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Abstract

Azevedo, Rebecca Porphírio da Costa de; Lopes, Hélio Côrtes Vi-
eira (Advisor). A model-centric sequential approach to outlier en-
sembles in a marketing science context. Rio de Janeiro, 2018. 78p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Latest years evolution in mobile devices has increased dramatically the

amount of data and available information for advertisers around the world.

Computational cost and available time to process data and be able to dis-

tinguish true users from anomalies or noise has only increased. Thus, the

creation of a method to detect outliers could support Marketing researchers

and increase their precision in understanding online behavior. Recent studies

show that, so far, meta-algorithms have not been used to detect outliers. Meta-

algorithms tend to bring benefits because they reduce dependency that a sin-

gle algorithm can generate. This work proposes a sequential model-centric

ensemble design that uses different algorithms in outlier detection to obtain

better results than those obtained by a single algorithm. The novelty in this

approach consists in: (i) exploring the sequential technique, using algorithms

that impact the next one and whose results are a combination of previously

obtained results; (ii) centralizing performance around the model and not the

data, which means the ensemble is applied in the whole dataset and not on

different subsamples; (iii) support Marketing researchers that need to operate

data Science in a more robust and coherent way.

Keywords
Outliers; Pattern Recognition; Guided learning; Marketing Science.
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Resumo

Azevedo, Rebecca Porphírio da Costa de; Lopes, Hélio Côrtes Vieira.
Ensemble sequencial centrado em modelos para detecção de ou-
tliers no contexto de Marketing Science. Rio de Janeiro, 2018. 78p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

O desenvolvimento visto nos últimos anos em dispositivos móveis tem

tornado dramático o aumento na quantidade de dados e informações dispo-

níveis para publicitários ao redor do mundo. Custo computacional e tempo

disponível para processar dados e ser capaz de distinguir verdadeiros usuários

de anomalias ou ruído têm crescido. Assim, a criação de um método para de-

tecção de outliers poderia apoiar melhor os pesquisadores de Marketing e au-

mentar sua precisão na compreensão do comportamento digital. Estudos atu-

ais mostram que, até o momento, o uso de meta-algoritmos tem sido pouco

usado para detecção de outliers. Meta-algoritmos tendem a trazer benefícios

porque reduzem a dependência que um único algoritmo pode gerar. Esta dis-

sertação propõe um design de meta-algoritmo que utiliza diferentes algorit-

mos para obter resultados de detecção de outliers melhores do que aqueles

obtidos por apenas um único algoritmo: centrado em modelo e sequencial.

A novidade da abordagem consiste em (i) explorar a técnica sequencial, utili-

zando algoritmos que são aplicados sequencialmente, no qual um algoritmo

impacta o próximo e o resultado final é uma combinação dos resultados obti-

dos; (ii) centralizar a performance no modelo e não nos dados, o que significa

que o ensemble é aplicado a todo o conjunto de dados ao mesmo tempo e;

(iii) apoiar pesquisadores de marketing que precisem operar ciência de dados

de forma mais robusta e coerente.

Palavras-chave
Outliers; Detecção de padrões; Aprendizado sequencial; Marketing

Science.
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1
Introduction

In 2017, total online retail revenue was $2.3 trillion dollars world-

wide - 24.8% more than in 2016, according to the Digital Research Institute

eMarketer(1)’s report. 58.9% of that, or $1.3 trillion, happened only on mobile

devices (not on laptops or desktops). The same report estimates that by 2021

these numbers should nearly triple - mobile buying would represent 72.9% of

any Online buying. In Brazil, total revenue was $4.73 billion dollars. And 26.4%

of all online buying happened on mobile. (Figure 1.1)

Figure 1.1: eMarketer - Worlwide Retail and eCommerce Sales.(1)

On their way to reach out to consumers and online buyers, online retailers

try to influence the path to purchase by buying media - becoming an advertiser

and buying ads. In Brazil, $3.89 billion dollars were spent on online ads(2) in

2017.

And one of the biggest challenges for online advertisers is to know if their

investment in online media brought them any return. To be able to do this,

advertisers need to start answering business questions. Bell, Corsten and Knox

quote some of those (2):

(i) Who should we attribute the purchase to: traditional or online media?

(ii) How many touch points did the consumer have with the brand until finally

buying?

(iii) Which publisher influenced the buyer the most?
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(iv) Is my brand communicating with this buyer on different points of his

decision path?

To answer all those questions you need to analyze data. And, as

Smallwood(3) teaches us in his paper, this new reality of multi channel and

different devices has led the task of analyzing a user’s buying behavior to another

level of difficulty: "the ability to capture and measure online activities hasn’t

come with a pocket book".

The new scenario of online buying brought advantages, but also brought

challenges. Computational cost and available time to process data and to be able

to distinguish real clients from anomalies or noise is growing. We need to look

for new ways to analyze that make better use of available data and resources and

that can be applied in the context of marketing science.

1.1
Dissertation outline

This work has been divided in four chapters, after this introductory one.

Chapter 2 ("Theoretical background and revision of the state of the art") de-

scribes important concepts to understand the work proposed by this author,

since "online buyers" to "ensemble learning methods". Furthermore, it exposes

the techniques mentioned throughout the dissertation and describes some that

are yet being studied.

Chapter 3 ("Techniques and methodologies") describes the different al-

gorithms and components tested to build the ensemble. It also describes the

method used to normalize scores and to combine ensemble models.

Chapter 4 ("Experiments and results") presents and discusses the achieved

results along with technique’s respective efficiencies in identifying outliers.

Finally, Chapter 5 ("Conclusion and future work") presents conclusions

and discussions for future works.

One of the expected outcomes of the model is to increase observed lift

in purchases when running campaigns on media and analyzing their perfor-

mances. The Lift concept is nothing more than comparing results obtained when

splitting an audience into Control Group and Exposed Group and comparing

their performances in sales impact. The difference between Control and Exposed

groups is that control group is kept from seeing the advertiser‘s creative, while the

exposed groups sees the ad. Since the only difference between them is this, any

results obtained from the comparison can be understood as having been caused

by the ads.

Lift in Sales or Revenue is usually underestimated when the audience ana-

lyzed has a lot of outliers present. That happens because since range of product

DBD
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prices can be very wide, it can also impact this comparison. Suppose, for exam-

ple, Control group has had 10 purchases, but one of the purchases had a revenue

10x greater than the average revenue of all purchases. Now also suppose Exposed

group had 20 purchases, but all of them regarding products of low value. When

comparing revenue between the groups, one could end with a flat lift, or a very

low difference between groups. And after removing outlier in revenue, for exam-

ple, one could find out that ads actually had caused a significant lift.
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2
Theoretical background and revision of the state of the art

This chapter presents the most important concepts that touch digital mar-

keting, marketing science and outlier ensembling - since online shopping to en-

semble categorizations. It also explains some of the main techniques for outlier

detection, such as concepts that will be used to evaluate the final model.

2.1
Digital shopping and Marketing Science

2.1.1
Digital buyers and Online Retail

Figure 2.1: Nielsen states that there are three big decisions in a user’s path to
purchase that can be influenced by online ads. Source: (4)

Online shopper and online buyer, according to Nielsen(4), describe differ-

ent phases of a user’s path to purchase. The user goes from being a shopper to

being a buyer when effectively buys online. (Figure 2.1) Nielsen(4) says that there

are three big challenges to understand online buyers:

(i) Subtle distinctions between the buyer itself and other kinds of consumers;
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(ii) Lack of focus when deciding which buying decisions can be influenced;

(iii) Lack of store-level and buyer-level tools that allow advertisers to decide

where the real marketing effectiveness occurs for the buyers.

Bell et al.(5) believe that the more abstract an online buyer’s objective, the

more it happens what the authors define as the "unplanned buying". And during

all its purchase path, the user is exposed to many touchpoints before getting

to online shopping and can easily change any possible planning, the authors

explain. Research institute Ipsos(6) believes that correctly understanding a user’s

path to purchase can even double the amount of purchases of an online retailer.

2.1.2
Cookies

Cookies are files stored in a user’s computer, Oppenheimer(7) explains.

These files contain encripted information and are received or updated by the

user’s browser almost everytime a website is accessed(7). Files are usually used to

store, keep and monitor information regargind transactions performed on visited

websites, just like information about the user itself(7). (Figure 2.2)

Figure 2.2: Georgia Southern University - example of how a cookie works.(8)

Cookies1 are usually used to monitor navigation on desktops and laptops.

Howerver, smartphone data monitoring does not use cookies(7), what

makes a user’s path to purchase analysis even more of a challenge to the mar-

keting industry. If a user access the same website from different browsers, it gets

a different cookie from each device(7). A data analysis tool that uses cookies to

monitor website’s visits for a brand, tends to overestimate the number of unique

1According to Wikipedia in http://en.wikipedia.org/wiki/HTTP_Cookie, the HTTP
Cookie is a file created by a web server and stored to keep user’s preferences. It originates from or
is sent to a different website than the one is being seen at the moment.

http://en.wikipedia.org/wiki/HTTP_Cookie
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users it has and to underestimate the frequency these users have on this brand’s

website - all because it is unable to understand that two or more cookies can ac-

tually be a single unique user(7).

2.1.3
Attribution models

Zhao(9) points out that the fundamental problem when measuring on-

line ad’s efficiency is the attribution problem. Multiple digital channels, such as

search, display, digital videos etc., are used for online propaganda. Each user is

exposed to a combination of different channels before making the decision to

buy. That’s why, Zhao argues(9), to be able to correctly attribute a purchase to a

group of online publishers, you have to connect the user through its entire online

journey.

Most common tools for analyzing online performance attribute online

purchases using the last click attribution model, according to IAB(10). This model

consists in considering the last channel visited as "the cause" for a user’s online

purchase, ignoring all its prior navigation history. IAB(10) states that it’s not

possible, without the right tools, to know for sure if the purchase decision was

actually made on the last click or on the first. Or even if the user had already

decided on purchasing and seeing the ads had no effect on him at all. And this

happens because ordinary tools can rely only on cookies to track a user’s path(7)

making it improbable to know if the user that saw but didn’t click on an ad on

a mobile device was the same that the one that actually bought the product on

desktop. (Figure 2.3)

Figure 2.3: Attribution model examples (CIKM) and a user’s path to purchase
example(10) (IAB UK)
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IAB(10) indicates that models such as the Last Click are limited and do not

reflect the multi channel scenario we live in today(10). That’s why, as Birkbeck(13)

explains, studying the effect of different channels in a user’s influence is impor-

tant. Only this way, Birkbeck(13) claims that advertisers will be able to conquer

the answers needed to plan and optimize their campaigns.

2.2
Data Mining and Outlier Detection

2.2.1
Outliers

As Hawkins(15) defines, outlier is an observation on a group of data that

deviates so much from other observations, enough to arise suspicions that it

was generated by a different mechanism. Aggarwal(11) also says that it’s a point

significantly different from most other points. Ben-gal(16) emphasizes though

that outliers can be errors or noise, but they can also be interesting information.

(Figure 2.4)

Figure 2.4: On the left, point A is an outlier among two data groups. On the right,
the same outlier is next to a lot of noise, but remains as the only real outlier.(11)

Aggarwal(11) explains that outliers can be considered noise or anomalies,

depending on its strength. Weak outliers are considered noise and strong outliers

are considered anomalies(11).(Figure 2.5)

Ben-gal(16) points out that one of the first steps to get a coherent analysis

is detecting outlier observations. Outliers detection, as Steinbach(12) defined, is

an analysis that consists in finding observations that are different from most of

the data. And this is possible, as Steinbach(12) details, because those anoma-

lous observations have attribute values that deviate considerably from what is

expected(12). In his paper, Steinbach notes(12) that even though they’re consid-

ered rare events, it doesn’t mean that outliers do not occur frequently.
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Figure 2.5: Classification of an outlier according to its strength.(11)

In his book, Aggarwal(11) lists systems of industries that most benefit from

outlier detection:

(i) Intruders detection systems. In computer systems, data is colected to de-

tect activities that may indicate user’s unusual behavior. Those behaviors

may indicate malicious activity and are usually labeled as "intruders de-

tection";

(ii) Credit card fraude. A sensitive information such as the credit card number

may be easily compromised. The non-authorized user of a credit card may

reveal itself through unusual buying patterns, such as high value purchases

on different geographical locations;

(iii) Event mapping detection. For some applications, sensors are used to de-

tect sudden changes in patterns that may represent a user’s newly discov-

ered interest;

(iv) Medical diagnostic. In a medical investigation situation, data is collected

from different sources such as MRIs, PETSCANs or ECGs. Unusual patterns

generally reflect some sort of disease;

(v) Police enforcement. There are cases in which uncommon patterns are only

possible to be detected with the pass of time, after multiple actions from

an entity.;

(vi) Geography. A great amount of spatio-temporal data is necessary to allow

detecting climate changes, weather and temperature. These data are usu-

ally collected by satellite or remote sensors.

2.2.2
Outlier detection techniques

This sections presents several techniques for outlier detection, which are

mostly used in practice.
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2.2.2.1
Statistical techniques

Statistical techniques verify if a dataset fits in specific statistical models,

as Chandola et al.(17) explain. Data points that have low probability of being

generated by the model, based on the use of a statistical tail test, are declared

anomalies(17). Those statistical methods can be either parametric or non-

parametric. Parametric models assume some distribution parameters(18) and

non-parametric models do not assume anything(19).

Parametric methods

As Chandola et al. determine in his survey(17), parametric techniques can

be separated either in Gaussianas, Regressions or Mix of Distributions.

Gaussian techniques

Figure 2.6: Example of a group of data points with a gaussian or normal distribu-
tion. 68.26% of the data points are up to one standard deviation away from the
mean, 95.44% up to 2 standard deviations away and 99.74% up to 3 standard de-
viations away. In other words, less than 1% of the data points is more distant than
this from the mean. Thus, following the gaussian technique, those points would
be considered outliers.(17)

Gaussian techniques (Figure 2.6) assume data points were generated by

a gaussian distribution(20). Parameters such as the mean are estimated using

Maximum Likelihood Estimates (MLE). Distance from any point to the mean is

the anomaly’s outlier score. A threshold is applied to determine which points

are outliers or not. Chandola et al.(17) say that a simple gaussian technique

example is the one created by Shewhart(21), which declares that any point more
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than three standard deviations away from the mean is an outlier. More sophisti-

cated tests using gaussian distributions have been discussed by Lewis et al.(22),

Barnett(23) and Beckman et al.(24).

The Boxplot technique

Figure 2.7: Example of a boxplot containing three anomalous points.(17)

Chandola et al.(17) also state that another simple rule applied is the

Boxplot(25, 26, 27). A boxplot (Figure 2.7) describes a group of data using

atributes as the first quartile (Q1), median, third quartile(Q3), minimum non-

anomalous value and maximum non-anomalous value. The difference between

Q3 −Q1 is the interquartile range (IQR). Any point that’s less than Q1 −1.5∗ IQR

or bigger than Q3 +1.5∗ IQR is considered an outlier.

Regression techniques

Regression techniques to detect outliers, as explained by Chandola et

al.(17), divide themselves in two steps. On the first step, a regression model

fits(28) the data. The regression model then tries to create an equation that’s able

to define all data points available.

For each point (Figure 2.8), the model creates a representation. If this

equation is not capable of defining the data points completely, an error variable

will be added to it. This error is the residual, the part of the data points that the

model couldn’t explain. On the second step, the model uses each point’s residual

as the outlier score. The bigger the difference between the real point and its

representation in the model, more it will be considered an outlier. Regression
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techniques were used to investigate temporal series data by Abraham et al.(29,

30) and Fox(31).

Figure 2.8: Examples of linear regressions. The black dots are part of the group of

data points. Crossing the black dots, the blue line represents the linear regression,

trying to define the group in a single line. According to this technique, the bigger

the distance between the point and the line, more the point will be considered

an outlier.(17)

Techniques based in mix of distributions

Chandola et al.(17) conclude that the third category of parametric tech-

niques concentrates methods based in mix of distributions. This category by it-

self is divided in two groups. First group of techniques, as Abraham et al.(29)

explain in his study, assumes that normal data, in other words, data that is

not anomalous, were generated by a gaussian distribution. And that anomalous

data were also generated by a gaussian distribution, though with a bigger vari-

ance. The second group of techniques of mix of distributions, determined by
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Figure 2.9: Example of a histogram containing outliers. Points located in bins with
a height that’s too short would be considered anomalies.

Aggarwal(32), assumes normal data were generated by mix of different distribu-

tions. And that points that do not belong to any of those distributions are anoma-

lies.

Non-parametric methods

Chandola(17) reveals that non-parametric statistical techniques do not

define the structure of the model a priori, but from the data. One of the most

simple non-parametric technique(17) is the one that uses a histogram to profile

the data (Figure 2.9). Univariate techniques2 consist in building a frequency

histogram based on the unique values of one of the attributes of the dataset,

explains Chandola(17). The model defines as anomalies the points that either

don’t fall in any of the histogram’s bins or that fall in bins for which the height is

too small.

Histogram techniques require that the data points have a normal distribu-

tion, as Anderson et al.(57, 58, 59) discuss in their paper. And the size of the bins

2Univariate techniques deal with only one of the variables or dimensions of a dataset.
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used to build the histogram is what defines how many outliers the analyst may

end up finding. Histograms were also used in multivariate techniques3. Those

techniques consist in, according to Chandola(17), building a histogram for each

of the dimensions in the dataset and calculating the outlier score by attribute,

then later aggregating them. Different multivariate methods with histograms

were used in intruders detection systems(60), in network intruders detection(61,

62, 63), in fraud detection(64), in structure damage detection(65, 66, 67), in web-

based attacks detection(68, 69) and in anomalous topics detection in texts(70).

Non-parametric techniques were also used to estimate density probability

curves with kernel functions(71). The method is similar to the parametric tech-

niques previously described, with the difference being the use of density estima-

tion techniques. Desforges(72) proposed a semi-supeervised method using ker-

nels, that consists in building a density probability curve. Points that fall in area

with low probability are considered anomalies.

2.2.2.2
Nearest Neighbour

Nearest Neighbours techniques assume that the expected or the normal

part of the data points occurs in dense neighbours and that anomalies occur

away from its nearest neighbours, as Altman(72) explains in his paper. The neigh-

bourhood creation process consists in calculating the distance (if there are nu-

meric variables4) or the similarity coefficient (if there are categorical variables5)

between the points and verifying those that are distant from its neighbours.

The Nearest Neighbour technique, as Chandola(17) notes, does not scale

to a lot of dimensions and does not apply if all data points have outlier scores.

The biggest part of the algorithm choose most relevant points to score. Tech-

niques that divide the data points in partitions are linear in space complexity,

but exponential in dimension complexity. Sampling techniques try to solve this,

but can be unneffective if the sample is too small. As Aggarwal(14) claims in his

book, those techniques are non-supervised and do not assume anything regard-

ing the data points distribution. Semi-supervised methods perform better than

non-supervised ones(14).

Chandola et al.(17) believe that those techniques can be separated in two

main groups:

3Multivariate techniques, on the other hand, deal with more than one dimension in the dataset
at once.

4Numeric variables can be either continuous or discrete numbers(73).
5Categorical variables that can take on one of a limited, and usually fixed, number of possible

values, assigning each individual or other unit of observation to a particular group or nominal
category on the basis of some qualitative property.(74)
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(i) Techniques that use distance between points and its kt h nearest neigh-

bours as the outlier score;

(ii) Techniques that calculate the relative density of each point to obtain its

outlier score.

Techniques that use distance to kt h nearest neighbours

Chandola et al.(17) point in their survey that the simplest nearest neigh-

bour technique bases itself on the definition that the outlier score of a data point

is its distance to its kt h nearest neighbour. K in this case could be any number. If

K is equal to 1, the algorithm calculates the distance of a point to it’s 1s t neigh-

bour. If K is equal to 10, the algorithm calculates the distance of a point to it’s 10t h

neighbour.

Authors such as Eskin et al.(75), Angiulli and Pizzuti(76) and Zhang and

Wang(77) calculate the outlier score of a data point as the sum of its distances

from its kt h nearest neighbors, for example. But a different way to calculate the

outlier score of a data point is to count the number of nearest neighbors that are

not more than D distance away from this data point itself, as Knorr and Ng reveal

in their papers(78, 79, 80, 81). A more sophisticated technique, hypergraph-

based, called HOT, was proposed by Wei et al.(82) in which the authors model

the categorical values using a hypergraph and measure distance between two

data points by analyzing the connectivity of the graph.

Techniques that calculate relative density of each point

Chandola(17) claims that relative density techniques calculate the density

of each point’s neighbourhood and declares as an outlier points that lie in a

low density neighbourhood. If the dataset has too many regions with different

density levels, the algorithm can have high processing time. When that’s the case,

the algorithm calculates the density relative to the distance’s density.

Breunig et al.(83, 84) assigns an outlier score to a data point, known as Local

Outlier Factor (LOF). For a data point, the LOF score is equal to the average local

density6 of the kt h nearest neighbors of a point divided by the local density of the

point itself. A normal point would have local density equal or next to local density

of the average of its neighbours. Outliers would have high LOFs. (Figure 2.10) This

technique has a O(N 2) complexity.

6The local density is calculated with the radius of the smallest hypersphere in which the center
is the point itself and that contain its kt h nearest neighbours. Local density is K divided by the
volume of the sphere.
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The COF (Connectivity-based Outlier Factor) technique was proposed by

Tang et al.(85) to improve the efficiency of the LOF technique. The difference

is the way the neighbourhood of K is calculated. Also it uses incrementality to

grow the neighbourhood. The first neighbour is the one nearest to the point. The

next neighbour is the one which the distance to its neighbourhood is the smallest

amongst all the neighbours. This grows until it gets to K.

Figure 2.10: Points located near low density neighbourhoods are considered
outliers.

Hautamaki et al.(86) proposed a simpler version of the COF method which

calculates the outlier score using in-degree number (ODIN - Outlier Detection

using In-degree Number) for each data point. According to the technique, the

ODIN of a point would be the number of K nearest neighbours which have the

data point in particular in their K nearest neaighbour list as well. And the inverse

of the ODIN would be the outlier score of the point.

Another relative density technique pointed out by Chandola et al.(17) is the

MDEF, which is the Multi-Granularity Deviation Factor. This technique was pro-

posed by Papadimitriou et al.(87). The MDEF of a point would be the standard

deviation of the local densities of the nearest neighbours of this point (includ-

ing the point itself). The inverse of the MDEF would be the outlier score. This

technique can also find anomalous micro-clusters, Chandola points out(17).

2.2.2.3
Clustering

In his survey, Chandola reveals(17) that clustering techniques, though

initially used to find clusters, are also used to find outliers and anomalies. One

thing the author points out is the fact that those techniques could have quadratic
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time complexity if they have to calculate parwise distance for each of the data

points. The pros, Chandola(17) cites, are that those can be adapted to complex

data and the cons are that their efficacy depend on their capacity on capturing a

coherent cluster structure. These techniques can be divided into three groups.

Techniques that assume that inlier points belong to some or any cluster

The first group of clustering outlier detection techniques assumes normal

points belong to any cluster in the data, while outliers do not. So the clustering

algorithm partitions the points into clusters. And any point that does not fall into

any cluster is considered an outlier. In this category, a clustering algorithm will

only be fit for detecting outliers if it doesn’t force a point to be part of a cluster

(like K-means would do7). Ester et al.(88) proposed DBSCAN, a density-based

clustering algorithm that groups together points that are closely packed together

(Figure 2.11); Guha et al.(89) proposed ROCK, a robust clustering algorithm for

categorical attributes; and Ertoz et al.(90) proposed SNN, an algorithm that finds

clusters of different shapes, sizes and densities in high-dimensional data - those

are all algorithms that can be used.

Figure 2.11: Example of DBSCAN outlier detection algorithm dividing the data
points in two clusters.

Another algorithm that falls into the first category is the FindOut - pro-

posed by Yu et al.(91), an extension of the WaveCluster algorithm - proposed by

7K-means is an algorithm described by Lloyd in 1957 that partitions n points of data into K
clusters in which each point belongs to the cluster with the nearest mean.
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Sheikholeslami et al.(92), as explained by Chandola(17). This technique detects

clusters and removes them from the data. Then, any residual points that remain

are declared outliers.

Techniques that assume that inlier points lie close to their cluster cen-

troids

Figure 2.12: The inhabitants of Ireland clustered by demographics with the SOM
algorithm. And the Ireland map colored by those same clusters.

The second group of clustering outlier detection techniques assumes nor-

mal points lie close to their cluster centrois, while outliers are far away from it.

They consist each in two steps, as Chandola(17) notes: first, the data is clustered,

then, for each point, its distance to its closest cluster centroid is considered

its outlier score. Techniques such as the Self-Organizing Maps (Figure 2.12), K-

Means and the Expectation Maximization (EM), studied by Smith et al.(93) can
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be used to cluster and then classify outliers. Those techniques can also operate

on supervised mode, as noted by Chandola(17), in which the training data is

clustered and points belonging to the test data are compared against the clusters

to obtain an outlier score for the test data point. The cons of techniques like

these are that if the outliers in the data are able to form a cluster themselves,

then the algorithms won’t consider any point as an outlier.

Techniques that assume that inlier points belong to large and dense

clusters

The last group of clustering outlier detection techniques assumes that

normal data points belong to large and dense clusters while outliers belong to

small or sparse clusters. Chandola(17) states that those techniques declare that

points belonging to clusters whose size and/or density are below a threshold as

outliers. Several techniques have already been proposed(94, 95, 96, 97, 98, 99).

The work proposed by He et al.(99), FindCBLOF, assigns an outlier score -

the CBLOF (Cluster-Based Local Outlier Factor) - for each point. This score cap-

tures the size of the cluster to which the point belongs to, as well as the distance

of the point itself to its cluster centroid. And the point will only join a cluster

which centroid distance to it is smaller than the threshold created. If this cluster

does not exist, then a new cluster with this point is created. And the algorithm

determines which clusters are anomalies based on density and distance to other

clusters. Some works use this technique using K-D-Trees8 partitioning the data

in linear time.

2.2.3
Facts that impact on the quality of an outlier detection algorithm

Outlier detection algorithms require, as Aggarwal(14) argues, careful cri-

teria to be relatively compared to one another. And outlier detection is usually

more difficult to analyze because:

(i) Sample space is usually small, which makes it difficult to verify assertive-

ness of an algorithm with robust statistics;

(ii) There’s no ground-truth, which means outlier detection problems are

mostly unsupervised problems; they lack a set of true examples that can

be used to calibrate the algorithm;

8A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing
points in a k-dimensional space.(100) A k-d tree can help find the nearest neighbour to a specific
point in space without the need to explore all the partitions.
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(iii) Context can be a problem; contextual outliers are even harder to detect

because their interpretation depends on the problem being analyzed.

2.2.3.1
The Ground-truth and the labels

Aggarwal(11) discusses in his book that opposite to what happens with

classification problems, outliers are hard to evaluate, because they are rare. What

the author implies is that in the case of detecting outliers, there is not a ground-

truth.

The ground-truth is a concept used in supervised problems(101), or prob-

lems where a learning function can map inputs to outputs based on example

input-output pairs. Those examples are the ground-truth, which are used as pa-

rameters to tune the algorithm towards being better at classifying the data points.

Aggarwal(11) reminds us that in the case of unsupervised problems, there is

no ground-truth, which means the function cannot be tuned by any examples,

because they do not exist. And since the function cannot know if it’s correctly

learning the problem or not, it cannot be quantitatively evaluated, the author

concludes(11).

So what happens in case of unsupervised outlier detection problems, Ag-

garwal reveals(11), is that researchers use real use case studies in order to provide

intuitive and qualitative evaluation of the outliers. In other words, real outliers

are used as examples for the ground-truth while the unsupervised algorithm de-

tects any new underlying outliers in new datasets.

And in order to create a ground-truth for the algorithms is to provide labels.

Aggarwal debates(11) this is a process that can be slow and tiresome, because

mostly it’s a manual work. Real use case examples of outliers are labeled as

such and then provided as parameter to the algorithm in order to help measure

Precision and Recall effectiveness.

2.2.3.2
Context

Another fact specific to the outlier detection problem that heavily impacts

on its quality is the context. Chandola(17) explains there exists three types of

outliers:

(i) Outlier points. When a single point or a collection of individual points are

considered outliers;

(ii) Contextual outliers.

(a) When you have to consider the context in order to define an outlier.;
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(b) Each point has always two types of attributes: contextual (determine

the neighbourhood; e.g. latitud and longitud for spatial data and time

for time data) and behavioral (general characteristics);

(c) When we say the anomalous behaviour is coming from a specific con-

text, we call this a contextual outlier. E.g. In a dataset of time series

data, a 35ºC temperature might be normal in general, but in the con-

text that this characteristic is happening during winter, this tempera-

ture becomes an anomaly. The degree is a behavioural attribute, the

month is a contextual attribute;

(iii) Collective outliers.

(a) When the group of data is an anomaly related to the whole dataset;

(b) Points individually may not be considered an outlier, but if happening

together they are. E.g. A signal drop in a ECG is not abnormal, but

if happening for a long period of time and lots of times it may be

troublesome (Figure 2.13);

(c) It only happens when the points have a relationship among them-

selves.

Figure 2.13: Example of an ECG report where a drop of signal happening for a
long time could indicate a heart failure.
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2.3
Ensemble Learning

Ensemble Learning, as Zhihua(33) explains in his book, is a machine learn-

ing method that uses multiple algorithms to obtain better prediction results than

individual algorithms would do otherwise. Ensembles tend to be used in data

mining problems, according to Aggarwal(14), because they reduce dependency

that a single algorithm can generate.

The author(14) defines a few reasons on why to use ensembles and not

individual outlier detection algorithms to find anomalies:

(i) Ensemble for outlier detection was used in a limited way. Instead of

proposing real ensembles, Aggarwal argues other authors have proposed

individual algorithms that themselves benefit from other methods, cre-

ating what the author calls pseudo-ensembles. In other ways, most tech-

niques proposed are not formally described as ensembles and thus do not

discuss the theoretical challenges as such;

(ii) Using outlier detection ensembles reduces the dependency creating from

individual algorithms, increasing robustness of the process.

These are the components that compose the creation of an ensemble in a

very generic way:

(i) Creation of a model or mixture of individual models;

(ii) Normalization of scores. Different methods will create scores in different

scales. A normalization is needed;

(iii) Model combination. The final combination function decides on which

algorithms to use and when.

This meta-algorithm creation method was used in contexts such as cluster-

ing, classification and outlier detection. In clustering, ensemble has been applied

to multiview clustering and to alternative clustering, as Aggarwal(14) states. The

ideia is that each one of the variables behind a clustering analysis is subjective

and therefore do not completely reflect data. Thus, one would have to examine

different and alternative clusters(36, 37, 38, 39) to combine their results. Alter-

native clusters are also called multiview because, as explained by Aggarwal(14),

they can be visually analyzed as in the works of Hinneburg et al.(40, 41) to obtain

different insights. To demonstrate how cluster ensembles can be similar to outlier

detection ensembles, Moosmann et at.(42) compare in his text the clustering en-

semble Extremely-Randomized Clustering Forest (ERC) to the outlier detection

ensemble Isolation Forests(43).
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In the context of classification, a variety of methods based in ensembles

have been proposed such as Bagging(44), Boosting(45), Stacking(46, 47, 48), Ran-

dom Forests(49, 50), Model Averaging(51) and Bucket of Models(52). Ensembles

usage is particularly important for classification, as Aggarwal discusses in his

book(14), when the quality of results for individual classifiers isn’t robust enough

due to limitations of data’s own quality or of time of processing. Most recent

methods include outlier detection techniques for unbalanced classes, as in the

works of Micenkova et al.(53, 54, 55, 56).

2.3.1
Outlier Ensembles

One of the main reasons why ensembles should be used in outlier detec-

tion, as Aggarwal(14) argues, is the fact that most outliers are found not in uni-

variate data but in multivariate data, in other words, in datasets with medium or

high dimensionality. The author(14) explains that to be able to account for collec-

tivity and contextuality, one would have to look in many subspaces within data’s

dimensions in order to locate subsets of points that would be considered outliers.

What happens when individual algorithms are used is that "only one subset or a

small group of subsets of data are analyzed, making any outlier finding a guess".

The use of multiple models reduces the incertaintity of the subspace selection

inherently hard and guarantees more robustness to the method. Different meth-

ods have been proposed to account for high-dimensional outlier detection such

as(103, 104, 105, 106, 107, 108).

Figure 2.14: Example of Outlier Detection Ensemble iForest declaring outliers. To
the left, I introduced two random distributions of 1000 points centered around
mean 0 with a standard deviation of 0.5. Then added 50 outliers centered around
-1.5 and 1.5 with a standard deviation of 1. Records that exceed the 95% per-
centile of the anomaly score flag the most anomalous records and are colored
red. To the right, an example of K-Means declaring outliers in the same dataset.
Since K-Means declares as part of the same cluster all points around the centroid,
it’s not capable of declaring outliers in a depth basis.

The feature bagging proposed by Lazarevic et al.(105) may be considered

a first formal description of outlier ensemble analysis in a real setting. Another
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example is the isolation forest (Figure 2.14) proposed by Liu et al.(43), which

quantifies the dimensionality of the local subspace in which a point can be

isolated as an outlier after using random splits in a decision tree-like fashion.

According to the author, outliers can be isolated in low-dimensional subspaces

when randomly partitioning the data space. Another method known as rotated

bagging, proposed by Aggarwal et al.(109), generalizes the feature bagging ideas

to subspaces defined by combinations of arbitrarily oriented vectors and not just

axis-parallel combinations of features.

2.3.2
Methods for evaluating ensemble performance

2.3.2.1
The Precision-Recall Curve

Outlier detection algorithms output a score and a threshold is used in

order to declare points as outliers. Though this sounds like a solution, it puts

yet another challenge. Because if the threshold is picked too restrictively, it will

minimize the number of outliers, but can also miss true outliers (or bring a lot

of false negatives). On the other hand, if the threshold is picked too widely, it will

declare too many points as outliers and maybe lead to many false positives. This

trade-off can be measured in terms of Precision and Recall.

Since Precision and Recall define true positives and false positives for clas-

sification problems, in order to adapt those concepts to the outlier detection sce-

nario, Aggarwal(11) suggests a slightly different formula for both Precision and

Recall.

Let’s say we declare an outlier set S(t). Let’s also say that G represents the

true set of outliers (the ground-truth, used from real use cases). Finally, let’s say

t would be the threshold we choose to declare outliers in a given algorithm. S(t)

changes as t changes, because as mentioned before (11) the threshold impacts

on the number of outliers that will be declared. Then the Precision is a measure

that defines the percentage of outliers that truly turn out to be outliers.

Pr eci si on(t ) = 100∗ |S(t )∩G|
|S(t )|

Recall on the other hand is defined as the percentage of ground-truth

outliers that have been declared as outliers by the algorithm with the given t (the

opposite of Precision).

Recal l (t ) = 100∗ |S(t )∩G|
|G|
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By varying t, it’s possible to measure the trade-off between a high precision

or a high recall, by plotting the Precision-Recall curve (Figure 2.15). For more

effective algorithms, high values of Precision may often correspond to low values

of Recall and vice-versa (returning a high percentage of true positives and a low

percentage of false positives).

Figure 2.15: Precision-Recall curve of 4 algorithms plotted for comparison. The
ground-truth (perfect oracle) would have always 100% Precision while Recall
would depend on the threshold used. For other algorithms, this would depend
on their effectiveness. Source: (11)

2.3.2.2
The Receiver Operating Characteristics Curve

The ROC Curve (Receiver Operating Characteristics Curve) is similar to

the Precision-Recall, only as Aggarwal points out(11), visually more intuitively.

Instead of using Precision and Recall, in the ROC curve TPR (True Positive Rate)

and FPR (False Positive Rate) are graphed against each other. The TPR is defined

in the same way as the Recall. And the FPR is the percentage of the points that

were reported as outliers, but were not true outliers, out of total ground-truth

outliers.

So, let’s say we define D for the ground-truth points that are not outliers,

the measures are defined as:

T PR(t ) = Recal l (t )
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F PR(t ) = 100∗ |S(t )−G|
|D −G|

The end points of the ROC curve are always at (0,0) and (100,100). As

Aggarwal(11) notes, a random algorithm is expected to show performance along

the diagonal line connecting these points. The lift obtained above this diagonal

line could be used to consider that an algorithm is more accurate than a random

one. The discovery of a new outlier at any particular relaxation in rank threshold

results in a spike in the precision, which becomes less pronounced at higher

values of the recall.

2.3.3
Ensembles categorization

The position paper proposed by Aggarwal(102) categorizes outlier ensem-

bles in three different ways:

(i) By component independency:

(a) When the execution of an individual component either depends on

the result of previous run components or it doesn’t.

(ii) By centrality of the ensemble:

(a) Each component either centralizes around data or the model;

(b) In other words, either we’re subsampling a part of the data or we’re

choosing an algorithm;

(c) Data-centric ensembles are usually independent and model-centric

ensembles are usually sequential.

(iii) By theoretical approach:

(a) Outlier detection ensembles are always either trying to reduce bias or

variance. Whenever reducing too much variance, they create bias and

vice-versa. The trade-off has been greatly discussed by Aggarwal(14)

in his book.

(b) Bias reduction is always more difficult in the case of outlier detection

because of the absence of the groumd-truth.

Table 2.1 separates recently proposed works in outlier detection ensembles

by categorization.
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Table 2.1: Table example with some ensemble techniques categorized by central-
ity and dependency

Method

Model-
centered
or Data-
centered

Sequential
or Indepen-
dent

Combin.
function

Normaliz.

Feature bagging Data Independent Max/Avg No

HiCS Data Independent
Selective
Avg.

No

LOF tuning Model Independent Max No
LOCI tuning Model Independent Max No
Isolation forests Model Independent Average Yes

Multiple-Proclus Model Independent
Harmonic
Mean

No

RS-Hash Both Independent Average No

OutRank Model Independent
Harmonic
Mean

No

Calibrated bag-
ging

Both Independent Max/Avg Yes

SELECT Model Sequential Average Yes
OUTRES Data Sequential Product No
Rotated bagging Data Independent Max/Avg Yes
Converting
scores to proba-
bilities

Both Independent Max/Avg No

Intrusion boot-
strap

Model Independent
Last Compo-
nent

No

Nguyen et al. Both Independent
Weighted
Avg.

No

Entry subsam-
pling (Graph
Matrix)

Both Independent Median Yes

Bagging Data Independent Average Yes
Variable sub-
sampling

Data Independent Many Yes

One-class Data Independent Avg. Product No
LODA Model Independent Average Yes

CARE Both Sequential
Weighted
Avg.

Yes

FVPS Data Sequential Average Yes
RandNet Model Independent Median Yes
BSS/DBSS Data Independent Average Yes
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2.3.3.1
By component independency

Dependent ensembles: sequential

In sequential ensembles, Aggarwal(102) states, the set of algorithms used

are applied sequentially to either a portion of the data or to all of it. The ideia is

that one application is impacted by others that were applied before. The author

explains this impact means either the previous algorithm applied modified the

data or prevented another specific algorithm from being applied. The final result

is either a weighted combination of all outlier scores or the final result provided

by the last algorithm used. The method can run a fixed number of times or run

until it converges to some result.

Algorithm 1 Sequential Ensemble
1: procedure ENSEMBLE PROCESS(Dat aset , Al g1...Al gn)
2: j ← 1 .

3: for j ← 1. . .n do .

4: Al gn ← r andom Al g or i thmB asedOnPastE xecuti ons .

5: fn ← newDat asetF r omDbasedOnPastE xecuti ons .

6: f j ← Al gn .

7: j ← j +1 .

8: outl i er s ← combi nati onO f Pr evi ousE xecuti ons .

Aggarwal(102) argues though that sequential ensembles have been used

less for outlier detection than independent ensembles. Some works propose to

remove initial outliers from the data in order to get more robust results from

other algorithms. The refinement the data suffers along sequencing of the al-

gorithms could be either: data subset selection, attribute-subset selection or

generic data transformation methods.

Aggarwal(102) shares an example algorithm (Algorithm 1) to show how se-

quential ensemble works. Let’s say we have a 2-phase sequential ensemble where

in the first phase it uses a base detector to remove more obvious anomalies. And

in the second phase, it uses a more robust method to search for outliers in a new

dataset already without noise. An ensemble like this was proposed by Barbara et

al.(110). Another example could be an ensemble where the models recursively

look for outliers in subspaces of the data, but only in different subspaces where

its previous predecessors algorithms haven’t looked yet. Muller et al.(111) pro-

posed a work similar to this one.

Rayanaand and Akoglu(112) proposed a model-centric sequential ensem-

ble for detecting outliers that first executes base detectors to create a pseudo-

ground-truth by averaging the scores of these detectors. The artificial ground-
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truth is then used to prune detectors that deviate from average performance. This

works to remove poorly performing detectors and improve overall performance.

Final scoring is an average of the independent detectors, but the selection step

requires sequential evaluation and therefore it is considered a sequential ensem-

ble.

Independent ensembles

On the other hand, Aggarwal(102) explains, in the case of independent

ensembles, instead of sequencing algorithms that depend on one another to be

executed, different instantiations of the same algorithm can be used on different

portions of the data. The same algorithm may be applied with either different

initializations, parameter sets or random seeds. Results can be combined in order

to obtain a more robust outlier score.

Independent ensembles are the most common for the outlier detection

problem. Aggarwal(14) provides an pseudo-algorithm example (Algorithm 2)

of the independent ensemble. The ideia behind using independent ensembles

is that different models (or different combinations of the same models) can

provide different and valid insights about data. Combining these insights could

provide more robust results which are not dependent on specific artifacts or any

algorithm or dataset.

Aggarwal(14) states that this method has been particularly used for high-

dimensional data, since it enables the exploration of different subspaces of the

data where different deviants may be found. Basically, the author explains, inde-

pendent ensembles can be used in any setting with a randomized base compo-

nent in which we expect predictions to vary from one component to another.

Algorithm 2 Independent Ensemble
1: procedure ENSEMBLE PROCESS(Dat aset , Al g1...Al gn)
2: j ← 1 .

3: for j ← 1. . .n do .

4: fn ← newDat asetF r omDbasedOnPastE xecuti ons .

5: f j ← Al gn .

6: j ← j +1 .

7: outl i er s ← combi nati onO f Pr evi ousE xecuti ons .

Some independent ensemble methods have been proposed such as (113,

105, 43). They bag the features in sampled subsets of the data in order to get

more robust results. Aggarwal(14) says that some classification methods such

as(109, 114) which use bagging and subsampling can also be "trivially" adapted

to outlier ensembles.
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2.3.3.2
By centrality

Typically, it is possible to create an ensemble where both different portions

of the data are explored and different models are also used to get more robust

results. Aggarwal highlights(14) that so far only Nyugen et al.(115) proposed

such a thing. Most other outlier detection ensembles proposed either to work

on different portions of the data or to use different models in all the dataset itself.

Model-centric ensembles

Model-centric ensembles combine different models or algorithms built on

the same dataset. And Aggarwal(14) points out that one of the major challenges

when building model-centric ensembles is that scores from different models are

not necessarily comparable to one another, for example the outlier score for

the Kt h Nearest Neighbour approach and the PCA (Principal Component Anal-

ysis) approach generate very different outlier scores because they’re on differ-

ent scales. Sometimes larger scores may indicate a stronger outlier, whereas in

other cases smaller scores may do the same. This means that when combining

the scores, one has to be able to convert and normalize values to make them

interpretable. The work proposed by Gao and Tan(116) does this by converting

scores to probability.

Another challenge, as Aggarwal(14) explains, is to choose the combination

function for the outlier detection: between model averaging, best fit, worst fit

and so many other choices. The LOF method proposed by Breunig et al.(83, 84)

runs the model over a range of values of K, which is the neighbourhood of the

points. On the other hand, the LOCI method proposed by Papadimitriou et al.(87)

samples the neighbourhood in order to determine the level of granularity in

which to compute the outlier score. Different sampling neighbourhoods are used

to detect which algorithm enhances the outlier behaviour of that point the most.

Model-centric ensembles can also use a single algorithm but randomize

its base detector. The work proposed by Chen et al.(117) uses randomized au-

toencoder ensembles. The authors use the autoencoders to perform nonlinear

dimensionality reduction and then use the average of the residuals from the

outputs to create the outlier scores. OutRank, proposed by Nguyen et al.(108),

combines results of multiple rankings based on the relationship of the points to

their nearest subspace clusters, uses the aggregate of the normalized fraction of

points and the normalized fraction of dimensions in a subspace cluster in order

to score all points present in it. For when clusters overlap, Aggarwal et al.(118)

proposed another technique, PROCLUST. The idea is to score each data point
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based on its relationship to its nearest cluster as well as the properties of its

nearest cluster. The score of a point in a single ensemble component is obtained

by summing this value over all clusters in which the point lies. The averaged

score over multiple randomized executions is used to quantify the outlier score

of the point.

Data-centric ensembles

Data-centric ensembles explore different parts, samples, projections or

functions of the data instead of different models. The idea behind this approach,

as Aggarwal points out(102), is that each part of the data could provide different

insights. Feature bagging(105) is a type of data-centric ensemble used for out-

lier detection. Below, the pseudo-algorithm (Algorithm 3) gives an idea of how

it works. Random subspaces of the data are sampled, outlier scores of the data

points are calculated in these projected subspaces. Final outliers are a combina-

tion function of different scores from different subspaces.

Algorithm 3 Feature Bagging
1: procedure ENSEMBLE PROCESS(D)
2: for j ← 1...n do .

3: i nteg er R ← sample(d/2,d −1) .

4: r Di mensi onalPr o j ect i on = sel ect (Rdi mensi ons) .

5: LOFScor e ← poi nt sI N pr o j ect i on .

6: combi nedscor es ← scor esDi f f er entSubSpaces .

7: outl i er s = combi nedScor es .

The feature bagging method uses axis-parallel projections. Rotated

bagging(109), on the other hand, generalizes this method to use arbitrary ran-

dom projection. The method selects a randomly rotated axis-system of low

dimensionality (which is 2+∗
p

d
2 ). However, the axis system is randomly rotated

and data points are projected on this rotated system. This rotation provides

better diversity and also discovers subspace outliers in arbitrarily oriented views

of the data. The work proposed by Muller et al.(111) develops a novel for out-

lier ranking using the product of the outlier scores in different discriminative

subspaces.

2.3.3.3
By theoretical approach

Aggarwal(102) explains that categorizing outlier detection ensembles by

theoretical approach is the same as trying to define how these ensembles will try

to reduce The Overall Error. The Overall Error of an outlier detection algorithm
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can be decomposed into Bias9 and Variance10. This can be defined by the Mean

Squared Error equation.

The thing is, Aggarwal(102) points out that it is not possible to calculate

the bias without the ground-truth. And there’s no ground-truth available in un-

supervised problems as was mentioned before, as is the case of outlier detection

problems. To be able to theoretically evaluate the ensembles, one can assume

a hypothetical (but unknown) ideal ground-truth does exist. This ground-truth

could be either defined in terms of outlier scores or in terms of underlying binary

labels.

MSE = Bi as2 +V ar i ance

In the above equation, the squared bias represents the difference between

the output we expect the algorithm will have and the ideal outlier scores (which

we do not know because it is an unsupervised problem). Even though, it can

still be defined as a theoretical quantity for comparison purposes. The variance

represents the mean-squared deviation in the outlier scores over various ran-

domized samples of the base data or randomized trials of the base detectors.

Thus, the variance is a result either of the nature of the dataset or of the variations

in the output.

Ensembles that reduce the variance

Outlier detection ensemble methods that reduce variance do so to try

and improve the robustness of the base detectors used. This is done by using

different randomized samples of the data or different randomized trials of the

base detectors and then averaging results. The idea, according to Aggarwal (102),

is to provide more similar results over different datasets.

Since the variance is part of the overall error equation, reducing it will

reduce the error of the detector. Majority of outlier detection ensembles are

focused on reducing variance.

Ensembles that reduce the bias

Methods that focus in reducing bias are trying to improve the accuracy of

9A statistics is biased when it is calculated in such a way that it is systematically different from
the population parameter from which it was estimated from(119).

10Informally, variance measures how far a set of (random) numbers are spread out from their
average value(120).
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the outlier detector in expectation. Cons of theoretically approaching the outlier

detection by the bias reduction is that in order to reduce bias, the ground-truth

has to be available to guide the algorithm. And the ground-truth is usually not

available, as Aggarwal(102) notes, in outlier detection. So one has to use heuristic

methods to reduce bias.

2.3.4
Theory of Outlier Detection Ensembles

Defining the bias-variance trade-off

Bias-variance theory decomposes these randomized errors into two parts,

each of which can be reduced with a specific type of ensemble-centric design. the

model bias defines the basic “correctness” of a model. They can be quantified as a

theoretical construct (with respect to the unobserved ground-truth) but it cannot

be evaluated in practice for a particular application.

To understand the theory behind the bias-variance trade-off, let’s consider

a sampled data point X̄i , for which the outlier score was modeled with a training

data D . As Aggarwal(102) suggests, for theoretical purposes, one can assume an

ideal outlier score yi exists for this point, even though we don’t know what it is.

This ideal score is output by an ideal function f (X̄i ) with 0 mean and variance of

1.

yi = f (X̄i )

By applying this standard normal distribution to yi , we get the relative

outlier rank of X̄i with respect to all possible points generated by the whole data

distribution. This function is mapping the score yi to its percentile outlier rank

between 0 and 1. But, as Aggarwal(102) explains, in practice algorithms rarely

output scores satisfying this property, so this function would be like an oracle that

cannot be computed in practice. And for unsupervised problems, we wouldn’t

even have the examples to verify the oracle.

The score yi is analogue to the numeric dependent variable in a regression

equation, when we add an additional term to the right-hand side of the formula

to denote the error or the noise. In unsupervised problems, Aggarwal(14) notes,

there’s no need to add any noise, since the dependent variable does not exist in

practice. Therefore, since the ideal function for the outlier score of a data point

is unknown, we have to estimate it with an outlier detection model g (X̄i ,D).

For example, the Kt h Nearest Neighbour algorithm would be represented by the

below equation.
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g (X̄i ,D) =αK N N −di st ance(X̄i ,D)+β

Here, α and β are constants to standardize the scores to 0 mean and vari-

ance of 1. When the estimated function g (X̄i ,D) does not model correctly the

ideal function f (X̄i ), the we have errors. This is the model bias, because errors

would be sistematically being caused by a parameter. Furthermore, since the

outlier score yi depends on the dataset D , which is finite, even if the expected

value of g (X̄i ,D) correctly reflects f (X̄i ), this estimation with limited data is

unlikely to be 100% correct. So the more different g (X̄i ,D) is of E [g (X̄i ,D)] over

random choices of training sets of D , the higher the variance we get. In other

words, the variance would be the inconsistent behavior the algorithm presents in

which the same point receives very different scores over different samples or sets

of the training data D . This can happen when the algorithm tries to adjust too

much to specific nuances of the training set (in order to reduce the bias), which

is called overfitting.

Quantifying the bias-variance trade-off

Quantifying the bias-variance trade-off for outlier analysis using ROC

curves is a challenge, because the uniqueness of the score-based output is miss-

ing. In other words, outlier scores are relative, as Chandola(17) points out. What

it means is that if all scores are multiplied by the same positive quantity or trans-

lated by the same amount, various metrics of the outlier detector (e.g., ROC

curves) are kept unchanged, because those depend only on the ranks of the

scores. So ROC curves provide only an incomplete interpretation of the scores

(in terms of relative ranks).

The MSE of the detectors of the test points over a particular instantiation of

the training set D could be defined as the below equation.

MSE = 1

n

n∑
i=1

{yi − g (X̄i ,D)}2

The expected MSE over random instantiations of the training data using a

random process would be the below equation.

E [MSE ] = 1

n

n∑
i=1

E [{yi − g (X̄i ,D)}2]

Chandola(17) states that different interpretations of the bias-variance
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trade-off will yield different decompositions of the MSE. The traditional view

would assume the finite data can only be fully used once and that limitation

could cause extreme variability in results. Another interpretation would say that

different samples of the same dataset can enable the MSE to be computed several

times and thus reduce variability. A third interpretation could say that randomiz-

ing the base detector itself would turn process variability towards the model and

not the data. Aggarwal(14) emphasizes that it is important to specify the under-

lying process of decomposition of the MSE to properly analyze the effectiveness

of the ensemble method.

That is the reason Aggarwal(102) believes analysts should demarcate train-

ing and test data even though it’s an unsupervised method. The reason it’s be-

cause it allows to evaluate effects of randomizing the training data over the same

set of points. Then if randomized predictions over the same set of points vary

significantly even though the point has an accurate expectation, we can say the

model has high variance. On the other hand, if the expected prediction of the

point is inaccurate, we say the model has high bias. The idea is to realize which

of the two components (variance or bias) need to be improved to reduce overall

error.

2.3.5
Quality factors that impact the outlier detection ensemble

2.3.5.1
Scores normalization

Since different algorithms can output outlier scores in different scales, nor-

malization becomes an important step in creating outlier detection ensembles,

otherwise scores cannot be compared. In some cases, for example, high outlier

scores can correspond to larger outlier tendency whereas in other cases can cor-

respond to low tendency.

Aggarwal(102) calls to the fact that the analyst that creates an ensemble

has to be careful not to weight one algorithm more than the other. Furthermore,

combining algorithms with different conventions on ordering of the scores can

lead to completely unpredictable results. One approach can be to use ranks from

the different algorithms. The work discussed by Gao and Tan(116) proposes to

use mixture modeling with the EM-Framework to convert scores into propaba-

bilities and thus deal with differences in scales in a safe way.
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2.3.5.2
Model combination

One more issue in creating outlier detection ensembles, according to

Aggarwal(14) is using a function to combine the models. Given that you have

a set of r normalized scores Scor ei (X̄ ) for the point X̄ , it is necessary to use a

function.

Aggarwal(14) lists the most common functions to combine models:

(i) Maximum function:

(a) This is one of the most common functions used for combining en-

semblar scores both in implicit (LOF and LOCI parameter tuning) and

explicit ensemble models.

(b) One variation of this model is to use the ranks instead of the scores in

the combination process. This was proposed in feature bagging(105).

(c) Different data points need to have the same number of components

in the ensemble in order to be compared meaningfully.

(ii) Averaging Function:

(a) The model scores are averaged over the different components of the

ensemble.

(b) If the individual components of the ensemble are poorly derived

models, then the irrelevant scores from many different components

will dilute the overall outlier score.

(c) This approach has been used extensively, and it has the advantage of

robustness because it reduces the variance of the overall prediction.

(d) Variance reduction often results in superior performance.

(e) Both the feature bagging(105) and the HiCS method(104) use this

approach.

(iii) Damped averaging:

(a) A damping function is applied to the outlier scores before averaging,

in order to prevent it from being dominated by a few components.

(b) A damping function could be the square root or the logarithm, for

example.

(c) The use of the product of the outlier scores (or geometric averag-

ing) could be interpreted as the averaging of the logarithm of outlier

scores.
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(d) This approach is appropriate for outlier scores that are interpreted

as probabilities or fit values, since the logarithms of the probabilities

correspond to log-likelihood estimates.

(iv) Pruned averaging and aggregates:

(a) In this method, low scores are pruned and the outlier scores are either

averaged or aggregated (summed up) over the relevant ensembles.

(b) The goal is to prune the irrelevant models for each data point before

computing the combination score.

(c) The pruning can be performed by either using an absolute threshold

on the outlier score or by picking the top-k models for each data point

and averaging them.

(d) When using absolute thresholds, it is necessary to normalize the

scores from the different ensemble components. The work proposed

by Aggarwal(109) advocates the conversion of scores to standardized

Z-values and then uses a threshold of 0 on the scores.

(e) Aggregating is more appropriate than averaging, since it implicitly

counts the number of ensemble components in which a data point is

relevant. The point is more relevant in a greater number of ensemble

components when it has a greater tendency to be an outlier. The ag-

gregated score, called thresh in the work of Aggarwal(109), combines

the benefits of maximization and averaging.

(f) Aggarwal(14) guarantees this approach can often provide more robust

results.

(v) Result from last component executed:

(a) Sometimes used in sequential ensembles(110), in which each com-

ponent of the ensemble successively refines the data set and removes

the obvious outliers.

(b) The normal model is constructed on a data set from which outliers

are removed and the model is more robust.

(c) The goal of each component of the sequential ensemble is to succes-

sively refine the data set.

(d) The score from the last component is the most appropriate one to be

used, in Aggarwal’s(14) opinion.

As Aggarwal(14) points out, a combination function may be dependent on

the structure of the ensemble, specially if the goal is to refine the whole dataset
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or to understand behavior of a specific segment in this dataset. The author also

notes that scores of outlier points tend to be far more unstable than those of inlier

points. That’s why, he says, maximization functions usually improve the overall

performance. The author also suggests combining maximization function and

averaging function to get more robust results.

2.4
Technique’s summary and their relationship to this work

Below is a summarized table with techniques described above, indication

if they were used in this work and why.
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Table 2.2: Outlier detection technique summary table and their relationship to
the ensemble creation.

Technique

Used
in
the
tests

Reason why

Gaussian
technique

No
Unidimensional. Makes it difficult to deal with
multidimensional problems. Also is paramet-
ric and assumes normal distributions.

Histogram
technique

No
Unidimensional. Makes it difficult to deal with
multidimensional problems.

Boxplot tech-
nique

No

Unidimensional. Defines outliers based on
the Interquartile range, which can be relative
and label outliers in a wrong maner in some
cases.

Regression
technique

No
works on a weak correlation between two di-
mensions.

KNN No
Weak detector based on distance between
points only. Depends on numeric datasets and
on number of K.

Local Outlier
Factors

Yes
More robust detector than KNN because takes
into account clustering relationship in groups
and between groups.

COF No Similar to the LOF outlier detector.
ODIN No Low performance on time complexity

MDEF No
Low performance for multidimensional
datasets

DBSCAN Yes
Density-based high performance algorithm.
Works well on detecting clusters in different
shapes.

ROCK Yes Detector specialized for categorical variables.

SNN No
Similar to DBSCAN algorithm but low perfor-
mance for dense datasets.

WaveCluster No
Low performance on multidimensional
datasets.

SOM No
Non-straightforward interpreation of clusters
and comlex implementation.

K-Means Yes
Easy interpretation and high performance on
dense datasets.

CBLOF No
Similar to LOF but has low performance for
dense datasets.
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3
Techniques and methodologies

This chapter will present the approach used to obtain answers to problems

described in Chapters 1 and 2. This work has been divided in three main phases,

as described below.

3.1
Data preparation

As discussed in Chapter 2, the problem of Outlier Dectetion can be con-

sidered as an unsupervised one and thus lacks labels. The lack of labels makes

it impossible to actually stablish a ground-truth to which we can compare the

model created. That´s why although this ensemble outlier detection model was

built for the purposes of Marketing Science datasets, it was tested with general

datasets, i.e. datasets belonging to different contexts.

3.1.1
Understanding training data

Data understanding began with data collection. And data used for the ex-

periments were provided by Outlier Detection DataSets (ODDS)(127) database,

a data repository that´s been actively developed and growing since the summer

of 2016, according to the owner itself: Shebuti Rayana(127). The website provides

a large collection of outlier detection datasets with ground-truth. These datasets

described in Table 3.1 were used for training and modeling.

Datasets made available by ODDS came in separate parts: inliers and out-

liers separated. So there was a need to clean and treat them. That’s why only a

limited number of datasets was used. In the future, new contexts will be added to

newer versions of the ensemble model.

Variables present in each dataset varied among three types: ID variables,

behavior variables and label variables (outlier classes). Classes between outliers

and inliers were never balanced, which added a new level of difficulty to model

creation. But since class unbalance is a common characteristic to the outlier

detection problem, they were not evened.

Bases obtained from ODDS are UCI Machine Learning Repository’s(128)

bases, treated to be used in classification, clusterization and outlier detection
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Table 3.1: For training and modeling the following datasets were used:

Name Context Rows
Dimen-

sions
% Outliers

Glass
Contains attributes re-
garding several glass
types (multi-class).

214 9 9 (4.2%)

Wine

Results of a chemical
analysis of wines grown
in the same region in Italy
but derived from three
different cultures.

129 13 10 (7.7%)

BreastW
Measurements for breast
cancer cases.

683 9 239 (35%)

Letters

Subsampled data from 3
letters to form the normal
class and randomly con-
catenated pairs of their
dimensionality doubles.

1600 32 100 (6.25%)

problems, so they were not treated any further. Main changes made were: treat-

ment of missing values, transformation of categorical values into dummy vari-

ables and splitting of data into training, test and validation datasets.

The computer configuration used to train and create the model was a very

simple one. One MacOS MacPro with an Intel Core i7 processor of six cores of

8th generation and 2,6 GHz; a Radeon Pro 560X video board with 4GB GDDR5

memory; and a 16 GB 2400 MHz of DDR4 RAM memory. Software used to build

the model was R 3.5.1 binary for OS X 10.11 (El Capitan) built also on GNU

Fortran 6.1 for OS X 10.11. UI software used was RStudio 1.1.456 - Mac OS X 10.6+

(64-bit).

3.1.2
Understanding testing data

After the ensemble model was created, it was applied in four Marketing

Sciences datasets. These were described in Table 3.2.

For matters of privacy protection and company Non-disclosure Agree-

ments, the names of the companies could not be revealed. But since the discus-

sion regarding possible impact for those companies was considered more impor-

tant, this was not a reason to keep this information outside this work.
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Table 3.2: Marketing Science datasets used after model building:

Name Context Rows Dimensions

Dataset1
Airline tickets purchase
data from a Brazilian
Travel company.

2106971 11

Dataset2
Card transactions data
from a Multinational
Issuer company.

35975 11

Dataset3

Test drive lead data for
Car Brand A from a Multi-
national Car Dealer com-
pany.

1113546 11

Dataset4

Clothing purchase data
from a Multinational
Retailer and E-commerce
company.

5764888 11

3.2
Algorithm selection phase

As described in Chapter 2, when building an ensemble, one has to carefully

choose the algorithms it’s going to be built upon. And since the objective of the

approach was to build a sequential model-centric ensemble, algorithm selection

was a very important step.

Fifteen different techniques were tested during the algorithm selection

phase. Amongst which ten of those were the following:

(i) K-means;

(ii) Local Outlier Factors;

(iii) Isolation Forests Ensemble;

(iv) Global Local Outlier Score from Hierarchies Algorithms;

(v) Local Correlation Integral Ensemble;

(vi) Local Density-Based Outlier Detection;

(vii) ROCK Outlier Detection;

(viii) Angle-based outlier detection;

(ix) Subspace outlier detection;

(x) Feature bagging-based outlier detection.
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Those models and detectors were chosen among so many others because

of characteristics detailedly explained in Chapter 2 regarding its strengths and

weaknesses. Most detectors involved subspace local search or were already en-

sembles themselves.

First step was to use each algorithm or ensemble to be tested individually.

For this, the following functions were used: Func.FBOD, Func.SOD, Func.ABOD,

rockCluster, ldbod, LOCI, hdbscan, hclust, lof, iForest and kmeans.

Figure 3.1: Normalized scores for seven algorithms tested. Dispersion of the
boxplots makes it evident the very different behaviors of the detectors. The
density curve makes it clear how each detector concentrated each classification.

Next step was selecting the best algorithm parameters among all param-

eters available. No feature selection was done, because most of the algorithms

would do it for themselves using a number of different techniques. Process for

parameter selection was done as following and based on the work of Ha and

Nguyen(115):
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1. Each algorithm was run with different K-fold samples of the same dataset

a total of 100 times all with all variables available in the dataset;

2. For each run, accuracy and AUC curve were measured.

3. Algorithms were ordered by AUC score obtained;

4. Algorithms with performance below 0.75 were discarded.

To evaluate the process of algorithm selection, outlier scores generated by

the individual detectors were separated in Train (60%), Test (20%) and Validation

(20%) sets. A Stochastic Gradient Boosting model was run over all outlier scores in

order to evaluate their accuracy. Parameters used for the evaluation model were:

1. Resampling: Cross-Validated (10 fold, repeated 10 times);

2. Random and different values used for number of iterations or the number

of leaves;

3. Random and different values used for complexity of the tree or interaction

depth;

4. Random and different values used for learning rate or shrinkage.

Prediction run by the GBM model was used to create a meta-learner - the

ensemble model itself. The ideia was to understand how good predictors the de-

tectors had been in learning the true outliers. And the reason why a classification

algorithm was used in this phase was because there was a need to eliminate all

possible bias when selecting the algorithms. Also scores from all detectors tested

were normalized in order to account for their different ranges, as indicated in

picture 3.2. Measures of evaluation used for the algorithms are described in Ta-

ble 3.3.

After 1000 trials, only 4 detectors remained in the final model, as mentioned

in Table 3.4.
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Table 3.3: Performance evaluation metrics:

Name Formula Definition

Accuracy ACC = T P +T N

OP +ON

Hits proportion, adding correct
and wrong outlier cases. Returns
values between 0 and 1, being 0
the worst case and 1 the best.

Sensitivity or
True Positive
Rate

T PR = T P

T P +F N

Capacity of the model to define as
outliers the true outliers. Returns
values between 0 and 1, being 0
the worst case and 1 the best.

Specificity or
True Negative
Rate

T N R = T N

F P +T N

Capacity of the model to define as
inliers the true inliers. Returns val-
ues between 0 and 1, being 0 the
worst case and 1 the best.

Precision or Pos-
itive Predictive
Value

PPV = T P

T P +F P

Proportion of true predicted out-
liers among all predicted points.
Returns values between 0 and 1,
being 0 the worst case and 1 the
best.

F1 Score F 1 = 2∗PPV ∗T PR

PPV +T PR

Harmonic mean between pre-
cision and sensitivity, in other
words; a single measure in which
you evaluate if total positively pre-
dicted cases are really positive and
if they correspond to a significant
part of total true positive points.
Returns values between 0 and 1,
being 0 the worst case and 1 the
best.

Table 3.4: Detectors evaluated for the final model

Name AVG. RMSE Accuracy
LOF 17.8 0.7563333
FBOD 15.95 0.825
SOD 14.9 0.725
HDBSCAN 13.2 0.827

3.3
Model building phase

Model building phase involved the search of a model capable of better

separating outliers and inliers in Multi-class datasets. To maintain comparability,
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the same data was used both to train, create the model and evaluate its results.

The objective of this approach was to build an ensemble capable of correctly

separating outliers from inliers in different contexts so that when used in the

Marketing Science context, it would hopefully have a performance above average

for most purchase/transaction datasets.

The following steps were used as procedure to the ensemble creation:

1. Algorithm selection 3.2 and evaluation;

2. Discarding of low performance algorithms;

3. Creation of ensemble order for the algorithms;

4. Final evaluation.

The algorithm that describes this work is Algorithm 4.

Algorithm 4 Sequential model-centric ensemble
1: procedure ENSEMBLE PROCESS(Dat aset )
2: j ← 1 .O (1)
3: for j ← 1...n do .O (n)
4: Al gn1 ← new Al g or i thmB asedOnPastE xecuti ons .O (1)
5: fn ← newDat asetF r omDbasedOnPastE xecuti ons .O (1)
6: f j ← Al gn1 .O (1)
7: Al gn2 ← new Al g or i thmB asedOnPastE xecuti ons .O (1)
8: fn ← newDat asetF r omDbasedOnPastE xecuti ons .O (1)
9: f j ← Al gn2 .O (1)

10: outl i er s ← scor eF r om Al g 1 .O (1)
11: outl i er s ← scor eF r om Al g 2 .O (1)
12: if scor eF r om Al g 1 = scor eF r om Al g 2 then .O (1)
13: outl i er s ← newScor eF r omBoth Al g .O (1)

14: j ← j +1 .O (1)

15: outl i er s ← combi nati onO f Pr evi ousE xecuti ons .O (1)

3.3.1
Detector ordering phase

Since the ensemble was meant to be a model-centric sequential one, algo-

rithms were ordered according to their performances and each run depended on

results from the previous run. According to Aggarwal(14), in a model-centric se-

quential outlier detection ensemble, algorithms should be prefferably ordered so

the less accurate goes first and more robust detectors come afterwards and have

the chance to improve the work done before.

In order to follow that, detectors chosen in the previous phase were ordered

in an order inverse to their performance. It means that the less accurate was put
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first, then the next one and so on. Aggarwal (14) explains that more powerful

detectors should be the last to run on a sequential model-centric ensemble in

order to account for previous mistakes made by more simple detectors.

Before following this approach though, detectors chosen were used in a

random order on 100 trials in order to predict the best order for the ensemble.

Results were worse than those obtained by following Aggarwal’s suggestion on

ordering them by lowest performance. So methodology followed below can be

considered a development of Aggarwal’s approach.

3.3.2
Model combination phase

For the meta-model created, scores generated by the first detector were

compared to the scores generated by the second detector and then analyzed. If

data points had been defined by both detectors as outliers, then a high proba-

bility would be given for the score. If only one detector had labeled the point an

outlier, then a smaller probability was assigned to the score and so on.

After all detectors were run, all scores would have been compared to each

other, each in its own order. Outlier labels were lastly assigned according to high

probabilities of points having been assigned as "outliers" by all detectors.

3.4
Method Creation Outline

To summarize the methodology described previously, below follows a vi-

sual outline of the ensemble creation method. It was comprised in four stages:

the first explored the data available to remove identification dimensions and

keep outlier labels; the second explored the usage of different base detectors on

the training datasets as well as classified them by performance; the third explored

different orders for the detectors and the last phase explored different normaliza-

tion methods and combinations for the ensemble.
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Figure 3.2: Method development outline.
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4
Experiments and results

In this chapter, results obtained after the ensemble model - described in

Chapter 3 - was created will be detailed. The objective when evaluating results

was getting to an ensemble that was more accurate than detectors individually

and that had a bigger area under the curve.

To evaluate the performance of the method, a comparison was made be-

tween several base outlier detectors, and also clustering and classification algo-

rithms that are often used as outlier classifiers, like K-means, Local outlier Fac-

tors, angle-base outlier detectors etc. A second comparison was made between

the model and other outlier detecion ensembles like iForest and LOCI. The com-

parison was meant to assess the quality of the classification AUC and Accuracy.

Keeping in mind though that this model will be later used to detect outliers in an

unsupervised way without the use of any ground-truth. So there’s an assumption

here that whatever results were evaluated for the classification model will prove

themselves correct in an unsupervised problem.

4.1
Performance of the Model

In order to compare the models and the detectors, several measures were

adopted such as Accuracy, Area Under the Curve (AUC), F1 Score, Predicted Pos-

itive Condition Rate, Specificity and Sensitivity. All base detectors and ensembles

tested are also available in the R environment1.

First technique used in the ensemble was HDBSCAN, which is a clustering

algorithm that extends the original DBSCAN by converting it into a hierarchical

clustering algorithm, and then using a technique to extract a flat clustering based

in the stability of clusters. For datasets Wine and Glass performance both in

AUC and Accuracy between HDBSCAN and the ensemble were quite similar. For

datasets BreastW and Letters though, performance of the ensemble was superior

to the original detector.

Second technique used in the ensemble was the Local Outlier Factor with a

K of 10. Multiple values of K had been tested previously in the detectors selection

1R is a free software environment for statistical computing and graphics. It compiles and runs
on a wide variety of UNIX platforms, Windows and MacOS. https://www.r-project.org/
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Table 4.1: Datasets used as base for building the ensemble and performance of
the methods:

Name Method Accur. AUC
F1
Score

Pred.
Pos.
Cond.
Rate

Spec. Sens.

SOD 0.9 0.72 0.2 0.05 0.95 0.22
FBOD 0.89 0.57 0.2 0.05 0.95 0.22

Glass LOF 10 0.8 0.78 0.07 0.16 0.93 0.22
HDBSCAN 0.81 0.8 0.25 0.3 0.82 0.28
ENSEMBLE 0.92 0.83 0.05 0.11 0.97 0.26
SOD 0.89 0.68 0.05 0 0.94 0
FBOD 0.9 0.63 0.05 0.1 0.95 0.1

Wine LOF 10 0.9 0.53 0.03 0.23 0.97 0.22
HDBSCAN 0.89 0.51 0.06 0.18 0.94 0.2
ENSEMBLE 0.88 0.89 0.1 0.09 0.97 0.24
SOD 0.89 0.72 0.07 0.05 0.06 0.91
FBOD 0.87 0.57 0.2 0.09 0.1 0.35

BreastW LOF 10 0.19 0.52 0.35 0 0.35 0
HDBSCAN 0.37 0.47 0.53 0.92 0.003 0.82
ENSEMBLE 0.89 0.79 0.6 0.4 0.9 0.35
SOD 0.77 0.55 0.15 0.03 0.3 0.29
FBOD 0.75 0.57 0.24 0.01 0.46 0.2

Letters LOF 10 0.05 0.35 0.35 0 0.78 0
HDBSCAN 0.55 0.52 0.6 0.9 0.05 0.68
ENSEMBLE 0.79 0.68 0.74 0.1 0.65 0.59

phase and K of 10 revealed to be the best choice for the datasets trained. Local

Outlier Factor was described in Section 2.2.2.2. In Table 4.1 it’s possible to see that

LOF had a performance quite inferior to the final ensemble for datasets BreastW

and Letters, while for dataset Glass it was similar and for dataset Wine it was

nearly superior to the final ensemble.

Third technique used was the Feature Bagging-based Outlier

Detection(105), which is an ensemble per se that combines results from multiple

outlier detection algorithms that are applied using different set of features. The

FBOD detector had a similar performance to the final ensemble in all datasets,

with a slight superior performance in dataset Wine.

Fourth and last technique used in the ensemble was the Subspace Outlier

Detection(129). This detector uses a robust subspace method for detecting such

inner outliers in a given dataset, which uses two dimensional-projections: de-

tecting outliers in subspaces with local density ratio in the first projected dimen-
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sions; finding outliers by comparing neighbour’s positions in the second pro-

jected dimensions. Each point’s weight is calculated by summing up all related

values got in the two steps projected dimensions, and then the points scoring

the largest weight values are taken as outliers. This detector had the best perfor-

mance among all detectors and was outperformed by the ensemble only for the

Letters dataset, reason why it was included in the final model.

It’s possible to see in Image 4.1 that performance though similar for some

detectors and the final ensemble - for the dataset Glass - meant different labels

for data points. This comparison won’t be possible when detecting outliers in

real-world datasets though, because a ground-truth won’t be available. That’s

why all bias had to be removed from the model construction in order to account

for outlier labeling in future datasets.

Figure 4.1: Data points colored by outliers and inliers as per the real dataset,
tested detectors and the final ensemble model.

Also, regarding the Bias-Variance trade-off theory discussed previously in

Chapter 2, both the ensemble and the algorithms tested had a low variance

but a high bias. What this means is that they were too well adjusted for the

datasets they were trained for. So even when performing multiple times the same
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algorithm in the same dataset, results would not vary much. But when applying

the whole ensemble from one dataset to the other, results showed that bias and

overfitting were indeed present. This is something to be worked on in future

works.

A comparison between AUC curves for detectors used and the final ensem-

ble was also provided in Figure 4.2.

Figure 4.2: AUC curves colored by algorithms.

4.2
Expected Lift

This work compared pre-detection of outliers and post-detection of out-

liers with the following metrics:

(i) Incremental Conversions:

(a) Conversions may be any event performed by the user when being

tracked in the study. A landing page view, an add to cart or a purchase.

In this case, the event considered were purchases.

(b) In this case, only incremental conversions were considered. In other

words, only conversions that happened because of the ad. Meaning

also: difference in conversions between Control and Exposed groups.

(ii) Incremental Sales:
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(a) Sales is the value of each conversion or purchase. So, whatever cur-

rency was tracked by the study, Sales would be the total amount in

value of all purchases.

(b) In this case, only incremental sales were considered. In other words,

only the value of incremental conversions. Meaning also: difference

in sales between Control and Exposed groups.

(iii) Incremental ROAS:

(a) ROAS is the Return on Ad Spend. Similar to ROI (Return on Invest-

ment), but only considering spend in media.

(b) In this case, only incremental ROAS was considered. In other words,

only return that happened because of the incremental conversions.

(c) Incremental ROAS is calculated dividing incremental Sales by total

investment.

Those metrics were chosen because they are the metrics used in Lift Studies

run by advertisers on Facebook.

4.3
Testing in real-world datasets

So after ensemble creation and testing, the model was also tested in real

Marketing Science datasets. Details were provided in Table 4.2. In the case of

the Retail Dataset, for example, 7% of outliers were removed after running the

Ensemble Model. And after excluding from the dataset what the model consid-

ered as outliers, difference in Lift increased from 173 conversions to 310 con-

versions. What this means is that prior to outlier detection, difference between

conversions in the Control Group and conversions in the Exposed Group was

173. But after removing outlier users from the dataset (post-detection), differ-

ence between Control Group and Exposed Group was 310 conversions. Differ-

ence in Sales was even bigger. Pre-detection (considering outliers), difference in

Sales between groups was $21.800, but post-detection it was $107.419, around 5

times bigger. ROAS, being a relative of Sales, also increased from 0.89x to 4.38x.

The Test Drive dataset had a pretty similar result to the Retail dataset.

And removing 6% of outliers meant doubling Sales and also ROAS. In this case,

however, for an Auto company, saying that your ads are driving double the

amount of sales you thought they were has a bigger impact, since the price of

a car is more expensive.

The Card dataset only had 1% of its users removed and a small increase

in Lift. This also meant a little difference in Sales and ROAS. One thing worth
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Table 4.2: Final results for Marketing Science datasets after running the ensemble
model

Dataset
% outliers
removed

Lift Pre-detection
Post-
detection

Conversions 173 310
Retail
dataset

7% Sales $21.800 $107.419

ROAS 0.89x 4.38x
Conversions 1201 4515

Travel
dataset

2% Sales $10.212 $85.451

ROAS 0.1x 0.23x
Conversions 615 656

Card
dataset

1% Sales $525 $612

ROAS 1.01x 1.17x
Conversions 102 223

Test
drive
dataset

6% Sales $6000000 $12400450

ROAS 1.2x 2.48x

noticing though is that the Card Issuer company that provided this dataset didn’t

know for sure how much "revenue" a converted user meant nor could they reveal

any actual card transaction data, so this work ended up estimating along with the

company how much "worth" a user is to a card company on average.

The Travel dataset also had a small amount of users removed by the Ensem-

ble model, but in this case it meant a big difference in Sales and in ROAS. And

this holds the hypothesis previously stated that outliers were indeed impacting

Lift results. The Travel company that provided the dataset had already confirmed

they deal with outliers on a daily basis, since most travel agencies buy air travel

tickets using the name of a person of the company and not the name of the com-

pany itself. So this "outlier" user which is in fact just a travel bureau ends up

getting mixed among the regular users. If this outlier ends up belonging to the

Control group, it can end up impacting the Lift calculation and the difference in

Sales.

So, generally speaking, all datasets were positively impacted by outlier

removal and all showed increase in Lift results between pre-detection and post-

detection.
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5
Conclusion and future work

5.1
Outcomes obtained

This work presented a method based on outlier detection ensemble, which

uses scores generated by base detectors and applies a probability-based compar-

ison combining their scores. Finally, it gets to a consensus of points that should

be labed as outliers in the process. The idea was to improve efficacy of base de-

tectors already used in Marketing Science datasets related to performance adver-

tisers. Search for improvement was done using outlier detection techniques and

ensembles to get to a model that would show better results.

Research and results obtained show that clustering and outlier detection

techniques alone are not sufficient to account for true outliers in most datasets.

Final model created from some of the most reliable existing base detectors and

ensembles showed good results with an average 3.5% increase in the AUC and

average 7% increase in accuracy.

As for results in Marketing Science datasets, after running the ensemble,

it was possible to see that increase in Lift of incremental conversions, sales

and ROAS was bigger the more outliers the ensemble had to clean away. This

reinforces the hipothesis this work had made upon the existance of outliers

hiding potential lift in conversions for datasets with a high outlier presence.

Although when discussing the bias-variance trade-off, this work achieve better

results in lowering variance than in lowering bias. As results in the previous

chapter point, for the Wine dataset it was not possible to achieve good results

neither with the detectors nor with the ensemble, which shows the model was

still very oriented to the datasets it trained with.

5.2
Future works

Future works should focus on lowering the bias as well as the variance,

or in other words, being context-free and able to deal with datasets from most

industries. To do this, one direction could be to focus on a more robust way to
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keep accuracy and AUC results while preventing from having a high bias. Maybe

testing different approachs on the model combination.

Another direction on building future works could be working with base

detectors that do not treat outliers on a binary sense but more on a probability

of data points being an outlier. Because even though scores are continuous

numbers that classify outliers from 0 to 1, when labelling outliers and measuring

performance, most works treat them in a binary way: either the point is or isn’t

an outlier. Future works could focus on the probability a point is an outlier and

how this could affect the overall results.
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