
David Gonzalez Stolnicki

Regularity theory for non local partial
differential equations

Dissertação de Mestrado

Thesis presented to the Programa de Pós–Graduação em Mate-
mática da PUC-Rio in partial fulfillment of the requirements for
the degree of Mestre em Matemática .

Advisor : Prof. Boyan Slavchev Sirakov
Co-advisor: Prof. Edgard Almeida Pimentel

Rio de Janeiro
March 2019

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



David Gonzalez Stolnicki

Regularity theory for non local partial
differential equations

Thesis presented to the Programa de Pós–Graduação em Mate-
mática da PUC-Rio in partial fulfillment of the requirements for
the degree of Mestre em Matemática . Approved by the under-
signed Examination Committee.

Prof. Boyan Slavchev Sirakov
Advisor

Departamento de Matemática – PUC-Rio

Prof. Edgard Almeida Pimentel
Co-advisor

Departamento de Matemática – PUC-Rio

Prof. Cyril Imbert
Ecole normale supérieure – ENS-Paris

Prof. Carlos Tomei
Departamento de Matemática – PUC-Rio

Prof. Simon Griffiths
Departamento de Matemática – PUC-Rio

Rio de Janeiro, March the 19th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



All rights reserved.

David Gonzalez Stolnicki

Graduated in Mathematics at PUC-Rio.

Bibliographic data
Stolnicki, Gonzalez David

Regularity theory for non local partial differential equati-
ons / David Gonzalez Stolnicki; advisor: Boyan Slavchev Si-
rakov; co-advisor: Edgard Almeida Pimentel. – Rio de janeiro:
PUC-Rio , Departamento de Matemática , 2019.

v., 52 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Matemática .

Inclui bibliografia

1. Matemática – Teses. 2. Equações Diferenciais Parciais –
Teses. 3. Viscosity Solutions;. 4. Regularity Theory;. 5. Non
Local Operators;. 6. Weak Solutions;. 7. ABP Inequality;. 8.
Holder Estimates.. I. Sirakov, Slavchev Boyan. II. Pimentel,
Almeida Edgard. III. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Matemática . IV. Título.

CDD: 510

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



Acknowledgments

First of all, I would like to thank my parents, Bernardo and Fátima,
even though there are no words that may convey my gratitude, for all the love,
support and attention given to me throughout all these years, it is only due
to you that I may say: “My life was always blessed in that I never needed
anything until I had it”. There isn’t anything in this life which I could make
me feel more blessed than having you as my parents, this monography would
have never been written if not for you.

I would like to extend the above vows of gratitude for my brother and
sister, Bruno and Julia, you two are examples in which I aspire to mirror and
hope someday the reciprocate will be true.

Toward all my professors at Puc-Rio, for the education which went further
then any classroom walls. In particular for my advisors Boyan and Edgard, for
being models of what should be done, for (un)countable counsels, and for
making me go beyond every expectation I had, those 2 years were immensely
instructive and I couldn’t ever ask for a better pair of advisors.

To all my friends for the day to day conversations, the great friendships
harbored and the continuous camaraderie. In particular to my friends from the
Math Department thank you for listening, offering me advice, and supporting
me through this entire process.

I would also like to thank the rabbanim, R.Moshe Lenczinsky,R.Gabriel
Aboutboul, R.Levi Goldman, R.Moshe Aboutboul, R.Mendy Aboutboul and
R. Haim Dayan for the spiritual nourishment, the deep reflections, the ins-
tructions, for changing my perception of the world around me, and helping me
become a better person every day. I would also like to thank CNPQ for the
scholarship which supported me through the course.

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



Abstract
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non local partial differential equations. Rio de Janeiro, 2019.
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In this work, we put forward a brief introduction to the nonlocal
diffusion operators, based on the work of Luis Caffarelli and Luis Silvestre
[2]. Our object of study are the fractional Laplacian and some of its variants.
We present a number of elementary properties and establish an Alexandroff-
Bakelman-Pucci estimate, as well as a Harnack inequality. As an application,
we examine the regularity of the solutions in Hölder spaces.
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1
Introduction

In the past few years, nonlocal operators have received a substantial at-
tention from the mathematical community. This class of operators appears
naturally in several fields of pure mathematics, in particular, analysis, proba-
bility and geometry. Their relevance is also to be found in a number of models
in life and social sciences.

In this thesis, we discuss some of the results established by Luis Caf-
farelli and Luis Silvestre in [2]. Our exposition covers a few preliminary
elements, Alexandroff-Bakelman-Pucci estimates (ABP, for short), Harnack in-
equalities and regularity results in Hölder spaces. The remainder of this work
unfolds as follows.

In Chapter 2 put forward, classical results from convex analysis which
unfortunately are not always taught during the formative years of the student.

Once the background is set, we start the analysis of our class of nonlocal
PDE’s. In Chapter 3, we define our operator of interest and proceed with a
discussion regarding the correct way of understanding the Dirichlet problem
related to our operator, which culminate in the concept of viscosity solutions
for the problem. Associated with that definition, we introduce the extremal
operators in a similar way to what is done in the local case; see, for instance,
the monograph [1].

In Chapters 4-7 we explore aspects related to the regularity of solutions.
In Chapter 4 we state a version of the classical ABP estimate in the nonlocal
context. In Chapter 5, we obtain point-wise estimates, the nonlocal analogous
to the local Lε-estimates, in terms of the measure of sets related to the growth
of the solution. In Chapter 6, we obtain a Harnack inequality from the previous
developments. As usual in the literature, we resort to the Harnack inequality
to produce a Hölder-continuity result; this is reported in Chapter 7.

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



2
Former results and preliminary material

With the finality of guiding the reader through the theory developed in
the following chapters, this chapter will present some basic facts of analysis
which are not commonly taught at the more mainstream analysis courses, but
are nonetheless necessary for the correct understatement of what follows. The
following results were in part found and the interested reader may look for
deeper results and applications at [3].

Definition 2.1 A subset C ⊂ Rd is said to be convex if (1 − λ)x + λy ∈ C
whenever x, y ∈ C and λ ∈ [0, 1]

Definition 2.2 Let f : S ⊂ Rd → R ∪ {∞}. The set

{(x, µ) |x ∈, µ ∈ R, µ ≥ f(x)}

is called the epigraph of f and is denoted by epi(f).

Definition 2.3 A function f : S ⊂ Rd → R ∪ {∞} is said to be convex if
epi(f) is a convex set.

Remark 2.4 A convex function must have a convex domain. On the other
hand, a locally convex function does not have such a restriction and as such
has important applications in regularity theory.

Definition 2.5 A function f : S ⊂ Rd → R ∪ {∞} is said to be concave if
−f is a convex function.

Lemma 2.6 Every convex function f : S ⊂ Rd → R ∪ {∞} can be extended
to a convex function f̄ : Rd → R ∪ {∞}.

Proof : Define f̄ : Rd → R ∪ {∞} as

f̄(x) =

f(x) x ∈ S

+∞ x /∈ S
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Chapter 2. Former results and preliminary material 12

Let (x, µ), (y, ν) ∈ Rd+1 ∩ epi(f̄), therefore (1 − t)(x, µ) + t(y, ν) ∈ epi(f) ⊂
epi(f̄) for every t between 0 and 1. As a direct consequence epi(f̄) is convex
and convexity of f̄ follows.

�

In light of the previous result, the following lemmas will be stated
assuming the function f is defined over the whole space Rd.

Lemma 2.7 A function f : Rd → R is convex if and only if

f((1− λ)x+ λy) < (1− λ)α + λβ ∀λ ∈ (0, 1)

whenever f(x) < α, f(y) < β.

Proof : Suppose f is convex. Since α > f(x) and β > f(y), the pairs (x, α) and
(y, β) are in epi(f). Since f is convex, the epigraph of f is a convex set, which
implies:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) < (1− λ)α + λβ λ ∈ (0, 1).

on the other hand, suppose the inequality is true. Let (x, α), (y, β) ∈ epi(f)
and λ ∈ (0, 1). Thenf((1− λ)x+ λy) < (1− λ)α+ λβ which implies that the
epigraph of f is convex and therefore the function f is convex. �

Corollary 2.8 (Jensen’s Inequality) Let f : Rd → R be a convex function.
Then

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) λ ∈ [0, 1].

Proof : It follows from Lemma 2.7 taking the infimum over α, β such that
f(x) < α, f(y) < β. �

Definition 2.9 Let C ⊂ Rd be a convex set, and suppose f : C → R is
concave. A vector p ∈ Rd is a supergradient of the function f at the point
x ∈ Rd if for every y ∈ Rd

f(y) ≤ f(x) + p · (y − x).

Analogously, if f is a convex function, we say that p ∈ Rd is a subgradient of
f at x ∈ Rd if

f(y) ≥ f(x) + p · (y − x).

In both cases we denote the set of all supergradients and subgradients of f at
the point x as ∂f(x)
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Chapter 2. Former results and preliminary material 13

Definition 2.10 A convex function satisfying the assumption 2.9 is said to be
superdifferentiable at a point x ∈ Rd if ∂f(x) is non-void. In the same manner
we define that a concave function f as in 2.9 is subdifferentiable at x.

Theorem 2.11 A concave function on a convex set in Rd is superdifferentiable
at each interior point.

Proof : Let f be a concave function defined on a convex set C ⊂ Rd, and let x
be an interior point of C. Consider the strict subgraph of f ,S, as:

S := {(y, α) ∈ C × R : α < f(y)}

It follows from the concavity of f that S is a convex set. Also clear is the
fact that the pair (x, f(x)) does not belong to the set S. By the Separating
Hyperplane Theorem we obtain a nonzero pair (p, λ) ∈ Rd × R such that:

p · x+ λf(x) ≥ p · y + λα, (2-1)

where the inequality above holds for every y ∈ C, α < f(y). It follows from
letting α tend to infinity that λ must be a non-negative number. We proceed
to conclude a stronger fact, namely, that λ is indeed strictly positive. Suppose,
in order to obtain a contradiction, that λ = 0. Since x is an interior point, for
some ε > 0 the ball Bε(x) is contained in C. Considering points of the form
y = x± εz, with z ∈ B1, in 2-1 we obtain: 0 ≥ p · z

0 ≥ −p · z
(2-2)

We conclude that p must be zero, which contradicts the fact that (p, λ) is
nonzero, therefore λ is strictly positive.

Since λ is strictly positive, dividing the whole expression in 2-1 by λ we
obtain:

f(x) + (y − x) · (−p
λ

) ≥ α

The result follows from letting α tend to f(y) and noticing that− p
λ
∈ ∂f(x).

�

Theorem 2.12 Let A be an open convex subset of a finite dimensional vector
space over R, let f : A→ R be a bounded convex function. Then f is continuous
on A.

Proof : Let A and f be as in the theorem, let x ∈ A an arbitrary point.
Consider P the parallelepiped centered at x lying completely inside A, such
parallelepiped exists since A is open. Let y ∈ ∂P , for λ ∈ [0, 1], convexity of f
implies
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Chapter 2. Former results and preliminary material 14

f((1− λ)x+ λy) ≤ f(x) + λ[f(y)− f(x)]. (2-3)
Also, for α ∈ [0, 1/2], it follows that

f(x) = f

(
(1− α)

[
(1− 2α)x

1− α + αy

1− α

]
+ α(2x− y)

)

≤ (1− α)f((1− 2α)x
1− α + αy

1− α) + αf(2x− y)

Choosing λ as α
1−α we obtain

(1 + λ)f(x) ≤ f((1− λ)x+ λy) + λf(2x− y). (2-4)
Using the two enumerated inequalities we obtain

−(λf(2x− y)− f(x)) ≤ f(x+ λ(y − x))− f(x) ≤ λ(f(y)− f(x)).

Since both y, 2x− y are in ∂P , the above inequality implies that a strict
maximum of f cannot be attained in the interior, another conclusion of the
previous inequality is that for any vector z ∈ Pλ := {x + λ(y − x) : y ∈ ∂P},
is true that

|f(z)− f(x)| ≤ λ| sup
y∈∂P

f(y)− f(x)|

�
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3
Further context: the operator L

Motivated by the expression of the infinitesimal generator of a Lévy
process consisting only of jumps, without either drift nor diffusion. We consider
an operator of the form

Lu(x) =
∫

Rd\{0}

[u(x+ y)− u(x)− y · ∇u(x)χ0<|y|<1(y)]ν(dy), (3-1)

above ν is a Lévy measure, in particular, this means that ν is subjected to the
growth condition ∫

Rd

|y|2

1 + |y|2dν(y) <∞

If we restrict our attention to the case where ν is an absolutely continuous
measure with respect to the Lebesgue measure, such that ν ′s Radon derivative
dν
dy

:= K(y) is represented by a positive symmetric kernel, one would be able
to rewrite (3-2) in the following form:

Lu(x) =
∫

Rd\{0}

[u(x+ y)− u(x)− y · ∇u(x)χ0<|y|<1(y)]K(y)dy. (3-2)

As a consequence of ν ′s growth condition K(y) must satisfy:

∫
Rd

|y|2

1 + |y|2K(y)dy

Depending on the structure of our kernel K, the above integral may present
singularities, so (3-2) must be understood in the sense of Cauchy’s principal
value.

Remark 3.1 One of the most studied examples in this class of operators is
the fractional laplacian defined as:

Lu = PV
∫
Rd

u(x+ y)− u(x)− y · ∇u(x)χ0<|y|<1(y)
|y|d+σ dy.

Noticing the odd symmetry of the last term we may simplify the above expres-
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Chapter 3. Further context: the operator L 16

sion and obtain
Lu = PV

∫
Rd

u(x+ y)− u(x)
|y|d+σ dy,

furthermore if u ∈ C2(Ω) by expanding the function u through the truncated
Taylor series, we may conclude that the above integral can be understood in the
usual sense not requiring to be taken in the principal value sense, since there
would be no powers of |y| smaller than −1 after the appropriated simplifications
are done.

In view of the previous remark, we concentrate our efforts in the study
of the following Dirichlet problem with special attention to regularity results:

Lu = PV
∫
Rd

[u(x+ y)− u(x)]K(y)dy = f in Rd

u = g in Rd \ Ω
(3-3)

We can further rewrite the integrand as:

PV
∫
Rd

[u(x+ y)− u(x)]K(y)dy = PV
∫
Rd

[u(x− y)− u(x)]K(−y)dy

Recalling that K is symmetric we conclude by summing the two identical
expressions above and dividing by two that

Lu = PV
∫
Rd

u(x+ y) + u(x− y)− 2u(x)
2 K(y)dy.

In order to ease the reader in the following calculations, we introduce the
function:

δ(u, x, y) = u(x+ y) + u(x− y)− 2u(x)
2 (3-4)

With the objective of correctly posing Problem 3-3, we put forward the
viscosity solutions framework adapted to the nonlocal setting.

A function u : Rd → R, upper(lower) semi continuous in Ω, is said to be
a subsolution (supersolution) to Lu = f , and we write Lu ≥ f (Lu ≤ f), if
whenever

1. x is any point in Ω.

2. N is a neighborhood of x in Ω

3. ϕ is some C2 function in N .

4. ϕ(x) = u(x).
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Chapter 3. Further context: the operator L 17

5. ϕ(y) > u(y) (ϕ(y) < u(y)) for every y ∈ N \ {x},

and if we construct the function

v :=

ϕ in N

u in Rd \N,

we have Lv(x) ≥ f(x) (Lv(x) ≤ f(x)). We then define that a solution to the
problem (3-3) is a function which is both a subsolution and a supersolution.

Figure 3.1: On this image the function ψ touches u from below at the point x

Figure 3.2: On this image the function ψ touches u from below at the point x

Maximal Operators

As in the case for local, Fully Nonlinear PDE’s, we bound the operator by
a pair of linear operators with simpler structure, in this context those operators
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Chapter 3. Further context: the operator L 18

are called Maximal and Minimal Operators which play the whole of the Pucci
Operators in the aforementioned theory.

Let us consider a collection of linear operators L. The maximal and a
minimal operator with respect to L are defined as:

M+
Lu(x) = sup

L∈L
Lu(x)

M−
Lu(x) = inf

L∈L
Lu(x)

We will be interested in a class L0 of operators as in (3-2) such that the
kernel K satisfies:

(2− σ) λ

|y|n+σ ≤ K(y) ≤ (2− σ) Λ
|y|n+σ

The class L0 may be understood as those operators which are bounded by
multiples of the fractional laplacian, for this particular class, we can explicitly
describe the maximal and minimal operators:

M+
L0u(x) = (2− σ)

∫
Rd

Λδ+(u, x, y)− λδ−(u, x, y)
|y|n+σ dy

M−
L0u(x) = (2− σ)

∫
Rd

λδ+(u, x, y)− Λδ−(u, x, y)
|y|n+σ dy

Remark 3.2 Unless explicitly stated, the classes L0 and L will be used inter-
changeably, for a friendlier reading.

In this context we need to define what does it mean for an operator L
be elliptic with respect to a class of linear operators L, for a more meaningful
reading the next definition is helpful.

Definition 3.3 We say that a function is punctually C1,1 at the point x ∈ Ω
if, there exists a vector v ∈ Rd and M > 0 such that:

|u(x+ y)− u(x)− v · y| ≤M |y|2

for sufficiently small y.

Definition 3.4 Let L be a class of linear operators, we say that an operator
L is elliptic with respect to L if it satisfies:

– If u is any bounded function, Lu(x) is well-defined for all C1,1 continuous
functions at x.
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Chapter 3. Further context: the operator L 19

– If u is a C2(Ω) function for some open set Ω, then Lu is a continuous
function over Ω

– If u, v are bounded functions, C1,1 continuous at x, then

M−
L(u− v) ≤ L(u)− L(v) ≤M+

L(u− v).

Now we will verify that L is indeed elliptic with respect to the class L0,
we will only prove the first point since the other two are immediate.

Lemma 3.5 If u is any bounded function, Lu(x) is well-defined for all C1,1

continuous functions at x.

Proof : Since u is a C1,1, there exists N(0) a symmetric neighborhood of 0 such
that

|u(x+ y)− u(x)− v · y| ≤M |y|2,

for all y ∈ N(0). From the definition of K, one may compare Lu with the
following integrals:

(2−σ)
∫
Rd

λ(u(x+ y)− u(x))
|y|n+σ dy ≤ Lu ≤ (2−σ)

∫
Rd

Λ(u(x+ y)− u(x)
|y|n+σ dy (3-5)

Due to (3-5), it is enough to prove that for a fixed x ∈ Rd,

∫
Rd

u(x+ y)− u(x)
|y|n+σ dy <∞

Now, we will split the above integral in two by splitting our domain and follow
by estimating them separately.

At the first moment, we will restrict our attention at N(x).

∫
N(x)

u(x+ y)− u(x)
|y|n+σ dy ≤

∫
N(x)

|u(x+ y)− u(x)− v · y|
|y|n+σ dy +

∫
N(x)

v · y
|y|n+σ dy

≤M
∫

N(x)

|y|2

|y|n+σ dy,

which is finite since σ ∈ (0, 2). Notice that the third integral vanishes due to
symmetry. Outside N(0) the estimate is simpler.

∫
Rd\N(x)

u(x+ y)− u(x)
|y|n+σ dy ≤ ||u||∞

∫
Rd\N(x)

1
|y|n+σ dy <∞

�
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Chapter 3. Further context: the operator L 20

Remark 3.6 In fact we have proved more, we have shown that

∫
Rd

|u(x+ y)− u(x)|
|y|n+σ dy <∞, instead of

∫
Rd

u(x+ y)− u(x)
|y|n+σ dy <∞

Theorem 3.7 If we have a subsolution to Lu ≥ f in Ω, and ϕ a C2 function
that touches u from above at x in Ω, then Lu(x) is evaluated in the classical
sense.

Proof : Given r>0, consider the function defined as:

vr(y) =

ϕ(y) in Br(y)

u(y) in Rd

Since ϕ touches u from above, we have that δ(vr, x, y) ≥ δ(u, v, y) for every
y ∈ Rd and is increasing with respect to r, thus:

M+vr(x) ≥ Lvr(x) ≥ Lu(x) ≥ f. (3-6)

Since vr is a C1,1 continuous function at x we may evaluate Lvr, andM+vr(x)
in the classical sense, also, both |δ(vr, x, y)|/|y|n+σ, δ+(u, x, y)/|y|n+σ, are inte-
grable by the previous remark. Rewriting (3-6) it follows that:

(2− σ)
∫
Rd

Λδ+(vr, x, y)− λδ−(vr, x, y)
|y|n+σ dy ≥ f(x).

Fix r0 > 0, then for every r < r0:

(2− σ)
∫
Rd

λδ−(vr, x, y)
|y|n+σ dy ≤ (2− σ)

∫
Rd

Λδ+(vr0 , x, y)
|y|n+σ dy − f(x)

Notice that the integrand on the left side monotonically converges, and by the
Monotonous Convergence Theorem:

lim
r→0

(2− σ)
∫
Rd

λδ−(vr, x, y)
|y|n+σ dy = (2− σ)

∫
Rd

λδ−(u, x, y)
|y|n+σ dy

≤ (2− σ)
∫
Rd

Λδ+(vr0 , x, y)
|y|n+σ dy − f(x)

Therefore both the positive and negative parts may be understood in the
classical sense and it follows analogously that:M+(vr − u) tends to zero and
therefore Lu ≥ f . �
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4
Alexandroff-Bakelman-Pucci Estimate

In this section we present the Alexandroff-Bakelman-Pucci estimate
adapted to the context of integro-differential equations. This will enable us
to move from measure theory estimates to pointwise estimates. Later in this
monograph, such an estimate will be an essential element in the proof of
the nonlocal Harnack Inequality. This gives us information over the growth
of solutions. This estimate still holds true under the limit of the fractional
parameter σ recovering the classical ABP.

In what follows we introduce the definition of concave envelope for a class
of functions u : Rd → R. First, we put forward the definition of affine function.

Definition 4.1 A function of the form

`(x) = a+ b · x,

with a ∈ R and b ∈ Rd is called affine.

Remark 4.2 There is also the natural extension of affine functions, namely,
vectorial affine maps, which are of the form:

`(x) = a+ b · x,

where a ∈ Rd, b ∈ L(Rd,Rd). In this case, ` also describes a plane in the
ambient space.

Definition 4.3 Let u : Rd → R be such that

u(x) ≤ 0 , x ∈ Rd \B1.

The concave envelope of u in B3 at x is denoted by Γ(x) and defined as follows:

Γ(x) =

 min{`(x), ` affine | `(x) ≥ u+(x) in B2} for x ∈ B3

0 for x ∈ Rn \B3
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Next we establish some proprieties of the function Γ.

Lemma 4.4 Let Γ : Rd → R be as in Definition 4.3. The restriction of Γ to
B3 is concave.

Proof : The proof follows from the fact that the minimum of concave functions
is concave. Notice that when restricted to B3, Γ is the minimum of affine
functions. Recalling that every affine function is concave, we conclude that Γ
is concave. �

As a corollary of the previous lemma, we prove the continuity of Γ in B3

as a direct consequence of Theorem 2.12.

Given a function u : Rd → R satisfying the conditions in Definition 4.3,
one may consider the concave envelope Γ as on above and define the contact
set of u as follows.

Definition 4.5 If u satisfies the conditions of Definition 4.3, we define the
contact set of u, denoted by Σu as:

Σu := {y ∈ B1 |u(y) = Γ(y)}.

Remark 4.6 Unless we are dealing simultaneously with more than one con-
cave envelope, we will not use the subindex in order to preserve the clarity of
the notation.

Lemma 4.7 The set {y ∈ B3|u = Γ} is closed.

Proof : Since u is lower semicontinuous and Γ is continuous, u − Γ is lower
semicontinuous and therefore {u = Γ} is the preimage of a closed set by a
lower semicontinuous function. The result follows from classic consideration in
Analysis. �

With the above results at hand, we are going to present a number of
lemmas. Those are combined to yield the ABP estimate for a class of nonlocal
operators.

Lemma 4.8 Let u satisfy the conditions of Definition 4.3. Furthermore sup-
pose

M+ ≥ −f in B1.

Let:

– ρ0 := 1/8
√
d,
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– rk =: ρ02−
1

2−σ−k,

– Rk(x) = Brk(x) \Brk+1 .

There is a constant C0(d, λ,Λ) such that for any x in the contact set,
and any M > 0, there exists k ∈ N for which∣∣∣Rk(x) ∩ {u(x) < u(y) + (y − x)∇Γ(x)−Mr2

k}
∣∣∣ ≤ C0

f(x)
M
|Rk(x)|, (4-1)

where ∇Γ is any element of the superdifferential of Γ at x.

Remark 4.9 Such a superdifferential is always nonempty in B3 since Γ
restricted to B3 is concave.

Remark 4.10 If u is differentiable the superdifferential of Γ coincides with
Du. On the other hand if Γ is differentiable DΓ coincides with the superdiffer-
ential of the function Γ.

Proof of Lemma 4.8: Since u can be touched from above by a plane, Lemma
(3.5) implies that M+u(x) can be evaluated in the classical sense. Recalling
the definition of such operators,

M+u(x) = (2− σ)
∫
Rn

Λδ+ − λδ−

||y||d+σ dy

.
we now verify that if x is in the contact set Σ then for all points y in Rn,

δ(u, x, y) ≤ 0. First, suppose that both x+ y, x− y are elements of B3.

u(x) = p(x) p(x+ y)

u(x+ y)

p(x− y)

u(x− y)

Figure 4.1: Visual comparison between p and u

So as illustrated above we get:

δ(u, x, y) = u(x+y)+u(x−y)−2u(x) ≤ p(x+y)−p(x−y)−2p(x) = 0, (4-2)

where the last equality follows from p being an affine function.

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



Chapter 4. Alexandroff-Bakelman-Pucci Estimate 24

Next, after going through the first case, suppose that either of x + y or
x− y does not belong to B3. Suppose without loss of generality that x + y is
outside B3, In a straightforward manner we obtain:

|x|+ |y| ≥ |x+ y| ≥ 3,

|y| ≥ 2,

|x− y| ≥ |x| − |y| ≥ 1.

Therefore neither x+y nor x−y belong to B1. This implies that both u(x+y)
and u(x − y) are negative and in particular we obtain δ(u, x, y) ≤ 0. As a
consequence we get:

−f(x) ≤M+u(x) = (2− σ)
∫
Rd

−λδ−(u, x, y)
|y|n+σ dy (4-3)

≤ (2− σ)
∫
Br0 (0)

−λδ−(u, x, y)
|y|d+σ dy, (4-4)

where (4-4) follows from integrate a negative function over a smaller domain.
Decompose the domain of integration on (4-3) as the disjoint union of

rings Rk(x):
Br0 =

⋃
k∈N

Rk(0).

Then

(2− σ)
∫
Br0

−λδ−(u, x, y)
|y|d+σ dy = (2− σ)

∫
⋃
k∈N

Rk(0)

−λδ−(u, x, y)
|y|d+σ dy

= (2− σ)
∑
k∈N

∫
Rk(0)

−λδ−(u, x, y)
|y|d+σ dy.

Replacing the previous identity in 4-4

f(x) ≥ (2− σ)
∑
k∈N

∫
Rk(0)

λδ−(u, x, y)
|y|d+σ dy. (4-5)

Suppose by contradiction that (4-1) does not hold. In other words it
means that there exists a point x ∈ {u = Γ} such that for every C0 > 0 there
will be M > 0 satisfying

|Rk(x) ∩ {u(x) < u(y) + (y − x)∇Γ(x)−Mr2
k}| > C0

f(x)
M
|Rk(x)| (4-6)
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for every k ∈ N. As a consequence of (4-6) taking y = x± z we obtain:

|z ∈ Rk(0) ∩ {u(x+ z) < u(x) + (z)∇Γ(x)−Mr2
k}| > C0

f(x)
M
|Rk(x)|

Recall now that since Γ is concave, ∇Γ satisfies:

Γ(x− z) ≤ Γ(x) +∇Γ(x) · (−z)

It follows from the definition of concave hull and the fact that x is in the
contact set that,

u(x− z) ≤ Γ(x− z) and u(x) = Γ(x).

In turn, it implies,

|z ∈ Rk(0) ∩ {2u(x) > u(x− z) + u(x+ z) +Mr2
k}| > cC0

f(x)
M
|Rk(x)|

or in another notation,

|z ∈ Rk(0) ∩ {δ−(u, x, z) > Mr2
k}| > C0

f(x)
M
|Rk(x)|

Then we can further manipulate (4-5) as follows:

f(x) ≥ (2− σ)
∑
k∈N

∫
Rk(x)

λδ−

|y|d+σ dy

≥ (2− σ)
∑
k∈N

∫
Rk(x)∩{δ−>2Mr2

k
}

λδ−

|y|d+σ dy

≥ (2− σ)
∑
k∈N

2MMr2
k

rd+σ
k

cC0f(x)
M

≥ c(2− σ) ρ2
0

1− 2−(2−σ)C0f(x)

≥ cC0f(x),

the last inequality follows from the fact that the expression is uniformly
bounded for the fractional parameter σ ∈ (0, 2). Since C0 is arbitrary, letting
C0 >

1
c
would lead us to a contradiction.

�

Remark 4.11 At this point the choice of ρ0 is not necessary: the above lemma
holds for any choice of ρ̄0 adjusting C̄0 = C0ρ̄02

ρ2
0
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Corollary 4.12 Suppose that for some point x ∈ Rd,M+u(x) ≥ g(x) then x
cannot be in the contact set if g(x) > 0

Proof : Suppose that the inequality holds for some point x in the contact set,
then as in the above, one would obtain:

0 < g(x) ≤M+u(x) = (2− σ)
∫
Rd

−λδ−

|y|n+σ dy ≤ 0 (4-7)

which is a contradiction, and as such the result follows. �

Lemma 4.13 Let Γ be a concave function in Br. Assume that for a small ε,

|{y : Γ(y) < Γ(x)+(y−x) ·∇Γ(x)−h}∩ (Br(x)\Br/2(x)| ≤ ε|Br(x)\Br/2(x)|

then Γ(y) ≥ Γ(x) + (y − x) · ∇Γ(x)− h in Br/2.

Proof : Let y ∈ Br/2(x). We may create two points as in the figure:

z1

z2

y

B1

B2

x

Figure 4.2: Geometric construction

To construct these points, consider the straight line `1 going through x
and y, now construct a line orthogonal `2 to the one previously created. Now
choose two points y1, y2, in `2 symmetric with respect to y such that

|y1 − y| = |y2 − y| =
√

9
16r

2 − |y − x|2 (4-8)

from the above construction,
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1. y1, y2 ∈ Br(x) \Br/2(x)

2. |y1 − x| = |y2 − x| = 3
4r

3. y = y1+y2
2

Consider now the balls B1 = Br/4(y1), B2 = Br/4(y2), from the previous
considerations we have that both balls are symmetric with respect to y and are
entirely contained in the ring Br \ Br/2. Taking ε sufficiently small we would
have:

|B1| > ε|Br \Br/2| ≥ |{y : Γ(y) < Γ(x) + (y − x) · ∇Γ(x)− h} ∩ (Br(x) \Br/2(x)|

|B2| > ε|Br \Br/2| ≥ |{y : Γ(y) < Γ(x) + (y − x) · ∇Γ(x)− h} ∩ (Br(x) \Br/2(x)|

Thus, both sets must intersect the set

{y : Γ(y) ≥ Γ(x) + (y − x) · ∇Γ(x)− h} ∩ (Br(x) \Br/2(x),

and therefore

|{y : Γ(y) ≥ Γ(x) + (y − x) · ∇Γ(x)− h} ∩B1| > 0

|{y : Γ(y) ≥ Γ(x) + (y − x) · ∇Γ(x)− h} ∩B2| > 0.

The former inequalities imply the existence of two points z1 ∈ B1, z2 ∈ B2

such that:

1. z = z1+z2
2

2. Γ(z1) ≥ Γ(x) + (z1 − x) · ∇Γ(x)− h

3. Γ(z2) ≥ Γ(x) + (z2 − x) · ∇Γ(x)− h

by the concavity of Γ

Γ(z) = Γ(z1 + z2

2 ) ≥ Γ(z1) + Γ(z2)
2 ≥ Γ(x) + (z − x) · ∇Γ(x)− h,

and the proof is complete. �

Corollary 4.14 For any ε0 > 0 there is an universal constant C, such that
for any function u satisfying the same hypothesis as in Lemma (4.8), there is
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a r ∈ (0, ρ02−
1

2−σ ) for which :

|{y ∈ Br(x) \Br/2(x) : u(y) < u(x) + (y − x) · ∇Γ(x)− Cf(x)r2}|
|Br(x) \Br/2(x)| ≤ ε0

|∇Γ(Br/4)| ≤ Cf(x)d|Br/4(x)|.

Above, ρ0 is the same as in Definition 4.3.

Proof : The first statement follows immediately from Lemma 4.8 choosing
M = Cf(x)

ε0
. The second fact follows from the previous one, together with

convexity. �

Lemma 4.15 Let Br(x) be the family of balls Brk in Lemma 4.8. Assume that
x is a point in the contact set. Then:∣∣∣∣∣∣

⋃
x∈Σ

Br(x)

∣∣∣∣∣∣ ≥ C(supu)d (4-9)

Lemma 4.16 The measure of the image of ∇Γ(B3 \ Σ) is 0.

Proof : Notice that the collection Br(x)x∈Σ is a cover of Σ, in particular due to
the compacity of Σ we may extract a countable subcovering of Σ, Bj = Brj(xj)
such that:

1. For every j ∈ N, the ball Bj ⊂ Br/4(x) where r is given by corollary 4.14.

2. The subcover has finite overlapping.

Recall that when restricted to Bj, the function Γ is at most quadratic, and
thus:

|∇Γ(Bj)| ≤ C |Bj| .

It follows from lemma 4.16 that for every set Σ ⊂ X ⊂ B3 we obtain:

|∇Γ(B3)| = |∇Γ(X)| = |∇Γ(Σ)| .

A consequence of choosing X = ⋃
j∈N

Bj is:

(supu)d = (sup Γ)d ≤ C |∇Γ(B3)| ≤ C
∞∑
j=0
|∇Γ(Bj)| ≤ C

∣∣∣∣∣∣
⋃
j∈N
∇Γ(Bj)

∣∣∣∣∣∣ .
�

Even though the previous result gives us an L∞ estimate for the solution
u, the estimate is still too imprecise. In what follows, we will present a
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refinement of the estimate which goes a step further and generalize the
celebrated ABP-estimate.

Theorem 4.17 (ABP Estimate) Let u and Γ as in Definition 4.3 then
there exists a finite tilling of cubes Qj, with radius dj satisfying the following:

1. Qi ∩Qj = ∅.

2. Σ ⊂ ⋃mj=1Qj.

3. The tilling is minimal, in the sense that Σ ∩Qj is nonempty.

4. dj ≤ ρ02
−1

2−σ

5. |∇Γ(Qj)| ≤ C(maxQj f)d|Qj|.

6. |{y ∈ 8
√
nQj|u(y) > Γ(y)− C maxQj fd2

j}| ≥ µ|Qj|

Proof : We start by covering B1 with a finite amount of disjoint cubes with
diameter equal or less than ρ02

−1
2−σ . This is always possible for a fixed radius

r, since one can cover B1 with open cubes of radius r centered at every point
of B1 and due to compacity extract a finite subcover.

Figure 4.3: Covering the contact set with cubes [2]

By now our construction attends conditions 2 and 4, in order to conclude
the proof we will iterate the following procedure: Whenever a cube does not
satisfy conditions 5 and 6, split that cube in 2n cubes with half of the diameter
and proceed by discarding all of those whose closure do not intersect the
contact set.

It remains to show that after a finite amount of iterations, we obtain the
desired collection of cubes with the exception they may not be disjoint.

Suppose for contradiction, that the algorithm produces an infinite
amount of cubes i.e for every iteration, there is a cube which is split into
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Figure 4.4: Relation between the cubes and the balls

smaller cubes. If that is the case, then we would obtain a sequence of nested
cubes.

Recall that given a nested sequence of closed nonempty subsets of a
compact metric space X, the intersection ⋂

i
Xi is nonempty.

Therefore the intersection of the closure of our nested cubes must be a
point x0 in Σ since all the closed cubes intersect Σ, in particular it implies that
u(x0) = Γ(x0).

The contradiction will follow from showing that one of the cubes contain-
ing x0 will not split. It follows from corollary 4.14 that for some r ∈ (0, ρ02−

1
2−σ )

for which holds true that:

|{y ∈ Br(x) \Br/2(x) : u(y) < u(x) + (y − x) · ∇Γ(x)− Cf(x)r2}|
|Br(x) \Br/2(x)| ≤ ε0

|∇Γ(Br/4)| ≤ Cf(x)d|Br/4(x)|.

Let Qn be the nested sequence of cubes with diameter dn, whose closure
contains x0. Since the diameters of the nested sequence of cubes decrease by
half at each iteration, we have that for some integer j ∈ N it holds true that:

Qj ⊂ Br/2(x0) Br(x0) ⊂ 8
√
dQj
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Recall that in B2, Γ is a concave function as a consequence of Lemma 4.
This implies, following definition 2.10, that:

Γ(y) ≤ Γ(x0) + (y − x0)∇Γ(x0)

Using the fact that x0 ∈ Σ we obtain:

Γ(y) ≤ u(x0) + (y − x0)∇Γ(x0) (4-10)

With all the previous estimates at hand, we may show that condition 5
holds.

|{y ∈ 8
√
dQj | u(y) ≥ Γ(y)− C max

Qj

f(x)d2
j}| ≥ (4-11)

|{y ∈ 8
√
dQj | u(y) ≥ Γ(x0) + (y − x0)∇Γ(x0)− C max

Qj

f(x)d2
j}| ≥ (4-12)

|{y ∈ 8
√
dQj | u(y) ≥ Γ(x0) + (y − x0)∇Γ(x0)− Cf(x0)r2}| ≥ (4-13)

(1− ε0)|Br(x0) \Br/2(x0)| ≥ µ|Qj|. (4-14)

On the above, inequality (4-11) is an immediate consequence of (4-10),
the next estimate follows from the fact that C > 0, so we are only weakening
the bound. To proceed, we recall that dj and r are comparable due to figure
4.4, and conclude (4-13). The last line follows from Corollary 4.14 and simple
euclidean geometry.

From the last chain of inequalities we may conclude that 6 holds and
since Qj is contained in Br 5 is true as well. �

Remark 4.18 At a first moment it may not be clear that Theorem 4.17 should
be called the nonlocal ABP estimate. But the name is well-deserved if we notice
that as σ → 0 the size of the squares tends to zero. In particular, we have for
every positive σ:

∑
j

|∇(Qj)| ≤
∑
j

C max
Qj

f+ (4-15)

Now, letting σ goes to zero, the right-hand side converges to a Riemann integral
while the left side converges to the measure of ∇{Σ} i.e:

|∇{Σ}| ≤ C
∫

Σ
f+ (4-16)
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5
Preliminary regularity: Lε-estimates

In what follows, we are interested in obtaining point-wise estimates from
the measure of some sets. This kind of analysis plays an important role when
demonstrating a Harnack Inequality. The results proven here are analogous to
those found in [1]. The first step in producing this result is the creation of an
explicit subsolution, we proceed with the construction of such object.
Proof : We start noticing that proving for x = e1 = (1, 0, . . . , 0) is enough.
Suppose that x is not a unitary vector, then a rotation brings us back
to the previous situation, otherwise we may consider the function f̃(y) =
|x|pf(|x|y) ≥ f(y), hence the proof may be simplified by only concerning
ourselves with the case x = e1.

We follow computing an estimate of δ(f, x, y) for y ∈ B1/2. Recall the
|y| < 1/2 implies that neither x+ y nor x− y is in B1/2 therefore f(z) = |z|−p

for z ∈ {x, x+ y, x− y}.
Recall the following Bernoulli-like inequality

Lemma 5.1 Let x > −1, then for every q > 0

(1 + x)−q ≥ 1 + qx+ q(q + 1)
2 x2.

From the above inequality we obtain a pair of inequalities, which will be used
on what follows.

Lemma 5.2 Let a > b > 0, then for every q > 0

(a+ b)−q ≥ a−q(1 + q
b

a
).

Proof :[Lemma 5.2] Consider the expression (a+ b)−q, rewrite it as aq(1 + b
a
)−q

and apply the previous inequality with x = b
a
. Hence, (a + b)−q ≥ a−q(1 +

q b
a

+ q(q+1)
2

b
a

2). Since the last term is positive we may discard it and obtain the
desired inequality. �
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Lemma 5.3 Let a > b > 0, then for every q > 0

(a+ b)−q + (a− b)−q ≥ 2a−q + q(q + 1)b2a−q−2.

Proof :[Lemma 5.3] As in the proof before, we may consider x = b
a
, use the first

inequality and obtain:

(1 + x)−q ≥ 1 + qx+ q(q + 1)
2 x2

(1− x)−q ≥ 1− qx+ q(q + 1)
2 (−x)2

The result follows from summing both inequalities and multiplying by a−q and
explicitly writing the value of x as b/a. �

Since the above inequalities have been established, we may proceed
estimating δ(f, x, y) for y ∈ B1/2.

δ(f, x, y) = |x+ y|−p + |x− y|−p − 2|x|−p

= (|x+ y|2)−p/2 + (|x− y|2)−p/2 − 2(|x|2)−p/2

= (|x|2 + 2〈x, y〉+ |y|2)−p/2 + (|x|2 − 2〈x, y〉+ |y|2)−p/2 − 2|x|−p

= (1 + 2y1 + |y|2)−p/2 + (1− 2y1 + |y|2)−p/2 − 2

We may now estimate the above in view of Lemma (5.3), choosing a =
1 + |y|2, b = 2y1, q = −p/2. Hence,

δ(f, x, y) ≥ 2(1 + |y|2)−p/2 + p(p+ 2)y2
1(1 + |y|2)−p/2−2 − 2

We may continue our estimates using Lemma (5.2) on both terms.

δ(f, x, y) ≥ p(−|y|2 + (p+ 2)y2
1 −

1
2(p+ 2)(p+ 4)y2

1|y|2)

Now we proceed estimating M−f(e1). The key idea is to estimate the
integral splitting it over a small ball of radius smaller than 1/2 and over the
complement of such ball. On the former set, we will use the above estimate
and on the later we may use that 0 < f(z) < 2p.

M−f(e1) = (2− σ)
∫
Br

λδ+ − Λδ−
||y||

d+σ

dy + (2− σ)
∫
Rd\Br

λδ+ − Λδ−
||y||d+σ dy
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We may choose p large enough in order that

(p+ 2)λ
∫
∂B1

y2
1dσ(y)− Λ|∂B1| =: δ0 > 0

With the above definition we may bound the above integrals as

M−f(e1) = (2− σ)
∫
Br

λδ+ − Λδ−
||y||

d+σ

dy + (2− σ)
∫
Rd\Br

λδ+ − Λδ−
||y||d+σ dy

≥ (2− σ)
∫ r

0

λpδ0s
2 − 1

2p(p+ 2)(p+ 4)CΛs4

s1+σ ds− (2− σ)
∫
Rd\Br

Λ 2p
|y|n+σ

Evaluating the above integrals we conclude

M−f(e1) ≥ cr2−σpδ0 − p(p+ 2)(p+ 4)C 2− σ
4− σr

4−σ − 2− σ
σ

C2p+1r−σ

Now, fix r positive but smaller than 1/2 and then choose σ0 < 2 such
that for every σ ∈ (σ0, 2) the last two terms are small to the point that the
above expression is positive.

�

Corollary 5.4 Given any σ0 ∈ (0, 2) and r > 0, there exist p > 0 and δ > 0
such that

f(x) = min(δ−p, |x|−p)

is a subsolution to
M−f(x) ≥ 0

outside Br.

Proof : The idea behind the proof is controlling the negative part ofM−f(x)
choose δ sufficiently small in order to have the positive part of M−f(x) big
enough to overcome the negative one. As before let x = e1, and without loss
of generality fix r = 1. From the previous corollary we obtain the existence of
σ1 and p0 such that choosing δ = 1/2, f is a subsolution for every 2 > σ > σ1

outside of B1. Suppose now that σ1 > σ > σ0, otherwise there is nothing to be
done. Define p as the maximum between p0 and the dimension d.

Writing

M−f(e1) = (2− σ)
∫
Rd

λδ+

||y||d+σ dy − (2− σ)
∫
Rd

Λδ−
||y||d+σ dy =: I1 + I2.

Since f is bounded the rightmost term is finite i.e I2 > −C for some positive
C. Notice that ||x+ y||−p + ||x− y||−p − 2||x||−p is not an integrable function
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since for every M > 0 there exist δ0 such that

∫
Rd\Bδ0

||x+ y||−p + ||x− y||−p − 2||x||−p
||y||d+σ dy > M.

So choosing δ = δ0 given by setting M = 2C we obtain:

M−f(e1) = I1 + I2 > 2C − C > 0.

�

Corollary 5.5 Given any σ ∈ (0, 2) there exists a function ϕ : Rd → R such
that

1. ϕ is continuous over Rd.

2. ϕ is compactly supported in B2
√
d.

3. ϕ(x) > 2 for every x ∈ Q3.

4. M−ϕ(x) > −ψ(x) for some positive function ψ supported in B1/4.

Proof : Fix r = 1/4, let p, δ > 0 being the ones given by the previous lemma.
Consider the function described by:

ϕ(x) = c


0 in Rd \B2

√
d

||x||−p − (2
√
d)−p in B2

√
d \Bδ

q in Bδ

Above, q is a paraboloid chosen in order to make ϕ continuous over B2
√
d, c is

such that the third affirmative is true. It follows directly from the definition of
the above function the veracity of the first two affirmations, the fourth holds
due direct computation. �

With the above subsolution constructed we may proceed in obtaining a
pointwise estimate.

Lemma 5.6 Let σ > σ0 > 0. There exists ε0 > 0, 0 < µ < 1, and M > 1
(depending only on σ0, λ,Λ, d) such that if

1. u ≥ 0 in Rd

2. infQ3 u ≤ 1

3. M−u ≤ ε0 in Q4
√
d

then |{u ≤M} ∩Q1| > µ.
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Proof : Consider the function v = ϕ − u, such that ϕ is as given by corollary
(5.5). Notice that:

1. v ≤ 0 in Rd \B2
√
d.

2. M+v(x) ≥ −ψ(x)− ε0. in B2
√
d.

The former point follows from the fact that outside B2
√
d ϕ is identically

zero and u is nonnegative at the whole space. The latter, follows from the
computation

M+v ≥M−v =M−ϕ−M−u ≥ −ψ − ε0.

Consider the function ṽ : Rd → R the scaled version of f i.e ṽ(x) = f(2
√
dx)

therefore.

1. ṽ ≤ 0 in Rd \B1.

2. M+ṽ(x) ≥ −ψ(2
√
dx)− ε0. in B1.

The first point follows from the previous observation mutatis mutandis while
the second may be shown computing

M+ṽ(x) = (2
√
d)σM+v(2

√
dx)

Hence,

M+ṽ(x) ≥ (2
√
d)−σ[−ψ(2

√
dx)− ε0] ≥ −ψ(2

√
dx)− ε0.

With the above estimate at hand, we may apply the results from the
previous section and obtain

max
B1

ṽ ≤ C|∇Γ̃(B1)|1/d ≤ C

∑
j

|∇Γ̃(Qj)|
1/d

≤ C

∑
j

max
Qj

(ψ(2
√
dx) + ε0)+|Qj|

1/d

for a family {Qj}nj=1 of cubes given by Theorem (4.17). Rewriting the above
in terms of v:

max
B2
√
d
v ≤ C|∇Γ(2

√
d)|1/d ≤ C

∑
j

|∇Γ(Qj)|
1/d

for Γ the concave envelope of v over B6
√
d. It follows from the fact that

Q3 ⊂ B2
√
d that maxB2

√
d
≥ maxQ3 . Notice that ϕ is greater than 2 in Q3 and

the infimum of u over Q3 is bounded from above by 1. Hence, maxB2
√
d v ≥ 1
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so,

1 ≤ C

∑
j

|∇Γ(Qj)|
1/d

≤ C

∑
j

(max
Qj

(ψ(2
√
dx) + ε0)+)d|Qj|

1/d

Recalling that (A+B)+ ≤ A+ +B+,

1 ≤ Cε0 + +C
∑

j

(max
Qj

ψ(2
√
dx)+)d|Qj|

1/d

Choosing ε0 smaller than 1/2C

1
2 ≤ C

∑
j

(max
Qj

ψ(2
√
dx)+)d|Qj|

1/d

Since ψ is supported in B1/4, we may only consider the cubes Qj such that
B1/4 ∩ Qj 6= ∅. Also, since ψ is bounded, an estimate about the measure of
such cubes. ∑

Qj
B1/4∩Qj 6=∅

|Qj| >
1

2C|ψ|∞
=: c > 0 (5-1)

The diameters of all cubes Qj are all smaller than ρ02
−1

(2−σ) which is
uniformly bounded by ρ0√

2 .

Lemma 5.7 Let Q(x0) be a cube such that the diameter of Q(x0) is smaller
than ρ0√

2 . If Q(x0) ∩B1/4 6= ∅, then 4
√
dQ(x0) ⊂ B1/2.

Proof :[Lemma 5.7] Since Q(x0) ∩B1/4 6= ∅ it follows that

||x0|| ≤
1
4 + diam(Q(x0))

2 ≤ 1
4 + 1

16
√
d
.

Let z ∈ 4
√
dQ(x0) then

||z|| ≤ ||x0||+
4
√
d · diam(Qj)

2 = ||x0||+
1

4
√

2
≤ 1

4 + 1
16
√
d

+ 1
4
√

2
≤ 1

2 .

�

Applying Theorem 4.17 to ṽ and rescaling we conclude

|{x ∈ 4
√
dQj|v(x) ≥ Γ(x)− Cd2

j}| ≥ |{x ∈ 4Qj|v(x) ≥ Γ(x)− Cd2
j}| ≥ c|Qj|,

with dj ≤ ρ0. Consider now the collection {4
√
dQj}, for Qj such that

B1/4 ∩ Qj 6= ∅, an open cover for the union ⋃
Qj∩B1/4 6=∅

Qj, we may extract a
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subcover with finite overlapping.

∑
j

|{x ∈ 4
√
dQj|v(x) ≥ Γ(x)− Cd2

j}| ≥
∑
j

c|Qj|,

Let p = max
i≤n
|{j ∈ N|Qi ∩ Qj 6= ∅}| from the estimate (5-1) and the

above, �

p|{x ∈ B1/2|v(x) ≥ Γ(x)−Cd2
j}| ≥

∑
j

|{x ∈ 4
√
dQj|v(x) ≥ Γ(x)−Cd2

j}| ≥
∑
j

c|Qj| ≥ c̃,

In particular since p does not depend on the original cover we obtain an uniform
bound:

|{x ∈ B1/2|v(x) ≥ Γ(x)− Cd2
j}| ≥

c̃

p
=: c > 0,

recalling the definition of v we may rewrite the above as

|{x ∈ B1/2|ϕ(x)− u(x) ≥ Γ(x)− Cd2
j}| ≥ c,

DefiningM0 as the supremum of ϕ over the ball of radius 1/2 and recalling
that dj ≤ ρ0 and that Γ is positive we conclude

|{x ∈ B1/2|u(x) ≤M0 + Cρ2
0}| ≥ c,

choosing M = max(1,M0 + Cρ2
0).

Definition 5.8 Let Q1 be the unit cube in Rd. We split this cube into 2d cubes
of half side. We do the same thing with each of these 2d cubes, and we iterate
this process. The cubes obtained this way are called dyadic cubes.

Definition 5.9 If Q is a dyadic cube different from Q1, we say that Q̃ is the
predecessor of Q if Q is one of the 2d cubes generated by splitting Q̃.

Lemma 5.10 Let A ⊂ B ⊂ Q1 be measurable sets and 0 < δ < 1 such that

– |A| ≤ δ

– If Q is a dyadic cube such that |A ∩Q| > δ|Q|, then Q̃ ⊂ B.

Then |A| ≤ δ|B|.

Proof : It is clear that

|Q1 ∩ A|
Q1

= |A|1 = |A| ≤ δ
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Now, we proceed dividing Q1 into 2d dyadic cubes. At least one of those smaller
cubes Q satisfies

|Q ∩ A|
Q

≤ δ

We then divide Q into 2d dyadic cubes and iterate the process. In this way we
produce a sequence of cubes Qi such that

|Qi ∩ A|
|Qi|

> δ, ∀i ∈ N.

Suppose that x /∈ ∪Qi, then there exist a family of closed dyadic cubes Q, with
sides tending to zero, but still satisfy

|Q ∩ A|
Q

≤ δ < 1.

Applying the Lebesgue differentiation theorem we obtain that χA(x) ≤ δ < 1
for almost every x outside the union ∪Qi. This of course implies thatA ⊂ ∪Qi

except for a set of null measure. Consider Q̃i the family of predecessors of
the cubes Qi and extract a disjoint sub collection that still covers the original
family {Qi}. From the choice of Qi we obtain

|Q̃i ∩ A|
|Q̃i|

≤ δ, ∀i ∈ N.

The above fact implies that Q̃i is in fact a subset of B, hence

A ⊂
⋃
Qi ⊂

⋃
Q̃i ⊂ B

Estimating the measure of the above sets give us

|A| ≤ |
⋃
Qi ∩ A| ≤ |

⋃
Q̃i ∩ A| =

∑
|Q̃i ∩ A| ≤ δ

∑
|Q̃i| ≤ δ|B|.

�

Lemma 5.11 Let u be as in lemma (5.6). Then

|{u > Mk} ∩Q1| ≤ (1− µ)k

for k ∈ N where, M and µ are as in 5.6. As a consequence, we have that

|{u > t} ∩Q1| ≤ dt−ε ∀t > 0.

where d and ε are universal positive constants.
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Proof : We will prove the result using strong induction. For k = 1, the above
result is the same as (5.6). Suppose we are able to establish the result for k−1,
define the sets

A = {u > Mk} ∩Q1 B = {u > Mk−1} ∩Q1.

It suffices to show that |A| ≤ (1− µ)|B|. Since M > 1 it follows

|A| ≤ |{u > M} ∩Q1| ≤ 1− µ

In view of lemma 5.10 it suffices to prove that if Q is a dyadic cube such that
|A∩Q| > δ|Q|, then Q̃ ⊂ B. In fact, let Q = 2−iQ1(x0) be a dyadic cube such
that |A ∩ Q| > δ|Q| and suppose in order to obtain a contradiction that Q̃ is
not contained in B, therefore exists a point x̃ ∈ Q̃ such that

u(x̃) ≤Mk−1.

Consider now the function defined as

v(x) =
u(x0 + x

2i )
Mk−1

Clearly v is positive in the whole Rd, also

inf
Q3
v(x) =

inf2−iQ3(x0) u(x)
Mk−1 ≤ u(x̃)

Mk−1 ≤ 1,

and
M−v(x) =

M−u(x0 + x
2i )

Mk−12iσ ≤ ε0

Therefore by lemma 5.6 we obtain

µ < |{v(x) ≤M} ∩Q1| = 2id|{u(x) ≤Mk} ∩Q|

The above is a clear contradiction with the fact that |A ∩Q| > (1− µ)|Q| �

Lemma 5.12 Let u ≥ 0 in Rd, u(0) ≤ 1, and M−u ≤ ε0 in B2. Assume
σ ≥ σ0 > 0. Then

|{u > t} ∩B1| ≤ Ct−ε ∀t > 0.

where the constant C and ε are dependent on λ,Λ, d, andσ0.

Scaling the above theorem, we obtain the more general formulation
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Lemma 5.13 Let u ≥ 0 in Rd and M−u ≤ C0 in B2r. Assume σ ≥ σ0 > 0.
Then

|{u > t} ∩B1| ≤ Crd(u(0) + C0r
σ)εt−ε ∀t > 0.

where the constants C and ε are dependent on λ,Λ, d, and σ0.
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6
Harnack Inequality

The Harnack Inequality, named after Carl Gustav Axel von Harnack,
first appeared in the context of harmonic functions in the plane and much
later became a fundamental tool in the general theory of harmonic functions
and PDE’s as a whole. At a first glance, this inequality states that the value
of a sub and super solution is bound by the value of the function on a point, a
more careful use of this kind of inequality generally produces a proof of Hölder
regularity of solutions of elliptic problems.

Theorem 6.1 Let u ≥ 0 in Rd,M−u ≤ C0, andM+u ≥ −C0 in B2. Assume
σ ≥ σ0 > 0. Then u(x) ≤ C(u(0) + C0) for every x ∈ B1/2.

Proof : We may start simplifying the problem by considering ũ as u/(u(0)+C0),
and prove the result for ũ assuming ũ(0) ≤ 1, C0 = 1. Let γ = d

ε
, where ε is

the one given by lemma 5.13. Let suppose that for some t0 ∈ R

u(x) ≤ t0(1− ||x||)−γ ∀x ∈ B1.

Let t be the smallest value of t0 such that the above inequality is valid, i.e,(
u(x) ≤ t(1− ||x||)−γ ∀x ∈ B1

)
∧
(
∀t1 < t ∃x1 ∈ B1 u(x1) > t1(1− ||x1||)−γ

)
(6-1)

As a consequence of the minimality of t there must be a point x0 in B1 such
that u(x0) = t(1− ||x0)||)−γ, otherwise we could make t smaller and still have
a valid inequality which in turn would contradict the definition of t. Denote
by D the distance between x0 to ∂B1 and consider the set A = {u > u(x0)/2}.
By the Lε estimates in 5.13 we may obtain the bound

|A ∩B1| ≤ C

∣∣∣∣∣ 2
u(x0)

∣∣∣∣∣
ε

≤ Ct−εDd.

Let r = D/2 therefore Br(x0) ⊂ B1 and |Br(x0)| = CDd, so if t is big the
above inequality would imply that A could not intersect a big part of Br(x0),
or in other words, ∣∣∣{u > u(x0)/2} ∩Bθr(x0)

∣∣∣ ≤ Ct−ε |Br| (6-2)
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Let θ > 0 small such that Bθr(x0) ⊂ B1. For every point inside Bθr(x0)
we have

1− ||x|| ≥ 1− |x0| − θr = D(1− θ

2) ≥ D
1− θ

2
(1− ||x||)−γ ≤

(
D 1−θ

2

)−γ
By inequality 6-1, we then obtain

u(x) ≤ t(1− ||x||)−γ ≤
(
D

1− θ
2

)−γ
≤ u(x0)

(
1− θ

2

)−γ
,

whenever x ∈ Bθr(x0). In view of the previous inequality we proceed defining
the function

v(x) =
(

1− θ

2

)−γ
u(x0)− u(x).

At a first glance we would be tempted to apply the Lε inequality as in lemma
(5.13) to the function v. Unfortunately, v is a priori only positive in Bθr(x0).
The solution for this quandary is considering the function w(x) = v(x)+ and
incorporating the truncation error into the right-hand side. In the next few
pages, we will go through a series of delicate estimates in order to derive the
result. We proceed by estimatingM−w(x), for x ∈ B θ

2 r
(x0).

M−w(x) = 2(2− σ)
∫
Rd

λ(w(x+ y)− w(x))+ − Λ(w(x+ y)− w(x))−dy
|y|d+σ

We first start by splitting our domain in two,

M−w(x) =2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(w(x+ y)− w(x))+ − Λ(w(x+ y)− w(x))−dy
|y|d+σ +

2(2− σ)
∫

Rd∩{v(x+y)≥0}

λ(w(x+ y)− w(x))+ − Λ(w(x+ y)− w(x))−dy
|y|d+σ

Rewriting the definion of w,

M−w(x) =2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v+(x+ y)− v+(x))+ − Λ(v+(x+ y)− v+(x))−dy
|y|d+σ +

2(2− σ)
∫

Rd∩{v(x+y)≥0}

λ(v+(x+ y)− v+(x))+ − Λ(v+(x+ y)− v+(x))−dy
|y|d+σ
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Since v + (x+ y) is null over the set Rd ∩ {v(x+ y) < 0}

M−w(x) =2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(−v+(x))+ − Λ(−v+(x))−dy
|y|d+σ +

2(2− σ)
∫

Rd∩{v(x+y)≥0}

λ(v(x+ y)− v+(x))+ − Λ(v(x+ y)− v+(x))−dy
|y|d+σ

Proceeding by summing and subtracting the quantity,

2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v(x+ y)− v(x))+ − Λ(v(x+ y)− v(x))−dy
|y|d+σ

,
we may rewrite the above as

M−w(x) =2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(−v+(x))+ − Λ(−v+(x))−dy
|y|d+σ −

2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v(x+ y)− v(x))+ − Λ(v(x+ y)− v(x))−dy
|y|d+σ +

2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v(x+ y)− v(x))+ − Λ(v(x+ y)− v(x))−dy
|y|d+σ +

2(2− σ)
∫

Rd∩{v(x+y)≥0}

λ(v(x+ y)− v+(x))+ − Λ(v(x+ y)− v+(x))−dy
|y|d+σ .

Since the last sum may be majored byM−v(x),

M−w(x) ≤2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(−v+(x))+ − Λ(−v+(x))−dy
|y|d+σ −

2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v(x+ y)− v(x))+ − Λ(v(x+ y)− v(x))−dy
|y|d+σ +M−v(x)

also it follows from the fact thatM+u ≥ 1, thatM−v ≤ 1 in particular,

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(−v+(x))+−Λ(−v+(x))−dy
|y|d+σ −

2(2− σ)
∫

Rd∩{v(x+y)<0}

λ(v(x+y)−v(x))+−Λ(v(x+y)−v(x))−dy
|y|d+σ
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Recalling the identity (−v+)+ = v− and (−v)− = v+ and discarding the
negative terms we may simplify the above as

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd∩{v(x+y)<0}

−Λ(v+(x)− (v(x+ y)− v(x))−)dy
|y|d+σ

Since v(x+ y) is negative on the domain of integration it follows that

−Λ(v+(x)− (v(x+ y)− v(x))−) ≤ −Λv(x+ y),

and as such

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd∩{v(x+y)<0}

−Λv(x+ y)dy
|y|d+σ .

Due to the fact that the integrand is a positive function, we may write

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd∩{v(x+y)<0}

Λ(−v(x+ y))+dy

|y|d+σ

Since the integrand is a positive function over Rd the above integral
increases if we exchange our domain for a bigger one, so

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd\Bθr/2(x0−x)

Λ(−v(x+ y))+dy

|y|d+σ

Rewriting in terms of u, we obtain

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd\Bθr/2(x0−x)

Λ
(u(x+ y)− (1− θ

2)−γu(x0))+dy

|y|d+σ

We may not only use the fact that u is a positive function in order
to obtain a bound here. In order to continue our estimates, let us consider
the function gτ (x) = τ(1 − |4x|2)+. There exists a maximum value of t such
that u ≥ gt, in particular this implies that for some x1 ∈ B1/4 we have
u(x1) = gt(x1), also, t cannot be greater than 1 since 1 = u(0) ≥ gt(0) = t.
Thus,

∫
Rd

δ(u, x1, y)−
|y|d+σ dy ≤

∫
Rd

δ(gt, x1, y)−
|y|d+σ dy =

∫
Rd

δ(gt, x1, y)−
|y|d+σ dy ≤ C,
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for a bound C which is independent of σ. SinceM−u(x1) ≤ 1 we obtain

(2− σ)
∫
Rd

δ(u, x1, y)+

|y|d+σ dy ≤ Λ−1

(2− σ)
∫
Rd

λδ(u, x1, y)−
|y|d+σ dy +M−u(x1)

 ≤ C.

Also,
(2− σ)

∫
Rd

δ(u, x1, y)+

|y|d+σ dy ≤ (2− σ)
∫
Rd

(u(x1 + y)− 2)+

|y|d+σ dy

In the above we used the fact that u(x1) ≤ 1 and that since u is a positive
function, u(x− y) ≥ 0. Notice now, that we may suppose that u(x0) is greater
than 2, if that was not the case, we would have:

2 ≥ u(x0) = ht(x0) = t(1− |x0|)−γ,

which in turn would imply

t ≤ 2(1− |x0|)γ,

and we would finish the proof. So, assuming that u(x0) ≥ 2 we may conclude
that

(2−σ)
∫
Rd

(
u(x1 + y)− (1− θ

2)−γu(x0)
)+

|y|d+σ dy ≤ (2−σ)
∫
Rd

(u(x1 + y)− 2)+

|y|d+σ dy ≤ C

where we used the fact that u(x0) ≥ 2 implies (1 − θ
2)−γu(x0) ≥ 2. And with

the above estimate we are finally able to boundM−w(x). Recall that,

M−w(x) ≤ 1 + 2(2− σ)
∫

Rd\Bθr/2(x0−x)

Λ
(u(x+ y)− (1− θ

2)−γu(x0))+dy

|y|d+σ

If we rewrite the above inequality we obtain thatM−w(x) is less than or equal
to:

1+2(2−σ)
∫

Rd\Bθr/2(x0−x)

Λ
(u(x1 + x+ y − x1)− (1− θ

2)−γu(x0))+

|y + x− x1|d+σ
|y + x− x1|d+σ

|y|d+σ dy

Notice that since x ∈ Bθr(x0) we have that for some ξ < 1, |x − x0| = ξ θr2 ,
therefore Bηθr ⊂ Bθr/2(x − x0) whenever η < 1 − ξ/2. This follows from the
computation: Let z ∈ Bηr, then |x− x0 − z| ≤ |x− x0|+ |z| ≤ ξ θr2 + ηθr ≤ θr

2 .
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Hence we may estimate the value ofM−w(x) being less than or equal to:,

1+2(2−σ)
(

1 + 1/6
ηθr

)d+σ ∫
Rd\Bθr/2(x0−x)

Λ
(u(x1 + x+ y − x1)− (1− θ

2)−γu(x0))+

|y + x− x1|d+σ dy

Doing a change of variables z = y + x− x1, we obtain:

M−w(x) ≤ 1+2(2−σ)
(

1 + 1/6
ηθr

)d+σ ∫
Rd\Bθr/2(x0−x)

Λ
(u(x1 + z)− (1− θ

2)−γu(x0))+

|z|d+σ dz

where the last is integral is bounded due to the last calculations, hence for
small r,

M−w(x) ≤ C(θr)−d−σ.

∣∣∣{u < u(x0)/2} ∩Bθr/4(x0)

∣∣∣ =

∣∣∣∣∣∣
w > u(x0)

(1− θ

2

)−γ
− 1

2

 ∩Bθr/4(x0)

∣∣∣∣∣∣
Applying lemma (5.13) to a translated version of the function w, we obtain,

∣∣∣∣{w > u(x0)
((

1− θ
2

)−γ
− 1

2

)}
∩Bθr/4(x0)

∣∣∣∣ ≤
C
(
θr
4

)d (((
1− θ

2

)−γ
− 1

)
u(x0) + C(θr)−d−σ

(
θr
4

)σ)ε (
u(x0)

(
1− θ

2

)−γ
− 1

2

)−ε
≤

C
(
θr
4

)d (((
1− θ

2

)−γ
− 1

)ε
+ θ−dε

tε

)
.

Now, choosing θ sufficiently close to 0, and then, t sufficiently large we would
obtain:

C

(
θr

4

)d(1− θ

2

)−γ
− 1

ε ≤ 1
4
∣∣∣Bθr/4

∣∣∣
and,

C

(
θr

4

)d (
θ−dε

tε

)
≤ 1

4
∣∣∣Bθr/4

∣∣∣ .
This in turn would imply that

∣∣∣{u < u(x0)/2} ∩Bθr/4(x0)

∣∣∣ ≤ 1
2
∣∣∣Bθr/4

∣∣∣
But for t sufficiently large would imply then that

∣∣∣{u > u(x0)/2} ∩Bθr/4(x0)

∣∣∣ ≥ c |Br|

And that is a direct contradiction with the bound in (6-2). �
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7
Hölder Estimates

With the results previously proven we will produce a regularity result, in
particular we are going to demonstrate how any bounded function, whose Pucci
extremal operators are also uniformly bounded in B1 must be an alpha-Hölder
continuous function at the origin.

Lemma 7.1 Let σ > σ0 > 0. Let u be a function such that

−1/2 ≤ u ≤ 1/2 in Rd,

M+u ≥ −ε0 in B1,

M−u ≤ ε0 in B1;

Proof : The idea behind the proof is that we will create two sequences mk,Mk

such that

mk ≤ u ≤Mk in B4−k ,

Mk −mk = 4−αk for some positive α.

If we create such a pair of sequences then given x in a neighborhood of the
origin, then for some natural number k we would have x ∈ B4−k , x /∈ B4−k−1 ,
hence,

u(x)− u(0) ≤Mk −mk = 4−αk ≤ 4α|x|α

u(x)− u(0) ≥ mk −Mk = −4−αk ≥ −4α|x|α

This of course gives
|u(x)− u(0)| ≤ 4α|x|α

as desired, and we would finish the proof, therefore it only remains to construct
these sequences, we will proceed by induction. For k = 0 we may set
M0 = 1/2 and m0 = −1/2. Suppose we have created our pair of sequences
up to mk,Mk, we will now show that it is possible to construct the next
elements mk+1,Mk+1. Notice that in B4−k−1 the function u is either greater
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or smaller than the average of Mk,mk for at least half of the space, in a
measure sense. In other words either

∣∣∣{w ≥ mk+Mk

2

}
∩B4−k−1

∣∣∣ ≥ 1
2 | B4−k−1| or∣∣∣{w ≤ mk+Mk

2

}
∩B4−k−1

∣∣∣ ≥ 1
2 | B4−k−1 |. Let us suppose that the first case is

true. Define the function

v(x) = 2u(4−kx)−mk

Mk −mk

Due to the inductive hypothesis v ≥ 0 in B1, since mk ≤ u in B4−k , also it
follows from v ≥ 1 implies u(4−kx) ≥ mk+Mk

2 , that
∣∣∣{v ≥ 1} ∩B1/4

∣∣∣ ≥ 1
2

∣∣∣ B1/4

∣∣∣ .
We proceed by estimatingM−v(x).

M−v(x) = 4−kσM−u(4−kx)
(Mk −mk)/2

≤ 2ε04−kσ
4−αk ≤ 2ε0

if we choose α < σ. Let j be a positive integer smaller than k. Then for every
x ∈ B4j ,

v(x) ≥ 2mk−j −mk

Mk −mk

≥ 2
Mkj −Mk +mk−j −mk

Mk −mk

≥ 2(1− 4αj).

Hence, for x outside B1 ,

v(x) ≥ −2(|4x|α − 1).

Let w = v+, then as in the proof of theorem (6.1) we obtain, for x ∈ B3/4, α

small enough.
M−w(x) ≤M−v(x) + 2ε0.

Let z be an arbitrary point in B1/4. Applying lemma (5.13) to a translated
version of w, we obtain:

∣∣∣{w > 1} ∩B1/2(z)
∣∣∣ ≤ C(w(z) + 2ε0)ε.

Notice that B1/4 ⊂ B1/2(z) ⊂ B3/4, therefore

∣∣∣{w > 1} ∩B1/2(z)
∣∣∣ ≥ ∣∣∣{w ≥ 1} ∩B1/4

∣∣∣ =
∣∣∣{v ≥ 1} ∩B1/4

∣∣∣ ≥ 1
2
∣∣∣ B1/4

∣∣∣ .
Combining the two inequalities above we conclude

1
2
∣∣∣ B1/4

∣∣∣ ≤ C(w(z) + 2ε0)ε.

Now, if ε0 is small enough we conclude that w is a uniformly positive function
in B1/4, i.e, exists some θ > 0 such that w(x) > θ > 0 for every x ∈ B1/4. Now
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it only remains to define Mk+1 = Mk and mk+1 = mk + θ(Mk − mk)/2 and
verify that this choice satisfies our requirements. Observe that w(x) > θ > 0
for every x ∈ B1/4 implies that w(x) = v(x) for every x ∈ B1/4.

v(x) ≥ θ in B1/4 implies u(4−kx)−mk

(Mk −mk)/2
≥ θ

hence for x ∈ B1/4,

u(4−kx) ≥ θ(Mk −mk)/2 +mk = mk+1

Or in other words u ≥ mk+1 in B4−k+1. The upper bound is directly from the
hypothesis sinceMk = M0 ≥ u. To finish the construction we choose α, θ small
enough such that

(
1− θ

2

)
= 4−α. Thus, Mk+1 −mk+1 = 4−α(k+1). If we had at

the start supposed that
∣∣∣{w ≤ mk+Mk

2

}
∩B4−k−1

∣∣∣ ≥ 1
2 | B4−k−1 | we would still

be able to follow the same general idea just changing our function v for

v(x) = Mk − u(4−kx)
(Mk −mk)/2

end using the boundM+u ≥ −ε0. �

Theorem 7.2 Let σ > σ0 > 0. Let u be a bounded function in Rd such that

M+u ≥ −C0 in B1,

M−u ≤ C0 in B1;

then there is an α = α(λ,Λ, d, σ0) > 0 such that u ∈ Cα(B1/2) and

|u|Cα(B1/2) ≤ C(sup
Rd
|u|+ C0)

for a positive constant C.

Proof : The result will follow straightly from a scaling argument. Let x0 be an
arbitrary point in B1/2 Consider the function

v(x) = u(x/2 + x0) min(1, ε0)
2 max(C0, |u|∞)

An easy calculation shows.

|v(x)| ≤ |u(x/2 + x0)| min(1, ε0)
2 max(C0, |u|∞) ≤ |u|∞

min(1, ε0)
2 max(C0, |u|∞) ≤

1
2 ,

DBD
PUC-Rio - Certificação Digital Nº 1712692/CA



Chapter 7. Hölder Estimates 51

also for x ∈ B1,

M−v(x) = M−u(x/2 + x0)| min(1, ε0)
2σ+1 max(C0, |u|∞) ≤ C0

min(1, ε0)
2 max(C0, |u|∞) ≤ ε0.

and analogously,

M+v(x) = M+u(x/2+x0)| min(1, ε0)
2σ+1 max(C0, |u|∞) ≥ −C0

min(1, ε0)
2 max(C0, |u|∞) ≥ −ε0.

Hence, we may apply the previous lemma to v and obtain:

|v(x)− v(0)| ≤ C|x|α

but equivalently we may write

|u(x/2 + x0)− u(x0)| min(1, ε0)
2 max(C0, |u|∞) ≤ C|x|α

therefore, since x0 is arbitrary we obtain

|u|Cα(B1/2) ≤
2 max(C0, |u|∞)

min(1, ε0) + |u|∞ ≤ C(sup
Rd
|u|+ C0)

�
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