Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine.

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Química of the Departamento de Química do Centro Técnico Científico da PUC-Rio, as partial fulfilment of the requirements for the degree of Doutor em Ciências- Química.

Advisor: Prof. Ricardo Queiroz Aucéllo

Rio de Janeiro
April, 2013
Sarzamin Khan

Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine.

Thesis presented to the Programa de Pós-Graduação em Química of the Departamento de Química do Centro Técnico Cientifico da PUC-Rio, as partial fulfilment of the requirements for the degree of Doutor em Ciências- Química.

Prof. Ricardo Queiroz Aucélio
Advisor
Departamento de Química - PUC-Rio

Porf. Aderval Serveino Luna
UERJ

Profa. Flávia Ferreiro de Carvalho Marques
UFF

Porf. Wagner Felippe Pacheco
UFF

Prof. Omar Pandoli
Departamento de Química - PUC-Rio

Profa. Fatima Ventura Pereira Meirelles
Departamento de Química – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the centro Técnico Cientifico da PUC-Rio

Rio de janeiro, April 29th, 2013
Sarzamin Khan

Received his Master’s degree in analytical chemistry from the Institute of Chemical Sciences, University of Peshawar, Pakistan (2005). Accomplished the M.phil in Physical Chemistry from National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan (2008).

Ficha Catalográfica

Khan, Sarzamin

Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine / Sarzamin Khan; orientador: Ricardo Queiróz Aucélio. – 2013.

180 f.: il. (color.) ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2013.

Inclui bibliografia

CDD:540
Acknowledgments

I feel great delight and happiness in expressing, heartfelt gratitude to my research advisor Prof. Dr. Ricardo Queiroz Aucélio, for his motivating and stirring guidance, devotion of time, valuable suggestions and courteous behaviour in completing this work.

I would like to thank everyone in our research group for your cooperation and kindness.

The time I spent with you will be remembered for ever.

I would like to express my gratitude to TWAS-CNPq for scholarship.

In last but not the least I wish to thanks my father and all family members for their love and endless support, none of this thesis would have even existed without the continual encouragement and support my family gives for everything I do.

I also thank FAPERJ, CNPq and FINEP for funding this research.
Abstract

Recently, semiconductor nanocrystals, also known as quantum dots, have become very attractive for photoluminescence based sensing approaches due to their unique optical properties like intense photoluminescence with narrow profile, maximum wavelength adjustable by the control of particle size and higher photostability in comparison of conventional organic dyes. Different synthesized nanoparticles were evaluated as photoluminescent probes (as aqueous dispersions) for the determination of captopril, histamine, kanamycin and thyroxine (non-photoluminescent analytes at room-temperature) avoiding the use of complex chemical derivatization procedures and enabling simple and sensitive quantifications. Thioglycolic acid (TGA) and 2-mercaptopropionic acid (2MPA) modified CdTe nanoparticles and L-cysteine modified ZnS nanoparticles were synthesized via the colloid aqueous phase route. Their characterization was made using proper microscopic and spectroscopic methods.

The emission intensity of 2MPA-CdTe is greatly enhanced in the presence of captopril. Under optimum conditions, the calibration model (Langmuir binding isotherm) was linear up to 4.8×10^{-4} mol L$^{-1}$ with equilibrium binding constant of 3.2×10^{4} L mol$^{-1}$ and limit of detection (LOD) of 6.2×10^{-6} mol L$^{-1}$ (1.3 µg mL$^{-1}$). Applications in captopril fortified human serum and in pharmaceutical formulations were demonstrated. The photoluminescence of TGA-CdTe nanoparticles was quenched by histamine in a concentration dependent manner (Stern-Volmer model). The linear response covered the concentration range up to 5.7×10^{-4} mol L$^{-1}$ with LOD of 9.6×10^{-6} mol L$^{-1}$ (1.1 µg mL$^{-1}$). The proposed method was used for the analysis of tuna fish. The presence of aminoglycosides enhanced the photoluminescence of the TGA-CdTe nanoparticles (following a Langmuir binding isotherm model). Kanamycin was used as a model aminoglycoside in order to study its effect on the photoluminescence enhancement of TGA-CdTe quantum dots dispersed in aqueous solution. The linear range
extended up to 8.2×10^{-7} mol L$^{-1}$ with LOD of 2.5×10^{-8} mol L$^{-1}$ (14.2 ng mL$^{-1}$). Binding constants were calculated for several aminoglycosides indicating that there is a relationship between the number of available primary amino groups and the increasing in photoluminescence. This approach was successfully applied for determination of kanamycin fortified milk and in stream water samples after solid phase extraction using a molecular imprinted polymer produced using a kanamycin template. The photoluminescence intensity of cysteine-ZnS in solution containing cetyltrimethyl ammonium bromide (CTAB) was quenched by thyroxine. The overall quenching followed a Stern-Volmer model with linear response covering an analyte concentration range up to 4.0×10^{-6} mol L$^{-1}$. LOD was 6.2×10^{-8} mol L$^{-1}$ (48.3 ng mL$^{-1}$). The aqueous dispersion of cysteine-ZnS was used as optical probe for the determination of thyroxine in pharmaceutical formulations and in analyte fortified human saliva.

Keywords

Semiconductor nanocrystals; quantum dots; Stern-Volmer model; Langmuir model for enhanced photoluminescence; captopril; histamine; aminoglycosides; thyroxine
Resumo

Recentemente, os nanocristais semicondutores, também conhecidos como pontos quânticos, tornaram-se muito atrativos em abordagens de detecção por fotoluminescência devido às suas propriedades ópticas peculiares, tais como fluorescência intensa e com perfil estreito, comprimento de onda máximo ajustável através do controle do tamanho das partículas e maior fotoestabilidade em comparação com os corantes orgânicos convencionais. As nanopartículas sintetizadas foram avaliadas como sondas fotoluminescentes (na forma de dispersão aquosa) para a determinação de captopril, histamina, canamicina e tiroxina (analitos não fotoluminescentes na temperatura ambiente) evitando o uso de procedimentos complexos de derivatização química e permitindo quantificações de forma simples e com sensibilidade. Nanopartículas de CdTe modificadas com o ácido tioglicólico (TGA) e com o ácido 2-mercaptopropiónico (2MPA) e também nanopartículas de ZnS modificadas com L-cisteína foram sintetizadas pela abordagem em fase aquosa coloidal. Estas foram caracterizadas usando métodos microscópicos e espectroscópicos adequados.

A fotoluminescência da nanopartícula 2MPA-CdTe foi consideravelmente mais intensa quando na presença de captopril. Sob condições ótimas, o modelo de calibração (isoterma de ligação de Langmuir) foi linear até $4,8 \times 10^{-4}$ mol L$^{-1}$ com constante de equilíbrio de ligação de $3,2 \times 10^{4}$ L mol$^{-1}$ e limite de detecção (LOD) de $6,2 \times 10^{-6}$ mol L$^{-1}$ (1,3 µg mL$^{-1}$). Aplicações em soro sanguíneo humano fortificado com captopril e em formulações farmacêuticas foram demonstradas. A fotoluminescência das nanopartículas de TGA-CdTe foi reduzida (supressão) após adição de diferentes concentrações de histamina seguindo o modelo de Stern-Volmer. A resposta linear cobriu uma faixa de concentração até $5,7 \times 10^{-4}$ mol L$^{-1}$, com LOD de $9,6 \times 10^{-6}$ mol L$^{-1}$ (1,1 µg mL$^{-1}$). A abordagem proposta foi utilizada para determinação de histamina em carne de atum. Já a presença de aminoglicosídeos aumentou a fluorescência das nanopartículas de TGA-CdTe.
(seguindo o modelo da isoterma da adsorção de Langmuir). A kanamicina foi o aminoglicosídeo escolhido para estudar o efeito do aumento da intensidade da fotoluminescência das nanopartículas de TGA-CdTe disperso em solução aquosa. A faixa linear estendeu-se até $8,2 \times 10^{-7}$ mol L$^{-1}$ com LOD de $2,5 \times 10^{-8}$ mol L$^{-1}$ (14,2 ng mL$^{-1}$). As constantes de ligação entre diversos aminoglicosídeos e TGA-CdTe foram calculadas e indicou que existe uma relação entre o número de grupos amino primários disponíveis e o aumento da luminescência. Essa abordagem foi aplicada com sucesso para a análise de amostras de leite e água de riacho, ambos fortificados com kanamicina, usando procedimento de extração em fase sólida com um polímero impresso molecularmente (MIP). A intensidade da fotoluminescência da nanopartícula cistefina-ZnS em solução contendo brometo de cetiltrimetilamônio (CTAB) foi reduzida (quenched) após adição de tiroxina. A redução total do sinal (quenching) seguiu o modelo de Stern-Volmer com resposta linear até $4,0 \times 10^{-6}$ mol L$^{-1}$ de concentração do analito, o LOD foi $6,2 \times 10^{-8}$ mol L$^{-1}$ (48,3 ng mL$^{-1}$). A dispersão aquosa da cistefina-ZnS foi usada como sonda óptica para a determinação de tiroxina em formulações farmacêuticas e em saliva humana fortificada com analito.

Palavras-chave

Nanocristais semicondutores; quantum dots; modelo de Stern-Volmer; modelo Langmuir para aumento da fotoluminescência; captopril; histamina; aminoglicosídeos; tiroxina.
Índice

1. Introduction 23
 1.1. Photoluminescence 23
 1.2. Semiconducting nanocrystals or quantum dots 25
 1.2.1. Background 25
 1.2.2. Synthesis of quantum dots 28
 1.2.2.1. The organometallic synthesis 29
 1.2.2.2. Aqueous phase synthesis 30
 1.2.3. Growth mechanism of quantum dots 31
 1.2.3.1. Nucleation 31
 1.2.3.2. Growth 33
 1.2.4. Surface Passivation and water solublization 34
 1.2.5. Photophysical properties 37
 1.3. Photoluminescent Chemical Sensing 38
 1.4. Sensing approaches based on photoluminescence of quantum dots 39
 1.5. The analytes of interest for sensing through optical probe 43
 1.5.1. Captopril 43
 1.5.2. Histamine 44
 1.5.3. Aminoglycosides 47
 1.5.4. Thyroxine 52
 1.6. Motivation and aims of the work 54

2. Experimental 56
 2.1. Reagents and Materials 56
 2.2. Instrumentation 57
 2.3. Preparation of molecular imprinted polymer for group-selective recognition of aminoglycosides 58
 2.3.1. Evaluation of molecular imprinted polymer for solid phase extraction of aminoglycosides 59
 2.4. Aqueous synthesis of quantum dots 59
2.4.1. Synthesis of CdTe capped with different stabilizers 59
2.4.2. Synthesis of L-cysteine capped ZnS nanoparticles 60
2.4.3. Procedure of quantum yield determination 60
2.5. Photoluminescence measurements and samples preparation for
determination of captopril, histamine, kanamycin and thyroxine 61
2.5.1. Photoluminescence measurements for sensing histamine 61
2.5.2. Procedure for extraction of histamine from tuna fish 62
2.5.3. Colorimetric method for determination of histamine 62
2.5.4. Photoluminescence measurements for determination of kanamycin 63
2.5.5. SPE for milk and water samples 63
2.5.6. Photoluminescence measurements for determination of captopril 64
2.5.7. Analysis of captopril in human serum and tablets 64
2.5.8. The Ellman’s method for determination of captopril 65
2.5.9. Photoluminescence measurements for determination of thyroxine 65
2.5.10. Sample preparation for analysis of thyroxine in pharmaceutical
formulation and human saliva 66

3. Characterization of the semiconductor nanoparticle 67
3.1. Characterization of TGA-CdTe and 2MPA-CdTe nanoparticles 67
3.1.1. Optical properties of TGA-CdTe nanoparticles 67
3.1.2. Optical properties of 2MPA-CdTe nanoparticles 70
3.1.3. Nanoparticle size determination 72
3.1.3.1. Size determination by UV-vis spectrophotometry 72
3.1.3.2. Size determination by transmission electron microscopy 73
3.1.3.3. Size determination by transmission dynamic light scattering 76
3.1.4. Photoluminescence quantum yield 78
3.2. Optical properties of cysteine-ZnS nanoparticles 79
3.2.1. Size determination by scanning transmission electron microscopy 81
3.2.2. Size determination by dynamic light scattering 82

4. Determination of captopril by photoluminescence enhancement of 2MPA
modified CdTe nanocrystals 83
4.1. The photoluminescence changes of the 2MPA-modified CdTe
nanoparticles caused by captopril 83
4.2. Optimization of the composition of the 2MPA-CdTe nanoparticles dispersion in un-buffered media for photoluminescence quenching 83
4.2.1. Influence of pH 83
4.2.2. Photoluminescence stability 85
4.2.3. Interactions of 2MPA-CdTe quantum dots with captopril under optimized condition in non-buffered aqueous media. 87
4.3. Optimization of the composition of the 2MPA CdTe nanoparticle dispersion in buffered media for photoluminescence enhancement 90
4.3.1. Effect of pH in phosphate buffer solution 90
4.3.2. Concentration of quantum dots dispersion 92
4.3.3. Photoluminescence stability and reaction time 93
4.4. Modeling the interaction of 2MPA-cdTe quantum dots with captopril under optimized condition in aqueous buffered media 94
4.4.1. Mechanism of interaction 97
4.5. Analytical characteristics of enhanced photoluminescence approach 99
4.6. Effect of coexisting substances 103
4.7. Application of 2MPA-CdTe quantum dots dispersions in the determination of captopril 104

5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdTe nanoparticles and cationic solid phase extraction 107
5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 107
5.2. Adjustment of the composition of TGA-modified CdTe-nanoparticles 107
5.2.1. Concentration of quantum dots in the dispersion 107
5.2.2. pH and amount of Buffer 108
5.2.3. Stability of photoluminescence intensity and reaction time 109
5.2.4. Effect of the size and surface modifies on the quenching of TGA-modified CdTe nanoparticles 110
5.3. Mechanism of interaction between histamine and TGA-CdTe quantum dots 113
5.4. Analytical characteristics of observed photoluminescence quenching 117
5.5. Selectivity studies 119
5.6. Determination of histamine in fish sample 122

6. TGA-CdTe quantum dots sensing and molecularly imprinted polymerid based solid phase extraction for the determination of kanamycin 124
6.1. Enhancement of the photoluminescence from the TGA-CdTe nanoparticles caused by aminoglycosides 124
6.2. Factors affecting the CdTe-TGA quantum dots photoluminescence enhancement 124
6.2.1. Influence of the pH on the photoluminescence enhancement caused by Kanamycin 124
6.2.2. Effect of temperature and reaction time on the photoluminescence enhancement 125
6.2.3. Concentration of quantum dots dispersion 126
6.2.4. Size dependence of TGA-CdTe photoluminescence enhancement 127
6.3. Modeling the photoluminescence sensing of kanamycin with TGA-CdTe nanoprobe 128
6.4. Effect of other aminoglycosides and macrolide antibiotics on the photoluminescence measured from the TGA-CdTe quantum dots dispersion 131
6.5. Mechanism of interaction 133
6.6. Analytical characteristics of photoluminescent probe for the determination of kanamycin 134
6.7. Optimization of extraction conditions for kanamycin using a molecularly imprinted polymer 135
6.8. Application of MIP solid phase extraction and TGA-CdTe probe 138

7. Development of cysteine-ZnS photoluminescent probe for determination of thyroxine in Saliva and pharmaceutical formulations 140
7.1. The photoluminescence quenching of the Cysteine-modified ZnS nanoparticles by thyroxine 140
7.2. Optimization of the system for analytical measurements 140
7.2.1. Amount of Cysteine-ZnS nanoparticles dispersion 140
7.2.2. Influence of pH on the photoluminescence quenching of quantum dots 141
7.2.3. Effect of surfactants on the photoluminescence quenching 142
7.2.4. Effect of temperature 143
7.2.5. Stability of photoluminescence intensity and reaction time 144
7.3. Mechanism of interaction 146
7.4. Analytical characteristics of photoluminescence quenching 148
7.5. Selectivity studies 151
7.6. Application of the cysteine-ZnS quantum dots dispersion on the determination of thyroxine 153

8. Conclusions 155
9. Future work 158
10. References 160
Figure Contents

Figure 1- Modified Jablonski diagram depicting absorption and emission electronic processes. 24
Figure 2- Schematic describing Tunable bandgap of quantum dots compared to the fixed band gap of the bulk semiconducters. 27
Figure 3 - Schematic of excitation and emission of quantum dots with the typical energy band structure of semiconductor. V_B is the valence band, C_B is the conduction band, ΔE is the Stokes shift, E_g is the band gap energy, E_{ex} is the excitation energy, E_{em0-4} are the various emission energies. 28
Figure 4 - Free energy variation for the nucleation 32
Figure 5- Model for stages of nucleation and growth of monodisperse colloidal particles 34
Figure 6 - (a) Representation of an organic ligand coated quantum dots (b) and a core shell quantum dots . 36
Figure 7 - Chemical structure of captopril 43
Figure 8- Chemical structure of histamine 46
Figure 9- Structures of some aminoglycosides and erythromycin antibiotics. 49
Figure 10- chemical structure of a. thyroxine (T₄) b. triiodothronine (T₃) 52
Figure 11- Photoluminescence emission spectra of TGA-capped CdTe nanoparticles. 68
Figure 12- Photoluminescence excitation spectra of TGA-CdTe nanoparticles. 69
Figure 13- TGA-CdTe quantum dots electronic absorption spectra with 1ˢᵗ excitonic at 490, 509 and 539. 69
Figure 14- 2MPA-CdTe quantum dots electronic absorption spectra. 70
Figure 15- 2MPA CdTe quantum dots photoluminescence spectra upon excitation at 350 nm. 71
Figure 16- 2MPA-CdTe quantum dots concentrations dependent photoluminescence : (a) 7 x 10⁻⁸, (b) 1.4 x 10⁻⁷, (c) 2.1 x 10⁻⁷, (d) 2.8 x 10⁻⁷, (e) 3.5 x 10⁻⁷, (f) 4.2 x 10⁻⁷ mol L⁻¹. 71
Figure 17- TEM images of TGA-CdTe nanoparticles synthesized with reaction times of 10 (a), 30 (b) and 60 *c) min. The magnification of 20 nm was used for all the measurements.

Figure 18- TEM images of 2MPA-CdTe nanoparticles with magnification of 20 nm (a) and 50 nm (b).

Figure 19- DLS histogram for the TGA-CdTe nanoparticles synthesized with 30 min reflux time.

Figure 20 - DLS histogram for the 2MPA-CdTe quantum dots.

Figure 21- Integrated photoluminescence intensity in function of the absorbance of the aqueous TGA-CdTe quantum dots (■). Data for the standard rhodamine B (●).

Figure 22-. Integrated photoluminescence intensity in function of the absorbance of the aqueous 2MPA-CdTe quantum dots (■). Data for the standard rhodamine B (●).

Figure 23- Cysteine-ZnS quantum dots electronic absorption spectra.

Figure 24- Photoluminescence excitation and emission spectra of cysteine-ZnS quantum dots.

Figure 25- Photoluminescence emission spectra of the cysteine-ZnS nanoparticles synthesized using different reflux times: (a) 10, (b) 20, (c) 40, (d) 60, (e) 80, (f) 100, (g) 130, (h) 120 min.

Figure 26- STEM image of cysteine-ZnS nanoparticles.

Figure 27- DLS histogram for the cysteine-ZnS nanoparticles.

Figure 28- Photoluminescence responses of aqueous quantum dots dispersions solution (2.8 x 10^{-8} mol L^{-1}) at different pH values adjusted by the addition of either 0.01 HCl or NaOH mol L^{-1}.

Figure 29- Effect of pH value (adjusted either by 0.01 mol L^{-1} of HCL or NaOH) the photoluminescence of 2MPA-CdTe quantum dots dispersion (2.8 x 10^{-8} mol per 1 L) measured as F_0/F (where F_0 and F are respectively the photoluminescence of the quantum dots dispersion before and after the addition of 1.5 x 10^{-5} mol L^{-1} captopril).

Figure 30- Stability studies of the photoluminescence emission intensity of the quantum dispersion (control) as function of time.

Figure 31- Stability of the photoluminescence of the 2MPA-CdTe
quantum dots dispersion after mixing captopril \((2 \times 10^{-5} \text{ mol L}^{-1})\).

Figure 32- 2MPA-CdTe quantum dots photoluminescence quenching non-linear model in function of the concentration of captopril.

Figure 33- 2MPA-CdTe quantum dots photoluminescence quenching linear model in function of the concentration of captopril.

Figure 34- Photoluminescence emission spectra \((\lambda_{\text{ex}} = 350 \text{ nm})\) of the quantum dots in absence and in the presence of increasing quantities of captopril: (a) 0, (b) \(8 \times 10^{-6}\), (c) \(1 \times 10^{-5}\), (d) \(2 \times 10^{-5}\), (e) \(3 \times 10^{-5}\), (f) \(4 \times 10^{-5}\), (g) \(5 \times 10^{-5}\), (h) \(7 \times 10^{-5} \text{ mol L}^{-1}\).

Figure 35- Effect of pH value (adjusted in phosphate buffer \(0.01 \text{ molL}^{-1}\)) on the enhancement of the photoluminescence of 2MPA-CdTe quantum dots dispersion \((3 \times 10^{-8} \text{ mol in 1 L of aqueous solution})\) measured as \(\Delta F = F - F_0\) (where \(F_0\) and \(F\) are respectively the photoluminescence of the quantum dots dispersion before and after the addition of \(1.4 \times 10^{-4} \text{ mol L}^{-1}\) captopril).

Figure 36- Effect of different ionic strength of phosphate buffer solution.

Figure 37- Effect of concentration of the synthesized quantum dots on the photoluminescence intensity of the aqueous quantum dots dispersion measured as \(\Delta F = F - F_0\) (where \(F_0\) and \(F\) are respectively the photoluminescence of the quantum dots dispersion before and after the addition of \(1.9 \times 10^{-4} \text{ mol L}^{-1}\) of captopril).

Figure 38- Photoluminescence stability of 2MPA quantum dots after mixing with \(1.4 \times 10^{-4} \text{ mol L}^{-1}\) of captopril.

Figure 39- Photoluminescence emission spectra of CdTe quantum dots in the presence of different concentrations of captopril (mol L-1): pH; 9 (a) 0, (b) \(9.2 \times 10^{-6}\), (c) \(2 \times 10^{-5}\), (d) \(4.6 \times 10^{-5}\), (e) \(9.2 \times 10^{-5}\), (f) \(138 \times 10^{-4}\), (g) \(1.83 \times 10^{-4}\), (h) \(2.71 \times 10^{-4}\), (i) \(3.15 \times 10^{-4}\), (j) \(3.59 \times 10^{-4}\), (k) \(4.02 \times 10^{-4}\), (l) \(4.44 \times 10^{-4}\), (m) \(4.87 \times 10^{-4}\).

Figure 40- Non-linear plot of photoluminescence enhancement of 2MPA-CdTe quantum dots in function of the increased concentration of captopril.

Figure 41- Electronic absorption spectra of the 2MPA-CdTe quantum dots in the presence of increasing concentrations of captopril: (a) 0, (b) \(4.6 \times 10^{-5}\), (c) \(1.4 \times 10^{-4}\), (d) \(2.3 \times 10^{-4}\), (e) \(3.6 \times 10^{-4}\), (f)
4.9 x 10^{-4} \text{ mol L}^{-1}.

Figure 42- Raman spectra of 2MPA-CdTe quantum dots dispersion before (dashed line) and the addition of captopril (solid line).

Figure 43- Langmuir binding isotherm for captopril used to linearize the photoluminescence response in function of the increased concentration of captopril.

Figure 44- Effect of the amount of the synthesized quantum dots on the photoluminescence intensity measured from the TGA-CdTe nanocrystals aqueous dispersion. Signal variation expressed as F_0 / F (where F_0 and F are respectively the photoluminescence of the quantum dots dispersion before and after the addition of 1.7×10^{-4} mol L$^{-1}$ of histamine).

Figure 45- Effect of pH value on the photoluminescence measured from the TGA-CdTe quantum dots dispersion: (■) The Quantum dispersion without addition of histamine. (●) in the presence of 2×10^{-4} mol L$^{-1}$ of histamine.

Figure 46- Curves for the binding of histamine with aqueous dispersion of TGA-Capped CdTe quantum dots with sizes of 2.1 nm (■), 2.6 nm (▲), 3.2 nm (●), nanoparticles were excited at 350 nm and emission measured at 515, 545 and 580 nm.

Figure 47- Photoluminescence measured from quantum dots dispersions of: (a) TGA-CdTe, (b) TGA-CdTe in the presence 2.3×10^{-4} mol L$^{-1}$ of histamine, (c) Cysteamine-CdTe and (d) Cystamine-CdTe in the presence of 2.3×10^{-4} mol L$^{-1}$.

Figure 48- Electronic absorption spectra: A. histamine (1×10^{-4} mol L$^{-1}$) B. CdTe quantum dots in the presence of histamine present in the concentration range from 1×10^{-5} and 1×10^{-3} mol L$^{-1}$.

Figure 49- Stern–Volmer curves for the aqueous dispersions of TGA-CdTe quantum dots at 298 K (▲), 303 K (●) and 308 K (■).

Figure 50- A typical photoluminescence decay profile of CdTe quantum dots (2.1 nm average size) in the absence and in the presence of histamine at 6.6×10^{-5} and 3.9×10^{-4} mol L$^{-1}$ concentration levels.

Figure 51- Photoluminescence emission spectra of CdTe quantum dots in the presence of different concentrations of captopril (mol L$^{-1}$):
pH: 9 (a) 0, (b) 9.2 x 10^{-6}, (c) 2 x 10^{-5}, (d) 4.6 x 10^{-5}, (e) 9.2 x 10^{-4}, (f) 1.38 x 10^{-4}, (g) 1.83 x 10^{-4}, (h) 2.71 x 10^{-4}, (i) 3.15 x 10^{-4}, (j) 3.59 x 10^{-4}, (k) 4.02 x 10^{-4}, (l) 4.44 x 10^{-4}, (m) 4.87 x 10^{-4}

Figure 52- Photoluminescence spectra from TGA-CdTe quantum dots dispersions in the presence of different concentrations of histamine (mol L^{-1}): (a) 0, (b) 3.32 x 10^{-5}, (c) 6.62 x 10^{-5}, (d) 1.32 x 10^{-4}, (e) 1.96 x 10^{-4}, (f) 2.6 x 10^{-4}, (g) 3.23 x 10^{-4}, (h) 3.85 x 10^{-4}, (i) 4.46 x 10^{-4}, (j) 5.06 x 10^{-4}, (k) 5.66 x 10^{-4} mol L^{-1}.

Figure 53- Stern-Volmer-type calibration curve for the determination of histamine.

Figure 54- Effect of pH value of the aqueous dispersion on the enhancement of the photoluminescence of TGA-CdTe quantum dots measured as F/F_0, where F_0 and F are respectively the photoluminescence of the quantum dots dispersion after and before the addition of kanamycin (1.3 x 10^{-7} mol L^{-1} final concentration).

Figure 55- Effect of the temperature on the photoluminescence enhancement of the aqueous quantum dots dispersion after addition of kanamycin (1.2 x 10^{-7} mol L^{-1} final concentration).

Figure 56- Effect of the amount of the synthesized quantum dots on the photoluminescence of the aqueous quantum dots dispersion. Dispersions containing kanamycin at a fixed concentration of 6.7 x 10^{-8} mol L^{-1}.

Figure 57 - Photoluminescence enhancement curves induced by kanamycin in TGA-CdTe quantum dots aqueous dispersions: Quantum dots average sizes: 2.2 nm (■) 2.8 nm (▲) and 3.5 nm (●). Signal evaluated as F/ F_0, where F_0 and F are respectively the photoluminescence of the quantum dots dispersion before and after the addition of kanamycin.

Figure 58- Photoluminescence spectra of TGA-CdTe quantum dots in the presence of different concentrations of kanamycin: (a) 0, (b) 1.66, (c) 3.33, (d) 5, (e) 6.66, (f) 8.33, (g) 11.66, (h) 15, (i) 31.66, (j) 48.33, (k) 65, (l) 81.6, (m) 98.33, (n) 131.6, (o) 165 x 10^{-8} mol L^{-1}
Figure 59- Photoluminescence enhancement of TGA-CdTe quantum dots (expressed as F/F_0 in function of the concentration of kanamycin).

Figure 60- Effect of erythromycin to (in final solution 1×10^{-5} mol L$^{-1}$) on photoluminescence of TGA-CdTe nanoparticles dispersion.

Figure 61- Analytical curve for kanamycin using a Langmuir isotherm model.

Figure 62- Recoveries of kanamycin obtained in solid phase extraction using MIP and NIP after washing with solvent systems containing different methanol/water proportions. Analyte elution using acidified aqueous solution (pH about 3.5).

Figure 63- Recoveries of kanamycin, amikacin, tobramycin, gentamycin, neomycin, streptomycin obtained by solid phase extraction using MIP and NIP: Aliquots of 200 µL of 1×10^{-5} mol L$^{-1}$ aminoglycosides standard solutions.

Figure 64- Effect of the amount of the synthesized nanoparticles on the photoluminescence quenching of Cysteine ZnS nanoparticles aqueous dispersion. Signal variation expressed as F_0/F (where F_0 and F are respectively the photoluminescence of the quantum dots dispersion before and after the addition of 9.5×10^{-7} mol L$^{-1}$ of thyroxine).

Figure 65- Influence of pH value of the photoluminescence quenching measured as ratio of F_0/F (F_0 is quantum dispersion in the absence of thyroxine and F in the presence of thyroxine) versus pH of quantum dots dispersion measured at fixed concentration 3.8×10^{-7} mol L$^{-1}$ of thyroxine.

Figure 66 - Effect of CTAB on the photoluminescence quenching of quantum dots at fixed concentration of thyroxine (final concentration in aqueous dispersion, 1.2×10^{-6} mol L$^{-1}$).

Figure 67- Photoluminescence measured from cysteine-ZnS dispersion (4.5×10^4 mol of nanoparticles in 1 L of aqueous solution) at different temperatures.

Figure 68 - Stability study of the photoluminescence intensity of the cysteine-ZnS nanoparticles dispersion as function of time.

Figure 69- Stability of the photoluminescence of the cysteine-ZnS
nanoparticles probe quantum dots after mixing thyroxine (final concentration in solution 4.0×10^{-7} mol L$^{-1}$).

Figure 70 - UV-Visible absorption spectra of thyroxine; (a) 3.92×10^{-7}, (b) 9.8×10^{-7}, (c) 3.8×10^{6}, (d) 6×10^{5} mol L$^{-1}$.

Figure 71 - UV-Visible absorption spectra of cysteine capped ZnS nanoparticles in the presence of thyroxine; (a) 0, (b) 3.92×10^{-7}, (c) 4×10^{-6} mol L$^{-1}$.

Figure 72 - The Stern–Volmer curves for the quenching of cysteine-ZnS in the presence of thyroxine at temperatures of 298 K (■) and 308 K (▲).

Figure 73 - Photoluminescence emission spectra of L-cysteine-ZnS nanoparticles in the presence of different concentrations of thyroxine: (a) 0, (b) 1.12×10^{-7}, (c) 1.98×10^{-7}, (d) 2.95×10^{-7}, (e) 3.92×10^{-7}, (f) 4.91×10^{-7}, (g) 9.8×10^{-7}, (h) 1.95×10^{-6}, (i) 2.91×10^{-6}, (j) 3.8×10^{-6}, (k) 4.0×10^{-6} mol L$^{-1}$.

Figure 74 - Stern-Volmer-type calibration curve for the determination of thyroxine using cysteine-ZnS nanoparticles as probe.

Figure 75 - Effect on photoluminescence of cysteine-ZnS probe dispersion A. probe with mixture of amino acids B. probe with mixture of common pharmaceuti cal excipients C. Probe with thyroxine and mixture of amino acids D. probe with mixture of common pharmaceuti cal excipients and thyroxine.
Table contents

Table 1- Recently developed quantum dots based photoluminescent sensing applications 41
Table 2- Excitation and emission wavelengths according to each analyte 57
Table 3- Average sizes of the TGA-CdTe and 2MPA-CdTe nanoparticles calculated from the 1st exciton peak of the absorption 73
Table 4- Estimated average particle sizes of TGA and 2MPA modified CdTe nanoparticles from TEM 75
Table 5- Optimized experimental conditions for the captopril determination using the 2MPA-CdTe probe 94
Table 6 - Effect of co-existing substances on the photoluminescence of 2-MPA-CdTe quantum dots aqueous dispersion 104
Table 7- Results of analysis of pharmaceutical tablets containing captopril using the method based on the proposed photoluminescent probe (n=3). 105
Table 8- Recovery results of captopril in human serum with proposed method and reference method (n = 5) 106
Table 9- Variation in quenching of TGA-CdTe probe with particle size. 111
Table 10- Optimized experimental conditions for the determination of histamine using TGA-CdTe quantum dots aqueous dispersion 119
Table 11- Effect of potential interfering substances on the photoluminescence emission of CdTe quantum dots. 121
Table 12- Determination of histamine in fresh and canned tuna fish spiked with different amount of histamine (n = 3). 122
Table 13- Optimized experimental conditions for the kanamycin determination using the TGA-CdTe probe. 129
Table 14- Effect of different amioglycosides and erythromycin on photoluminescence enhancement of TGA-CdTe optical probe. 132
Table 15- Recoveries of kanamycin obtained in solid phase extraction using MIP and NIP after washing with solvent systems containing different methanol/water proportions 136
Table 16- Application of photoluminescent optical probe for determination of kanamycin in milk and water samples (n = 3) 139

Table 17- Optimized experimental conditions for the thyroxine determination using the cysteine–ZnS optical probe 149

Table 18- Effect of some potential interfering substances on the photoluminescence of the cysteine-ZnS quantum dots aqueous dispersion 152

Table 19- Applications of the cysteine- ZnS probe method for determination of thyroxine in pharmaceutical formulation and saliva. 154