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Abstract

Zegarra Borrero, Antonio Federico; Chen, Wei (Advisor). Effects
of Interaction and Percolation on Topological Edge States.
Rio de Janeiro, 2021. 100p. Tese de Doutorado – Departamento de
Física, Pontifícia Universidade Católica do Rio de Janeiro.

In this thesis we studied two important Topological Insulators (TIs),
where we focused particularly on the role of interactions and percolation on
the topological edge states. First, we analyzed the role of nearest-neighbor in-
teractions in a prototype one-dimensional TI, namely the Su-Schrieffer-Heeger
(SSH) model. Based on a Green’s function formalism, we applied Dyson’s equa-
tion in combination with T-matrix approximation to verify the bulk-edge co-
rrespondence in the presence of interactions. The critical exponents near topo-
logical phase transitions are found to be the same as the noninteracting SSH
model, indicating that the system stays in the same universality class despite
the presence of interactions. The second system is a two-dimensional time-
reversal symmetric TI, namely the Bernevig-Hughes-Zhang (BHZ) model in
conjunction with a time-reversal breaking ferromagnetic metal (FMM), where
we investigated the percolation of the quantum spin Hall state from the TI
layer to the FMM by means of a tight-binding model. We demonstrated that
depending on whether the edge state Dirac cone submerges into the FMM
subbands and the direction of the magnetization of the FMM, the percolation
of the edge state and its spin-momentum locking are affected in different ways.
Surprisingly, we uncover that the equilibrium edge spin current in the BHZ
model, naturally expected from the spin polarized propagating edge states, is
in fact absent due to the cancellation from the valence bands. Nevertheless,
laminar flows of room temperature persistent charge and spin currents are
produced near the interface of the BHZ/FMM junction. Using a linear res-
ponse theory, we investigate the current-induced spin polarization caused by
the percolation of the edge state, which serves as a spin torque that is found
to be predominantly field-like. Moreover, the spin polarization is dramatically
enhanced near the impurities at the edge of the BHZ model.

Keywords
Topological insulators; Topological edge states; Topological phase tran-

sitions; SSH model; BHZ model; Spin torque.
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Resumo

Zegarra Borrero, Antonio Federico; Chen, Wei. Efeitos de Inte-
ração e Percolação nos Estados Topológicos de borda. Rio de
Janeiro, 2021. 100p. Tese de Doutorado – Departamento de Física,
Pontifícia Universidade Católica do Rio de Janeiro.

Nesta tese estudamos dois importantes sistemas de Isoladores Topológi-
cos (TIs), onde nos concentramos particularmente no papel das interações e
percolação nos estados de borda topológicos. Primeiro, analisamos o papel das
interações vizinhas mais próximas em um protótipo de TI unidimensional, o
modelo Su-Schrieffer-Heeger (SSH). Com base em um formalismo de função de
Green, aplicamos a equação de Dyson em combinação com a aproximação da
matriz-T para verificar a correspondência bulk-edge na presença de interações.
Os expoentes críticos próximos às transições de fase topológicas são os mesmos
do modelo SSH não interagente, indicando que o sistema permanece na mesma
classe de universalidade, apesar da presença de interações. O segundo sistema
é um TI bidimensional simétrico na inversão de tempo, ou seja, o modelo
de Bernevig-Hughes-Zhang (BHZ) em conjunto com um metal ferromagnético
com quebra de reversão do tempo (FMM), onde investigamos a percolação do
estado Hall de spin quântico do modelo BHZ para o FMM por meio de um
modelo de ligações fortes (tight-binding). Demonstramos que dependendo de
se o estado de borda do cone de Dirac submerge nas sub-bandas do FMM e
da direção da magnetização do FMM, a percolação do estado de borda e seu
spin-momentum-locking são afetados de maneiras diferentes. Surpreendente-
mente, descobrimos que a corrente de spin de borda de equilíbrio no modelo
BHZ, naturalmente esperada dos estados de borda de propagação do spin po-
larizado, está de fato ausente devido ao cancelamento das bandas de valência.
No entanto, fluxos laminares de correntes de carga e spin persistente à tem-
peratura ambiente são produzidos perto da interface da junção BHZ / FMM.
Usando teoria de resposta linear, investigamos a polarização de spin induzida
pela corrente causada pela percolação do estado de borda, que serve como um
torque de rotação que é encontrado ser predominantemente field-like. Além
disso, a polarização do spin é dramaticamente aumentada perto das impurezas
na borda do modelo BHZ.

Palavras-chave
Isoladores topológicos; Estados de borda topológicos; Transições de fase

topológicas; Modelo SSH; Modelo BHZ; Torque de spin.
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1
Introduction

Condensed matter physics has always been a practical field where a
major driving force behind its development is usually the functionality of
materials, starting from the first quantum revolution which is connected to
the invention of the transistor, lasers, GPS, semiconductor devices and MRI
imagers to the second quantum revolution connected to the Quantum Hall
Effect and topological materials. The functionality of materials has often been
characterized by their Landau order parameter, for instance superconductivity
is used to build MRI and Maglev trains, magnetization to construct hard drives
and memory devices. In all these systems it was found that upon tuning certain
external handle, such as lowering the temperature or applying a magnetic
field, the material undergoes a phase transition into the ordered phase in
which a Landau order parameter that breaks a certain continuous symmetry
(for instance, superconducting order breaks global U(1) and magnetic order
breaks SO(3) symmetry) gradually develops. For a long time this kind of order
parameter dominated what is meant by order in condensed matter physics.

In the 1980s the Landau order paradigm was challenged by the discovery
of the Quantum Hall Effect (QHE) because this system, rather than breaking a
continuous symmetry, breaks a discrete symmetry due to the applied magnetic
field, namely the time reversal symmetry [1]. The system consisted of a 2
dimensional electron gas at low temperature in which a strong magnetic field
was applied leading to the appearance of the so-called Landau levels. It was
found that the Hall Resistivity ρxy was exactly quantized and moreover, the
longitudinal resistivity ρxx falls down to zero, meaning we have a perfect
conductor, but at the edges of the sample. Due to its magnetic translational
symmetry, the Hall conductivity can be identified as a topological invariant,
representing the topological property of the ground state wave function, leading
to the notion of topological order. Another breakthrough comes from the
proposal put forward by Haldane in 1988 [2], which shows that there can
be systems showing QHE without Landau levels, referred to as the quantum
anomalous Hall effect (QAHE). Along this line of development emerges the
so-called quantum spin Hall effect (QSHE), in which the equilibrium current
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Chapter 1. Introduction 17

circulating at the edge of the 2D system is a spin current rather than a
charge current owing to the time-reversal symmetry. In Chapter 3 of this
work, we will present several surprising properties of this edge spin current in
QSHE. This quantum spin Hall state of matter is proposed to exist in special,
two dimensional semiconductors that exhibit a finite spin-Hall conductance
but a vanishing charge-Hall conductance, this was first put forward by Kane
and Mele [3] by modifying Haldane’s graphene model by incorporating time-
reversal symmetry. Independently, a quantum spin Hall model (BHZ model)
was proposed by Andrei Bernevig and Shou-cheng Zhang [4] in an intrincate
strain architecture which engineers, due to spin-orbit coupling (a kind of
momentum-dependent magnetic field coupling to the spin of the electron),
a magnetic field pointing in different directions for spins up and down. Later,
Kane and Mele introduced a topological Z2 invariant which characterizes a
state (or phase of the system) as trivial or non-trivial band insulator. It was
found that the non-trivial state is robust to both interactions and additional
spin-orbit coupling terms that mix spin-up and spin-down electrons [5]. This
topologically nontrivial phase brings in the notion of topological insulators,
which are topologically ordered materials protected by time-reversal symmetry.

Such two-dimensional topological insulators were predicted in 2006 to
occur in quantum wells of HgTe sandwiched between CdTe [6], and were
observed in 2007 [5]. When the layer of HgTe in between the CdTe is thin,
the system behaves as an ordinary insulator. However, when the HgTe is made
thicker, the system eventually closes its bulk 2D gap (actually it is the so-
called mass gap that closes) at a critical thickness, and then as the thickness
is further increased, the gap reopens with an inversion of the well sub-bands.
In this band inversion process, two branches of bands are brought out from
the bulk bands, forming edge states with a roughly linear dispersion inside
the band gap. As a result of these states, the edges of the system actually
become metallic. This process of band inversion and corresponding occurrence
of edge states in a finite system, is generally referred to as a topological phase
transition, which has been verified experimentally [5].

These theoretical and experimental developments introduce the notion
of TI and topological phase transition into the realm of condensed matter
physics. The topological phase transition is a kind of quantum phase transition,
taking place at zero temperature, at which the topological invariant jumps
from one integer to another. Depending on the dimension and the kind
of discrete symmetry associated with the system, the topologically ordered
materials exhibit intriguing properties, and they may have important practical
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Chapter 1. Introduction 18

applications. Fig. 1.1 gives some examples from 1D to 3D, with emphasis on
what are called the topological edge states, they are important because, due
to their topological protection, they are robust against local perturbations.

Figure 1.1: Schematics of the edge and surface states in topological insulators.
(a) Edge states localized at the end of a 1D topological insulator [7]. (b) Helical
edge states consist of counter propagating spins at the edge of 2D time-reversal
symmetric topological insulators, which are responsible for the quantum spin
Hall effect [4–6, 8, 9]. (c) Surface states at the boundary of 3D topological
insulators that also consist of counter propagating spins [3, 10].

In general, the topological order of a band insulator depends on the
band structure within the first Brillouin Zone and can appear in any spatial
dimension. It has been clarified that at a given dimension, the topological
systems can be classified into 10 different symmetry classes according to
whether they possess time-reversal T , particle-hole C, and chiral S symmetries
[11–14]. The result of this classification determines whether the topological
invariant at a given dimension and symmetry class is zero (trivial), binary (Z2),
integer (Z), or even-integer (2Z). The pattern of these topological invariants
yields the so-called periodic table of topological materials that repeats every 8
spatial dimensions. Besides, in the topologically nontrivial phase, the system
at any dimension exhibits edge states that are localized at the boundary of the
sample. These topological edge states have promising applications in spintronic
devices and dissipationless transistors due to their robustness, for example
the robust edge states of 1D TIs and 1D topological superconductors (TSCs)
become useful in quantum computation because they are not subjected to
decoherence as is the usual case for many other systems. In the case of 2D TIs,
edge states are relevant since it has been shown that magnetic components, like
the ones in spin-torque computer memory, can be manipulated by topological
insulators [15].

Our contribution to this already well-established field consists of two
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Chapter 1. Introduction 19

different but complementary projects. The first project is detailed in Chapter
2 and was related to the study of a 1D TI known as the Su-Schrieffer-Heeger
(SSH) model, it has been used as a model for the polyacetilene molecule. The
main motivation of this project was theoretical. Here we developed a tool which
allows us to calculate and study the edge states of the system in the presence
of interactions. The tool developed is a combination of Dyson’s equation
(to calculate the interacting Green’s function) together with the T-matrix
approximation (to account for the presence of a strong-impurity potential
which effectively creates an edge). In Section 2.1 we start by reviewing the
main features of the SSH model. We also take a look at the 3 main symmetries
a Dirac Hamiltonian can have, how they appear in this system and study the
critical behavior of the system near a topological phase transition, which is a
general feature of TIs and TSCs. In Section 2.2 it is shown how to introduce
interactions in the system and to calculate its Green’s function using results
from many body theory. Section 2.3 shows how, from the local density of
states, we can identify the bulk-edge correspondence and investigate quantum
criticality for interacting 1D TIs.

The second project, detailed in Chapter 3, consisted in the investigation
of a 2D TI, known as the Bernevig-Hughes-Zhang (BHZ) model, making a
planar junction in contact with a Ferromagnetic-Metal(FMM). In this case,
the motivation was the importance this system may have for applications in
spintronics. Due to the percolation of the BHZ edge states into the FMM, we
have unveiled interesting physical effects like local charge and spin currents
near the interface and spin accumulation, which produces a torque on the
magnetization of the FMM. After a brief motivation introduced in Section 3.1,
we then review time reversal symmetry in Section 3.2, since this symmetry is
what allows us to study the topology of this system and protects its topological
edge states. Section 3.3 explains in detail the way the system was simulated
using a lattice model, this allowed us to study its band structure, percolation
of edge states, the local laminar flows of charge and spin currents and, with the
aid of linear response theory, the current induced spin-torque. In this second
project we needed to be careful with the choice of parameters due to the finite
size of the lattice and it represented an approach complementary to the one of
our first project.

It is relevant here to mention some important features related to the
spin torque in general, due to its important applications and because it is a
field of research by itself. The subject of spin torque has been a very active
field since the seminal proposal of spin-transfer torque in ferromagnet/normal
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Figure 1.2: Schematics of several mechanisms for current-induced spin torque:
(a) The spin-transfer torque in FMM/NM/FMM trilayer based on the spin
relaxation. (b) The spin-orbit torque in a 2D FMM with Rashba spin-orbit
coupling, where the spin of the electron (blue and gree arrows) depends on the
momentum (yellow arrows). Note that the spin quantization remains in-plane.
(c) The TI spin torque in a 2D TI/FMM junction based on the percolation of
helical edge states, whose spin quantization axis is out-of-plane. In (b) and
(c), the momentum-dependence of spin polarization is known as the spin-
momentum locking.

metal/ferromagnet trilayers in the current-perpendicular-to-the-plane (CPP)
geometry [16, 17], in which the electrons spin polarized by the fixed ferro-
magnetic layer yields a spin torque to the free ferromagnetic layer via spin
relaxation, as shown in Fig. 1.2 (a). Another relevant mechanism is the so-
called spin-orbit torque in ferromagnetic thin films in the current-in-plane
(CIP) geometry, in which a charge current creates a spin polarization due
to spin-momentum locking, thereby exerting a spin torque on the magnetiza-
tion [18, 19], as illustrated in Fig. 1.2 (b). Besides these two mechanisms in
metallic thin films that have found their applications in magnetic memory de-
vices, it has been demonstrated recently that topological insulators can also be
used to generate current-induced spin torque [15, 20], as shown schematically
in Fig. 1.2 (c). In fact, topological insulators can even outperform the metallic
thin films in terms of the efficiency of the torque, which has triggered a great
deal of theoretical studies for the underlying mechanism [21–26]. In essence,
this spin torque originates from the spin-momentum locking of the topological
edge states, whose percolation into the adjacent ferromagnet causes the torque.
Using a lattice model for the 2D version of this problem, we demonstrated how
the percolation causes a predominantly field-like torque defined with respect
to the spin quantization axis of the edge state which points out-of-plane. More-
over, we have found that impurities have a dramatic effect on the magnitude
of the spin torque.

DBD
PUC-Rio - Certificação Digital Nº 1713280/CA



2
Corroborating the bulk-edge correspondence in weakly inter-
acting one-dimensional topological insulators

In this Chapter we present a review of the theory, calculations and results
that were developed in our first project that resulted in our first paper entitled
Corroborating the bulk-edge correspondence in weakly interacting
one-dimensional topological insulators [27] and here we will follow very
closely what we have written there. We start in Section 2.1 by considering
the 1D-lattice-model for the SSH system without interactions, and explain
the way in which the topological invariant is calculated. We will introduce
the concept of bulk-edge correspondence, which means the occurrence
of edge states in the topologically nontrivial phase in a finite geometry.
Moreover, we will introduce the framework within which critical exponents
can characterize topological phase transitions. Later on, in Section 2.2, we
introduce interactions between electrons in the lattice, considering a density-
density nearest-neighbors specific kind of interaction. In this case the topology
needs to be calculated in a different manner. For this reason, we focus on
the calculation of the system Green’s function which allows us to introduce
interactions and treat them via a Dyson’s series expansion, as long as they
are weak enough. In order to effectively create an edge, to calculate the edge
state and verify the bulk-edge correspondence, we introduce an impurity with
a large potential into the system and treat this case by means of the T-
matrix formalism (also known as the self consistent T-matrix approximation
or SCTMA) in Section 2.3.

2.1
Non-interacting SSH model

We work mainly with lattice models whose fermion operator is defined on
discrete lattice sites labeled by i, and we include also another quantum number
α which stands for spin, orbital or sublattice (more generally a pseudospin)
degree of freedom, so we have creation and annihilation operators ciα, c†iα. Since
we only will be concerned with fermions, the commutation relation they obey
is
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{ciα, c†jβ} = ciαc
†
jβ + c†jβciα = δijδαβ

and this make the proper wave-function of the system automatically antisy-
mmetric under particle-exchange, the corresponding Fourier transform of these
operators can be obtained as

ciα =
∑

k
eik·rickα, c†iα =

∑
k
e−ik·ric†kα.

Within this second quantization formalism the Hamiltonian of the entire
lattice model can be written in real-space or momentum-space as

H =
∑
ij,αβ

c†iαHij,αβcjβ =
∑
αβ

∑
k
c†kαHαβ(k)ckβ, (2-1)

where the matrix elements Hij,αβ contain some hopping terms connecting sites
i and j, or local potentials on site i, etc, and here we consider j = i + δ.
In all the models that we treat, Hαβ(k) takes the form of a so-called Dirac
Hamiltonian as explained later in detail. In particular, for the SSH model
we have 2 degrees of freedom for each lattice-site which stands for the specific
sublattice index.

For 1D lattice models, the topology is described by the so-called Zak
phase, which is equivalent to the Berry phase accumulated by the adiabatic
evolution of a Bloch state across the first Brilloin zone (BZ). Since the ends of
the BZ k = 0 and k = 2π are the same point, the evolution is cyclic and this
BZ is a compact manifold. The Zak phase is calculated by the integration of
the Berry connection

C =
∫
BZ

dk
∑
n

〈unk|i∂k|unk〉, (2-2)

where the summation over n denotes the filled bands and |unk〉 are the Bloch
states which are periodic in the lattice and whose Fourier transform |Rn〉 are
the so called Wannier states

|unk〉 = 1
N

∑
R
e−ik·(r−R)|Rn〉, |Rn〉 =

∫
dke−ik·(r−R)|unk〉, (2-3)

where 〈r|Rn〉 = Wn(r−R) is a wave function localized around lattice site R.
It may be relevant here to mention that in the language of the Wannier states,
defined previously, the Zak phase measures the center of charge of the Wannier
state centered at the origin of the lattice. Moreover, if instead of integrating the
Berry connection to obtain the Zak phase, we consider the Fourier transform of
the Berry connection, then the result is a Wannier state correlation function λR
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that characterizes the critical behavior near the topological phase transitions.
We write these definitions as

C =
∫
BZ

dk
∑
n

〈unk|i∂k|unk〉 =
∑
n

〈0n|r|0n〉,

λR =
∫
BZ

dk
∑
n

eikR〈unk|i∂k|unk〉 =
∑
n

〈Rn|r|0n〉. (2-4)

Now we introduce which is perhaps the simplest model of topological insu-
lators, namely the celebrated Su-Shrieffer-Heeger (SSH) model [7]. The
model considers spinless fermions with periodic boundary condition (PBC),
described by the Hamiltonian

H =
∑
i

{(t+ δt)c†AicBi + (t− δt)c†Ai+1cBi + h.c.}, (2-5)

which upon a Fourier tranform to momentum space (here ri stands for the
position in real space of lattice site i)

cAi =
∑
k

eikricAk, c†Ai =
∑
k

e−ikric†Ak, (2-6)

becomes

H =
∑
k

[(t+ δt) + (t− δt)e−ik]c†AkcBk + [(t+ δt) + (t− δt)eik]c†BkcAk

=
∑
k

(
c†Ak c†Bk

) 0 (t+ δt) + (t− δt)e−ik

(t+ δt) + (t− δt)eik 0

cAk
cBk


=
∑
k

(
c†Ak c†Bk

)
d · σ

cAk
cBk

 , (2-7)

where H(k) = d · σ is the Dirac Hamiltonian for the SSH-model, σ is the
vector of Pauli matrices and d a k-dependent vector with components

d1 = (t+ δt) + (t− δt) cos(k), d2 = (t− δt) sin(k), d3 = 0, (2-8)

where the component d3 = 0 because the system has chiral symmetry
({H, σ3} = 0). Figure 2.1 shows a schematic representation of the SSH
chain with a periodic boundary condition (PBC) forming a ring with toroidal
symmetry. The difference of hopping δt distinguishes two sublattices A and
B in each unit cell located at site i. The appearence of edge states depends
on where we decide to cut the chain, the band structure of this model is also
shown on the right of Figure 2.1, where we can see the conduction and valence
bands together with the high symmetry point k0 = π at which the band gap
closes at the topological phase transition.
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Figure 2.1: (a) Schematics of the SSH model with PBC, where the difference
of hopping on the even and odd bonds distinguishes two sublattices A and B.
(b) The band structure of the SSH model, which has a band gap 2δt at k = π.
(c) The SSH model with OBC, where the unpaired electrons at the edge form
the edge states with decay length ξ. (d) The discrete energy spectrum En in
OBC, where the edge state shows up as zero energy eigenstate.

As explained in Eq. (2-2), the topology of this model is given by the
Zak phase which is calculated from the integration of Berry connection. In
this model, the Berry phase is equivalent to the winding number of the
phase of the off-diagonal element of the Dirac Hamiltonian. Denoting this
off-diagonal element as hk(δt) = (t+ δt) + (t− δt)e−ik = |hk(δt)|e−iϕk(δt) in the
complex space where one goes through the entire BZ, we define its phase from
qk = hk/|hk| = e−iϕk(δt). It then follows that the winding of the phase can be
calculated as [28]

C = i

2π

∮
dk(q−1

k ∂kqk) = 1
2π

∮
dk∂kϕk(δt). (2-9)

Generally, when we express the topological invariant as a momentum integra-
tion over the BZ, the integrand is referred to as the curvature function. In
the case of SSH model, the curvature function is the Berry connection, and
equivalently the gradient of the phase ϕk. The curvature function for the SSH
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model is, with an additional factor of −2 for the sake of normalization

F (k, δt) = −2i < ψ−|∂k|ψ− >= (t2 − δt2) cos(k) + (t− δt)2

(t+ δt)2 + 2(t2 − δt2) cos(k) + (t− δt)2 ,

(2-10)

where the state |ψ− > corresponds to the valence band. The topological
invariant C can be calculated by a contour integration

C =
∫ 2π

0

dk

2πF (k, δt) =
∫ 2π

0

dk

2π [ c

a+ b cos(k) + d cos(k)
a+ b cos(k) ] (2-11)

where a = 2(t2 + δt2), b = 2(t2 − δt2), c = (t − δt)2, d = t2 − δt2. The result,
after doing the contour integration is

C = 1
2(1− tδt

|tδt|
) =

0 tδt > 0,

1 tδ < 0
(2-12)

so the critical point is located at δtc = 0 (δt is the tunning parameter). From
the value calculated for C, we identify tδt < 0 as the topologically nontrivial
phase and tδt > 0 as the trivial one.

Before proceding further, let us mention that we can also study this SSH
noninteracting system using a Green’s function formalism. This formalism is
particularly relevant because later we will use it to introduce interactions. The
Green’s function method allows us to introduce interactions by finding the full
approximate Green’s function of the interacting system via Dyson’s equation.
For the noninteracting SSH model, the Matsubara (complex frequency) Green’s
function G0(k, iω) matrix can be calculated (the very definition for the general
case is given later in Eq. (2-39) and Eq. (2-40)) from the Dirac Hamiltonian
H0(k) and reads

G0(k, iω) = (iω −H0)−1 = 1
(iω)2 − d2 ×

 iω + d3 d1 − id2

d1 + id2 iω − d3

 ,

G−1
0 (k, iω) =

 iω − d3 −d1 + id2

−d1 − id2 iω + d3

 . (2-13)

From this Green’s function we can calculate relevant physical quantities after
performing an analytical continuation (iω → ω+iη) to get the retarded Green’s
function in terms of real frequency Gret

0 (k, ω). The physical meaning of this so-
called analytical continuation is to create an integration contour that defines a
direction of time which respects causality. A particularly important quantity is
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the spectral function, which allows the calculation of the energy gap in terms of
the external tunning parameters, and the local density of states (LDOS), from
which we can calculate the edge state and its decay or correlation length ξ, a
quantity that we show below how to obtain by means of an ansatz. Moreover,
with the aid of this Green’s function, we can also calculate the topological
invariant C as a momentum integral over the BZ of a function that is expressed
in terms of G0 and its derivatives [29]

C =
∫ 2π

0

dk

4πiTr(σ3G
−1
0 ∂kG0)|iω=0. (2-14)

It is possible to verify that this is actually a winding number and can be written
in the same fashion as Eq. (2-9), which is obtained from the very definition of
Zak phase. Later on, when introducing interactions into the system, we will
just need to replace G0 by the Gint (obtained from Dyson’s equation) in this
more general definition for the topological invariant. It will be shown that the
effect of introducing interactions will be embeded in the self energy, which
is responsible for changing the phase that gives the winding number. This
self energy will also renormalize the ~d vector to a new one ~d′, thus modifying
in this way the effective Dirac Hamiltonian of the system, and inducing an
effective chemical potential d′0 that shifts the whole energy band spectrum as
is explained later.

To calculate explicitly the edge state of the SSH model, we make use of
the Dirac Hamiltonian in real space near the critical point. In a neighborhood
around the critical point, the band gap closes at the so-called High Symmetry
Point HSP k0 = π. We perform an expansion around this point of the
components di(k)

d1 ≈ (t+ δt) + (t− δt)(−1 + k2

2 ) = 2δt+ (t− δt)k
2

2 , d2 ≈ −(t− δt)k, (2-15)

and we look for the zero-energy-solution H(k̂ = −i∂x)ψ(x) = 0

d · σψ(x) = {−(t− δt)k̂σ2 + [2δt+ (t− δt) k̂
2

2 ]σ1}ψ(x) = 0. (2-16)

Multiplying by σ2

{−(t− δt)k̂ + [2δt+ (t− δt) k̂
2

2 ](−i)σ3}ψ(x) = 0, (2-17)

and since ψ(x) = φ(x)χη then the spinor χη (in this lattice-sublattice pseudo-
spin space) is an eigenstate of σ3 = σz: σ3χη = ηχη. The meaning of having
η = ±1 for which χ+ = (1, 0)T , χ− = (0, 1)T indicates the sub-lattice at
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which the edge state is localized. The spatial(orbital) part then satisfies, using
k̂ = −i∂x

{(t− δt)∂x − [2δt− (t− δt)∂
2
x

2 ]η}φ(x) = 0 (2-18)

To solve the spatial part we consider the ansatz φ(x) ∝ e−λx where λ = 1/ξ is
the inverse of the decay lenght ξ and satisfies

λ2 − 2ηλ− 4δt
t− δt

= 0 → λ± = η ±+
√

1 + 4δt
t− δt

. (2-19)

The decay or correlation length is positive by definition, so we impose that
λ+ + λ− = 2η > 0, hence η = 1, this implies that the edge state χ+ = (1, 0)T

is localized on the A sublattice. Furthermore, we consider the model to be
defined in the x > 0 subspace, so the wave function must vanish at x = 0.
This is actually equivalent to introducing a strong impurity at that site which
effectively creates an edge as is explained later when discussing the interacting
system. From this we obtain, considering λ± = ξ−1

± , that

ψ(x) ∝
1

0

 (e−x/ξ+ − e−x/ξ−). (2-20)

It is important here to take a closer look at the two decay lengths ξ−1
± . To

do this, we consider the hopping to be actually small (so we are close to the
critical point) |δt| � |t|, then

ξ−1
− = 1−

√
1 + 4δt

t− δt
≈ − 2δt

t− δt
, ξ−1

+ ≈ 2 + 2δt
t− δt

. (2-21)

From Eq. (2-21) it is evident that ξ−1
+ > ξ−1

− , so the longer decay length ξ−
is identified as the actual decay length. Moreover, we see that in order to make
ξ− positive, we must have δt/t < 0, meaning that only the topologically
non-trivial phase has edge state. This is what is known as the bulk-edge
correspondence for the non-interacting SSH model and it is important due
to its potential applications such as in quantum computation [30] or spintronic
devices [31].

2.1.1
Symmetries of the Non-interacting SSH model

It is relevant to mention the three non-spatial symmetries that are used to
classify TIs and TSCs, these are the time-reversal T , particle-hole C and
chiral S. They are important because they are the ones that generally bring
topological protection to the system. We know that the Hamiltonian operator,
as in Equation 2-1, is written generically as H = ∑

k ψ
†
kH(k)ψk where ψk is the

spinor and H(k) the Dirac Hamiltonian. If the Hamiltonian operator preserves
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each of these symmetries then the Dirac Hamiltonian transforms as

TR : TH(k)T−1 = H(−k), T 2 = ±1,

PH : CH(k)C−1 = −H(−k), C2 = ±1,

Chiral : SH(k)S−1 = −H(k), S ∝ TC. (2-22)
These symmetries put some constraints in the Dirac Hamiltonian. Generically,
one may consider a Dirac Hamiltonian in D-dimension as the low energy
effective theory of a TI or TSC expanded around a HSP

H(k) =
D∑
i=1

vkiγi +Mγ0, (2-23)

where k denotes the momentum deviation away from the HSP k0, v is a
velocity scale(the slope of the Dirac cone), and the γi matrices satisfy the
Clifford algebra {γi, γj} = 2δij with γ2

i = 1. It is possible to show that for
certain symmetries to be satisfied the γi matrices are restricted to satisfy
certain commutation or anticommutation relations with the operators T , C
and S.

Introducing the concept of surface Hamiltonian and extra mass term it
is possible to analyze if a system is topologically trivial or not depending if
this extra mass term gaps out the surface spectrum or not. One may further
determine whether the topological invariant in a symmetry class is binary Z2,
meaning that C = {−1, 0, 1} or integer Z, meaning that C takes all possible
integer values. Following this and a more general argument, the topological
invariant in the ten symmetry classes in each spatial dimension has been
classified in what has been called the periodic table of TIs and TSCs [13], [14]
which shows certain periodicity with respect to dimension.

For the case of the non-interacting SSH model we deal with a specific
case of a 2 × 2 homogeneous Dirac model (translational invariant) whose
most general form is

H0 =
∑
k

(
c†Ak c†Bk

)
H0(k)

cAk
cBk


H0(k) = −d0(k)σ0 + d1(k)σ1 + d2(k)σ2 + d3(k)σ3 (2-24)

where c†Ik(cIk) with {cIk, c†Ik} = δII′δkk′ denotes the creation (annihilation)
operator of spinless fermion with momentum k and I = A,B the sublattice
degree of freedom. The presence of each di(k) and their evenness and oddness in
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k are determined by the Hamiltonian symmetry class. In our work the system
under analysis belongs to class BDI, which in general can host topological
trivial and nontrivial edge states, mainly due to the presence of the chiral
symmetry. Let us verify explicitly that the SSH model satisfies all these 3
symmetries. To do this, we consider the Dirac Hamiltonian matrix H0(k) in
explicit form as shown in Eq. (2-24) and the form of the 3 symmetry operators.
In this case T is just the complex conjugate operator K, since we deal with
spinless fermions T = K, C = σzK and S = σz so we have

TH0(k)T−1 = K

 0 (t+ δt) + (t− δt)e−ik

(t+ δt) + (t− δt)eik 0

K
=
 0 (t+ δt) + (t− δt)eik

(t+ δt) + (t− δt)e−ik 0


= H0(−k), (2-25)

CH0(k)C−1 = σzK

 0 (t+ δt) + (t− δt)e−ik

(t+ δt) + (t− δt)eik 0

Kσz
= σz

 0 (t+ δt) + (t− δt)eik

(t+ δt) + (t− δt)e−ik 0

σz
= σz

 0 −{(t+ δt) + (t− δt)eik}
(t+ δt) + (t− δt)e−ik 0


=
 0 −{(t+ δt) + (t− δt)eik}
−{(t+ δt) + (t− δt)e−ik} 0


= −H0(−k), (2-26)

SH0(k)S−1 = σz

 0 (t+ δt) + (t− δt)e−ik

(t+ δt) + (t− δt)eik 0

σz
= σz

 0 −{(t+ δt) + (t− δt)e−ik}
(t+ δt) + (t− δt)eik 0


=
 0 −{(t+ δt) + (t− δt)e−ik}
−{(t+ δt) + (t− δt)eik} 0


= −H0(k). (2-27)

This symmetry class that requires time reversal (T 2 = +1), particle-
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hole (C2 = +1) and chiral (S) symmetries, implies constraints on the di(k)
components such that

d0(k) = d3(k) = 0, d1(k) = d1(−k), d2(k) = −d2(−k). (2-28)

It is relevant to mention here that since we have T 2 = +1 for this SSH model,
they seem to be bosons. However, we should keep in mind that this model
considers spinless fermions (which do not exist in reality) so they are effectively
bosons, we can accept this without any contradiction since we are dealing with
just a toy model for the SSH.

2.1.2
Topological Phase Transition and Critical behavior of the Non-interacting
SSH model

The topological order is a property of the Bloch state of the n-th band
|unk〉, and based on the dimension (here our system is one-dimensional) and
symmetry class of the system (of the Dirac Hamiltonian), the topological
invariant C is found from |unk〉 considering different schemes (by means of
Berry connection, Berry curvature or Pfaffian). In all schemes of calculating
topology, C = C(M) takes only integer values and depends on tuning energy
parameters M (M = δt for the non-interacting SSH model) that appear in the
Hamiltonian. The discrete change of C caused by tuning M = δt across the
critical point Mc = δtc = 0 defines a specific kind of quantum phase transition
called topological phase transition.

In all different ways of investigating the topology of the system, the
topological invariant which characterizes the topological phase transition, can
be written as an integral over a compact manifold (the first BZ) in momentum
space and can be written as

C =
∫
BZ

dkF (k,M). (2-29)
The function F (k,M), a function already demonstrated for the SSH model in
Eq. (2-10), is defined as the curvature function, meaning that the integration
of the curvature of a closed string counts the number of knots (or holes in a
more general context where we integrate over a compact manifold where the
curvature is defined at each of its points). The actual form of F (k,M), similarly
to the previously shown Berry-connection for the SSH model, depends on the
specific scheme used for calculating the topological invariant but it is usually
even around the HSP (k0 = π for the SSH model)
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F (k0 + δk,M) = F (k0 − δk,M), (2-30)
this eveness being a consequence of a specific symmetry like, for example,
inversion or time-reversal. Within a given topological phase in the parameter
space of M (δt for the SSH model), the topological invariant C is constant.
However, the momentum space profile of the curvature function F (k,M) varies
with M . This is a key point to many statistical properties of topological phase
transitions. In addition, we have seen that the topological invariant calculated
in each scheme is closely related to the Wannier states |Rn〉 already introduced
in Equation 2-3.

For systems described within the context of the Landau order parameter,
the index measuring the closeness of the system to a second-order phase
transition is the correlation between two local order parameters located at
a certain distance apart. For example, in the celebrated Ising model, the spin-
spin correlation function < sisj > decays with a correlation length ξ which
turns out to diverge at the critical point. In TIs and TSCs, it is found that
the proper quantity characterizing how close the system is to a topological
phase transition, is a so-called correlation function measuring the overlap of
Wannier states that are separated a given distance in the lattice. We could
also ellaborate this point by taking into account the Fourier transform of the
curvature function

λR =
∫
BZ

dkeikRF (k,M) = 〈R|r̂|0〉. (2-31)

In all the schemes for calculating the topological invariant, the Wannier state
correlation function λR is related to the overlap between the Wannier states
|0〉 centered at the origin and |R〉 centered at R, sandwiched by a certain
(position)operator r̂ which depends on the specific form of F (k,M). According
to the particular scheme considered, the two Wannier states could have the
same or different band index n. We will show later that λR decays with
a correlation length due to a very significant property of topological phase
transitions, which is the divergence of the curvature function as M → Mc.
These correlation lengths follow from the scale invariance of the system at the
critical point and fixed point in a scaling scheme within the context of the so
called Renormalization Group (RG) approach.

There are two important physical phenomena that occur at a topologi-
cal phase transition, these are: (1) Gap-closing and reopening and (2)
Divergence of the curvature function, this last one being the most
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important and related to the critical behavior and scaling laws of critical
exponents. These two features are described below.

(1) Gap-closing and reopening: The critical behavior of a TI or TSC
near topological phase transitions is dictacted by the low energy sector of
the system, which is described by a Dirac model. Usually, one may consider a
Dirac Hamiltonian in D-dimension as the low energy effective theory of a TI
or TSC expanded around the HSP as is shown in Equation 2-23. Considering
H(k)2ψ = E2ψ, the dispersion relation for this model is

E± = ±

√√√√ D∑
i=1

v2k2
i +M2. (2-32)

For all schemes of calculating the topological invariant C, the topological
phase transition is driven by the sign change of the tuning parameter M ,
that plays the role of the mass term in the generic Dirac Hamiltonian in
Equation 2-23. More specifically, when M is continuously tuned from some
positive to some negative value or vice versa (for example if an experimentalist
continuously tunes the magnetic field or chemical potential), C jumps discretely
at the critical point Mc (δtc = 0 for the SSH). Equation 2-32 implies an
obvious consequence of this continuous tuning of M which is the closing
and reopening of the band gap ∆ = E+(k0) − E−(k0) = 2|M | at the
HSP (Figure 2.1 (b) shows the band structure of the SSH model and
Figure 2.2 shows the closing and reopening of the band gap where the edge
state only appears at the topologically nontrivial phase δt < 0). In other
words, topological phase transitions necessarily involve gap-closing, which is an
important feature relevant to experimental measurements. In spite of being an
important signature, we must point out that the converse does not necessarily
happen, i.e., gap-closing of an arbitrarily given model from variation of a tuning
a parameter does not mean the system is approaching a topological phase
transition, this is because the low energy sector of the arbitrary model is not
necessarily described by a Dirac Hamiltonian.

(2) Divergence of the curvature function: Keeping in mind that gap-
closing does not necessarily imply a topological phase transition, we should look
for other more rigorous and definite properties to study the critical behavior
near this kind of phase transition. We could think that the most rigorous
scenario would be to focus on the investigation of the quantity defining the
topology, namely the topological invariant C, this from to the fact that there is
no order parameter in topological phase transitions. However, this topological
invariant remains constant inside each topological phase and jumps discretely
across the critical point Mc, thereby not showing any kind of asymptotic
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Figure 2.2: Schematics of inversion of discrete energy levels of SSH model with
open boundary condition, where only in the topologically nontrivial phase at
δt < 0 does the edge state appear at zero energy.

critical behavior we could analyze. Furthermore, since the topological invariant
is calculated from the integration in momentum space of a curvature function,
as described by Equation 2-31, the critical behavior seems to be embeded in
the curvature function F (k,M = δt). This implies, together with the gap-
closing at the HSP discussed previously, that the behavior of the curvature
function near the HSP is fundamental to investigate the critical phenomena of
the system. If we take a look at different Dirac models in different dimensions
and consider their different schemes to calculate C, we find that the critical
behavior of the curvature function in most of the topological materials falls
into a category that has been called as the peak divergence scenario. Within
this category the curvature function near the HSP can be fitted very well by
an Ornstein-Zernike (OZ) form (a Lorentzian)

F (k0 + δk, δt) = F (k0 = π, δt)
(1 + ξ2δk2) , (2-33)

where δk stands for the distance away from the HSP k0 = π. This fitting can
be confirmed from the explicit form of F (k, δt) in Equation 2-10 where proper
expansion around the HSP gives

F (k0 = π, δt) = δt− t
2δt , ξ = | t4δt(1 + t

δt
)|1/2. (2-34)

The Lorentzian peak at k0 = π diverges and changes sign abruptly as δt is
changed accross δtc

lim
δt→0+

F (k0, δt) = − lim
δt→0−

F (k0, δt) = ±∞, (2-35)
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where 0+ and 0− denote the two sides of the phase boundary close to δtc = 0.
It is also relevant to notice that the width of the Lorentzian 1/ξ goes to zero
as δt approaches δtc = 0 from each side of the phase boundary

lim
δt→δtc

ξ =∞. (2-36)

Equations 2-35 and 2-36 show that the Lorentzian peak becomes higher and
sharper as δtc is approached, this is shown schematically in Figure 2.3 for the
SSH model. Systems described by the linear Dirac model of Equation 2-23 are
part of this peak divergence scenario.

Figure 2.3: Profile of the curvature function F (k,M = δt) showing its width
1/ξ, as we approach the critical point this function becomes sharper, diverges
to ∞ and then flips, returning from −∞ [32].

The explicit expressions in Equation 2-34 tell us immediately the critical
behavior and exponents

|F (k0,M)| ∝ |M −Mc|−γ, ξ ∝ |M −Mc|−ν , (2-37)

which are in full agreement with the divergences in Equations 2-35 and 2-
36, then the conservation of the topological invariant, since we approach the
critical point within a fixed phase, leads to a scaling law that constraints the
critical exponents

γ = ν = 1. (2-38)
For this peak-divergence scenario which is the case for the SSH model, if
we substitute the F (k,M) in Equation 2-31 by the Ornstein-Zernike (OZ)
form in Equation 2-33 we get a Wannier state correlation function λR that
decays with R/ξ, this means that ξ plays the role of correlation length. This
is because the Fourier transform of a Lorentzian in momentum space gives a
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function that decays in real space, with a decay length equal to the inverse
of the width of the Lorentzian as shown in Figure 2.3. It is important to
highlight that this correlation lenght ξ from the OZ approximation is the
very same decay length of the edge state that was calculated explicitly as
shown in Equation 2-21 by means of an ansatz. It is relevant to mention that
the topological phase transition that features this divergence of the curvature
function and correlation length ξ at the crtical point is said to be of second
order and exhibits the same critical behavior as Landau phase transitions but
without the existence of an order parameter. In this context, in a similar fashion
as in Landau phase transitions, exist a Renormalization Group approach
(RG) which is an iterative procedure to find the trajectory (RG flow) in
the parameter space along which the divergence is reduced, from there the
topological phase transitions can be identified [32]. This consist of a mapping
M →M ′ that leads to a corresponding generic RG-Equation which rescales the
curvature-function from the critical point Mc at which ξ and F (k,M) diverge
towards a fixed point Mf at which ξ = 0, indicating that the overlap of two
Wannier states in Equation 2-31 remains constant at these points regardless
how far apart the two Wannier states are. In this work we do not elaborate this
method in detail, but rather focus on the critical exponents and correlation
length. Nevertheless, the phase diagram obtained in the present work is entirely
consistent with that calculated from curvature renormalization group (CRG)
approach.

2.2
Interacting SSH model from Green’s function formalism

For the noninteracting SSH model presented above as well as for many
other noninteracting systems, the edge state can be easily identified and
explicitly calculated by solving the low energy Dirac Hamiltonian projected
to real space [8–10,33–35] as we have already shown in detail. Additionally, if
the TI or TSC shows linear band-crossing at the topological phase transition,
it turns out that the decay length of the edge state results to be proportional to
the inverse of the bulk gap ξ ∝ |M |−1, giving a critical exponent of ν = 1 that
we wish to verify if remains the same after introducing interactions. Despite the
fact that presently there exists a unified picture which summarizes in a nice
manner mostly all noninteracting TIs and TSCs with linear band-crossing,
the situation changes a lot when many-body interactions are introduced into
the system. The single-particle Bloch state is not anymore a valid quantity
to start with in the presence of interactions, so the topology ought to be
defined and calculated in a different way. Restricting our investigations to
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weakly interacting TIs and TSCs, we could rely on perturbation theory in
the interaction-picture to treat these systems, within this context the many-
body Green’s function serves as a practicable magnitude to identify topology
[29, 36–47]. As a function of the dimension and symmetry of the many-
body Hamiltonian, the topological invariant C is expressed as the momentum
space integration of a certain combination of the Green’s function and its
derivative as has been presented for the noninteracting case in Eq. (2-14). The
effect of interactions arises in the self-energy that enters the full interacting
Green’s function [32], this is explicitly shown later when we replace G0 by
Gint in Eq. (2-14). We also mentioned previously that a so-called curvature
renormalization group approach has already been proposed and used to
overcome the complicated integration of the topological invariant, this resulted
to be an efficient tool to detect topological phase transitions in parameter
spaces of higher dimension [32,48–51].

In spite of the usefullness and benefits of the Green’s function formalism,
there are many things related to the weakly interacting TIs and TSCs that
require further clarification. First of all, we would like to know if the pheno-
mena of gap-closing is still manifested in interaction-driven topological phase
transitions, this because we require a reliable way to recognize the bulk gap
under the influence of interactions. Secondly, we need to verify if the bulk-edge
correspondence is still satisfied. This is relevant because it clarifies whether the
edge state survives interactions, a realistic issue in practice since interactions
are usually difficult to neglect completely. To finalize, it is fundamental to cla-
rify whether the edge state decay length exhibits the same critical behavior as
its noninteracting counterpart. This responds whether the system remains in
the same universality class as the noninteracting case [50,51].

In the present work, we introduce a formalism based on perturbation
theory to make these issues more clear. We limit our study to one-dimensional
(1D) TIs with electron-electron interaction, for this we begin with the usage
of the spectral function, which is obtained from the many-body Green’s
function, in order to identify the property of gap-closing near the topological
phase transitions. As a second step, we prove the validity of the bulk-edge
correspondence in the presence of interactions with the aid of the many-body
Green’s function in combination with the T -matrix formalism. Within this
methodology, the edge is treated as an impurity that breaks the periodicity
of the lattice and therefore simulates the open boundary situation. As a
consequence, the edge state can be identified from the local density of states
(LDOS) in a vicinity of the edge and its decay length permits us to calculate
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the respective critical exponent.

Our main objective here is to apply the Green’s function method to
investigate 2×2 Dirac models under the influence of many-body interactions
for the open boundary condition. We already introduced the most general
noninteracting 1D spinless 2×2 Dirac Hamiltonian in Equation 2-24. The
presence or absence of each di(k) together with their evenness and oddness in k
are determined by the symmetry class of the corresponding Dirac Hamiltonian.
In this research we restricted our analysis to the BDI class, which generally can
host both topologically trivial and non-trivial edge states, this is predominantly
due to the presence of the chiral symmetry [52–55]. This specific BDI symmetry
class relies on time reversal (T 2 = +1), particle-hole (C = +1) and chiral
(S) symmetries [11, 13, 51], they impose constrains on the di(k) as presented
in Equation 2-28. In order to convey the effect of weak electron-electron
interaction, together with the open boundary condition addressed by a strong
impurity, we start by solving the interaction-dressed Green’s functionGint from
Dyson’s equation. Afterwards, we make use of Gint in order to calculate the full
Green’s function G with the aid of the T-matrix approximation which takes
into account the effect of the single impurity, therefore simulating effectively
the edge of the system.

Sticking to the instructions given above, we start by calculating the effect
of the weak interaction Hamiltonian Hint in a perturbatively manner with the
aid of the so-called Matsubara Green’s function

Gint(k, τ) =
 GintAA(k, τ) GintAB(k, τ)
GintBA(k, τ) GintBB(k, τ)

 , (2-39)

whose matrix elements are defined as

GintIJ(k, τ) = −〈TτcIk(τ)c†Jk(0)〉 , (2-40)

where Tτ is known as the time ordering operator. The interaction-dressed
Green’s function with discrete frequency iωn is calculated by solving Dyson’s
equation

Gint = G0 +G0ΣGint = G0 +G0ΣG0 +G0ΣG0ΣG0 + ...

=
(
G−1

0 − Σ
)−1

= (iωn −H0 − Σ)−1 , (2-41)

where Σ stands for the self-energy. The interacting part of Dyson’s equation
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in Eq. (2-41) is calculated formally as

(G0ΣGint)IJ = −
∞∑
n=1

(−1)n
∫ β

0
dτ1

∫ β

0
dτ2...

∫ β

0
dτn

×〈TτcIk(τ)Hint(τ1)Hint(τ2)...Hint(τn)c†Jk(0)〉, (2-42)

corresponding to distinct connected diagrams. In the present study, we limit
our calculation to the extend of just one-loop. Additionally, we explore the
short range electron-electron interaction between spinless fermions [56–61]. For
this particular TI, we contemplate the density-density interaction between two
sublattices that takes the specific form

He−e =
∑
kk′q

Vqc
†
Ak+qc

†
Bk′−qcBk′cAk , (2-43)

where the actual explicit form of Vq is a function which depends on the specific
kind of interaction considered to take place in real space. Replacing Eq. (2-43)

Figure 2.4: Feynman’s diagrams representing (a) The vertex of the particular
density-density interaction between sublattices A and B investigated here,
and the vertex of impurity scattering for the specific sublattice I (I =
A,B). (b) The self-energy matrix that arises from the specific density-density
interaction obtained up to one-loop Hartree-Fock level. (c) The Dyson’s
equation corresponding to the homogeneous interacting Green’s function Gint.
This Figure has been taken from Ref. [27].
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into (2-42), the interacting part of the Dyson’s equation up to one-loop level
reads as

(G0ΣGint)IJ =
∫ β

0
dτ1

∑
pp′q

Vq

×〈TτcIk(τ)c†Ap+q(τ1)c†Bp′−q(τ1)cBp′(τ1)cAp(τ1)c†Jk(0)〉.

(2-44)

After performing the Fourier tranform of Eq. (2-44), we get the self-energies
(whose Feynman diagrams are drawn in Fig. 2.4 (b))

ΣAA(k) =
∑
p

Vq=0G0BB(p, τ = 0) ,

ΣAB(k) = −
∑
q

VqG0AB(k + q, τ = 0) ,

ΣBA(k) = −
∑
q

VqG0BA(k + q, τ = 0) ,

ΣBB(k) =
∑
p

Vq=0G0AA(p, τ = 0) . (2-45)

An interesting feature is that these self-energies result to be frequency-
independent ΣIJ(k, iωn) = ΣIJ(k) for the specific kind of interaction consid-
ered. After having solved Dyson’s equation we replace the discrete by a contin-
uous frequency iωn → iω to express the Green’s function in terms of a continu-
ous frequency ω from which we can find out the LDOS as well as the topological
invariant as we detail later. The full Green’s function in momentum-frequency
space is then expressed explicitly as

Gint(k, iω) = 1
(iω + d′0)2 − d′2

×

 iω + d′0 + d′3 d′1 − id′2
d′1 + id′2 iω + d′0 − d′3

 ,

G−1
int(k, iω) =

 iω + d′0 − d′3 −d′1 + id′2

−d′1 − id′2 iω + d′0 + d′3

 , (2-46)

here d′ =
√
d′21 + d′22 + d′23 , and the components of the self-energy-renormalized

d′-vector d′ = (d′1, d′2, d′3) are written as

d′1 = d1 + ReΣAB , d′2 = d2 − ImΣAB ,

d′3 = d3 + ΣAA − ΣBB

2 , d′0 = −ΣAA − ΣBB

2 . (2-47)

It is relevant to keep in mind that, since the self-energies ΣIJ = ΣIJ(k) depend
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only on k, this is also the case for each d′i = d′i(k).

To explicitly calculate the band gap as a function of the external tunning
parameters Egap(δt, V ) we make use of the spectral function A(k, ω) which is
obtained from the retarded version of the Green’s function Eq. (2-46) with real
frequency iω → ω + iη. This spectral function is defined as

A(k, ω) = − 1
π

Im
[
TrGret

int(k, ω)
]
. (2-48)

As we argue later, from the spectral function we can identify both the bulk
gap and the gap-closing (topological phase transitions) in the presence of
interactions, this has been already proved for models in higher dimensions [62].

It is relevant to point out that the interaction term He−e in Eq. (2-43)
breaks both chiral and particle-hole symmetries, thus modifying the symmetry
of the effective Hamiltonian H(k) = −σ0d0

′+σ ·d′. To be more specific, for the
special case of density-density interaction in which the self-energy is frequency-
independent, we find d′3 = 0 and a finite (induced) d′0. Despite the fact that
the usual definition of S and C [11] requires Eq.2-28 – which is not compatible
with having a finite d′0 – Ref. [13] realized that it is possible to generalize those
symmetries with respect to a shift. With this particular generalization a model
that respects both particle-hole and chiral symmetries fulfills

S
[
H (k)− 1

2TrH (k)
]
S−1 = −

[
H (k)− 1

2TrH (k)
]

= C
[
H (−k)− 1

2TrH (−k)
]
C−1. (2-49)

As a consequence, the whole spectrum is shifted by TrH(k)/2 = −d′0 and
therefore the band structure can be thought to be particle-hole and chiral
symmetric with respect to −d′0 (a kind of induced chemical potential). The
noninteracting parametrization in Eq. 2-28 represents then a less general
situation taking place when TrH(k) = 0.

2.3
Corroborating bulk-edge correspondence by T-matrix formalism

Now we are ready to study the edge state of the system subjected to the
influence of interactions. Due to the presence of interactions, it is no longer
feasible to identify the edge state from the single particle wave function, which
is now undefined. In this situation the proper quantity to be investigated is
the impurity Green’s function, this issue has already been verified for the
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less general case of noninteracting systems [63]. Our aim is to prove that the
LDOS obtained from the real space impurity Green’s function, in conjunction
with the topological invariant calculation, could be used to verify the bulk-edge
correspondence and to investigate the quantum critical behavior for interacting
1D TIs.

As we pointed out previously, we can account for the presence of edge
states through the T -matrix formalism which permits to take into consideration
the existence of an impurity that effectively creates or simulates an edge. In
this investigation we consider a sharp δ-function to model the edge of the
system (strong impurity) which is assumed to be located at a given r = 0
position of the lattice

U(r) = U0δ(r) , (2-50)

for a 1D TI defined in the semi-infinite space r > 0. Considering the most
general potential scattering, with strength denoted by Ukk′ in momentum
space, this potential breaks the translational invariance of the system. As a
consequence, the full Green’s function starts depending on two indices k and
k′ and reads, in momentum space, as

G(k, k′, τ) =
 GAA(k, k′, τ) GAB(k, k′, τ)
GBA(k, k′, τ) GBB(k, k′, τ)

 , (2-51)

whose matrix elements are defined as

GIJ(k, k′, τ) = −〈TτcIk(τ)c†Jk′(0)〉 . (2-52)

For the interacting case, the impurity (also called "edge" or "full") Green’s
function, simply denoted as G, is obtained from incorporation of the Gint in
Eq. (2-46) into the T -matrix approximation [64]

G(k, k′) = Gint(k)δkk′ +Gint(k)Ukk′Gint(k′) + ...

= Gint(k)δkk′ +Gint(k)Tkk′Gint(k′) ,

= Gint(k)δkk′ +Gint−T (k, k′) , (2-53)

where Gint(k) and Gint−T (k, k′) stand for, respectively, the homogeneous (no
impurity) and inhomogeneous (with impurity) components. The T -matrix

DBD
PUC-Rio - Certificação Digital Nº 1713280/CA



Chapter 2. Corroborating the bulk-edge correspondence in weakly interacting
one-dimensional topological insulators 42

fulfills

Tkk′ = Ukk′ +
∑
k′′
Ukk′′Gint(k′′)Tk′′k′ , (2-54)

as is presented diagramatically in Fig. 2.5. For the δ-function potential we used
in Eq. (2-50) to effectively create the edge, we have Ukk′ = U0, and therefore

T = T (iωn) = U0

[
I − U0

∑
k

Gint(k, iωn)
]−1

. (2-55)

This result tell us that the T -matrix depends only on the (Matsubara or
complex) frequency. If we focus on the particular case of a infinitely strong
impurity, situation known as the hard edge limit U0 →∞, then the T -matrix
reduces to

lim
U0→∞

T (iωn) = −
[∑
k

Gint(k, iωn)
]−1

, (2-56)

which displays a quite manageable form. In this research project, we will
concentrate on this hard edge limit U0 → ∞ which seems appropiate to
generate the edge state. Within this approximation the T -matrix and local
density of states become explicitly independent on the parameter U0. The T -
matrix with real frequencies, that is needed to obtain the full retarded Green’s
function, is judged similarly. This methodology considers only the essential
diagrams that permit to capture the edge state, i.e., the diagrams that generate
the impurity bound state. Notwithstanding that, our method fails to take into
account diverse impurity-interaction interference diagrams as those drawn in
Fig. 2.5 (c), which ought to be treated elsewhere.

Once we have solved for the full retarded Green’s function, which
corresponds to perform an analytical continuation iωn → ω + iη for all
quantities which are dependend on the Matsubara frequency, we are ready
to get the actual LDOS. We begin by going from momentum space towards
real space, for this we take the Fourier transform of the already calculated
momentum space full Green’s function

Gret
IJ (r, r′, ω) =

∫ dk

2π

∫ dk′

2π e
i(kr−k′r′)Gret

IJ (k, k′, ω) .

(2-57)
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Figure 2.5: (a) Feynman’s diagram representing the full impurity Green’s
function obtained from the incorporation of the homogeneous interacting
Green’s function into the T -matrix approximation. (b) Some specific diagrams
that are (b) considered and (c) not considered within our approximation. This
Figure has been taken from Ref. [27].

The LDOS in real space reads

ρ(r, ω) = −Im
{

Tr
[
Gret(r, r, ω)

]}
/π

= −Im
{
Gret
AA(r, r, ω) +Gret

BB(r, r, ω)
}
/π , (2-58)

which is made up from the summation of the imaginary parts of the retarded
Greens function of the A and B sublattices. Here it is relevant to mention that
the so-called spectral sum rule of this T -matrix-Dyson’s equation formalism is
fulfilled as follows. If we split the homogeneous and the impurity parts of the
Green’s function as shown in Eq. (2-53), and label their corresponding LDOS
as

ρint(r, ω) = −Im
{

Tr
[
Gret
int(r, r, ω)

]}
/π ,

ρint−T (r, ω) = −Im
{

Tr
[
Gret
int−T (r, r, ω)

]}
/π ,

ρ(r, ω) = ρint(r, ω) + ρint−T (r, ω) , (2-59)

therefore
∫ ∞
−∞

dω ρ(r, ω) =
∫ ∞
−∞

dω ρint(r, ω) = 2 ,∫ ∞
−∞

dω ρint−T (r, ω) = 0 . (2-60)
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So we verify that the particle number is conserved and comes only from the
homogeneous part, the integration gives 2 since we counted the contribution
from the 2 bands of the system (the VB and the CB). The edge state arises
from the impurity-scattering part ρint−T (r, ω), this part only changes the profile
of the total LDOS ρ(r, ω) without modifying the total number of particles, a
feature we already expect from the relation [H,He−e] = 0.

To calculate effectively the decay length of the edge state and to avoid
the tedious fit of the decaying LDOS in real space, we rely on the following
approach. In a vicinity of the critical point M → Mc, the impurity Green’s
function in momentum space Gret(k, k′, ω) is even in k and k′ and is well fitted
by an Ornstein-Zernike form near the high symmetry points {k0, k

′
0} = {π, π},

i.e.,

Gret(k0 + δk, k′0 + δk′, ω) ≈ Gret(k0, k
′
0, ω)

(1 + ξ2δk2)(1 + ξ2δk′2) . (2-61)

As a result, after taking the Fourier transform in Eq. (2-57), we get a LDOS
decaying with a decay length ξ. So it is only necessary to extract ξ from the
Ornstein-Zernike fit in Eq. (2-61), a much easier task than explicitly taking the
Fourier transform in Eq. (2-57) and then making a fit to get ξ in real space.

2.3.1
Topological invariant and edge states of interacting Su-Schrieffer-Heeger
model

We are now ready to make use of the general formalism introduced pre-
viously and apply it to the specific case of the SSH system introduced in Sec.
2.1, but taking into account the presence of nearest-neighbor electron-electron
interaction. Many different versions of the SSH model have been already inves-
tigated with the aid of different techniques [65–69]. In the noninteracting limit,
the topological properties of the system have been investigated experimentally
with the aid of optical lattices [70, 71]. In this work, we concentrated on the
quantum criticality investigated by means of the Green’s function approach.
The noninteracting part of the Hamiltonian, described by Eq. (2-5), which
stands for the SSH model alone, can be cast into the following form:

H0 =
∑
i

(t+ δt)c†AicBi + (t− δt)c†Ai+1cBi + h.c.

=
∑
k

Qkc
†
AkcBk +Q∗kc

†
BkcAk , (2-62)
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here t+δt and t−δt represent the hopping amplitudes on the even and the odd
bonds, and Qk = (t + δt) + (t− δt)e−ik stands for the out of diagonal matrix
element of the Dirac Hamiltonian. The bare chemical potential of this system
is set to be zero by definition. We choose the interaction to be a density-density
specific kind of interaction between nearest-neighbors only as is the situation
chosen in Ref. [32]

He−e = V
∑
i

(nAinBi + nBinAi+1) , (2-63)

where nIi ≡ c†IicIi. Taking the Fourier transform of this interaction Hamilto-
nian gives us Eq. (2-43) with Vq = V (1 + cos q) [32]. We see immediately that
this specific form of interaction breaks both particle-hole and chiral symmetries
with respect to zero frequency (the C and S symmetries are still respected if
we replace nIi → (nIi − 1/2) everywhere in Eq. (2-63)). Restricting our study
to just one-loop approximation, we find the following self-energies [32]

ΣAA(k) = ΣBB(k) = V , (2-64)

ΣAB(k) = 1
2
∑
q

Vqe
−iαk+q = [ΣBA(k)]∗ , (2-65)

where the phase factor αk arises from Qk ≡ |Qk|e−iαk . The ΣAA and ΣBB

stand for the Hartree terms that bring in a finite induced chemical potential
d′0 = −V that shifts the entire spectrum by V without broadening it (because
it is a purely real quantity). Considering Eq. (2-49), for this specific situation
it is then clear that

S [H (k) + V ]S−1 = − [H (k) + V ] , (2-66)

C [H (−k) + V ] C−1 = − [H (k) + V ] , (2-67)

which represents a generalization of the symmetries with respect to the finite
induced chemical potential and provides a spectrum that is symmetric with
respect to V . To finalize, with the aid of Eqs. (2-64) and (2-65), the Green’s
function Eq. (2-46) can be explicitly written as

G(k, iω) = 1
(iω − V )2 − |Qk + ΣAB(k)|2

×

 iω − V Qk + ΣAB(k)
[Qk + ΣAB(k)]∗ iω − V

 . (2-68)
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We already highlighted in the previous Section that at iω = V the full Green’s
function turns out to be off-diagonal. Due to the presence of interactions, the
topological invariant is modified and corresponds to a winding number of the
new phase [29,32,68,72]

ϕk = − arg (Qk + ΣAB) ,

= − arg
(
Qk + 1

2
∑
q

Vqe
−iαk+q

)
. (2-69)

To make clear why this is the case for the interacting model, let us remind
the way the topological invariant is calculated in terms of the full Green’s
function [29]

C =
∫ 2π

0

dk

4πiTr(σ3G
−1∂kG)|iω=−d′0 (2-70)

where the integrand is evaluated at iω = −d′0, where d′0 can be viewed as the
interaction-induced chemical potential. In the case under study in which the
self-energy is frequency-independent, the requirement of iω = −d′0 physically
means that the entire spectrum is shifted by −d′0 and hence the spectrum is
particle-hole symmetric with respect to −d′0 as we already stressed out. As
a consequence, within this Green’s function formalism, the reference energy
should be shifted to iω = −d′0 such that the diagonal element of the Green’s
function is set to zero and we can apply Eq. (2-70). Observe that in the
noninteracting model delineated by Eq. (2-28) the d0 = 0 and hence iω = 0 in
Eq. (2-70) [29], [43]. Looking at Eq. (2-41), one realizes that the full Green’s
function at iω = −d′0 has the same feature as the unperturbed Green’s function,
namely it possess only off-diagonal elements

G(k, iω = −d′0) =
 0 −Qk−ΣAB

|Qk+ΣAB |2
−Q∗k−Σ∗AB

|Qk+ΣAB |2
0

 , (2-71)

where ΣAB ≡ ΣAB(k, iω = −d′0) = ΣBA(k, iω = −d′0)∗ stands for the upper-
right off-diagonal element of the 2 × 2 self-energy matrix at iω = −d′0.
Introducing Eq. (2-71) into Eq. (2-70), the topological invariant is

C = 1
4πi

∫ 2π

0
dk[ −1

Qk + ΣAB

∂k(Qk + ΣAB)−H.c.]

= 1
2π

∫ 2π

0
dk∂kϕk , (2-72)
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where ϕk is the argument of Qk + ΣAB = |Qk + ΣAB|e−iϕk . So we have
demonstrated that the topology of the system simply counts the number of
times that the phase of Qk + ΣAB winds as k goes from 0 to 2π. This winding
number is dictated by the off-diagonal elements of both the noninteracting
Hamiltonian Qk = d1− id2 and the self-energy ΣAB. From this particular form
of the phase we can notice how the interaction alters the phase by means of the
self-energy, and so the topological invariant is affected by the interaction. This
fact permits us to state that interactions are capable of driving topological
phase transitions.

This topological phase transition can be identified, in the δt − V para-
meter space, from the gap-closing which is derived from the spectral function
(read our argument below). The phase transition line obtained in this way turns
out to coincide exactly with the one solved by means of the CRG approach as
in Ref. [32], this result is presented in Fig. 2.6 (a). For either V > 0 or V < 0
regimes, the calculated phase diagram displays both topologically trivial C = 0
and nontrivial C = 1 phases. It is noteworthy the fact that for V < 0 the
topological phase transition has been displaced from δt = 0 to a negative δt,
whereas for V > 0 it is shifted to a positive δt. So it is clear that the critical
point in the parameter space is shifted due to the presence of the interactions.

This spectral function A(k, ω), which has been defined in Eq. (2-48),
experiences a shift in frequency due to particle-hole-breaking nature of the
interaction. This result is clearly noticeable by looking at Fig. 2.6 (b)∼(d).
This displacement of the whole energy spectrum originates from the Hartree
term ΣAA(k) = ΣBB(k) = V in Eq. (2-64). Additionally, due to the real
nature of the Hartree term, the quasiparticle lifetime is not affected, i.e., there
is no broadening of the spectral function for this specific electron-electron
interaction (for more general kinds of interactions this is not the case). In
spite of this shift in frequency for finite V , the band gap, which is identified
from the separation between the two peaks A(π, ω) at the high symmetry
point k = π, is clearly noticeable in Fig. 2.6 (b)∼(d). As V is varied across the
critical point Vc, the spectral function clearly shows a gap-closing at the high
symmetry point. If the topological phase transitions is driven by the kinetic
parameter δt, the same phenomena takes place. We can therefore state that
this behavior of the spectral function proves unambiguously that gap-closing is
a definite property occurring at topological phase transitions even for systems
subjected to interactions.
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Figure 2.6: (a) Phase diagram for the SSH system with nearest-neighbor
density-density interaction. The color scale tells us the magnitude of the gap
which is calculated from the spectral function A(k, ω), and the white line
represents the phase transition line at which this gap closes. (b) to (d) highlight
the dependence of A(k, ω) on ω as k varies from k = 0.8π to 1.2π at a fixed
δt = −0.04 for some values of V . The closing of the gap at the critical point
Vc = 0.55 is clear. The whole spectrum is displaced with V since the interaction
in Eq. (2-63) destroys particle-hole symmetry. This Figure has been taken from
Ref. [27].

For this interacting SSH model, its LDOS is presented in Fig. 2.7, this was
computed considering 128× 128 grid points for the integration in momentum
space of Eq. (2-57) and an artificial broadening of η = 0.05 in the analytical
continuation iωn → ω + iη to get the retarded Green’s function. The edge
state can be recognized as the peak located in the middle of the spectrum
and it only appears in the topologically nontrivial phase, showing that the
bulk-edge correspondence is properly satisfied in this model. Since the whole
energy spectrum is displaced by the interaction V and the edge state is always
located in the in the middle of the gap, this edge state is moved away from
absolute zero frequency by the interaction. Considered as a function of the
separation distance from the edge located at r = 0, we unveil that this edge
state remains localized in one sublattice only, this is a property inherited from
the noninteracting limit which was previously obtained by analytical solution of
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Figure 2.7: (a) LDOS for the two sublattices of the SSH model with fixed
δt = −0.04 at the first lattice site located at r = 1 away from the edge, and for
some values of the interaction strength V . We clearly notice that the edge state
situated in the middle of the spectrum appears only within the topologically
nontrivial region V < 0.6, and is located at the A sublattice only. (b) LDOS
for V = 0.3 at some specific spots r localized away from the edge, this shows
an edge state which decays as r increases. The wavy features noticeable in
the spectrum arise from finite size effects. This Figure has been taken from
Ref. [27].

the Dirac equation projected into real space. The decaying behavior of the peak
signaling the edge state, as we move away from the edge (so as we increase r),
is clearly noticeable. For this system the decay length ξ ∼M−1 shows a critical
exponent ν = 1 regardless of the tunning parameter that is varied continuously
to drive the phase transition, it holds for both M = δt and M = V as is nicely
presented in Fig. 2.8(this critical exponent is calculated with the aid of the
fit in Eq. (2-61), up to the accuracy of grid size ξ−1 ≈ ∆k ≈ 0.05 set in
momentum space ). This tells us that the SSH model, even under the presence
of the nearest-neighbor interaction defined by Eq. (2-63), stays within the same
universality class.

To finalize this Chapter, we reflect on the plausibility of our statement,
since our procedure is limited to just one-loop calculation of the self-energy.
We could expect that as we increase V , higher-loop corrections to the self-
energy would become more and more relevant, and the one-loop result will start
losing accuracy. Consequently, our expectation is that the phase transition line
depicted in Fig. 2.6(a), as well as the size of the bulk gap calculated from the
spectral function A(k, ω), could change at larger V . Despite this, we believe
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Figure 2.8: We can perform a fit to extract the critical exponent of the decay
or correlation length of the edge state ξ ∼ |M |−ν for (a) M = δt at different
values of V , and (b) M = V at different values of δt. We clearly notice a linear
behavior which provides a critical exponent of ν = 1. This Figure has been
taken from Ref. [27].

our statements related to critical exponents ν = 1 and universality class ought
to survive further corrections. This conclusion is reinforced from the results
obtained in Ref. [73], where a Chern insulator in strong coupling far beyond the
reach of perturbation theory is shown to remain within the same universality
class as the noninteracting model, this was further confirmed by means of an
exact diagonalization approach. Even though the strong coupling limit V > t

of our model is beyond the scope of our methodology, considering our result
together with the one of Ref. [73] suggests that whether considering only the
lowest order self-energy in the small V regime or using an exact diagonalization
(or Machine Learning method or any other efficient computational method)
to study the larger V limit, the system will still remain within the same
universality class.
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3
Persistent currents and spin torque caused by percolated
quantum spin Hall state

In this Chapter we perform a similar review for our second project, which
in turn materialized into our second paper entitled Persistent currents and
spin torque caused by percolated quantum spin Hall state [74], and
here in a similar way we will follow very closely what we have written in
our article. We start, in Section 3.1, with the introduction of some relevant
concepts and motivation about the importance of the QSHE and its practical
applications to the field of spintronics. Then, in Section 3.2, we perform
a review of the time reversal symmetry and operator for spinful particles
because it is key to properly define and calculate the topological invariant
for the system under study. Here we also derive Kramers theorem, which has
important consequences in the topological properties of the system of interest.
Section 3.3 is devoted entirely to the investigation of the physical properties
of a system which results from putting in contact a 2D TI known as the
Bernevig-Hughes-Zhang (BHZ) model and a Ferromagnetic-Metal (FMM), we
refer to this system as the 2D TI/FMM junction. We start Section 3.3.1 by
elucidating the continuous BHZ model and indicate the way its edge-states are
calculated, later we focus on the lattice model for the 2D TI/FMM junction.
From this model we outline two different kinds of band structure and address
the corresponding percolation or infiltration of topological edge states from the
BHZ into the FMM in Section 3.3.2. In Section 3.3.3 we move forward to prove
that the asymmetric type of band structure is the source of a laminar flow of
local persistent charge current, we also elaborate the proximity induced local
persistent spin current flowing near the junction that connects the two sub-
systems. Later in Section 3.3.4 we investigate the current-induced spin torque
with the aid of linear response theory, there we point out the field-like nature
of the spin torque which is a direct consequence of the real nature of the wave
functions representing the percolated edge state as well as the quantum well
state of the FMM.
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3.1
Introduction and Motivation

One of the predominant properties of two-dimensional (2D) time-reversal
(TR) invariant topological insulators (TIs) is represented by a celebrated
phenomenom known as the quantum spin Hall effect (QSHE) [3–6,8]. Several
spintronic devices based upon topological edge states have been motivated from
the defining feature of QSHE, namely the existence of a spin current which
flows at the edge of the system, this is supposed to be a direct consequence of
the existence of spin polarized topological edge states. However, we show in this
work that even though the TI by itself do possess spin polarized topological
edge states, this TI alone does not exhibit any local spin current unless we put
it in contact with a FMM. So, in order to take advantage of the edge states and
generate a local spin (and charge) current, the TI is put in contact with the
FMM, this has been performed for specific three-dimensional (3D) TI/FMM
heterostructures [15, 20, 75–77] with the purpose of using the magnetization
of the FMM to manipulate the edge spin transport and viceversa. From a
theoretical perspective, a lot of research has been carried out to explore the
complex spintronic phenomena occuring in such a hybrid structure [21–26].
To properly address an accurate theoretical description for this system, it is
important to understand the way in which the QSH state is altered when the
TI is put in contact with a metal. This because the boundary condition for the
edge state wave function changes in this situation.

The practicability of spin to charge interconversion has been verified in
recent experiments performed on spintronic devices based on 2D TIs. The high
efficiency of spin-transfer torque and spin pumping that has been measured
on monolayer and multilayer transition metal dichalcogenide/ferromagnet
(TMD/FMM) heterostructures is very promising [78–83]. This is a particular
advantage provided by these materials that manisfests the QSHE [84–86].
Making use of a lattice model and, stimulated by these experimental results,
we investigate the 2D TI/FMM planar junction in order to make clear the role
that the edge states have in these spintronic effects. We find out that the way
in which the QSH state is modified depends mainly on two issues, the first is
related to the location of the Dirac cone with respect to the FMM subbands,
i.e., whether the type of band structure is of the pristine or submerged kind
(we later provide details on this dicotomy), and the second is the direction set
for the magnetization of the FMM. Both the percolation of the edge state into
the FMM, as well as the spin-momentum locking in the TI region close to the
TI/FMM interface, are firmly influenced by these two factors. We unveil some
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interesting dissipationless responses which include the generation of laminar
flows of room temperature persistent charge and spin currents that change in
direction and magnitude as we move away from the interface. Furthermore,
we detail how crucial the real wave function of the percolated edge state is
for determining both the magnitude and direction of the current-induced spin
torque.

3.2
Time reversal symmetry for spinful particles and Z2 invariant from sign of
the Pfaffian

Before moving forward, it is relevant to review the time-reversal (TR)
symmetry and the operator representing it because this is the essential ingre-
dient to QSHE and is responsible for bringing topological protection to the
edge states of the TI. We start with a brief discussion of the TR symmetry
and outline the way to obtain the topological invariant for this system which
belongs to a particular symmetry class (AII in 2D). This specific symmetry
class imposes important consequences on the topological properties of the sys-
tems belonging to it, this holds for both spinless and spinful particles. The
corresponding time-reversal operator T is constructed out of an unitary ope-
rator U (U †U = UU † = I) and the complex conjugate operator K. Due to
the fact that spin is an angular momentum, it is rotated by the action of this
operator, conventionally we define this rotation to be along the y−axis

T = UK = e−iπSyK, TST−1 = −S. (3-1)
Squaring T yields

T 2 = e−iπSyKe−iπSyK = e−iπSyeiπS
∗
y = e−2πSy = ±1, (3-2)

this brings us the important result that for integer spin (bosons) T 2 = 1 and
for half-integer spin (fermions) T 2 = −1. We are interested particularly in the
study of topological insulators composed by spin 1/2 electrons, so the spin
rotation part of the T operator is written as

T = e−iπσy/2K = −iσyK → T 2 = −iσyK(−iσy)K = σyσ
∗
y = −1. (3-3)

Since T 2 = −1, this implies that T−1 = −T and the operation on the spin is
therefore

TST−1 = −iσyKSiσyK = −iσyS∗KiσyK = σyS∗σy. (3-4)

Using the explicit expression S = σ/2 (so Sx∗ = Sx, Sz∗ = Sz, but Sy∗ = −Sy),
together with the fact that {σa, σb} = 2δab, we then obtain that σyS∗σy = −S.
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We proceed now to prove the so-called Kramers theorem for half-integer
spin systems. Since for this case T 2 = −1 and T = UK we then have
U = −UT . If the system has time-reversal symmetry [H,T ] = 0, this implies
that eigenstates |ψ〉 and T |ψ〉 have the same eigenenergy E and their overlap
is

〈ψ|T |ψ〉 =
∑
mn

〈ψ|m〉〈m|T |n〉〈n|ψ〉 =
∑
mn

ψ∗mUmnKψn =
∑
mn

ψ∗mUmnψ
∗
n

=
∑
mn

ψ∗m(−Unm)ψ∗n = −〈ψ|T |ψ〉 = 0, (3-5)

meaning that |ψ〉 and T |ψ〉 are orthogonal and hence degenerate. We arrive
at the Kramers theorem, which states that for half-integer spin systems
that are subjected to time-reversal symmetry, the energy spectrum is at least
doubly degenerate.

In a similar fashion we can verify, using T−1 = −T, U = −UT and
U †U = I that the matrix element coupling |ψ〉 and T |ψ〉 in a Hamiltonian
that obeys TR symmetry THT−1 = H vanishes

〈ψ|HT |ψ〉 = 0, (3-6)

meaning that if a half-integer spin system follows time-reversal symmetry, then
there is no matrix element coupling |ψ〉 and T |ψ〉. At the operator level, we
are not allowed to directly apply T 2 = −1 since this depends on the even or
odd number of spin 1/2 fermions occupying the state. From the fact that this
operation flips the spin, the following relations are valid

Tci↑T
−1 = Aci↓, T ci↓T

−1 = Bci↑ → Tci↑c
†
i↑|0〉 = −AB|0〉∗ (3-7)

and hence AB = −1, observe that the T 2 acts on the single spin 1/2 state so
we can use T 2 = −1, and |ψ〉∗ = ∑

m |m〉〈m|ψ〉∗ = ∑
m |m〉ψ∗m, the convention

is to select A = 1 and B = −1 so we may write in a compact manner for both
the real and momentum spaces (after a Fourier transform)

TciσT
−1 = iσyσσ′ciσ′ , T c†iσT

−1 = c†iσ′(−i)σ
y
σ′σ = c†iσ′i(σy)Tσ′σ (3-8)

TckσT
−1 = iσyσσ′c−kσ′ , T c†kσT

−1 = c†−kσ′i(σy)Tσ′σ. (3-9)

If a Hamiltonian fulfills TR symmetry, then
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H = THT−1 =
∑

k
Tc†kσhσσ′(k)ckσ′T

−1 =
∑

k
c†−kσ′′i(σy)Tσ′′σThσσ′(k)T−1iσyσ′σ′′′c−kσ′′′

=
∑

k
c†kσ′′i(σy)Tσ′′σThσσ′(−k)T−1iσyσ′σ′′′ckσ′′′ =

∑
k
c†kσ′′hσ′′σ′′′(k)ckσ′′′ (3-10)

Then we use the fact that hσσ′(−k) is just a number (matrix element) defined
at a specific {k, σ, σ′}, so the effect of time-reversal operator is to take its
complex conjugate Thσσ′(−k)T−1 = hσσ′(−k)∗, and hence the above equation
implies that hσ′′σ′′′ = i(σy)Tσ′′σ′h∗σσ′(−k)i(σy)σ′σ′′′ . Applying TR operation one
more time and using T = iσyK and T−1 = K(−iσy) = −iσyK and dropping
all the spin indices for simplicity, we get

Th(k)T−1 = iσyK(−iσy)h∗(−k)iσy(−iσy)K

= −(iσy)2Kh∗(−k)(−1)(iσy)2K = h(−k)KK = h(−k) (3-11)
which means that the single particle hamiltonian changes its argument k→ −k
under TR operation. At the so-called Time Reversal Invariant Momentum
(TRIM), k0 = −k0, one has Th(k0)T−1 = h(k0), meaning that ψ(k0) and
Tψ(k0) have the same energy and hence are degenerate. Thus we know that if
the half-integer spin system has only two bands, then the two bands must be
degenerate at TRIM, and consequently the system must be either a metal or
semimetal. From this we see that a spin 1/2 topological insulator must be at
least a four band model, this is the case for the BHZ model.

In a TR-invariant system the Hall conductance vanishes (as for example
in 2D Chern insulators), so we need to find other ways to characterize the
topology of the system. We expect that the index must be somehow related to
the TR operator T in order to reflect this symmetry. The following construction
has been proposed, based on the fact that the overlap between eigenstates |uαk〉
and T |uβk〉 is antisymmetric, and performing a similar calculation as previously
done to prove Kramers theorem

mαβ(k) = 〈uαk|T |uβk〉 =
∑
mn

〈uαk|m〉〈m|T |n〉〈n|uβk〉 =
∑
mn

u∗αkmUmnKuβkn

= −
∑
mn

u∗βknUnmu
∗
αkm = −〈uβk|T |uαk〉 = −mβα(k) (3-12)
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where we have applied −U = UT , this means that the so-called m-matrix is
antisymmetric. Since them-matrix is antisymmetric and has an even rank (due
to the two spin species), its Pfaffian can be defined, whose square gives the
determinant

det[m(k)] = (Pf [m(k)])2. (3-13)

There are two schemes to obtain the Z2 invariant: (i)from the phase of
Pf [m] or (ii) from the sign of Pf [m]. The BHZ model falls into the sign of
Pfaffian scheme, in this case the Z2 invariant is defined using the sign of the
Pfaffian at the HSP, provided it is a real number

(−1)ν =
4∏
i=1

Sgn(Pf [m(k0,i)]) (3-14)

where k0,i is the i-th HSP. The product in 2D systems is among the four
HSPs (0, 0), (π, 0), (0, π) and (π, π). The Pfaffian Pf [m] in these models is not
necessarily complex, hence it may have no phase gradient. It has been found
that Pf [m(k0,i)] remains at a fixed value of ±1 within a particular topological
phase.

3.3
Bernevig-Hughes-Zhang(BHZ)/Ferromagnetic-Metal(FMM)-Planar
Junction

3.3.1
Continuous BHZ model and Lattice model for the BHZ/FMM system

In order to study properly the percolation of the edge state, we make use
of a tight-binding model approach in a similar fashion as has been already
applied to investigate 3D TIs [26]. To be more specific, we focus on the
analysis of a strip of 2D Bernevig-Hughes-Zhang (BHZ) model [6] of width
Ny,T I in contact with a strip of 2D FMM of width Ny,FM , as can be seen
in Fig. 3.3 (a). We impose periodic boundary condition (PBC) along the
longitudinal x̂ direction and open boundary condition (OBC) in the transverse
direction ŷ, i.e., we consider a closed BHZ/FMM ribbon that looks like
a cylinder. The BHZ sub-system is made up by the the spinful s and p

orbitals ψ = (s ↑, p ↑, s ↓, p ↓)T , with the specific representation set for the
Dirac matrices as γi = {σz ⊗ sx, I ⊗ sy, I ⊗ sz, σx ⊗ sx, σy ⊗ sx} and the TR
operator defined as T = −iσy ⊗ IK, where σb and sb represent the Pauli
matrices in the spin and orbital spaces, respectively. The Dirac Hamiltonian
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in momentum space for the BHZ alone is written as [87]

H(k) =
3∑
i=1

di(k)γi = A sin kxγ1 + A sin kyγ2

+ (M − 4B + 2B cos kx + 2B cos ky) γ3

=
 h(k) 0

0 h∗(−k)

 , (3-15)

where h(k) = ∑3
i=1 di(k)σi, parameters A and B stand for the so-called

kinetic parameters, and the region M < 0 (for the mass term) represents
the topologically nontrivial phase hosting the edge state.

Prior to the study of the lattice model for the whole system, let us focus
on the continuous model for the BHZ alone and delineate the way to calculate
its edge-states and respective decay-length. Following the notation introduced
previously for the basis for spinful s and p orbitals, the TR operator reads as

T = −iσy ⊗ IK =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

K. (3-16)

Under the action of TR-operation, the 5 γi matrices are transformed as

TγiT
−1 = −γi, i ∈ {1, 2, 4, 5},

Tγ3T
−1 = γ3, (3-17)

so in order to construct a 4× 4 Dirac Hamiltonian H(k) = ∑5
i=1 di(k)γi which

satisfies the TR symmetry TH(k)T−1 = H(−k) the following relations must
hold for the d vectors

di(k) = −di(−k), i ∈ {1, 2, 4, 5},

d3(k) = d3(−k). (3-18)

For the BHZ model we just require the three Dirac matrices {γ1, γ2, γ3}
in order to build up its Dirac Hamiltonian Eq. (3-15), and if we denote
d =

√
d2

1 + d2
2 + d2

3, then the four eigenstates of the system are found to be
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|u1〉 = 1√
2d(d− d3)


0
0

−d3 + d

d1 − id2

 , |u2〉 = 1√
2d(d− d3)


d− d3

d1 + id2

0
0



|u3〉 = 1√
2d(d+ d3)


0
0

−d3 − d
d1 − id2

 , |u4〉 = 1√
2d(d+ d3)


d+ d3

d1 + id2

0
0

(3-19)

with occupied state eigenenergies E1 = E2 = −d (Valence Bands) and
unoccupied states E3 = E4 = d (Conduction Bands). The corresponding
Pfaffian of the m-matrix for the two occupied states (VBs) as was defined
more generally in Eq. (3-12) is then

m12 = 〈u1|T |u2〉 = d3

d
= Pf(m), (3-20)

in this way se see that the topology for this system is determined by the factor
d3/d, since from there we can calculate the topological invariant index ν with
the aid of Eq. (3-14). To verify that the edge state is a TR-invariant state
with spins up and down counter propagating at the edge, we first note that
the block diagonal Hamiltonian in Eq. (3-15) can be written in the form

H(k) =
 H↑(k) 0

0 H↓(k)



=


d3 d1 − id2

d1 + id2 −d3

d3 −d1 − id2

−d1 + id2 −d3

 , (3-21)

so it is possible to solve separately for the edge state for spin up and spin down
channels. If we consider a model defined in the y > 0 half-plane and impose
periodic boundary condition along the x direction, then kx is a well defined
quantity (a good quantum number) from translational invariance along x. If
we perform an expansion of the d vector around the HSP k0 = 0, project
its components to real space, and set the kinetic parameters in Eq. (3-15) as
A = v and B = 1, then an approximation for the di components reads
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d1 ≈ vkx = −iv∂x, d2 ≈ vky = −iv∂y,

d3 ≈M − 1
2(k2

x + k2
y) = M + 1

2(∂2
x + ∂2

y). (3-22)

The derivation is similar to the one used when calculating edge-states
for the non-interacting SSH model in Section 2.1, except now we deal with a 2
dimensional system where we expect a periodic behavior along x and a decay
one along y and we require to consider the spin up and spin down channels
separately. We start by looking for the solution for the spin up channel, this is
a 2× 2 Hamiltonian which satisfies H↑ψ↑ = E↑ψ↑. Or goal is to solve for a real
space edge state ψ↑ that propagates along the edge with a definite momentum
|kx| corresponding to an energy of E↑ = v|kx|, so the eigenvalue equation to
solve reads

{−iv∂xσx − iv∂yσy + [M + 1
2(∂2

x + ∂2
y)]σz}ψ↑ = v|kx|ψ↑ (3-23)

Making use of the ansatz

ψ ∝ ei|kx|xe−λyχη, (3-24)
we find out that this wave function is an eigenstate of σx and the relation
σxχη = ηχη = χη is satisfied in such a way that the term v|kx|ψ↑ is canceled
in both the left and right hand sides of the equation. Then the remaining of
the equation vanishes

{iλvσy + [M − 1
2(|kx|2 − λ2)]σz}ψ↑ = 0. (3-25)

If we multiply this equation by σy, we obtain that the wave function has to
be an eigenstate of σx and so we arrive to the following quadratic equation for
the factor λ

λv + [M − |kx|2/2] + λ2/2 = 0. (3-26)
The two roots of this equation are

λ± = 1
2{−2v ±

√
(2v)2 − 8[M − |kx|2/2]}. (3-27)

Considering the case v > 0, in a vicinity of the topological phase transition
M → 0, it is the inverse of the smaller λ = λ+ who provides the decay length

ξ+ = 1
λ+

= Sgn(−M)| v

M − |kx|2/2
|. (3-28)

The very definition of the decay length and its positivenes demands that
ξ+ > 0, this indicates that only the region M < 0 (topological nontrivial
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phase) possess edge state. In a similar fashion we now look at the spin down
channel which satisfies H↓ψ↓ = E↓ψ↓. By looking at the form of the block-
diagonal Dirac Hamiltonian, we notice that the only difference from the spin up
channel is that now there is a minus sign for the d1 component. We are seeking
for an edge state propagating with the same magnitude of momentum |kx| but
with negative energy E↓ = −v|kx|, i.e, having a negative group velocity which
means it propagates in the opposite direction. Projecting the Hamiltonian to
real space we get

{iv∂xσx − iv∂yσy + [M + 1
2(∂2

x + ∂2
y)]σz}ψ↓ = −v|kx|ψ↓, (3-29)

and from here we find that, if we employ the same ansatz as before and demand
the spinor to obey the relation σxχη = ηχη = χη, then we could cancel out the
term −v|kx|ψ↓ who appears on both sides of the equation. Demanding the rest
of the equation to vanish, in the same way as performed for the spin up case,
we arrive at the very same solution for the decay length ξ+. If we compare the
methodology applied for calculating the spin up and spin down edge states, we
see that both spin directions have the same decay length, and they appear only
at M < 0. They differ only in the sign of their corresponding group velocities,
this means that they propagate in opposite directions.

Figure 3.1: (a) The energy dispersion of BHZ model with PBC in both x and
y direction. (b) The band structure of a strip of BHZ model with PBC in x
and OBC in y, where the helical edge state occurs in topologically nontrivial
phase.

This characteristic of finding edge states in TR-invariant TIs has been
called as the QSHE, this phenomenon has been verified in many experiments
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performed on HgTe quantum wells. Fig. 3.1 shows the energy dispersion for
different kinds of boundary conditions imposed on the BHZ system, for the
PBC in x and OBC in y we can clearly see the Dirac cone containing the
above mentioned edge states who also satisfy the so called spin-momentum
locking. Fig. 3.2 explains what occurs during a topological phase transition in
this system, we notice that in the topologically nontrivial phase appears the
so-called Dirac cone containing the helical edge states, this is a very different
situation from that occurring for the SSH system that was presented in Fig. 2.2.

Figure 3.2: Schematics of band inversion at the critical point of a tuning
parameter in a strip of 2D time-reversal invariant topological insulator. After
the system enters the topologically nontrivial phase, helical edge states that
consist of counterpropagating spins occur, known as the QSHE.

We proceed now to delineate the lattice model for the BHZ/FMM ribbon.
Due to the contact and influence from the TI, we assume the conduction
band of the FMM to be split into s-like and p-like orbitals, both of which
are affected by the magnetization S of the FMM by means of the so-called
exchange coupling. The Hamiltonian operator for the whole system in lattice
space is written as
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H =
∑
i∈TI

{
−itc†is↑ci+ap↑ − itc

†
ip↑ci+as↑ + itc†is↓ci+ap↓ + itc†ip↓ci+as↓ + h.c.

}
+

∑
i∈TI

{
−tc†is↑ci+bp↑ + tc†ip↑ci+bs↑ − tc

†
is↓ci+bp↓ + tc†ip↓ci+bs↓ + h.c.

}
+

∑
i∈TI

(M + 4t′ − µ)
{
c†is↑cis↑ + c†is↓cis↓

}
+
∑
i∈TI

(−M − 4t′ − µ)
{
c†ip↑cip↑ + c†ip↓cip↓

}
+

∑
i∈TI,δ

(−t′)
{
c†is↑ci+δs↑ − c

†
ip↑ci+δp↑ + c†is↓ci+δs↓ − c

†
ip↓ci+δp↓ + h.c.

}
− µF

∑
i∈FM,Iσ

c†iIσciIσ

− tF
∑

i∈FM,δIσ

{
c†iIσci+δIσ + c†i+δIσciIσ

}
+

∑
i∈FM,Iσ

JexS · c†iIασαβciIβ

− tB
∑

i∈BD,Iσ

{
c†iIσci+bIσ + c†i+bIσciIσ

}
. (3-30)

It is important to point out that in Eq. (3-30) the part of the Hamiltonian
representing the BHZ sub-system is the Fourier transform of the BHZ model
whose Dirac Hamiltonian in momentum space has already been introduced in
Eq. (3-15). In this equation ciIσ and c†iIσ stand for the electron annihilation
and creation operators, I = {s, p} for the orbital index, δ = {a, b} for the
lattice constant along the two planar directions, σ = {↑, ↓} labels the spin
index, i = {x, y} labels the planar position, and TI, FM , BD denote the TI
region, the FMM region, and the interface sites, respectively. Additionaly, from
the so-called Schottky-Mott rule [88, 89], it is well known that the difference
in work functions of the two materials in contact causes an adjustment of
their chemical potentials, for this reason the FMM on-site energy µF becomes
a quantity which is dependent on the specific material and whose variation
shifts the FMM subbands. We denote the magnetization vector of the FMM
in spherical coordinates as S = S (sin θ cosϕ, sin θ sinϕ, cos θ).

From the explicit form of the full Hamiltonian operator in second
quantization Eq. (3-30), we can obtain its Eigenenergies and Eigenvectors by
diagonalizing its Hamiltonian matrix, but to have a more clear idea on how
to construct this matrix for a lattice model, we can draw a grid of the lattice
where we enumerate each of the sites as shown in Fig. 3.4. At each of these
sites there are 4 spin-orbital states composed of the spinful s and p orbitals
(s ↑, p ↑, s ↓, p ↓) so the number of Eigenenegies and Eigenvectors is 4 times the
number of sites in the whole BHZ/FMM lattice and the Hamiltonian matrix
takes the form shown in Fig. 3.5.

In order to establish a connection with realistic HgTe quantum well
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Figure 3.3: (a) Graphical representation of the lattice model for the BHZ/FMM
system, where we imposed PBC along x̂ and OBC along ŷ. (b) Low energy
band structures corresponding to spin up (blue) and down (green) polarizations
for the case when the BHZ and the FMM are uncoupled tB = 0. The
magnetization is set to point along S ‖ ẑ, the width of the BHZ is fixed
at Ny,T I = 10 sites and that of the FMM at Ny,FM = 6 sites along the y
direction. (c) The pristine and (d) the submerged kinds of band structures
for the coupled BHZ/FMM system at interface hopping set to tB = 0.8. The
undeformed Dirac cone contains the edge states located at the vacuum/BHZ
interface y = 1, whereas the deformed one contains states at the BHZ/FMM
interface (dashed line). The panels at the bottom exhibit the wave function
profiles |ψ|2 (which have the same value as 〈σz〉) corresponding to the three
selected states labelled as dots of the same colors on the band structure. This
Figure has been taken from Ref. [74].

parameters, we choose the hopping or kinetic parameters to have the values

A = 2t ≈ −3.4eV , B = −t′ ≈ −17eV = 10t . (3-31)

In this work we set the energy unit of the system to have the value of the
hopping term t = A/2 = −1.7eV ≡ −1 (so we consider 1.7eV as the energy
unit). Due to the finite size of this lattice model, if we consider the value
t′ = −10t = 10, then it does not appear clearly any band gap in the energy
spectrum, this is a consequence of the higher order term comming from the d3

component. When simulating this lattice model with 4t′−2t′ cos kxa−2t′ cos kya
and a large hopping amplitude t′, then this term washes out the bulk gap. As
already mentioned above, this is an obvious artifact of considering a finite size
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Figure 3.4: This grid permits us to visualize the lattice where we can enumerate
and label each of the lattice sites. In red are the sites in the BHZ (NTI = Nxy),
in green the sites in the FMM (NFMM = Nx×N ′y ≡ Nyp) and the purple lines
show the tight-binding interaction between the BHZ and FMM which results in
the term HBD. As a result the full Hamiltonian is Hfull = HTI+HFMM +HBD,
this grid helps us to construct the matrix whose size is 4 times the number of
lattice sites.

lattice model to simulate the continuous HgTe quantum well. To avoid these
numerical issues we reduce the t′ = −10t = 10 to t′ ≈ −t = 1 in our lattice
model so as to preserve the bulk gap and show the edge state.

The other parameter we need to approximate properly is the so-called
mass term M , this is relevant because the factor A/M = 2t/M provides the
decay length of the edge state as can be seen from the analytical expression
in Eq. (3-28). Since we simulate the system on a lattice size of the order
of 10 × 10 sites, then this decay length should not exceed some few lattice
sites, otherwise we will have an undesired overlapping between the edge states
which belong to the two opposite edges. From this argument we decide the
value ofM = −1 for the mass term, which certainly differs from realistic HgTe
quantum wells. To perform the calculations for the local persistent currents
and the magnetoelectric susceptibility (see details below) we consider room
temperature conditions so we set kBT = 0.03. To finalize, we set the concrete
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Figure 3.5: The full Hamiltonian matrix will have this form, it is block-diagonal
containingHTI andHFM and the off-diagonal termHBD having size 4Nx×4Nx.

value of tB = 0.8 for the interface hopping, which is assumed to be only
between the same orbital and spin species. To summarize, we have set (in
units of |t| = 1.7eV) the following parameters

−t = t′ = −M = tF = 1 , µ = 0 , µF = 0.5 (pristine)

µF = −0.5 (submerged) , tB = 0.8 , Jex = 0.1 ,

kBT = 0.03 , (3-32)

we should also emphasize that all statements made in the present investigation
are fairly robust against modifications of these parameters.

3.3.2
Band structure and percolation of the edge state

We can obtain the band structure E(n, kx) of the system from Eq. (3-30)
by performing a partial Fourier transform

ciIσ = cxyIσ =
∑
kx

eikxxckxyIσ, (3-33)

where ciIη stands for the electron annihilation operator of orbital I = {s, p}
and spin σ = {↑, ↓} at site i = {x, y}. To make a proper comparison, in Fig. 3.3
(b) we present this band structure when the BHZ and the FMM are uncoupled
tB = 0, there both the edge state Dirac cone and the quadratic FMM bands are
clearly noticeable. We remark that, since the FMM is sandwiched between the
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Figure 3.6: Band structures for the BHZ/FMM system with magnetization
oriented along S ‖ x̂, for (a) the pristine µF = 0.5 and (b) the submerged
µF = −0.5 situations. The green and blue colors stand for the spin up and down
polarizations, and the black color represents unpolarized states. In the same
colors as the dots located in the dispersion are shown below the corresponding
edge state wave functions and spin polarizations (spin texture). This Figure
has been taken from Ref. [74].

TI and the vacuum, the FMM wave functions turn out to be confined quantum
well states. In Figure 3.3 (c) we can see the so-called pristine type of band
structure for the coupled BHZ/FMM strip simulated by selecting µF = 0.5 and
an interface hopping of tB = 0.8, together with the corresponding percolations
of the edge state, the magnetization has been set to point along the spin
polarization of the edge state S ‖ ẑ. The Dirac cone remains gapless and at
larger momenta starts merging with the FMM subbands which have the same
spin polarization. If we start increasing the value of momentum, the edge
state wave function |ψ|2 = ∑

Iσ |ψIσ|2 evolves gradually from a shape highly
localized at the edge to a profile that merges with the FMM quantum well
state corresponding to the first harmonic. Since we can still identify the edge
state Dirac cone, and the phenomena of wave function merging between the
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edge state and the FMM quantum well state, we identify this state as the
percolated QSH state.

The other kind of band structure is obtained by considering µF = −0.5
and we have labelled it as the submerged type, here the Dirac point overlaps
with the FMM subbands, as we can visualize in Fig. 3.3 (d). For this situation
the Dirac cone at the BHZ/FMM interface is a lot more distorted and becomes
exceedingly intertwined with the FMM subbands. If we track the states which
originate from the Dirac cone, we find out that this Dirac cone separates
into different branches and each of them therefore hybridizes with the FMM
quantum well state corresponding to a different harmonic, such as the second
harmonic exhibited by the |ψ|2 in Fig. 3.3 (d). For both kinds of band structures
the percolation is increased as we increase the value of the interface hopping tB
(not shown), as we could expect. Despite the fact that the highly intertwined
Dirac cone and FMM subbands make it rather difficult to accurately locate
the edge states at the BHZ/FMM interface, we should remind that the edge
states at the free edge y = 1 remain unaltered (undistorted Dirac cone), then
we still consider the states for this submerged situation as QSH states. A
last observation is that whether the Dirac point is submerged or not inside
the FMM subbands is something that depends also on the number of FMM
subbands, this number is given by the width Ny,FM of the FMM. For both the
pristine and submerged situations, the Dirac cone situated at the vacuum/BHZ
interface at y = 1 is undistorted by the contact to the FMM at the y = Ny,T I

junction, this means that those edge states are of the same kind as those arising
from the BHZ alone.

For the other two magnetization directions S ‖ x̂ and S ‖ ŷ, which are
orthogonal to the spin polarization of the edge state, the respective results
from numerical simulations are presented in Fig. 3.6. These results show that
the amalgamation between edge states and quantum well states has the effect
of inducing a small spin polarization pointing in the same direction of S for
the edge states in the BHZ region close to the interface (there arises a small
〈σx〉 near y / 10 as can be seen in Fig. 3.6). From this we find out that the
spin polarization in the BHZ region is not anymore perfectly along ẑ, therefore
the presence of the magnetization alters the spin-momentum locking. In the
same fashion, the percolated edge state in the FMM region is polarized in
the plane spanned by S and ẑ, instead of entirely along S, this indicates that
the spin polarization gets distorted in this region. For example, for either of
these 2 kinds of band structure, the spin polarization for the S ‖ x̂ case is
entirely contained within the xz-plane. As we will verify in Sec. 3.3.4, such a
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particular spin texture is the cause of obtaining an entirely field-like type of
current-induced spin torque.

3.3.3
Laminar charge and spin currents

When the magnetization has a component Sz pointing along the spin
polarization of the edge state, then the dispersion for both the pristine and
submerged cases becomes asymmetric between −kx and +kx as can be seen
in Fig. 3.3 (b). The explanation for this asymmetry is that such a component
makes one branch of the Dirac cone to become more energetically favorable
with respect to the other, this is a situation quite similar to that taking place in
2D magnetized Rashba systems [90]. Despite that this asymmetry immediately
motivates us to speculate that there may exist a persistent charge current [91],
we ought to keep in mind the of fact that an asymmetric dispersion does not
provide a nonzero net current. This can be verified quite easily if we notice
that the expectation value of the velocity operator vx for the eigenstate |un,kx〉
is just the group velocity [92]

〈un,kx|vx|un,kx〉 = 〈un,kx|
1
~
∂H

∂kx
|un,kx〉 = ∂E(n, kx)

~∂kx
.

(3-34)

The mean value of the current operator integrated over momentum around the
BZ vanishes identically

〈vx〉 =
∑
n

∫ π

−π

dkx
2π

∂E(n, kx)
~∂kx

f(E(n, kx)) = 0 , (3-35)

where f(E(n, kx)) = 1/
(
eE(n,kx)/kBT + 1

)
is the Fermi function, and so we find

out that there is no net current (this is known as the so-called Feynman’s
theorem).

In spite of the absence of a net current, the local current turns out to be
nonzero. We can prove this if we evaluate the charge and spin currents directly
from the lattice model by means of the next methodology. First of all, the BHZ
Hamiltonian does not commute neither with σx nor with σy, from this fact we
focus only on the longitudinal charge current and the spin current polarized
along σz, and make use of the charge/spin polarization operator

P a =
∑
iIηλ

xic
†
iIησ

a
ηλciIλ ≡

∑
Iηλ

P a
Iηλ , (3-36)

where xi is the longitudinal coordinate of site i, and σa = {σ0, σz} = {I, σz}.
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Figure 3.7: Laminar local charge current 〈J0(y)〉 and local spin current
〈Jz(y)〉 showing variation along the y direction (but no variation along x
from translational invariance), for different orientations of the magnetization
S ‖ {x̂, ŷ, ẑ} and for both the pristine and the submerged situations. The
charge current appears only when the magnetization has a component pointing
along ẑ, and if the BHZ and FMM are decoupled tB = 0 then both the spin
and charge currents dissapear. This Figure has been taken from Ref. [74].

From here the current operators can be obtained by using the Heisenberg
equation of motion Ja = Ṗ a = i

~ [H,P a], as performed explicitly in Appendix
A. The expectation value of the current operator in the ground state gives
then the local current

〈Ja〉 =
∑
n

〈n|Ja|n〉f(En), (3-37)

where |n〉 is the eigenstate corresponding to the eigenenergy En of the
BHZ/FMM lattice model, and we can separate 〈Ja〉 into contributions from
each bond connecting sites i and i+ a in order to calculate the local current.

The longitudinal charge current 〈J0(y)〉, which is a function that depends
only on the transverse coordinate y, is presented in Fig. 3.7 and from there we
notice that this result features a laminar current whose direction of flow varies
with y. As verified previously in Eq. (3-35), there is no net current since this
quantity vanishes up to numerical precision. The local charge current is nonzero
only when the magnetization has an out-of-plane component Sz, this is a
consequence of the asymmetric band structure for this situation. Furthermore,
both the charge and spin currents only appear when the BHZ and FMM are
coupled tB 6= 0, this means that this effect is entirely proximity induced. A
more detailed analysis reveals that both the charge and spin currents arise from
contributions comming from all the subbands and are not exclusevily due to
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the edge states. This is the reason why these currents persist easily up to room
temperature, representing an advantage over those induced at the topological
superconductor/FMM interfaces [93, 94]. For the specific set of parameters
we have chosen, the magnitude of the local charge current is of the order of
〈J0(y)〉 ∼ 10−3et/~ ∼ 10−7A, and its direction (the flow direction) changes
sign alternating between −x̂ and +x̂ at the length scale of the lattice constant
∼nm. Making use of the Ampere’s circuital law

B = µ0〈J0(y)〉/2πr (3-38)
reveals that at a distance of r ∼nm above the surface, the laminar current
generates a magnetic field ∼ 1Oe pointing along ŷ who alternates at the
length scale of nm. Thus despite the fact that the local laminar current is
not expected to manifest in the transport properties, the alternating magnetic
field it generates may be in principle measurable.

Figure 3.8: (a) The band structure for the BHZ ribbon alone having width
Ny = 10, with its Dirac point localized at chemical potential (Fermi level
of zero energy). The red and blue colors stand for the spin up and down
components of the wave function near the y = 1 edge m̃kx,ny as defined in
Eq. (3-39). (b) The local persistent spin current as a function of the transverse
coordinate 〈Jz(y)〉cut which is obtained from summation of only those states
within an energy window |E(n, kx)| < Ecut. Only the contribution from the
Dirac cone is obtained by considering the Ecut = 1 case, whereas the Ecut = 8
situation considers a summation over the whole band structure. The situation
for Ecut = 4 is illustrated by the two dashed lines in (a), for this case only states
within that energy window are summed and weighted by the Fermi function.
This Figure has been taken from Ref. [74].

We have presented in Sec. 3.3.1 that the edge state of the BHZ model
is made up of counterpropagating spins, from here it is natural to expect an
equilibrium edge spin current to arise in the system. Notwithstanding this,
we will show that this is not true, i.e., spin-polarized edge state does not
necessarily imply the generation of an equilibrium edge spin current. The
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reason for this is that the spin current caused by the edge state is canceled
out due to the negative contribution comming from the BHZ valence bands
which are also spin polarized. To make clear this phenomena, in Fig. 3.8 (a)
we present the band structure of the BHZ ribbon alone, there the red and
blue colors indicate the spin polarization of the eigenstates |kx, ny〉 close to the
y = 1 edge

m̃z
kx,ny

=
∑

1≤y≤Ny/2
σzkx,ny

. (3-39)

The Dirac cone contains spin up states who propagate with positive group
velocity and spin down states with negative group velocity at the y = 1
edge, as we would expect. Additionally, we need to consider the fact that the
valence bands are also spin polarized, as well as the conduction bands although
these conduction bands do not contribute due to the Fermi distribution.
Furthermore, at least some regions of the valence bands have spin up but
negative group velocity (red color with negative slope in Fig. 3.8 (a)), this
means that those states make up a spin current against that generated by the
edge states. The very same situation also takes place at the other edge y = 10.

To analyze quantitatively the contribution to the edge spin current
arising from the Dirac cone and from the valence bands, we calculate the
spin current in the lattice model considering only the contribution comming
from the states within an energy window Ecut around the chemical potential

〈Jz〉cut =
∑
n

〈n|Jz|n〉f(En)θ(Ecut − |En|) , (3-40)

here θ(Ecut−|En|) stands for the step function. As is presented in Fig. 3.8 (b),
the Ecut = 1 situation that considers only the Dirac cone contribution provides
a finite spin current, but the case Ecut = 8 which sums over the whole band
structure generates a local spin current equal to zero. So we have found out
that the contribution from the bulk bands cancels out exactly that comming
from the edge state Dirac cone yielding a zero local spin current. However,
we could generate a finite spin current by shifting away the Dirac point from
the chemical potential, or if in a given experiment we are able to measure
the equilibrium spin current arising only from states within an energy window
around the chemical potential [95].

On the flip side, when we put in contact the BHZ together with the
FMM, a persistent local spin current is generated for both the pristine and
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the submerged situations, and is a laminar flows which infiltrates or percolates
into the FMM, as can be seen in Fig. 3.7. That laminar spin current appears
regardless of the direction of the magnetization and the position of the Dirac
point with respect to the chemical potential. The magnitude and spatial
variation of this spin current differs only by approximately 20% for other
magnetization directions, this can be notice if we compare the 〈Jz〉 as a
function of y at S ‖ x̂, S ‖ ŷ, and S ‖ ẑ as can be visualized in Fig. 3.7.

3.3.4
Current-induced spin torque

The spin polarization induced by a longitudinal electric field E(i, t)x̂ has
the following components for the three spatial directions b = {x, y, z}

σb(i, t) = χb(i, ω)E(i, t) , (3-41)

and within our lattice model approach we can solve for this response with
the aid of linear response theory, from this formalism the real part of the DC
magnetoelectric susceptibility can be calculated as [96,97]

lim
ω→0

Reχb(i, ω)

= −
∑
j

∑
m,n

〈n|σb(i)|m〉〈m|J0(j)|n〉F̃ (En, Em) , (3-42)

as is explained in detail in Appendix B. The distribution function F̃ (En, Em)
has a very high peak in a vicinity of the Fermi level En ≈ Em ≈ 0 and decays
quite rapidly as we move away as can be seen in Fig. 3.9, this means that
the states close to the Fermi surface contribute the most to the response as
we would expect, these states include both the Dirac cone-like bands and the
FMM-like subbands in accordance to Fig. 3.3 (c) and (d).

We concentrate on the DC limit of the magnetoelectric susceptibility

lim
ω→0

Reχb(i, ω) ≡ χb(y), (3-43)
as a function which depends only on the transverse coordinate y due to the
translational invariance along x. We also bring into our discussion some news
about recent investigations on magnetized BHZ system who suggest that a
damping-like spin torque could be induced by the presence of impurities [98].
This phenomena is similar to the spin mixing enhanced by disorder-induced
spin-dependent scattering which was firstly uncovered in metallic spin valves
and domain walls [99,100]. Stimulated by these recent works, and also for the
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Figure 3.9: (a)Surface of ditribution F̃ (En, Em) where the indices n and m are
the indices of the array of Eigenenergies, we clearly see that at n = 50, which
corresponds to the Fermi Level E(n = 50) = EF = µ = 0 we have F̃ = 0.
However, at a vicinity of the Fermi Level the distribution F̃ shows a peak (at
n ≈ 70), this is more noticeable if we invert F̃ as in (b) where the distribution
−F̃ is plot along one direction, the fact that this distribution decays very
rapidly from the peak justifies our approach of just considering approximately
100 states in the vicinity of the Fermi Level, those who contribute more to the
response. This is a general feature of the distribution F̃ which is independent
of the input parameters.

necessity of wiping out some numerical ambiguities as is detailed in Appendix
B, we introduce some random impurities into the BHZ/FMM junction

Himp = Uimp
∑

i∈imp,Iσ
c†iIσciIσ, (3-44)

where i ∈ imp indicate the (random) spots at which impurities are located.
We set a quite large impurity potential Uimp = 4 and density nimp = 10% with
the purpose of drawing some relevance into TMD-based 2D TIs, where a quite
important amount of defects, such as missing sulfur atoms, are known to be
a realistic matter [101–104]. The magnetoelectric susceptibility χb is therefore
solved from Eq. (3-42) with the usage of the eigenstates |n〉 of the whole system
including impurities.

The solutions for the magnetization directions S ‖ ẑ and S ‖ x̂ are shown
in Fig. 3.10, there some values for the magnetoelectric susceptibility averaged
along the longitudinal direction

χz(y) ≡
Nx∑
x=1

χz(x, y)/Nx (3-45)

are presented for a specific impurity configuration. Near the free edge y = 1 the
nonzero value of χz(y) is due to the Edelstein effect of the BHZ model alone,
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Figure 3.10: Field-like component of the magnetoelectric susceptibility χz(y)
in the BHZ/FMM junction which, after the average over x, depends on the
transverse coordinate y only. This response function is plotted for different
values of interface hopping tB, for the two different types of band structures
and magnetization directions: (a) Pristine S ‖ ẑ, (b) submerged S ‖ ẑ, (c)
pristine S ‖ x̂, and (d) submerged S ‖ x̂. The damping-like components are
zero χx = χy = 0. The BHZ region is located at y ≤ 10 whereas the FMM
region at y > 10. The response (negative) at the free edge y = 1 is due to the
Edelstein effect for the single BHZ sub-system. This Figure has been taken
from Ref. [74].

i.e., is a current induced spin polarization produced by the edge state, in an
exact analogy to what happens in 3D TIs [105–109]. Considering a mean free or
relaxation time of the order of τ ∼ 10−14s and a usual experimental electric field
of magnitude E ∼ 104kgm/Cs2, then we get that the induced spin polarization
at the free edge turns out to be of the order of 10−7 (in units of µB). On the
other hand, at the y = 10 interface where the BHZ model is in contact with the
FMM, the modulus of χz(y) is quite large at small interface hopping tB = 0.2
but diminishes at larger tB. The spatial profile for the response function χz(y)
penetrates into the FMM for both the pristine and the submerged cases, and
varies with tB in a quite complex form. Band structures presented in Fig. 3.3
(c) and (d) explain very clearly the enhancement of χz arising from interface
hopping: In comparison to an isolated BHZ system, the BHZ/FMM junction
contains a lot more states at the chemical potential comming from the FMM
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sub-bands (|n〉 and |m〉 in Eq. (3-42)) who also participate in the particle-hole
excitation process for the magnetoelectric response. Furthermore, the FMM
wave functions and the edge state wave functions have an important overlap
which comes from the percolation of the edge state, this yields nonzero matrix
elements 〈n|Ô|m〉 in Eq. (3-42) which contribute to the correlator. Since an
isolated FMM does not exhibit Edelstein effect, the nonzero χz(y) inside the
FMM region y ∈ FM is entirely proximity induced and arises from the contact
to the BHZ.

To understand the role of impurities in improving our calculation of the
response function, an issue which is explained in Appendix B, we should keep
in mind how impurities permit to lift degeneracies in the system and in that
way improve the overlap of the 3 distributions that make up the function (also
a distribution) F̃ (En, Em), these are η

(ω−En)2+η2 ,
(

1
π
∂f(ω)
∂ω

)
and η

(ω−Em)2+η2 :

F̃ (En, Em) ≈
∫
dω

η

(ω − En)2 + η2

(
1
π

∂f(ω)
∂ω

)
η

(ω − Em)2 + η2 (3-46)

The fact is that the BHZ model alone has a lot of degeneracies coming
from spin (Kramers Theorem), left-right edge, and spatial symmetries. In the
BHZ/FMM the spectrum is more full because of the metallic bands of FMM
(TR-invariance is broken), but still there is a lot of degeneracies. Only when
we add impurities the spectrum becomes smooth and hence the numerics for
susceptibility becomes more reliable. This feature is clearly seen in Fig. 3.11
where we plot the Energy-spectrum of the system for the 3 above mentioned
situations.

Figure 3.11: The above 3 figures show how the eigenenergies En have a lot
of degeneracies, so the numerics is not be very accurate. Unless we put in
impurities, in this case the spectrum becomes more smooth and numerical
accuracy is improved.

The effect of removing degeneracies is shown schematically in Fig. 3.12,
where the discrete eigenstates are broadened by a Lorentzian (blue triangles).
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The susceptibility is basically the overlap of these Lorentzians times derivative
of the Fermi function (green) as Eq. (3-46) tells us, times the current-
spin correlator 〈n|σb(i)|m〉〈m|J0(j)|n〉 as Eq. (3-42) shows explicitly. So it
is important to remove the degeneracies to have more overlap between states,
especially near the chemical potential (red line), to increase the accuracy. The
overlap of these Lorentzians basically gives the particle-hole excitation in the
many-body language.

Figure 3.12: This schematic figure explains why we try to smoothen the
Chemical Spectrum using impurities. The discrete eigenstates are broadened
by a Lorentzian (blue triangles) as indicated by the arrows. The susceptibility is
basically the overlap of these Lorentzians times derivative of the Fermi function
(green) times the current-spin correlator. It is clear why states closer to the
Fermi Level or chemical potential (red line) contribute more to the response,
just because here the correlation is larger.

Inside the FMM region the average magnetoelectric susceptibility is
calculated as

χbF ≡
∑

y∈FM
χb(y)/Ny,FM , (3-47)

and is this average inside the FMM region what produces the spin torque on
the magnetization S. For an isolated BHZ model we know that the current-
induced spin polarization is polarized along ẑ, from this result it is customary
to define the field-like torque in the FMM to point along Ŝ × ẑ and the
damping-like torque to point along Ŝ× (Ŝ× ẑ), because this is what occurs in
the usual metallic thin film spin-transfer torque (STT) devices. We encounter
that if the magnetization lies in the xy-plane or entirely points along ẑ, then
only χzF is nonzero out of the three components χbF = {χxF , χ

y
F , χ

z
F}. This

result implies that the spin torque is entirely field-like if the magnetization
belongs to the xy-plane, and of course there is no any torque when the
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magnetization points out-of-plane S ‖ ẑ. If we consider other directions for
the magnetization, then a small damping-like component develops (note that
our treatment neglects other more complex phenomena such as spin-orbit
torque [18, 19] and spin relaxation). This situation is a lot different from the
STT in usual metallic heterostructures [16, 17] or that induced by means of
the spin Hall effect [110, 111], since there the plane wave states produce both
field-like and damping-like torque at any orientation set for the magnetization.

Figure 3.13: Magnetoelectric susceptibility χb for a magnetization oriented
along S ‖ x̂ + ẑ averaged over longitudinal position x for a specific random
impurity configuration, for both the (a) pristine and (b) submerged situations.
The spatial surfaces for both the field-like χz and damping-like χy components
are presented in lower panels, there the black dots represent the fixed positions
for the impurities. This Figure has been taken from Ref. [74].

In Figure 3.13 we can see the simulation results for the magnetization
oriented along S ‖ x̂ + ẑ, this result exhibits both the field-like χz and the
damping-like χy components. It turns out that the field-like component is
dominant and usualy one order of magnitude larger than the damping-like
component. If we look more closely, we could notice that near the two edges of
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the BHZ region only, both χz and χy are locally enhanced at the positions of
the impurities, this is clear from the local {χy, χz}map shown in Fig. 3.13. This
phenomena does not take place inside the FMM region, there the magnitude
of both components does not exhibit any correlation with the locations of
the impurities. This kind of correlation holds for both the pristine and the
submerged kinds of band structures. If we apply a typical external electric
charge current jc ∼ 1011A/m2, the spin polarization induced as Eq. (3-41)
tells us produces a spin torque, and the dynamics for the magnetization is
subjected to the Landau-Lifshitz equation

dS
dt

= Jex
~

[
1

Ny,FM

∑
i∈FM

σ(i)
]
× S , (3-48)

this is just the the numerical values of χbF multiplied by GHz, as detailed in
Appendix B. Despite the fact that our BHZ/FMM side junction differs from
the actual experimental setup where the TMD is frequently deposited on the
top of the FMM thin film, the absolute modulus we have found for the spin
torque is fairly consistent with that obtained from actual experiments [78–83].

3.4
Outlook on the p-orbitals for the BHZ model and Exchange term in the
FMM

In the model studied in this Chapter, we have considered that for both
spinful s and p orbitals we have spin σ =↑, ↓ corresponding to spin 1/2 and
−1/2 respectively, so transition and mixing terms between these states are
possible. However, this is actually incorrect because p orbitals have orbital
angular momentum l = 1 which must be added to the spin angular mometum
s = 1/2 so we should consider 4 states for these p orbitals which correspond
to |3/2, 3/2〉, |3/2, 1/2〉, |3/2,−1/2〉, |3/2,−3/2〉, in this way the model has a
total of 6 bands instead of just 4 as we considered. Notwithstanding that, only
4 bands will actually be important at low energies, and for p orbitals these
correspond to states |3/2, 3/2〉 and |3/2,−3/2〉, so for p orbitals spin σ =↑, ↓
correspond to spin 3/2 and −3/2 respectively. Here enters a selection rule
that forbids any transition or mixing term between states with total angular
momentum projection of 3/2 and −3/2 or viceversa, this implies that we need
to modify our 4 × 4 Pauli matrices so there cannot be mixing terms between
these 2 states. This will modify the Pauli exchange term in the ferromagnet,
because it will be equivalent to consider there only the term σzSz so in order
to correct our model we should wipe out terms σxSx + σySy in that exchange
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term which is the same as using the following spin-orbit 4× 4 matrices

σx =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , σy =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , σz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

This modification has been considered by MSc student Julian Zanon together
with his advisor Prof Carlos Egues at IFSC-USP to study a more realistic BHZ
model and calculate its band structure, edge state and spin texture.
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4
Conclusions

If we would like to summarize our first project in one phrase, we could
say that we have developed a tool which, taking into account Green’s function
formalism together with T-matrix approximation, allows us to corroborate the
bulk-edge correspondence and the quantum criticality in weakly interacting
1D TIs. Considering specifically the SSH model and introducing there nearest-
neighbor interactions, we found out that a spectral function indicating gap-
closing is still a definite signature for a topological phase transition even under
the influence of interactions, so we verified that interactions can also drive
topological phase transitions. With the aid of T -matrix formalism, we can
identify the edge state from the LDOS in a vicinity of the impurity (edge)
site, this edge state is found to be localized at the same sublattice as the
noninteracting situation. The Hartree term of the self-energy is responsible
for shifting the whole energy spectrum if the interaction destroys particle-hole
symmetry, and since the edge state is always localized in the middle of the gap,
then we show that interactions are able to shift away this edge state from zero
energy (so interactions induced an effective chemical potential). If we extract
the critical exponent from the decay length of the edge state then we find out
that the system remains in the same universality class despite the presence of
interactions, this is valid at least within our treatment that limits calculations
to just one-loop approximation and the T -matrix approximation which avoids
considering interference diagrams.

We hope that the formalism we have followed could be extended to
investigate similar characteristics for TIs and TSCs in other dimensions
and symmetry classes, and in addition to consider many other different
types of interactions. In higher dimensions we could simulate the edge state
by a line or a surface of impurities within the T -matrix approximation
approach. We focused just on a specific type of interaction whose self-energy
is frequency independent, so it will be interesting to study other kinds of
self-energies which are frequency-dependent, such as those that arise from
electron-phonon interactions, since for this situation the quasiparticle lifetime
is altered and so the spectral function exhibits a broadening. For those more
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general situations, an interesting research project could be the investigation
of the way in which the broadened spectral functions impact the feature of
gap-closing. Furthermore, by selecting the proper minimal Dirac models we
could simulate systems which belong to different symmetry classes. Another
interesting proposal is the investigation of the robustness of the topological and
non-topological edges states which appear in the quantum dots of Ref. [54]
if they become subjected to the influence of the electron-electron scattering
considered here. Certainly a lot of research is still required to establish if the
results we obtained here would still be valid in such systems with confined
geometry as is the case for quantum dots.

In a similar fashion a phrase to summarize our second project would be to
state that we investigated the percolation of QSHE into an adjacent FMM with
the aid of a lattice model and unveiled some important physical consequences
from this percolation like the generation of local charge and spin currents as
well as a current induced spin-torque. Due to the difference in work functions
of the two materials (BHZ and FMM) in contact, the band structure of the
whole system (BHZ/FMM junction) exhibits a pristine/submerged dichotomy,
this has a strong influence in the percolation or infiltration of the edge state
from the BHZ into the FMM. The spin momentum-locking in a vicinity of
the TI/FMM interface as well as the spin polarization inside the FMM region
are altered due to the amalgamation or merging between the edge states of
the BHZ and the quantum well states of the FMM. From the asymmetry
of the band structure obtained when the magnetization of the FMM has
a component along the quantization axis (ẑ axis), which is the direction of
the spin polarization for the BHZ alone, we uncover a laminar flow of local
persistent charge current. We also unveil a laminar flow of local persistent
spin current at any direction of the magnetization but, as well as the for the
charge current, it is proximity induced which means that it only appears if the
materials are joined by a finite value of interface hopping tB.

It turns out that at the positions of the impurites (or in a vicinity) there
is a dramatical enhancement of the current-induced spin polarization as is
confirmed by visualizing the spatial surface of the respective response function.
However, we see that this phenomena only occurs at the edges of the BHZ and
there is not any correlation with the impurity positions inside the FMM. The
current induced spin torque results entirely field-like if the magnetization lies
in the xy-plane or is oriented along the ẑ axis (in this last case there is no net
torque). However, at other orientations for the magnetization there appears a
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damping-like component, but this is usually one order of magnitude smaller
than the field-like component. Since these results enable us to understand
better the role of edge states in 2D TI-based spintronic systems, it would be
relevant to apply the same kind of lattice model approach to more realistic
cases similar to the experimental setups, for instance, when the TI is put on
the top of the FMM (3D case).
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A
The Current Operators

Here we delineate the way to construct the charge and spin current
operators for this lattice model. Considering the translational invariance of the
system along x̂, then we only need to calculate the currents which flow along x̂.
We obtain the corresponding current operator from the respective polarization
operator by using the Heisenberg equation of motion Ja = Ṗ a = i

~ [H,P a],
where the tedious commutator [H,P a] may be simplified as explained next. We
focus only on hopping terms present in Eq. (3-30) since only them contribute
to the current operator, these terms take the general form

Hδ
LαMβ =

∑
j

T δLαMβc
†
jLαcj+δMβ + T δ∗LαMβc

†
j+δMβcjLα ,

(A-1)

this factor outlines the hopping of electrons between site/orbital/spin jLα and
j + δMβ along the planar orientations δ = {a, b}, where T δLαMβ stands for the
hopping amplitude. If we take into account the fact that the hopping part of
the full Hamiltonian is made up from the summation Ht = ∑

δ

∑
LαMβH

δ
LαMβ,

we find out that the contribution to the the charge current (a = 0) and the
spin current (a = z) comming from a specific orbital/spin species Iηλ is given
by, considering the definition set in Eq. (3-36),

JaIηλ = i

~
∑
δ

∑
LαMβ

[
Hδ
LαMβ, P

a
Iηλ

]

= i

~
∑
i

∑
Mβ

[
−xiT aIλMβ

]
c†iIησ

a
ηλci+aMβ

+
∑
Lα

[
(xi + a)T aLαIη

]
c†iLασ

a
ηλci+aIλ

+
∑
Lα

[(−xi − a)T a∗LαIλ] c
†
i+aIησ

a
ηλciLα

+
∑
Mβ

[
xiT

a∗
IηMβ

]
c†i+aMβσ

a
ηλciIλ

 . (A-2)

We then introduce there all the nonvanishing hopping amplitudes T δLαMβ and
T δ∗LαMβ as delineated in Eq. (3-30), and perform a summation over all of the
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Iηλ species. The final form for the charge current operator can then be written
as

J0 = 1
~
∑
i∈TI

∑
σ

{
ησt c

†
isσci+apσ + ησt c

†
i+apσcisσ

+ησt c†ipσci+asσ + ησt c
†
i+asσcipσ

}
+ 1

~
∑
i∈TI

∑
σ

{
−it′ c†isσci+asσ + it′ c†i+asσcisσ

+it′ c†ipσci+apσ − it′ c
†
i+apσcipσ

}
+ 1

~
∑
i∈FM

∑
σ

{
−itF c†isσci+asσ + itF c

†
i+asσcisσ

−itF c†ipσci+apσ + itF c
†
i+apσcipσ

}
, (A-3)

where here η↑ = 1, η↓ = −1, and i ∈ TI, i ∈ FM and i ∈ BD tell us that the
positions i and i + a belong to the BHZ model region, the FMM region, and
the interface bonds. By following a very similar approach, we find out that the
operator for the spin current polarized along z can be written as

Jz = 1
~
∑
i∈TI

∑
σ

{
t c†isσci+apσ + t c†i+apσcisσ

+t c†ipσci+asσ + t c†i+asσcipσ
}

+ 1
~
∑
i∈TI

∑
σ

{
−it′ησ c†isσci+asσ + it′ησ c

†
i+asσcisσ

+it′ησ c†ipσci+apσ − it′ησ c
†
i+apσcipσ

}
+ 1

~
∑
i∈FM

∑
σ

{
−itFησ c†isσci+asσ + itFησ c

†
i+asσcisσ

−itFησ c†ipσci+apσ + itFησ c
†
i+apσcipσ

}
, (A-4)

which is actually of the very same form as J0, but for this spin case the spin up
and down channels have an additional minus sign difference, which is expected
since we know that spins having opposite orientations have a sign difference
in their respective group velocities (a feaure which is very clear by looking at
the Dirac cone).
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B
Linear Response Theory for the Magnetoelectric Susceptibil-
ity

In order to compute the spin accumulation induced by a charge current,
we make use of linear response theory which provides a value for the local spin
accumulation σb(i, t), this is an effect which arises from a perturbation H ′(t′)
present in the Hamiltonian

σb(i, t) = −i
∫ t

−∞
dt′〈

[
σb(i, t), H ′(t′)

]
〉 , (B-1)

where σb(i, t) = ∑
Iβγ c

†
iIβ(t)σbβγciIγ(t) stands for the component b = {x, y, z} of

the spin operator at site i, and the fermionic operators ciIγ(t) are represented
in the Heisenberg picture. The origin of the perturbation is in the longitudinal
component of the vector field A(j, t′) which provides the electric field and so
the electric current, in this way the perturbation Hamiltonian is written as

H ′(t′) = −
∑
j

J0(j, t′)A(j, t′) , (B-2)

where the electric field arises from the time-variation of the vector field
A(i, t) = A(i)e−iωt

E = −∂βV −
∂A

∂t
= −∂A

∂t
= iωA . (B-3)

Consequently, we could write the commutator in Eq. (B-1) as

[
σb(i, t), H ′(t′)

]
= i

ω

∑
j

eiω(t−t′)E(j, t)
[
σb(i, t), J0(j, t′)

]
,

(B-4)

because the electric field has a fixed unique value of wave length and frequency
E(i, t) = E0eiq·ri−iωt. From these considerations, the local spin accumulation
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from Eq. (B-1) is simplified as

σb(r, t) =
∑
j

∫ ∞
−∞

dt′eiω(t−t′) 1
ω
θ(t− t′)

×〈
[
σb(i, t), J0(j, t′)

]
〉E(j, t)

=
∑
j

∫ ∞
−∞

dt′eiω(t−t′) iπ
b(i, j, t− t′)

ω
E(j, t)

=
∑
j

iπb(i, j, ω)
ω

E(j, t) ≡
∑
j

χb(i, j, ω)E(j, t). (B-5)

The function χb(i, j, ω) represents the response coefficient for the contribution
to the σb(i, t) at lattice site i arising from the longitudinal electric field
E(j, t) which is applied at lattice site j. Furthermore, we assume that the
electric field remains constant everywhere, i.e., q → 0 in such a way that
E(i, t) = E(j, t) = E0e−iωt. For this situation we can write

σb(i, t) =

∑
j

χb(i, j, ω)

E(i, t) = χb(i, ω)E(i, t) ,

(B-6)

and our goal is to solve for the real part of the DC (zero frequency limit)
magnetoelectric susceptibility

lim
ω→0

Reχb(i, ω) = lim
ω→0

Re

 i

ω

∑
j

πb(i, j, ω)

 . (B-7)

Denoting by |n〉 the eigenstate with corresponding eigenenergy En which is
obtained after proper diagonalization of the BHZ/FMM junction described by
the Hamiltonian of Eq. (3-30), the retarded factor πb(i, j, ω) has the explicit
form

πb(i, j, ω) =
∑
m,n

〈n|σb(i)|m〉〈m|J0(j)|n〉 f(En)− f(Em)
ω + En − Em + iη

,

(B-8)
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where η is introduced to create a small artificial broadening. Considering the
approximation η/(x2 + η2) = πδη(x), the DC limit in Eq. (B-7) then reads

− lim
ω→0

Re

 i

ω

∑
j

πb(i, j, ω)


= lim

ω→0

∑
m,n

〈n|σb(i)|m〉〈m|
∑
j

J0(j)|n〉f(En)− f(Em)
ω

−η
(ω + En − Em)2 + η2


= lim

ω→0

∑
m,n

〈n|σb(i)|m〉〈m|
∑
j

J0(j)|n〉f(En)− f(En + ω)
ω

(−π)δη(ω + En − Em)


=
∑
m,n

〈n|σb(i)|m〉〈m|
∑
j

J0(j)|n〉
(
π
∂f(En)
∂En

)
δη(En − Em)

=
∑
m,n

〈n|σb(i)|m〉〈m|
∑
j

J0(j)|n〉F̃ (En, Em) , (B-9)

where we took into account the facts that Re
[
〈m|∑j J

0(j)|n〉
]

is even
but Im

[
〈m|∑j J

0(j)|n〉
]

is odd in (n,m), Re
[
〈n|σb(i)|m〉

]
is even but

Im
[
〈n|σb(i)|m〉

]
is odd in (n,m), and the real part of (1/ω)(f(En) −

f(Em))/(ω + En − Em + iη) in the η → 0 and ω → 0 limit is even in (n,m)
to wipe out many terms in the ∑nm summation. The distribution function
F̃ (En, Em) can be further approximated as

F̃ (En, Em) =
(
π
∂f(En)
∂En

)
δη(En − Em) =

∫
dω δ(ω − En)

(
π
∂f(ω)
∂ω

)
δη(ω − Em)

≈
∫
dω

η

(ω − En)2 + η2

(
1
π

∂f(ω)
∂ω

)
η

(ω − Em)2 + η2 , (B-10)

which provides Eq. (3-42). Additionally, we impose the vanishing of diagonal
elements F̃ (En, En) = 0 as is dictated by Eq. (B-8).

Despite the success of linear response theory to investigate metallic
systems, for this BHZ model we found out that some numerical subtleties
must be implemented. First of all, for the homogeneous isolated BHZ system,
there is a double degeneracy in all of its states which arises from Kramers’
theorem (look at the block-diagonal form of Eq. (3-15)). Additionally, both
the edge state located at the y = 1 edge and the one localized at the y = Ny,T I

edge are degenerate at the same energy, as a consequence of this the wave
function that is calculate numerically could be an arbitrary superposition
of them, this issue makes difficult the computation of the 〈n|σb(i)|m〉 and
〈m|∑j J

0(j)|n〉 matrix elements which permit to construct the correlator in
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Eq. (3-42). Furthermore, we find out that the matrix elements 〈m|∑j J
0(j)|n〉

between the edge states are zero for the homogeneous BHZ model. The
reason is that this matrix element is the one corresponding to the velocity
operator, and the edge states are eigenstates of this specific operator, therefore
〈m|∑j J

0(j)|n〉 ∝ 〈m|v̂x|n〉 = vF 〈m|n〉 = 0 if |n〉 6= |m〉.

To wipe out these numerical contradictions, we concentrate on the
BHZ/FMM junction system under the presence of disorder (impurities) and a
very small magnetic field applied at the free edge for the following reasons. First
of all, when we put in contact the two sub-systems the degeneracy between
the two edges of the BHZ region is removed because of the nonzero interface
coupling tB 6= 0 to the FMM at the interface y = Ny,T I , therefore this junction
solves the problem of the superposition of the wave functions from the two
edges. Notice that despite the contact at the interface, the y = 1 free edge
still exhibits very accurately the Edelstein effect of an isolated BHZ system,
therefore we could use this effect at the free edge to compare with the tB 6= 0
cases at the interface y = Ny,T I . Secondly, the vanishing 〈m|∑j J

0(j)|n〉 is
resolved because the edge state under the presence of disorder is not anymore
an eigenstate of the velocity operator. The presence of disorder also increases
the accuracy of the numerical calculation because it permits to smear out the
sparce edge state energy spectrum. Since Kramers degeneracy is still present
at the free edge y = 1, to remove that degeneracy between spins up and down
we apply a small magnetic field there B(y = 1) = By=1ẑ and impose the
condition |n−m| > 1 to avoid neighboring energy levels such that there is not
any ambiguity in the calculation of the matrix elements corresponding to the
spin operator 〈n|σb(i)|m〉.

Regarding the numerics, we performed the simulation on a lattice of
finite size Nx× (Ny,T I +Ny,FM) = 48× (10 + 6) with 10% impurities having a
potential of strength Uimp = 4, we also considered an artificial broadening of
η = 0.1 (equivalent to a mean free time of τ ∼ 10−14s) and set the temperature
to kBT = 0.03 (room temperature). Since the distribution function F̃ (En, Em)
is highly peaked in a vicinity of the Fermi level En ≈ Em ≈ 0, then it is
possible to truncate the summation ∑n,m in Eq. (3-42) and consider just the
100 states closer to the chemical potential. The accuracy could be improved
at larger system sizes, but our approximation could achieve about 70% ∼ 80%
accuracy, which is more than enough to obtain meaningful conclusions.

The numerical value obtained for the response function χb results to be
of the order of O(1)×ae/t ∼ 10−9mC/J. Considering a typical external charge
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current of jc ∼ 1011A/m2 and an electrical conductivity of ∼ 107S/m for the
FMM, then the corresponding electric field is of the order of E ∼ 104kgm/Cs2,
this provides a spin polarization of σb(i) ∼ 10−5. Fixing Jex = 0.1eV, the
current induced spin torque at this typical current density is given by the
numerical values of χb(i) averaged only over the FMM sites and multiplied by
GHz.
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