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Resumo

Da Silva, Anderson Gomes; Griffiths, Simon; Sasaki, Diana. Um
estudo sobre coloração de arestas e coloração total de
grafos. Rio de Janeiro, 2018. 74p. Dissertação de Mestrado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

Uma coloração de arestas é a atribuição de cores às arestas de um
grafo, de modo que arestas adjacentes não recebam a mesma cor. O menor
inteiro positivo para o qual um grafo admite uma coloração de arestas
é dito seu índice cromático. Fizemos revisão bibliográfica dos principais
resultados conhecidos nessa área. Uma coloração total, por sua vez, é a
aplicação de cores aos vértices e arestas de um grafo de modo que elementos
adjacentes ou incidentes recebam cores distintas. O número cromático total
de um grafo é o menor inteiro positivo para o qual o grafo possui coloração
total. Dada uma coloração total, se a diferença entre as cardinalidades
de quaisquer duas classes de cor for no máximo um, então dizemos que
a coloração é equilibrada e o menor número inteiro positivo que satisfaz
essa condição é dito o número cromático total equilibrado do grafo. Para tal
valor, Wang (2002) conjecturou um limite superior. Um grafo multipartido
completo balanceado é aquele em que o conjunto de vértices pode ser
particionado em conjuntos independentes com a mesma quantidade de
vértices, sendo adjacentes quaisquer dois vértices de diferentes partes da
partição. Determinamos o número cromático total equilibrado dos grafos
multipartidos completos balanceados, contribuindo, desta forma, com novos
resultados na área de coloração de grafos.

Palavras-chave
Coloração de grafos; Índice cromático; Coloração total; Coloração

total equilibrada.
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Abstract

Da Silva, Anderson Gomes; Griffiths, Simon (Advisor); Sasaki,
Diana (Co-Advisor). A study on edge and total coloring of
graphs. Rio de Janeiro, 2018. 74p. Dissertação de mestrado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

An edge coloring is the assignment of colors to the edges of a graph,
so that adjacent edges do not receive the same color. The smallest positive
integer for which a graph admits an edge coloring is said to be its chromatic
index. We did a literature review of the main known results of this area. A
total coloring, in turn, is the application of colors to the vertices and edges
of a graph so that adjacent or incident elements receive distinct colors.
The total chromatic number of a graph is the least positive integer for
which the graph has a total coloring.Given a total coloring, if the difference
between the cardinality of any two color classes is at most one, then we say
that the coloring is equitable and the smallest positive integer that satisfies
this condition is said to be the graph’s equitable total chromatic number.
For such value, Wang (2002) conjectured an upper bound. A complete
multipartite balanced graph is the one in which the set of vertices can be
partitioned into independent sets with the same quantity of vertices, being
adjacent any two vertices of different parts of the partition. We determine
the equitable total chromatic number of complete multipartite graphs,
contributing, therefore, with new results in the area of graph coloring.

Keywords
Graph coloring; Chromatic index; Total coloring; Equitable total

coloring.
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1
Introdução

1.1
História da teoria dos grafos

Há problemas do mundo físico que podem ser estudados a partir das
relações entre os elementos de um dado conjunto. Por exemplo, os elementos
do conjunto em questão podem ser cidades que possuem aeroportos. Dadas
duas cidades quaisquer pode haver voos entre as mesmas ou não. A respeito
da situação apresentada, alguém pode desejar descobrir o menor número de
conexões necessárias para se fazer uma determinada viagem de avião. Nesse
contexto, podemos representar cada cidade por um ponto e, dadas duas
cidades quaisquer, se houver um voo entre elas, então podemos representar
este fato simbolicamente por uma linha ligando os pontos que as representam.
Informalmente, um grafo é um conjunto de pontos, alguns dos quais são ligados
por linhas. O Problema das Sete Pontes, que é considerado o primeiro problema
de teoria dos grafos, originou-se no mundo físico.

No século XVIII, a cidade de Königsberg, Prússia (atualmente
Kaliningrado, Rússia), continha sete pontes ligando as quatro partes da
cidade, que é cortada pelo rio Pregel, conforme ilustra a Figura 1.1, retirada
de Lopes e Táboas (2015). Nela, as letras maiúsculas designam as quatro
partes de Königsberg, enquanto as letras minúsculas representam as sete
pontes. Naquela época questionava-se a possibilidade de percorrer todas as
pontes exatamente uma vez.

Figura 1.1: As sete pontes de Königsberg
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Capítulo 1. Introdução 9

A fim de solucionar o problema, o matemático suíço Leonard Euler
(1707 - 1783) denotou, por exemplo, a travessia das pontes d e g começando
na região A, passando por C e chegando à região D por ACD. Euler
percebeu, então, que, para haver uma maneira de atravessar as sete pontes
exatamente uma vez, era necessário uma sequência de oito letras envolvendo
as regiões A, B, C e D de Königsberg. O matemático notou ainda que,
na sequência procurada, se houvesse uma região ligada às demais por uma
quantidade ímpar de pontes, tal região deveria iniciar ou (exclusivo) finalizar
a sequência. Isso ocorre pois cada par de letras consecutivas representa uma
ponte. Portanto, a letra inicial (ou final) juntamente com sua sucessora (ou
antecessora) representam uma ponte e as demais ocorrências da letra na
sequência representam duas pontes. Além disso, a quantidade de vezes que uma
região com número ímpar de pontes deveria figurar na sequência deveria ser
dado pelo número de pontes daquela região acrescido de uma unidade, e depois
dividido por dois. No caso de Königsberg, as regiões A, B, C e D deveriam
figurar na sequência 3, 2, 2 e 2 vezes, respectivamente, o que totalizaria uma
sequência com 9 letras. Logo, a conclusão é que não é possível atravessar as
sete pontes exatamente uma vez.

O artigo intitulado “Solutio problematis ad geometriam situs
pertinentis”, escrito em 1735, apresentado para publicação em 1736 e impresso
em 1741 contém, além da solução do Problema das Sete Pontes, a resposta
a uma questão mais geral, a saber: se não importassem a figura do rio, sua
ramificação ou a quantidade de pontes, seria possível passar por todas as
pontes exatamente uma vez? A conclusão é que isso é possível se somente
se há nenhuma ou duas regiões com uma quantidade ímpar de pontes. A
explicação do problema geral pode ser encontrada em Lopes e Táboas (2015).
Embora o artigo de Euler seja o primeiro em teoria dos grafos de que se tem
notícia, o matemático aparentemente não imaginava que estava fornecendo
a base para uma nova área da matemática. Isso se infere, por exemplo, por
uma passagem, na qual fica claro que Euler acreditava estar resolvendo um
problema de geometria. Nela, Euler afirma que Leibniz chamou de Geometria
de situação (ou de posição, para usar um vocabulário técnico mais atual)
aquela que se ocupa de problemas em que o cálculo de quantidades não são
feitos. Assim, Euler se refere ao Problema das Sete pontes como um problma
de Geometria de posição e apresenta um método para resolver esse problema
(Lopes e Táboas, 2015).

Ainda fazendo referência a Lopes e Táboas (2015), os autores afirmam
que o artigo escrito por Euler exemplifica bem o surgimento de uma teoria
matemática, iniciando-se pela observação até chegar à solução do problema
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Capítulo 1. Introdução 10

por meio da reflexão, passando pelas etapas de abstração e codificação.
No entanto, por se tratar de um trabalho em uma área até então

desconhecida e pelo fato de as ideias ainda não estarem estabelecidas naquela
época, obviamente Euler não utilizou um vocabulário técnico na solução do
problema a ele apresentado; e porque nosso intuito ao exibir tal problema era
introduzi-lo no contexto em que ele foi solucionado, igualmente não definimos
formalmente os conceitos. No entanto, é necessário fazê-lo antes de prosseguir
com a apresentação de parte do desenvolvimento histórico de teoria dos grafos.

1.2
Algumas definições

As principais notações e conceitos desta seção foram tirados de Bondy e
Murty (2008). Para nós, um grafo G = (V (G), E(G)) é um par ordenado que
consiste em um conjunto finito e não vazio de vértices, denotado por V (G), e
um conjunto de arestas E(G) tal que cada aresta é um par não ordenado
de vértices não necessariamente distintos. Quando o contexto não suscitar
ambiguidade, denotamos os conjuntos de vértices e de arestas de um grafo
simplesmente por V e E, respectivamente. Se u, v ∈ V e se há uma aresta e
ligando os dois vértices, dizemos que u e v são extremidades de e e escrevemos
e = uv (= vu). Denotamos por n e m o número de vértices e de arestas de um
grafo G, respectivamente, e chamamos tais parâmetros de ordem e tamanho
de G. Os vértices e as arestas de G são ditos os elementos do grafo. Um grafo
H é dito um subgrafo de um grafo G se V (H) ⊆ V (G), E(H) ⊆ E(G). Neste
caso escrevemos H ⊆ G.

Observe que, de acordo com nossa definição, não está excluída a
possibilidade de uma aresta possuir o mesmo vértice como ambas extremidades.
Neste caso, tal aresta é chamada de laço. Se duas ou mais arestas possuem os
mesmos vértices como extremidades elas são chamadas de arestas paralelas.
Grafos que não possuem laços nem arestas paralelas são ditos grafos simples e
grafos que possuem arestas paralelas mas não possuem laços são chamados de
multigrafos. Na Figura 1.2 mostramos um desenho do multigrafo que modela
o Problema das Sete Pontes, apresentado no início do presente capítulo.
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Capítulo 1. Introdução 11

Figura 1.2: Multigrafo que modela o Problema das Sete Pontes

Como foi dito anteriormente, os vértices de um grafo G são representados
graficamente por pontos e as arestas, por linhas ligando suas extremidades. O
modo, no entanto, como os elementos de G são desenhados é irrelevante; logo,
um mesmo grafo pode ser representado de diferentes formas. Importam apenas
as relações de incidência e de adjacência entre os elementos. Um vértice v e
uma aresta e são ditos incidentes se v é uma extremidade de e. Dois vértices
são adjacentes, por sua vez, se são extremidades de uma dada aresta, enquanto
que duas arestas são ditas adjacentes se incidem em um mesmo vértice. A
vizinhança de v, denotada por NG(v) ou N(v) é o conjunto de vértices distintos
de v que são adjacentes a v. O grau de um vértice v, denotado por d(v) é o
número de arestas incidentes nele, com os laços sendo contados duas vezes.
Os graus mínimo e máximo de um grafo G são denotados por δ(G) e ∆(G),
respectivamente, e, como os nomes sugerem, são dados por δ(G) := min

v∈V (G)
d(v)

e ∆(G) := max
v∈V (G)

d(v).
Um caminho é um grafo cujos vértices podem ser dispostos em sequência

de modo que dois vértices são adjacentes se e somente se os vértices são
consecutivos. Um caminho também pode ser compreendido como um subgrafo
de um grafo dado que satisfaz a propriedade acima mencionada. Um ciclo,
por sua vez, pode ser visto como um caminho que contém a aresta que tem
como extremidades o primeiro vértice da sequência e o último. A exemplo do
caminho, um ciclo também pode ser visto como subgrafo de um grafo dado
que satisfaz a propriedade citada. Um componente conexo de um grafo G é
um subgrafo H ⊆ G em que há um caminho entre um vértice qualquer de H
e um vértice v qualquer de G se e somente se v for também um elemento de
H. Assim, diz-se que um grafo é conectado se ele tem apenas um componente
conexo, ou seja, se há um caminho ligando quaisquer dois de seus vértices. Um
grafo conectado que não possui ciclos é chamado de árvore.

De acordo com suas características, alguns grafos são agrupados em
famílias. Um grafo é dito r-partido (oumultipartido, mais genericamente) se seu
conjunto de vértices pode ser particionado em r subconjuntos independentes,

DBD
PUC-Rio - Certificação Digital Nº 1712691/CA



Capítulo 1. Introdução 12

isto é, se V =
r⋃
i=1

Xi, com Xi ∩ Xj = ∅ se i 6= j, e se quaisquer dois
vértices de uma mesma parte forem não adjacentes. Denotamos o k-ésimo
vértice da parte Xi por xik. Se, em um grafo r-partido, há uma aresta entre
quaisquer dois vértices de partes diferentes, então o grafo é dito r-partido
completo. Se um grafo r-partido completo com |Xi| = pi, i = 1, · · · , r, é tal
que os pi não são todos iguais, então denotamos tais grafos por Kp1,p2,··· ,pr . Se
p = p1 = p2 = · · · = pr, então o grafo r-partido completo é dito p-balanceado.
Neste caso, denotamos o grafo por Kr×p. A família dos grafos r-partidos
completos p-balanceados será objeto de nosso estudo, bem como a classe dos
multigrafos bipartidos, em que o conjunto de vértices pode ser particionado
em dois conjuntos independentes e são admitidas arestas paralelas. A respeito
de ambos os tipos de grafos (Kr×p e multigrafos bipartidos) estudaremos dois
tipos distintos de coloração. Por esta razão, passamos a expor brevemente o
desenvolvimento histórico desse problema de teoria dos grafos.

1.3
História do problema de coloração de grafos

Após a resolução do Problema das Sete Pontes por Euler, outros
trabalhos em teoria dos grafos que sucederam a descoberta do matemático
suíço incluem o estudo de redes elétricas por Kirchoff em 1847, a enumeração
de isômeros químicos orgânicos por Cayley em 1857 e um jogo desenvolvido por
Hamilton em 1859. Nos dois primeiros exemplos avançou-se no conhecimento
de conceitos básicos sobre árvores a partir de situações oriundas do mundo
físico. Quanto ao jogo de Hamilton, tratava-se de um dodecaedro onde cada
um dos 20 vértices representava uma cidade famosa do mundo e o objetivo
do jogador era passar por cada um dos vértices do dodecaedro exatamente
uma vez, sendo permitida a passagem de um vértice para outro apenas se eles
fossem adjacentes. Diga-se de passagem, o jogo não fez sucesso com as vendas
(Harary, 1969). Apesar de cada uma das contribuições citadas terem tido sua
importância no desenvolvimento de teoria dos grafos, certamente o problema
sobre coloração de grafos se destaca frente aos demais. Bondy e Murty (2008)
citam uma carta datada de 1852 em que se faz referência ao problema que deu
origem à área da coloração de grafos. Harary (1969), por sua vez, afirma que
há relatos segundo os quais Möbius já tinha conhecimento em 1840 do referido
problema, causando incerteza sobre sua origem.

O problema em questão, que na época ficou conhecido como conjectura
das quatro cores, foi comunicado a Hamilton por Augustus De Morgan em
uma carta datada de 1852, e apresentado a este por seu aluno Francis Guthrie.
O aluno queria uma razão para o fato de quatro cores serem suficientes
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Capítulo 1. Introdução 13

para colorir uma figura dividida em partes de modo que regiões de fronteira
recebessem cores diferentes. Em 1879 Alfred Kempe (1879) publicou uma
demonstração errônea para o problema, porém interessante por pelo menos
dois aspectos, quais sejam: primeiramente, a demonstração evidenciou as
limitações do uso de desenhos em provas; e em segundo lugar, uma ideia
central na argumentação, que ficou conhecida como cadeias de Kempe, serviu
não somente para demonstrar a veracidade do teorema em sua formulação
para cinco cores, mas também foi relevante na demonstração final do teorema
e de outros resultados, um dos quais será apresentado no capítulo seguinte.
Apenas em 1889 Heawood encontrou uma falha na demonstração de Kempe.
Outra demonstração equivocada foi apresentada por Tait em 1880, cuja falha
foi detectada em 1891 por Petersen.

Até o presente momento citamos o problema apenas de modo informal.
No começo dos anos 1900 o problema foi reformulado em termos de grafos
planares, ou seja, grafos que podem ser representados em um plano de modo
que suas arestas adjacentes não se interceptem. Se cada parte da figura que
procuramos colorir for denotada por um vértice e se regiões adjacentes forem
ligadas por uma aresta, então o grafo obtido será planar. Tal figura pode ser
pensada como um mapa em que regiões de fronteira recebem cores distintas.
Desse modo, o problema de coloração do mapa é equivalente a colorir os vértices
do grafo correspondente, de maneira que vértices adjacentes não recebam a
mesma cor, ou seja, estamos interessados em obter uma k-coloração (própria)
de vértices de um grafo G. Dessa forma, temos o seguinte enunciado.

Teorema 1.1 (Teorema das Quatro Cores, Appel e Haken, 1977) Todo grafo
planar simples possui coloração de vértices com 4 cores.

O teorema foi finalmente demonstrado em 1976 por Appel e Haken
(Appel e Haken, 1976; Appel et al., 1977) com o auxílio de um computador, fato
também notável a respeito do resultado, uma vez que foi o primeiro teorema
a ser demonstrado com ajuda extensiva do equipamento.

1.4
Coloração de arestas

Pode-se dizer que o problema das quatro cores deu origem a uma subárea
de teoria dos grafos chamada de coloração de grafos, em que deseja-se atribuir
cores a elementos dos grafos satisfazendo certas propriedades. Em geral, o
objetivo é que elementos conflitantes não recebam a mesma cor. No caso da
coloração de um mapa, por exemplo, o conflito é representado pela fronteira
entre duas regiões. Em termos de grafos, geralmente elementos adjacentes ou
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Capítulo 1. Introdução 14

incidentes devem ser atribuídos a cores distintas. O desejo de solucionar o
teorema das quatro cores o tornou tão importante que há diferentes modelagens
para o mesmo resultado. Uma delas diz respeito a coloração de arestas.
Definimos uma k-coloração (própria) de arestas como a atribuição de cores às
arestas de um grafo de modo que arestas adjacentes recebam cores diferentes.
O menor inteiro positivo k para o qual um grafo G possui uma k-coloração de
arestas é dito o índice cromático de G e denotado por χ′(G). Como veremos
adiante, o índice cromático de um grafo simples pode assumir apenas os valores
∆(G) ou ∆(G)+1, permitindo a classificação desses grafos em duas categorias,
a saber: grafos classe 1 e grafos classe 2, respectivamente.

Um tipo particular de coloração de arestas é a coloração de arestas por
listas. Suponha que para cada aresta e de um grafo G é dada uma lista L(e)
de cores permitidas em e. Se há uma coloração de arestas de G de modo que
a cor atribuída a cada aresta e é um elemento de L(e), então dizemos que a
coloração em questão é uma coloração de arestas de G pelas listas (L(e))e∈E. O
menor inteiro positivo k para o qual G possui coloração de arestas por qualquer
família de listas (L(e))e∈E (com |L(e)| = k ∀e ∈ E) é chamado de índice
lista-cromático de G e é denotado por ch′(G), conforme a notação encontrada
em Galvin (1995). De acordo com Bondy e Murty (2008), diversos autores,
incluindo Vizing, Gupta, Albertson e Collins, estabeleceram a Conjectura da
Coloração por Listas (List Coloring Conjecture (LCC) em inglês) acerca do
índice lista-cromático de grafos sem laços.

Conjectura 1.2 (LCC) Todo grafo sem laços G satisfaz ch′(G) = χ′(G).

1.5
Coloração total

Outro tipo de coloração dentro da subárea de coloração de grafos é a
k-coloração (própria) total de um grafo G, que consiste na atribuição de k
cores aos vértices e às arestas de G de modo que os elementos adjacentes
e incidentes recebem cores diferentes. Analogamente à coloração anterior,
número cromático total de um grafo G é o menor inteiro positivo k para
o qual G admite uma k-coloração total e é denotado por χ′′. A respeito
dessa coloração, Vizing (1968) e Behzad (1965) estabeleceram a Conjectura
da Coloração Total (Total Coloring Conjecture (TCC) em inglês).

Conjectura 1.3 (TCC, Behzad, 1965, Vizing, 1968) Todo grafo simples G
satisfaz ∆ + 1 ≤ χ(G)′′ ≤ ∆ + 2.

Se a diferença entre a quantidade de vezes que quaisquer duas cores
foram usadas na coloração total for no máximo 1, então ela é dita equilibrada.
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Denotamos por χ′′e(G) o menor inteiro positivo k para o qual um grafo G

possui uma k-coloração total equilibrada. Wang (2002) conjecturou um limite
superior para o número cromático total equilibrado. Tal resultado é conhecido
como a Conjectura da Coloração Total Equilibrada (Equitable Total Coloring
Conjecture (ETCC) em inglês).

Conjectura 1.4 (ETCC, Wang, 2002) Todo grafo simples G satisfaz ∆+1 ≤
χ(G)′′e ≤ ∆ + 2.

Acerca das colorações apresentadas, cumpre esclarecer que a palavra
“própria”, utilizada nas definições entre parênteses, refere-se ao fato de que
elementos incidentes e adjacentes não devem receber a mesma cor. Omitimos
o termo posteriormente pois colorações em teoria dos grafos, em geral
procuram evitar conflitos, que são representados pela incidência e adjacência
de elementos. Como falar de uma coloração que não seja própria não faz
sentido, assumimos que a característica de ser própria já está incluída no
termo coloração, não sendo necessário usar o adjetivo, portanto. Além disso,
salientamos que, embora seja possível utilizar qualquer conjunto de elementos
para representar as cores, nós usaremos o conjunto dos inteiros {1, 2, · · · , k}
quando nos referirmos a uma k-coloração de um grafo.

1.6
Objetivos, questão norteadora e organização do trabalho

O objetivo geral deste trabalho é apresentar uma pesquisa em coloração
de grafos, subárea de teoria de grafos em que se busca atribuir o menor número
possível de cores a elementos do grafo respeitando certas propriedades. Os
objetivos específicos, por sua vez, são: (a) estudar os principais resultados
sobre coloração de arestas, investigando, em particular a coloração de arestas
por listas de multigrafos bipartidos; (b) abordar os principais resultados
sobre coloração total de grafos, com foco na coloração total equilibrada
das classes dos grafos r-partidos completos p-balanceados, para os quais
determinaremos seus números cromáticos totais equilibrados. Para tanto,
introduziremos novas técnicas ao apresentarmos algoritmos para colorir total
e equilibradamente todos os grafos do tipo Kr×p. Contribuir-se-á, dessa forma,
com novos resultados para a ETCC.

A fim de nortear o trabalho, a seguinte questão foi elaborada: após
uma análise de dois tipos diferentes de colorações de grafos, quais novas
contribuições podem ser dadas para essa área, tendo em mente, em particular,
grafos multipartidos? Para responder a pergunta proposta utilizaremos revisão
bibliográfica como principal metodologia.
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Além das Considerações finais, este trabalho possui três capítulos.
No presente capítulo, Introdução, é feita uma exposição do surgimento de
teoria dos grafos; menção de definições relevantes sobre grafos, enfatizando,
sobretudo, as mais importantes a respeito de coloração de grafos; e explicitação
dos objetivos, da questão norteadora e da metodologia do trabalho. No segundo
capítulo, Sobre coloração de arestas, exibiremos os principais resultados
de coloração de arestas e de coloração de arestas por lista, focando, em
particular, nos fatos conhecidos mais relevantes para a determinação do índice
lista-cromático de multigrafos bipartidos. Galvin (1995) verificou a LCC para
essa classe de grafos e faremos um estudo desse resultado. No terceiro capítulo,
Sobre coloração total, apresentaremos resultados gerais e relevantes sobre
coloração total de grafos. Também investigaremos a coloração total equilibrada
dos grafos r-partidos completos p-balanceados, verificando a ETCC para as
seguintes classes de grafos:

1. K2×p, χ′′e = ∆ + 2;

2. Kr×p com r par (r ≥ 4) e p ímpar, χ′′e = ∆ + 2;

3. Kr×p com r par (r ≥ 4) e p par, χ′′e = ∆ + 1;

4. Kr×p com r ímpar e p ímpar, χ′′e = ∆ + 1.

5. Kr×p com r ímpar e p par, χ′′e = ∆ + 1;

Os resultados do terceiro capítulo foram apresentados no Latin-American
Workshop on Cliques in Graphs (LAWCG) em 2016. Uma versão completa
do artigo foi recentemente publicada na Discrete Applied Mathematics (DAM)
(da Silva et al., 2018). Os resultados mais novos serão submetidos à conferência
Latin and American Algorithms, Graphs and Optimization Symposium
(LAGOS), que ocorrerá em 2019 e foram apresentados na conferência Cologne
Twente Workshop (CTW) em 2018. No quarto e último capítulo, Considerações
finais, retomaremos a questão norteadora e mencionaremos os principais
resultados do trabalho, com destaque para os novos resultados na área
de coloração de grafos. Abordaremos também as perspectivas de trabalhos
futuros. Destacamos que no segundo capítulo faz-se um estudo de resultados
já conhecidos da área de coloração de arestas. No terceiro capítulo, por
sua vez, são apresentados resultados do autor da presente dissertação, que
foram desenvolvidos em colaboração com as professoras Simone Dantas, da
Universidade Federal Fluminense (UFF) e Diana Sasaki, da Universidade do
Estado do Rio de Janeiro (UERJ).
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Sobre coloração de arestas

Considere o seguinte problema: os dois professores de Matemática de
uma escola que possui três turmas estão planejando o horário das aulas e
querem se organizar de modo a minimizar a quantidade de tempos de aula
para as turmas. Suponha que um professor tem que lecionar dois tempos na
primeira turma, um tempo na segunda e um na terceira, enquanto o outro
professor deve lecionar um tempo na primeira turma, um na segunda e dois
na terceira. Denotando por x1 e x2 os professores, por y1, y2 e y3 as turmas
e representando por uma aresta cada tempo de aula que cada professor deve
ministrar em determinada turma, o problema consiste em colorir as arestas
do multigrafo da Figura 2.1 com o menor número possível de cores, ou seja,
deve-se determinar o índice cromático do seguinte multigrafo.

Figura 2.1: Multigrafo que modela o problema do horário de aulas

Naturalmente, duas arestas adjacentes no multigrafo acima representam
uma incompatibilidade, seja porque um professor não pode lecionar em duas
turmas simultaneamente (arestas x1y2 e x1y3, por exemplo) ou porque uma
turma não pode ter aula de dois professores ao mesmo tempo (caso das arestas
x1y2 e x2y2, por exemplo). Assim, arestas adjacentes devem receber cores
diferentes. Sendo assim, uma possível solução para o problema apresentado
é retratado na Figura 2.2.
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Figura 2.2: Solução do problema do horário das aulas

O multigrafo acima deve ser interpretado da seguinte forma: no primeiro
tempo, o professor x1 deve dar aula para a turma y2, enquanto o professor x2

deve estar na turma y3. O raciocínio para os demais tempos de aula é análogo.
Conforme dissemos no capítulo anterior, o problema de coloração em

grafos teve início com a indagação acerca da possibilidade de se colorir qualquer
mapa utilizando no máximo quatro cores. O problema em questão foi resolvido
em 1976 por Appel e Haken (Appel e Haken, 1976; Appel et al., 1977). Em
1997 uma demonstração um pouco mais simples foi apresentada por Robertson
et al. (1997). A primeira tentativa errada de demonstrar o teorema foi feita por
Kempe em 1879. Apesar do erro, uma ideia de Kempe (que ficou conhecida
como cadeias de Kempe) foi utilizada para a demonstração do Teorema de
Vizing. Dado um grafo G com uma coloração de arestas, uma cadeia de
Kempe consiste em um subgrafo de G formado pelas arestas coloridas com
duas cores dadas e pelas extremidades dessas arestas. O Teorema de Vizing,
cujos enunciado e demonstração serão apresentados após a demonstração do
seguinte lema, permite a classificação de grafos simples em duas categorias de
acordo com o valor de seu índice cromático.

Lema 2.1 Um grafo é 2-regular se e somente se seus componentes conexos
são ciclos.

Demonstração. De fato, seja G um grafo cujos componentes conexos são
todos ciclos. Então, G é claramente 2-regular. Seja G um grafo 2-regular. No
que segue, os rótulos dos vértices de G são dados de maneira conveniente. Tome
um vértice qualquer de G, digamos, v1. Como G é 2-regular, v1 tem 2 vizinhos.
Seja v2 um desses vizinhos. Novamente, v2 tem dois vizinhos: um deles é v1 e o
outro chamaremos de v3. Procedendo com este raciocínio, como G é finito, em
algum momento obteremos um vértice vk, que terá o vértice v1 como vizinho,
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além de vk−1. Se v1 não fosse o outro vizinho de vk, implicaria que um vértice
vj seria o outro vizinho de vk, onde j ∈ {2, 3, · · · , k − 2}. No entanto, vj já
tem dois vizinhos, a saber: vj−1 e vj+1. Assim, vk seria um terceiro vizinho
de vj, o que contradiria nossa suposição de que G é 2-regular. Assim, G tem
um componente conexo que é Ck. O grafo G−Ck também deve ser 2-regular.
Procedendo analogamente obteremos outro ciclo e assim sucessivamente. �

Teorema 2.2 (Vizing, 1964, Gupta, 1966). Todo grafo simples G satisfaz

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Demonstração. A primeira desigualdade é satisfeita trivialmente. Basta
tomar um vértice cujo grau seja ∆, o grau máximo do grafo. Assim, para colorir
as arestas incidentes em tal vértice são necessárias ∆ cores diferentes para que
a coloração seja própria, como desejado. Agora suponha por contradição que
nem todo grafo satisfaz a segunda desigualdade, isto é, suponha que existe um
grafo G tal que χ′(G) > ∆(G)+1. Assuma, sem perda de generalidade, que G é
minimal, ou seja, suponha que a remoção de uma aresta e = v0v1 ∈ E faz com
que H = G\e satisfaça χ′(H) ≤ ∆(H) + 1. Se χ′(H) fosse estritamente menor
que ∆(H) + 1, bastaria colorir a aresta e com uma nova cor e, assim, teríamos
uma coloração deG com χ′(H)+1 ≤ ∆(H)+1 ≤ ∆(G)+1, contradizendo nossa
suposição a respeito do índice cromático de G. Podemos ter ∆(G) = ∆(H) ou
∆(G) = ∆(H)+1. No segundo caso, basta colorir a aresta e com uma cor nova.
Assim, G ficaria colorido com ∆(G) + 1 cores, contradizendo nossa suposição
inicial.

Vamos supor, então, que ∆(G) = ∆(H). Se χ′(H) = ∆(H), novamente
bastaria colorir e com uma cor nova, o que iria contradizer nossa hipótese.
Podemos assumir, então, que χ′(H) = ∆(H) + 1. Como estamos supondo que
H tem uma coloração com ∆(H) + 1 cores, todo vértice de H tem pelo menos
uma cor disponível1. Suponha que a cor disponível em v0 seja c0 e que a cor
disponível em v1 seja c1. Seja v2 o vértice tal que a cor de v0v2 é c1 e seja c2

a cor disponível em v2. Procedendo assim, seja G′ o subgrafo de G construído
do seguinte modo: as arestas de G′ são da forma v0vi, onde i = 1, 2, · · · , k, de
modo que a cor ci esteja disponível em vi e seja a cor da aresta v0vi+1 para
todo i = 1, · · · , k − 1. Temos que k ≤ dG(v0). Mas além disso é necessário
que a construção de G′ termine em apenas uma das seguintes situações com a
cor ck: quando ck for uma cor disponível em v0 ou quando ck = ci para algum

1Dada uma coloração de arestas de um grafo, dizemos que uma cor c está disponível em
um vértice se ela não é usada em nenhuma das arestas incidentes em tal vértice.
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i = 1, 2, · · · , k − 2. Na Figura 2.3 exibimos o subgrafo G′ construído segundo
a descrição acima.

Figura 2.3: Subgrafo de G

1o caso: ck é uma cor disponível em v0.
Neste caso, basta colorir a aresta v0vk com cor ck e, para i = 1, · · · , k−1,

as arestas da forma v0vi devem ser coloridas com cor ci. Pela construção
do subgrafo G′ sabemos que tal distribuição de cores é possível. Assim,
encontraríamos uma coloração de G com ∆(G) + 1 cores, contrariando nossa
suposição inicial.

2o caso: ck = ci para algum i = 1, 2, · · · , k − 2.
Se c0, a cor disponível em v0, estiver disponível em vk, a aresta v0vk

pode ser colorida com c0 e as arestas da forma v0vi, com cor ci, onde
i = 1, 2, · · · , k − 1. Pela construção do subgrafo G′ isso é possível. Se c0 está
disponível em vi, semelhantemente, a cor da aresta v0vi pode ser c0 e as arestas
v0vj, com j = 1, 2, · · · , i−1 podem ser coloridas com cj. Em qualquer um desses
casos obteríamos uma (∆(G)+1)-coloração de arestas de G, contrariando nossa
hipótese inicial.

Se c0 não estiver disponível em vk nem em vi, considere o subgrafo
G′′ = G[Mc0∪Mck

], ondeMc0 eMck
são, respectivamente, os emparelhamentos

que contêm todas as arestas de H que, pela nossa coloração, receberam cores
c0 e ck.

Afirmamos que os componentes conexos de G′′ são caminhos ou ciclos
de comprimento par. De fato, um vértice de G′′ possui grau no máximo dois,
em cujo caso há uma aresta de cor c0 e outra de cor ck incidentes no vértice
em questão. Qualquer outra aresta incidente nesse vértice só poderia ter cor c0

ou ck, o que seria uma contradição, pois haveria arestas adjacentes recebendo
mesma cor.

Se todos os vértices de um componente conexo tem grau dois, pelo
Lema 2.1, tal componente é um ciclo. Neste caso, o ciclo deve ser de
comprimento par, pois não há coloração de ciclos de comprimento ímpar com
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duas cores. Isso ocorre porque se colorirmos as arestas do ciclo em sequência
alternando duas cores, a última aresta deveria receber a mesma cor da primeira;
mas, como se tratam de arestas adjacentes, elas não poderiam receber a mesma
cor.

Se todos os vértices de um componente conexo tem grau um, tal
componente é apenas uma aresta com suas extremidades, pois se qualquer uma
das extremidades fosse adjacente a outro vértice, o grau de tal extremidade
seria no mínimo dois.

Por fim, se há vértices de grau um e dois, podemos chamar um vértice
de grau um de w1 e seu vértice adjacente de w2. Este, por sua vez, possui um
outro vértice adjacente, que chamaremos de w3. Prosseguindo com o raciocínio,
chegaremos, pela finitude do grafo, a um último vértice, que não pode ser
adjacente a nenhum dos anteriores. Assim, este vértice também tem grau um
e é o último na sequência que forma o caminho que descrevemos.

Em G′′, os vértices v0, vi e vk são extremidades de caminhos, pois a cor
c0 está representada2 em vk e vi, enquanto a cor ck está disponível neles. Já
o vértice v0 tem a cor c0 disponível e a cor ck representada em si. Logo, v0,
vi e vk não podem pertencer ao mesmo componente conexo de G′′. Tome um
caminho em que apenas um dos três vértices faz parte. Suponha que o caminho
em questão contém v0. Trocando as cores c0 e ck das arestas desse componente
conexo, obtemos que a cor c0 passa a estar representada no vértice v0, enquanto
a cor ck passa a estar disponível nele. Assim, podemos aplicar cor ci nas arestas
v0vi para todo i = 1, 2, 3, · · · , k. Os demais casos são semelhantes. �

Teorema 2.3 (Vizing, 1964) Seja M multigrafo com grau máximo ∆ e
multiplicidade máxima µ. Então

∆ ≤ χ′(M) ≤ ∆ + µ.

Omitimos a demonstração deste teorema tendo em vista que ela é análoga
à prova do teorema anterior.

Teorema 2.4 (Shannon, 1949) Seja M um multigrafo com grau máximo ∆.
Temos

χ′(M) ≤ 3
2∆.

Demonstração. Suponha, por contradição, que o resultado é falso e seja M
um contraexemplo minimal, ou seja, M é um multigrafo com χ′(M) > 3

2∆
tal que, se removida uma aresta e = uv, o grafo H = M\e satisfaz χ′(H) ≤

2Dada uma coloração de arestas de um grafo, dizemos que uma cor está representada em
um vértice se ela é usada em uma aresta incidente nele.
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3
2∆(H). Observamos que podem haver arestas distintas de e que tenham como
extremidades u e v, já que M é um multigrafo.

Afirmamos que χ′(H) =
⌊3

2∆(H)
⌋
. Se o índice cromático de H fosse

menor, existiria k ∈ Z+ tal que χ′(H) =
⌊3

2∆(H)
⌋
− k e poderíamos

atribuir à aresta e = uv uma cor distinta das χ′(H) já usadas e obteríamos
uma coloração de M com

⌊3
2∆(H)

⌋
− k + 1 cores. Independentemente da

paridade de ∆(H) essa coloração de M teria no máximo 3
2∆(M), já que

k ≥ 1 e que ∆(H) ≤ ∆(M). Isso iria contradizer nossa suposição inicial que
χ′(M) ≥ 3

2∆(M).
O grau máximo de H pode assumir dois valores, a saber: ∆(M) ou

∆(M)− 1, já que H foi obtido pela remoção de uma aresta. No segundo caso,
basta colorir a aresta removida e = uv com cor χ′(H) + 1 =

⌊3
2(∆(M)− 1)

⌋
+

1 ≤
⌊3

2∆(M)
⌋
. Então, assumimos que ∆(H) = ∆(M).

Afirmamos que χ′(H) = χ′(M) − 1. Como H tem coloração com⌊3
2∆(M)

⌋
cores, usar uma nova cor em e já garante uma coloração própria

de M . Daí, χ′(M) ≤
⌊3

2∆(M)
⌋

+ 1. Se χ′(M) fosse estritamente menor que

o limite dado, isso implicaria que χ′(M) ≤
⌊3

2∆(M)
⌋
, contradizendo nossa

suposição inicial.
Denotando por dH(u) o grau do vértice u no multigrafo H, temos que

dH(u) ≤ ∆(M) − 1. Assim, há pelo menos χ′(M) − 1 − (∆(M) − 1) cores
disponíveis no vértice u. Se alguma dessas cores não estiver representada em
v, podemos aplicar a cor em questão na aresta e = uv e, assim, teríamos uma
coloração de M com

⌊3
2∆(M)

⌋
cores, contradizendo nossa suposição inicial.

Então devemos assumir que as cores disponíveis em u estão representadas
em v e vice-versa. Assim, na coloração de H, o total de cores representadas
nos vértices u e v é dado por 2χ′(M)− 2∆(M) + µ, onde µ é a multiplicidade
das arestas que ligam u e v no multigrafo H. Logo, µ ≤ µ− 1, com µ sendo a
multiplicidade máxima de M .

Se µ < µ− 1, temos
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2χ′(M)− 2∆(M) + µ < 2χ′(M)− 2∆(M) + µ− 1

= 2χ′(H)− 2∆(M) + µ+ 1

≤ 3∆(M)− 2∆(M) + µ+ 1

< ∆(M) + µ+ 1

Temos que ∆(M) + µ + 1 ≤
⌊3

2∆(M)
⌋
⇐⇒ 2∆(M) + 2µ + 2 <

2
⌊3

2∆(M)
⌋
≤ 3∆(M) ⇐⇒ 2µ+ 2 < ∆(M) ⇐⇒ µ+ 1 < ∆(M)

2 . Por outro
lado, o Teorema 2.3 nos garante que χ′(M) ≤ ∆(M) + µ e a nossa hipótese

inicial é que 3
2∆(M) < χ′(M), o que implica que ∆(M)

2 < µ. Em particular,
∆(M)

2 < µ + 1, contradizendo a conclusão a que chegamos anteriormente.
Então podemos assumir que µ = µ− 1.

Isso implica que a quantidade de cores usadas para colorir as arestas
incidentes em u e em v em H é 2χ′(M) − 2∆ + µ − 1 > 2χ(H) − 2∆(M) +
∆(M)

2 + 1. Independentemente da paridade de ∆(M) conclui-se que esse

valor é estritamente maior que 3
2∆(M), contradizendo o fato de que χ′(H) =⌊3

2∆(M)
⌋
. �

Observação 2.5 Como 3
2∆ ≤ ∆ + µ ⇐⇒ ∆ ≤ 2µ, temos que se o

grau máximo do multigrafo for menor ou igual ao dobro da multiplicidade
máxima do grafo, então o limite dado pelo Teorema 2.4 é melhor do que a
cota do Teorema 2.3. Como o Teorema 2.4 depende apenas do grau máximo
do multigrafo, isto representa uma vantagem de utilizá-lo.

2.1
Determinando o índice lista-cromático de multigrafos bipartidos

No problema citado no início deste capítulo, nosso objetivo era obter
uma coloração das arestas de um multigrafo. Porém, há situações em
que desejamos obter uma coloração de arestas de um determinado grafo
para o qual há uma lista prévia de cores que podem ser escolhidas para
cada aresta, conforme esclarecemos melhor através do exemplo a seguir.
Suponha que em um departamento de uma universidade, três alunos queiram
encontrar-se individualmente com três professores para tirarem dúvidas acerca
das disciplinas. Suponha ainda que as reuniões duram 30 minutos e podem
ocorrer às 8 h, às 8h30, às 9 h ou às 9h30. Estes horários serão denotados
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respectivamente pelos números 1, 2, 3 e 4. Na Figura 2.4 abaixo os vértices
a1, a2 e a3 denotam os alunos, enquanto os vértices p1, p2 e p3 representam os
professores. Perto de cada aresta está a lista de cores que indicam os horários
disponíveis em comum entre cada par de professor e aluno. Assim, o aluno a1

e o professor p1 podem encontrar-se no horário 1, 2 ou 3, por exemplo.

Figura 2.4: Problema das reuniões com professores

Note que se os professores e alunos escolherem aleatoriamente um dos
horários em que ambos estejam disponíveis, outros encontros podem ser
inviabilizados. Por exemplo, se o aluno a1 e o professor p1 se reunirem no
horário 3 e se o aluno a1 encontrar o professor p2 no horário 2, o aluno
a1 não teria um horário em comum com o professor p3 para que eles se
reunissem. Também, temos que arestas adjacentes precisam ser atribuídas a
cores diferentes por um entre dois motivos: pelo fato de um aluno não poder
estar em reunião com dois professores diferentes ao mesmo tempo ou pelo fato
de professores não poderem atender a dois alunos simultaneamente. Dessa
forma, uma possível solução para o problema é dada pela Figura 2.5 abaixo.

Figura 2.5: Problema das reuniões com professores

O mais importante resultado ainda em aberto sobre coloração de arestas
por listas é a Conjectura da Coloração por Listas (LCC), segundo a qual, todo
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grafo sem laços tem índice lista-cromático igual ao índice cromático. Galvin
(1995) verificou tal conjectura para multigrafos bipartidos. Este resultado
passamos a expor a seguir tomando como base a demonstração encontrada
em Galvin (1995), de onde também tiramos as principais notações e conceitos.
Antes, no entanto, faz-se necessário apresentar algumas definições e resultados
preliminares que serão importantes na demonstração do teorema.

Seja G = (V,E) um grafo e sejam f, g : V → N funções que associam a
cada vértice de G um número inteiro não negativo. Para todo v ∈ G, associe
um conjunto L(v) tal que |L(v)| = f(v). Dizemos que G é (f, g)-escolhível se,
para qualquer escolha das listas L(v), existem conjuntos B(v) ⊆ L(v) (para
todo v ∈ V ) tais que |B(v)| = g(v) e B(v) ∩ B(u) = ∅ se uv ∈ E. Se G
é (f, g)-escolhível para f(v) = n e g(v) = 1, então G é dito n-escolhível. O
menor inteiro positivo k para o qual um grafo G é k-escolhível é denotado
por ch(G) e é dito o número lista-cromático do grafo. Em outras palavras, se
atribuímos a cada vértice de um grafo G uma lista de cores e somos capazes
de obter uma coloração de vértices de tal modo que a cor dada a cada vértice
pertence ao conjunto das cores previamente designadas a elas, então temos uma
coloração de vértices por listas de G ou simplesmente uma coloração por listas
de G. Os conceitos aqui apresentados são análogos àqueles apresentados para
a coloração de arestas por listas no Capítulo 1. Introduzimos tais definições
aqui pois há uma relação entre o índice lista-cromático de um grafo e o número
lista-cromático de seu grafo linha.

SejaM um multigrafo. O grafo linha deM , denotado por L(M), é o grafo
em que cada vértice representa uma aresta de M , isto é, V (L(M)) = E(M),
e em que dois vértices de L(M) são adjacentes se e somente se as arestas
correspondentes em M são adjacentes. Na Figura 2.6 exibimos um multigrafo
M e seu grafo linha correspondente.

Figura 2.6: Multigrafo M e seu grafo linha L(M)

A afirmação a seguir foi feita por Galvin (1995), porém não demonstrada
pelo autor. Apresentamos uma demonstração para a mesma.

Afirmação 2.6 Seja M um multigrafo. O índice cromático de M é
igual ao número cromático do grafo linha L(M). De modo análogo, o
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índice lista-cromático de M é igual ao número lista-cromático de L(M).
Simbolicamente, χ′(M) = χ(L(M)) e ch′(M) = ch(L(M)).

Demonstração. Provaremos apenas a afirmação que χ′(M) = χ(L(M)), visto
que a outra é análoga. Sejam M um multigrafo e c : E → {1, 2, · · · , χ′(M)}
uma coloração de arestas de M . Quando obtemos o grafo linha L(M), este
possui naturalmente uma coloração de vértices em que a cor de cada vértice é
a cor da sua aresta correspondente em M . A coloração de vértices de L(M) é
própria. Com efeito, suponha por contradição que a coloração não é própria.
Então há dois vértices u, v ∈ V (L(M)) adjacentes que recebem a mesma cor.
Se u e v são adjacentes em L(M), então suas arestas correspondentes em
M são adjacentes pela construção do grafo linha. Daí, as cores das arestas
correspondentes seria a mesma, contradizendo o fato de que a coloração c é
própria. Isso implica que χ(L(M)) ≤ χ′(M).

Suponha, agora, que o número cromático de L(M) é estritamente menor
do que o índice cromático de M . Então considere uma coloração de vértices de
L(M) com χ(L(M) cores. Afirmamos que se as arestas de M forem coloridas
com as cores dos vértices correspondentes de L(H), a coloração obtida será
própria. Caso contrário haveria duas arestas adjacentes e e f (correspondentes
aos vértices u e v, respectivamente) em M que recebem a mesma cor. Isso
implicaria que u e v são adjacentes em L(M) e que teriam recebido a mesma
cor, o que é uma contradição. Assim, seria possível colorir as arestas de
M com uma quantidade menor do que seu índice cromático, o que é um
absurdo. Como χ(L(M)) não pode ser estritamente menor que χ′(M), segue
que χ(L(M)) = χ′(M), como desejado. �

2.1.1
Um lema sobre digrafos para auxiliar na demonstração do teorema

Para nós, um digrafo ou grafo dirigido D = (V,−→E ) é um par ordenado
composto por um conjunto não vazio de vértices V (D) (ou simplesmente
V , quando o contexto não suscitar dúvidas) e por um conjunto de arestas
orientadas ou arcos −→E (D) (ou −→E ), cujos elementos são pares ordenados de
vértices distintos. Dados dois vértices u, v ∈ V admitimos que eles sejam
ligados por no máximo um arco em cada direção. Denotamos por (u, v) um arco
direcionado de u para v, que são chamados, respectivamente, de cauda e cabeça
do arco. Em um digrafo, temos duas definições análogas à definição de grau
de vértice. Como os arcos são orientados, temos as noções de grau de entrada
e grau de saída de um vértice v, respectivamente denotados por deg−(v) e
deg+(v), com deg−(v) = |{u : (u, v) ∈ −→E }| e deg+(v) = |{u : (v, u) ∈ −→E }|. A
vizinhança fechada de um vértice v é o conjunto N [v] = {u : (v, u) ∈ E}∪{v}.
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Logo, |N [v]| = deg+(v)+1. O grafo subjacente aD é o grafo G = (V,E) em que
o conjunto de arestas de G são os arcos de D sem orientação, isto é, as arestas
uv tais que (u, v) ou (v, u) são elementos de −→E . Um núcleo de um digrafo D é
um conjunto independenteK ⊆ V tal que para todo u ∈ V \K, existe v ∈ K de
modo que (u, v) ∈ E. Seja D um digrafo e S ⊆ V (D). O subdigrafo F induzido
por S é um digrafo tal que V (F ) = S e, dados u, v ∈ S, (u, v) ∈ E(F )
se e somente se (u, v) ∈ E(D) (ou (v, u) ∈ E(F ) ⇐⇒ (v, u) ∈ E(D),
analogamente). Neste caso, um núcleo de F é também dito um núcleo de S.
Usamos a Figura 2.7 para exemplificar os conceitos de grau de entrada e de
saída, bem como o de núcleo.

Figura 2.7: Digrafos

Na Figura 2.7 temos que deg+(u) = 1 e deg−(u) = 2. Note que nem
todo grafo possui núcleo. Por exemplo, em D, qualquer núcleo (caso existisse),
deveria ser um conjunto unitário. No entanto, nenhum dos vértices é cabeça de
arcos que tenham como caudas os demais três vértices. Já D′ tem K = {u′, z′}
como um núcleo. O seguinte lema relaciona o conceito de núcleo com a ideia
de um grafo ser (f, g)-escolhível.

Lema 2.7 (Bondy, Boppana e Siegel) Seja D um digrafo em que todo
subdigrafo induzido possui um núcleo. Se f, g : V (D) → N são tais que
f(v) ≥ ∑

u∈N [v]
g(u) sempre que g(v) > 0, então D é (f : g)-escolhível.

Demonstração. SejaD = (V,−→E ) um digrafo em que todo subdigrafo induzido
por um conjunto S possui um núcleo K. Sejam f, g : V (D)→ N funções com
f(v) ≥ ∑

u∈N [v]
g(u) quando g(v) > 0. Provaremos este resultado por indução

sobre ∑
v∈V

g(v), o somatório das imagens da função g.
Base: Se g(v) = 0 ∀v ∈ V , o resultado é válido para qualquer função

f : V (D) → N simplesmente por não haver v ∈ V tal que g(v) > 0 para
verificar.

Hipótese de indução: Assuma, agora, que ∑
v∈V

g(v) ≥ 1 e assuma que o
lema é válido para algum k ∈ Z+ com k <

∑
v∈V

g(v).
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Passo indutivo: Seja W o conjunto dos vértices cuja imagem pela função
g é diferente de 0. Em outras palavras,W = {v ∈ V : g(v) > 0}. Sejam L(v)v∈V
as listas de cores permitidas nos vértices. Assim, |L(v)| = f(v) ∀v ∈ V . Seja
c uma cor qualquer pertencente ao conjunto ⋃

v∈W
L(v) e seja S o conjunto

de vértices v tais que c ∈ L(v) e que estão em W ao mesmo tempo, isto
é, S = {v ∈ W : c ∈ L(v)}. Por hipótese, o subdigrafo de D induzido
por S possui um núcleo K. Sejam f ′, g′ : V → N definidas por g′(v) =g(v)− 1, se v ∈ K

g(v), caso contrário
e f ′(v) = |L(v)\{c}|.

Como g′(v) ≤ g(v) ∀v ∈ V , então ∑
v∈V

g′(v) ≤ ∑
v∈V

g(v). Dado v ∈ V , há
três possibilidades: v ∈ K, v ∈ S\K ou v ∈ V \S. Afirmamos que nos três
casos, temos f ′(v) ≥ ∑

u∈N [v]
g′(u) quando g(v) > 0.

De fato, suponha que v ∈ K. Então g′(v) = g(v) − 1 e, como todos
os vértices em S possuem c como uma de suas cores disponíveis, então

f ′(v) = f(v) − 1. Daí, f ′(v) = f(v) − 1 ≥
( ∑
u∈N [v]

g(u)
)
− 1 = g(v) − 1 +( ∑

u∈N [v]\{v}
g(u)

)
≥ ∑

u∈N [v]
g′(u).

Suponha, agora, que v ∈ V \S. Então g′(v) = g(v). Se g′(v) = 0,
não há o que verificar. Se g′(v) > 0, então v ∈ W e c /∈ L(v) (caso
contrário, teríamos v ∈ S, pela construção de S). Daí, f ′(v) = f(v). Segue
que f ′(v) = f(v) ≥ ∑

u∈N [v]
g(u) ≥ ∑

u∈N [v]
g′(u), como desejado.

Por fim, suponha que v ∈ S\K e seja N [v] = {v, v1, · · · , vk}. Como v ∈
S\K, pela definição de núcleo de S, vi ∈ K para algum i = 1, · · · , k. Suponha,
sem perda de generalidade que v1 ∈ K. Então, g′(v1) = g(v1) − 1. Também,
g′(v) = g(v). Pela construção de S, c ∈ L(v) e, por isso, f ′(v) = f(v) − 1.

Então, f ′(v) = f(v)− 1 ≥
( ∑
u∈N [v]

g(u)
)
− 1 = g(v) + g(v1) + · · ·+ g(vk)− 1 =

g(v) + (g(v1)− 1) + · · ·+ g(vk) ≥
∑

u∈N [v]
g′(u).

Portanto, podemos aplicar a hipótese de indução e, dela, segue que
D é (f ′ : g′)-escolhível. Assim, há conjuntos B′(v) ⊆ L(v)\{c} tais que
|B′(v)| = g′(v) e B′(u) ∩ B′(v) = ∅ se u e v são adjacentes. Sejam B(v)
dados por B(v) = B′(v) ∪ {c} se v ∈ K e B(v) = B′(v), caso contrário.
Assim, B(v) ⊆ L(v) ∀v ∈ V , com |B(v)| = g(v). Na construção dos conjuntos
B a partir de B′, somente os conjuntos associados a vértices do núcleo K

receberam um novo elemento, a saber: a cor c. Portanto, comoK é um conjunto
independente, isto é, seus elementos são dois a dois não adjacentes, tem-se que
B(u) ∩B(v) = ∅ para quaisquer dois vértices adjacentes u e v. �
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Corolário 2.8 Seja D digrafo com grau de saída máximo n − 1, com todo
subdigrafo induzido de D possuindo um núcleo. Então D é (kn, k)-escolhível
para todo k ∈ N. Em particular, D é n-escolhível.

Demonstração. Sejam k ∈ N, n − 1 o grau de saída máximo do digrafo e
v ∈ V tal que g(v) > 0. Como o somatório ∑

u∈N [v]
g(u) tem no máximo n

parcelas, todas iguais a k, segue que ∑
u∈N [v]

g(u) ≤ kn = f(v). �

2.1.2
A demonstração do teorema em si

Antes de enunciarmos e demonstrarmos o teorema principal desta seção,
faz-se necessário apresentar mais algumas definições e indicar um resultado.

Um clique em um digrafo é um subconjunto do conjunto de vértices em
que há um arco em pelo menos uma direção para cada par de vértices do
subconjunto em questão. Um digrafo D pode ser visto como uma orientação
das arestas do seu grafo subjacente G, isto é, a atribuição de direção às arestas
de G. Um digrafo é dito normal se todo clique possui um núcleo. Nesse caso,
tal núcleo deve ser composto por um único vértice, já que os vértices de um
clique são dois a dois adjacentes. Assim, uma orientação normal de um grafo
G é o digrafo D, subjacente a G em que todo clique possui um núcleo. Um
grafo é dito solúvel, por sua vez, se toda orientação normal possui um núcleo.
De acordo com Galvin (1995), todo subgrafo induzido3 de um grafo solúvel é
também solúvel. Por fim, um grafo perfeito é aquele em que todo subgrafo
induzido H tem número cromático igual ao tamanho do maior clique em H.

Teorema 2.9 (Maffray, 1992) Seja M um multigrafo e L(M) seu grafo linha.
L(M) é solúvel se e somente se L(M) é perfeito.

Omitimos a demonstração do Teorema 2.9, que pode ser encontrada em
Maffray (1992). Maffray (1992) provou que o grafo linha de um multigrafo é
perfeito se e somente se o multigrafo não contém ciclos ímpares de comprimento
pelo menos 5. Como todo multigrafo bipartidoM não possui ciclos de tamanho
ímpar, segue que L(M) é perfeito. Daí, é válido o seguinte corolário do
Teorema 2.9.

Corolário 2.10 O grafo linha de um multigrafo bipartido é solúvel.

Observação 2.11 Seja D uma orientação normal do grafo linha de um
multigrafo bipartido. Segue, do fato de que todo subgrafo induzido de um

3Dado um grafo G, um subgrafo H de G é dito subgrafo induzido se V (H) ⊆ V (G) e
e = uv ∈ E(H) ⇐⇒ u, v ∈ V (H).
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grafo solúvel é também solúvel, que todo subdigrafo induzido de D é solúvel
e, portanto, possui núcleo.

Teorema 2.12 (Galvin, 1995) Sejam M um multigrafo bipartido e L(M) seu
grafo linha. Suponha que χ(L(M)) = n. Então L(M) é (kn : k)-escolhível para
todo k ∈ Z+; em particular, L(M) é n-escolhível.

Demonstração. Seja [X, Y ] uma partição do conjunto de vértices de M , ou
seja, X e Y são conjuntos independentes e são tais que X ∩ Y = ∅ e X ∪ Y =
V (M). Sejam x ∈ X e y ∈ Y . O conjunto {e ∈ E(M) : x e e são incidentes}
é chamado de linha, enquanto o conjunto {e ∈ E(M) : y e e são incidentes} é
uma coluna. Para todo e ∈ E(M), denotamos a linha e a coluna que contém e

por R(e) e C(e), respectivamente. Assim, duas arestas e e e′ são adjacentes se
R(e) = R(e′) e/ou se C(e) = C(e).

Seja c : E(M) → {1, · · · , n} uma coloração própria das arestas de M .
Vamos obter o seguinte digrafo D = (V (L(M),−→E (L(M))) (= (V (D),−→E (D)),
para simplificar a notação) a partir da orientação das arestas de L(M): dados
e, f ∈ V (L(M)), (ef) ∈ −→E ) se R(e) = R(f) e c(e) > c(f), ou se C(e) = C(f)
e c(e) < c(f).

Afirmamos que deg+(e) < n para todo e ∈
−→
E , pois c é injetiva em

N [e]. De fato, seja N [e] = {e, e1, · · · , ek} a vizinhança fechada de e. Note que
e e ei (∀1 ≤ i ≤ k) são adjacentes em L(M) pela definição de N [e]. Isso
implica que, em M , as arestas e e ei são adjacentes e, portanto, recebem cores
diferentes. Tome então vértices ei, ej ∈ N [e], com ei 6= ej (1 ≤ i, j ≤ k).
Se ei e ej são adjacentes em L(M), então c(ei) 6= c(ej) pelo raciocínio do
caso anterior. Assuma, então, que ei e ej não são adjacentes em L(M). Como
ei, ej ∈ N [e], (eei, eej ∈

−→
E . Logo, R(e) = R(ei) ou C(e) = C(ei). Faremos

o primeiro caso apenas, já que o segundo é análogo. Se R(e) = R(ei), então
R(ej) 6= R(ei). Caso contrário, ei e ej seriam adjacentes em L(M). Daí, segue
que C(e) = C(ej). Temos que c(e) < c(ej) e c(e) > c(ei), o que implica que
c(ei) 6= c(ej). Então, c é, de fato, injetiva em N [e]. Como a coloração usa n
cores, segue que deg+(e) < n, como desejado. Pelo Corolário 2.8 temos que
provar que todo subdigrafo induzido de D possui um núcleo. Mostraremos que
D é orientação normal e, pelo Corolário 2.10, seguirá o resultado desejado.

Seja {e1, · · · , ek} um clique em D. Então os elementos desse conjunto
são dois a dois adjacentes em L(M) e em M também. Daí, existe um vértice
em M no qual as arestas e1, · · · , ek incidem. Logo, R(e1) = · · · = R(ek) = R

e/ou C(e1) = · · · = C(ek) = C. Vamos supor que vale o primeiro caso, já que
o segundo é análogo. Como c é injetiva em R, o clique contém um elemento
ei (1 ≤ i ≤ k) tal que c(ei) < c(ej) ∀ 1 ≤ j ≤ k, j 6= i. Pelo modo como a
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orientação D foi definida, (ejei) ∈
−→
E para todo 1 ≤ j ≤ k, j 6= i. Daí, ei é o

núcleo do clique. Isso mostra que D é orientação normal.
Vimos que D é orientação normal. Isso implica, pelo Teorema 2.10 e pela

Observação 2.11, que todo subdigrafo induzido de D possui núcleo. Isso e o
fato de que deg+(e) < n em D implicam, pelo Corolário 2.8, que L(M) é
(kn : k)-escolhível para todo k ∈ Z+. Em particular, L(M) é n-escolhível.

Com esse teorema mostramos que χ(L(M)) = ch(L(M)). Pela
Afirmação 2.6, segue que χ′(M) = ch′(M), verificando, dessa forma, a LCC
para a classe dos multigrafos bipartidos. �

Corolário 2.13 Seja G um grafo bipartido simples. Então ch′(G) = ∆(G).

Demonstração. König (1916) provou em 1916 que grafos bipartidos simples
são classe 1 (χ′(G) = ∆(G)). Uma demonstração para este fato pode ser
encontrada em Bondy e Murty (2008). Pela última frase da demonstração
do Teorema 2.12, segue que ch′(G) = ∆(G). �

Conforme mostramos ao longo deste capítulo, há resultados importantes
já conhecidos no sentido de determinar os índices cromático e lista-cromático
de grafos. Além dos teoremas aqui apresentados, destacamos ainda o trabalho
de Erdös e Wilson (1977), que provaram que a maioria dos grafos é classe 1.
Diversas classes de grafos já tiveram seu índice cromático determinado. Alguns
exemplos são: os grafos bipartidos, cujo índice cromático é ∆. Este resultado foi
demonstrado por König (1916). Os grafos completos4 Kn, com χ(Kn) = ∆ se n
for par ou χ(Kn) = ∆ + 1 se n for ímpar (n ≥ 2). Apresentaremos no capítulo
seguinte uma coloração para essa família de grafos como proposto por Soifer
em Soifer (2008). As árvores5 possuem índice cromático igual a ∆. Apesar
dos avanços, há ainda problemas em aberto envolvendo coloração de arestas.
Além da Conjectura da Coloração por Listas, aqui discutida, destacamos a
Conjectura de Goldberg-Seymour, proposta pelos autores independentemente
por Goldberg (1973) e por Seymour (1979).

Para um multigrafo G, definimos sua densidade ímpar por

W(G) = max
X⊆V (G),|X|≥3 ímpar

⌈
2|E(G[X])|
|X| − 1

⌉

se |V (G)| ≥ 3 e W(G) = 0, caso contrário. O subgrafo de G induzido
por X é denotado por G[X]. A Conjectura de Goldberg-Seymour é a seguinte
afirmação.

4Um grafo completo é aquele em que quaisquer dois vértices são adjacentes.
5As árvores são grafos conexos que não possuem ciclos.
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Conjectura 2.14 (Conjectura de Goldberg-Seymour, Goldberg, 1973,
Seymour, 1979) Seja G um multigrafo. Então,

χ′(G) ≤ max{W(G),∆(G) + 1}

A conjectura em questão é importante pois apresenta um limite para o
índice cromático de multigrafos.
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Sobre coloração total

Além da definição de coloração total apresentada no Capítulo 1, este
conceito pode ser definido simbolicamente da seguinte forma: uma coloração
total de um grafo G = (V,E) é uma função c : E ∪ V → Z+ de modo que
c(α) 6= c(β) para qualquer par de elementos adjacentes ou incidentes α e β.

Há algumas classes de grafos para os quais o número cromático total
foi determinado, entre as quais citamos os grafos completos, os ciclos (Yap,
1996) e os multipartidos completos balanceados (Bermond, 1974). Há muitas
famílias de grafos cujo número cromático total ainda não é conhecido. Alguns
resultados importantes no sentido de ao menos limitar o valor que χ′′ pode
assumir são a TCC (Behzad, 1965; Vizing, 1968), o artigo de Hind, Molloy,
Reed (1998) e o artigo de Molloy e Reed (1998). No primeiro artigo mostra-se
que χ′′(G) ≤ ∆(G)+8 ln8 (∆(G)) para ∆(G) suficientemente grande, enquanto
que no segundo é provado que χ′′(G) ≤ ∆(G) + 1026.

Dito isto, passamos agora à apresentação de resultados preliminares sobre
grafos r-partidos completos p-balanceados para, na sequência, partirmos para
a determinação do número cromático total equilibrado da referida família de
grafos. O texto que segue é baseado no artigo de Silva et al. (2018) e no
artigo intitulado “Equitable total chromatic number of two classes of complete
r-partite p-balanced graphs”, apresentado na conferência CTW 2018 e que
será submetido para a conferência LAGOS 2019, conforme explicitamos na
Tabela 3.1.
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Tabela 3.1: Resultados obtidos

Kr×p
χ′′e Referência

r p

r = 2 p ∆ + 2 DAM (2018)
r ≥ 3 ímpar ímpar ∆ + 1 DAM (2018)
r ≥ 4 par ímpar ∆ + 2 DAM (2018)
r ≥ 4 par p = 2 ∆ + 1 LAGOS 2019
r ≥ 4 par p = 4 ∆ + 1 LAGOS 2019
r ≥ 4 par p ≥ 6 par ∆ + 1 LAGOS 2019
r ≥ 3 ímpar p = 2 ∆ + 1 LAGOS 2019
r ≥ 3 ímpar p ≥ 4 par ∆ + 1 LAGOS 2019

3.1
Coloração total equilibrada de Kr×p

Lembramos que um grafo r-partido completo p-balanceado, denotado por
Kr×p, é aquele em que o conjunto de vértices V pode ser particionado em r

conjuntos independentes
(
V =

r⋃
i=1

Xi

)
, cada um tendo cardinalidade p e onde

há uma aresta ligando quaisquer dois vértices de partes diferentes da partição.
Desse modo, é fácil ver que tais grafos possuem rp vértices e, como há (r−1)p

arestas incidindo em cada vértice, há um total de (r − 1)rp2

2 arestas. O total

de elementos a serem coloridos é de (r − 1)rp2

2 +rp. Esses grafos são regulares,
ou seja, todos os vértices possuem o mesmo grau. No caso dos grafos Kr×p, seu
grau máximo é (r − 1)p.

Quando uma cor é aplicada em um vértice ou em uma aresta que
incide neste vértice, diz-se que a cor foi representada em tal vértice. Em toda
(∆+1)-coloração total equilibrada de grafos regulares todas as cores devem ser
representadas em todos os vértices, já que devem ser usadas ∆ cores diferentes
para as arestas incidentes em um mesmo vértice e uma cor para o vértice
em questão. Usaremos este fato na coloração dos grafos r-partidos completos
p-balanceados em que r é ímpar ou r e p são pares, com r ≥ 4, pois eles
possuem (∆ + 1)-coloração total equilibrada.

Denotamos o j-ésimo vértice da i-ésima parte da partição de V por xij.
Sendo assim, temos Xi = {xi1, xi2, · · · , xip}. Conforme dissemos no capítulo 1,
não há uma forma única de desenhar um grafo. Apesar disso, sempre que
desenharmos um grafo Kr×p, disporemos os vértices como em uma matriz com
r colunas e p linhas, em que cada coluna corresponde a uma parte Xi e o
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vértice xij estará na j-ésima linha e na i-ésima coluna. Na Figura 3.1 abaixo
exemplificamos isto.

Figura 3.1: Disposição dos vértices de Kr×p

Pensando na disposição dos vértices como em uma matriz, definimos
uma aresta horizontal como uma aresta do tipo xabxcb. Também, se citarmos
os vértices de uma dada linha a, estamos nos referindo a x1a, x2a, · · · , xra,
com 1 ≤ a ≤ p. Analogamente, os vértices de uma certa coluna b são
xb1, xb2, · · · , xbp, com 1 ≤ b ≤ r. A disposição de vértices tal qual exibimos
auxilia não só a visualização, mas também a compreensão das duas definições
seguintes, que serão usadas nas colorações que mostraremos.

Definição 3.1 Um emparelhamento horizontal de distância i ligando os
vértices das linhas a e b (1 ≤ a < b ≤ p) é o emparelhamento {xjaxj+i,b|1 ≤
j ≤ r}, sendo o índice j + i tomado módulo r.

Na Figura 3.2 exibimos emparelhamentos horizontais de distância 1 e 2
ligando os vértices das linhas 1 e 2 do grafo K3×3.

Figura 3.2: Emparelhamentos horizontais de distância 1 e 2 ligando os vértices das
linhas 1 e 2 do grafo K3×3 representados respectivamente por linhas contínuas e
tracejadas
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Observamos que 1 ≤ i ≤ r − 1. Também, tanto aqui quanto no decorrer
do texto, ao mencionarmos um resultado tomado módulo α, se o mesmo for
congruente a 0 módulo α, então usamos α em vez de 0.

Como 1 ≤ j ≤ r, cada emparelhamento tem r arestas. Logo, se
aplicarmos uma cor c em um emparelhamento horizontal de distância ligando
vértices de duas linhas quaisquer, então c fica representada em todos os
vértices das linhas em questão. Note que dadas duas linhas quaisquer, há r−1
emparelhamentos horizontais de distância entre elas, já que j + i é tomado
módulo r e o fato de que j ≥ 1 implicam que i ≤ r − 1.

É fácil verificar que os r−1 emparelhamentos horizontais de distância são
disjuntos entre si. Com efeito, sejam {xjaxj+i,b|1 ≤ j ≤ r} e {xjaxj+k,b|1 ≤ j ≤
r}, respectivamente emparelhamentos horizontais de distância i e k ligando os
vértices das linhas a e b. Supondo por contradição que existem i e k para os
quais as arestas xjaxj+i,b e xjaxj+k,b são iguais, obteríamos que i ≡ k mod r.
Isso, somado ao fato de que 1 ≤ i, k ≤ r− 1, implica que i = k, contradizendo
a hipótese de que os emparelhamentos de distância tomados são distintos.

Definição 3.2 Analogamente, definimos emparelhamento vertical de distância
i entre as colunas a e b (1 ≤ a < b ≤ r) como o emparelhamento {xajxb,j+i|1 ≤
j ≤ p}, sendo o índice j + i tomado módulo p.

Na Figura 3.3 são exibidos os emparelhamentos verticais de distância 0,
1 e 2 do grafo K2×3.

Figura 3.3: Emparelhamentos verticais de distâncias 0, 1 e 2 ligando os vértices das
colunas 1 e 2 do grafo K2×3 representados, respectivamente, pela linha preta, pela
linha tracejada e pela linha de cor cinza

Observe que, diferentemente do caso anterior, agora i pode assumir o
valor 0. Então, dadas duas colunas quaisquer, há p emparelhamentos verticais
de distância entre as mesmas e todos eles são disjuntos entre si, como se pode
verificar com argumento similar ao usado na definição anterior. Além disso,
como 1 ≤ j ≤ p, os emparelhamentos desse tipo possuem p arestas.
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As duas afirmações que apresentamos a seguir serão relevantes para
determinar agrupamentos disjuntos de pares de linhas ou de colunas de Kr×p.
Salientamos que em alguns momentos faremos menção a grafos completos com
uma quantidade de vértices que faz alusão às r partes ou aos p vértices em
cada parte do grafo r-partido completo p-balanceado. Quando isto ocorrer,
denotaremos seus emparelhamentos respectivamente por Ri e Pi em vez de
Mi, que é a notação usual para emparelhamentos.

Afirmação 3.3 (Soifer, 2008) Seja Kn um grafo completo com n ≥ 3 ímpar.
Tal grafo possui n emparelhamentos disjuntos.

Demonstração. Seja V = {v1, v2, · · · , vn}. Para obter os n emparelhamentos
desejados, desenhe um polígono regular com n vértices dispostos em sentido
horário. A aresta vivi+1, i = 1, 2, · · · , n, deve pertencer ao emparelhamento
Mi, sendo os índices de v e de M tomados módulo n. As arestas da forma
vi−jvi+1+j devem pertencer ao mesmo emparelhamento que as arestas vivi+1

para todo i = 1, 2, · · · , n e para todo j = 1, 2, · · · , n− 1
2 − 1.

Note que o intevalo de variação de j se deve ao fato de que se repetíssemos
o processo para j = n− 1

2 , obteríamos vi−n−1
2
vi+ n+1

2
. Como esses índices

são congruentes módulo n, concluímos que a aresta dada seria um laço,
uma contradição. Como o grafo Kn tem ordem ímpar, então ele não possui
emparelhamento perfeito e o vértice que sobra em cada emparelhamento Mi é
vi+ n+1

2
, i = 1, 2, · · · , n. �

Na Figura 3.4 mostramos como obter, a partir do algoritmo apresentado,
os 7 emparelhamentos disjuntos deK7. Note que, geometricamente, o algoritmo
consiste em colocar cada um dos lados de um heptágono regular em
emparelhamentos distintos e, depois, atribuir todas as diagonais paralelas a
um lado ao mesmo emparelhamento do lado em questão.
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Figura 3.4: Emparelhamentos de K7

Afirmação 3.4 (Soifer, 2008) Seja Kn um grafo completo com n ≥ 4 par.
Tal grafo possui n− 1 emparelhamentos disjuntos.

Demonstração. O algoritmo é semelhante ao anterior. Dado um grafo Kn,
com n ≥ 4 par, basta tomar cada emparelhamento do grafo Kn−1 unido
com a aresta que tem como extremidades vn e a aresta que sobra em cada
emparelhamento Mi de Kn−1, 1 ≤ i ≤ n− 1. �

Observe a Figura 3.5 a seguir, em que os emparelhamentos de K8 são
obtidos a partir dos emparelhamentos de K7. Geometricamente, para um n

qualquer, o algoritmo consiste em desenhar um polígono regular com n − 1
lados e colocar o n-ésimo vértice no centro do círculo circunscrito ao polígono
de n− 1 lados. Daí, basta tomar os emparelhamentos como no caso anterior e,
para cada um deles, acrescentar a aresta composta pelos dois vértices restantes.
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Figura 3.5: Emparelhamentos de K8

Feitas estas observações de caráter preliminar, podemos determinar o
número cromático total equilibrado de Kr×p.

3.1.1
K2×p

Em 1994 Fu determinou que o número cromático total equilibrado de
K2×p é igual a ∆ + 2. Embora o número cromático total equilibrado para esta
classe de grafos já tenha sido determinadao, descrevemos a seguir um algoritmo
elegante, por nós desenvolvido, para obter uma coloração total equilibrada
para K2×p com ∆ + 2 cores. Além da elegância do algoritmo, outro motivo que
justifica sua apresentação é o fato de que a técnica nele empregada também
será usada em no caso dos grafos Kr×p, com r par (r ≥ 4) e p ímpar.

Teorema 3.5 (Fu, 1994) K2×p tem χ′′e = ∆ + 2. Embora o teorema seja de
Fu, apresentamos a demonstração similar à demonstração de Silva, Dantas e
Sasaki (2018).

Antes de apresentarmos o algoritmo, mostraremos que K2×p não tem
coloração total com ∆ + 1 cores. Assim, χ′′e 6= ∆ + 1 para essa família de
grafos.

Lema 3.6 (Chetwynd e Hilton, 1988) Seja G um grafo regular. G é
conformable se e somente se possui uma coloração de vértices com ∆ + 1 cores
c1, c2, · · · , c∆+1 tal que i1 ≡ i2 ≡ · · · ≡ i∆+1 ≡ |V (G)| ( mod 2), onde ij,
1 ≤ j ≤ ∆ + 1, é o número de vértices coloridos com cor cj.
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Por outro resultado que pode ser encontrado em Chetwynd e Hilton
(1988), sabe-se que se G é regular e não é conformable, então G não é tem
coloração total com ∆ + 1 cores, não podendo ter, portanto, coloração total
equilibrada com ∆ + 1 cores.

Afirmamos que K2×p não é conformable. Com efeito, caso fosse, K2×p

teria coloração de vértices com ∆ + 1 = p + 1 cores em que cada uma das
classes de cor tem cardinalidade par. Para isso, seria necessário que cada uma
das p + 1 cores fossem usadas pelo menos 2 vezes, o que totalizaria 2p + 2,
vértices. No entanto, há p vértices. Logo, K2×p não é conformable e, portanto,
não admite (∆ + 1)-coloração total.
Demonstração.

Algoritmo
1o passo - coloração das arestas:
Atribua cor i + 1 ao emparelhamento vertical de distância i ligando os

vértices das colunas 1 e 2 (isto é, entre as partes X1 e X2). Conforme explicado
no subcapítulo 3.1, há p emparelhamentos disjuntos desse tipo. Portanto, são
usadas p cores distintas nessa parte do processo e cada uma delas é usada p
vezes.

2o passo - coloração dos vértices:
Atribua cor p + 1 aos vértices da parte X1 e cor p + 2 aos vértices da

parte X2.
Precisamos mostrar que elementos adjacentes e incidentes recebem cores

diferentes e que a diferença entre as cardinalidades de duas classes de cor é no
máximo 1.

De fato, os vértices de X1 são não adjacentes, já que o grafo é bipartido,
assim como os vértices de X2. Como a cardinalidade de cada um desses
conjuntos é p, isso significa que as cores p + 1 e p + 2 são usadas exatamente
p vezes cada. Como essas cores não são usadas em arestas, nenhuma aresta
recebe a mesma cor que suas extremidades.

Como as arestas são coloridas de acordo com os emparelhamentos
verticais de distância, segue da própria definição deste tipo de emparelhamento
que arestas adjacentes recebem cores distintas. Da observação feita no
subcapítulo 3.1 após a Definição 3.2 segue que cada uma das cores empregadas
em arestas foi utilizada p vezes. As cores p+ 1 e p+ 2 são usadas exatamente
p vezes cada na coloração dos vértices do grafo. Isto prova que a diferença
entre as cardinalidades de quaisquer duas classes de cor distintas é 0. Assim,
a coloração total apresentada é equilibrada, como desejado.

Seja AX1X2 = [aij] uma matriz de coloração de arestas de ordem p × p
em que a entrada aij representa a cor atribuída à aresta que tem x1i e
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x2j como suas extremidades. Note que toda entrada pode ser escrita como
ai,i+j ∀i = 1, 2, · · · , p, onde 1 ≤ i, j ≤ p e o índice i + j é tomado módulo p.
O algoritmo que apresentamos acima em termos de emparelhamentos verticais
de distância equivale a afirmar que a entrada ai,i+j da matriz AX1X2 é j + 1
mod (p), isto é, que a aresta x1ix2,i+j recebe cor j + 1 mod (p).

Já que os vértices recebem cores não usadas em arestas, para mostrar
que o algoritmo funciona em termos matriciais, basta verificar que arestas
adjacentes recebem cores diferentes.

Note que duas arestas x1ix2,i+j e x1i′x2,i′+j′ são adjacentes se i = i′ ou se
i+ j = i′ + j′, com 1 ≤ i, i′, j, j′ ≤ p e os índices i+ j e i′ + j′ sendo tomados
módulo p, o que implica que suas entradas correspondentes em AX1X2 estão
na mesma linha ou coluna.

Sejam x1ix2,i+j e x1i′x2,i′+j′ arestas adjacentes e assuma que i = i′. Então
i + j 6= i + j′, ou seja, j 6= j′ (caso contrário, as arestas seriam as mesmas).
Se as arestas em questão recebessem a mesma cor, teríamos j + 1 ≡ j′ + 1
mod (p), o que implica j ≡ j′ mod (p). Como 1 ≤ j, j′ ≤ p, então j ≡ j′

mod (p) é equivalente a afirmar que j = j′, que é absurdo, pois contradiz a
afirmação acima de que j 6= j′. Assuma agora, que i+ j ≡ i′+ j′ mod (p), isto
é, i− i′ ≡ j′− j mod (p). Devemos ter, então i 6= i′ para que as arestas sejam
distintas. Suponha, por contradição, que as arestas adjacentes que tomamos
recebem a mesma cor, ou seja, suponha que j + 1 ≡ j′ + 1 mod (p). Então,
j ≡ j′ mod (p) =⇒ j′ − j ≡ 0 mod (p). Pelas duas afirmações, concluímos
que i− i′ ≡ 0 mod (p), o que implica que i = i′, já que 1 ≤ i, i′ ≤ p. Absurdo,
pois neste caso temos i 6= i′. Assim, as arestas recebem cores diferentes, como
desejado.

Cada entrada da matriz AX1X2 representa a cor que uma aresta de K2×p

recebe e, de acordo com o algoritmo descrito, usamos as cores do conjunto
{1, 2, · · · , p} para colorir as arestas de tal grafo. O que provamos acima
mostra que cada cor aparece no máximo uma vez em uma dada linha ou
coluna da matriz de coloração de arestas. Se houvesse alguma cor do conjunto
{1, 2, · · · , p} que não aparecesse em uma linha (ou coluna, respectivamente),
então haveria p− 1 elementos em tal linha (coluna). Consequentemente, todo
elemento de {1, 2, · · · , p} aparece exatamente uma vez por linha (coluna).
Assim, cada uma dessas p cores é usada precisamente p vezes na coloração de
arestas de K2×p. Já as cores p+ 1 e p+ 2 são usadas p vezes cada na coloração
dos vértices do grafo. Isto prova que a diferença entre as cardinalidades de
quaisquer duas classes de cor distintas é 0. Assim, a coloração total apresentada
é equilibrada. �

Apresentamos a seguir o grafo K2×4 colorido de acordo com o algoritmo
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descrito acima.

Figura 3.6: Coloração total equilibrada de K2×4

Para o caso do grafo K2×4, cuja coloração foi mostrada acima, a matriz
de coloração de arestas é dada por:

AX1X2 =


1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1



3.1.2
Kr×p, com r ≥ 4 par e p ímpar

Inicialmente mostraremos que χ′′e 6= ∆ + 1 para estes grafos. Em seguida
apresentaremos um algoritmo para mostrar que χ′′e = ∆ + 2, confirmando,
assim, a validade da ETCC para Kr×p, com r ≥ 4 par e p ímpar.

Afirmação 3.7 (da Silva, Dantas e Sasaki, 2018) Se Kr×p tem r ≥ 4 par e p
ímpar, então χ′′e 6= ∆ + 1.

Demonstração. Suponha, por contradição, que grafos completos r-partidos
p-balanceados, em que r ≥ 4 é par e p é ímpar, tem coloração total com ∆ + 1
cores. Assim, cada cor deve ser representada em cada um dos vértices.

O caso p = 1 é particular, porque tais grafos são completos e são de
ordem par. Sabe-se que tais grafos não possuem coloração total com ∆ + 1
cores (Kubale, 2004). Então, assumiremos que p ≥ 3.

Afirmamos que uma quantidade ímpar de vértices não pode receber a
mesma cor em qualquer (∆ + 1)-coloração total equilibrada. De fato, suponha,
por contradição, que uma quantidade ímpar y de vértices recebem a mesma cor
i (y ≤ p, pois para haver mais de p vértices recebendo a mesma cor, isso iria
requerer que vértices de partes diferentes recebessem a mesma cor, o que não
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pode ocorrer, já que vértices de partes diferentes são adjacentes). Neste caso,
uma quantidade ímpar (rp − y) de vértices sobraria (este número é ímpar já
que rp é par e y é ímpar) e a cor i seria representada em arestas que tem estes
vértices como suas extremidades. Como cada aresta tem duas extremidades,
pelo menos um vértice não teria a cor i representada.

Afirmamos que uma quantidade par de vértices não pode receber a
mesma cor em qualquer coloração total equilibrada dos grafos desta seção
com ∆ + 1 cores. De fato, suponha que existem cores a1, a2, · · · , ak usadas
b1, b2, · · · , bk vezes (bi é par ∀i = 1, · · · , k), respectivamente, para colorir os
vértices de uma parte arbitrária Xj. Concluiríamos que uma quantidade ímpar
(p− (b1 + b2 + · · ·+ bk)) de vértices não foram coloridos. Pelo provado acima,
não existe cor usada para colorir um número ímpar de vértices; logo, temos
uma contradição. �

Teorema 3.8 (da Silva, Dantas e Sasaki, 2018) O grafo Kr×p com r ≥ 4 par
e p ímpar tem χ′′e = ∆ + 2.

Demonstração.
Algoritmo
1o passo - obter emparelhamentos de Kr para colorir as arestas:
Usando a Afirmação 3.4 é possível organizar as matrizes de colorações

de arestas como segue. Se Ri = {va1va2 , · · · , var−1var} é um dos r − 1
emparelhamentos perfeitos de Kr, então as matrizes {AXa1Xa2

, · · · , AXar−1Xar
}

devem ter como entradas os elementos do conjunto {(i − 1)p + 1, (i − 1)p +
2, · · · , ip}, de modo que o preenchimento seja feito de maneira análoga
ao caso K2×p. Equivalentemente, a cor (i − 1)p + 1 deve ser aplicada em
emparelhamentos verticais de distância 0 ligando os vértices das colunas a1

e a2, · · ·, ar−1 e ar; a cor (i − 1)p + 2 deve ser aplicada em emparelhamentos
verticais de distância 1 ligando os vértices das colunas a1 e a2, · · ·, ar−1 e ar e
assim sucessivamente.

Como |Ri| =
r

2, cada cor de 1 até p(r− 1) foi usada rp2 vezes em arestas
(p vezes em cada emparelhamento vertical de distância). Quando dividimos
as matrizes em r − 1 grupos, em cada um destes grupos, a parte Xi aparece
precisamente uma vez. Portanto, quando o mesmo conjunto de cores é atribuído
a matrizes determinadas pelos emparelhamentos de Kr, quaisquer duas arestas
adjacentes não recebem a mesma cor.

2o passo - substituir as cores de algumas arestas determinadas
pelo passo anterior:

Substituímos as entradas da diagonal principal de r − 2
2 matrizes pela

cor (r − 1)p + 1 e de r − 2
2 matrizes pela cor (r − 1)p + 2, que não foram
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usadas ainda. A substituição é feita como segue. AX1X2 , AX2X3 , · · · , AXr−2Xr−1

tem suas entradas da diagonal principal substituídas alternadamente por
(r − 1)p + 1 e (r − 2)p + 2. Observamos que estas matrizes são elementos
de R1, R2, · · · , Rr−2, respectivamente. Além disso, todas as matrizes que
tem algumas de suas entradas mudadas haviam recebido previamente cores
diferentes, já que estavam associadas a diferentes emparelhamentos Ri do grafo
Kr.

Note que os elementos da diagonal principal de uma matriz de coloração
AXkXl

são todos iguais, já que as arestas associadas a essas entradas são um
emparelhamento vertical de distância 0 entre as colunas k e l. Para cada i =
1, 2, · · · , r − 1, as matrizes de coloração determinadas pelos emparelhamentos
Ri possuem como elemento da entrada principal a cor (i− 1)p+ 1.

3o passo - coloração dos vértices:
As cores dos vértices serão as cores (r − 1)p + 1, (r − 1)p + 2 e as cores

que foram mudadas em algumas diagonais secundárias, que são (i − 1)p + 1,
onde i = 1, 2, · · · , r−2. Aos vértices de Xj, para todo 1 ≤ j ≤ r−2, atribua a
cor (j − 1)p+ 1, aos vértices de Xr−1, atribua a cor (r− 1)p+ 1 e aos vértices
de Xr, atribua a cor (r − 1)p+ 2.

A cor (r−1)p+1 é usada (r − 2)p
2 vezes em arestas e p vezes na coloração

de vértices, totalizando rp2 vezes. O resultado é análogo para a cor (r−1)p+2.
As cores que estavam inicialmente na diagonal principal de algumas

matrizes e foram substituídas, originalmente foram usadas p vezes em r

2
matrizes. Posteriormente, elas foram substituídas por uma nova cor em p

entradas de uma matriz de coloração. Por outro lado, essas cores são usadas
para colorir p vértices de uma das partes da partição de V . Então, essas cores
são usadas rs2 − p + p = rp

2 vezes no total. Cada cor é usada exatamente rp2
vezes. Consequentemente, a diferença entre as cardinalidades de duas classes
de cor é 0 e isso conclui a demonstração. �

No caso do grafo K6×5 por exemplo, inicialmente teríamos os seguintes
emparelhamentos de K6 e as seguintes matrizes de coloração de arestas:
R1 = {v1v2, v3v5, v4v6}, R2 = {v2v3, v1v4, v5v6}, R3 = {v3v4, v2v5, v1v6}, R4 =
{v4v5, v1v3, v2v6} e R5 = {v1v5, v2v4, v3v6}

AX1X2 = AX3X5 = AX4X6 =



1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1


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AX2X3 = AX1X4 = AX5X6 =



6 7 8 9 10
10 6 7 8 9
9 10 6 7 8
8 9 10 6 7
7 8 9 10 6



AX3X4 = AX2X5 = AX1X6 =



11 12 13 14 15
15 11 12 13 14
14 15 11 12 13
13 14 15 11 12
12 13 14 15 11



AX4X5 = AX1X3 = AX2X6 =



16 17 18 19 20
20 16 17 18 19
19 20 16 17 18
18 19 20 16 17
17 18 19 20 16



AX1X5 = AX2X4 = AX3X6 =



21 22 23 24 25
25 21 22 23 24
24 25 21 22 23
23 24 25 21 22
22 23 24 25 21


Pelo segundo passo, as matrizes AX1X2 , AX2X3 , AX3X4 e AX4X5 de K6×5

são transformadas em

AX1X2 =



26 2 3 4 5
5 26 2 3 4
4 5 26 2 3
3 4 5 26 2
2 3 4 5 26


, AX2X3 =



27 7 8 9 10
10 27 7 8 9
9 10 27 7 8
8 9 10 27 7
7 8 9 10 27



AX3X4 =



26 12 13 14 15
15 26 12 13 14
14 15 26 12 13
13 14 15 26 12
12 13 14 15 26


, AX4X5 =



27 17 18 19 20
20 27 17 18 19
19 20 27 17 18
18 19 20 27 17
17 18 19 20 27


e as demais matrizes permanecem inalteradas.
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Por fim, pelo terceiro passo temos a seguinte coloração de vértices do
grafo K6×5: os vértices de X1 recebem cor 1, os de X2, cor 6, os de X3, cor 11,
os de X4, cor 16, os de X5, cor 26 e os de X6, cor 27.

3.1.3
Kr×p com r e p pares (r ≥ 4)

Antes de enunciarmos e provarmos as três partes do principal teorema
deste capítulo, trataremos de aspectos de um conceito necessário para a
demonstração do resultado. Um quadrado latino é uma matriz de ordem k

cujas entradas são k símbolos diferentes que aparecem exatamente uma vez
por linha e por coluna. Dado um quadrado latino de ordem k, um conjunto de
k entradas diferentes de linhas e de colunas diferentes é chamado de transversal.
A respeito dos transversais, McKay et al. (2006) provaram o seguinte teorema.

Teorema 3.9 (McKay, McLeod e Wanless, 2006) Definindo T (k) como o
número máximo de transversais sobre todos os quadrados latinos de ordem
k, temos que bk ≤ T (k) para k ≥ 5, onde b ≈ 1, 719.

Lema 3.10 (da Silva, Dantas e Sasaki, apresentado no CTW 2018 e a ser
submetido para o LAGOS 2019) Existe pelo menos um quadrado latino de
ordem k (k ≥ 4 e par) cujos elementos da diagonal principal são todos
distintos.

Demonstração.
Para k = 4, considere a seguinte matriz:


1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4


.

A matriz apresentada é um quadrado latino e, além disso, suas entradas
da diagonal principal são distintas, como desejado.

Para k ≥ 6, o Teorema 3.9 garante a existência de um quadrado latino
com pelo menos um transversal. Seja Ak um quadrado latino de ordem k que
possui pelo menos um transversal. A partir de operações de trocas de linhas,
obteremos A′k que satisfaz as condições do lema.

Sejam al11, al22, · · · , alkk as entradas que formam um transversal de A,
onde 1 ≤ li ≤ k para todo i = 1, 2, · · · , k e os li são diferentes entre si.

Seja Li a i-ésima linha de A. Denotaremos a troca entre as linhas Li e
Lj por Li ↔ Lj. Fazemos as seguintes trocas de linhas: Ll1 ↔ L1. Com isso,
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o elemento al11 se torna o elemento a11 da nova matriz obtida com a troca de
linhas. A partir da nova matriz, fazemos a troca Ll2 ↔ L2. Assim, o elemento
que ocupava a posição al22 em A passa a ocupar a segunda linha e a segunda
coluna. Procedemos semelhantemente até a troca Llk−1 ↔ Lk−1.

Como as alterações são feitas sempre sobre linhas, garantimos que, em
cada passo, todos os elementos aparecem uma vez por coluna. Como a ordem
das entradas de cada linha permanecem inalteradas e, desde o princípio, essas
entradas já eram diferentes entre si, então, em cada etapa a nova matriz obtida
continua sendo um quadrado latino. �

Considere o seguinte quadrado latino, onde os elementos de um
transversal estão em negrito:



6 5 1 2 3 4
2 1 5 4 6 3
5 2 3 1 4 6
4 3 2 6 5 1
3 4 6 5 1 2
1 6 4 3 2 5


Observe, agora, as sucessivas trocas de linhas de acordo com o algoritmo

apresentado acima:



6 5 1 2 3 4
2 1 5 4 6 3
5 2 3 1 4 6
4 3 2 6 5 1
3 4 6 5 1 2
1 6 4 3 2 5


L4↔L1−→



4 3 2 6 5 1
2 1 5 4 6 3
5 2 3 1 4 6
6 5 1 2 3 4
3 4 6 5 1 2
1 6 4 3 2 5


L6↔L2−→



4 3 2 6 5 1
1 6 4 3 2 5
5 2 3 1 4 6
6 5 1 2 3 4
3 4 6 5 1 2
2 1 5 4 6 3



L6↔L3−→



4 3 2 6 5 1
1 6 4 3 2 5
2 1 5 4 6 3
6 5 1 2 3 4
3 4 6 5 1 2
5 2 3 1 4 6


L6↔L4−→



4 3 2 6 5 1
1 6 4 3 2 5
2 1 5 4 6 3
5 2 3 1 4 6
3 4 6 5 1 2
6 5 1 2 3 4


L6↔L5−→



4 3 2 6 5 1
1 6 4 3 2 5
2 1 5 4 6 3
5 2 3 1 4 6
6 5 1 2 3 4
3 4 6 5 1 2


Teorema 3.11 (da Silva, Dantas e Sasaki, apresentado no CTW 2018 e a
ser submetido para o LAGOS 2019) O grafo Kr×p com r ≥ 4 e p pares tem
χ′′e = ∆ + 1.
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Demonstração. Algoritmo para o caso p = 2:
1o passo - obter quadrado latino com entradas distintas na

diagonal principal para colorir vértices e arestas não horizontais:
Vamos construir uma matriz de coloração AL1L2 de ordem r em que a

entrada aij representa a cor que a aresta xi1xj2 recebe se i 6= j e, se i = j,
a entrada aii representa a cor que os vértices da parte Xi recebem. A matriz
AL1L2 deve ser um quadrado latino cujos elementos da diagonal principal são
todos distintos. O Lema 3.10 garante a existência de tal matriz. Como os
vértices de partes diferentes são adjacentes, o fato de os elementos da diagonal
principal serem distintos entre si implica que vértices de partes diferentes não
recebem a mesma cor. O fato de que elementos não se repetem nas linhas
ou nas colunas implica que arestas não horizontais e vértices adjacentes ou
incidentes não recebem a mesma cor.

2o passo - colorir as arestas horizontais com os emparelhamentos
de Kr:

Como ∆ + 1 = 2r − 1 neste caso, faltam ser usadas r − 1 cores. Elas
serão aplicadas em arestas horizontais da seguinte forma: obtenha os r − 1
emparelhamentos de Kr. Suponha que Ri = {va1va2 , · · · , var−1var}. Então
as arestas xa11xa21, · · · , xar−11xar1 e xa12xa22, · · · , xar−12xar2 devem receber a
mesma cor. Isso deve ser feito para cada i = 1, 2, · · · , r − 1.

Como as r − 1 cores finais são aplicadas em arestas horizontais
determinadas pelos Ri, então arestas adjacentes não recebem a mesma cor.
O primeiro conjunto de cores aparece r vezes na matriz de coloração AL1L2 ,
sendo r − 1 vezes em arestas e 2 vezes em vértices, totalizando r + 1 vezes. O
segundo grupo de cores é usada em um emparelhamento perfeito de Kr×2, ou
seja, em r arestas. Logo, a diferença entre as cardinalidades de duas classes de
cor é de no máximo 1, como desejado.

Para K4×2, por exemplo, se tomarmos

AL1L2 =


1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

 ,

então as arestas não horizontais e os vértices do grafo K4×2 fica colorido
conforme a Figura 3.7:
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Figura 3.7: Coloração de vértices e arestas não horizontais de K4×2

Os emparelhamentos de K4 são R1 = {v1v2, v3v4}, R2 = {v2v3, v1v4} e
R3 = {v1v3, v2v4}. Portanto, as arestas horizontais devem ser coloridas como
a Figura 3.8 a seguir:

Figura 3.8: Coloração de arestas horizontais de K4×2

Algoritmo para o caso p = 4:
1o passo - coloração de vértices:
Para colorir os vértices, usamos uma cor diferente para cada um dos

seguintes pares: x11 e x12; x13 e x14; x21 e x22; x23 e x24; · · ·; x(r−1)1 e x(r−1)2;
x(r−1)3 e x(r−1)4; xr1 e xr4; xr2 e xr2. Note que a parte Xr é a única que segue
um padrão diferente de coloração.

2o passo - coloração de arestas horizontais:
As cores usadas nos vértices das linhas 1 e 2 das partes X1, X2, · · · , Xr−1

serão aplicadas nas linhas 3 e 4 em arestas horizontais de acordo com os
emparelhamentos de Kr, enquanto as cores usadas nos vértices das linhas
3 e 4 das partes X1, X2, · · · , Xr−1 serão aplicadas nas linhas 1 e 2 em
arestas horizontais de acordo com os emparelhamentos de Kr. Se R1 =
{vb1vb2 , · · · , vbr−1vbr}, então use a cor dos vértices x11 e x12 nas arestas
xb1ixb2i, · · · , xbr−1ixbri (i = 3, 4) e use a cor dos vértices x13 e x14 nas arestas
xb1ixb2i, · · · , xbr−1ixbri (i = 1, 2). Proceda de maneira análoga em relação às
cores dos vértices das partes X2, X3, · · · , Xr−1.

3o passo: coloração de arestas não horizontais das matrizes AL1L3

e AL2L4:
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A exemplo do caso anterior, definimos, matrizes AL1L2 , AL3L4 , AL2L3 ,
AL1L4 , AL1L3 e AL2L4 , de ordem r, em que a entrada aij da matriz ALkLl

representa a cor da aresta xikxjl recebe se i 6= j e, se i = j, a entrada aij fica
vazia, neste caso.

Devemos usar r − 1 cores (distintas das usadas em vértices) em
emparelhamentos horizontais de distância ligando vértices das linhas 1 e 3, e
das linhas 2 e 4. Em termos das matrizes AL1L3 e AL2L4 , o preenchimento das
entradas é feito de modo análogo ao preenchimento da matriz AX1X2 definida
na seção 3.1.1, com a diferença que aqui, as entradas da diagonal principal
ficam vazias.

4o passo - preenchimento das matrizes AL1L2 e AL3L4:
Antes de explicarmos esse passo, considere o seguinte algoritmo. Seja n

um número par, n ≥ 4. O seguinte algoritmo fornece um quadrado latino de
ordem n com um transversal na diagonal principal. Seja A o quadrado latino
que estamos buscando construir e seja aij a entrada da i-ésima linha e j-ésima
coluna de A. Antes de apresentarmos o algoritmo em si, esclarecemos que os
índices devem ser lidos módulo n. Caso o índice seja congruente a 0 módulo
n, então tal índice deve ser n, em vez de 0.

Seja c um dos elementos de {1, · · · , n}, que serão as entradas do quadrado
latino A. Para 1 ≤ c ≤ n − 2, faça o seguinte: as entradas do tipo ai,(i+c+1)

devem receber o elemento c para 1 ≤ i ≤ c − 1; a entrada acc deve
receber o elemento c; as entradas ai,(i+c) devem receber o elemento c para
c+ 1 ≤ i ≤ n− 1; a entrada an,(c+1) deve receber o elemento c.

Para c = n− 1, faça o seguinte: as entradas do tipo ai,2i devem receber o
elemento n− 1 para 1 ≤ i ≤ n/2; as entradas do tipo ai,(2i−n+1) devem receber
o elemento n − 1 para (n/2) + 1 ≤ i ≤ n. Para c = n, faça o seguinte: as
entradas da forma ai,(2i+1) devem receber o elemento n para 1 ≤ i ≤ n/2; as
entradas do tipo ai,(2i−n) devem receber o elemento n para (n/2) + 1 ≤ i ≤ n.

É fácil ver que o algoritmo acima descreve como se obter um quadrado
latino de ordem n (n par maior ou igual a 4) com um transversal na diagonal
principal.

Para preenchermos a matriz AL1L2 e AL3L4 precisamos de quadrados
latinos cujas entradas na diagonal principal sejam distintas entre si (embora
tais entradas sejam omitidas). O Teorema 3.9 garante a existência de tais
quadrados latinos e o algoritmo acima indica como obter tal quadrado latino.
As entradas da matriz AL1L2 serão as cores usadas nos vértices das linhas 1 e
2 das partes X1, X2, · · · , Xr−1, enquanto as entradas da matriz AL3L4 são as
cores usadas nos vértices das linhas 3 e 4 das partes X1, X2, · · · , Xr−1. Como as
matrizes em questão são de ordem r e, nesse momento elas serão preenchidas
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com r−1 cores, algumas entradas ficarão vazias. Obtenha um quadrado latino
cujas cores são as descritas acima e cujos elementos da diagonal principal são
todos distintos e as entradas que devem ficar vazias são aquelas que teriam o
mesmo valor da entrada arr.

Acima da última linha, exatamente uma entrada em cada linha fica vazia
e, à esquerda da última coluna, exatamente uma entrada fica vazia em cada
coluna por se tratar de um quadrado latino. Com isso, representamos as cores
usadas nos vértices das partes X1, X2, · · · , Xr−1 em todos os vértices.

Como ∆ + 1 = 4r − 3 neste caso e, até o momento, usamos 2r + (r − 1)
cores (2r usadas em vértices e r − 1 são aquelas usadas nas matrizes AL1L3

e AL2L4), falta usarmos r − 2 cores, além de faltar representar as cores dos
vértices de Xr em arestas. Das r − 2 cores que ainda não foram usadas em
nenhum elemento do grafo, 2 serão usadas em 2 emparelhamentos especiais e
as outras r− 4, em emparelhamentos horizontais de distância ligando vértices
das linhas 2 e 3; e das linhas 1 e 4, ou seja, serão aplicadas nas matrizes AL2L3

e AL1L4 .
5o passo - aplicação as cores dos vértices xr1 e xr2 nas matrizes

AL2L3 e AL1L4

Suponha que as cores α e β tenham sido usadas respectivamente nos
vértices xr1 e xr4; e nos vértices xr2 e xr3. Então, na matriz AL1L4 , a
cor α deve ocupar as entradas a1,r−1, a21, a32, a43, · · · , ar−1,r−2, enquanto a
cor β deve ser usada em um emparelhamento horizontal de distância 1
ligando os vértices das linhas 1 e 4, isto é, a cor β deve ocupar as entradas
a12, a23, a34, · · · , ar−1,r, ar1. Na matriz AL2L3 as entradas ocupadas por α na
matriz anterior devem ser ocupadas por β e vice-versa. É fácil ver que podemos
enxaixar r − 4 cores em emparelhamentos horizontais de distância ligando
vértices das linhas 1 e 4 e das linhas 2 e 3. Isso é possível porque a cor α,
ao ocupar as entradas acima citadas na matriz AL1L4 é aplicada nas arestas
x11xr−1,4, x21x14, x31x24, x41x34, · · · , xr−1,1xr−2,4. A primeira dessas arestas é do
emparelhamento horizontal de distância r− 2, enquanto as demais são arestas
do emparelhamento horizontal de distância r− 1 (conferir seção 3.1). Como a
cor β é usada em um emparelhamento horizontal de distância 1 ligando vértices
das linhas 1 e 4 e como há r − 1 emparelhamentos horizontais de distância,
isso significa que sobram os r − 4 emparelhamentos horizontais de distância,
como afirmado acima.

Note que a cor β, ao ser aplicada em entradas da matriz AL1L4 , não é
aplicada em algumas arestas que fazem parte dos emparelhamentos horizontais
de distância r − 1 e r − 2, que são representadas pelas seguintes entradas
da matriz AL1L4 : a2r, a31, a42, a53, · · · , ar,r−2, a1r e ar,r−1. Isso significa que na
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matriz AL1L4 duas entradas da última linha e duas entradas da última coluna
não são preenchidas e, da terceira até a penúltima linha, uma entrada por linha
não é preenchida. O resultado é análogo para a matriz AL2L3 .

6o passo - utilização das duas últimas cores:
Até agora há entradas das matrizes AL1L2 , AL3L4 , AL2L3 e AL1L4 que

não foram preenchidas. Ao olharmos a i-ésima linha da matriz ALjLk
,

todas as entradas dessa linha reresentam arestas que tem como uma das
extremidades o vértice xij. Analogamente, se olharmos a i-ésima coluna
da mesma matriz, as entradas desta coluna representam arestas que tem
como uma das extremidades o vértice xik. Pelo preenchimento das matrizes
AL1L2 , AL3L4 , AL2L3 e AL1L4 que fizemos acima pode-se verificar que as entradas
não preenchidas formam um subgrafo H de Kr×4 2-regular. Pelo Lema 2.1, um
grafo é 2-regular se e somente se seus componentes conexos são ciclos.

Afirmação 3.12 (da Silva, Dantas e Sasaki, apresentado no CTW 2018 e
a ser submetido para o LAGOS 2019) Nenhum dos componentes conexos do
subgrafo H é um ciclo de tamanho ímpar.

Demonstração. De fato, as arestas que ainda não foram atribuídas a nenhuma
cor são entradas das matrizes AL1L2 , AL3L4 , AL2L3 e AL1L4 , ou seja, ligam
vértices das linhas 1 e 2, 3 e 4, 2 e 3, 1 e 4. Suponha, por contradição, que o
subgrafo H possui um ciclo Ck de comprimento ímpar. Assuma, sem perda de
generalidade, que o primeiro vértice de Ck, aqui denotado por v1 é um vértice
da primeira linha. Consequentemente, o vértice v2 deverá ser um vértice da
linha 2 ou da linha 4. Independentemente da possível linha em que se encontra
o vértice v2, temos que o vértice v3 deverá ser um vértice da linha 1 ou da linha
3. Prosseguindo com o raciocínio, temos que o k-ésimo vértice de Ck deverá
estar nas linhas 1 ou 3, já que estamos assumindo que Ck é um ciclo ímpar.
Entretanto, como o vértice v1vk faz parte de Ck, segue que vk não pode estar
na linha 1 (caso contrário, v1vk seria uma aresta horizontal) e vk também não
pode estar na linha 3 (caso contrário, v1vk ligaria vértices das linhas 1 e 3,
que não é possível, pelo que foi explicado no início da afirmação). Com isso,
obtemos uma contradição. Daí, segue que nenhum dos componentes conexos
de H é um ciclo de comprimento ímpar. �

Assim, os componentes de H são ciclos de comprimentos pares, que
possuem coloração com 2 cores, como desejado. Uma das cores é a cor ∆ e
a outra, a cor ∆ + 1.

É fácil ver, pela construção do algoritmo, que algumas cores são usadas
em 2 vértices e em 2r − 1 arestas, enquanto as demais cores são aplicadas em
um emparelhamento perfeito do grafo, ou seja, em 2r arestas. Logo, a coloração
total é equilibrada, como desejado.

DBD
PUC-Rio - Certificação Digital Nº 1712691/CA



Capítulo 3. Sobre coloração total 53

Tomando o grafo K4×4, temos que determinar os emparelhamentos de
K4, que são: R1 = {v1v2, v3v4}, R2 = {v2v3, v1v4} e R3 = {v1v3, v2v4}. Assim,
a coloração de vértices e arestas horizontais fica conforme a Figura 3.9 abaixo.

Figura 3.9: Coloração de vértices e arestas horizontais de K4×4

Pelo terceiro passo do algoritmo obtemos, no caso do grafo K4×4, que

AL1L3 = AL2L4 =


9 10 11

11 9 10
10 11 9
9 10 11



Por exemplo, tomando o quadrado latino


1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

 como base para

as matrizes AL1L2 e AL3L4 obtemos:

AL1L2 =


3 ∗ 2

∗ 1 3
2 ∗ 1
3 1 2

 ;AL3L4 =


6 ∗ 5

∗ 4 6
5 ∗ 4
6 4 5


Pelo quinto passo, segue que

AL2L3 =


7 8 ∗

8 7 ∗
8 7

7 ∗ ∗

 ;AL1L4 =


8 7 ∗

7 8 ∗
7 8

8 ∗ ∗


Por fim, pelo sexto passo, no exemplo que estamos apresentando, usamos

as cores 13 e 14 para colorir estas arestas que faltam e isso conclui a coloração
do grafo em questão.

Algoritmo para o caso p ≥ 6:
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1o passo - coloração de vértices:
Para colorir os vértices, obtenha o emparelhamento P1 do grafo

Kp de acordo com o algoritmo apresentado na seção 3.1. Se P1 =
{vb1vb2 , vb3vb4 , · · · , vbp−1vbp}, então atribua uma cor diferente para cada um
dos seguintes pares de vértices: xib1 e xib2 ; xib3 e xib4 ; xibp−1 e xibp para todo
i = 1, 2, · · · , r. Como há rp vértices em Kr×p e usamos uma cor diferente para
cada par de vértices, ao todo são usadas rp2 cores nesta etapa.

2o passo - usar as cores dos vértices em arestas não horizontais:
Considere as matrizes ALb1Lb2

, ALb3Lb4
, · · · , ALbp−1Lbp

como descrito no
início de 3.1.1 para o caso p = 2. Para isso, aplicamos o Teorema 3.9 e o
Lema 3.10 e obtemos quadrados latinos cujos elementos da diagonal principal
são todos distintos. Além disso, a entrada akk de uma dada matriz ALiLj

deve
ser a cor dos vértices xki e xkj. As entradas de cada matriz ALbi

Lbj
são as cores

usadas nos vértices das linhas bi e bj.
3o passo - representar as cores usadas na coloração de vértices

onde elas ainda não haviam sido utilizadas:
Ao fim do segundo passo, as cores 1, 2, · · · , rp2 foram usadas em todos os

vértices de duas linhas. Entretanto, elas ainda precisam ser representadas nos
vértices das demais linhas. Para isso, usamos o seguinte resultado de Alspach
e Gavlas (2001):

Afirmação 3.13 (Alspach, Gavlas, 2001) Para inteiros positivos pares m e n
com 4 ≤ m ≤ n, o grafo Kn − I pode ser decomposto em ciclos de tamanho m
se e somente se o número de arestas em Kn − I for um múltiplo de m.

Salientamos que Kn − I denota um grafo completo com n vértices
menos um 1-fator, isto é, menos um emparelhamento perfeito (Kn possui
emparelhamento perfeito já que n é par).

Para o próximo passo do algoritmo precisaremos obter p

2 ciclos de
tamanho p− 2 do grafo Kp menos um 1-fator. Observamos que Kp − I possui(
p

2

)
− p

2 = p(p− 2)
2 arestas. Fazendo m = p − 2 e n = p na afirmação 3.13,

concluímos que Kp − I pode ser decomposto em p

2 ciclos de tamanho p − 2,
como desejado.

Suponha, sem perda de generalidade, que Kp−I = Kp\P1, com P1 sendo
o emparelhamento perfeito de Kp obtido pela afirmação 3.4. Sabe-se que todo
ciclo de comprimento par possui uma coloração de arestas com 2 cores. Então
dividimos cada ciclo em dois emparelhamentos determinado pela sua coloração
de arestas e os associamos com as arestas de P1, de modo que cada aresta de
P1 seja associada aos emparelhamentos do ciclo de Kp − I que não contém os
vértices vi e vj.
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Com o processo de decomposição deKp\P1, obtemos p2 ciclos. SejamMk e
M ′

k os emparelhamentos obtidos do k-ésimo ciclo da decomposição de Kp\P1,
que não contém a aresta vivj. Então as cores usadas no i-ésimo e j-ésimo
vértices das partes X1, X2, · · · , X r

2
devem ser usadas em emparelhamentos

horizontais de distância ligando vértices das linhas determinadas por Mk,
enquanto as cores usadas no i-ésimo e j-ésimo vértices das partesX r

2 +1, · · · , Xr

são usadas em emparelhamentos horizontais de distância ligando vértices das
linhas determinadas por M ′

k. Como há r − 1 emparelhamentos horizontais
de distância ligando vértices de quaisquer duas linhas e como usamos apenas
r

2(< r − 1) emparelhamentos deste tipo nesta etapa, concluímos que esta é
uma ação válida.

4o passo - utilizar
(
r

2 − 1
)

(p − 2) cores em emparelhamentos
perfeitos de Kr×p:

O objetivo de decompormosKp\P1 em ciclos para aplicarmos as cores que
foram usadas em vértices em emparelhamentos horizontais de distância é para
garantir que, ao final desse processo, nos emparelhamentos P2, P3, · · · , Pp−1,
cada par de linhas do grafo Kr×p foi usado a mesma quantidade de vezes. Com
o passo descrito acima, garantimos que cada par de linhas e, consequentemente,
cada emparelhamento de P2 até Pp−1 foi usado r

2 vezes em emparelhamentos
horizontais de distância, de um total de r − 1 emparelhamentos desse tipo.
Isso significa que ainda há r − 1 − r

2 = r

2 − 1 emparelhamentos horizontais
de distância disponível em cada emparelhamento Pi (2 ≤ i ≤ r). Em outras
palavras,

(
r

2 − 1
)

(p − 2) cores podem ser aplicadas nesses emparelhamentos
de distância disponíveis. Note que cada uma dessas cores é aplicada em um
emparelhamento perfeito de Kr×p, ou seja, as cores são representadas em todos
os vértices, como necessário por se tratar de uma coloração total equilibrada
com ∆ + 1 cores de um grafo regular.

5o passo - coloração das arestas horizontais:
Para finalizar, aplicamos r − 1 novas cores em arestas horizontais

determinadas pelos emparelhamentos de Kr da seguinte forma. Se R1 =
{va1va2 , va3va4 , · · · , var−1vr}, então aplicamos uma das novas cores nas arestas
xa1ixa2i, xa3ixa4i, · · · , xar−1ixari para todo i = 1, 2, · · · , p. Usando uma cor
diferente para cada emparelhamento Ri de Kr, concluímos que r − 1 cores
são usadas nessa etapa, como afirmamos.

Por fim, usamos rp2 +
(
r

2 − 1
)

(p − 2) + (r − 1) = ∆ + 1 cores e, por
construção, elas não foram aplicadas em elementos incidentes ou adjacentes
do grafo. Também da construção do algoritmo segue que a diferença entre as
cardinalidades de quaisquer duas classes de cor é, no máximo 1, como desejado.
�
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Observe, na Figura 3.10 abaixo, o esquema de coloração dos vértices do
grafo K4×6. Temos que o emparelhamento P1 de K6 é P1 = {v1v2, v3v5, v4v6}.

Figura 3.10: Esquema de coloração de vértices de K4×6

Pelo segundo passo do algoritmo aplicado ao grafo K4×6, podemos

escolher AL1L2 =


1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

. Analogamente, tomamos AL3L5 =


5 7 8 6
8 6 5 7
6 8 7 5
8 5 6 8

 e AL4L6 =


9 11 12 10
12 10 9 11
10 12 11 9
11 9 10 12


Pelo terceiro passo, tomamos (v3v4v5v6v3), (v2v4v1v6v2) e (v1v3v2v5v1)

como decomposição de K6 − {v1v2, v3v5, v4v6} e associamos, respectivamente
tais ciclos a v1v2, v3v5 e v4v6. Assim, devemos aplicar as cores 1 e 2 em
emparelhamentos horizontais de distância 1 e 2, respectivamente, em arestas
que ligam vértices das linhas 3 e 4; e 5 e 6. Representaremos a aplicação das
12 cores até então utilizadas na tabela abaixo.
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Tabela 3.2: Aplicação das cores 1, 2, · · ·, 12 em emarelhamentos horizontais de
distância

Cor Distância Combinação de linhas
1 1 3 e 4; 5 e 6
2 2 3 e 4; 5 e 6
3 1 4 e 5; 3 e 6
4 2 4 e 5; 3 e 6
5 1 2 e 4; 1 e 6
6 2 2 e 4; 1 e 6
7 1 4 e 1; 2 e 6
8 2 4 e 1; 2 e 6
9 1 1 e 3; 2 e 5
10 2 1 e 3; 2 e 5
11 1 3 e 2; 1 e 5
12 2 3 e 2; 1 e 5

Aplicando o quarto passo ao grafo K4×6, segue que ainda temos um
emparelhamento horizontal de distância 3 para P2, P3, P4 e P5. Assim, usamos
as cores 13, 14, 15 e 16 para cada um dos emparelhamentos de distância 3
ligando vértices de linhas determinadas por P2, P3, P4 e P5.

Como r = 4 no exemplo que estamos colorindo, para aplicar o quinto
passo devemos obter os emparelhamentos de K4, que são: R1{v1v2, v3v4},
R2{v2v3, v1v4} e R3{v1v3, v2v4}. Assim, usamos cor 17 nas arestas x1ix2i e x3ix4i

para todo i = 1, 2, · · · , 6. Analogamente, usamos cor 18 nas arestas x2ix3i e
x1ix4i e cor 19 nas arestas x1ix3i e x2ix4i para todo i = 1, 2, · · · , 6.

3.1.4
Kr×p, com r e p ímpares

Fu (1994) determinou que Kr×p com r e p ímpares tem χ′′e ≤ ∆ + 2. Aqui
nós melhoramos este limite apresentando um algoritmo para colorir tais grafos
com ∆ + 1 cores.

Teorema 3.14 (da Silva, Dantas e Sasaki, 2018) O grafo Kr×p com r e p
ímpares tem χ′′e = ∆ + 1.

Demonstração. Se p = 1, então temos Kr×1 = Kr, que é o grafo completo
com r vértices. É sabido que tais grafos possuem coloração total equilibrada
com ∆ + 1 cores (Kubale, 2004). Portanto, assuma que p ≥ 3.

Como o grafo Kr×p é regular e já que estamos propondo uma coloração
total equilibrada com ∆ + 1 cores, cada uma delas deve ser representadas
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em todos os vértices, isto é, ser atribuída ao vértice em si ou a uma aresta
que tenha tal vértice como extremidade. Se q vértices recebam a mesma
cor i, então o número de arestas coloridas com cor i é rp− q

2 . O número

total de elementos que recebem cor i é rp+ q

2 . Como rp é ímpar, q deve

ser ímpar. Além disso, o número de elementos do grafo
(
rp+ rp2(r − 1)

2

)
dividido pelo número de cores ((r − 1)p + 1) tem quociente igual a rp+ 1

2 e

resto igual a p− 1
2 . Isso pode ser verificado da seguinte maneira. Primeiro,

é necessário que o resto seja estritamente menor do que o divisor, ou seja,
p− 1

2 < (r − 1)p + 1 ⇐⇒ r >
3(p− 1)

2p . Como 3(p− 1)
2p → 3

2 quando
p → ∞ e r ≥ 3, então essa parte é verdadeira. Depois, multiplicando-se o
quociente pelo divisor e adicionando-se o resto, obtém-se o dividendo, como
desejado. Isso prova que o resto está correto e, como, pela divisão euclidiana,
resto e quociente são únicos, concluímos que o quociente também está certo.
Isso implica que p− 1

2 cores são usadas rp+ 3
2 vezes e

(
(r − 1)p+ 1− p− 1

2

)
cores são usadas rp+ 1

2 vezes. Portanto, q = 1 ou q = 3. Concluímos que p− 1
2

triplas de vértices recebem uma cor cada e os demais rp − 3(p− 1)
2 vértices

recebem uma cor diferente cada.
1o passo - obter triplas de vértices:
Para formar as triplas, usamos a Afirmação 3.3 para obter os

emparelhamentos Pi do grafo Kp. Tome somente os emparelhamentos com
índice ímpar de 1 até p− 2, ou seja, P1, P3, · · · , Pp−2, que totaliza p− 2− 1

2 +

1 = p− 1
2 emparelhamentos, o número exato de triplas que precisamos. Em

cada Pi usado, precisamos das extremidades da primeira aresta e do vértice que
sobra, ou seja, vi, vi+1 e vi+ p−1

2 +1 (todos os índices tomados módulo p). Como
usamos apenas 3 vértices de cada emparelhamento tomado, usaremos a notação
P ′i para nos referirmos a eles. Distribua por linhas os P ′i ’s em uma tabela
em que as colunas representam as partes X1, X2, · · · , Xr. A primeira linha
da tabela é P ′1, P ′3, P ′5, · · · , P ′2r−1, a segunda é P ′2r+1, P

′
2r+3, P

′
2r+5, · · · , P ′4r−1,

e assim sucessivamente. Temos P ′1 na coluna de X1 e P ′1 = {v1, v2, v2+ p−1
2
}

(isto é, as extremidades do primeiro elemento de P1 e o vértice restante
nesse emparelhamento). Isso significa que os vértices x11, x12 e x1,2+ p−1

2
devem

receber a mesma cor. O processo deve ser repetido para cada P ′i em que
i = 1, 3, 5, · · · , p− 2.

Suponha que 1 ≤ i < j ≤ p − 2. Note que pode ocorrer de P ′i e P ′j na
mesma coluna da tabela terem um vértice em comum. Neste caso, translade
os elementos da linha que contém P ′j uma unidade para a direita (o elemento
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dessa linha na coluna Xr deve ser movido para a coluna X1). Pela construção
do algoritmo da Afirmação 3.3 observa-se que um vértice de Kp aparece no
primeiro elemento de um emparelhamento Pi (i ímpar) precisamente uma
vez e é o vértice restante de exatamente um emparelhamento de Kp. Isso
implica que qualquer P ′i tem um vértice comum com um único P ′j . Assim,
transladar os elementos da linha que contém P ′j uma unidade para a direita
resolve o problema sem a possibilidade de, após a translação, o novo P ′k

que ficar na mesma coluna de P ′i ter vértice em comum com P ′i . Com esse
procedimento, determinamos as triplas de vértices que vão receber, cada uma,
uma cor diferente e, consequentemente, cada um dos demais vértices recebe
cores diferentes entre si e diferentes das usadas nas triplas.

Para fixar as ideias, exibimos abaixo dois exemplos: um em que não é
necessário fazer translação dos elementos da tabela e outro em que a mudança
é necessária.

Considere o grafo K3×11. Temos
P1 = {v1v2, v3v13, v4v12, v5v11, v6v10, v7v9} e o vértice que sobra é v8;
P3 = {v3v4, v2v5, v1v6, v7v13, v8v12, v9v11} e o vértice que sobra é v10;
P5 = {v5v6, v4v7, v3v8, v2v9, v1v10, v11v13} e o vértice que sobra é v12;
P7 = {v7v8, v6v9, v5v10, v4v11, v3v12, v2v13} e o vértice que sobra é v1;
P9 = {v9v10, v8v11, v7v12, v6v13, v1v5, v2v4} e o vértice que sobra é v3;
P11 = {v11v12, v10v13, v1v9, v2v8, v3v7, v4v6} e o vértice que sobra é v5;
Daí, P ′1 = {v1, v2, v8}, P ′3 = {v3, v4, v10}, P ′5 = {v5, v6, v12}, P ′7 = {v7, v8,

v1}, P ′9 = {v9, v10, v3}, P ′11 = {v11, v12, v5}.
Temos

Tabela 3.3: Distribuição de P ′1, P ′3, P ′5, P ′7, P ′9 e P ′11 entre as partes X1, X2 e X3 antes
da translação

X1 X2 X3

P ′1 P ′3 P ′5

P ′7 P ′9 P ′11

Note que P ′1 e P ′7 tem um vértice comum, assim como P ′3 e P ′7, e P ′5 e P ′11.
Portanto, é necessário transladar em uma unidade os elementos da segunda
linha da tabela neste caso. Temos

Tabela 3.4: Distribuição de P ′1, P ′3, P ′5, P ′7, P ′9 e P ′11 depois da translação

X1 X2 X3

P ′1 P ′3 P ′5

P ′11 P ′7 P ′9
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Assim, as triplas de vértices são: (x11, x12, x18); (x1,11, x1,12, x15);
(x23, x24, x2,10); (x27, x28, x21); (x35, x36, x3,12); e (x39, x3,10, x33).

Considere, agora, o grafo K3×9. Temos
P1 = {v1v2, v3v9, v4v8, v5v7} e o vértice que sobra é v6;
3 = {v3v4, v2v5, v1v6, v7v9} e o vértice que sobra é v8;
P5 = {v5v6, v4v7, v3v8, v2v9} e o vértice que sobra é v1;
P7 = {v7v8, v6v9, v1v5, v2v4} e o vértice que sobra é v3;
Daí, P ′1 = {v1, v2, v6}, P ′3 = {v3, v4, v8}, P ′5 = {v5, v6, v1}, P ′7 = {v7, v8,

v3},.
Temos

Tabela 3.5: Distribuição de P ′1, P ′3, P ′5 e P ′7 entre as partes X1, X2 e X3

X1 X2 X3

P ′1 P ′3 P ′5

P ′7

Como não há vértices em comum entre P ′1 e P ′7, não há o que alterar
na tabela acima. Assim, as triplas de vértices são (x11, x12, x16); (x23, x24, x28);
(x35, x36, x31); e (x17, x18, x13).

2o passo - coloração de arestas horizontais:
Para colorir as arestas horizontais precisamos dos emparelhamentos

de Kr (Afirmação 3.3). Se um vértice xij recebe uma certa cor, então
devemos buscar o emparelhamento Rl de Kr em que vi é o vértice
restante. Usamos o grafo completo Kr porque há r vértices em cada
linha. Temos Rl = {va1va2 , · · · , var−2vr−1}

(
|Rl| =

r − 1
2

)
. Então as arestas

xa1jxa2j, · · · , xar−2jxar−1j devem receber a mesma cor mencionada acima.
Fazendo isso, se uma dada cor é usada em um certo vértice, então a cor
é representada em todos os vértices daquela linha. Como estamos propondo
uma coloração total equilibrada com ∆ + 1 cores, cada uma delas precisa ser
representada também em todos os vértices das demais linhas.

3o passo - concluir a representação das cores usadas em triplas
de vértices:

Para representar as cores que já foram usadas em 3 vértices e nas linhas
que contêm tais vértices, usamos os emparelhamentos Pi deKp (Afirmação 3.3)
do seguinte modo. Como explicado acima, os vértices x11, x12 e x1,2+ p−1

2

recebem a mesma cor k e tal cor foi representada nos vértices das linhas
1, 2 e 2 + p− 1

2 . Assumindo que P1 − {v1v2} = {vavb, · · · , vcvd}, em que

a, b, · · · , c, d ∈ {3, 4, · · · , p} −
{

2 + p− 1
2

}
, atribua cor k ao emparelhamento

horizontal de distância 1 (conferir Seção 3.1) ligando vértices das linhas a e
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b; · · ·; e c e d. Repita o processo para todas as cores usadas em 3 vértices
cada. Note que ao final desta etapa, como as cores das triplas foram aplicadas
em emparelhamentos de distância 1 relacionados a P1 − {v1v2}, P3 − {v3v4},
· · ·, Pp−2 − {vp−2vp−1}, as arestas de emparelhamentos de distância 1 ligando
vértices das linhas 1 e 2, 3 e 4, · · ·, p− 2 e p− 1 não foram coloridos.

4o passo - concluir a representação das cores usadas em apenas
um vértice:

Agora precisamos representar as cores usadas em apenas um vértice (e nas
linhas que o contém) nas demais linhas. Para fazer isso, vamos da parte X1 até
Xr, procurando do vértice xi1 para xip em cada parte para tomar aqueles que
foram os únicos vértices a receberem uma certa cor. É importante deixar um
vértice da última linha (xαp) para ser o último vértice a aplicar este passo. Seja
x1a o primeiro vértice em X1 que satisfaz a condição de não ser parte de uma
tripla de vértices que recebe a mesma cor. Assim, a cor usada em tal vértice foi
representada nos vértices da linha a (em arestas horizontais) e ainda precisam
ser representadas nas outras linhas. Tome o emparelhamento de Kp em que
va foi o vértice restante e atribua a mesma cor de x1a no emparelhamento de
distância 1 se tal distância não foi previamente usada por qualquer uma das
cores das triplas ou emparelhamento de distância 2, caso contrário. Repita
o processo para cada cor que foi usada em um vértice na ordem descrita
usando sempre o próximo emparelhamento de distância disponível. Como há
r − 1 emparelhamentos de distância entre quaisquer duas linhas e aplicamos
um emparelhamento de distância i por cor e tal cor está associada com um
emparelhamento Pj (há p destes emparelhamentos), isto significa que podemos
repetir o processo (r − 1)p vezes. Em outras palavras, este processo pode ser
feito para (r − 1)p cores. Contudo, devemos usar (r − 1)p + 1 = ∆ + 1 cores.
O vértice xαp a que nos referimos acima recebeu uma cor que foi representada
em todos os vértices da última linha. Sendo assim, tal cor ainda precisa ser
representada nas demais linhas. Lembre que quando usamos as cores das triplas
de vértices em arestas, o emparelhamento de distância 1 ligando as linhas 1
e 2, 3 e 4, · · ·, linhas p − 2 e p − 1 não foram usados. Portanto, a cor usada
em xαp deve ser usada nos emparelhamentos de distância 1 ligando os pares
de linhas acima citados.

Por construção, é fácil ver que usamos exatamente ∆+1 cores e cada cor
foi representada em cada vértice. Também por construção, elementos incidentes
ou adjacentes não receberam a mesma cor. Cada cor usada em uma tripla de
vértices foi também usada em rp− 3

2 arestas. Então, cada uma dessas cores

foi usada em rp+ 3
2 elementos. As cores usadas em apenas um vértice foram
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usadas também em rp− 1
2 arestas cada. Então, cada uma dessas cores foi usada

em rp+ 1
2 elementos. Como rp+ 3

2 − rp+ 1
2 = 1, concluímos que a diferença

entre as cardinalidades de quaisquer duas classes de cores é no máximo 1.
Portanto, o algoritmo descrito provê uma coloração total equilibrada com ∆+1
cores para o grafo Kr×p quando r e p são ímpares, como desejado. �

Observe o exemplo seguinte, em que exibimos uma coloração total
equilibrada de K3×11 com 23 = ∆ + 1 cores. Temos

P1 = {v1v2, v3v11, v4v10, v5v9, v6v8} e o vértice restante é v7;
P2 = {v2v3, v1v4, v5v11, v6v10, v7v9} e o vértice restante é v8;
P3 = {v3v4, v2v5, v1v6, v7v11, v8v10} e o vértice restante é v9;
P4 = {v4v5, v3v6, v2v7, v1v8, v9v11} e o vértice restante é v10;
P5 = {v5v6, v4v7, v3v8, v2v9, v1v10} e o vértice restante é v11;
P6 = {v6v7, v5v8, v4v9, v3v10, v2v11} e o vértice restante é v1;
P7 = {v7v8, v6v9, v5v10, v4v11, v3v1} e o vértice restante é v2;
P8 = {v8v9, v7v10, v6v11, v1v5, v2v4} e o vértice restante é v3;
P9 = {v9v10, v8v11, v1v7, v2v6, v3v5} e o vértice restante é v4;
P10 = {v10v11, v1v9, v2v8, v3v7, v6v4} e o vértice restante é v5;
P11 = {v1v11, v2v10, v3v9, v4v8, v5v7} e o vértice restante é v6;
Daí, P ′1 = {v1, v2, v7}, P ′3 = {v3, v4, v9}, P ′5 = {v5, v6, v11}, P ′7 =

{v7, v8, v2} e P ′9 = {v9, v10, v4}. Temos

Tabela 3.6: Distribuição de P ′1, P ′3, P ′5, P ′7 e P ′9 entre as partes X1, X2 e X3 antes da
translação

X1 X2 X3

P ′1 P ′3 P ′5

P ′7 P ′9

Como P ′1 e P ′7 (que estão na mesma coluna) possuem vértices em comum
e P ′3 e P ′9 também, então é necessário transladar os elementos da segunda linha
uma unidade para a direita. Fazendo isso, a nova tabela obtida é

Tabela 3.7: Distribuição de P ′1, P ′3, P ′5, P ′7 e P ′9 entre as partes X1, X2 e X3 depois da
translação

X1 X2 X3

P ′1 P ′3 P ′5

P ′7 P ′9

Com isso, as triplas de vértices formadas são (x11, x12, x17); (x23, x24, x29);
(x27, x28, x22); (x35, x36, x3,11); e (x39, x3,10, x34). Apresentamos a coloração de
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vértices e arestas horizontais de K3×11 segundo o algoritmo proposto, na
Figura 3.11 a seguir

Figura 3.11: Coloração de vértices e arestas horizontais de K3×11

A tabela a seguir mostra a distribuição de cores entre as arestas que
não são horizontais. Observe, por exemplo, que na linha onde aparece a
cor 1, ao lado temos distância 1 e, na coluna pares de linhas, lê-se P1

\{v1v2} = {v3v11, v4v10, v5v9, v6v8}. Isso significa que a cor 1 deve ser aplicada
em emparelhamentos horizontais de distância 1 ligando os vértices das linhas
3 e 11; 4 e 10; 5 e 9; 6 e 8. O mesmo raciocínio deve ser aplicado para cada
uma das cores na tabela abaixo.
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Tabela 3.8: Distribuição de cores entre as arestas não horizontais de K3×11

Cor Distância Pares de linhas
1 1 P1 \{v1v2}
2 1 P3 \{v3v4}
3 1 P7 \{v7v8}
4 1 P5 \{v5v6}
5 1 P9 \{v9v10}
6 1 P8

7 2 P9

8 1 P10

9 1 P11

10 1 P2

11 2 P3

12 1 P4

13 2 P5

14 1 P6

15 2 P10

16 2 P11

17 2 P4

18 1 {v1v2, v3v4, v5v6, v7v8, v9v10}
19 2 P6

20 2 P7

21 2 P8

22 2 P1

23 2 P2

3.1.5
Kr×p, com r ímpar e p par

Algoritmo para o caso p = 2:
1o passo - coloração de vértices e de arestas horizontais:
Os vértices da parte Xi devem receber cor i, i = 1, 2, · · · , r. A cor i

também deve ser usada em arestas horizontais como segue. Suponha que o
emparelhamento Rj = {vavb, · · · , vcvd} tem como vértice restante vi. Então
a cor i deve ser usada nas arestas xa1xb1, · · · , xc1xd1 e também nas arestas
xa2xb2, · · · , xc2xd2. Como i é o vértice restante no emparelhamento Rj e as
arestas que recebem esta cor estão associadas ao emparelhamento em questão,
os vértices e as arestas que receberam cor i não são incidentes e nem adjacentes,
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por construção. Como cada emparelhamento de Kr tem cardinalidade r − 1
2 ,

concluímos que cada uma das r cores foi usada 2 + r − 1
2 2 = r + 1 vezes.

2o passo - coloração de arestas não horizontais:
Como esta é uma coloração com ∆ + 1 = 2r − 1 cores e o primeiro

passo usou r cores, sobraram r − 1 cores para serem usadas em arestas não
horizontais, já que vértices e arestas horizontais foram coloridos na etapa
anterior. Usamos cada uma das r − 1 cores restantes em um emparelhamento
horizontal de distância terminando, assim, a coloração. Note que, conforme
explicado no capítulo 3.1, cada emparelhamento horizontal tem r elementos.
Assim, a diferença entre as cadinalidades de duas classes de cor é, no máximo
1, como desejado.

Observe a Figura 3.12, onde mostramos as cores dos vértices e das arestas
horizontais de K3×2 de acordo com o primeiro passo.

Figura 3.12: Coloração de vértices e arestas horizontais de K3×2

Já a coloração das arestas não horizontais do grafo K3×2 fica conforme a
Figura 3.13.

Figura 3.13: As arestas pontilhadas devem receber cor 5 e as arestas pretas, cor 4

Algoritmo para o caso p ≥ 4:
1o passo - distribuição inicial de algumas cores em

emparelhamentos horizontais de distância:
O primeiro passo para obter uma (∆ + 1)-coloração total equilibrada

dessa classe de grafos consiste em obter os p − 1 emparelhamentos de Kp

conforme a Afirmação 3.4. Então devemos montar uma tabela em que cada
emparelhamento é escrito r− 1 vezes. Nesta etapa são usadas (p− 1)(r− 1) =
rp− p− r + 1 cores.

Suponha que na i-ésima linha da tabela a seguir a distância seja j e
o emparelhamento seja Pk = {vavb, · · · , vcvd}. Isso significa que a cor i deve
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ser aplicada em um emparelhamento horizontal de distância j entre as linhas
determinadas pelo emparelhamento Pk, isto é, entre as linhas a e b, · · ·, c e d.

Tabela 3.9: Distribuição inicial de algumas cores nas arestas de Kr×p

Cor Distância Emparelhamento
1 1 P1

2 2 P1
... ... ...
r − 1 r − 1 P1

r 1 P2

r + 1 2 P2
... ... ...
2(r − 1) r − 1 P2
... ... ...
(p− 4)(r − 1) + 1 1 Pp−3

(p− 4)(r − 1) + 2 2 Pp−3
... ... ...
(p− 3)(r − 1) r − 1 Pp−3

(p− 3)(r − 1) + 1 1 Pp−2

(p− 3)(r − 1) + 2 2 Pp−2
... ... ...
(p− 2)(r − 1) r − 1 Pp−2

(p− 2)(r − 1) + 1 1 Pp−1

(p− 2)(r + 1) + 2 2 Pp−1
... ... ...
(p− 1)(r − 1) r − 1 Pp−1

2o passo - fazer mudanças na tabela obtida pelo passo anterior:
A segunda etapa da coloração consiste em alterar parte do que foi

feito no primeiro passo. Todas as cores que, na Tabela 3.9 estão na mesma
linha dos emparelhamentos Pi, onde i = 1, 3, 5, · · · , p − 3 e também cada
cor que está na mesma linha da primeira vez que os emparelhamentos Pj
(j = 2, 4, 6, · · · , p−2) aparecem na Tabela 3.9 devem ceder o primeiro elemento
do emparelhamento para novas r cores que serão inseridas na tabela1. Note que
ao todo são alteradas

(
p

2 − 1
)
r linhas, pois elas são alteradas em sequências

de r (r − 1 referentes a um emparelhamento de índice ímpar e 1 referente
1Observamos que como i varia de 1 até p − 3, se p fosse 2 essa parte do algoritmo não

faria sentido. Isso justifica a apresentação de um algoritmo diferente para o caso p = 2.
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ao emparelhamento de índice par seguinte) e i é ímpar e varia de 1 a p − 3,
totalizando p− 3− 1

2 + 1 = p

2 − 1. Lembramos que a etapa anterior utilizou
rp − r − p + 1 cores e ∆ + 1 = rp − p + 1. Então, ao introduzirmos novas r
cores à tabela anterior, completamos a quantidade total de cores que devem
ser usadas na coloração. Assim, a Tabela 3.9 se transforma em

Tabela 3.10: Distribuição de algumas cores nas arestas de Kr×p

Cor Distância Emparelhamento
1 1 P1\{v1v2}
2 2 P1\{v1v2}
... ... ...
r − 1 r − 1 P1\{v1v2}
r 1 P2\{v2v3}
r + 1 2 P2
... ... ...
2(r − 1) r − 1 P2
... ... ...
(p− 4)(r − 1) + 1 1 Pp−3\{vp−3vp−2}
(p− 4)(r − 1) + 2 2 Pp−3\{vp−3vp−2}
... ... ...
(p− 3)(r − 1) r − 1 Pp−3\{vp−3vp−2}
(p− 3)(r − 1) + 1 1 Pp−2\{vp−2vp−1}
(p− 3)(r − 1) + 2 2 Pp−2
... ... ...
(p− 2)(r − 1) r − 1 Pp−2

(p− 2)(r − 1) + 1 1 Pp−1

(p− 2)(r + 1) + 2 2 Pp−1
... ... ...
(p− 1)(r − 1) r − 1 Pp−1

(p− 1)(r − 1) + 1 1 {v1v2, v3v4, v5v6, · · · , vp−3vp−2}
(p− 1)(r − 1) + 2 2 {v1v2, v3v4, v5v6, · · · , vp−3vp−2}
... ... ...
(r − 1)p r − 1 {v1v2, v3v4, v5v6, · · · , vp−3vp−2}
(r − 1)p+ 1 1 {v2v3, v4v5, v6v7, · · · , vp−2vp−1}

3o passo - coloração de vértices:
As

(
p

2 − 1
)
r cores que, pelo passo anterior, cederam o primeiro

elemento vab do emparelhamento ao qual estavam associadas deixaram de ser
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representadas nos vértices das linhas a e b. Como estamos apresentando uma
coloração com ∆ + 1 cores, todas as cores devem ser representadas em todos
os vértices. Para isso, usaremos estas

(
p

2 − 1
)
r cores e as últimas r cores na

coloração de vértices e de arestas horizontais que, até o momento, não foram
coloridas.

Se uma cor i havia sido aplicada em um emparelhamento horizontal de
distância j e cedeu o elemento vab do emparelhamento Pk, com k ímpar, então
a cor i deve ser usada na coloração dos vértices xja e xjb. Se o índice k do
emparelhamento Pk for par, então a cor i deve ser usada para colorir os vértices
xra e xrb. Já as cores que foram inseridas apenas na segunda etapa devem
colorir os vértices xt,p−1 e xtp se a distância correspondente a essas cores na
Tabela 3.10 for t e se não se tratar da última cor. Esta deve ser empregada nos
vértices xr1 e xrp. As arestas horizontais devem ser coloridas como no grafo
Kr×p com r e p ímpares.

Teorema 3.15 (da Silva, Dantas e Sasaki, apresentado no CTW 2018 e
a ser submetido para o LAGOS 2019) O algoritmo acima apresenta uma
(∆ + 1)-coloração total equilibrada de Kr×p, com r ímpar e p par.

Demonstração. Algumas cores foram usadas somente em arestas. Tais
cores foram usadas em emparelhamentos horizontais de distância entre
linhas que foram determinadas pelos emparelhamentos de Kp. Como
cada emparelhamento é disjunto, os pares de linhas determinadas pelos
emparelhamentos Kp são distintos e não há, portanto, cores sendo aplicadas
em arestas adjacentes.

Outras cores foram usadas em vértices e em arestas (horizontais e
não horizontais). Com relação às arestas não horizontais, a aplicação seguiu
o mesmo processo das cores anteriores e, por isso, não houve aplicação
de uma cor em arestas adjacentes. Tais cores cederam um elemento do
emparelhamento de Kp ao qual estavam relacionadas e, com isso, perderam
a representação nas linhas determinadas pelo elemento de Kp cedido.
Posteriormente, estas cores foram aplicadas justamente em vértices (na mesma
parte da partição do conjunto de vértices) daquelas linhas onde haviam perdido
a representação. Assim, não há elementos incidentes recebendo uma mesma
cor. Por fim, tais cores foram usadas em arestas horizontais (daquelas linhas
onde haviam perdido representação, não havendo, portanto, possibilidade de
arestas adjacentes terem recebido mesma cor) da mesma maneira que no caso
Kr×p com r e p ímpares. Logo, conforme explicado em capítulo anterior,
estas arestas horizontais e os vértices coloridos por uma mesma cor não
são incidentes. Assim, conclui-se que, por construção, elementos incidentes e
adjacentes receberam cores distintas.
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As cores usadas em arestas apenas foram empregadas em
emparelhamentos perfeitos do grafo, totalizando, assim, rp

2 vezes. Já as
cores usadas em vértices e arestas foram usadas em 2 vértices, em arestas
horizontais de duas linhas, totalizando 2r − 1

2 vezes e também em p− 2
2 r

arestas não horizontais. Então, cada uma dessas cores foi usada rp+ 2
2 e

esse número difere em 1 unidade em relação à quantidade de vezes que as
outras cores foram empregadas. Portanto, a coloração total é equilibrada,
como desejado. �

Pelo primeiro passo, obtemos a Tabela 3.11 para o grafo K3×8:

Tabela 3.11: Distribuição inicial de cores nas arestas de K3×8

Cor Distância Emparelhamento
1 1 {v1v2, v3v7, v4v6, v5v8}
2 2 {v1v2, v3v7, v4v6, v5v8}
3 1 {v2v3, v1v4, v5v7, v6v8}
4 2 {v2v3, v1v4, v5v7, v6v8}
5 1 {v3v4, v2v5, v1v6, v7v8}
6 2 {v3v4, v2v5, v1v6, v7v8}
7 1 {v4v5, v3v6, v2v7, v1v8}
8 2 {v4v5, v3v6, v2v7, v1v8}
9 1 {v5v6, v4v7, v1v3, v2v8}
10 2 {v5v6, v4v7, v1v3, v2v8}
11 1 {v6v7, v1v5, v2v4, v3v8}
12 2 {v6v7, v1v5, v2v4, v3v8}
13 1 {v1v7, v2v6, v3v5, v4v8}
14 2 {v1v7, v2v6, v3v5, v4v8}

A Tabela 3.12 foi obtida com as alterações do segundo passo para o grafo
K3×8

DBD
PUC-Rio - Certificação Digital Nº 1712691/CA



Capítulo 3. Sobre coloração total 70

Tabela 3.12: Distribuição final de cores nas arestas de K3×8

Cor Distância Emparelhamento
1 1 {v3v7, v4v6, v5v8}
2 2 {v3v7, v4v6, v5v8}
3 1 {v1v4, v5v7, v6v8}
4 2 {v2v3, v1v4, v5v7, v6v8}
5 1 {v2v5, v1v6, v7v8}
6 2 {v2v5, v1v6, v7v8}
7 1 {v3v6, v2v7, v1v8}
8 2 {v4v5, v3v6, v2v7, v1v8}
9 1 {v4v7, v1v3, v2v8}
10 2 {v4v7, v1v3, v2v8}
11 1 {v1v5, v2v4, v3v8}
12 2 {v6v7, v1v5, v2v4, v3v8}
13 1 {v1v7, v2v6, v3v5, v4v8}
14 2 {v1v7, v2v6, v3v5, v4v8}
15 1 {v1v2, v3v4, v5v6}
16 2 {v1v2, v3v4, v5v6}
17 1 {v2v3, v4v5, v6v7}

No caso do grafo K3×8, a coloração de vértices é como segue: x11 e x12

recebem cor 1, x13 e x14 recebem cor 5, x15 e x16 recebem cor 9, x17 e x18

recebem cor 15, x21 e x22 recebem cor 2, x23 e x24 recebem cor 6, x25 e x26

recebem cor 10, x27 e x28 recebem cor 16, x32 e x33 recebem cor 3, x34 e x35

recebem cor 7, x36 e x37 recebem cor 11 e x31 e x38 recebem cor 17.
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4
Considerações finais

O problema de coloração de grafos foi motivado pela percepção de que
quatro cores são suficientes para colorir qualquer mapa que pode ser desenhado
no plano, de modo que regiões que partilhem uma fronteira sejam coloridas
com cores distintas. Esta percepção gerou uma conjectura cuja veracidade foi
finalmente comprovada apenas mais de um século depois de sua proposição.
Apesar das demonstrações errôneas, muitos avanços foram feitos na área de
coloração de grafos.

Abordamos neste trabalho dois tipos específicos de coloração: de arestas e
total. Sobre a coloração de arestas, apresentamos a demonstração de teoremas
importantes, que limitam os valores que podem ser assumidos pelo índice
cromático. Um tipo particular de coloração de arestas é a coloração de arestas
por listas. Sobre isso, foi determinado o índice lista-cromático de multigrafos
bipartidos conforme é feito em Galvin(1995). Em seguida, passamos a tratar
da coloração total de grafos. Mencionamos ainda alguns resultados acerca
dos valores que o número cromático total pode assumir e expusemos, na
sequência, um tipo particular de coloração total: a equilibrada. A esse respeito
apresentamos resultados novos, determinando χ′′e(Kr×p).

A pergunta proposta para nortear este trabalho dizia respeito a novas
contribuições que poderiam ser dadas na área de coloração de grafos, com
foco, sobretudo, em grafos multipartidos. Utilizando novas técnicas, verificamos
a ETCC para a classe dos grafos r-partidos completos p-balanceados. Esse
resultado conclui a investigação do número cromático total equilibrado dessa
classe de grafos. Além disso, fornecemos algoritmos para que se obtenha uma
coloração total equilibrada deste tipo de grafos. Resultados parciais a respeito
deste assunto foram apresentados por Fu (1994) e também por da Silva et
al. (2018). Bermond (1974) determinou o número cromático total dos grafos
r-partidos completos balanceados e aqui determinamos χ′′e para a mesma classe
de grafos.

Futuros trabalhos incluem, mas não se limitam a verificar a ETCC para
diferentes classes de grafos. Uma das classes de grafos para a qual pretendemos
determinar o número cromático total equilibrado é a classe dos r-partidos
completos não balanceados. Outra família de grafos que pretendemos investigar
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a fim de verificar a ETCC é a dos grafos de Petersen generalizados, classe
de grafos 3-regulares (ou cúbicos), formados pela união dos vértices de um
polígono regular com os vértices de um polígono estrela. A respeito dos
grafos fortemente regulares, pretende-se responder a seguinte questão: o índice
cromático de um grafo fortemente regular de ordem par é determinado pelos
seus parâmetros? Um grafo é dito fortemente regular com parâmetros v, k, λ, µ
ou um gfr-(v, k, λ, µ) se ele é k-regular de ordem v, quaisquer dois vértices
adjacentes possuem exatamente λ vizinhos em comum e quaisquer dois vértices
não adjacentes e distintos possuem exatamente µ vizinhos em comum.

Na Tabela 4.1 temos uma comparação do número cromático total com
o número cromático total equilibrado para os grafos r-partidos completos
p-balanceados.

Tabela 4.1: Comparação do número cromático total com o número cromático total
equilibrado para Kr×p

Kr×p Coloração total Coloração total equilibrada
r p χ′′ Referência χ′′e Referência

r = 2 p ∆ + 2
Behzad, Chartrand

∆ + 2
Behzad, Chartrand

e Cooper (1967) e Cooper (1967)
r ≥ 4 par ímpar ∆ + 2 Bermond (1974) ∆ + 2 DAM (2018)
ímpar ímpar ∆ + 1 Bermond (1974) ∆ + 1 DAM (2018)

r ≥ 4 par par ∆ + 1 Bermond (1974) ∆ + 1 LAGOS 2019
ímpar par ∆ + 1 Bermond (1974) ∆ + 1 LAGOS 2019
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