles in a
software system. Due to the non-local nature of most design problems, they
might harm the maintainability of multiple design elements together (25).
Previous studies (8, 32, 33) suggest that code smells provide useful hints
about a design problem. However, identifying design problems is difficult for
developers (29). Recently, studies (10, 12) provide evidence that a single code
smell might not suffice to reveal a design problem. These studies suggest
that code smells often interrelate to realize a design problem through the so-
called smell agglomerations (10). However, it remains difficult for developers to
identify design problems, because a single smell agglomeration might contain
several code smells. In fact, it is difficult for a developer to reason about
multiple code smells and their interrelations to properly identify a design
problem.

Software visualization approaches have been largely used to summarize
information about the source code, so that developers can easily reason
about maintainability problems (13, 34). Thus, these approaches emerge as
potentially useful means for representing smell agglomerations, so developers
could reason about the interrelated code smells and identify design problems.
Previous studies (29, 30) present the first visualization approaches for smell
agglomerations. However, they represent very limited information about code
smells and their interrelations. Consequently, developers still find it difficult to
identify design problems via smell agglomerations. This dissertation addresses
such limitation by introducing and evaluating a novel approach for visualizing
smell agglomerations. Our goal is to support developers in reasoning about a
smell agglomeration towards the identification of design problems.

This chapter presents background information and discusses related
work. The chapter is organized as follows. Section 2.1 discusses about de-
sign problems. Section 2.2 overviews code smells and smell agglomerations.
Section 2.3 discusses the state of the art about the visualization of either code
smells or smell agglomerations. Section 2.4 presents a desiderata of visualiza-
tion approaches for smell agglomerations. Finally, Section 2.5 concludes the
chapter.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 24

2.1
Design Problems

The violation of one or more design principles in a software system char-
acterizes a design problem (1). Design principles represent guidelines for de-
composing the functionalities of a software system into design elements. Design
principles aim at supporting the modularization towards high maintainability
of the software system (1). As a consequence, by violating design principles,
developers might decrease the system maintainability, which often leads to an
increase in maintenance cost and effort (25). Many design problems affect crit-
ical program locations, i.e., design elements that centralize the main system
functionalities (35), such as interfaces and class hierarchies. We illustrate to
what extent design problems violate design principles and might affect multiple
design elements as follows.

Scattered Concern (2, 4) is a recurring design problem characterized by
the violation of a basic principle known as Separation of Concerns (2). This
principle states that each design element should realize exactly one concern.
Thus, whenever multiple design elements realize the same concern, we have
a violation of the Separation of Concerns principle. Additionally, some of
those components are responsible for an orthogonal concern. In this context,
a concern is anything a stakeholder may want to consider as a conceptual
unit, including features, nonfunctional requirements, and design idioms (20).
Scattered Concern also affects the program reusability (4) because developers
cannot reuse the implementation of the spread concern without using other
components that implement the same concern.

On the other hand, Fat Interface (1, 2) occurs when a design component
offers only a general, ambiguous entry-point that provides non-cohesive func-
tionalities, thereby complicating the clients’ logic. This design problem affects
properties like cohesion, abstraction, and separation of concerns. Moreover,
Fat Interface is known to be a major source of major maintenance effort in
large-scale software systems (3, 10). Whenever developers have to modify or
evolve the interface, they have to introduce changes across many classes that
either implement or use the interface, including classes that have no conceptual
relation to the change or evolution being incorporated into the system.

Such examples show that, when neglected, a design problem like this
one may cause harmful consequences to the system, such as redesign or even
discontinuation of a system (36). Thus, the identification and removal of design
problems are required for long-living systems. However, identifying design
problems is not trivial. This difficulty stems from the fact that design problems
are often spread over several program elements; thus developers have to locate

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 25

and to inspect multiple code elements that are part of the design problem. In
this context, this dissertation focuses on helping developers during the analysis
of code elements to identify design problems.

Dissertation Scopes. Table 2.1 presents the description of each design
problem that we investigate in this dissertation. The first column of the table
describes the type of design problem. The second column specifies if the design
problem is related to concerns or structural issues. The third column is the
definition of each design problem type. The last column shows the papers that
investigated each design problem. The design problems that we investigate are:
Ambiguous Interface, Concern Overload, Fat Interface, Scattered Concern, and
Unwanted Dependency (37). The scope of design problems is varied. Some of
the design problems studied are related to the concerns that each program
element implements. These problems are Concern Overload and Scattered
Concern. Other design problems are related to structural issues involving key
design elements (e.g., interfaces or dependencies) in the source code. These
problems are Ambiguous Interface, Fat Interface, and Unwanted Dependency.
In other words, the problems studied cover, in general, the most elementary
levels of the design and implementation of a system (e.g., concerns, interface
implementation, and dependencies between classes).

Table 2.1: List of Design Problem Types
Design
Problem

Concern/
Structure

Description Papers

Ambiguous
Interface

Structure Interface that offers only a single, gen-
eral entry-point, but provides two or
more functionalities (4)

(4, 32)

Concern
Overload

Concern Design components that are responsi-
ble for realizing two or more unrelated
system’s concerns (3)

(3, 10, 29,
32)

Fat Interface Structure Interface of a design component that
offers only a general, ambiguous entry-
point that provides non-cohesive func-
tionalities, thereby complicating the
clients’ logic (2)

(10, 29)

Scattered
Concern

Concern Multiple components that are respon-
sible for realizing a crosscutting con-
cern (2)

(4, 10, 29)

Unwanted
Dependency

Structure Dependency that violates an intended
design rule (37)

(10, 29)

We highlight that the investigated design problems have distinct charac-
teristics, which require different information about the program elements, such
as classes, interfaces, and methods. We also selected these design problems be-
cause they are frequently investigated in the literature (3, 29, 32). In our first
study (Chapter 3) was aimed to evaluate the graph-based visualization, we

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 26

explored three of these design problems; 2 design problems related to the mis-
modularization of concerns (Scattered Concern and Concern Overload) and
1 related to dependency (Unwanted Dependency). Then, in the second study
(Chapter 5), we used 4 of those design problems; 2 design problems related to
the mis-modularization of concerns (Scattered Concern and Concern Overload)
and 2 related to interfaces (Ambiguous Interface, Fat Interface).

2.2
Code Smells and Smell Agglomerations

Code Smells. Developers can use different symptoms to identify a
design problem in the source code. One of these symptoms is called code
smell. Code smell is a microstructure in the source code that may indicate the
manifestation of a design problem (8). Code smells vary from those detected at
the method-level (e.g., Long Parameter List, Long Method, and Feature Envy)
to those detected at the class level (e.g., Complex Class, God Class, Data Class,
Shotgun Surgery, and Divergent Change) (8, 25). Table 2.2 describes the types
of code smells used in this research. We selected these types of code smell
because: (i) they are well-grounded in the literature (8, 38), (ii) there is tool
support for detecting them with source code metrics, (iii) they were extensively
used in case studies and controlled experiments (3, 10, 29, 32, 39), and (iv)
they represent smells often related to the design problems addressed in this
dissertation (10). In this dissertation, we use the terms smelly element to
refer to a program element that contains code smells.

Table 2.2: Types of Code Smell
Type Description
Brain Method Long and complex method that centralizes the intelligence

of a class
Data Class Class that contains data but not behavior related to the data
Disperse Coupling The case of an operation which is excessively tied to many

other operations in the system, and additionally these
provider methods that are dispersed among many classes

Feature Envy Method that calls more methods of a single external class
than the internal methods of its own inner class

God Class Long and complex class that centralizes the intelligence of
the system

Intensive Coupling When a method is tied to many other operations in the
system, whereby these provider operations are dispersed only
into one or a few classes

Refused Parent Bequest Subclass that does not use the protected methods of its
superclass

Shotgun Surgery This anomaly is evident when you must change lots of pieces
of code in different places simply to add a new or extended
piece of behavior

Tradition Breaker Subclass that provides a large set of services that are unre-
lated to services provided by the superclass

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 27

As each design problem is often spread over two or more code elements,
the analysis of individual code smells is often not sufficient to identify a design
problem (39). In addition, the analysis of code smells to reveal design problems
tends to be difficult and time-consuming. This happens because developers
often need to analyze and discard several code smells unrelated to any design
problem (3). Even for small software systems, there are hundreds of smells (3).
Thus, in order to effectively identify design problems, developers need to
determine and prioritize which code smells should be analyzed.

Agglomerations of Code Smells. Recent studies indicate that design
problems are likely to be located in program elements that contain multiple
code smells (3, 10, 11). Oizumi et al. (10) proposed the notion of code smell ag-
glomeration. A code smell agglomeration is a group of interrelated code smells
in the program. The agglomeration is determined in the program by the co-
occurrence of two or more code smells syntactically or semantically related.
The agglomeration is located in the same method, class, hierarchy or compo-
nent (10). According to the correlation analyses in their study, agglomerations
are often the locus of design problems with an accuracy higher than 80%.
Some categories of code smell agglomeration are: intra-method agglomeration,
intra-class agglomeration, hierarchic agglomeration, intra-component agglom-
eration, and concern-based agglomeration (39). In this dissertation, we are
interested in agglomerations that occur in hierarchies and components such as
intra-component agglomeration, hierarchic agglomeration, and concern-based
agglomeration (39). We selected these agglomerations because these agglom-
erations can involve several elements in the source code. Then a visualiza-
tion could assist the developer in the analysis. Table 2.3 presents the descrip-
tion (39) of the categories of agglomeration considered in this dissertation and
Figures 2.1, 2.2, and 2.3 are examples of each category of agglomeration.

Table 2.3: Categories of Agglomeration
Category Description
Hierarchical Agglomerations composed by program elements that are

affected by the same type of code smell, and these elements
implement the same interface or inherit from the same upper
element (e.g., a superclass).

Intra-component Agglomerations of code smells that occur inside of a single
design component. This agglomeration comprises program
elements that are located within a single component, and
the elements are affected by the same type of code smell.
The elements also must be connected by method calls or
type references.

Concern-based Agglomerations composed by smelly program elements that
are located in the same component and these inner elements
of the component implement diverse concerns.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 28

Figure 2.1: Hierarchic Agglomeration Example

An example of hierarchic agglomeration is illustrated in Figure In fig-
ure 2.1, a hierarchic agglomeration is shown. Classes B, C, and D inherit from
A. A, C, and D are affected by the same type of code smell, God Class. These
God Class instances affecting A, C, and D form a hierarchic agglomeration of
God Classes. When we have a class hierarchy in object-oriented programming,
it means that: the parent class implements the basic features that the daughter
classes will inherit; each of the child classes implements its own specialty but,
in the end, it also inherits and makes use of parent class implementations. So, if
the code smells affect the parent class, and these code smells are problematic in
terms of code maintenance, then the child classes will also suffer from mainte-
nance problems. For example in Figure 2.1, the parent Class A that has a God
Class is certainly very large, complex, and non-cohesive. Therefore, reading,
understanding, and maintaining daughter classes can also be difficult because
these daughter classes tend to be as large, complex, and non-cohesive as the
parent class. In this case, a hierarchy agglomeration represents this problem
that crosses the multiple classes that are in a hierarchical relation. This kind
of agglomeration can help to identify the design problems Fat Interface and
Ambiguous Interface (40, 41).

Figure 2.2 illustrates an intra-component agglomeration. As it can be
observed, classes A and B belong to the same component. Besides class A and
class B contain the same type of code smell, Feature Envy. These Feature Envy
instances affecting A2 and B1 can form an intra-component agglomeration of
Feature Envy. Intra-component agglomerations can mainly help to identify the
design problems Unwanted Dependency and Scattered Concern (40, 41)

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 29

Figure 2.2: Intra-component Agglomeration Example

Figure 2.3: Concern-based Agglomeration Example

In figure 2.3, we illustrate a concern-based agglomeration. In the figure,
classes A, B and C belong to the same component. Each class in the component
implements a number of concerns. All classes implement the main concern (blue
color). However, each of them implements at least one additional concern. For
example, Class B implements two additional concerns. Besides, all classes in
the component contain at least a code smell (e.g., Feature Envy, God Class,
Shotgun Surgery). Then, the concern-based agglomeration is composed by the
4 code smells that affect the three classes. Concern-based agglomerations can
mainly help to identify the design problem Concern Overload (40, 41)

2.3
Existing Visualization of Smells and Agglomerations

Software visualization transfers information about software artifacts
(e.g., source code) into visual forms and aims at enhancing information un-
derstanding in software development (42). The visualization of one or more
software artifacts is called software visualization. Software visualization en-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 30

compasses the development and evaluation of methods for graphically repre-
senting different aspects of software (42). The purpose of the visualization is
to help developers understand their software system.

According to Diehl (42), we can categorize three types of software visu-
alization: Structure, Behavior, and Evolution. Structure visualization refers to
the visualization of static parts (43) of the software, including the source code,
architectural design, or specific static metrics. Static program visualization or
structure visualization covers the visualization of textual and diagrammatic
representations, visualization of results of program analyses and the visualiza-
tion of software architecture (42). Behavior visualization refers to the visualiza-
tion of the software execution, i.e., the dynamic part of a software. Evolution
visualization refers to the visualization of how software evolves over time; for
instance, it allows to represent code changes incorporated by developers along
the version history of a system.

There are several studies that investigated visualization for code
smells (15, 44, 45, 46). We found these literature works using an ad hoc re-
view. There is a risk of not catching important papers, but most of the studies
were captured from a literature review (47). However, we found few studies
that proposed approaches for visualizing smell agglomerations (29, 30). Thus,
we studied and compared existing approaches for visually representing code
smells and smell agglomerations. This comparison helped us to identify their
weaknesses as well as requirements of a visualization approach for agglomer-
ations. We present below some previous work that proposed visualization for
code smells (Section 2.3.1) and work that proposed visualization for smells and
agglomerations (Section 2.3.2).

2.3.1
Visualization of Smells

We reviewed previous work about visualization of code smells. This
review was also intended to define a baseline of expected requirements four
our own approach. In this context, Murphy-Hill et al. (15) present Stench
Blossom (Figure 2.4), an Eclipse plugin that provides code smell detection
and visualization with a focus on improving interactivity by integrating the
visualization into the source code editor. Using Stench Blossom, programmers
are capable of switching between a quick and high-level overview of the smells
while they are programming. This plugin represents the smells with petals;
the size of a petal is directly proportional to the “strength” of the smell in the
code element it refers. Stench Blossom creators claimed that embedding the
visualization in the actual context of developer’s programming makes the tool

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 31

useful for both smell identification and refactoring. However, the visualization
of Stench Blossom limits the programmer in having an overview of the entire
system. It shows only the state of actual code being written by the programmer
without the possibility of analyzing other classes. It is often the case that even
a single code smell can affect many other classes related to the current code
being written or analyzed. This narrow view of code smells may misguide
developers in prioritizing code smells that are more critical to the system.
Moreover, the visualization of Stench Blossom makes it hard to group smells,
located in different classes, that may indicate together a single design problem.

Figure 2.4: Stench Blossom Ambient View

Marinescu and colleagues (44) present InCODE, an Eclipse plugin that
supports detection and visualization of code smells that can indicate design
problems. When the Eclipse workbench starts, InCODE starts to analyze (in
the background) the source file currently active in the editor. When a candidate
design problem is detected, a red marker is placed next to the affected class

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 32

or method. It also implements a visualization detailing the components (i.e.,
packages) of the system and its level of affectation by code smells, as shown in
Figure 2.5. Unfortunately, the visualization excludes dependencies between
packages, which are useful to understand the structure of the system In
addition, the visualization of this tool does not explicitly represent smell
agglomerations.

Figure 2.5: Incode Packages Overview

There are other studies (20, 49) that investigated the detection and
visualization of code smells through the explicit representation of concerns.
According to Robillard et al. (20), many code smells are caused by the
particular ways one or more stakeholders’ concerns are structured in the source
code. In this context, Carneiro et al. present SourceMiner (49), an Eclipse
plug-in which provides four categories of code views (Figure 2.6) with concern
properties presented as follows.

The first visualization of Carneiro and colleagues (49), called concern’s
package-class-method structure view, is a 2D visualization that maps a tree
structure into rectangles where each rectangle represents a program element.
The visualization represents how modules are organized in packages, classes,
and methods. The second visualization, called concern’s inheritance-wise struc-
ture view, is a two-dimensional display that uses rectangles to represent classes
and interfaces and edges to represent inheritance relationships between them.
The rectangles colored in dark blue correspond to classes or interfaces that
are affected by a specific concern selected by the programmer. The third one,
called concern dependency view, is based on a graph view that represents the

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 33

Figure 2.6: SourceMiner Views

dependencies among software packages and classes. Finally, the fourth one,
called concern dependency weight view, is a complement to the concern de-
pendency view. It displays the weight of each dependency, i.e., the number
of syntactic references to a module in the dependent module. SourceMiner
requires the developer manually filters the metrics used for detecting smells.
Unfortunately, SourceMiner does not reveal relationships between code smells.
Moreover, it does not provide developers with the possibility of navigating
from the system’s visualizations and the source code (and vice-versa).

2.3.2
Visualization of Smell Agglomeration

Regarding detection and visualization of code smell agglomeration, we
found in the literature two tools: JSpIRIT (30) and Organic (29). JSpIRIT is
an Eclipse plugin for detecting code smells and agglomerations of a (Java-
based) system and ranking them according to different criteria (30). The
main benefit of using JSpIRIT is that developers can configure and extend
the tool by providing different strategies to identify and rank the smells
and groups of smells (i.e., agglomerations). JSpIRIT proposes visualizations
for intra-component agglomeration, hierarchic agglomeration, and intra-class
agglomeration (10). Figure 2.7 presents two snapshots of the visualization of
intra-component agglomeration and hierarchic agglomeration. The snapshot A

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 34

Figure 2.7: JSpIRIT:Intra-component and Hierarchic Agglomerations

presents the visualization of the agglomerations while snapshot B highlights
the smells that are of a hierarchic agglomeration. In the figure, the larger
grayish circles represent packages. Inside each package, the dotted outline
circles are agglomerations and the smaller colored circles represent different
smell types. When the mouse is over a smell, if this is a member of a hierarchical
agglomeration, this and the rest of the members of the agglomeration are
highlighted with a red outline as shown in the snapshot B (Figure 2.7).
Figure 2.8 shows the intra-class agglomeration visualization. An intra-class
agglomeration is a class (including its methods) affected by two or more code
smells; i.e., the code smells (taking part of the agglomeration) are located
within members of a single class. The model chosen for representation of
intra-class resembles a flower; from the center outward, system packages are
represented and connected to classes; at the same time, arising from each
class, are smells that form the intra-class agglomeration. A disadvantage of
this tool is that it represents the code smells of agglomeration (Figure 2.7 and

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 35

Figure 2.8: JSpIRIT:Intra-class

Figure 2.8) without showing the smelly elements and the relations that could
exist between the elements.

Organic (29) provides detection and visualization of smell agglomera-
tions. It is a plugin for Eclipse designed for Java programs and for helping
developers in identifying design problems in the source code. Organic cap-
tures and represents the history of code smells that progressively compose
an agglomeration along the versions of a system’s evolution. It also provides
the references of each program element affected by the selected agglomera-
tion. Another feature is a graphical representation of agglomeration, which
shows the elements that compose an agglomeration. However, it does not rep-
resent the dependencies between those elements. Organic also captures and
leverages semantic relationships between smells that form an agglomeration;
semantically-related smells are those smells that realize a single developer’s
concern, such as persistence, error handling and other high-priority require-
ments of a system (Figure 2.9). Oizumi et al. (29) conducted a study with
some goals similar to ours. Their study compared the use of agglomerations
with the use of individual code smells and also performed a qualitative analysis
to evaluate the Organic tool based on semiotic engineering. They noticed dur-
ing the data analysis that the proposed visualization mechanism was a core
reason on why some developers had difficulties to identify design problems
using smell agglomerations. Due to this result, we are investigating whether

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 36

our proposed visualization approach is suitable to support the identification of
design problems.

Figure 2.9: Organic Visualization

Table 2.4 presents a comparative description of the visualization ap-
proaches presented above. The second column of the table describes the pur-
pose of the visualization and the approaches used to represent smells, agglom-
erations or concerns. The third and fourth columns describe their positive and
negative aspects respectively.

2.4
Desiderata of Code Smell Agglomeration Visualization

After a comparative study of the approaches in terms of their character-
istics, this section presents a brief overview of the derived requirements that
may be useful for designing by approaches for visualizing smell agglomerations.
We present below the overview of these requirements:

A visualization approach should be simple and easy to under-
stand. The visualization must be presented in a way that the first time the
developer sees the agglomeration, she understands it. In particular, the de-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 37

Table 2.4: Comparative Study of Visualization Approaches
Tool Visualization Charac-

teristics
Advantages Drawbacks

Stench Blossom Visualization of code smell
occurrences in a petal-like
metaphor, located in the
right side of the affected
code element.

Easy navigation from
visualization to source
code (and vice-versa).

Does not provide a general
view of code smells affect-
ing multiple classes.

InCode Visualization of packages
with its level of affectation
by code smells

Visualization of code
smells at the package
level

No visualization of the re-
lationship among packages

SourceMiner Four concern-based visu-
alizations: package-class-
method view, inheritance-
wise view, dependency
view, and dependency
weight view

Support to package de-
pendency visualization
via graphs

Non-intuitive and over-
loaded visualization. No
mapping between code
smells and concerns

JSpIRIT (code
smells)

Heat map-like visualiza-
tion of code smells through
the system packages

Support to package de-
pendency visualization

Overloaded visualization
with low comprehensibility
to large-sized systems. No
mapping between code
smells and packages

JSpIRIT (ag-
glomerations)

Two agglomeration visual-
izations: intra-component
view based on circle and
color metaphors, and intra-
class view based on a
flower-like metaphor

Support to agglomer-
ation sorting at the
package level, zoom-
ing, and navigation
through affected code
elements

No visualization of de-
pendencies between code
smells and agglomerations

Organic Multiple views of code
smell agglomerations

Support to navigate
to the affected source
code per agglomera-
tion. History data per
system version

No visualization of depen-
dencies among code el-
ements affected by code
smells

veloper should be able to easy understand how the agglomeration is affecting
the multiple elements of a program. This will allow easy access to the agglom-
eration’s information and encourage him to identify a design problem. The
existing visualization approaches are either too general or too detailed to rep-
resent the smell agglomerations. For example, the approaches behind CodeCity,
Stench Blossom are not appropriate. Thus, represent agglomerations via these
approaches can make hard to reason about a smell agglomeration to identify
design problem. Besides, in large systems where several elements are involved
in the problem of design Scattered Concern, if the visualization is not simple
it would be difficult to identify this problem because there would be too much
information, too many classes in the visualization.

A visualization approach could rely on a graph-based structure.
We have evidence from the study Oizumi et al. (29) (see Section 1.2 for
details) that a graph structure can be an indicator to represent agglomerations.
Analyzing the property of an agglomeration, there is a natural mapping
between the smell agglomeration structure and a graph structure. Let consider
vertexes as the smelly elements and the edges as the smell interrelations. This
is possible because there are several smells interrelated in an agglomeration.
Thus, we can abstract smell agglomeration in a graph structure. So, it is
a natural mapping that makes sense. In addition, we could rely on graph

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 38

because some of the design problems (Fat Interface, Ambiguous Interface)
are associated with hierarchical structures of code elements. For example, for
Unwanted Dependency it is necessary to show that there are dependencies
between elements that should not and the graph can be used to show this.

A visualization approach should represent all code smell in-
terrelations that characterize a smell agglomeration. It is important
to represent the relationships between code elements affected by code smells.
This information will serve to characterize how code smells are grouped while
forming an agglomeration. If these relationships are not properly detected and
presented to the developers, they are unlikely to make proper meaning out
of a flat list of agglomerated smells. As a consequence, developers may fail to
understand how two or more smells are contributing together to the realization
of a single design problem. For instance, in a hierarchic agglomeration, it is
necessary to show the relationships that compose the inheritance chains. In
the case of both intra-component agglomeration and concern-based agglomer-
ation, it is necessary to show all relationships between code smells, i.e., the
inheritance, association, and interface implementation relationships.

The visualization approaches should differently represent each
type of code smells interrelations. The nature of each interrelation
might differ (inheritance, interface implementation, and association). Each
type of interrelation is associated with a specific design problem. For example
association is fundamental to identify problem design Unwanted Dependency.
Since Unwanted Dependency by definition means looking at the dependencies
between classes and the association represents calls from one class to another.
The implementation of interface is fundamental to identify Fat Interface
because if the developer does not know if there is an interface, the developer
can not know if there is a Fat Interface or not, and if it implements many non-
cohesive concerns. Finally, inheritance can help eliminate false positives in
identifying design problems Scattered Concern and Concern Overload. This
is because the existence of an inheritance can help to decide whether the
existence of a code structure is a problem or not. Each of these relationships
must have a specific representation to facilitate the identification of specific
design problems.

The approach should avoid information overload whenever pos-
sible. The approach should represent relevant information about agglomera-
tions the smelly elements that compose an agglomeration. An agglomeration,
by definition, has too much information to be presented given the huge amount
of smells and their relationships that usually compose a single agglomeration.
When designing a new form of visualization, it is important to prioritize ag-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 2. Background and Related Work 39

glomeration’s data so that the developer will not be overwhelmed with the
amount of information offered. For instance, the approach should offer a high-
level view of the agglomeration and the multiple levels of visualization, from
the most abstract to the most concrete. The notion of relevance may be cap-
tured, for instance, as the developer interacts with the visualization approach,
as discussed above. Note that we might need to represent all code smell inter-
relations that characterize a smell agglomeration. Thus, certain information
could be omitted to the developers and revealed only when it becomes neces-
sary, for instance.

2.5
Summary

This chapter presented background information aimed at supporting the
proper understanding of this dissertation. Since our study focuses on the
proposal of visualization mechanisms for code smell agglomerations, which
are expected to be useful to the identification of design problems, we discussed
concepts such as design problems and their negative effects on the software
maintainability, the identification of design problems in the source code, as
well as software visualization. This chapter also presented existing visualization
approaches to support the understanding of state of the art about visualization
of code smells and agglomerations. In addition, we also made a comparative
analysis of the visualizations to determine what positive aspects we can use or
adapt in our proposed visualizations. We also discussed their negative aspects
that should be avoided by our visualization proposal.

After introducing the main concepts and the literature review, the next
chapter presents our first visualization alternative for agglomeration and its
evaluation through an exploratory study.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



3
A Graph-Based Visualization of Agglomerations: First Study

The identification of a design problem is not a trivial task. For instance,
when a developer is analyzing an agglomeration to reveal a design problem, the
developer also has to keep in mind the elements that contain the agglomerated
smells and how these smells together can indicate a design problem. In this
case, a visualization technique is likely to help the developer in the analysis of
an agglomeration. In this context, Oizumi et al. (29) conducted a study that
aimed to compare the precision in identifying design problems when developers
use agglomerations versus the use of single smells. Their results revealed that
agglomerations help developers in revealing more design problems than single
smells.

However, the precision of smell agglomeration in identifying design prob-
lems could have even been better if the difficulties faced by the developers are
addressed. For example, the authors observed that the information provided
by an agglomeration would be best used if such information was synthesized
in a single, concise visual representation. Also, another result of the study
was that developers reported that agglomerations with code smells spread in
hierarchies or class packages are often difficult, time-consuming and requires
adequate visualization support. Thus, developers showed an interest in a gen-
eral view of the code elements involved in the agglomeration. Another reason
for the low precision, according to the authors, was the lack of adequate visu-
alization that sums up all the necessary information about an agglomeration
to identify design problems. Moreover, their study revealed form the feedback
of the experiment participants that visualizing agglomeration through a graph
structure can help to provide an overview of an agglomeration.

Based on the aforementioned requirements, we proposed a graph-based
visualization approach for code smell agglomerations. The purpose of this
visualization is to give an overview of the program elements that are affected
by the agglomeration and the relationships between these elements. Besides,
we defined a graph-based visualization since it is a technique commonly
used to show the relationships between elements (49, 50, 51). Additionally,
graphs are frequently used for information visualization (52). The graph-based
visualization can help developers during the analysis of the agglomeration.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 41

For example, it can help developers to identify all the elements affected by
the agglomerated smells and help them to see the relationships among these
smelly elements, i.e., an element with code smell. In the context of design
problem identification, developers need to reflect upon these relationships in
order to better understand if their co-existence may imply a more severe design
problem.

In this chapter, we present characteristics of the graph-based visualiza-
tion in Section 3.1. Section 3.2 describes an exploratory study whose purpose
was to investigate whether the graph could actually support the identification
of design problems. Section 3.3 and 3.4 present and discuss the experiment
results. Finally, Section 3.5 describes the threats that could limit the validity
of the study.

3.1
Graph-Based Visualization for Code Smell Agglomeration

Figure 3.1: Graph-based visualization for agglomeration

Figure 3.1 shows an example of the graph-based visualization for smell
agglomerations. This visualization uses nodes (rectangles) to represent smelly
elements, such as classes and interfaces with one or more smells, and edges
(lines and arrows) to represent the dependency relation between smelly ele-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 42

ments. The visualization uses different lines and arrows to represent the three
types of relationships among the code elements. A dotted arrow represents an
interface implementation, while a straight arrow indicates an inheritance. The
direction of the arrow indicates the direction of the relation. For instance, in
Section 3.1, OcorrenciaService inherits from AbstractService. A straight line
represents a simple association between two classes. All the classes involved
in the agglomeration are presented in blue color. The red color indicates the
class that the developer is analyzing at the moment (e.g., OcorrenciaService).
When the developer moves the mouse over a class, the visualization shows the
smells affecting the class (e.g., Long Parameter List in AbstractService class).

In the graph, we present only the program elements involved in the
agglomeration and their relationships in the source code with the other
program elements in the agglomeration. To show the hierarchic agglomeration,
in the graph we show the superclass, the subclasses and the relationship of
inheritance or interface implementation and the relation of calls between the
elements of the program. On the other hand, intra-component agglomerations
and concern-based agglomerations are represented by showing the classes of
the component involved in an agglomeration and the relationships between
these elements.

Below the graph, we have a section that shows the description of the code
smells that affect the classes or interfaces of the graph. This description con-
tains the name of the code smell, the definition of the code smell in literature,
the name of the affected element and the reason for the existence of the smell.
For example, the code smell Message Chain affects the InserirLicencia method
of the OccorenciaService class. The reason for the existence is the call chains
with 4 methods. The description also shows further information on whether
the code smell is part of the agglomeration or not.

How does the graph-based approach meet the requirements of
Section 2.4?

We designed the graph-based visualization not only based on the require-
ments but also on the empirical evidence (29) as discussed at the beginning
of this chapter. In this case, in order to avoid the undesired effect of informa-
tion overload in the graph, we decided to incorporate in the graph only what
was the basic information to identify design problems. Besides, our proposal
is intended to meet the requirement of being simple and easy to use because
we used a graph structure, which is well known among developers, in order
to facilitate their learning. This graph-based visualization can help develop-
ers during the analysis of an agglomeration. For instance, the visualization can
help developers to identify all the elements affected by the agglomerated smells

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 43

and help them to see the relationships among these smelly elements. We intend
to assess the graph-based visualization approach for the purpose of investigat-
ing the precision of the identification of design problems. We also investigate
to what extent the visualization supports developers on the identification of
design problems from the viewpoint of researchers and software developers.

3.2
Study Protocol

This section describes our study protocol. Section 3.2.1 introduces our
study goal and research questions. Section 3.2.2 contains information about the
procedures we followed to select participants for our experiment. Section 3.2.3
presents details about the experiment procedures. Section 3.2.4 describes the
artifacts used during this study. Finally, Section 3.2.5 describes how the data
was analyzed in this study.

3.2.1
Goal and Specific Research Questions

We intend to assess the graph-based visualization approach for the
purpose of investigating the precision of the identification of design problems.
We also investigate to what extent the visualization supports developers on the
identification of design problems from the viewpoint of researchers and software
developers. The context comprises professional and novice developers reviewing
the source code of software projects developed by themselves. We conducted
an exploratory study aimed to answer the following research questions:

RQ1: How accurate is the identification of design problems using the graph-
based visualization?

RQ2: To what extent does the graph-based visualization of smell agglomera-
tions support the identification of design problems?

RQ3: How to improve the proposed visualization of smell agglomerations?

To address these research questions, we performed a quantitative and
qualitative analysis. First, we analyzed the number of design problems cor-
rectly identified to calculate the precision and recall. For this purpose, we
have selected the reference list of design problems of the systems that will
be analyzed. Then we compared the identification of design problems made
by the developers to calculate the precision and recall. Later, we analyzed
the developers’ opinion about the relevance of the visualization in supporting
the identification of design problems to understand the reason behind each

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 44

classification. Then, we observed how developers used the graph-based visual-
ization, which allowed us to identify features that can be used to improve the
visualization of smell agglomerations.

3.2.2
Study Participants

To answer both research questions, we selected two Brazilian software
companies (CO1 and CO2) to collect software systems for analysis and select
developers to act as participants in the study. The company selection was based
on their different features including the adoption of code reviews, the number
of developers, their application domains, and development process. As each se-
lected company has to provide software systems, we selected Java (53) projects
given the popularity of the Java programming language (54, 55). Java is a rep-
resentative language of object orientation. Besides, object-oriented program-
ming was chosen because most design problems that have been documented
in the literature address this programming paradigm. The selected companies
and programs are described as follows.

CO1: This company is incubated at a northeastern university, and they provide
systems for the university. One of their systems is responsible for all
undergraduate academic control and registration. It was developed by the
Nucleus of Information Technology (NTI). The software was built in a
monolithic way using the Spring Framework, JBoss Seam, and Hibernate
frameworks. It went into production in the second half of 2010 and is still
in use today.

CO2: This company deals with renting and selling print devices. Also, they
have a department specialized in software development. Their software
system deals with tracking the process of arrival and departure of print
devices; contract deals with their clients and replacement and reusability
of compatible machinery pieces.

Table 3.1 shows the details about the two software systems. The first
column is the company software systems (S1 for CO1 system, S2 for CO2
system). The second column shows the programming languages that are used
in each system. The third column is the number of files in each language. The
fourth column is the number of blank lines given a file. The fifth column is the
number of comments. Finally, the last column is the number of line of code.

After selecting the companies, we selected 10 developers, 6 from CO1 and
4 from CO2. To obtain a profile of each developer, we applied a questionnaire

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 45

Table 3.1: Software System Details
System Language Files Blank Comment LOC (18)

S1 of CO1

Java 994 20211 2596 71327
JavaServer Faces 247 3904 26 21657
Javascript 12 416 873 3793
HTML 9 12 0 3731
XML 237 875 242 3207
Maven 5 195 66 2949
CSS 6 95 200 771
DTD 1 48 50 129
Visualforce component 1 0 0 24
SUM 1516 25785 4060 1083381

S2 of CO2

Java 141 3467 1231 11729
Javascript 70 1067 378 660
CSS 27 749 110 5166
JSON 16 7 0 3360
Maven 1 16 3 317
YAML 2 12 0 93
XML 2 2 0 26
SQL 1 3 2 14
Bourne Shell 1 0 0 6
SUM 323 5703 1940 33661

regarding their knowledge of software development concepts, Java program-
ming language, code smell, and design problems. Some characteristics of the
developers are presented in Table 3.2. The first column indicates the identifi-
cation number of the name of the company of the developer, and the second
column indicates the identification number of the developer. The third informs
the level of graduation of each participant. The fourth indicates the number of
years the participants work in the industry. The fifth column shows the number
of years of experience with Java language. The sixth column informs whether
the participants have performed review a least one before. Practice that might
impact the ability of developers to reason about the source code (56). The
seventh and the last columns show the familiarity of the participants with the
term code smells and design problem respectively. When a developer knows
code smell, he could better understand the smell agglomerations to find de-
sign problems. Similarly, the knowledge about design problem could help the
developer on how to find design problems.

As we can see in the table, the developers of the two companies have at
least two years of experience in the industry. Except for the developer D8 of
company 2, all participants have at least two years of experience with Java.
Half of the developers in the two companies has performed at least once the
code review. Also, the table shows that at least half the developers know the
concept of code smell and design problems.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 46

Table 3.2: Characterization of the Participants

Company ID Education
Experience
in Industry
(Years)

Experience
with

Java (Years)

Perform
Code Review?

Familiar
with the term
Code Smells?

Familiar
with

the term
Design Problem?

CO1

D1 UnderB.Sc. 3 3 No No No
D2 B.Sc. 5 10 No No Yes
D3 Specialization 13 13 Yes No Yes
D4 M.Sc. 14 12 Yes Yes Yes
D5 B.Sc. 14 12 Yes No Yes
D6 M.Sc. 6 6 No Yes Yes

CO2

D7 B.Sc. 7 6 Yes Yes Yes
D8 UnderB.Sc. 2 0 Yes Yes Yes
D9 UnderB.Sc. 4 5 No Yes No
D10 UnderB.Sc. 4 4 No Yes Yes

3.2.3
Study Procedure

To answer our research questions, the study was structured into three
main activities: a training session and a session comprising the tasks of design
problem identification.

Activity 1: The training was organized in two parts: the first took 25
minutes and addressed the explanation of the concepts (e.g., code smell, design
problem, and graph-based visualization). We presented various examples of
design problems pertaining to different categories (Section 2.1) We selected
the design problems together with the project managers, who suspected that
these represented common cases of design problems in their projects. However,
we let clear to the participants (developers) that they were allowed to identify
other types of design problems. The second one (approx. 15 minutes long)
was devoted to discussion and questions, if necessary. The second part took
approximately 10 minutes and was dedicated to discussion and questions about
the concepts.

Activity 2: In this activity, the developers were provided with the list
of smell agglomerations detected in their software system, the graph-based
visualization for each agglomeration, and the description of the code smells.
We highlighted that participants were free to use or not those code smells.
We distributed the participants of each company in pairs, and we asked them
to identify the design problems in pairs to encourage developers to discuss
the design problems. The discussions of this activity gave us more input for
our qualitative data analysis. Each pair analyzed the selected agglomerations
in their company software system. Developers took on average 1 hour and
45 minutes to complete this activity. They reviewed software systems they
developed. During this activity, they also had to classify the visualization
for each agglomeration into four categories of relevance: Irrelevant, Slightly
Relevant, Relevant and Highly Relevant. Each pair evaluated five instances of
agglomeration visualization, except a team who evaluated four. The developers

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 47

evaluated the same instances of agglomeration.
Activity 3: In this activity, the developers answered a questionnaire

(post-experiment form) about the usefulness of the visualization of agglomer-
ations. The answers were also used to complement the qualitative analysis.

3.2.4
Instrumentation

The main goal of instrumentation is to provide means for performing
the experiment and its monitoring. The instruments of an experiment can be
classified into objects, guidance and measuring instruments (57). Thus, the
experiment was conducted in environments provided by the companies. The
participants used a computer (object), in which we installed the applications
needed to perform the experiment. As a guide to the experiment the partici-
pants, we used an online form with the graph-based visualization. As measur-
ing instrument, we used a form in which participants transcribed the design
problems identified and the relevance of the graph-based, and we also used a
reference list of design problems. In order to support the study, we required the
following artifacts (for more details, see our study companion website (58)):

– Companies characterization form (Table 3.1). The overall goal of this
form was to characterize the companies. The answers obtained through
this form allowed us to identify some key characteristics about the
company such as the number of developers, the products, and services
of the companies, if the companies perform code review in general, code
smell code review or design problem code review, etc. Firstly, we sent
a week before the experiment an invitation to companies. Then, we did
presentations for the companies explaining the objective of our study.
Then we asked them to fill out the characterization form, to indicate
the systems. The company characterization form was completed by the
owner of the company who is also a developer in the company.

– Consent form. The consent form was used to get authorization from the
subjects to use their data in this study.

– Subjects characterization form (Table 3.2). The characterization form
aimed at collecting the subject background and working experience.

– Online form. This form helps to collect data about the identified design
problems from the analysis of smell agglomerations and the classifications
of the relevance of each graph-based visualization instance. The online
form page is available but requires authentication. It was fulfilled online

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 48

by the participants, and the answers were saved on our server. To analyze
the data (participants’ answers) we need to see it in the Django database.

– Post-experiment form. The post-experiment form aimed at capturing
feedback from the subjects after the experiment.

– List of smell agglomerations. We used well-known metrics-based strate-
gies to identify code smells from Fowler’s Catalog (8). The agglomera-
tions of smells were detected with the Organic tool (39).

– Reference list of design problems. We spent a week before the day of
the experiment, analyzing the systems of companies to create the graph.
When we analyzed the systems and found design problems or thought it
was design problems, we sent the companies to validate whether it was
design problems or not. Our reference list of design problems has been
validated by experienced developers which are involved in the company’s
systems. These developers are not the same people who participated in
our study. Our reference list contains three design problems; 2 design
problems related to the mis-modularization of concerns (Scattered Con-
cern and Concern Overload) and 1 related to dependency (Unwanted
Dependency).

– Graph-based. The graph-based tool is the computational tool that sup-
ports the graph-based approach we are assessing in this study. Implemen-
tation of the graph: the graph was implemented using two technologies:
Django1 and D3.js2. Django is a high-level Python Web framework that
encourages rapid development and clean, pragmatic design. D3.js is a
JavaScript library for manipulating documents based on data. Django
was used to create database access, create summary pages (pages with
the information about the agglomeration and the visualization). The web
page was created using Django (it creates the web page and the access
to the database). We saved it in Django’s database, and we used D3.js
to display the graph. Then, we get all the information and save it to the
Django database. We created the Django script that reads the database
and displays the information on the web page. In the same way, we cre-
ated the graph. We saved in the database, the annotations (elements,
smells, and relationships) for generating the graph. Then the script also
reads the information from the graph in the database and calls the D3
that displayed the graph.

1Django. Available at https://www.djangoproject.com/
2D3.js. Available at https://d3js.org/

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 49

– Software: Eclipse IDE (31), Camtasia3. Developers used the Eclipse IDE
(Integrated Development Environment) to import and analyze the source
code. We used Camtasia to record a video of the computer screen as well
as the audio. In addition, we installed a video camera in the room in
order to record the video and audio around the participants, creating an
audio and record environment.

3.2.5
Data Analysis

We analyzed the collected data using the coding process from the
Grounded Theory (GT) (60). We focused on the open coding (1st phase) and
the axial coding (2nd phase) from GT to answer our research questions. We
transcribed the data of logs, audios, and video. When analyzing the qualitative
data, we created codes related to the speeches of the developers (1st phase of
GT). To eliminate discrepancies, three researchers validated the transcription.
After coding all the transcriptions, we related the codes to each other (2nd
phase of GT). For instance, we related codes about dependencies, analysis of
agglomeration, negative aspect of the visualization. The analysis of the codes
allowed us to answer our research questions.

3.3
Results

RQ1. How accurate is the identification of design problems using graph-based
visualization?

Based on the design problems reported by the developers and the list
of design problems, we compute the precision and recall achieved by the
pairs in the use of graph-based visualization to answer this research question.
The quantitative analysis shows that the graph-based approach enabled the
identification of design problems. Considering the results of all pairs, we
compute 13 True Positives, 0 False Positive, and 18 False Negatives. The
concern of this study was to see if the visual elements and information we
provide in the graph are useful to identify problem designs. As our concern
was to assess visual information we selected agglomerations with at least one
design problem; and there the chance of the developer making a mistake is less.
That explains the fact of not having false positives. Then, the precision rate is
100% considering the result of all pairs. A 100% of precision means that when
participants use the graph-based approach to identify design problems, they
can correctly identify problems; the approach does not lead to misidentification

3Camtasia Studio. Available at https://www.techsmith.com/camtasia.html

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 50

(i.e., it does not lead to false positives). However, another important measure
is the recall because it captures the proportion of correctly identified design
problems among the full list of existing design problems. However, the recall
is not high (42%) if we compare it with the high rate of precision. The reason
for the low recall is because to identify some problems that are quite hidden
in the code the developer needs extensive and time-consuming reasoning.

To better understand if the graphical visualization had any contribution
to the previous results, we analyzed the number of times participants evaluated
visualizations in the four scales. We also analyzed in they found or not the
design problems. Both analyses are represents in Table 3.3. By considering the
responses of visualization classified as Relevant or Highly Relevant, we can
see that in 36.4% of responses participants found at least one design problem
against 27.2% in which participants did not find any design problems. The
results in Table 3.3 suggests that most of the participants who found the
design problems said that the visualization was relevant or highly relevant.

Table 3.3: Visualization Relevance and Design Problem Responses

Perception

Did the pair identify
design problems?
Yes No

# % # %
Irrelevant 1 4.5 1 4.5
Slightly
relevant 2 9.1 4 18.2

Relevant 2 9.1 3 13.6
Highly
relevant 6 27.3 3 13.6

RQ2. To what extent does the graph-based visualization of smell agglom-
erations support the identification of design problems?

Relevance of a Graph-based Visualization. The graph-based visu-
alization is relevant for identifying design problems. Regarding research ques-
tion RQ2, Figure 3.2 presents the number of times each pair classified the
agglomeration instances according to their relevance. It also shows the total
number of classifications for each category. In general, our scores indicate that
developers consider the graph-based visualization relevant (36.4%) or highly
relevant (22.7%) in most of the cases (59.1%) – the visualization was classi-
fied as irrelevant in only 2 cases. On the other hand, in 40.9% of the cases,
developers classified the graph-based visualization as slightly relevant (31.8%)
or irrelevant (9.1%). Pair 1 and Pair 5 had negative result with respect to the
visualization’s relevance. Pair 1 tried to justify their response about visual-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 51

izations classified an irrelevant: this pair argued that the dependency graph
was only relevant to a class, not to identify the design problem. On the other
hand, the Pair 5 was the only one where the visualization was considered by
their majority to be Slightly Relevant. Surprisingly, they only found a design
problem when they classified the visualization as relevant. We conducted a
qualitative analysis (Section 3.2.5) to better understand these results.

Figure 3.2: Relevance Classification for the Graph-based Visualization

Understanding smell dependencies to find a design problem.
We noticed that the most useful characteristic in a graph-based visualization
is the intrinsic capability to show the dependencies between smelly classes
of an agglomeration. Developers mentioned that visualizing all the smell
dependencies as a graph allowed them to have a first sign of the presence
of a design problem. That is, if an agglomeration had several smelly classes
and they are strongly connected, the graph size in the visualization would be
large. Thus, they used the size and connectivity of the graph as an initial
indication of a design problem. As an example, when Pair 3 was analyzing the
agglomeration of Figure 3.1, they mentioned that they remembered nothing
about the smelly elements. Thus, they were not only unaware of the relation
between the classes, but more importantly, they did not know about the
presence of a design problem. This was until they opened the graph-based
visualization, where they were alarmed by the size of the agglomeration and the
density of its edges. Based on these findings, they were able to determine which
classes were dependent upon one another. With the newly found knowledge of
the dependencies, the developers were able to determine which classes would be
more helpful in identifying the design problem indicated by the agglomeration.

The visualization can only be as good as the agglomeration.
The internal precision of an agglomeration was another factor that influenced
the claimed relevance for the graph-based visualization. In this context, the
internal precision of an agglomeration is measured based on the number of

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 52

agglomerated code smells that are actual symptoms of a design problem. In
a few cases, the developers did not agree that most code smells within an
agglomeration were, in fact, symptoms of design problem. Thus, they classified
the graph-based visualization as irrelevant and justified the classification by
claiming that the agglomeration was irrelevant (or slightly relevant). This
happened in the two times in which Pair 1 classified the visualization as
irrelevant. In a few other cases, the developers classified the graph-based
visualization as slight relevant or only relevant because they already knew
about the code smells and the dependencies displayed by the visualization.
Thus, they justified the low relevance of the visualization by the fact that the
visualization did not present any new information about the agglomeration
that they did not already know.

3.4
Limitations

RQ3. How to improve the proposed visualization of smell agglomerations?
Bottom-up and top-down analyzes of agglomerations. A single

visualization may not represent both how the smells are scattered over several
elements and different levels in the system. The projection of agglomerations
in different modular software structures (component-level, class-level, etc.), are
not enabled characteristics in the graph approach, and some developers said,
in fact, that the graph visualization had few details.

Lack of representation of concerns. We observed that developers
found many barriers on the identification of certain design problems, such
as Concern Overload and Scattered Concern because the graph-based visu-
alization misses several relevant details about concern implementation in the
program elements. The lack of concerns affected for example the recall. When
the design problem was related to the concern implementations, developers
could not identify as a result, recall went down quite a bit. By designing the
graph, we thought that the representation of the concerns could overload the
visualization, but we noticed in the evaluation of the graph approach that
the concerns are basic information for the identification of the selected design
problems. For example, to identify a Scattered Concern design problem, de-
velopers need to identify the program elements that implement the spreading
concern, as well as relationships between the smelly elements. By representing
the concerns, developers might deeply understand the origin of the code smells
and the severity of the design problem.

Developers need explicit and easy access to information. We
noticed some features that a visualization mechanism should provide. The

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 53

most important one is that relevant information should be explicit and easy
to locate, which might vary from one design problem to another. There are
a few hints of the most relevant information in the literature (3, 4, 10), but
further studies should be conducted to systematically elicit this information
per design problem. In our implementation, we have two perspectives: one that
shows the graph-based visualization and another that shows the details of the
agglomeration. The name of each agglomerated smell is displayed when the
developer hovers over a node, as illustrated in Section 3.1. However, developers
have to leave the visualization and go to the other perspective to find detailed
information about each code smell. Unfortunately, this behavior did not allow
the developers to use the visualization and to explore the smells at the same
time. In addition, we noticed that at the beginning of the task, some developers
missed useful information. For example, they only realized the importance
of the dependencies when they analyzed the second agglomeration. As the
description of each code smell is not alongside with the visualization, they
missed some code smells due to the constant changing between perspectives.
Developers reported that this is a cumbersome procedure, which made them,
at some point, give up on using the visualization to guide their analysis. We
noticed that, because they did not use the visualization, developers missed
some code smells that could be useful to identify a design problem.

Developers need navigating through the visualization and the
source code. Besides the difficulty in accessing information, the navigation
from the visualization to the source code was another issue. As the graph-
based visualization was not integrated with IDE editors, the developers had
to manually open each class. Sometimes, we observed that developers were
expecting to click over a node in the graph, and then to be automatically sent
to the location in the source code that contains the agglomeration’s smells.
In addition, we noticed that they also had difficulty returning from the source
code to the visualization. As such navigation was not supported, the developers
often spent considerable time to analyze the agglomeration’s symptoms in the
source code. This kind of analysis should be facilitated because it is critical to
confirm the symptoms provided by the visualization. Thus, by having two-way
navigation between visualization and source code, developers may be able to
effectively perform the analysis of agglomerations to identify design problems.

3.5
Threats to Validity

This section discusses some threats to the validity (57) of our study
results. For each threat, we present the actions taken to mitigate their impact

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 54

on the research results.
Construct Validity. The major risk here is related to possible errors

in the validation of identification design problems. To mitigate this threat, we
recruited developers, who had extensive knowledge of their system’s design.
They also had previous experience with design reviews and source code
inspections. Developer familiarity with the analyzed systems is a threat to our
study. This may have influenced the high precision (100%) achieved by the
developers using the graph-based visualization. To mitigate this, we present
the same agglomerations for different developers. Regarding the computation of
smell agglomeration instances for conducting the experiment, we have applied
a technique reported by the literature (10). The precision of this technique is
equal to 80% in the identification of design problems. Besides, a threat is the
sampling of computed agglomerations to form the set of agglomerations that
participants have to reason about to identify design problems. This is a threat
because we can not represent all agglomerations computed from a system,
especially when these agglomerations are large. For instance, participants
would not be able to reason about each agglomeration given the experiment
time constraint of 1 hour and 30 minutes. To mitigate this threat, we try to
choose agglomerations that are not too large. So when choosing the design
problem, we needed to choose agglomerations that help identify that design
problem in a short time.

Also, we are not sure that the selected agglomeration is the ideal one to
find the design problem. Eventually, more than one agglomeration of smells
may be required to identify a design problem. In fact, some agglomerations only
include smells of the same type (for example, only Feature Envy instances).
Thus the experiment participant may have failed to identify the design
problem, not because the agglomeration is not good, not even because the
visualization is not adequate, but because the agglomeration we provided was
not enough. We mitigate this by doing a manual analysis of each agglomeration
to see if it provides information that is minimal enough to help identify the
design problem that co-occurs with it in the source code. This mitigation was
done by a single author based on the opinions of experts and experienced
developers who worked on the systems evaluated.

Another threat to the validity of this study is the selected design prob-
lems. It may be that there are other design problems in the analyzed systems
that the employees of the companies that validated the design problems for-
got to mention. It is also possible that the authors did not find all existing
design problems in the initial analyzes performed on the systems. It could also
be that design problems validated by the employees of the companies are not

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 55

design problems. To mitigate the threats in the design problem set, all the de-
sign problems we encountered analyzing the systems were validated one week
before the experiment by experienced developers who worked on the systems
that were not the same developers that participated in our study.

Internal Validity. We conducted a careful data collection to minimize
problem concerning missing data, the possibility that the author may have
introduced bias in the data collection process. To mitigate this threat, the
process of data collection was performed alongside other two researchers. There
is a threat concerning the inherent difficulty in the experimental tasks. To
reduce this threat, we trained all participants to resolve any gaps in knowledge
or conflicts about the experiment. In addition, we performed pilot experiments
with volunteers to improve both experiment design and artifacts. There is
a threat regarding the time of the experiment. To mitigate this threat we
adjusted the time required to perform the identification tasks in the pilot
phase.

Conclusion Validity. This threat concerns the relation between treat-
ment and outcome. We tried to mitigate it by combining data from different
resources: quantitative and qualitative data obtained with videos, and ques-
tionnaires. We believe data collection and analysis were properly built to an-
swer our questions. To mitigate this threat, the process of data analysis was
performed alongside other two researchers.

External Validity Some factor may prevent the generalization of our
results (Section 3.3). A threat to the study validity is the limited diversity of
contexts involved in the study. However, we argue that the selected companies
represent typical software development organizations as shown in Table 3.1.
Another threat to the study is the variety of design problems selected. In
this study the number of types of design problems considered is limited. The
problem it causes is the difficulty of generalizing our results to any design
problem. We mitigate this threat by selecting for the study 2 categories of
design problems related to concern and dependency. Finally, the set of subjects
considered in this study is small. In fact, our study involved a sample of 10
developers, divided into 5 pairs, which may not be enough to generalize our
results (Section 3.3). Thus, we cannot generalize our conclusions. This threat
was mitigated by selecting developers with varied backgrounds and at least
two years of experience with industry software development.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 3. A Graph-Based Visualization of Agglomerations: First Study 56

3.6
Summary

In this chapter, we reported on our proposal of graph-based visualization.
We also performed a first study to assess whether the graph-based visualization
can help developers to identify design problems. Our results show that the visu-
alization can indeed support design problem identification. Indeed, developers
often used the visualization to have the first sign of the presence of a design
problem. Also, they used the visualization to reason about the concentration
of smells and, therefore, find a design problem. The size of the graph and the
visualization of dependencies between smelly elements allow developers to have
a comprehensive overview of the design problems. The study also allowed to
identify some missing features in our graph-based visualization. We noticed
that the developer needs important details about agglomerations that our ap-
proach did not provide, such as concern representation, the representation of
agglomerations across different modular software structures (component level,
class level, and method level), as well as the navigation from the visualization
to the source code.

After presenting our initial proposal of visualization for smell agglomera-
tion and applied the evaluation of the visualization, the next chapter proposes
a new visualization approach based on barriers faced by developers during the
graph-based visualization study.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



4
Re-thinking the Visualization of Smell Agglomerations

Based on the findings of the initial proposal (Section 3.3 and 3.4), we
found that the graph-based visualization can be useful to identify design
problems. In fact, representing the design elements affected by code smells
as graph nodes, together with their interrelations represented via graph edges,
has a potential to guide developers in identifying violations of design principles.
That is because a design principle mostly concerns the organization of design
elements in a system. Thus, certain violations of these design principles
might be perceived by developers through the visual analysis of interrelations
and smelly elements. For instance, a Concern Overload (3) problem is often
indicated by too many interrelations between a design element and others,
which suggest that this design element realizes too many concerns that should
be realized by a single design element each.

However, there were various limitations in our previous proposal (Sec-
tion 3.4) that should be properly addressed. For instance, when reasoning
about a Concern Overload, the developers have to understand what concerns
are realized by each design element. However, our first approach was unable to
reveal such information and help developers in this sense. As a consequence,
it has hindered developers in the identification of this design problem and
several others. Therefore, we decided to rethink the visualization of agglomer-
ations based on the lessons learned in the previous study. We defined a novel
visualization approach called VISADEP. VISADEP stands for VISualization
Approach for identifying DEsign Problems. VISADEP is intended to: (i) lever-
age strengths as well as addressing weaknesses of our previous proposal, and
(ii) support new capabilities missed by developers in our previous study.

This novel approach provides mechanisms to users to navigate from the
high-level representation to the low-level representation of an agglomeration.
Our approach supports multiple views for smell agglomerations; it provides
detailed views on different levels of the agglomeration, namely component-
level, class-level, and method level decomposition. The component view is the
view of the highest level of abstraction. The purpose of the component view
is to provide a more general view of the organization of design elements. The
class view has a somewhat more specific goal; it represents the classes of a

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 58

component that are affected by an agglomeration. The class view is a zoom-in
to the component view. The last view, which is the method view, is the one that
is as fine-grained as possible because it represents how the agglomeration is
affecting the methods of the classes. Then it serves to offer another possibility
of zoom-in but now applied to a single class. For each class, the zoom-in is
applied, and we reveal that the list of the methods affected by agglomeration.
In addition, VISADEP combines multiple data sources that developers have to
analyze to reason about an agglomeration. VISADEP also provides the concern
representation and easy navigation from the visualization to the source code,
features that the graph approach did not have (Section 3.4). We used the
ConcernMapper1 tool to compute the concerns of the evaluated systems and
then we got an output file that we passed as input to our tool. Then, our
approach has processed this file. Our approach associated the concerns that
were documented in the files with the design elements that we show in the
visualization.

In this chapter, we present in Section 4.1 the information presented in
the VISADEP approach. Section 4.2 describes the mockup of the multi-view
representation of the agglomeration at the component, class and method levels.
Finally, Section 4.3 presents the VISADEP tool which is a support tool for the
VISADEP approach.

4.1
Represented Information of VISADEP

The graph-based assessment (Section 3.4) revealed that the representa-
tion of dependencies is important to help developers understand the agglomer-
ation. However, although the accuracy was high, the recall was low due to the
limitations of our graph-based approach. We have identified several limitations
to take into account to improve our approach. We noticed that developers face
many barriers to identify design problems with the graph-based visualization.
The reason is a graph-based is often too abstract to provide all the detailed
information needed to find a design problem. Developers tried to search for
different information for each type of design problem. Following, we present
all the information that VISADEP provides.

Firstly, VISADEP propagates the positive aspects of graph-based ap-
proach and proposes a solution for the limitations observed in the graph-based
assessment. As the dependencies in the graph were used to identify some design
problems, we do not need to rethink it, but we improved the representation to
make it even more interesting for the developer. We changed the representation

1ConcernMapper. Available at https://www.cs.mcgill.ca/ martin/cm/

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 59

of the nodes and edges. We left the abstract representation nodes to give way
to UML notations to represent the classes and edges by an arrow with a label
(which defines the name of the type of relationship, e.g., Uses). Although the
nodes and edges remained, we observed the following limitations and each one
of them; we are representing or providing in the new approach in the following
ways.

One of the limitations of the graph-based approach study was the lack
of details about the agglomeration to help in the bottom-up and top-down
analysis of the agglomeration. Our initial study showed that developers need
a higher-level and low-level abstraction to understand agglomeration. So, to
solve this limitation, our new approach proposes three complementary views of
agglomerations. Our approach allows seeing the code smells at different levels
of abstraction: component, class, and method. Each agglomeration can be
visualized at the level of the component; thus, we present to the developers both
the code smells affecting the component and the concerns that are implemented
by the component. While at the class-level, we show developers a zoom on the
component by showing classes of the component that contains code smells
in the agglomeration. The method-level provides the names of the affected
method in each class of the component.

We also discussed in our previous study that concern representation
was a limitation to the low recall we achieved. So we decided to change
the structure of the graph so that it can show the concerns. Rethinking our
approach, we decided to represent the concerns using colors. The concerns
are represented in any of the views provided by VISADEP, for each program
element (either a component, a class, or an interface). Concern representation is
relevant to identify design problems because the program elements and concern
representation allows knowing when a component or a class is implementing
functionality that it should not and, in fact, some design problems, such as
Scattered Concern, Fat Interface, and Concern Overload, are related to the
mis-modularized implementation of concerns.

We observed in our previous study (Chapter 3) that different information
on source code is needed to identify design problems. We noticed that, for
each design problem, the developers tried to search for different information.
This led to the need to elicit what information was necessary for each design
problem being considered in our study. Based on this, we identify which
information developers require to identify each design problem in the scope
of this dissertation. In this context, the types of information supported by the
VISADEP approach are: (i) the program elements affected by code smells,
(ii) the code smells, (iii) the dependencies between the program elements,

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 60

and (iv) the concern representation. The visualization does not only show the
syntactic relations between smelly elements, but also the semantic ones. The
semantic relation is the relation between program elements that address the
same concern in the program. With this information, it is possible to analyze
the relations between program elements that take part of different forms of
agglomeration (Section 2.4).

4.2
VISADEP Mockups: Visualizing Agglomerations across Components,
Classes and Methods

We propose global and detailed views of agglomerations, which represent
their manifestation in different software decompositions, namely component-
level, class-level, and method-level decomposition. Our approach includes three
complementary views of an agglomeration. We call these views according to
the level they represent: component-level, class-level, and method-level. The
component-level view comprises the highest level of abstraction for an agglom-
eration (component), while the class-level and method-level views comprise the
detailed levels of abstraction for each agglomeration.

We proposed three views based on what we observed in our preliminary
experiments, where we noticed that developers navigate through the classes
to components, either in a bottom-up or top-down fashion. Some developers
like to see first a macro-view of the program structure and, then, inspect
structural details of the inner elements of each component; others prefer to
start from the micro-view and, then, go upwards to understand the implications
of smell structures to higher-level elements. The visualization used the Unified
Modeling Language (UML) notation to represent components, classes, and
methods. Rectangles are used to represent classes, while rectangles combined
with a component icon are used to represent the components. Methods of a
class are represented by text, which describes the method signature of the
program. The boxes are similar to those used for UML classes.

Our first approach used a graph notation (nodes and edges), but we think
it is better to use another notation more appropriate to the representation of
design elements, that is, the UML. In any case, we use UML classes to represent
each class being affected by a code smell. These classes correspond to the nodes
of our graph-based approach; thus, we embedded to the class representation
all their relations, which correspond to the edges of our graph-based approach.
The views of our approach show only the code elements (class, methods) that
are part of the agglomeration to avoid information overload. In the following,
we describe the views.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 61

The Component view shows the architectural components affected by
the agglomeration. In this work, we assume that each component is realized
as a package in a Java program. Figure 4.1 illustrates the mockup of the
component view. The colors represent concerns implemented by inner elements
of a component. We use colors to represent concerns because there might be
several concerns being realized by a single component. Thus, we need to have
a different representation for each concern.

Figure 4.1: Component View

As we can observe in Figure 4.1, the component implements three
different concerns (sky blue, red and yellow), where the dominant concern
is the color of the component. The dominant concern is the concern that is
realized by the majority of the inner elements of the component. In the figure,
the dominant concern is the sky blue; this the reason why the component
color is sky blue. In addition, the height of the rectangle representing each
concern means how much of the component implements the concern. This
will help to know the proportion of component elements, if a few or many,
address a concern. Each shape in the component represents a different type
of code smell (e.g., God Class, Feature Envy). The number within each shape
represents the number of smell instances (of a particular smell type) found in
the agglomeration. The color of the shape means that a code smell is located
in the implementation of the concern with the same color. The length of the
shapes (code smells) is not yet mapping a particular characteristic of the smell;
by now, it is merely illustrative, but we will determine which characteristic the
length should represent (if needed) along our research experiments.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 62

The Class view (Figure 4.2) shows the classes of a program affected by
an agglomeration and the dependencies between classes. The arrows represent
the dependencies. For each class of the agglomeration, we represent the
concerns that the class implements and the code smells affecting the class, using
a similar representation of the component view. In this view, it is possible to
observe how many classes are contributing to the implementation of a concern
as well as how many concerns are affecting a single class. Through the view,
we observe that there is an explicit relationship between the classes because
Classname1 and Classname3 use Classname2 resources. Also, we can see that
the three classes of the component, besides implementing the main concern
(blue color), are implementing additional concerns (pink and yellow). On the
other hand, some of these implementations are associated with code smells.
For instance, both Classename1 and Classname3 implement the pink concern,
whose implementation is affected by different code smell types (each smell type
is represented by a different shape). This may indicate that this concern has
been spread and should be moved from these classes to another one whose
main concern is the pink one. Therefore, the class view can be used to help
identify the Scattered Concern design problem.

Figure 4.2: Class View

The Method view, as shown in Figure 4.3, provides more detailed
information about the agglomeration by presenting the code smells associated
with each method. The representation of the methods helps the developer to
know the fragment of code where the code smell is located. Differently from the

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 63

component view, we only represent the dominant concern of each method; i.e.,
a method can, in principle, contribute to the implementation of more than one
concern. However, only the dominant concern of the method is represented.
This is a limitation imposed by the existing techniques for concern mining (59).

Figure 4.3: Method View

4.3
Support Tool

This section provides an overview of VISADEP tool: a 2D prototype tool
intended to graphically represent code smell agglomerations. VISADEP was
designed to help programmers in identifying design problems in the source
code of Java (53) systems. The tool is implemented as a plug-in for the Eclipse
platform (31) with a multi-view visualization (Section 4.2).

Our tool receives as input a list of agglomerations detected in the pro-
gram. To fulfill its role, the tool first uses the Organic (29) tool to collect
the code smell agglomerations in a program. From the list of agglomerations,
VISADEP main’s goal is to provide a graphic visualization of agglomerations
in three different views (component, class and method views). In this version
of the tool, we implemented the visualization for the three types of agglom-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 64

eration investigated in this dissertation: concern-based agglomeration, intra-
component agglomeration, and hierarchic agglomeration. Next, we present
more details about the tool:

Agglomerations View. Figure 4.4 shows a snapshot of the Agglomerations
View. As it can be observed, this view is separated into 3 parts: the first part
(snapshot A) is called “List of Code Smell Agglomerations by Types for each
Project” on the left panel; the second part (snapshot B) contains the tabs;
and the third part (snapshot C) displays information about an agglomeration
according to the tab selected. In snapshot A, we have a tree-based visualization,

Figure 4.4: VISADEP Agglomeration View in Eclipse IDE

which shows all the agglomerations detected in a program, grouping them
according to their category. For instance, in Figure 4.4, the view shows all the
agglomerations found in the cas-workflow-0.2 system. When clicking on one of
the agglomeration categories, all the detected agglomerations of that category
are displayed. At the right panel, the representation of agglomerations is shown
in the tabs Component View, Class View, and Method View.

Component View Tab. Figure 4.5 shows a snapshot of the repre-
sentation of a selected agglomeration, a concern-based agglomeration in the
org.apache.oodt.cas.workflow.engine package at the component level. As shown
in this figure, we have a component or a package system with its name. Inside
the component, we have rectangles with colors which represent the concerns
that the component implements. Within each rectangle, we represent those
forms in the mockups by the name of each type of code smell that is related
to the concern. By moving the mouse over the representation of a concern,
a Tooltip appears with the name of the concern represented. The number in
parenthesis side to side with the kind of code smell represents the number of
instances found for this kind of smell.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 65

Figure 4.5: Component View in Eclipse IDE

Class View Tab. Figure 4.6 shows a snapshot of the representation of
a selected agglomeration at the class level. The tool represents with UML
boxes the classes within the component that are affected by the selected
agglomeration. As explained in the mockups, the class view represents the
concerns that each class implements, the dependencies between the classes of
the agglomeration and the smells of the agglomeration that affect each class.
The number in parenthesis represents the number of times this kind of smell
has been found. One limitation of ConcernMapper is that the information it
provides is not enough to implement the mockups at class and method levels.
Because in the mockups, the objective was to show the concerns associated
with each code smell, but in the implementation of the VISADEP tool it
was not possible as ConcernMapper does not give this information with this
granularity, only at the class level. Thus, we can not know at the class level the
code snippets that implement a concern to associate it with the code smells.
As future work, we plan to assess the tool to know if developer requires other
dependencies that contain smells and are not part of the agglomeration.

Method View Tab. Figure 4.7 shows a snapshot of the representation of
a selected agglomeration at the method level. This view provides more details
about the methods affected by smells in each agglomeration. For each code
smell detected we show the name of the method affected if it is the case. When
the code smell is at the class level (i.e., God Class), we did not show any

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 66

Figure 4.6: Class View in Eclipse IDE

method name.
Technical Details. The table 4.1 below shows the technologies that

were used to implement the VISADEP tool. The tool is available for download
in our study companion website (58).

4.4
Summary

In this chapter, we presented the mockups and the implementation of
our visualization approach which is the visualization of agglomerations across
components, classes, and methods. We also described the VISADEP, a proto-
type tool, to support our approach to visualization. Our proposal visualization
goal is to provide developers with a visualization of agglomerations in order
to support their understanding of how code smells composing an agglomer-
ation are interrelated in the software decomposition, thereby facilitating the
identification of a design problem. However, a study has to be conducted to
evaluate whether indeed the visualization supports the identification of design
problems. Thus, after presenting our proposal visualization, the next chap-
ter describes a study that aims to assess our novel visualization approach by
comparing it with an improved graph-based visualization. Our goal is to inves-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 67

Figure 4.7: Method View in Eclipse IDE

tigate whether both visualizations can support developers in the identification
of design problems.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 4. Re-thinking the Visualization of Smell Agglomerations 68

Table 4.1: Technical Details of VISADEP
Tool Name Purpose
ConcernMapper The user of VISADEP needs an input of the concerns to

be able to see concern representation in VISADEP. Thus,
ConcernMapper was used to extract concerns implemented
by a system.

Eclipse Luna We used the Eclipse Luna as environment to create our tool.
The actual version of VISADEP works only with Eclipse
Luna

Java 7 The code of VISADEP were implemented using Java 7
SWT The Standard Widget Toolkit (SWT) is a standard UI

library used by Eclipse. The widgets provide for example,
buttons and text fields, as well as layout managers.

Draw2D Draw2d is a lightweight toolkit set for displaying graphics
components on an SWT screen. Lightweight means that all
graphic components, which are called figures in Draw2d. We
used this technology to represent graphic such as the figure
of component, classes and dependencies, and concerns.

JFace JFace provides several standard viewer implementations. We
used Jface in our tool for the interface of the Agglomerations
view.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



5
Assessing the VISADEP Approach: Second Study

In order to support the identification of design problems, previous
studies show that code smell agglomerations, i.e., code smells that somehow
interrelate in the system, can be used as indicators of design problems (29)
(12). However, a single agglomeration may contain several code smells in
multiple code elements (10, 12). Consequently, developers might find difficult
to identify design problems with agglomerations. Thus, a need emerges for
proposing mechanisms which summarize data about code smell agglomerations
for displaying it to the developer sufficiently and effectively. In this context,
visualization of agglomerations potentially could help developers in identifying
design problems. To the best of our knowledge of the literature, none of the
previous work focuses on the visualization of smell agglomerations for the
purpose of supporting developers to identify design problems.

In the previous chapter, we presented the VISADEP approach and in this
chapter, we describe a study that aims to assess our visualization approach.
Section 5.1 describes a controlled experiment whose purpose is to investigate
and compare the accuracy of the VISADEP approach and the graph-based
approach for identifying design problems. Section 5.2 presents and discusses
the experiment results. Finally, Section 5.3 describes the threats that could
limit the validity of the study.

5.1
Study Protocol

This section describes our study protocol. Section 5.1.1 introduces our
study goal and research questions. Section 5.1.2 provides the description of
all artifacts used in this study. Section 5.1.3 contains information about
the procedures we followed to select subjects for our experiment. Finally,
Section 5.1.4 presents details about the experiment procedures.

5.1.1
Goal and Research Questions

We conducted a controlled experiment aimed at investigating the ac-
curacy of the two visualization approaches (Graph-based and VISADEP) for

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 70

identifying design problems. The first approach is a new visualization called
VISADEP. The second approach is a conventional visualization that uses
graphs for representing agglomerations (Chapter 3). We did not compare with
existing agglomeration approaches (Organic and JSpIRIT) because the visual
elements presented in these approaches are different from those shown in our
visualization approach. The reason is that our approach shows smell dependen-
cies, concerns implementation and program elements (classes, interfaces, and
methods). The existing approaches are very different from our proposal, so the
comparison would not be fair. That is the reason why we have refined the graph
to have at least the minimum of information to compare with VISADEP.

As previously mentioned, VISADEP relies on different views for repre-
senting agglomerations at three abstraction levels of a software system: com-
ponent, class, and method. As a matter of fact, previous research shows that
the analysis of multiple code smells is not a trivial task and, then, may require
the use of multiple views (29). In the graph approach study, we also noted the
need of different views for the agglomeration visualization to assist develop-
ers in understanding design problems. Hence, by providing multiple views, we
expect that VISADEP will help developers to perform more precise analysis.

The graph-based visualization was chosen to be the baseline of our
study. We performed this comparison to see whether (and to what extent)
VISADEP led to improvements with respect to our first approach (graph-based
visualization), since the second one also had the objective to fill deficiencies
observed in the first approach.

In order to conduct the comparison between VISADEP and the graph-
based visualization, we have defined a research goal, which is presented ac-
cording to the Goal-Question-Metric (GQM) template (57) as follows: analyze
two visualization approaches of code smell agglomerations, namely VISADEP
and a graph-based visualization; for the purpose of investigating the accuracy
of the approaches; with respect to accuracy of identification of design prob-
lems; from the viewpoint of researchers. The context comprises professional
software developers and computer science students from different Brazilian
education institutions (Section 5.1.3), two subsystems (Section 5.1.2) of the
Apache OODT system (Workflow and PushPull), and a reference list of design
problems (Section 5.1.2) identified in both subsystems.

We designed two research questions (RQs) aimed at reaching our re-
search goal. Next, we present and describe each RQ.

RQ1. How accurate is the identification of design problems using each visual-
ization approach?

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 71

To answer the first research question, we assessed the accuracy of subjects
when using each approach to identify design problems. For this assessment,
we relied on two metrics: precision and recall. Similarly to the accuracy
measurement performed in the first study (Chapter 3), precision refers to the
percentage of correctly identified design problems. Recall is the percentage of
identified design problems with respect to all existing design problems in a
given system. In this study, we are interested in the accuracy of the VISADEP
approach compared to the graph approach. Additionally, we conducted a
qualitative study intended to: (i) point out opportunities for improvement in
the graph approach, and (ii) derive insights that led to the proposition of the
VISADEP approach.

RQ2. How accurate are the visualization approaches in identifying each
type of design problem?

To answer the second research question, we assessed the accuracy of
subjects to identify each type of design problem. This means that, for RQ2, we
conducted an individual analysis for each type of design problem investigated
in this study: Scattered Concern, Concern Overload, Ambiguous Interface,
and Fat Interface. The assessment was also based on precision and recall
metrics. This research question is important because the identification and
analysis of each type of design problem may benefit from different visualization
approaches. Therefore, the result of RQ2 may help developers to select the best
approach for a given context.

Besides answering the aforementioned research questions, we also con-
ducted a complementary qualitative analysis. For this purpose, we asked sub-
jects to report the usefulness of each visual element based on a five-level Likert
scale as follows: -2 (strongly disagree), -1 (disagree), 0 (undecided), 1 (agree),
and 2 (strongly agree). To understand what should be improved in both ap-
proaches, we also analyzed the explicit suggestions made by subjects via their
textual answers given in the experiment forms. We identified the most recurring
suggestions, and also suggestions that were not frequent but were considered as
being sound suggestions. The conduction of a qualitative analysis is important
to help us in understanding and possibly explaining the quantitative results of
our research questions.

5.1.2
Instrumentation

To conduct this study, we used the following artifacts (for more details,
see our study companion website (58)): (a) characterization form, (b) consent
form, (c) design problem identification form, (d) post-experiment form, (e)

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 72

Apache OODT System, (f) reference list of design problems, (g) Eclipse IDE
(Integrated Development Environment), (h) VISADEP (Figure 4.4) tool, (i)
the graph-based approach (Figure 5.1), and (j) Camtasia Studio1. We have
decided to compare VISADEP with the graph-based approach only due to the
following reason. None of the existing visualizations for smell agglomerations
attempts to visualize smell agglomerations (29, 30) represent a sufficient
number of visual elements that are similar to our approach. Thus, comparing
them with out tool would difficult drawing conclusions about what information
represented by each approach actually affects the identification of code smells
either for the better or for the worse.

The characterization form aimed at collecting the subject background
and working experience. The consent form was used to get authorization from
the subjects to use their data in this study. The design problem identification
form aimed at collecting data about the identified design problems from the
analysis of smell agglomerations. The post-experiment form aimed at capturing
feedback from the subjects after the experiment.

Apache OODT is the system we provided to participants for the task of
identifying design problems. Since OODT is a large heterogeneous system (61),
we selected only two subsystems for the experiment: Push Pull and Workflow
Manager. A brief description of the subsystems is presented as follow. Push Pull
is the OODT component responsible for downloading remote content (pull)
or accepting the delivery of remote content (push) to a local staging area.
Workflow Manager is a component that is part of the OODT client-server
system. It is responsible for describing, executing, and monitoring workflows.
Table 5.1 shows an overview of the number of classes and size (in lines of code)
of each subsystem.

Table 5.1: Characteristics of Subsystems
Subsystem Number of Classes Size (LOC)

Push Pull 90 6526
Workflow Manager 76 8819

Reference List of Design Problems. The reference list of design problems
is composed by Ambiguous Interface, Fat Interface, Scattered Concern, and
Concern Overload. This reference list was different at the beginning. It became
this way after analyzing the results of the experiment. Before the execution
of the experiment, there was an OODT primary reference list that was
extracted from previous works (3, 10, 29, 32, 39) composed by Scattered
Concern and Ambiguous Interface. After the experiment, we included two

1Camtasia Studio. Available at https://www.techsmith.com/camtasia.html

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 73

design problems. The following is the criterion of inclusion of design problems:
(i) at least 3 participants said they encountered the design problem in the
same agglomeration independently of the approach used; and (ii) after manual
review of the source code by two consultants, we conclude that the design
problem reported by the participants is missing from the primary reference list.
Therefore, during data analysis, when at least three participants determined
that there was a design problem in a particular agglomeration and this problem
was not in the reference list, we manually analyzed the source code and used
the VISADEP tool in order to identify this problem and validate it. When we
got to validate, that problem was included in the reference list.

Eclipse IDE. The Eclipse IDE was provided for the subjects to navigate
in the source code of Apache OODT. VISADEP tool and Graph-based tool
are the computational tools that support the approaches we are assessing in
this study. Finally, Camtasia Studio was used during the experiment to record
the computer screen and audio of each subject for posterior analysis.

Enhanced Graph Visualization. Based on the results of evaluating the
graph-based visualization (Section 3.3), we observed that the proposed graph
representation did not provide the necessary information to identify design
problems related to the implementation of concerns. Thus, in order to compare
our new approach with the graph-based visualization, we decided in order to
make some adjustments to the initial graph representation to make a fair
comparison. The purpose was to perform a more direct comparison between
the VISADEP visualization and a graph-based visualization. In other words,
both approaches would provide the same types of information, while differing in
the way the information was visually presented. The graph was enhanced from
different aspects, such as an improved way to graphically represent concerns;
and the addition of textual information about the concerns implemented by
each class. Figure 5.1 presents the enhanced graph representation.

The visualization uses different lines and arrows to represent the four
types of relationships among the program elements as shown in Figure 5.2.
A straight line in blue represents association, i.e., the classes (connected by
straight line) depends among themselves. A dotted line in orange represents
concern implementation, i.e., the two classes (connected by dotted line) share
the implementation of (at least) one concern. For the sake of simplicity,
differently from the VISADEP approach, we decided to not distinguish the
concerns with different colors. A dotted arrow in blue represents interface
implementation while a straight arrow indicates an inheritance. The direction
of the arrow indicates the direction of the relation.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 74

Figure 5.1: Enhanced Graph-based Visualization

b) Inheritance

Class A

Class B

Interface D

Class C

Class A

Class C

Class B

Class C

a) Association
d) Concern

Implementation
c) Interface

Implementation

Figure 5.2: Graph Dependencies

In order to show how the two tools are comparable, we present in
the Table 5.2, the information of the two visualizations and how they are
represented in each visualization.

5.1.3
Subject Selection and Cross over Design

In order to conduct this experiment, we recruited professional software
developers and computer science students from our professional network. For
a subject to be chosen as a participant, they would need to meet at least the
following requirements:

– Intermediary knowledge about the Eclipse IDE.

– Basic knowledge about software architecture.

– Basic knowledge of the Java programming language.

– Basic knowledge of object-oriented software design principles, such as
cohesion and coupling.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 75

Table 5.2: Information of Approaches being Compared
Information VISADEP visualization Enhanced Graph

Program elements

- Rectangle with the name of the
component
- UML boxes representing classes
or interfaces
- Textual description of the name
of the methods

Graph nodes with the name
of the elements

Concern
Colored rectangles in elements
contributing to the concern
implementation

Dotted lines (in orange) connecting
elements implementing the same
concern

Dependency

- Arrow with the text Uses,
connecting classes or classes
and interfaces
- Arrow with the text Inherits,
connecting elements of a hierarchic
agglomeration

- Straight lines (in blue) representing Calls,
Uses, and references
- Normal arrows (in blue) for inheritance
dependency
- Dashed arrows (in blue) for implementation
of an interface

Code smell
Explicit textual description of the
name of code smell in each program
element representation

The name of the code smell appears on mouse over the node
(element). A textual description is obtained after clicking
on the smell name

– Basic knowledge about the definition of code smell.

We defined the knowledge in each topic based on a scale composed of five
levels: none, minimum, basic, intermediary, advanced and expert. To measure
each requirement, we asked participants to fill out an online form. We included
in the characterization form a description of each knowledge level, allowing all
subjects to have a similar interpretation of the answers. The characterization
of all subjects selected for this experiment is presented in Table 5.3.

Table 5.3: Characterization of Subjects
Subject Experience

in Years
Education

Level Category

P1 6 B.Sc. Student
P2 8 M.Sc. Professional
P3 7 M.Sc. Professional
P4 3 Other Student
P5 2 B.Sc. Student
P6 3 B.Sc. Professional
P7 0 B.Sc. Student
P8 6 M.Sc. Student
P9 3 B.Sc. Student
P10 4 B.Sc. Student
P11 2 B.Sc. Student
P12 7 M.Sc. Professional
P13 4 B.Sc. Professional
P14 7 M.Sc. Professional
P15 9 M.Sc. Professional

To reduce the bias of experience and knowledge, subjects were divided
into four groups. The groups were formed based on the characterization of
subjects. Each group includes subjects with different characteristics. Table 5.4
presents the cross design for the four groups. The first column of the table

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 76

Table 5.4: Experiment Cross Design
Subject First Step Second Step

Group ID Location Approach Project Approach Project

1

P1 Industry

Graph Workflow
Manager VISADEP Pushpull

P5 Academy
P6 Industry
P7 Academy
P10 Academy
P11 Academy

2
P13 Academy

Graph PushPull VISADEP Worflow
ManagerP2 Industry

P14 Academy

3
P15 Academy

VISADEP PushPull Graph Workflow
ManagerP3 Industry

P4 Academy

4
P8 Industry

VISADEP Workflow
Manager Graph PushPullP9 Academy

P12 Industry

shows the four groups. The second column informs the distribution of subjects
in each group. The third column indicates subject location (industry for
professional and academy for student). Each group used the visualization
approach (i.e. VISADEP and Graph-based) in a different order as shows in
fourth and sixth columns of Table 5.4. In addition, each group received a
different combination of projects (fifth and seventh columns) and approaches.
For instance, subjects of Group 1 use graph-based to identify design problem
in Workflow Manager first. Next, they used the VISADEP approach to identify
design problems in PushPull. In this way, we could mitigate the influence of
variables, such as knowledge, fatigue, and complexity.

5.1.4
Experiment Procedures

The execution of this experiment occurred in two weeks. During the first
week, we characterized and selected the subjects. The experiment occurred in
two days of the second week, being each day dedicated to a specific phase of
the experiment. In each phase, subjects performed a set of activities on a given
component, using a visualization approach (VISADEP or Graph-based). This
helped us to avoid fatigue and to have full dedication and feedback from the
subjects. Below we present a detailed description of the activities that occurred
during the experiment.

Selection of subjects. One week before the experiment, we sent a
questionnaire of characterization to potential participants. Based on this

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 77

questionnaire we followed the procedures described in Section 3.2.2 to select
subjects for our experiment.

Training about core concepts. In the first day of second week, we con-
ducted training about concepts related to the identification of design problems
with agglomerations. The training was organized in 2 parts: a presentation (20
minutes), and an open discussion with the subjects (10 minutes). The presen-
tation addressed concepts associated with code smells, smell agglomerations,
and design problems. During the presentation, we introduced examples of de-
sign problems that could be found by the subjects during the experiment. On
the second day of the second week, we conducted quick training (5 minutes) to
help subjects remembering the concepts. Even after this training, we provided
to the subjects a document summarizing the core concepts. This document was
available during the whole experiment, so they could use it whenever necessary.

Training about the visualization approach and the subsystem.
In each day of second week, we conducted brief training about the visualization
approach (VISADEP or graph-based) and the subsystem (PushPull or Work-
flow Manager) used by the subject, according to the cross design (Table 5.4)
of our experiment. During this activity, we explained the main characteristics
of the visualization approach, such as the metaphors used to represent an ag-
glomeration. We also provided the subjects with the documentation and the
source code of the subsystem that would be analyzed. This activity helped
subjects to understand the subsystem and to identify the main source code
elements.

Identification of design problems. In the main activity of this
experiment, we asked subjects to use a visualization approach (VISADEP or
graph-based) in order to identify design problems in a given OODT subsystem
(PushPull or Workflow Manager). For this activity, we provided up to 5
instances of agglomeration to be analyzed; an equal number of agglomeration
instances was provided for both visualization approaches. During this activity,
we used Camtasia to record the computer screen and audio of each subject.
We also used the Rabbit plugin to track all interactions in Eclipse IDE. We
asked subjects to fill an experiment form providing the following information
for each agglomeration: (1) detailed description of each design problem found
in the agglomeration (if any), (2) code elements realizing the design problems
in the source code, (3) the visualization elements (e.g. concerns, code smells
and dependencies) that were useful to identify one or more design problems.

Post-experiment Questionnaire. After the identification task, each
subject completed a questionnaire about using the visualization approach. In
this questionnaire, we asked subjects to provide feedback that would be helpful

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 78

to improve the visualization approach. In addition, we asked subjects to report
the usefulness of each visual element, according to their perception.

5.2
Results and Discussion

RQ1. How accurate is the identification of design problems using each visu-
alization approach?

Table 5.5 presents the precision and recall rates computed for both
approaches. The first column characterizes the table results per OODT sub-
system (i.e., Workflow Manager, PushPull, or both). The second column
lists the assessed approaches, namely graph-based and VISADEP. The third,
fourth, and fifth columns present the absolute values of TP, FP, and FN.
The two last columns present the precision and recall rates, respectively. We
discuss the main finding and implications as follows.

Table 5.5: Overall Precision and Recall
Subsystem Approach TP FP FN Precision Recall

Workflow Graph 15 11 62 57.69% 19.48%
VISADEP 19 8 69 70.37% 21.59%

PushPull Graph 18 13 70 58.06% 20.45%
VISADEP 17 9 60 65.38% 22.08%

Both Graph 33 24 132 57.89% 20.00%
VISADEP 36 17 129 67.92% 21.82%

About precision and recall of the visualization approaches. Our study
results suggest that VISADEP provides a better accuracy in the identification
of design problems when compared to the graph-based approach. In fact,
when considering both subsystems (see the two last rows of Table 5.5), our
novel approach has obtained a precision rate of 67.92%, which is around 10%
greater than precision of the enhanced graph-based approach. A similar result
is observed for recall: VISADEP has reached a recall rate of 21.82, which
is 1.82% greater than recall reached by graph-based but still low for the
purpose of identifying design problems. Thus, we highlight that VISADEP
had performed better than the graph-based approach regardless the assessed
subsystem. We noticed that the precision and recall measures were, in general,
higher (Section 3.3) in our first study (of the graph-based approach). The
main reason was that the developers had already extensive knowledge of the
system being analyzed, while they did not have this previous knowledge in this
experiment

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 79

We already expected a low recall rate for our visualization approach.
This is because our experiment design included the identification of several
design problems per instance of smell agglomeration. For instance, in the case
of the Instrepo component (collected from the Workflow Manager module),
it is affected by a smell agglomeration also affected by three design problems
(namely, Scattered Concern, Ambiguous Interface, and Concern Overload).
In other words, our reference list of design problems contains a high number
of design problems, which hinders for developers to reach a high recall rate
given the time constraints of the experiment. On the other hand, we kept the
analysis of recall in order to understand to what extent each visualization
approach has allowed the identification of design problems in each Apache
OODT module selected for the developers to analyze.

RQ2. How accurate are the visualization approaches in identifying each type
of design problem?

Table 5.6 presents the precision and recall rates computed for both
approaches. The first column characterizes the table results per OODT
subsystem (i.e., Workflow, PushPull or both). The second column lists the
assessed approaches, namely graph-based and VISADEP. The third, fourth,
and fifth columns present the absolute values of TP, FP, and FN. The two
last columns present the precision and recall rates, respectively. We discuss
the main finding and implications as follows.

Table 5.6: Precision and Recall per Type of Design Problem
Design
Problem Approach TP FP FN Precision Recall

Concern Overload Graph 12 10 33 54.55% 26.67%
VISADEP 22 10 23 68.75% 48.89%

Scattered Concern Graph 18 17 42 51.43% 30.00%
VISADEP 10 13 50 43.48% 16.67%

Ambiguous Interface Graph 1 21 51 4.55% 1.92%
VISADEP 3 12 50 20% 5.66%

Fat Interface Graph 2 3 6 40% 25%
VISADEP 1 5 7 16.67% 12.50%

Types of design problem that VISADEP helps identify at most.
We analyzed what visualization approach (VISADEP or the graph-based
approach) has provided the best precision and recall rates. We have obtained
the following results as shown in Table 5.6:

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 80

– VISADEP has helped identify Concern Overload more than the graph-
based approach. By the accuracy and recall results for Concern Overload,
we can see that the VISADEP was in precision 14% better than the graph
and much better in recall (22%).

– For Scattered Concern, the graph-based was slightly higher than
VISADEP. However, the difference (8%) in precision was not significant
to discourage the use of VISADEP to identify Scattered Concern.

– The graph-based approach has performed better in supporting the iden-
tification of Ambiguous Interface. VISADEP had 15% more precision
and only 4% more recall. But the result was low in both approaches.
Regardless of the difference, no approach is recommended for the Am-
biguous Interface but VISADEP had a significant improvement (15%) in
precision. We highlight that this result might be a consequence of the
fact that Ambiguous Interface often requires to analyze the source code
of a software system and, therefore, the visualization approach might not
have hindered the identification of this particular design problem.

– The graph-based approach has helped identify Fat Interface more than
VISADEP, but both approaches performed poorly. For Fat Interface in
precision, the graph-based was more than 20% better than VISADEP in
precision. A 40% precision obtained in the graph is already a reasonable
value but the recall was low in both approaches, but the graph-based
improved 13% than the VISADEP.

One possible explanation for the fact that Scattered Concern was better
with the graph-based than with the VISADEP is that in the case of a Scattered
Concern, in principle, it is enough to check if there is a Scattered Concern, that
is, if several elements share the implementation of an interest, which can be
checked in the improved representation of graphs quickly. However, we can
say that the developer has difficulty saying what is the name of the concern
that is spread, because the graph-based approach does not distinguish between
different concerns. In the case of Concern Overload, it is even more important
to have a differentiated representation for each concern (as in VISADEP and,
in fact, VISADEP had better results) because it is not enough to know how
many concerns occur in the component, but rather the cohesion / proximity
“semantics” of the different concerns affecting the same component. There
may be cases where the component implements three or more concerns, plus
all of them are cohesive concerns and/or part of a more general concern; that
is, they are not concerns whose implementation should be moved to another
component.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 81

Regarding the interface problems (Fat Interface, Ambiguous Interface),
they were not as satisfactory, although the graph-based was superior in the Fat
Interface and VISADEP in the Ambiguous Interface. However, we noticed that
the approaches of visualization did not explicitly represent the information of
the smells, the relationships, and concerns at the interface level. As it stands
today, for the developer to identify the Fat Interface, he needs to analyze
the concerns of the smells around the interface that is in the classes that
implement the interface, and in the client classes. For the identification of
Ambiguous Interface, the developer has to look at the classes that implement
the interface, the classes that use the interface to infer whether the interface
has design problem.

The results of the precision and recall per design problem indicate that
VISADEP achieved a better result for Concern Overload than the graph-
based. VISADEP can already be used in practice. So if the developers are
interested in problems associated with large amounts of concern implemented
by the modules, VISADEP is recommended. In the case of Scattered Concern,
you can use VISADEP; however, the graph-based was better than VISADEP.
In the case of Ambiguous Interface and Fat Interface, many studies still have
to be done to investigate how to better represent the interfaces.

Visual representation that each design problem benefits at most.
We have crossed our study results about the quality of the representation of
each visual element provided by the approaches (Table 5.7) with the ones
about the relevance of each element (provided by the Experiment Form).
From that, we have drawn some interesting findings as follows. First, even
though concerns were the improved representation, the representation quality
of code smells provided by VISADEP have decreased in 17% when compared
to the graph-based approach. The utilization of dependencies representation
decreased 27% to identify design problems. Second, the elements Zoom-In and
Zoom-Out were useful to only 25% of participants. However, the VISADEP
different views obtained among 34% and 39% of utilization.

About the visual representation of the approaches. Table 5.7 presents
the developers’ perception about the quality of representation per program
element in both approaches (Graph-based and VISADEP). While analyzing
the behavior of the participants along the experiment, we tried to observe
the general strengths and weaknesses of the VISADEP approach. On the
representation quality of the visuals elements of each approach, in relation
to relevant data for to identify design problems (e.g., concerns, code smells,

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 82

and dependencies), and we noticed that VISADEP:
(i) improved the representation of concerns in relation to graphs. In the

fourth line of Table 5.7, we can see that VISADEP won over the graph in the
representation of concerns. 60% of participants agreed that concerns are well
represented versus 40% in the graph. In addition, 33% of answers were neutral
for VISADEP versus 20% in the graph. Most importantly only 7% did not
agree with the representation regarding the high number (40%) in the graph.

(ii) equipped the code smell representation in relation to graphs, and
Through the table, the third line of the table shows that both the graph
and the VISADEP have had a quality degree in the representation of code
smells. For example, 73% agreed that code smells were well represented in
both approaches.

(iii) likely impaired the representation of dependencies in relation to
graphs. As shown in the second line of the table, 93% of the participants
agreed that the dependencies are better represented in the graph than in the
VISADEP (80%). No participants disagree with the quality of the representa-
tion in both approaches.

Table 5.7: Quality Degree of the Visualization Elements
Visualization

Element Approach Agree Neutral Disagree

Dependencies Graph 93% 7% 0%
VISADEP 80% 20% 0%

Code smells Graph 73% 13% 13%
VISADEP 73% 13% 13%

Concerns Graph 40% 20% 40%
VISADEP 60% 33% 7%

Classes Graph 73% 27% 0%
VISADEP 87% 7% 7%

Component VISADEP 60% 20% 20%
Method VISADEP 87% 7% 7%

Code navigation VISADEP 73% 20% 7%

Precision and Recall per Participant
After computing precision and recall for each type participant in both

approaches, we might make the following observations (see Table 5.8 for
details). We noticed that regardless the type of design problem, participants
tend to have greater precision in VISADEP, in most cases and recall is the
same between better and worse.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 83

Table 5.8: Effect of VISADEP on Precision and Recall per Participant
Participant Tool Precision Recall Effect on

Precision
Effect on
Recall

P1 Graph 50% 9% –VISADEP 50% 27% ↑

P2 Graph 0% 0% – –VISADEP 0% 0%
P3 Graph 50% 55% ↓VISADEP 57% 36% ↑

P4 Graph 50% 36% ↓VISADEP 60% 27% ↑

P5 Graph 50% 36%
VISADEP 100% 45% ↑ ↑

P6 Graph 0% 0% – –VISADEP 0% 0%
P7 Graph 0% 0%

VISADEP 67% 18% ↑ ↑

P8 Graph 50% 18% – ↓VISADEP 50% 9%
P9 Graph 50% 36% ↓VISADEP 75% 27% ↑

P10 Graph 50% 9% ↓ ↓VISADEP 0% 0%
P11 Graph 50% 18%

VISADEP 100% 36% ↑ ↑

P12 Graph 50% 18% –VISADEP 100% 18% ↑

P13 Graph 50% 45% ↓VISADEP 100% 27% ↑

P14 Graph 0% 0%
VISADEP 50% 9% ↑ ↑

P15 Graph 50% 18%
VISADEP 63% 45% ↑ ↑

5.3
Threats to Validity

We carefully designed and conducted our empirical study, as discussed
in Section 5.1. For instance, we delimited our study scope before conduct-
ing the designed controlled experiment. Additionally, we relied on previous
work (10, 12) to define our research questions and how to assess them after
conducting the experiment. However, our study might have been affected
by certain threats to validity, even through we have applied techniques to
mitigate them whenever possible. We discuss these threats and their respective
minimization according to a well-known guideline (57) as follows.

Construct Validity. We designed our controlled experiment through a cross-
over design study technique in order to mitigate threats due to the limited
number of participants available for conducting the experiment. For instance,
we aimed at minimizing threats regarding the learning that participants might

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 84

have experienced by using one visualization approach before the other approach
and vice-versa. Regarding the selected system for participants to identify de-
sign problems, namely the Apache OODT system, we have selected two specific
components: Workflow Manager and PushPull. We aimed at minimizing any
threats regarding the different difficulty levels for identifying design problems
in each component as follows. We have selected two components that are quite
similar in terms of size and complexity, as well as the number of code anomalies
and design problems. Moreover, all subjects received basic training about the
two components, and half of the participants identified design problems in a
specific component through a particular approach (Section 5.1.3). By analyz-
ing the experiment results, we did not find evidence that one component was
easier to identify design problems than the other. Regarding the collection of
smell agglomeration instances for conducting the experiment, we have applied
a technique reported by the literature (10). The precision of this technique
is equal to 80% in the identification of design problems. In addition, we per-
formed pilot experiments with volunteers to improve both experiment design
and artifacts. Also, we are not sure that the selected agglomeration is the ideal
one to find the design problem. Eventually, more than one agglomeration of
smells may be required to identify a design problem. In fact, some agglomer-
ations only include smells of the same type (for example, only Feature Envy
instances). Thus the experiment participant may have failed to identify the
design problem, not because the agglomeration is not good, not even because
the visualization is not adequate, but because the agglomeration we provided
was not enough. We mitigate this by doing a manual analysis of each agglom-
eration to see if it provides information that is minimal enough to help identify
the design problem that co-occurs with it in the source code. This mitigation
was done by a single author (rather than peers as was done in other validation
activities) during the selection of agglomerations based on the existing design
problems oracle of the selected systems.

Internal Validity. Also due to the limited number of participants, we had to
conduct our experiment in different dates and, sometimes, remotely via video-
conference. Aimed at mitigating threats regarding the experiment conduction,
we have provided equivalent training for all participants about the main
concepts required to conduct the experiment. For this purpose, we have
determined a strict duration of the participant training and use the same
training artifacts, e.g., a common slide presentation (all artifacts are available
in our study companion website (58)). During the experiment conduction, three
participants encountered problems with the online experiment form we used

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 85

to collect their response and, therefore, they were not able to complete the
form. To collect their response, we transcribed the video of screen recording
of everything that the participant wrote on the form. This may be a threat
to our study since it is based on the researcher’s perception. To reduce
this threat, we carefully transcribed the answers written by the participants
and presented in their recorded screens. Taking into account that we have
among the participants, a participant who have developed the graph-based
visualization and two others that have wide knowledge of the analyzed systems
this can be a threat to the validity of our study. In addition, as our analysis
was based on the participants’ opinions, a threat to the validity of our study is
the poor completion of the experiment questionnaires. To mitigate this threat
we observed the experiment, we have provided advice to subjects whenever
necessary. This assistance was fundamental to ensure that all participants
properly answered the questionnaires. Regarding this last item, it is important
to mention that we never interfered in the tasks performed by subjects. In
fact, we only helped them to understand all the questions and tasks. We tried
to answer the participants’ questions whenever possible without biasing their
participation. In order to have the complete data of some participants of both
the characterization form and the experiment questionnaires that were not
fully filled, we contacted once again the participants to respond the missing
questions.

Conclusion Validity. We conducted a careful data collection to minimize the
problem with respect to missing data, but we encountered some problems
during the experiment that could be a threat to our study. A threat to the
validity of our study is the version of the Pushpull that two out of the 15
participants (13%) analyzed in graph-based visualization, which made them
unable to do the pushpull.protocol agglomeration proposed for the experiment
since the classes of the agglomeration were not in this version. To mitigate this
threat, we ensured that the version of the classes of the other agglomeration
analyzed by the participants had the same code as the version that we selected
for the experiment. Regarding the computation of precision and recall, we
relied on a reference list of design problems which was built by a previous
work (29). However, due to the limited number of design problem instances,
we have manually revised the reference list and added other instances (see
Section 5.1.2 for details). Due to the subjective nature of these tasks, some
threats might have affected the list revision and, consequently, precision and
recall computations. We mitigate possible threats by conducting the revision
tasks in a pair: two researchers have participated and discussed the inclusion of

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 5. Assessing the VISADEP Approach: Second Study 86

a design problem in the reference list. They have discussed all instances based
on source code analysis and counted on the opinion of a third researcher to
reach a consensus.

External Validity. Some factors may prevent the generalization of our re-
search findings. Our study relies on a limited set of participants and systems,
which might have affected the generality of our findings. In fact, we used a
sample of 15 subjects. This sample may not be enough to achieve conclusive
results. However, we mitigate possible threats in several ways: we selected a
balanced number of participants from academia and industry to make our find-
ings representative of both contexts; we used a cross-design study to mitigate
learning biases; and we selected two different subsystems of a large and com-
plex software system (Apache OODT), which are affected by different types
of design problems. The limited set of design problems selected for the study
is another threat to our study. The problem it causes is the difficulty of gen-
eralizing our results to any design problem. A design problem can vary in size
(number of design elements affected), difficulty in reasoning about it (some are
in more “hidden” regions of the source code), etc. The decision for a limited set
of design problems was due to the short time of the experiment and the limited
amount of participants available to carry out the experiment. Our mitigation
was to try to select varied design problems in size, difficulty, etc., but without
this difficult the identification during the experiment.

5.4
Summary

This chapter has presented and discussed the results of an empirical
evaluation of the VISADED approach. We discuss that, for certain types
of design problems, VISADEP outperforms the graph-based approach. That
is the case of design problems such as Concern Overload and Ambiguous
Interface. However, for the other types design problems, VISADEP has an
equivalent or lower accuracy (both precision and recall) in the identification of
design problems when compared to the graph-based approach.

The next chapter concludes the dissertation and provides some sugges-
tions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



6
Conclusion

There is empirical evidence that design problems are useful hints of
maintenance problems affecting a system (8, 32, 33). Each design problem is
characterized by either a single or multiple violations of design principles (1),
which might affect multiple code elements together. Due to their negative
effect on software maintenance, developers should identify and eliminate design
problems whenever possible. However, identifying design problems is far from
trivial (6). In fact, several software systems suffer from obsolete or scarce design
documentation (7), which often leads developers to analyze the source code in
order to identify design problems. However, the scattered nature of most design
problems often makes it difficult for developers to identify them (9, 22).

Past work suggests that code smells often indicate design problems (10,
11, 32). A code smell is an anomalous code structure that should be corrected
whenever possible (1). However, it has been shown that a single code smell
might not suffice to reveal a design problem (10, 12, 29). That is because
around 80% of the code smells affecting a single system tends to interrelate
while realizing a design problem (10). In this context, a recent study (10)
has introduced the smell agglomerations, aimed at characterizing whenever
code smells interrelate in the source code. However, a limitation of using smell
agglomerations to identify design problems is that a single agglomeration might
contain several code smells. Thus, approaches for summarizing data about a
smell agglomeration for developers have become essential.

A few recent studies (29, 48) have introduced visualization approaches
for smell agglomerations. They aimed at visually representing the code smells
that compose an agglomeration, so that developers can reason about their
interrelations and identify a design problem. However, they limitedly represent
the smell agglomerations and, therefore, fall short in supporting developers in
practice. This dissertation addresses this limitation by introducing VISADEP,
a novel visualization approach for smell agglomerations. For this purpose, we
first propose and evaluate a preliminary graph-based approach. Based on our
evaluation results, we refine this preliminary approach and introduce a novel
one. We present the VISADEP tool, which implements our novel approach and
evaluate our approach with developers from both academy and industry.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 88

6.1
Main Findings and Contributions

The content of this Master’s dissertation relies on several empirical
studies, which we have conducted in either an ad hoc (study literature
review) or a systematic way (experiments). Each study has contributed to the
derivation of study findings and other contributions. Our goal is to support
both developers in their daily basis, but also researchers in conducting future
research towards improving the states of the art and the practice. Thus, we
summarize and discuss our main findings and contributions as follows.

A literature review about visualization approaches. In a first moment,
we have conducted an ad hoc literature review aimed at characterizing the
state of the art about the visualization approaches for either code smells and
smell agglomerations. The literature has been shown extensive about software
visualization (52). However, we expected that only a few studies have been
focusing on the visualization of code smells (15, 49, 44) Specifically, we were
aware that the concept of smell agglomeration had been formally introduced
very recently in 2016 (10). Thus, we assumed that only a few studies would
be available online for consultation and exploring. All these factors have led
us to conduct an ad hoc literature review instead of a systematic literature
review (62). We present the results of our literature review in Section 2.3.

A desiderata for visualization approaches of smell agglomerations. Based
on the results of our literature review, we have identified various positive as-
pects of the existing visualization approaches for code smells and smell ag-
glomeration that should exist in our novel visualization approach for smell
agglomerations. For instance, the two existing approaches for smell agglomer-
ations (10, 30) provide a minimalist visualization of the code smells and their
interrelations. All these positive aspects have inspired us to build a desider-
ata, i.e., a list of desired aspects that any visualization approach for smell
agglomerations should implement. We present and discuss our desiderata in
Section 2.4. Our goal is to support future research about the proposition of
novel and accurate visualization approaches.

A mixed-method empirical study about the identification of design prob-
lems via smell agglomerations. Prior to the proposition of our visualization
approach for smell agglomerations, we have conducted a study (29) aimed at
understanding if developers can effectively identify design problems via smell
agglomerations. We performed a quasi-experiment and interviews with 11 de-

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 89

velopers. Surprisingly, our results revealed that only 36.36% of the developers
found more design problems when explicitly reasoning about the interrelated
code smells of a smell agglomeration when compared to each single code smells.
However, 63.63% of the developers have had less false positives when using the
smell agglomerations to identify design problems. Additionally, our interviews
have revealed that a graph-based structure could be appropriate to represent
smell agglomerations. The latter has inspired us to propose our graph-based
visualization approach presented and evaluated in Chapter 3.

A graph-based visualization approach for smell agglomerations. As afore-
mentioned, our previous study (29) has revealed that, from the developers’
perception, smell agglomeration might fit well to a graph-based visual repre-
sentation. Because of that, we looked at the visualization approaches for smell
agglomerations proposed by the literature (29, 30) and decided to propose
a novel, graph-based visualization approach. We introduce this approach in
Chapter 3). In order to empirically evaluate it, we have conducted a mixed-
method empirical study (also in Chapter 3) composed of: (i) a quantitative
study aimed at computing precision and recall of developers through the use
of our approach; and (ii) a qualitative study to assess how well each visual
element is represented by our approach. Our results for (i) suggested a preci-
sion of up to 100% but a recall of up to 42%. It suggests a need for improving
the visualization to help developers identify even more design problems in an
accurate way. For (ii), we have observed that the graph-based structure has
helped reveal design problems through the smell agglomeration, but certain
visual elements should be better represented (such as the code smells that af-
fect each design element), and other should be added up (such as the concern
representation).

An enhanced graph-based visualization approach. The study results pre-
sented in Chapter 3 have revealed some drawbacks of our visualization ap-
proach. As aforementioned, the lack of concerns being represented together
with the code smell interrelations has possibly impacted on the low recall rates.
On the other hand, we have that the graph-based representation of a smell ag-
glomeration actually supported developers in identifying design problems. By
considering this trade-off, we decided to enhance our graph-based visualiza-
tion approach by adding visual information about the concerns that affect the
design elements also affected by design problems. This enhancement aimed at
addressing the lack of concern representation, which we considered the most
immediate deficiency of our approach at that time. We further detailed our

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 90

enhanced graph-based visualization approach in Section 5.1.2.

A novel visualization approach for smell agglomerations. After empirically
evaluating our graph-based visualization approach, we have drawn several
conclusions as discussed in Chapter 3. However, even after enhancing our
approach (as discussed in Section 5.1.2), we still fell a need for improving
the way how we intend to support the identification of design problems
through smell agglomerations. For instance, the visual representation of design
elements as graph nodes (in our case, coloured boxes) differs a lot from a very
usual representation with similar purpose and used by the Unified Modeling
Language (UML) (19). Thus, we decided to fully re-think our visualization
approach, as described in Chapter 4. As a result, we introduced the VISADEP
approach, which implements several improvements that we did not include
in the enhanced visualization approach. In fact, VISADEP remains graph-
based: for instance, it still represents design elements as graph nodes and smell
interrelations as graph edges. However, the novelty relies on exploring different
and complementary views of each single smell agglomeration. In detail, we
present the smell agglomeration at the levels of component (the highest
abstraction level), class (an intermediate abstraction level), and method (the
lowest abstraction level except for the source code level itself).

A mixed-method empirical study to evaluate VISADEP. In order to eval-
uate the practical differences of identifying design problems through our en-
hanced graph-based visualization approach and VISADEP, we have designed
and conducted a mixed-method study. Similarly to the study presented in
Chapter 3, we have combined qualitative and quantitative analyzes to un-
derstand the scenarios in which each visualization approach proposed by us
might perform better than the other. All study results and their respective
implications are further detailed in Chapter 5.

From our quantitative analysis, we have drawn two main observations.
First, VISADEP provides higher precision and recall for the identification of
Concern Overload and Ambiguous Interface. However, for the latter, both
precision and recall rates are far from sufficient for practical use by developers
in the industry. Second, the graph-based approach performs better than
VISADEP for the identification of Scattered Concern. However, for the former,
both the graph-based approach and VISADEP have quite close precision. From
our qualitative analysis, we observed: slight to significant improvements in the
representation of information such as concerns; and a slight worsening in the
representation of smell interrelations, which might be justified by the fact

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 91

that the graph-based approach has a more intuitive notation to interrelations
(simple arrows instead of UML-like dependency representations).

Expected publications. In this Master’s dissertation, we summarize various
study findings and contributions, as we discuss previously in this section.
Because of that, a natural scientific movement would be publishing each set
of cohesive findings and contributions as workshop, conference, and journal
papers. Table 6.1 presents a list of publications that we expect to achieve
from this dissertation in the near future. The first column presents the type of
publication (i.e., workshop, conference, or journal paper). The second column
describes the main purpose of the publication. We highlight that significant
efforts have been made to write and submit these papers as soon as possible.

Table 6.1: Expected Publications from this Master’s Dissertation
Publication Type Purpose
Workshop paper Introducing and empirically evaluating our enhanced graph-based

visualization approach for smell agglomerations. This paper in-
cludes the contents of Chapter 3 and Section 5.1.2

Conference paper Introducing and empirically evaluating the VISADEP approach for
visualizing smell agglomerations. This paper includes the content
of Chapters 4 and 5

Journal paper Presenting the entire dissertation achievements, especially our
desiderata for visualization approaches of smell agglomerations
(Section 2.4). This paper includes all chapters and additional con-
tent, such as the first insights about how to improve VISADEP

6.2
Limitations

This Master’s dissertation is composed of: (i) a literature review aimed
at characterizing the existing visualization approaches for code smells and
smell agglomerations; (ii) a desiderata of visualization approaches for smell
agglomerations; (iii) the proposition of novel visualization approaches for smell
agglomerations; and (iv) multiple empirical studies aimed at evaluating each
proposed visualization approach. Each component of this dissertation has
specific limitations, which mostly concern the applied methodologies, human
aspects, and data sets, for instance. We present the main limitations of this
dissertation and draw directions for addressing them in future work, as follows.

Theoretical limitations. These limitations include the threats to the validity
affecting each empirical study, eventual deficiencies of our ad hoc literature
review about visualization approaches, and related topics.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 92

– VISADEP was assessed for a small set of design problems (Concern
Overload, Scattered Concern, Fat Interface, and Ambiguous Interface).
So we can not generalize the results. In addition, there are different types
of problems, and each design problem needs specific information. Fat
Interface and Ambiguous Interface require an improvement. Although
the results are not good, they do not differ much from the results obtained
in the previous study for interface design problems (29).

– Small set of participants and systems. Both studies (graph-based and
VISADEP) relies on a limited set of participants and systems, which
might have affected the generality of our findings. The sample of partic-
ipants in both studies may not be enough to achieve conclusive results,
as this sample size did not enable us to achieve statistically-significant
results.

Limitations of the proposed visualization approaches. These limitations
regard the design of each visualization approach for smell agglomerations pro-
posed in this dissertation, namely, the graph-based approach and VISADEP.

– Based on the result (Section 5.2) of our study, we noticed the need to
better represent the interfaces of a program. It could support the identi-
fication of design problems related to interface, such as Fat Interface, in
which our approach did not achieve a satisfactory result.

– Both VISADEP and graph-based does not show the method calls in
method view. This would help a lot to analyze the classes. Having
methods helps to analyze the interfaces of the classes that are defined by
the public methods.

– Both VISADEP and graph-based does not show in the code smell
visualization, the information of the program elements involved in the
existence of a code smell. For example, show the methods envied in other
classes for a Feature Envy code smell. VISADEP does not provide a
clear graph of dependencies for code smells, as supported by the graph-
based approach. One possible solution is to recommend the use of both
VISADEP and graph-based visualizations to support the detection of
certain design problems.

Limitations of the support tools of each visualization approach. These
limitations concern technical issues of the tools that implement each proposed
visualization approach, i.e., the graph-based approach and VISADEP.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 93

– The current version of VISADEP only runs on the Eclipse Luna. It
depends on Eclipse Luna and because it is an extension of Organic
that has been implemented with a series of dependencies with Eclipse
Luna that are not compatible with the current Eclipse. The solution
is to refactor the code so that the dependencies are directed towards
the last versions of the code. Another solution would be to redesign the
application to depend on the most current versions.

– The fact that VISADEP depends on an input of concern is a limitation.
VISADEP does not provide representative names for the concerns imple-
mented in the source code. The tool does not show the part of the code
of a class is addressing a specific concern. This is due to the tool used to
extract the concerns. These limitations only depend on the literature in
the area. This can be solved when the data mining community provides
a powerful tool for extraction of concerns.

– VISADEP does not provide, in the class and method views, the navi-
gation to the source code from each program element (class, method).
The user cannot click on the program element and navigate to the source
code of this element. In the current version of VISADEP, developer can
navigate to the source through the Smell List view.

6.3
Future Work

There are several suggestions for future work based on the achievements
of this dissertation. We present some suggestions, which help address the
limitations of the previous section, as follows.

– To implement another feature for the VISADEP tool to support visual-
ization of the historic information of the agglomerations. The visual rep-
resentation of the version history will serve to support the understanding
of the evolution of a smell agglomeration. In this way, the developer can
figure out what made the agglomeration to grow or shrink. In addition,
this may help to know in which design version, a component started to
contain an agglomeration and/or implementing other concerns.

– To evolve our visualization approach aimed at supporting the identifica-
tion of additional design problem types. Our study results (Section 5.2)
reveal that concern-based design problems, such as Concern Overload
and Scattered Concern, are likely to be identified through our approach
rather than others. Thus, an open challenge is improving our approach in

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Chapter 6. Conclusion 94

a way that enhances the visual representation of certain data to support
better reasoning about non-concern-based design problems.

– To conduct large-scale empirical studies with software developers aimed
at evaluating our visualization approach. In this dissertation, we discuss
the results of a controlled experiment with developers from both academy
and industry. However, as discussed in Section 5.3, the limited number
of developers, agglomerations, and design problems represent threats to
the study validity that additional studies could address this gap.

– To evaluate the use of our visualization approach in industry settings.
This dissertation presents a controlled experiment aimed at evaluating
our approach (Chapter 5). However, understanding to what extent the
approach supports developers in identifying design problems in their
daily basis might provide unique insight about how to improve the
approach to address the developers’ needs. Our study of Chapter 5
included only participants that were not previously familiar with the
subsystems and source code being analyzed.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography

[1] SURYANARAYANA, G.; SAMARTHYAM, G. ; SHARMAR, T.. Refactor-
ing for Software Design Smells: Managing Technical Debt. Morgan
Kaufmann, 2014.

[2] MARTIN, R. C.. Agile Principles, Patterns, and Practices in C#.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[3] MACIA, I.; GARCIA, J.; POPESCU, D.; GARCIA, A.; MEDVIDOVIC, N.
; VON STAA, A.. Are automatically-detected code anomalies
relevant to architectural modularity?: An exploratory analysis
of evolving systems. In: AOSD ’12, p. 167–178, USA, 2012. ACM.

[4] GARCIA, J.; POPESCU, D.; EDWARDS, G. ; MEDVIDOVIC, N.. Iden-
tifying architectural bad smells. In: CSMR09; KAISERSLAUTERN,
GERMANY. IEEE, 2009.

[5] SCHACH, S.; JIN, B.; WRIGHT, D.; HELLER, G. ; OFFUTT, A.. Maintain-
ability of the linux kernel. Software, IEE Proceedings -, 149(1):18–23,
2002.

[6] TRIFU, A.; MARINESCU, R.. Diagnosing design problems in object
oriented systems. In: WCRE’05, p. 10 pp., Nov 2005.

[7] KAMINSKI, P.. Reforming software design documentation. In: 14TH
WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE 2007), p.
277–280, Oct 2007.

[8] FOWLER, M.. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, Boston, 1999.

[9] PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R. ; LUCIA, A. D..
Do they really smell bad? a study on developers’ perception of
bad code smells. In: 2014 IEEE INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE AND EVOLUTION, p. 101–110, Sept 2014.

[10] OIZUMI, W.; GARCIA, A.; SOUSA, L. S.; CAFEO, B. ; ZHAO, Y.. Code
anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In: PROCEEDINGS OF THE 38TH

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography 96

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (SUB-
MITTED), ICSE ’16, 2016.

[11] YAMASHITA, A.; ZANONI, M.; FONTANA, F. A. ; WALTER, B.. Inter-
smell relations in industrial and open source systems: A repli-
cation and comparative analysis. In: ICSME, Sept 2015.

[12] FERNANDES, E.; VALE, G.; SOUSA, L.; FIGUEIREDO, E.; GARCIA, A.
; LEE, J.. No code anomaly is an island. In: INTERNATIONAL
CONFERENCE ON SOFTWARE REUSE, p. 48–64. Springer, 2017.

[13] WETTEL, R.; LANZA, M.. Codecity: 3d visualization of large-
scale software. In: COMPANION OF THE 30TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE Companion ’08, p.
921–922, New York, NY, USA, 2008. ACM.

[14] LANZA, M.; DUCASSE, S.. The class blueprint-a visualization of
the internal structure of classes. In: SOFTWARE VISUALIZATION
WORKSHOP (OOPSLA, 2001.

[15] MURPHY-HILL, E.; BLACK, A. P.. An interactive ambient visual-
ization for code smells. In: PROCEEDINGS OF THE 5TH INTER-
NATIONAL SYMPOSIUM ON SOFTWARE VISUALIZATION; SALT LAKE
CITY, USA, p. 5–14. ACM, 2010.

[16] PANAS, T.; EPPERLY, T.; QUINLAN, D.; SAEBJORNSEN, A. ; VUDUC, R..
Communicating software architecture using a unified single-view
visualization. In: ENGINEERING COMPLEX COMPUTER SYSTEMS,
2007. 12TH IEEE INTERNATIONAL CONFERENCE ON, p. 217–228. IEEE,
2007.

[17] LANZA, M.; DUCASSE, S.. Understanding software evolution using
a combination of software visualization and software metrics. In:
IN PROCEEDINGS OF LMO 2002 (LANGAGES ET MODÈLES À OBJETS.
Citeseer, 2002.

[18] LANZA, M.; MARINESCU, R.. Object-oriented metrics in practice:
using software metrics to characterize, evaluate, and improve
the design of object-oriented systems. Springer Science & Business
Media, 2006.

[19] RUMBAUGH, J.; JACOBSON, I. ; BOOCH, G.. Unified modeling
language reference manual, the. Pearson Higher Education, 2004.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography 97

[20] ROBILLARD, M. P.; MURPHY, G. C.. Representing concerns in
source code. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(1):3, 2007.

[21] KÄSTNER, C.; APEL, S. ; KUHLEMANN, M.. Granularity in software
product lines. In: PROCEEDINGS OF THE 30TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, p. 311–320. ACM, 2008.

[22] YAMASHITA, A.; MOONEN, L.. Do developers care about code
smells? an exploratory survey. In: REVERSE ENGINEERING (WCRE),
2013 20TH WORKING CONFERENCE ON, p. 242–251. IEEE, 2013.

[23] FIGUEIREDO, E.; SILVA, B.; SANT’ANNA, C.; GARCIA, A.; WHITTLE, J.
; NUNES, D.. Crosscutting patterns and design stability: An ex-
ploratory analysis. In: PROGRAM COMPREHENSION, 2009. ICPC’09.
IEEE 17TH INTERNATIONAL CONFERENCE ON, p. 138–147. IEEE, 2009.

[24] EADDY, M.; ZIMMERMANN, T.; SHERWOOD, K. D.; GARG, V.; MUR-
PHY, G. C.; NAGAPPAN, N. ; AHO, A. V.. Do crosscutting concerns
cause defects? IEEE transactions on Software Engineering, 34(4):497–515,
2008.

[25] MARINESCU, R.. Measurement and quality in object-oriented
design. In: 21ST IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE (ICSM’05), p. 701–704, Sept 2005.

[26] EMDEN, E.; MOONEN, L.. Java quality assurance by detecting code
smells. In: PROCEEDINGS OF THE 9TH WORKING CONFERENCE ON
REVERSE ENGINEERING; RICHMOND, USA, p. 97, 2002.

[27] RATZINGER, J.; FISCHER, M. ; GALL, H.. Improving evolvability
through refactoring, volumen 30. ACM, 2005.

[28] WETTEL, R.; LANZA, M.. Visually localizing design problems with
disharmony maps. In: PROCEEDINGS OF THE 4TH ACM SYMPOSIUM
ON SOFTWARE VISUALIZATION, p. 155–164. ACM, 2008.

[29] OIZUMI, W.; SOUSA, L.; GARCIA, A.; OLIVEIRA, R.; OLIVEIRA, A.;
AGBACHI, O. ; LUCENA, C.. Revealing design problems in stinky
code: A mixed-method study. In: SBCARS17 (ACCEPTED), 2017.

[30] VIDAL, S. A.; MARCOS, C. ; DÍAZ-PACE, J. A.. An approach to
prioritize code smells for refactoring. Automated Software Engg.,
23(3), Sept. 2016.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography 98

[31] ECLIPSE. Eclipse integrated development environment, 2015.

[32] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the relevance of code anomalies for identifying architecture
degradation symptoms. In: CSMR12, p. 277–286, March 2012.

[33] YAMASHITA, A.; MOONEN, L.. Do code smells reflect important
maintainability aspects? In: SOFTWARE MAINTENANCE (ICSM),
2012 28TH IEEE INTERNATIONAL CONFERENCE ON, p. 306–315. IEEE,
2012.

[34] LIVIERI, S.; HIGO, Y.; MATUSHITA, M. ; INOUE, K.. Very-large scale
code clone analysis and visualization of open source programs us-
ing distributed ccfinder: D-ccfinder. In: SOFTWARE ENGINEERING,
2007. ICSE 2007. 29TH INTERNATIONAL CONFERENCE ON, p. 106–115.
IEEE, 2007.

[35] BASS, L.; CLEMENTS, P. ; KAZMAN, R.. Software Architecture in
Practice. Addison-Wesley Professional, 2003.

[36] HOCHSTEIN, L.; LINDVALL, M.. Combating architectural degenera-
tion: A survey. Information and Software Technology, 47:643–656, 2005.

[37] PERRY, D. E.; WOLF, A. L.. Foundations for the study of software
architecture. ACM SIGSOFT Software engineering notes, 17(4):40–52,
1992.

[38] MARINESCU. Detection strategies: metrics-based rules for detect-
ing design flaws. In: PROCEEDINGS OF 20TH IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE (ICSM); CHICAGO, USA,
p. 350–359, 2004.

[39] OIZUMI, W.; GARCIA, A.; COLANZI, T.; STAA, A. ; FERREIRA, M.. On
the relationship of code-anomaly agglomerations and architec-
tural problems. Journal of Software Engineering Research and Develop-
ment, 3(1):1–22, 2015.

[40] OIZUMI, W. N.; GARCIA, A. F.. Synthesis of Code Anomalies:
Revealing Design Problems in the Source Code. PhD thesis, PUC-
Rio, 2015.

[41] BERTRÁN, I. M.. On the detection of architecturally-relevant code
anomalies in software systems. PhD thesis, PhD thesis, Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography 99

[42] DIEHL, S.. Software visualization: visualizing the structure, be-
haviour, and evolution of software. Springer Science & Business Media,
2007.

[43] CASERTA, P.; ZENDRA, O.. Visualization of the static aspects
of software: A survey. Visualization and Computer Graphics, IEEE
Transactions on, 17(7):913–933, July 2011.

[44] MARINESCU, R.; GANEA, G. ; VEREBI, I.. Incode: Continuous quality
assessment and improvement. In: CSMR, p. 274–275, March 2010.

[45] VAN EMDEN, E.; MOONEN, L.. Java quality assurance by detect-
ing code smells. In: NINTH WORKING CONFERENCE ON REVERSE
ENGINEERING, 2002. PROCEEDINGS., p. 97–106, 2002.

[46] HERMANS, F.; PINZGER, M. ; VAN DEURSEN, A.. Detecting and
visualizing inter-worksheet smells in spreadsheets. In: 34TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE
2012, JUNE 2-9, 2012, ZURICH, SWITZERLAND, p. 441–451, 2012.

[47] FERNANDES, E.; OLIVEIRA, J.; VALE, G.; PAIVA, T. ; FIGUEIREDO, E..
A review-based comparative study of bad smell detection tools.
In: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON
EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, p. 18.
ACM, 2016.

[48] VIDAL, S.; GUIMARAES, E.; OIZUMI, W.; GARCIA, A.; PACE, A. D. ;
MARCOS, C.. Identifying architectural problems through priori-
tization of code smells. In: SBCARS16, p. 41–50, Sept 2016.

[49] CARNEIRO, G.; SILVA, M.; MARA, L.; FIGUEIREDO, E.; SANT’ANNA, C.;
GARCIA, A. ; MENDONÇA, M.. Identifying code smells with multiple
concern views. In: SOFTWARE ENGINEERING (SBES), 2010 BRAZILIAN
SYMPOSIUM ON; SALVADOR, BRAZIL, p. 128–137. IEEE, 2010.

[50] BYELAS, H.; BONDAREV, E. ; TELEA, A.. Visualization of areas of
interest in component-based system architectures. In: SOFTWARE
ENGINEERING AND ADVANCED APPLICATIONS, 2006. SEAA’06. 32ND
EUROMICRO CONFERENCE ON, p. 160–169. IEEE, 2006.

[51] BYELAS, H.; TELEA, A.. Visualization of areas of interest in
software architecture diagrams. In: PROCEEDINGS OF THE 2006
ACM SYMPOSIUM ON SOFTWARE VISUALIZATION, p. 105–114. ACM,
2006.

DBD
PUC-Rio - Certificação Digital Nº 1613377/CA



Bibliography 100

[52] HERMAN, I.; MELANCON, G. ; MARSHALL, M. S.. Graph visualization
and navigation in information visualization: A survey. IEEE Trans.
Visual Comput. Graphics, 6(1):24–43, Jan 2000.

[53] ORACLE. Java 7 programming language, 2015.

[54] SOFTWARE, T.. The java programming language, Apr. 2017.

[55] CASS, S.. The 2016 top programming language, July 2016.

[56] BACCHELLI, A.; BIRD, C.. Expectations, outcomes, and challenges
of modern code review. In: PROCEEDINGS OF THE 2013 INTERNA-
TIONAL CONFERENCE ON SOFTWARE ENGINEERING, p. 712–721. IEEE
Press, 2013.

[57] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.
; WESSLÉN, A.. Experimentation in software engineering. Springer
Science & Business Media, 2012.

[58] AGBACHI, A.. Online companion. https://benedicteagbachi.
github.io/MasterDissertationCompanion/, year=2018.

[59] ROBILLARD, M. P.; WEIGAND-WARR, F.. Concernmapper: simple
view-based separation of scattered concerns. In: PROCEEDINGS
OF THE 2005 OOPSLA WORKSHOP ON ECLIPSE TECHNOLOGY EX-
CHANGE, p. 65–69. ACM, 2005.

[60] STRAUSS, A.; CORBIN, J.. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. SAGE
Publications, 1998.

[61] MATTMANN, C.; CRICHTON, D.; MEDVIDOVIC, N. ; HUGHES, S.. A
software architecture-based framework for highly distributed
and data intensive scientific applications. In: PROCEEDINGS OF
THE 28TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING: SOFTWARE ENGINEERING ACHIEVEMENTS TRACK; SHANGHAI,
CHINA, p. 721–730, 2006.

[62] KITCHENHAM, B.; CHARTERS, S. C.. Guidelines for performing
systematic literature reviews in software engineering. Technical
report, Ver. 2.3 EBSE Technical Report. EBSE, 2007.

https://benedicteagbachi.github.io/MasterDissertationCompanion/
https://benedicteagbachi.github.io/MasterDissertationCompanion/
DBD
PUC-Rio - Certificação Digital Nº 1613377/CA


	Identifying Design Problems with a Visualization Approach of Smell Agglomerations
	Resumo
	Table of contents
	Introduction
	Motivation
	Visualizing Smell Agglomerations
	Proposing a Graph-based Visualization Approach
	Re-thinking our Visualization Approach
	Dissertation Outline

	Background and Related Work
	Design Problems
	Code Smells and Smell Agglomerations
	Existing Visualization of Smells and Agglomerations
	Visualization of Smells
	Visualization of Smell Agglomeration

	Desiderata of Code Smell Agglomeration Visualization
	Summary

	A Graph-Based Visualization of Agglomerations: First Study
	Graph-Based Visualization for Code Smell Agglomeration
	Study Protocol
	Goal and Specific Research Questions
	Study Participants
	Study Procedure
	Instrumentation
	Data Analysis

	Results
	Limitations
	Threats to Validity
	Summary

	Re-thinking the Visualization of Smell Agglomerations
	Represented Information of VISADEP
	VISADEP Mockups: Visualizing Agglomerations across Components, Classes and Methods
	Support Tool
	Summary

	Assessing the VISADEP Approach: Second Study 
	Study Protocol
	Goal and Research Questions
	Instrumentation
	Subject Selection and Cross over Design
	Experiment Procedures

	Results and Discussion
	Threats to Validity
	Summary

	Conclusion
	Main Findings and Contributions
	Limitations
	Future Work

	Bibliography



