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Abstract

Abrantes, Fernanda Gonçalves; Mello, Carla Göbel Burlama-
qui (Advisor).Dalitz plot analysis of the decay D+ → π−π+π+

and study of the π−π+ S-wave amplitude. Rio de Janeiro, 2020.
185p. Dissertação de mestrado – Departamento de Física, Pontifícia
Universidade Católica do Rio de Janeiro.

Non-leptonic decays of heavy hadrons, such as B andD mesons, have proven
to be a rich environment for the study of light meson spectroscopy and
charge-parity violation. For decays of charm hadrons, due to their mass
scale at about 2 GeV, many problems related to non-perturbative effects
arise in the study of strong interactions. Therefore, the usage of hadronic
decays to study weak interactions turns out to be also a great opportunity
to study the dynamics of hadronic interactions in these processes.
This dissertation documents the study of the decay D+ → π−π+π+ th-
rough an amplitude analysis in a data sample obtained from pp collisions
with a centre-of-mass energy

√
s =8 TeV, collected by the LHCb detector

during 2012 (part of run I). The analysis is performed with around 200
thousand D+ → π−π+π+ decays aiming to understand the decay dynamics.
In particular, emphasis is given to the π+π− S−wave amplitude, which is
known to be the major contribution in this decay mode, but it is also very
challenging to parametrise due to the presence of broad overlapping scalar
resonances. To study this component, three different approaches are used:
the Isobar Model, the K-Matrix formalism and a Quasi Model-Independent
Partial Wave Analysis technique, in order to obtain the S−wave magnitude
and phase. These results can be used as a reliable input for new phenome-
nological models.

Keywords
Amplitude Analysis; Charm physics; Dalitz Plot;
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Resumo

Abrantes, Fernanda Gonçalves; Mello, Carla Göbel Burlamaqui.
Análise de Dalitz plot do decaimento D+ → π−π+π+ e
estudo da amplitude π−π+ de onda-S. Rio de Janeiro, 2020.
185p. Dissertação de Mestrado – Departamento de Física, Pontifícia
Universidade Católica do Rio de Janeiro.

Decaimentos não-leptônicos de hádrons pesados, como mésons B eD, têm se
mostrado um ambiente rico para o estudo de espectroscopia de mésons leves
e violação de carga-paridade. Para decaimentos hadrônicos charmosos, dada
a escala de massa de cerca de 2 GeV, muitos problemas relacionados a efeitos
não-perturbativos surgem no estudo das interações fortes. Portanto, o uso
de decaimentos hadrônicos para o estudo de interações fracas se torna uma
grande oportunidade para estudar a dinâmica das interações hadrônicas
nesses processos.
Esta dissertação documenta o estudo do decaimento D+ → π−π+π+ através
da análise de amplitudes em uma amostra de dados obtida de colisões pp
com energia de centro de massa

√
s =8 TeV coletada pelo detector LHCb

durante 2012 (parte do runI). A análise é feita com aproximadamente
200 mil decaimentos de D+ → π−π+π+ com o objetivo de entender sua
dinâmica. Em particular, é dada ênfase à amplitude π+π− de onda−S, que
é sabida ser a contribuição dominante, porém também a mais desafiadora
para parametrizar devido à presença de ressonâncias escalares de grande
largura superpostas. Para estudar essa componente, três métodos diferentes
são usados: o Modelo Isobárico, o formalismo da Matriz−K, e a técnica
Quasi Modelo-Independente de Análise em Ondas Parciais, com o objetivo
de obter a magnitude e fase da onda−S. Tais resultados podem ser usados
como um aporte confiável para novos modelos fenomenológicos.

Palavras-chave
Análise de amplitudes; Física de charme; Dalitz plot;
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"And so do all who live to see such times. But
that is not for them to decide. All we have to
decide is what to do with the time that is given
us.”

J. R.R. Tolkien, .
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1
Introduction

The most successful model so far, representing our best understanding
of the behaviour of all known particles and their interactions, is the so called
Standard Model (SM). It describes the building blocks from which everything
in the universe is made of - the fundamental particles - and the electromagnetic,
weak and strong forces. The success of this model stems from its remarkable
agreement with experimental measurements from high energy colliders, such as
the anomalous magnetic dipole moment of the electron [1,2] with an agreement
to experimental measurements of ten significant figures. Even though this
model has proven its big success over the years, there are still a few questions
that the SM does not address indicated by some physical observations that
remain inconsistent with SM predictions such as the baryon asymmetry which
requires CP violation as one of the conditions proposed by Sakharov [3],
the origin of neutrino masses, searches for evidences of dark matter in the
astrophysical sector and dark energy, and a quantum field prescription for
gravity. The field of high energy physics aims to tackle the unsolved questions
either by directly searching for particles that are not predicted by the SM or
by high precision measurements looking for deviations from SM predictions.

In the past years, Charm Physics (dedicated to the study of hadrons
containing the charm quark) has been a fruitful environment in particle physics
in both experimental and theoretical frameworks, with exciting results such as
the recent discovery of CP violation in charm decays [4]. One peculiar aspect
of charmed particles is that, since the c−quark mass is around 1.2 GeV/c2

and charmed hadrons around 2 GeV/c2, nonperturbative effects represent
a complicated problem in the treatment of strong interactions. Therefore,
these charmed particles have demonstrated to be a very useful laboratory to
understand weak interactions in the presence of strong interactions.

Charm hadronic decays predominantly proceed through processes in
which intermediate resonant states are formed. The dynamics involved in
producing the final state is determined by the decay of the resonance via strong
interactions and, to determine the resonant structure, a full amplitude analysis
is needed. This is done by fitting the distribution of events in the phase space
from experimental data to a phenomenological model for the decay amplitude.
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Chapter 1. Introduction 15

Three–body non–leptonic weak decays of heavy mesons are of special
interest for several reasons: for light meson spectroscopy, to reveal and under-
stand resonances in different final states, to search for and study CP violation,
study lineshapes and interference patterns. In the case of three-body decays,
the analysis of the decay amplitude is done by fitting the Dalitz plot, a bidi-
mensional representation of the phase space.

This dissertation documents the study of the hadronic decay of the
charmed meson D+ into the final state π−π+π+1, which proceeds through a
quark level transition c→ dud̄. Following the weak process, resonances can be
produced which then decay strongly to π+π− (plus a π+ companion), creating
particular signatures and interference patterns in the Dalitz plot. Given the
complexity of the three-body decay, caused by the presence of many interfering
resonant states, an amplitude analysis is required to understand the dynamics
involved in such processes. In addition to the CP violation search performed
by the LHCb [5], this decay channel has been previously studied [6–8] by other
collaborations performing Dalitz plot analyses with limited statistics, thus a
more detailed description of the data is still missing given all the features that
this decay mode brings. With a large amount of data, the LHCb experiment
presents a unique opportunity to study this decay mode in much more depth,
being sensitive to details that previous analyses were not able to study.

The behavior of the π−π+ S–wave amplitude, that is known to be the
major contribution in this channel, is very challenging to describe and the study
of the dynamics underlying this component comprises one of our interests in
this analysis. The π−π+ scalar sector is composed by several broad overlapping
resonant states which poses a big challenge in describing the decay amplitude.
To reveal and understand the structures observed in the Dalitz plot, besides the
most traditional so-called Isobar Model, we also use the K–Matrix formalism
as well as a quasi Model-Independent Partial Wave Analysis (MIPWA). We
also try a phenomenological ansatz based in the parametrisation of a three-
body decay amplitude in terms of mesonic form factors with an effective
weak hamiltonian in the naive factorization approach. The results from the
different approaches are compared and the extracted S-wave component, with
the behavior of its magnitude and phase, can provide a reliable input for new
phenomenological models aiming to describe this sector.

This dissertation is organised as follows. In Chapter 2 we present a brief
description of the theoretical fundamentals related to the analysis. In Chapter
3 we provide a more specific discussion about the channel D+ → π−π+π+,
introduce the concept of the Dalitz plot and the kinematics involved in three-

1The CP conjugate process is implicit in this analysis.
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Chapter 1. Introduction 16

body decays and present previous experimental results performed in this
channel. We also present a phenomenological approach for the P− and S−wave
contributions.

The following chapters are dedicated to the experimental study involved.
In Chapter 4 the LHCb experiment is outlined and the strategy used in
the data selection of D+ → π−π+π+ decays is discussed in Chapter 5. In
Chapter 6, 7 and 8 we present the phenomenological concepts as well as the
results from each method used to perform the Dalitz plot analysis and the S–
wave extraction: Isobar Model, K–Matrix and MIPWA, respectively. Lastly,
we present a detailed comparison between the models and our conclusions in
Chapter 9.
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2
Theoretical Fundaments

2.1
The Standard Model

The Standard Model (SM) of particle physics is a non-abelian gauge
theory with spontaneous symmetry breaking that aims at describing the
fundamental particles and their interactions [9]. They are divided into the
following groups: the matter content constituted of fermions, the force carriers
corresponding to the gauge bosons of the theory and the Higgs doublet. As
a quantum field theory, the SM has to incorporate some features in order to
make any physical sense: it needs to be Lorentz invariant, to be causal, to
be unitary conserving probability and renormalizable. To obey the Lorentz
symmetry, the fields must be representations of the Lorentz group and the
gauge symmetry can be global or local, if the parameters depend or not on the
position in the space-time. Regarding the algebra of the groups, they can also
be defined as Abelian or non-Abelian, i.e. commutative or non-commutative.
The local gauge symmetry group of the Standard Model is

GSM = SU(3)C × SU(2)L × U(1)Y (2-1)

where SU(3)C represents the gauge group of the strong force between particles
with colour charge, SU(2)L is the weak sector acting only on left-handed
fermions and U(1)Y is hypercharge. The SU(3)C and SU(2)L are non-abelian
groups while U(1)Y is abelian.

In these types of gauge theories, the vacuum does not necessarily need
to be invariant under all symmetries of the Lagrangian. In that case, we say
that there exists a spontaneous symmetry breaking (SSB). In the SM the
GSM is broken by the non-zero vacuum expectation value of the Higgs scalar.
This is know as the Higgs mechanism which is responsible for mass generation
of the gauge bosons in the electroweak sector and also for charged fermions.
The unified electroweak sector SU(2)L×U(1)Y is broken1, the generated gauge
bosonsW± and Z0 acquire mass while the photon γ, from the invariant U(1)EM

1For this theory, in 1979 the Nobel Prize was awarded to Abdus Salam, Steve Weinberg
and Sheldon Glashow [10–12].
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Chapter 2. Theoretical Fundaments 18

subgroup responsible for the electromagnetic interactions, remains massless.
The electric charge is given by the Gell-Mann-Nishijima relation Q = T3 +Y/2
[13,14] where Q is the electric charge, Y represents the hypercharge and T3 the
third component of the weak isospin. The Z0 boson won’t have the original
structure vector-axial (V-A) from the SU(2)L group since it is mixed with the
U(1)Y forming the U(1)EM .

A general Lagrangian for this theory depends on the field and on the
covariant derivatives with the form

L(φ(x), Dµφ(x)), Dµφ = ∂µφ− iV a
µ T

aφ. (2-2)

Furthermore, for a non abelian theory

[Dµ, Dν ] ≡ −iFµν = −iF a
µνT

a, (2-3)

where
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2-4)

in which the last term corresponds to a non abelian contribution with fabc as
the structure constant of the corresponding group and g the coupling constant.

The boson sector is composed by the following integer spin particles:
eight massless gluon, mediating the strong force described by quantum–
chromodynamics (QCD), one massless photon, for the electromagnetic inter-
action (EM) described by quantum–electrodynamics (QED), Z0 andW± mas-
sive bosons for the weak interaction; and the spin-0 Higgs boson [15, 16]. In
the fermion sector, there are half integer spin particles in three generations:
six quarks (up (u), down (d), charm (c), strange (s), top (t), bottom (b)),
three charged leptons (electron (e), muon (µ) and tau (τ)) and their respec-
tive neutrinos (νe, νµ and ντ ). The quarks are not observed individually, only as
bounded states such as a quark-antiquark pair called meson, three-quark states
called baryons or excited states with four and five quarks called tetraquarks
and pentaquarks respectively. See Fig. 2.1 for a representation of the particles
in the SM coming in three generations.

The SM is a chiral theory in which each particle carries a representation
of the gauge group where its chirality is naturally manifested. There are five
fermionic representations in the Standard Model in which each one takes into
account the three generations, labeled by the index i and the chirality left
handed (L) or right handed (R) given by

QLi(3, 2)1/6, uRi(3, 1)2/3, dRi(3, 1)−1/3, `Li(1, 2)−1/2, eRi(1, 1)−1. (2-5)

The first represents the left-handed quarks being a triplet of SU(3)C , a doublet
of SU(2)L and the hypercharge given by Gell-Mann Nishijima formula [13,14].
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Chapter 2. Theoretical Fundaments 19

Figure 2.1: Fundamental particles of the Standard Model.

Then, the right-handed up and down quarks, also triplets of SU(3)C but
singlets of SU(2)L. In the leptonic sector, we observe the same behavior as
quarks in the SU(2) sector. The left-handed particles are SU(3)C singlets, since
they don’t have colour, and SU(2)L doublets while right-handed leptons are
SU(2)L singlets. Furthermore, the scalar particle H carries the representation
(1, 2)1/2.

2.2
The SM Lagrangian

The most general renormalizable Lagrangian is constituted of the terms:

LSM = LKin + LYukawa + LH , (2-6)
where the first term concerns about the kinetic terms and gauge bosons
interactions, the second corresponds to Yukawa interactions between fermions
and the scalar field H where all fermions masses come from, and the last
concerns about the Higgs field containing its kinetic and potential terms.

In the kinetic sector, the local symmetry of the SM implies gauge boson
degrees of freedom which go under the representation:

Gµ
a(8, 1)0, W µ

a (1, 3)0, Bµ(1, 1)0, (2-7)

where the index a indicates a non-abelian structure. G’s are the gluon fields
and the combination of the W ’s and B represents the W±, Z0 and the photon
created after the spontaneous symmetry breaking. The corresponding field
strengths are
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Gµν
a = ∂µGν

a − ∂νGµ
a + gsfabcG

µ
bG

ν
c

W µν
a = ∂µW ν

a − ∂νW µ
a + gεabcW

µ
b W

ν
c

Bµν = ∂µBν − ∂νBµ

, (2-8)

where g and gs correspond to the couplings, fabc and εabc are the structure con-
stants of SU(3)C and SU(2)L indicating the non–commutative algebra charac-
teristic resulting in self–interactions for these gauge bosons. Furthermore, we
can define the covariant derivative corresponding to SM group symmetry as

Dµ = ∂µ − ig′Y Bµ − igW a
µT

a − igsGb
µL

b, (2-9)

where g - SU(2), gs - SU(3) and g′ - U(1) are the couplings of the interactions
of each corresponding gauge group, T a denotes the generators of SU(2)L, the
set of Pauli matrices σa/2 in the fundamental representation, with a = 1, 2, 3
and Lb denotes the generators of SU(3)C , Gell-Mann matrices with b = 1, ..., 8.
The structure of the covariant derivative depends directly on the field that it is
being applied to, on the field representation, and on how the fields transform
under each symmetry group.

In the Higgs sector, the kinetic and potential terms are responsible for
the mass generation of gauge bosons, for the Higgs couplings to gauge bosons
and fermions, for the Higgs self couplings and for the Higgs mass. A more
explicit expression is given by

LH = |DµH|2 − µ2H†H − λ
(
H†H

)2
. (2-10)

where H is the Higgs field. In the Yukawa sector, the Lagrangian has the
form

LYuk = −Y d
ijQ̄LiHdRj − Y u

ij Q̄LjH̃uRj − Y e
ij

¯̀
LiHeRj + h.c. (2-11)

where Y d,u,e are the Yukawa 3×3 matrices with complex entries, not necessarily
hermitian, and H̃ = iσ2H

∗. This term is particularly interesting given that
flavour physics is contained in it, therefore, a more detailed discussion about
this term is provided in the next section.

A more explicit expression for the SM Lagrangian is given by

LSM = −1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν (2-12)

+ iQLj
/DQLj + i`Lj /D`Lj + iuRj /DuRj + idRj /DdRj + ieRj /DeRj

+ |DµH|2 + V (H)

+ ¯̀
LHYeeR + Q̄LHYddR + Q̄LH̃YuuR + h.c.

where /D = γµDµ. The first line corresponds to the kinetic terms and self-
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interactions of the gauge bosons, the second line to the kinetic terms of fermions
and their interactions with the gauge bosons, the third line to the kinetic and
potential terms of the Higgs field and the last, to the Yukawa terms accounting
the mass of quarks and leptons. The Yukawa terms are particularly interesting
for this work given that flavour physics is contained in it and characteristics
such as flavour changing between families arise from these terms.

2.3
Flavour physics

After the electroweak symmetry breaking, the vacuum is invariant under
the gauge group SU(3)C × U(1)EM . Both strong and EM interactions are
flavour universal, meaning that there is no flavour mixing and the interactions
have the same couplings, but the weak interactions don’t behave in the same
way.

Mediated by the charged bosonsW± and the neutral boson Z0, the weak
interactions generate two types of weak currents. When the processs occurs
mediated by the Z0 boson, which couples diagonally in flavour space to all
fermions, the current associated is the so called neutral current (NC) and no
flavour changing has been observed at tree level. On the other side, for processes
mediated by the charged W±, we observe generation changing currrents, with
a different behavior for leptons and quarks. The current associated is called
the charged current (CC).

In the leptonic sector, the mass and interaction basis are the same2.
The charged lepton couples to its corresponding neutrino, thus, there is no
generation changing. On the contrary, in the quark sector, the interaction
and mass basis are different with non-diagonal terms in the Lagrangian, thus
generation changing is observed. The basis are related by a unitary matrix and
each element of this matrix corresponds to a transition probability between
quarks of different flavour including transitions between families.

Let’s Consider the Yukawa terms for the quark sector after the SSB

L = − v√
2
(
d̄LYddR + ūLYuuR

)
+ h.c.. (2-13)

To diagonalize these matrices, we can perform bi-unitary rotations written as

Yd = UdMdU
†
d , Yu = UuMuU

†
u, (2-14)

where Uu,d are unitary matrices, thus Mdiag
u,d = U †(u,d)Yu,dU(u,d)(v/

√
2). In this

2In this case we are neglecting neutrinos masses.
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basis, the Yukawa terms are

L = − v√
2
(
d̄LUdMdU

†
ddR + ūLUuMuU

†
uuR

)
+ h.c. (2-15)

Performing a change of basis for the left and righ-handed quarks (dR → UddR,
uR → UuuR, dL → UddL and uL → UuuL) we remove Uu,d and the Yukawa
terms are now diagonal. In the mass basis, the Lagrangian is written as

L = −mdd̄LdR −muūLuR + h.c. (2-16)

where

md = v√
2

(yd, ys, yb), mu = v√
2

(yu, yc, yt). (2-17)

From the charged current interactions we have

LW± = g√
2
ūLγ

µ
[
(Uu)† (Ud)

]
dLW

+
µ + h.c. (2-18)

where the coupling only occurs for left-handed fermionic fields. The combi-
nation V = (Uu)†(Ud) is the 3 × 3 unitary matrix known as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [17,18]. Since V is non-diagonal, the gauge
bosonsW± couple to quarks mass eigenstates of different families, representing
the mixing matrix for quarks. The transition amplitude probability between
two quarks is proportional to the matrix element Vqq′ . The explicit form of the
CKM matrix is

VCKM ≡ VuV
†
d =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2-19)

There are several parametrisations for this matrix, the most used is the
Wolfenstein parametrisation [19] making use of experimental measurements
expanded in terms of λ = sin θc, where θc is the Cabibbo angle. The CKM
matrix has the form:

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)
. (2-20)

Being unitary, there are only 4 independent parameters λ, A, ρ and η describing
the matrix, where η express its complex nature responsible for CP violation in
the SM. If we focus on the charm sector - the first two rows and columns - this
sub-matrix is diagonal and real up to O(λ2), the so-called Cabibbo matrix. A
transition in which the amplitude depends only on elements on the diagonal

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 2. Theoretical Fundaments 23

are called Cabibbo-favored; when it depends on one off-diagonal element, it is
called Cabibbo-suppressed and for a transition which the matrix elements are
both off-diagonal, are referred to as doubly Cabibbo-suppressed.

2.4
Hadronic Decays

The SM describes successfully the weak interactions between the funda-
mental particles via an exchange of bosons W± and Z0. However, due to the
strong interactions in the hadron sector, it is not easy to describe the weak
process in terms of mesons and baryons.

Considering a meson decay mechanism, we can introduce the quark
diagramatic approach by Chau [20]. The first two diagrams are characterised by
the emission of aW boson either via an external emission as in Figure 2.2 (left)
in which they are in a singlet state, or via an internal emission as in Figure 2.2
(right) in which the produced quarks have a defined colour state. The difference
between both diagrams is the colour suppression of the second with respect
to the first, the produced quark and antiquark must have their colour state
defined such that the hadrons formed are colour singlets. In both diagrams the
quark participating in the process is treated as a quasi-free particle inside the
meson for the W emission diagrams while the light quark (ū, d̄ or s̄) would be
a spectator during the decay, without producing any effects associated directly
to the decay. The contribution of the light quarks should only appear later in
the hadronization process. We call this the Spectator Model.

On the other side, diagrams in which both quarks contribute to the weak
decay are called non-Spectators such as the annihilation of a W , as in Figure
2.3 (left), where a pair of quark-antiquark annihilates to produce a W boson
that couples with another pair of quark-antiquark, or a W exchange processes,
Figure 2.3 (right), which occurs only for neutral mesons.

q′q

q̄q̄

W+

q′′′

q′′

q′q

q̄q̄

W+
q̄′′

q′′

Figure 2.2: External (left) and internal (right) emission of W diagrams.
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q′q

q̄q̄

W+

q′′′

q′′

q′q

q̄q̄

q′′′

q′′

Figure 2.4: Schematic diagram illustrating the effective vertex.

q

q̄

q′

q̄′′′

q̄′′

q′′
W+

q′q

q̄′′′q̄

W+
q̄′′

q′′

Figure 2.3: Annihilation (left) and W exchange (right) diagrams.

2.5
Effective Weak Hamiltonian and Factorization

One way to deal with hadronic decays, such as the decay of the D meson,
is to work with an effective approach preserving the current–current structure
in which the mesons are represented by effective hadronic currents. In this
approach, the decay amplitude approximated into factorized terms of more
simple amplitudes suggested by Cabibbo and Maiani [21] and Fakirov and
Stech [22]. Considering the process in the limit p2 � m2

W , momentum smaller
than the propagator mass, one can write the W propagator as:

1
p2 −m2

W

→ 1
−m2

W (1− p2

m2
W

)
= −1
m2
W

(
1 + p2

m2
W

+ ...
)

(2-21)

Hence, looking at the first term of this expansion, it can be treated with an
effective vertex since it is independent of p. A schematic diagram illustrating
the effective vertex is shown Fig. 2.4. The effective weak Hamiltonian is
obtained by integrating out the heavy degrees of freedom of the SM Lagrangian
and has a structure given by [23,24]

Heff = GF√
2
∑
i

V i
CKMCi(µ)Oi, (2-22)

where GF is the Fermi constant, Oi are the relevant local operators governing
the decay, VCKM the Cabibbo–Kobayashi–Maskawa matrix elements [17], µ
is the renormalization scale and Ci the Wilson coefficients [25] describing
the contribution of a given operator in the Hamiltonian. Moreover the Ci

coefficients depend on the renormalization scale µ which encode the short-
distance effects above µ and are process independent. This series of effective
vertices is known as operator product expansion (OPE) [25–27]. Since µ is
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arbitrary, the scale dependence must be cancelled out or, in other words, the
product of the coefficient and the operator must be scale independent

d

dµ
[Ci(µ)Oi(µ)] = 0. (2-23)

The value of µ is typically chosen to be the order of the mass of the
decaying hadron (O(mc) for D meson decays), serving as a way to separate
physical contributions of the decay amplitude into long–distance contributions
corresponding to scales lower than µ and short–distance contributions for scales
higher than µ.

Let’s consider a two-body process D+ → h1h2, the effective hamiltonian
is given by

Heff = GF√
2
VcdV

∗
ud[c1O1 + c2O2], (2-24)

O1 = [(ūγµ(1− γ5)d)(d̄γµ(1− γ5)c)] (2-25)

O2 = [(ūγµ(1− γ5)c)(d̄γµ(1− γ5)d)],

where each term q̄γµ(1 − γ5)q′ corresponds to left-handed hadronic currents
and the coefficients c1, c2 determine the influence of strong interactions in the
QCD regime. The term containing O1 corresponds to the decay via the charged
current describing the transition c → d while the later with O2 describes the
transition c→ u. Applying the naive factorization method 3, we obtain

〈h1h2|Heff |D+〉 = GF√
2
VcdV

∗
ud[a1〈h2|(ūγµ(1− γ5)d)|0〉〈h1|(d̄γµ(1− γ5)c)|D+〉(2-26)

+a2〈h1h2|(d̄γµ(1− γ5)d)|0〉〈0|(ūγµ(1− γ5)c)|D+〉],

where the coefficients a1, a2, via perturbative QCD, are related to c1, c2. The
factorization method applied to three body decays is more complicate and
in the next chapter we will discuss this approach applied to the D+ →
π−π+π+ channel.

2.6
Resonances and the S−matrix

As a related topic to be seen later, this section is dedicated to define
a resonance and its characteristics. In the study of elementary particles,
the experiments which provide relevant information are scattering and decay
processes. Instead of measuring transition amplitudes, we look at quantities

3From now on, we will refer simply as factorization.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 2. Theoretical Fundaments 26

such as rates and cross-sections to obtain information about what could
have happened in the process. These observable quantities are related to the
probability of observing a certain final state in the far future, "out", given
the initial state constructed in the far past, "in", determined by their overlap,
P = | 〈φf (p)|φi(p)〉 |2.

In the scattering formalism, the unitary operator that connects asymp-
totic in and out states is called the S−matrix, defined as:

i(2π)4δ4 (p1 + p2 − p3 − p4)M (p1, p2; p3, p4) =out 〈p3p4|S − 1|p1p2〉in (2-27)

where |p1p2〉 and 〈p3p4| are asymptotic states of two non-interacting particles
with momentum p1,p2 and p3,p4. The left side term describes deviations from
the free theory. The S−matrix is responsible for encoding all physics underlying
the process and is related to the scattering amplitude M which is strongly
constrained by analyticity and unitarity principles of the S−matrix [1]. The
scattering amplitudeM can be written in terms of the Mandelstan variables
s,t,u up to poles and kinematic singularities and can be distinguished from the
decay amplitude A since unitarity puts different constraints on them. For the
decay amplitude case, the unitarity relation for heavy state i into a channel a
is given by

i
[
Aia −Ai∗a

]
= (2π)4∑

c

∫
dΦcM∗

caAic. (2-28)

In the case where only a single channel contributes, the phase of A agrees to
that ofM according to Watson theorem [28].

The S−matrix is an analytic function up to its branch points, appearing
when there is a channel opening, and poles, which can be bound states or
resonances [1, 29, 30]. The location of such poles is an essential feature in
defining these states. For bound states, the poles are located on the physical
Riemann sheet, while for resonances, they are located on the unphysical
Riemann sheet closest to the physical one, usually referred to as the second
sheet. In the case of resonances in subsystems of multi–particle final states,
branch points occur in the complex plane of the second sheet. Furthermore,
from analyticity, a pole located at a complex value of s is accompanied by a
pole located at its complex conjugate value, s∗ [31]. At the threshold, both
poles are equally relevant, but outside the threshold, the pole which has the
negative imaginary part closer to the physical axis will plays a more important
role, in the vicinity of the resonance region it influences more the observables.

An schematic plot of the imaginary part of a generic single–channel
scattering amplitude with an isolated resonance is shown in Figure 2.5. The

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 2. Theoretical Fundaments 27

Figure 2.5: Imaginary part of a typical single–channel scattering amplitude
with an isolated resonance [1, 30].

solid red line illustrates the physical range of the real valued variable s in which
the threshold is illustrated by the red dot. In the left plot, the imaginary part of
the amplitude in the complex S–plane is illustrated and corresponds to the first
physical sheet, ImA≥ 0 shown as the green surface, while the right plot shows
analytic continuation of this amplitude to the lower plane of the unphysical
sheet, ImA< 0 shown as the yellow surface, which contains the resonance pole.

Resonances can appear in decay processes of the form

A→ R + S → [P1 + . . .+ Pn] + S, (2-29)

where S is the spectator particle andR is the resonance which its properties can
be studied via a Dalitz plot analysis. The main characteristics of a resonance
are its pole position in the complex s−plane, sR, and its residue [1,29,30]. The
pole position is parametrised with its mass mR and total width ΓR introduced
via the pole parameters √sR = mR − iΓR/2 and it is independent of the
reaction studied. Additionally, the residues are responsible for quantifying its
couplings to the various channels and useful to define branching ratios. The
residues can be calculated via an integration along a closed contour around
the pole according to

Rfi = i

2π

∮
dsMfi, (2-30)

whereM denotes the scattering matrix written, in the close vicinity of a pole
M, as

lim
s→sR

Mfi = − Rfi

s− sR
, (2-31)

where sR denotes the pole position of the resonance R and R the residue. If
the structure is narrow and there are no other thresholds or other resonances
nearby, the Breit-Wigner is the most common parametrisation.
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3
The D+ → π−π+π+ three body decay

The decay D+ → π−π+π+ is a Cabibbo–suppressed mode with a quark
level transition c → dud̄ that can proceed mainly at tree level by spectator
and annihilation diagrams, which is suppressed with respect to the tree level
diagram, from the current–current operators porportional to VcdV ∗ud of order
O(λ) in Wolfenstein parametrisation [1,19], as can be seen in the top diagrams
in Figure 3.1. A transition via a loop penguin type amplitude, as shown in the
bottom diagram in Figure 3.1, is also possible, where the virtual quark being
b would introduce a weak phase through Vub, and potentially this would imply
CP violation in this channel. Nevertheless, the penguin amplitude isO(λ5) and,
for the purposes of this work any CP-violation effect can be safely neglected.
This process is observed with a branching fraction of (3.29± 0.2) ×10−3 [1].

Figure 3.1: Tree level, annihilation and penguin diagrams of theD+ → π−π+π+

decay.

Figure 3.1 also shows that the dd̄ pair may form different resonances as
intermediate states which decay to π−π+ creating a rich pattern in the phase
space of the decay. From previous experimental analyses [6–8] we learned that
the main resonances contributing for the D+ → π−π+π+ channel are the spin 1
states ρ0(770) and ρ0(1450), the scalars σ(500), f0(980), f0(1370), f0(1500) and
the spin 2 contribution f2(1270). The distribution of events across the phase
space provides important information about hadronic processes by revealing
and allowing the understanding of the intermediate states dynamics. The study
the resonance pattern and interferences in the D+ → π−π+π+ decay is the
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main objective of an amplitude analysis. From now on, we label the decay
particles (pions) with the convention D+ → π−1 π

+
2 π

+
3 , so particle 1 is always

the pion with opposite charge with respect to the other decay products.
If a resonant state is produced in the π−1 π+

2 system, the third pion, π+
3 , is

referred to as the companion. There are two π+ in the final state so the same
resonance can be formed in the π−1 π+

3 system with π+
2 being the companion

and, due to the pair of identical π+, the process is symmetrical with respect
to the systems π−1 π+

2 and π−1 π+
3 . In this analysis, we label the π− as particle

1 and the other two charged π+ are randomly chosen as particles 2 and 3, to
ensure that they have the same kinematic distributions.

3.1
Three-Body decay Kinematics

Consider a spinless particle with massM and 4−momenta P that decays
into three spinless particles with masses m1, m2 e m3 with 4−momenta p1, p2

and p3, as illustrated in Figure 3.2.

Figure 3.2: Schematic of a three-body decay from PDG [1].

In principle, there are 9 quantities to describe this decay, the three tri-
momentum vectors of the final state particles. Considering energy–momentum
conservation, P µ = pµ1 + pµ2 + pµ3 , we reduce the number of variables by 4.
Recalling also that the decay is isotropic, it cannot depend on the three Euler’s
angles describing its orientation with respect to the parent reference frame,
thus we end up with only two degrees of freedom [32]. The set of available
configurations for any array of independent kinematics variables configures the
phase space of the decay, therefore, in our case the phase space is bidimensional
[33].

Looking at the decaying particle in the rest frame where P µ = (M,~0)
for the initial particle and pµi = (Ei, ~pi) for the three decay particles, we can
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define the following Lorentz invariants:

sij = m2
ij = (pi + pj)2 = m2

i +m2
j + 2EiEj − 2~pi~pj

= (P − pk)2 = M2 +m2
k − 2MEk, (3-1)

where {i, j, k} ∈ {1, 2, 3} and i 6= j 6= k. Since only two of them are
independent, the remaining one is determined by the relation

s23 + s31 + s12 = M2 +m2
1 +m2

2 +m2
3 . (3-2)

The so called Dalitz plot (DP) is the three-body phase space represented
by any pair among s12, s13 and s23, or by any related to these by a linear
transformation with a constant Jacobian [34]. The boundaries of the DP
are determined by the kinematics of the decay, limited by a maximum and
minimum value of sij given by

(mi +mj)2 ≤ sij ≤ (M −mk)2. (3-3)

In the maximum limit, all the momenta is devoted to the mij system thus
θij = π where θij is the angle between particles i and j, meaning that ~pi = −~pj,
collinear and in opposite direction, and ~pk = 0, at rest. On the other side, in
the minimum limit, θij = 0 and θik = θjk = π, meaning that i and j are
collinear and in opposite direction to k. Another relevant quantity to define is
helicity angle and the cosine defined as the angle between the bachelor particle
and the resonance daughter with equal charge. The bachelor particle is the
one that does not come from the resonance state, for instance, if the resonant
state comes from the first and second daughter, we will call the third as the
bachelor.

Given the invariant variables describing the process, the kinematic limits
give rise to the upper and lower boundaries of the DP, corresponding to s13+

and s13− respectively, given by

s13± = m2
1 +m2

3 + 1
2√s12

[
(s12 − s+m2

3)(s12 +m2
1 −m2

2) (3-4)

∓λ1/2(s12, s,m
2
3)λ1/2(s12,m

2
1,m

2
2)
]
,

where the kinematic triangular function is given by λ(x, y, z) = x2 + y2 +
z2 − 2xy − 2yz − 2zx. A generic Dalitz plot with its boundaries is shown in
Figure 3.3 in terms of the invariants s12 = m2

12 and s23 = m2
23.
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Figure 3.3: Generic Dalitz plot in (s12,s23) from PDG [1].

The decay rate brings the dynamics of the decay. For the spinless three-
body process, the decay rate is given by [1]:

dΓ = 1
2(2π)5M5

∫
|A|2δ4(P − p1 − p2 − p3)d

4p1

2E1

d4p2

2E2
d4p3δ

(
p2

3 −m2
3

)
, (3-5)

in which A contains all the dynamic information, the four-dimensional delta
function constrains the contour of the DP while the one-dimensional delta
corresponds to on–shell (real) particles in the final state. Integrating over d3p3

and using the relation

δ′ = δ

(
cos θ12 −

M2 +m2
1 +m2

2 −m2
3 − 2M (E1 + E2) + 2E1E2

2p1p2

)
, (3-6)

the integral in d4p3 can be solved and the decay rate can be reduced to a more
compact form

dΓ = π2

2(2π)5M

∫
|A|2δ′dE1dE2d cos θ12. (3-7)

Also, we can write the decay rate in terms of the invariants sij, thus, after
performing the cosine integral and rearranging the decay rate in terms of Dalitz
variables, the expression is written as:

dΓ = 1
256π3M3

∫
|A|2dsijdsjk . (3-8)

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 3. The D+ → π−π+π+ three body decay 32

Given M , the density of events in the DP is proportional to |A|2, thus the
dynamics is directly observed from the distribution in the phase space

dΓ
dsijdsjk

∝ |A|2 . (3-9)

Each point in the DP corresponds to a possible configuration of the decay
and with high statistics, the DP illustrates more explicitly its signatures and
characteristics corresponding to the possible processes that occurred. If |A|2 is
constant, meaning no dynamics, the DP will be distributed uniformly. However,
if the processes occurs via an intermediate resonant state, the DP will be
populated in bands with given features, such as its mass, width and spin.
If there are more than one resonance sharing the same physical region in
the phase space, interference effects will rise as a higher density of points
for constructive interferences or almost no density of points for destructive
interferences.

The use of a Dalitz Plot for amplitude analysis has many benefits since
three-body decays usually proceed as quasi–two–body processes in which an
intermediate resonant state is produced. Therefore, we can use this tool to
understand and reveal resonances in different final states, and use for study
of meson spectroscopy. It is an ideal place to study new and known states,
lineshapes, to study interference patterns, and CP-violation since it is sensitive
to phases.

3.2
The D+ → π−π+π+ phase space

The two Dalitz plot variables are chosen in order to better illustrate
where the resonance contributions are expected. All states are formed in the
π−π+ systems and, since there are two identical π+, the Dalitz plot constituted
as s12 × s13 presents a symmetric behavior with respect to the diagonal
(remembering our choice D+ → π−1 π

+
2 π

+
3 ). At this point, for illustration only,

we show the D+ → π−π+π+ Dalitz plot in Figure 3.4 from our data sample
containing approximately 900 thousand events (as discussed later in Chapter
5). The DP is a mass squared plot, thus a resonance with mass around 0.775
GeV2/c4 such as the ρ0(770) is expected to appear at s12,13 ∼ 0.6 GeV2/c4. By a
qualitative inspection, it can be seen a clear signature of a f0(980) contribution
and a significant broad region corresponding to the σ(500) state. Since the
f0(980) is a scalar contribution, it should appear as a dense line, however, a
destructive interference is cancelling part of the f0(980) region, at s12,13 > 1.6
GeV2/c4. In addition, an interesting effect can be observed in the corresponding
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ρ0(770) region. The Dalitz plot illustrates in this region two lines providing
evidence for an interference pattern between ρ0(770) and ω(782) contributions
where the process ω(782) → π−π+ violates isospin [35]. Furthermore, given
that the ρ0(770) is a spin 1 state, it is expected to have a distribution with two
lobes considering the angular distribution for a spin-1 particle with a cosine
behavior from the Legendre polynomials, but an interference between the P−
and low mass S−wave is observed producing an almost total cancellation of
the highest lobe. We also observe a region at low π+π+, running along the
diagonal axis, in which states such as ρ0(1450), f2(1270), f0(1500) and f0(1370)
contribute. In addition, a thin line is observed at s12,13 ∼ 0.25 GeV2/c4 which
corresponds to decays into KSπ

+ but they will be vetoed as discussed in
Chapter 5. The DP for each individual resonance can be found in Appendix
12. The complexity illustrated in the Dalitz plot shown in Figure 3.4 calls for
the necessity of an amplitude analysis of this channel.
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Figure 3.4: D+ → π−π+π+Dalitz plot from LHCb data.

3.3
Previous analyses

Previous analyses of the D+ → π−π+π+ decay were performed by
E791, FOCUS and CLEO collaborations. In 2001, the E791 collaboration [6]
performed a Dalitz plot analysis using the Isobar Model, discussed in Chapter
6, with a data sample consisting of approximately 1200 events. An evidence
for a light and broad scalar resonance in D+ → π−π+π+ decays was found in
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this analysis indicating the existence of the scalar meson σ(500) 1 with mass
478+24

−23 ± 17MeV/c2 and width 324+42
−40 ± 21MeV/c2 accounting approximately

for half of the decays. This experimental evidence for the σ(500) resonance
provided a significant interest in understanding the underlying dynamics of this
decay channel. The analysis also included the contributions f0(980), f2(1270),
f0(1370), ρ(770)0 and ρ(1450)0. The π−π+ projection from E791 is shown in
Fig. 3.5. Other analyses of ππ scattering data also claimed the presence of
this state in the form of a pole close to the threshold with a significantly large
imaginary part [37–39] but the E791 experiment was the first solid evidence
for this resonant state.

FOCUS [7] and CLEO [8], have also performed a Dalitz plot analyses
of this channel with more emphasis in studying the scalar sector. In FO-
CUS analysis the S−wave contribution was parametrised using a K−Matrix
formalism using input from a global ππ analysis from scattering data; the
data sample corresponded to approximately 1500 events, as illustrated in Fig.
3.6. In 2007, CLEO’s analysis of the S−wave used different phenomenologi-
cal approaches in addition to a Isobar approach with a data sample consisted
of approximately 2600 events. The S−Wave was parametrised using Joseph
Schechter [40] and co-workers model, based on the meson part of the chiral in-
variant linear sigma model Lagrangian, and the Achasov Model [41] in which
treats the π+π− S−wave via the sum of a number of amplitudes: a non reso-
nant contribution, pointlike π−π+π+ production, direct resonance production
via the D+ → σ(500)π+, D+ → f0(980)π+ and the rescattering terms from
several intermediate states, π+π−, π0π0, and KK̄ to the final π+π− state and
the other spin zero contributions were included via isobar. In the models con-
templated by CLEO’s analysis, the S−wave was composed of only a σ(500)
and f0(980) contributions. A summary of previous results is shown in Table
3.1.

From the available experimental analyses, it has become clear that the
S−wave is the major contribution to the decay D+ → π−π+π+ and the
effort in parametrising this component is quite a challenging task due to the
coexistence of several broad overlapping spin zero states at energies below 2
GeV/c2.

1This important result was then followed by the observation of another scalar, the κ(700),
in D+ → K−π+π+ decays [36].
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Fit Fractions % (FF)
E791 [6] CLEO [8] FOCUS [7]

σ(500)π+ 46.3± 9.2 41.8± 2.9
NR 7.8± 7.8 <3.5
f0(980)π+ 6.2± 1.4 4.1± 0.9
f0(1370)π+ 2.3± 1.7 2.6± 1.9
f0(1500)π+ 3.4 ± 1.3
(π+π−)Sπ+ 54.8± 9.5 51.9± 3.8 56.0± 3.9
ρ(770)π+ 33.6± 3.9 20.0± 2.5 30.8± 3.9
f2(1270)π+ 19.4± 2.5 18.2± 2.7 11.7± 1.9
ρ(1450)π+ 0.7± 0.8 <2.4∑
FF 116.3 90.1 98.5

Table 3.1: Fit fractions (in %) from E791 [6] and CLEO [8] using Isobar Model
and FOCUS [7] using K−Matrix. The (π+π−)Sπ estimates the fraction of the
total S−wave being the sum of the scalar contributions in the Isobar analysis.

Figure 3.5: π+π− mass projection from D+ → π−π+π+ decays E791 analysis
[6].
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Figure 3.6: High and low π+π− mass projections of D+ → π−π+π+ decays
using K-Matrix formalism form FOCUS analysis [7].

Figure 3.7: π+π− and π+π+ mass projections of D+ → π−π+π+ using Isobar
model from CLEO analysis [8].

3.4
Towards the analysis with LHCb data

Although previous results [6–8] for this decay channel have provided sig-
nificant contributions in understanding the dynamics involved in this process,
the statistics were very limited and now, with larger samples from the LHCb
experiment, a more detailed study can be done. In particular, the scalar sec-
tor remains as the biggest challenge in this decay mode. Composed by several
broad overlapping resonant states, the S−wave contribution calls for a better
description and phenomenological models to provide a satisfactory parametri-
sation able to explain the underlying behavior. Therefore, the Dalitz plot anal-
ysis, besides revealing and describing all the resonant substructures formed in
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the process, is also used to extract the S−wave component that could be used
as input for the development of new phenomenological models. To obtain the
π+π− S−wave amplitude, three different approaches are used: the traditional
Isobar Model, the K−Matrix formalism and the quasi Model Independent
Partial Wave Analysis. From the last approach, the S−wave magnitude and
phase behavior are obtained in a model independent way. This quasi-model-
independent analysis is particularly interesting in this work since it has never
been previously performed in this channel.

The motivations for this analysis are manifold. Given the complexity and
the variety of resonant states observed in the D+ → π−π+π+ Dalitz plot, an
amplitude analysis is quite challenging. Considering the huge amount of data
collected by the LHCb experiment, an unique opportunity arises to study in
more details the dynamics of this process, including features such as the ρ−ω
mixing observed for the first time in this channel. Moreover, this scenario turns
out to be well suited to study lineshapes and also to tackle the challenging
parametrisation of the ππ S−wave. The results of this analysis can also be
very useful for sensitivity studies for the search of CP violation in this channel
using run II data from LHCb, which is a topic of great interest following the
first observation of CP violation in charm [4].

No new amplitude analysis results have been obtained from about 13
years, since CLEO analysis. The last study for this channel was the CP
violation search performed by the LHCb [5]. The final sample from LHCb
data used in this work to perform all Dalitz fits is about 80 times larger than
CLEO’s sample, therefore, we are able to perform an analysis sensitive to
different aspects of the dynamics of this decay.

3.5
Phenomenological approach

One possible phenomenological model to deal with hadronic decays is
to work with an effective weak hamiltonian within the naive factorization
approach, as discussed in Section 2.5, where the matrix elements can be
parametrised in terms of form factors. In this approach, the effective weak
Hamiltonian is written as an operator product expansion (OPE) and reads:

Heff = GF√
2
∑
i

VCKMCi(µ)Oi(µ) + h.c. (3-10)

From this model, the D+ → π−π+π+ decay amplitude can be written through
the following matrix element [42]:
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〈π−π+π+|Heff |D+〉 = GF√
2
VcdV

∗
ud

2∑
i=1

Ci(µ)〈π−π+π+|Oi|D+〉, (3-11)

where V tree
CKM = VcdV

∗
ud = O(λ) and

O1 = d̄iγν(1− γ5)ci ūjγν(1− γ5)dj (3-12)

O2 = ūiγν(1− γ5)cj d̄jγν(1− γ5)di, (3-13)

where i, j are color indices. By writing the OPE, the problem now is separated
in calculating the amplitude in two parts: perturbative short distance calcula-
tion of Ci(µ) and the usually non–perturbative long distance calculation of the
matrix elements 〈Oi(µ)〉. The Wilson coefficients Ci can be evaluated in the
renormalization group improved perturbation theory, meanwhile the matrix
elements 〈Oi〉 are more challenging to determine.

One possibility is to write the element 〈π−π+π+|Oi|D+〉 within a fac-
torization approach at leading order (in ΛQCD/mc and the coupling αs). At
leading order, the diagrams contributing to the decay are theW external emis-
sion andW internal emission, thus for theD+ → π−π+π+ decay, the amplitude
is given by [43]:

〈π−1 π+
2 π

+
3 |Heff |D+〉 = GF√

2
VcdV

∗
ud [a(µ)〈π+

2 |ūγν(1− γ5)d|0〉〈π−1 π+
3 |d̄γν(1− γ5)c|D+〉

+b(µ)〈π−1 π+
3 |d̄γν(1− γ5)d|0〉〈π+

2 |ūγν(1− γ5)c|D+〉] + (π+
2 ↔ π+

3 ),(3-14)

where the two terms corresponds to a colour allowed and suppressed con-
tributions multiplied by the coefficients a(µ), b(µ), which are related to the
coefficients C1 and C2 via perturbative QCD according to

a(µ) = C1(µ) + 1
Nc

C2(µ)

b(µ) = C2(µ) + 1
Nc

C1(µ), (3-15)

where Nc = 3 is the number of colours. One phenomenological treatment of
the factorised matrix elements is by using form factors [44–46].

In terms of the π−π+ S− and P−waves, the decay amplitude can be
written as

〈
π−π+π+ |Heff |D+

〉
= AS +AP , (3-16)

in which AS and AP are the S− and P−waves π+π− amplitudes to be written
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in terms of the scalar and vector form factors and given by [42]

AS (s12, s13) = eS1
(
m2
D − s12

)
F ππ

0n (s12) + (s12 ↔ s13) (3-17)

AP (s12, s13, s23) =
[
eP1 + eP2 F

Dπ
1 (s12)

]
(s13 − s23)F ππ

1 (s12)

+ (s12 ↔ s13)
. (3-18)

where the complex parameters eS1 and eS,P2 assume any nonfactorizable correc-
tions depending on the spin of the π−π+ pair, F ππ

0n and F ππ
1 (s) are the scalar

and vector ππ form factors, detailed in [42, 43] and FDπ
1 is the vector D → π

form factor given by an analytical expression.
Generically, form factors f(s) are analytic functions on the complex s

plane except for a cut along the positive real axis starting from the two-
particle threshold sth = (mπ +mπ)2. For s > sth the form factors have nonzero
imaginary parts while for s < sth they are real functions. In addition, they
obey the Schwartz principle, f(s)∗ = f(s∗) [31], where s is a complex variable
and s∗ denotes the complex conjugate of s. Using a Cauchy representation,
f(s) can be written as

f(s) = 1
2πi

∫
C
ds′

f (s′)
s′ − s

, (3-19)

where the contour of integration is shown in Figure 3.8. In the limit where the
radius goes to infinity we obtain

f(s) = 1
2πi

∫ ∞
sth

ds′
∆f (s′)
s′ − s

. (3-20)

The contribution from the infinite circle is assumed to vanish and ∆f =
f(s′ + iε) − f(s′ − iε) is the discontinuity across the cut proportional to the
imaginary part of f(s). More explicitly, from the Schwartz principle, one could
write

f(s′ − iε) = Re f(s′ + iε)− i Im f(s′ + iε), (3-21)

thus the discontinuity is proportional to the the imaginary part of f(s) on the
upper rim of the cut

∆f = f(s′ + iε)− f(s′ − iε) = 2i Im f(s′ + iε) (3-22)
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s

Branch

sth

Re

Im

Figure 3.8: Contour of the integration.

Therefore, we can write the dispersion relation

f(s) = 1
π

∫ ∞
sth

ds′
Im f (s′ + iε)

s′ − s
. (3-23)

The form factor above the threshold, i.e s > sth = (mπ +mπ)2, is obtained by
approaching the real axis from above the cut f(s) = limε→0+ f(s+ iε), yielding

f(s) = 1
π

∫ ∞
sth

ds′
Im f (s′)
s′ − s− iε

. (3-24)

where Im f(s′) is evaluated on the upper rim of the cut. From this equation we
observe that the knowledge of Im f(s) for all values of s implies the knowledge
of the full function f(s). Recalling that the form factor is a complex function,
it can be generally written as

f(s) = |f(s)|eiδ(s) (3-25)

and, since δ(s) is real, Eq. 3-25 implies that Im f(s) = |f(s)| sin δ(s) =
tan δ(s) Re f(s)Θ (s− sth) where Θ is the Heaviside function ensuring that
f(s) is real on the real axis for s < sth. By using this relation in Eq. 3-24, we
obtain

f(s) = 1
π

∫ ∞
sth

ds′
tan δ (s′) Re f (s′)

s′ − s− iε
(3-26)

which determines f(s) up to a constant factor, the normalisation that can
be calculated considering other conservation laws or by using effective field
theories. Summarising all the discussion so far, the form factor f(s) is analytic
in the cut plane, it has a branch point at s = sth, f(s) is real for s < sth, and,
for s > sth, on the upper rim of the cut the phase of f(s) is δ(s).
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The results derived so far have no precise knowledge of the phase δ(s),
however, any information about the phase is required otherwise they are not
useful. One important result, known as Watson’s theorem [28], states that,
within the elastic approximation, the phase of the form factor is equal to the
corresponding scattering phase. Therefore, the discontinuity across the can be
written as [45]

disc f(s) = f(s+ iε)− f(s− iε) = f(s)e−iδ sin δ, (3-27)

given the isospin and angular momentum. A solution to this unitarity relation,
considering the analytic properties discussed before, is given by

f(s) = P (s)Ω(s), (3-28)

where P (s) is a polynomial which is not fixed by unitarity and the Òmnes
function Ω(s) [47], determined by the phase shift according to

Ω(s) = exp
[
s

π

∫ ∞
sth

ds′

s′
δ (s′)

s′ − s− iε

]
, (3-29)

with

Ω(0) = 1 and Ω(s) 6= 0 ∀s (3-30)

This phenomenological approach is used in this analysis as an alternative
parametrisation for the P−wave as an attempt to describe the interference
between the ρ(770) and ω(782) via isospin violation. Considering the electro-
magnetic current

jµem = 1
2
(
ūγµu− d̄γµd

)
+ 1

6
(
ūγµu+ d̄γµd

)
, (3-31)

where the first term corresponds to an isovector and the second, an isoscalar
component in which couples to the ω, in which its decay into π+π− is
suppressed by isospin. This effect of isospin violation is included with the
following replacement [44,48–50]

PFVπ (s)Ω(s) −→ PFVπ (s)Ω(s)
(

1 + κems

m2
ω − imωΓω − s

)
, (3-32)

where mω and Γω are the nominal mass and width of the ω contribution. The
parameter κem is fitted to the KLOE data of e+e− → π+π− process [51] with
κem ≈ 1.8× 10−3, obtained from a electromagnetic current, being responsible
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to describe the strength of the mixing amplitude. From the B̄0
d → J/ψπ+π−

analysis [45], the vector current from a dd̄ source is given by

d̄γµd = −1
2
(
ūγµu− d̄γµd

)
+ 1

2
(
ūγµu+ d̄γµd

)
, (3-33)

where the relative strength of the isoscalar component differs from the electro-
magnetic case by a factor of -3, thus κem → κ = −3κem. In principle κ could
be obtained via a fit to the data but instead of setting it free in the fit model,
we use as a fixed value of κ ≈ −5.4× 10−3 using the value of κem from KLOE.
The pion vector form factor, F ππ

1 in Eq. 3-18 corresponding to the left side
of Eq. 3-32, used was obtained from Hanhart [44] and the isospin violating
effect is included according to the right side of Eq. 3-32. The pion vector form
factor used in this analysis including the violating isospin effect is shown in
Figure 3.9 and illustrates the general behavior of the ρ− ω mixing pattern as
will be shown in Chapter 6. This phenomenological model will be used as an
alternative parametrisation for the P−wave in Chapter 8.

Figure 3.9: F ππ
1 magnitude including the isospin violating term.
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4
The LHCb Experiment

The Large Hadron Collider (LHC) [52] is the last stage of the accelerator
complex at CERN, located in Geneva, on the Franco-Swiss border. Constructed
as two 27 km superconducting rings at an underground depth between 45 to 170
m, it is the world’s largest and highest energy accelerator with the objective of
colliding high-energy particle beams, proton-proton, travelling at almost speed
of light. The two beams travel in opposite directions throughout the rings in
ultrahigh vacuum, at a temperature of −271oC, guided by a strong magnetic
field created with dipole magnets to direct and quadruple magnets to focus
the beams.

The LHC was designed to collide beams of protons at
√
s = 14TeV in

center-of-mass energy with a luminosity of L = 10−34 cm−2 s−1, which surpass
the previous record of 1TeV per-beam held by the Tevatron accelerator at
Fermilab in 2009. At four different interaction points, four detectors with
specialised designs are placed giving birth to the four main experiments in
the LHC which each one has its own purpose. When the beams collide, these
detectors start their data taking to be analyzed. An schematic view of the LHC
can be seen in Figure 4.1.

Figure 4.1: CERN accelerator complex [53].

An useful quantity to introduce when dealing with hadron colliders
is the pseudorapidity. It has the important characteristic of being invariant
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under boosts in the z direction, thus meaningful regardless of the longitudinal
momentum fraction, and is defined in terms of the angle (θ) between the
positive direction of the beam axis z and the particle momentum. The
pseudorapidity is given by the following expression

η = − ln
[
tan

(
θ

2

)]
. (4-1)

The four main experiments are ALICE (A Large Ion Collider Experiment) [54],
ATLAS (A Toroidal LHC ApparatuS) [55], CMS (Compact Muon Solenoid)
[56] and LHCb [57].

ALICE is the experiment designed to study heavy-ion collisions (Pb-
Pb or p-Pb) aiming to create the conditions in which matter passes to a
dense quark-gluon plasma state of free partons and study the phenomenon
of confinement in QCD [58].

ATLAS and CMS experiments lie on a energy frontier. Both detectors
are designed with a segmented hadronic and electromagnetic calorimeters with
precise energy resolution and a 4π solid-angle acceptance with the purpose to
primarily study high-pT physics in the central pseudorapidity region (−2 <

η < 2). They are dedicated to analyze decay products of high-mass Standard
Model (SM) and also to perform direct searches for beyond the Standard
Model (BSM) particles such as supersymmetric and dark matter candidates
by looking into missing energy signatures. The most successful contribution
from these experiments was the observation of the Higgs Boson [15, 16] in
2011 and measurements of its spin and couplings [59–61]. Other noteworthy
achievements from these experiments were the measurements of W, Z and t-
quark couplings and cross-sections. Due to their lack of high-precision tracking
close to the interaction point as well as a full instrumentation in the forward
region, ATLAS and CMS are not suited to fully explore flavour physics studies.

The LHCb is the experiment dedicated to study decays of b− and c−
hadrons. It is well suited to investigate the baryogenesis problem, understand
the matter and antimatter difference in our universe, and study rare decays.
Most of the LHCb studies comprises indirect BSM signatures via precision
measurements of quark-flavour observables such as angular observables, CP
asymmetries and CKM parameters [62].

4.1
The LHCb detector

The LHCb detector [63] is a single-arm spectrometer with forward
angular coverage from 15 to 300 mrad in the bending plane and from 10 to 250
mrad in the non-bending plane of the magnet, equivalent to a pseudorapidity
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of 1.9 < η < 4.9, aiming to optimize the quantity of particles reconstructed
in this angular acceptance. It is specially designed to efficiently detect b−
and c−hadrons, therefore, is well suited to investigate indirect BSM physics
through precision measurements of CP violation, angular observables and rare
decays. This angular range is motivated by the fact that, at high energies, the
angular distribution from b and b̄ (or c and c̄) production is close to the beam
pipe, thus, both tracks are produced predominantly in the same forward or
backward direction. An schematic view of this angular distribution of b−quarks
can be seen in Figure 4.2 with the LHCb acceptance in red.

Figure 4.2: Distribution of b or b̄ quarks produced using Pythia 8 [64] at the
LHC (

√
s = 8TeV).

The general purpose of the LHCb experiment is to perform various
precision measurements by working with heavy flavour physics. To distinguish
b− and c−hadrons, trigger and reconstruction algorithms rely drastically on
a efficient reconstruction of primary (PVs) and secondary vertices (SVs), the
point in which the meson is produced from the proton collisions and the point
in which the meson decays into other particles displaced some distance from
the PV, obtaining information about their flight distance, the distance between
the PV and SV. As b− and c−hadrons typically have a long flight-distance,
the SVs are crucial signatures of a heavy flavour decays.

The LHCb was designed to operate with a luminosity of L =
1034 cm−2 s−1, however, the LHCb operates with collisions at a constant re-
duced instantaneous luminosity of L = 2×1032cm−2s−1, that is lower compared
to ATLAS and CMS, shown in Figure 4.3, as a result of focussing the beams at
the interaction point to a lesser degree. The motivation for the use of a lower
luminosity is that LHCb is optimised for one visible interaction per bunch-
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crossing on average and also to avoid any radiation damage in the VELO
surrounding the interaction region, to be described in the next section.

Figure 4.3: ATLAS, CMS, and LHCb integrated luminosity over fill 2651 of
May 2012 [63].

The LHCb detector consists on a series of subdetectors each one with
a different purpose from the interaction point up to an extension of 20m. An
schematic view of the LHCb detector can be seen in Figure 4.4. To perform a
full reconstruction of the process, the subdetectors need to provide information
on the track and vertex reconstruction of b− and c−hadrons, the primary
vertex in which they are produced and the secondary vertex, the point that
they decay, a good mass resolution, a reliable identification of the particle in
the final states, high precision momentum measurements and a efficient online
trigger system in order to be able to separate the events of interest from all
the ones produced in a general pp collision.

In the following section, each subdetector will be described.

4.1.1
The Vertex Locator (VELO)

Located close to the interaction point surrounding the pp interaction
region, the VELO [65] is responsible for providing information about the
coordinate of tracks left by the particles produced in the PV and use them to
localize and reconstruct the secondary vertex. As discussed before, this distance
between primary and secondary vertex is extremely important to distinguish
between beauty and charm hadrons due to their long lifetimes compared to
decays from strong and electromagnetic processes.

The VELO comprises of 21 semi-circular modules with two identical sides
positioned on opposite sides of the beam and a few centimeters space between
each of the modules in the z axis ensuring that each track produced within
the 300 mrad LHCb acceptance interacts with at least four VELO stations.
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Figure 4.4: The LHCb detector layout with the subdetectors indicated [64
DOH]

Each module has two sets of silicon strip detectors, the radial R- sensor and a
azimuthal φ− sensor, oriented orthogonal to each other proving a 3D spatial
information for the reconstruction of vetices and tracks as illustrated in Figure
4.5. The z coordinate is obtained through the position of each modulus in the
experiment. For the primary vertex, the spatial resolution is of 10µm in the φ
direction and 40µm in the z axis, while for the secondary vertex is of 300µm
and 150µm, respectively.

Figure 4.5: VELO R and φ sensor

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 4. The LHCb Experiment 48

4.1.2
The Magnet

The magnet [66] consists on a dipole generating an inhomogeneous
magnetic field corresponding to an integrated bending power of 4 Tm over a
track length of 10m. It is located downstream of the VELO, RICH1, and TT,
and upstream of the rest of the sub-detectors and covers an angular distance
of ±250 mrad in the vertical acceptance and ±300 mrad in the horizontal
acceptance. A charged particle in the presence of this magnetic field experiences
a perpendicular force depending on its momentum.

The magnet consists of two trapezoidal shape coils and allows measure-
ments of charge and momentum of charged particles. The polarity of the mag-
net can be inverted, taking data either when the field is pointing up (“MagUp”)
or pointing down (“MagDown”). By varying this polarity, one can study and
reduce systematic errors in the measurements. An schematic view of the mag-
net is shown in Figure 4.6.

Figure 4.6: Schematic of the LHCb dipole magnet (looking upstream)(Left).
Magnetic field along the z-axis of the detector (Right).

4.1.3
The tracking stations

The tracking system [67] is composed by the VELO and four additional
tracking stations: the Tracker Turicensis (TT) before and upstream of the mag-
net, and three stations T1 − T3 downstream the magnet, each consisting of an
inner (IT) [68] and outer (OT) [69] tracker. This system provides information
about the trajectories of charged particles allowing their reconstruction.
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Tracker Turicensis (TT)

With the purpose of providing information about tracks with low mo-
mentum, the TT is constituted of two stations covering a rectangular area and
each station is composed of four layers of silicon microstrip sensors with the
interior two layers rotated −5o and +5o relative to the first and last vertically
orientated layers as illustrated in Figure 4.7. Each sensor has a 50µm resolu-
tion in the position measurement. The Tracker Turicensis is located between
the RICH1 and the magnet and all four layers are housed in a light-tight, ther-
mally and electrically insulated volume, at a temperature of 5oC, continually
flushed with nitrogen to prevent condensation.

Figure 4.7: Schematic view of the four layers of the Tracker Turicensis stations.

Inner Tracker (IT)

Located in the tracking stations T1 − T3, the Inner Tracker sensors
occupy the central region of the downstream tracking stations where the track
multiplicity is expected to be the highest. Each of the three IT stations consists
on four boxes around the beam axis and each box has four silicon layers
arranged similarly to the TT layers configuration. All boxes have seven modules
but in the upper and lower ones, each module has a single sensor while in the
lateral boxes, each module has two sensors. The resolution on the position is
around 50µm. An schematic view of the IT can be seen in Figure 4.8.
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Figure 4.8: (a) The four boxes of a IT station arranged around the beam pipe.
(b) The four modules comprising a Inner Tracker layer.

Outer Tracker (OT)

The outer tracker T1 − T3 consists of two staggered layers of straw-tube
drift chambers [70]. In these regions the flux of particles is lower than in the
inner tracker stations, designed for less than 10% occupancy at a luminosity
of 2× 1032 cm−2 s−1. When a charged particle passes by, the gas contained in
the tubes is ionised and the charge is collected by an anode in the centre of
the tube. The time taken for the charge to reach the anode upon application
of a current provides information of the trajectory of the charged particle
measuring its relative position within the tube and, together with the magnet
information, it is also possible to determine the momentum. Each tube has an
inner diameter of 4.9mm filled with a gas mixture of Ar (70%), CO2 (28.5%)
and O2 (1.5%) providing a drift-time under 50 ns and a resolution of 200µm.

Each station consists of four modules in which the first and last are
vertically oriented, and the inner modules oriented at−5o and +5o with respect
to the vertical shown in Figure 4.9, as in the TT and IT stations. The entire
OT detector is composed of four layers with 4608 cylindrical straw-tube.

The reconstruction the trajectories through the detectors is done with
a software using all the information left and performing a fit based on the
"Kalman-Filter" method updating the information periodically in order to
improve the quality measured by the χ2 of the fit.

The reconstructed tracks can be classified as: VELO tracks, the ones that
passes only through the VELO exiting the detector acceptance; Downstream
tracks, reconstructed tracks that pass through TT and T1 − T3 and in general
correspond to particles that decay outside the VELO; Upstream tracks, the
ones that passes through VELO and TT; Long tracks, reconstructed tracks that
uses information from all the detectors (VELO, TT, T1−T3), hence they have
a good resolution; and T tracks, reconstructed using only information from
T1− T3, in general they are products of secondary interactions. A summary of
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Figure 4.9: (a) Module cross section. (b) OT straw-tube detector four layers
in the T1 − T3 stations.

the reconstructed tracks can be seen in Figure 4.6(right).

4.1.4
Ring-Imaging Cherenkov System (RICH)

One of the most important information provided by the LHCb detector
is a good identification of particles in the final state like pions, kaons,
protons, electrons and muons. The RICH detectors [71, 72] are responsible
for differentiating these charged particles species allowing the reduction of the
more produced pion backgrounds from kaons and proton final states, and the
separation of final states that are topologically similar. The separation of pions
and kaons is fundamental to study beauty and charm hadrons. A lateral view
of the RICH detectors is shown in Figure 4.10

To correctly identify the particles, the LHCb has three subdetectors
dedicated to this task: two RICH stations associated with a tracking system
to perform the particle identification, the calorimeters to measure the energy
deposited by the particles and identify neutral particles, and the muon stations
to identify muons.

The RICH detectors utilise the Cherenkov radiation, therefore, when a
charged particle passes through a dieletric material, with velocity greater than
the speed of light in the medium, it causes a momentary polarizations and as
the medium relaxes back to ground state, it emits photons (radiation). The
emission of photons form a cone with an angle θc with respect to the trajectory
given by:

cos θc = 1
vβ
, (4-2)

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 4. The LHCb Experiment 52

Figure 4.10: Schematic view of RICH1 (left) and RICH2 (right) subdetectors
with the presence of spherical and plane mirrors.

where n is the refractive index of the material and β = v/vc, the velocity
of the particle (v) relative to the phase velocity of the light in the medium (vc).
For the particle identification, all information from the velocity of the particle
and from the momentum measurement associated to the track is used. The
momentum reconstructed by the tracking system together with the Cherenkov
angle, can be used to discriminate particles of different masses.

Figure 4.11: Left: Cherenkov light angle vs track momentum in RICH1
for isolated tracks. Right: Kaon identification and pion mis-identification
efficiency as a function of track momentum for magnet down 2012 data for
two requirements of the difference in the particle hypothesis log-likelihoods.

Two RICH detectors are used to cover the whole range of momentum
spectra, one located between the VELO and TT (RICH1), and the other
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between T3 and the muon stations (RICH2). The RICH1 is composed by air
gel radiators SiO2 with n = 1.03 and C4F10 with n = 1.0014 and projected to
detect particles in a momentum range from 2 GeV to 70 GeV that emerge with
large polar angles. The second, RICH2, contains gaseous CF4 with n = 1.005
covering a momentum range from 16 GeV to 100 GeV that emerge with
small angles. Both detectors use detectors of hybrid photons to focusses the
Cherenkov light with a combination of spherical and plane mirrors.

4.1.5
Calorimeters

The electromagnetic (ECAL) and hadronic (HCAL) calorimeters [73],
together with two stations SPD(Scintillator Pad Detector)/PS (Preshower
Detector), are responsible to identify and measure the transverse energy ET
and position of the particles that produce electromagnetic or hadronic showers
such as electrons, photons and hadrons when these particles interact with a
dense material. They make the selection of the transverse energy of hadrons
and electrons and photon candidates by communicating this information in
the first trigger level (L0) making a decision 4µm after the interaction point.
Both ECAL and HCAL can be observed in Figure 4.12.

Figure 4.12: Left: SPD, PS and ECAL scintillating pads. Right: HCAL
scintillating pads.

After travelling a certain distance, the particle produces new particles
with lower energy creating a shower and the calorimeters can determine the
energy of the particle responsible for that shower. The produced particle passes
through the scintillators generating photons that can be collected by the
photomultiplier tubes, SPD and PS detectors helping the identification process.
The SPD contributes in rejecting electrons with high transverse momentum in
neutral pion decays and in discriminating electron and photon showers. The
PS is responsible to reject the background from charged pions.

The ECAL is constituted of alternating tiles of 2mm thick lead and
4mm thick scintillator material and a white layer to avoid reflection in the
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scintillator. The purpose of this calorimeter is to measure the energy of
electrons and photons and to reconstruct π0. It is designed to give an energy
resolution of σE/E = 10%

√
E ⊗%1.

The HCAL has the same operating principle than the ECAL, the similar
scintillating tiles are used but oriented parallel to the beam axis, with the
difference that the hadronic showers are determined by the interaction nuclear
length that is greater than the radiation length, the depth of the HCAL is larger
than the ECAL to accommodate the larger hadronic showers. Thus the HCAL
is more dense and intercalates 4mm scintillator plates and 16 mm iron plates.
The purpose of this calorimeter is to measure the energy of photons, neutrons,
pions and kaons and the energy resolution is of σE/E = 80%

√
E ⊗%10.

4.1.6
The muon stations

Since many leptonic and semi-leptonic b− and c−hadron decays are
sensitive to BSM effects, the detection of muons is fundamental for LHCb
analyses. Used to tag the decay flavour in oscillation studies, the muons
system [74–76] requires a good offline performance in identifying muons and
also provides online information to the L0 trigger level.

Figure 4.13: Left: Schematic view of the muons stations. Right: Four regions
comprising each muon station.

The muon system is composed of five stations (M1-M5) which can be
seen in Figure 4.13. The first station is located before the calorimeter in order
to increase the precision in measuring the linear momentum of the muons
identified in the trigger, it provides a higher resolution muon pT measurements.
The following stations are displaced at the end of the spectrometer, where
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only muons can reach. The stations M2-M5 are intercalated with iron filter to
avoid background from hadrons. M2 and M3 stations also have a high spatial
resolution in x whereas M4 and M5 have limited spatial resolution and exist to
indicate penetrating particles. The muon chambers are also divided in regions
R1-R4 due to pile-up.

With the exception of the inner region of M1, which has the highest
occupancy, using Gas Electron Multiplier (GEM), this detector system is
constructed with the technology Multi Wire Proportional Chamber (MWPC).
MWPCs use a gas mixture of Ar, CO2 and CF4 and this chambers produce an
electron shower when a muon passes. The electrons are then taken to the anode
producing an electric signal and the ions are taken to the cathode. GEMs use
mixture of Ar, CO2, CF4 and three metal layers with a high density of holes
to collect the ionized electrons, submitted to high voltage and intercalated
between the anode and cathode.

4.2
The trigger

The LHCb detector uses a hardware L0-level trigger, operating with the
LHC bunch-crossing rate of 40MHz, and two software high-level triggers (HLT1
and HLT2) [77, 78]. Since this rate cannot be all storage, the trigger system
is responsible to reduce it to a few KHz order while selecting only interesting
events.

The L0 trigger requires an event with high transverse energy, ET , from
one of the calorimeters, selecting electrons photons and hadrons, or high pT

from the muon system reducing the output rate to 1MHz at which the detector
can be read out. This information is processed by the L0 decision unit (L0DU)
that approves or not the event after 4µm after beam crossing. Also, high
multiplicity events are rejected using the SPD system to avoid that the HLT
overfull wit a large number of tracks.

One commom classification of the events that can fire the trigger is the
following. If the signal track fires the trigger, it is classified as TOS (Trigger
On Signal), otherwise is classified as TIS (Trigger Independent of Signal).

The transverse energy is given by:

ET =
4∑
i=1

Ei sin θi, (4-3)

where Ei is the energy deposited in cell i and θi is the angle between the
z−axis and a line passing from the mean position of the pp interaction to the
centre of the cell. The L0DU computes the ET deposited in 2× 2 cell clusters
using cells in the same region. These clusters form the L0Hadron, L0Photon
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and L0Electron candidates. To select a muon candidate, the muon trigger
needs a hit in all five stations to select a candidate and the highest and second
highest pT muons that passed to the L0DU are compared to the threshold
for the highest pT (L0Muon) or the product of highest and second highest pT
(L0DiMuon).

After this stage, the events pass to the software trigger level. The data
is sent to an Event Filter Farm (EFF) to run algorithms for HLT. In the
first stage, HLT1, a partial event reconstruction using information from the
VELO and the tracking system can be performed and some requirements
can be imposed to reduce the data rate entering HLT2 where the full event
reconstruction will be done. VELO tracks are matched to tracks in the
downstream tracking stations and a Kalman fit is performed and the quality
of the fit is checked with the χ2.

In HLT2, the HLT1 accepted events are fully reconstructed with more
rigorous dedicated algorithms reducind the rate of accepted events to ∼ 3 kHz
in 2011 and two types of trigger lines are introduced: exclusive, which are
optimised for specific final state; and inclusive, where only generic topological
requirements are imposed on the final state.

4.3
Simulation

In addition to the trigger system and hardware of the LHCb detector, a
fundamental part of the analysis is the simulation using Monte Carlo (MC).
Given a physical process, the desired signal can be generated in order to
be used in a series of important features of any LHCb analysis such as
the determination of efficiencies, set limits on speculative processes, study
systematic uncertainties, investigate biases and constrain background yields
and shapes.

In the LHCb, the data is simulated using the framework Gauss using
specialised programs [79, 80]. At first, the events are generated using Pythia
8 [64] resulting in generic 7 and 8 TeV pp interactions. Starting from hard
processes simulations using parton distribution functions that describe the
relative composition of the protons as a function of the momentum of incoming
proton, outgoing partons are generated. The outgoing simulated partons will
produce showers that, due to QDC confinement, will be responsible to form
colour neutral hadrons. This hadron is decayed using EvtGen [81] and the
events generated pass to the GEANT4 [82, 83] detector simulating their
propagation and interaction with the detector material. To reconstruct events,
Brunel is used and to simulate the trigger stages (L0 and HLT), the Moore
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package is used to simulate.

4.4
Operating conditions

For an accelerator, the two most important numbers are the collision
energy and the luminosity. The energy determines what particles can be
produced in the collisions while the luminosity says how often. Since the
first data taking period, the LHCb operation conditions have been improving
in response to the higher luminosity. During Run 1, protons were collided
at a centre-of-mass energy of 7 TeV in 2011 and 8 TeV in 2012 [84]. The
instantaneous luminosity L is a measure of the number of collisions that take
place in a detector per cm2 and per second [85] given by

L = fN2

4πσ2 , (4-4)
where N is the number of protons in each bunch, σ is the width of the
bunch at the interaction point and f is the bunch crossing frequency. This
quantity can be also expressed in terms of the ε (emittance) and β (amplitude
function) given that β = πσ2/ε. While ATLAS and CMS experiment operate
at a instantaneous luminosity of 1034cm−2s−1 seeing an average of O(10) pp
interactions per bunch crossing, the LHCb operates at 1032cm−2s−1 seeing
O(1). High occupancy leads to difficulties in vertex reconstruction, flavour
tagging and the increase in the combinatorial background levels. The LHCb
luminosity is constant during the data-collection period [86] and Table 4.1
illustrates the luminosity and energies over time for each experiment.

Run Year
√
s (TeV) Integrated Luminosity (fb−1)

ATLAS CMS LHCb
I 2011 7 5.38 5.87 1.14
I 2012 8 23.2 23.2 2.19
II 2015 13 4.21 4.22 0.36
II 2016 13 38.5 41.0 1.88
II 2017 13 50.3 50.2 1.87
II 2018 13 64.9 66.8 2.46

Table 4.1: Centre-of-mass energy and integrated luminosity delivered by the
LHC in pp collisions for each data-taking year.
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5
Data Selection

In this chapter we describe the data selection process to obtain the final
data sample used in the analysis, the determination of the efficiency across
the Dalitz Plot and the parametrisation for the background. The information
provided by the LHCb detectors is combined to reconstruct events. Since there
will be events that are not of our interest some selection criteria are necessary to
enrich the data sample with events containing trueD+ → π−π+π+ decays. This
process starts during the data taking in the online event selection performed
by the trigger systems [87] - hardware and software levels - then on offline
selection performed in two stages - "stripping" then a multivariate analysis.
In order to correct some introduced variations across the Dalitz from the
selection process full LHCb simulations are used. The selection criteria are
chosen to provide a high purity sample without causing too much distortions
across the phase space. For this analysis we use just a fraction of 2012 data
sample for Dalitz fits, of about 200 thousand decays. This is mainly because
of two reasons: the analysis is systematic limited due to physics modeling - no
gain in decreasing statistical uncertainties; the amount of simulation sample
necessary to the efficiency corrections would be huge and again not justified
given the systematic limitation. The data selection process is performed with
the full sample and the subsample of the first 200 thousand events for Dalitz
fits is taken as the last stage before performing fits. Even so, our data sample is
still about 80 times larger than the antecessor analysis from CLEO [8]. Recall
that we label the π− as particle 1 and the other two charged π+ are randomly
chosen as particles 2 and 3, to ensure that they have the same kinematic
distributions.

5.1
Dataset

The dataset used in this analysis consists on a data sample collected by
the LHCb experiment in 2012 during Run I corresponding to an integrated
luminosity of 2 fb−1 and a centre-of-mass energy of

√
s = 8 TeV of proton-

proton, pp, collisions. Part of the data was taken with magnet polarity up and
the other part with magnet polarity down, as indicated in Table 5.1, to avoid
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biases due to the magnet polarity, reducing systematic effects associated to
charge asymmetries.

Luminosity (fb−1)
Magnet Up 1.000± 0.012
Magnet Down 0.988± 0.012

Table 5.1: Luminosity corresponding to the data sample used in this analysis.

5.2
Definition of variables

To identify D-meson decays there are several relevant variables, mostly
based on their topological characteristics and particle identification, used to
analyze the signatures left by the decay products in the detector. These
variables are associated to physical quantities and requirements are imposed
on them in the stripping and final selection in order to separate signal from
background events. The D mesons are produced in the interaction point called
the Primary Vertex (PV) and, after travelling a certain distance due to its
significant lifetime τ = (1040 ± 7) × 10−15s [1], they decay into its products
in the Secondary Vertex (SV). The distance between the PV and SV is called
flight distance (FD) and it is provided with a very good precision by the
VELO detector being responsible to distinguish between B and D mesons.
Some variables have a similar purpose, therefore, they can be divided into the
following groups: variables of pointing, the ones that request that the direction
of the reconstructed D meson point to the PV, variables requesting that the
vertices are well separated, ensuring that for each decay product the trace
won’t point to the PV, and variables for particle identification. Some examples
of variables are illustrated in Fig. 5.1.

x

y

z

ppT
IP

FD

h
h

h

p
θ

PV

SV

Figure 5.1: Topology of the decay D+ → π−π+π+.

The relevant variables that characterize the decay are:
Mass: the invariant mass of the combination of three pion candidates to
reconstruct the mass of a D+ candidate. From 4-momentum conservation, the
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D+ invariant mass is reconstructed using pµD = pµ1 + pµ2 + pµ3 where the left side
represents the D−meson 4-momentum and the right side 4-momenta of the
decay products. The invariant mass is given by

m(π−π+π+) =
√

(pµ1 + pµ2 + pµ3)2 =
√
E2 − ~p · ~p (5-1)

Flight distance (FD): distance between the PV and SV.

χ2
FD: ratio between the flight distance squared and the square of com-

bined uncertainties of the primary and secondary vertex positions.

Impact parameter (IP): minimum distance between the primary ver-
tex and the D+ candidate flight direction.

χ2
IP: difference in the vertex fit χ2 of the primary vertex reconstructed

with and without a given particle.

Transverse momentum (pT ): measurement of the momentum of a given
particle in the transverse direction relative to the beam axis.

Momentum (p): modulus of the momentum of a given particle.

DIRA: cosine of the direction angle which is defined as the angle between
the reconstructed tri–momentum vector of the D+ candidate and the flight
distance direction.

DOCA: the distance of closest approach between any two tracks. For a three-
body decay there are three combinations (DOCA12, DOCA13, DOCA23)
from the pion tracks.

DOCA max: highest DOCA from the previous combinations.

Vertex χ2: χ2 of the secondary vertex fit, to measure the quality of the
vertex formed by the three tracks of the decay.

PTsum: scalar sum of transverse momentum of the three pions.

logIP: logarithm of the ratio between the product of the χ2
IP of the three

pions and the χ2
IP of the D meson.
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log IP = log
(Πiχ

2
IPπi

χ2
IPD

)
(5-2)

PIDK: From the RICH information, for each track the likelihood of being
one of the possibilities is calculated: pion, kaon, proton, electron and muon.
PIDK for a given track is the difference in likelihood for the hypothesis of
kaon and pion.

Track χ2/ndof : χ2 per degree of freedom of the track fit, a measure of
how good the track quality reconstruction is.

POINTING: weighted comparison of transverse momenta of the D can-
didate and its decay products. The transverse momentum of the mother is
defined with respect to its flight direction, whereas for the decay products the
transverse momentum is defined with respect to the z-axis:

POINTING = p sin θ
p sin θ + ΣpTi

(5-3)

5.3
Online selection: Trigger

To select hadronic decays, at the "online" stage, some trigger decision
requirements are imposed during the data taking at hardware (L0) and then
at the software level (HLT). The data collected in the LHCb experiment is
filtered by trigger lines [88, 89] with some selection criteria in L0 and HLT
trigger levels with the purpose of selecting interesting events while rejecting
a huge amount of background events right away. The first is a hardware
based, the L0 trigger, that collects information from the calorimeter and
muon systems aiming to select muons with high transverse momentum and
hadrons, photons and electrons with high transverse energy deposited in the
calorimeters. To reject null events it uses information of the pile-up sub-trigger
and to distinguish different candidates (hadrons, electrons, photons) signatures
left in the detectors are used. The different transverse energy thresholds for
each particle are given in Table 5.2. All information is collected in a Decision
Unit (L0DU) and each particle gets a trigger decision depending on their
specific threshold.

Offline, the events can be labeled as TOS (Trigger On Signal) if they are
triggered by associating the information of the detector and the candidate
signal itself or TIS (Trigger Independent of Signal) if they are triggered
without the requirement to be associated to the candidate signal. At the L0
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Candidate 2012
Hadron ET (GeV) 3.7
Electron ET (GeV) 3.0
Photon ET (GeV) 3.0
muon pT (GeV) 1.76

Dimuon (pT1 × pT2) (GeV2/c2) (1.6)2

Table 5.2: L0 thresholds in 2012

level, the candidates for the decay channel studied are required to be selected
independently of the signal by a combination of L0 lines.

After the L0 level, the accepted L0 candidates are required to pass the
software level trigger divided into HLT1 and HLT2. At the HLT1, a partial
reconstruction and an inclusive selection of signal events is performed. The
inclusive trigger line Hlt1TrackAllL0, described in Table 5.3, requires at least
one of the decay product tracks to be a good quality track, to have a high
χ2
IP and high pT . The reconstruction of tracks is performed at the HLT1 level

using the information provided by the VELO detector and tracking systems
with a three-dimensional pattern recognition. For HLT2, a full reconstruction
of events based on topological characteristics [89, 90] is performed in which
the candidates must pass the dedicated trigger line Hlt2ChamHadD2HHH that
aims to select D+ decays into three charged hadrons, with selection criteria
described in Table 5.4, including requirements on variables for final state
particles, three hadron hhh combination and variables related to the decaying
particle. The trigger selection used is summarized in Table 5.5.

Cuts Value
Track χ2

IP > 16
Track pT (GeV/c) > 1.6
Track p (GeV/c) > 3
Track χ2/ndof < 2
Track IP (mm) > 0.1
Number of VELO hits/Track > 9
Number of missed VELO hits/Track < 3
Number of OT + IT hits/Track > 16
Number of VELO hits < 6000
Number of IT hits > 3000
Number of OT hits < 15000
L0_Decision_Physics

Table 5.3: Hlt1TrackAllL0 trigger line requirements on at least one track.
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Cuts Value
Global Event Cut N. Long Tracks < 180

Track χ2 < 3
final state pT (MeV/c) > 300
particles p (MeV/c) > 3000

χ2
IP > 6

hhh PTsum (MeV/c) > 2800
combination min DOCA (mm) < 0.08

χ2
FD > 175

D± Vertex χ2/ndof < 15
χ2
IP < 12

Mass (MeV/c2) 1800-2040
TOS in any Hlt1Track Line

Table 5.4: Dedicated Hlt2ChamHadD2HHH trigger line.

Trigger level Condition required
L0 D_L0HadronDecision_TIS or

D_L0MuonDecision_TIS or
D_L0ElectronDecision_TIS or
D_L0PhotonDecision_TIS

HLT1 D_Hlt1TrackAllL0Decision_TOS
HLT2 D_Hlt2CharmHadD2HHHDecision_TOS

Table 5.5: Trigger selection applied to the D+ candidates.

5.4
Offline selection: Stripping

After triggered and collected online, the data passes through an offline
selection to further separate events by the physics of interest and reduce back-
ground. The data is processed for reconstruction and the physical quantities
are attributed in the event. The information from the energy measured by
the HCAL and ECAL calorimeters, the hits associated to the track position,
their momentum and the information related to the particle indentification are
reconstructed.

In this stage, the so called stripping selection requirements are chosen
to reduce events that can be identified as background and then improve the
signal significance by applying cuts on the topological variables. This choice is a
compromise between signal efficiency and retention. The D+ → π−π+π+ decay
mode is selected by the exclusive line StrippingDhhh_PPPLine, in which all
particles are reconstructed as pions. Loose initial requirements are imposed
and a summary of the stripping requirements is shown in Table 5.6. Figure 5.2
show the mass spectrum of three pions combination, m(π−π+π+), after trigger
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and stripping selection where the first peak is centered at the D+ mass and
the second at the D+

s mass. Although the background has been reduced after
these stages, we can still observe significant contaminations and to increase
the purity, a further selection is required.

Variable Selection requirement
Final state particles
pT (MeV/c) > 250
p (MeV/c) > 2000
PTsum (MeV/c) > 2800
DOCA max (mm) < 0.5
track χ2

IP > 4
PIDK > 7 for all tracks
Combination cuts
D pT (MeV/c) > 1000
D Vertex χ2 < 30
DIRA > 0.98
D χ2

IP < 12
D χ2

FD > 125
Mass (MeV/c2) 1800-2040
Global Event Cut
Number of tracks < 500

Table 5.6: Stripping 20 cuts for StrippingD2hhh_PPPLine.
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Figure 5.2: Invariant mass distribution of π−π+π+ candidates after trigger
requirements and stripping. The two peaks correspond to the D± at 1870
MeV/c2 and D±s at 1968 MeV/c2 respectively.
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Further offline selection

The remaining background may come from random three-track associ-
ations (combinatorial background) as well as from other charm decays (re-
flections) or partially reconstructed decays with misidentified particles such
as D0 → K−π+, D+

s → η′π, Λc → pπ+π− and D+ → K−π+π+. A fur-
ther selection to remove semileptonic contributions such as D+ → π+π−µ+ν

is applied by requesting the muon veto isMuon=0 and to reduce combinato-
rial background as well as reflections, the particle identification is tightened
to PIDK<-2 for all pion candidates, however a contamination coming from
D+
s → η′π+ is still not removed and a leaves a ρ structure in the background

from η′ → ρ0γ, as will be more explicitly seen in the Dalitz plot distribution of
the background. The D+ mass distribution after this stage is shown in Figure
5.3. From this plot, we observe that although we have managed to reduce the
background even more, we still need a more sophisticated selection to obtain a
higher purity sample and for that, we will need a simulation sample to perform
a multivariate analysis technique.
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Figure 5.3: Invariant mass distribution of D+ →π−π+π+ candidates after
further selection.

5.5
Simulation

Simulated samples are used in this analysis to guide the selection criteria
and to extract the efficiencies across the Dalitz plot, needed further on for
the Dalitz fits. All samples were generated with constant matrix element, as
phase space, i.e. with a uniform distribution through the Dalitz plot, using
Pythia 8 [64, 91]. The simulation of the passage through detector is made by
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GEANT [82,83] and the reconstruction is processed by the same stages as the
data. This is what is called a full LHCb simulation.

To generate large signal simulated samples, we have provided them
with generator level cuts - loose restriction on the tracks and D candidates
momenta and transverse momenta - shown in Table 5.7 and only stored
events that passed the same dedicated trigger lines (Hlt1TrackAllL0 and
Hlt2CharmHadD2HHH). After that, simulated events are required to pass the
selection criteria similar to data (Stripping20 line), except the Particle
Identification criteria [92] (PIDK), since the response of the RICH detectors
is not well modelled in simulations, therefore, a method using calibration data
is necessary.

In the simulated samples, factors such as non-linear effects like magnetic
distortions in the detector, temperature variations, variations in the perfor-
mance of the RICH detectors for different periods of data recording in the
year are not considered. As a consequence of that, the simulation of the PID
variables are not reliable. Instead, the PIDCalib package [92] is used, which
is a data-driven technique, that uses a full set of calibration samples of pions,
kaons and protons. This data-driven procedure provides a calibration to the
particle identification likelihood distributions from a signal sample.

Variable Value (MeV/c)
D candidate pT > 2100
D candidate p > 14000
each daughter p > 2000
each daughter pT > 250

Table 5.7: Generator level cuts for D+ → π−π+π+ decay simulation.

As mentioned, the simulation sample is used in two stages: to guide the
selection and for the efficiencies. In the first case, we need it to be as similar
as possible to the data sample, therefore, the dynamics needs to be emulated
and the kinematics well represented, so we apply dynamical and kinematical
weights. In the second case, we just need to ensure that the kinematics is well
represented, thus only a kinematical weight is applied.

Considering the large amount of available data, the data sample is divided
into two reproducible subsamples, one used for the weighting of the simulation
sample, that is not used for any subsequent stage, and the other half used for
the analysis.
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Fiducial cut

In addition to the stripping and trigger requirements, fiducial cuts are
applied due to the use of the PIDCalib package [92]. Since the RICH has
very limited discrimination above 100GeV/c, we exclude all the candidates in
which any of the daughter tracks are out of the recommended momentum and
pseudorapidity ranges as in Table 5.8.

Variable Cuts
Track η 1.5 < η < 5.0
Track p 3 < p < 100 GeV/c

Table 5.8: Kinematically allowed regions of the p and η phase space as defined
in PIDCalib Package.

PIDCalib

Particle identification (PID) efficiency is determined using the PIDCalib
package [92], consisted on a data-driven technique that uses a full set of
calibration samples of pions, kaons and protons, applied for each event. For any
track, including pions, the PID efficiency is obtained through golden decays
produced in the experiment and reconstructed only from their kinematics
characteristics, without using the RICH detectors. In addition, a correlation
between the kinematic variables of the tracks in the final-state illustrates that
the identification of a track depends on its kinematics. Thus, the PID efficiency
is obtained in bands of the kinematic variables: momentum, pseudorapidity and
number of tracks. Therefore, the PID efficiency for a requirement on pions in
the data sample is extracted by applying this cut on a distributions of pions
in the calibration sample. For each simulated candidate, the PID efficiency is
included via a weight, εPID.

5.6
Reweight Procedure

The simulation sample, as mentioned previously, is necessary for two
purposes. First, to be used as signal input for a multivariate analysis training
(MVA), as will be explained in the next section. Second, to construct the
efficiency map across the Dalitz plot, as will be explained in Section 5.9 , as
will be needed for the amplitude analysis fits. For the second purpose, it is
necessary that the kinematics of the simulated decays is well described; for
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the first both kinematics and dynamics need to be well represented by the
simulation ensuring it to be alike the data.

As mentioned before, the simulated D+ → π−π+π+ decays were gen-
erated with no dynamics. But it can be emulated by obtaining the Dalitz
plot distribution from data, after subtracting the background and using it to
weight the simulated sample. This is done through the sPlot technique [93]. Us-
ing these weights, the simulated sample is now compared to the data to check
for differences in kinematics. If there are still differences between them, as ob-
served in Figure 5.4, a second weight - "reweight" - needs to be performed to
match these distributions. This second weight (kinematic weight) is expected
to be independent of the first (dynamical weight).

Figure 5.5 illustrates the variables after the reweight process indicating
that the simulated D+ → π−π+π+ distributions are now equivalent to the
data. A more detailed discussion about the reweight procedure is described
in Appendix 10. An important comment is that the data used to provide the
weight for the simulation sample is from half of the total data sample, and
then is not used for further analysis to avoid potential biases.
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Figure 5.4: Vertex χ2 and D χ2
IP distributions for D+ → π−π+π+ signal decays

in blue and simulation with dynamical weight in red.
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Figure 5.5: Vertex χ2 and D χ2
IP distributions for D+ → π−π+π+ signal decays

in blue and simulation after reweight (both dynamical and kinematic weights)
in red.

5.7
Final Selection: Multivariate Analysis

In this stage the D+ → π−π+π+ selection is further refined by an offline
procedure aiming to reduce combinatorial background and to get a high purity
sample, minimizing the effects of the eventual background misparametrisation
in the Dalitz fits. Thus, events satisfying the criteria selection so far are
additionally filtered using a multivariate analyser (MVA) based on a Boosted
Decision Tree (BDT) technique [94]. In this analysis we used the framework
called Toolkit of Multivariate Analysis [95] where the algorithms learn with
supervision in the sense that the desired result is known. To determine a
decision boundary in this multivariate space trained events are used. The
strategy comes in two basic stages consisting on a training phase where from
given signal and background samples, the decision boundary is determined
and an application phase where the trained algorithm is applied to data and
a discriminant variable is assigned to each event.

In the BDT the classifier structure consists on a binary tree making
decisions on one variable at a time until the criteria is fulfilled aiming to
provider a further refined classification for each event as signal or background.
This method uses variables that exploit the differences between background
and signal, its discriminant power, allowing a tree to be learned by recursively
splitting the initial sample in many subsamples.

For each variable it is proposed a decision, a requirement on a value
that maximizes the class separation (signal/background) and, based on the
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information gained from the split, it builds regions of increasing purity stopping
when there is no further improvement. The first node receives as input a
full training sample and a requirement, determined by scanning the variable
choosing the best separation of signal/background in N steps, is applied on
one of the input variables creating two sub-samples that serves as input for
the next node. This process goes on until it reaches the maximum number
of requirements and the resulting nodes is classified as signal or background
depending on whether they are primarily made up signal or background events.
In the case of an misclassified event, a higher weight is assigned in the training
of the next tree, making it more likely to make the correct classification. This
procedure is called boosting and makes the stability and performance of the
classifier better. Repeating this training process, we create a forest of decision
trees.

In the training phase, half of the simulation sample is used as the signal
together with kinematical and dynamical weights, as described in the previous
section, while the other half will be used to test the MVA efficiency. The
simulation sample has no PID cut, instead has the appropriate PIDCalib
weights. For the background, data from the mass sidebands [1810, 1830]
and [1910, 1930] MeV/c2 are used. The variables choice is based on their
discriminant power and, typically, variables associated to the pions are not
good choices since they cause distortions in the Dalitz Plot. The variables
request that the D+ candidate points to the PV, a good separation between
PV and SV, well defined trajectories and the decay products don’t point to the
PV. The set of variables used and their distributions are illustrated in Figure
5.6.
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Figure 5.6: Set variables used as input for the MVA training given their
distrimination power.

To perform the MVA selection, three classifiers were tested: BDT (Adapta-
tive Boost), BDTPCA1 (principal component analysis) corresponding to a BDT
with PCA transformations on the input variables and BDTG (Gradient Boost).
The output of the BDT for each classifier is shown is Figure 5.7 and the BDT
response, valBDT, is used as a selection variable such that a requirement on this
variable is chosen as a compromise between the efficiency and purity. To get
a higher purity sample, a tighter value is required although it comes at a high
cost in efficiency. A relevant information is the correlation between the vari-
ables, as in Figure 5.7, since if there were no correlation, linear requirements
would provide a satisfying performance.

1BDTPCA consists on a linear transformation that rotates a sample of data points such
that the maximum variability is visible.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 5. Data Selection 72

Figure 5.7: Correlation matrix for signal (left) and background (right).

The performance of each classifier is evaluated using the receiver operator
characteristic (ROC) curves and is shown in Figure 5.8 displaying the signal
efficiency against the background rejection. If the classifier provides an signal
efficiency of 100% and 100% background rejection, the curve would be ideal and
it would lie in the top–right corner. Comparing the ROC curves for the three
classifiers, we observe that the performances of BDT, BDTG and BDTPCA were
equivalent, therefore there is no specific motivation to choose a determined
classifier. In this analysis we decided to use BDTG which provides a good
separation between signal and background events.

Figure 5.8: ROC curves for the BDT, BDTG and BDTPCA classifiers.
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Figure 5.9: Output, efficiencies and overtraining performances of BDT, BDTPCA
and BDTG respectively.

To test if two samples came from the same underlying distribution we
used the Kolmogorov–Smirnov test in which has an output in the range [0,1].
If the test gets a result 0, it indicates that the samples are not compatible and
if gets 1, the samples are identical.

In order to perform the Dalitz fits, a high purity sample is required. In
this analysis, a sample with purity around 95% is chosen, thus, the requirement
BDTG > 0.7 promotes the desired purity. For higher purities, the efficiency
begins to drop sharply, also bringing stronger deformations in the Dalitz plot.
The accurate yields are evaluated via an invariant mass fit, described in the
next section. In Fig. 5.10 we show the D+ mass spectrum before (left) and
after (right) the BDT cut observing that the background level was significantly
reduced.
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Figure 5.10: π−π+π+ invariant mass distribution before (left) and after (right)
the valBDT> 0.7 requirement applied.

5.8
π−π+π+ invariant mass fit

To determine the signal yield and the estimation of the background, we
perform a fit to the invariant mass spectrum after the final cuts using the data
modeling package RooFit [96]. The mass fit is used to determine the signal
region in which the Dalitz plot fit is to be performed, and is performed in two
steps. At first, the simulation sample is fitted in order to obtain some signal
shape parameters. Then, a invariant mass fit of the data sample is performed
which the signal shape is derived from fixing some of the shape parameters from
simulation sample fit and also including the background parametrisation. For
this purpose we construct a total probability density function (PDF) that takes
into account the signal and background individual parametrisations. For the
simulated sample fit the signal PDF is composed of one Gaussian, which makes
the core of the total PDF, plus two asymmetric Crystal-Balls [97] (Gaussian
core with a power law tail), which make the left and right tails of the signal
shape. The Crystal Ball (CB) function is parametrised by its mean µ, width σ,
power of the tail n and α that indicate a distortion from a gaussian function
according to the expression

CB(m|α, n, µ, σ) = N

 exp
(
− (m−µ)2

2σ2

)
for (m−µ)

σ
> −α

A
(
B − (m−µ)

σ

)−n
for (m−µ)

σ
≤ −α,

(5-4)

where m is m(π−π+π+) (for short notation in the expressions) and
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A =
(
n

|α|

)n
exp

(
−|α|

2

2

)
,

B = n

|α|
− |α|,

C = n

|α|
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(
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2

)
,
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√
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(
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(
|α|√

2

))
,

N = 1
σ(C +D) .

(5-5)

The means of the two CBs and the Gaussian are taken to be the same, the
tails are constrained to be in opposite directions to accounts for both sides of
the distribution and we defined ratios between the width of each CB and the
gaussian (σCB1/σG and σCB2/σG). The gaussian function is parametrised by
its mean and width given by

G(m|µ, σ) = 1√
2π
e−

1
2(m−µσ )2

. (5-6)

The total signal parametrisation is then

Psig(m) = fGG(m) + fCB1CB1(m) + (1− fG − fCB1)CB2(m) (5-7)

where fG and fCB1 are the relative fractions of the gaussian and CB1 functions
and, the fraction of the second CB2 is (1− fG − fCB1). For the MC mass fit,
the fit model is given by:

P = NsPsig, (5-8)
where Ns corresponds to the yield. The mass fit plots from simulation are
shown in Fig. 5.11. The green line represents the gaussian function, the dashed
red is the CB1 and dashed magenta the CB2. The black dots are the simulation
of the reconstructed mass spectrum of the of the D+ → π−π+π+ decays, in
which the both kinematical and dynamical weights are applied including the
BDTG>0.7. The result of the simulated mass fit is shown in Table 5.9.
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Figure 5.11: π−π+π+ mass distribution of the true simulated sample after the
final is applied. The PID, dynamical and kinematical weights are also applied.
Plots with the fit superimposed in linear (left) and log (right) scale.

Parameter Value
α1 0.40± 0.01
α2 −2.26± 0.03

σCB1/σG 1.42± 0.02
σCB2/σG 1.11± 0.02

σG (MeV/c2) 6.48± 0.08
fCB1 0.075± 0.002
fG 0.53± 0.03

µ (MeV/c2) 1870.22± 0.01
nCB1 35.6± 11.4
nCB2 4.0± 0.3
Ns 619513± 787

Table 5.9: Invariant mass fit results for the simulated D+ → π−π+π+ sample.

After obtaining a good description of the signal shape from the simulated
mass fit, an invariant mass fit of the data including the background model is
performed. The background model is given by

Pbkg(m) = exp[λ ·m], (5-9)

where λ is a free parameter. The signal model used is the same as in the
simulated sample mass fit with the parameters describing the tails of the CBs
(α1, α2, nCB1, nCB2), the relative fraction (fG, fCB1) and the ratio between
the width of the CBs and the width of the Gaussian (σCB1/σG, σCB2/σG) set
fixed to the values obtained from the simulated sample mass fit. Only the
common mass and width of the signal PDF and the exponential slope are left
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to float. The fit model is then

P = NsPsig +NbkgPbkg, (5-10)

where Ns and Nbkg are the yields for signal and background, respectively
(although not explicitly shown, Psig and Pbkg are normalised such that their
integrals are equal to one within the main range of the fit). The plots for the
data mass fit are shown in Fig. 5.12 and Table 5.10 summarises the fit results.
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Figure 5.12: π−π+π+ mass distribution of the data sample after final selection
is applied. Plots with the fit superimposed in linear (left) and log (right) scales.

Parameter Value
λ −0.0050± 0.0001

µ (MeV/c2) 1871.50± 0.01
σG (MeV/c2) 6.99± 0.01
Nbkg 134457± 766
Ns 843779± 1026

Table 5.10: Invariant mass fit results for the data D+ → π−π+π+ sample.

For the Dalitz Plot analysis only events within a 2σeff around the peak
are considered where

σeff =
√
fGσ2

G + fCB1σ2
CB1 + [1− (fG + fCB1)]σ2

2 = 9.0 MeV/c2. (5-11)

The signal region is [1853.51, 1889.51] MeV/c2 and the purity in the signal
region 95.28% within a 2σeff window and a total of 815981 candidates.

The Dalitz plot of the events within the signal region to be fitted is shown
in linear and log scales, in Fig 5.13, defined in terms of the two invariants
s12 = sπ−1 π

+
2

and s13 = sπ−1 π
+
3

computed such that the invariant mass of
the candidate is constrained to be the nominal D+ mass, by adjusting the
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pion momenta within errors, using the DecayTreeFitter package. To perform
all Dalitz fits, we used just a fraction of the total sample, consisting in the
first 200 thousand events from the full sample of about 900 thousand events
due to simulation size limitations (about 600 thousand events) and expected
systematics from the amplitude model.
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Figure 5.13: D+ → π−π+π+ containing about 900k in linear, log scales, and
200k events respectively.

KS veto

One non negligible contamination is the decay D+ → KSπ
+, with

KS → π−π+ that can be visualised in the phase space as a thin line at
s12 or s13 near 0.25 GeV2/c4. Instead of parametrising, its exclusion on each
axis of the Dalitz Plot is done through the veto of candidates in the region
0.235 < s12,13(π−π+) < 0.25 GeV2/c4.

5.9
Efficiency

To perform any Dalitz plot fit, it is necessary to construct a signal
efficiency map to account for acceptance effects introduced by the detector.
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The efficiency is computed as a function of the Dalitz plot coordinates and
determined from the simulation sample generated with a constant matrix
element, as a uniform distribution across the Dalitz plot. If it presents any
non-uniformity after the selection process, it stems from the selection and
reconstruction process. Therefore, it needs to be considered in the adjustments.
This correction is included via the efficiency map across the DP consisted
on a histogram that is smoothed by a 2D cubic spline and determined by
combining simulation and data-driven methods. The simulated events are
restricted to lie in the same mass window as the data signal and with the same
selection criteria - reconstruction, (L0+HLT1+HLT2) trigger and stripping
requirements, reweight, tracking correction and MVA selection - with the
exception of the PID, using instead the PID from the PIDCalib package [92].
Since it is known that the performance of PID requirements is not well
described in the LHCb simulation, their efficiencies are computed directly from
calibration samples.

The total efficiency is calculated as using εselection, the offline selection
efficiency, determined from full simulation sample in which the same selection
criteria are applied, and εPID is the particle identification efficiency determined
from calibration data using the PIDCalib tool. For each simulated candidate,
the PID efficiency is included via a weight εPID.

The strategy to generate the acceptance is the following: a histogram is
filled with the simulated events. Since the sample of full LHCb simulation was
generated with a phase space distribution, the efficiency at a given position
in the Dalitz plot is simply the height of the bin of the event. Bins near the
border of the Dalitz plot may be only partially contained in the phase space,
thus the efficiency in these bins is artificially lower. To deal with this, we divide
the weighted histogram by a histogram from a very large simulated sample
with uniform distribution. The final acceptance is the one obtained from the
division of both histograms with same binning: the histogram containing all
the selection criteria plus PID and kinematical weights divided by the one
with the distribution of the unbiased generated events. This procedure is done
with a 30 × 30 bins histogram. To deal with the statistical fluctuation, a 2D
cubic spline is used to produce a high-resolution smoothed histogram, which
is used in the fit. The spline procedure is based on the code LauCubicSpline
from Laura++ [98].

The final efficiency map is shown in Fig. 5.14 and is the one used
afterwards in Chapters 6,7 and 8. From the efficiency map we observe that
it is mostly uniform with exception of regions in the corners corresponding to
pions with low transverse momentum, events that the efficiency is low.
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Figure 5.14: Final smoothed efficiency map of D+ → π−π+π+ to be used in
the Dalitz fits.

5.10
Background Model

After performing a MVA for final selection obtaining a high purity sample
(95.28%), the remaining 4.72% of background events need to be parametrised
and included in the Dalitz fit. The background model is expected to be
mainly combinatorial and determined from the mass sidebands of the D+ →
π−π+π+ signal, [1810,1830] MeV/c2 and [1910,1930] MeV/c2 . By looking
at the sidebands separately, one may observe that the left sideband has more
structures while the right wing has a more smooth distribution, as illustrated
in Fig. 5.15. We observe a structure corresponding to a ρ0(770) coming from
the D+

s → η′π+ contamination in which η′ → ρ0γ. The background within the
signal region is assumed to be a composition of these two, so they are added.
The exact proportion is not known and is assumed to be, in principle, 50% of
each sideband. This unknown combination of sidebands is the main reason for
asking such high purity (95%), such that the systematic uncertainties coming
from the background are expected to be small. A spline procedure is used to
obtain a smoothed histogram using LauCubicSpline from Laura++ [98]. The
background histogram after the spline procedure is shown in Fig. 5.16, and it
is the one to be used further on in Chapters 6,7, and 8.
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Figure 5.15: Dalitz plot distribution of the background from Left (left plot)
and Right (right plot) sidebands.
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Figure 5.16: Dalitz plot distribution of the background from both wings after
the spline procedure.
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6
Isobar Model

Three-body non-leptonic decays usually proceed via short–lived interme-
diate resonant states and a way to understand the underlying dynamics and
reveal the structures involved is via a Dalitz Plot analysis. A sketch of such
processes is shown in the left plot in Figure 6.1, in which the D meson decays
into a stable pseudoscalar meson p3, referred to as the companion particle,
and an intermediate resonant state R. The process D → Rp3 is what is called
a quasi two-body state. The unstable resonant state subsequently decays, via
strong interactions, into two pseudoscalar mesons, p1 and p2, forming, together
with p3, the three-particle final state. Furthermore, a contribution where the
three mesons are directly produced, in which no resonant state is formed, is
also possible and referred to as a non-resonant (NR) decay, shown in the right
plot in Figure 6.1.

D

P3

P2

P1

R
D

P3

P2

P1

Figure 6.1: Representation of three-body resonant (left) and non–resonant
(right) decays.

We aim to describe the transition amplitude of decays proceeding through
intermediate resonant states in the form

D → Rp3 R→ p1p2, (6-1)

where R represents a resonant state that decays into particles p1 and p2.
To study and understand the possible resonant sub-structures of hadronic

decays, the most traditional and simple framework is the so called Isobar
Model [99,100]. In this phenomenological approach, the total decay amplitude
is written as a coherent sum of two successive two–body decay amplitudes
given by:

A = aNRe
iδNR +

∑
i

aie
iδiAi(s12, s13) , (6-2)
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in which the first term accounts for the non-resonant contribution (NR) as-
suming a constant amplitude (no dynamics), and the summed terms represent
the possible resonant amplitudes that could be produced in the process. Each
term in this expression contributes with a complex coefficient in which ai is
the magnitude of the i-th channel, and a phase δi, both extracted by a fit to
the data. It is important to notice that this complex coefficient is fixed for one
amplitude, typically we choose a dominant narrow peak, and we measure the
other complex coefficients with respect to this reference choice.

To construct the amplitude for mode i, Ai(s12, s13), that describes the
properties of the ith resonant contribution, some considerations are required.
Given subsequent processes in Eq. 6-1, each two-body process is represented
by a vertex in which momentum and angular momentum are conserved and a
Lorentz invariant amplitude can be written by contracting the available four-
momenta and polarization vectors. For each vertex we also include a form
factor due to limitations in describing low-energy strong interactions, and for
the resonance dynamics, we include a propagator term. In the most general
way, the total three-body decay amplitude is written as:

Ai (D → (Ri → p1p2) p3) = A(D → Rip3)× P J
i ×A(Ri → p1p2) (6-3)

= 〈Rip3|D〉 × P J
i × 〈p1p2|Ri〉,

where the factor A(D → Rip3) is the amplitude from the D meson to
Rip3, PR ≡ P J

i accounts as the resonance propagator, usually taken to be
a Breit–Wigner function, described in more details later in this chapter,
A(Ri → p1p2) is the amplitude from the resonance state Ri to p1p2 and J

is the spin of resonance. Both A(D → Rip3) and A(Ri → p1p2) processes
incorporate angular information, considering angular momentum conservation
in the transition, and energy dependence expressed with form factors.

For instance, consider a spin 1 resonant state. Recalling that the ampli-
tude must be Lorentz invariant and linear in the spin function, we can con-
struct the terms in Eq. 6-3 according the following strategy. For the amplitude
〈Rip3|D〉, the available four-vectors are the four-momenta pµ3 and the polariza-
tion vector of R, εµ, therefore a Lorentz invariant amplitude is obtained from
the scalar product of these four-vectors given by the following expression:

〈Rip3|D〉 = FD,Rip3(p3)µε∗µi , (6-4)

where FD,Rip3 is the form factor of this transition. For the amplitude 〈p1p2|Ri〉,
the available four-vectors are: p1, p2 and the polarization vector εµ(λ, pR),
where λ = −1, 0,+1 for J = 1 and pR = (p1 + p2). Considering that the
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amplitude is linear in the spin function, only the scalar products ε ·p1 and ε ·p2

will contribute, moreover, εµpµR = 0 since εµ does not have a time component.
Therefore, the amplitude is is given by

〈p1p2|Ri〉 = FRi,p1p2(p1 − p2)νενi , (6-5)

where FRi,p1p2 is the form factor of this transition.
Summing the contributions and over all the possible λ values, for a spin-1

resonance, the decay amplitude is given by

Ai (D → (R→ p1p2) p3) = FR,p1p2FD,Rp3

∑
λ

ε∗µλ ε
ν
λ (p1 − p2)ν (p3)µ × PR, (6-6)

In addition, we can use the following relation for polarization vectors

∑
λ

ε∗µλ ε
ν
λ = −gµν + pµRp

ν
R

p2
R

, (6-7)

where gµν is the Minkowski metric tensor. In the reference frame of R, one can
recall the projection operator P µν

1 = δij and ~p1 = −~p2, rewriting the amplitude
as:

AR (D → (R→ p1p2) p3) = FR,p1p2FD,Rp3 (−2−→p3 · −→p1)× PR. (6-8)

The generalization of resonance states in terms of their spin can be done by
using the Zemach tensor formalism [101–103]:

AR (D → (R→ p1p2) p3) = FR,p1p2FD,Rp3 (−2 |−→p3 | |~p1|)J PJ (cos θ13)× PR,(6-9)

where θ13 is the angle between the particles p1 (π−1 ) and p3 (π+
3 ) in the

rest frame of R, (π−1 π+
2 ) system, P J(cos θ13) is the Legendre polynomial

of order J and J is the spin of the resonance. The spin dependent factor,
(−2 |−→p3 | |~p1|)J PJ (cos θ13), represents the angular part of the decay amplitude
and the expressions for J = 0, 1, 2, 3 are shown in Table 6.1. In all what was
written above, the resonance was assumed to be formed in the (p1, p2) system,
but similarly it could have been formed in the (p1, p3) system.

6.1
Angular distributions

The angular information is described using Zemach tensors formalism
[101–103] resulting from the angular momentum conservation between the
companion meson, p3, and the resonance, therefore, it depends on the spin
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of the resonance. This Lorentz invariant function is defined using the Legendre
polynomial of order J in terms of the angle θ13 in the rest frame of R and is
summarized in Table 6.1.

Resonance Spin Angular Distribution
0 1
1 −2~p1 · ~p3

2 4
3 [3(~p1 · ~p3 )2 − (|~p1 ||~p3 |)2]

3 −24
15 [5(~p1 · ~p3 )3 − 3(~p1 · ~p3 )(|~p1 ||~p3 |)2]

Table 6.1: Angular Distributions from Zemach tensor formalism.

6.2
Blatt–Weisskopf barrier factors

The factors FD,Rp3 and FR,p1p2 in Eq. 6-9 represent penetration effects due
to the finite extend of the particles involved in the process. While fundamental
particles are considered as pointlike, bound states of quarks must have a
finite spatial extent creating a potential well that limits the maximum angular
momentum.

These factors are parametrised by Blatt–Weisskopf barrier form factors
[104] defined in terms of z = |~p | r that depend on the effective radius r of
the barrier and the decay momentum |~p | in the rest frame of the parent D.
Considering that we have two form factors, one accounting for the transition
D → Rp3 and the other for the transition R→ p1p2, the values for the barrier
radius can be different and are taken to be rFD,Rp3

= 5.0 GeV−1 in the parent
form factor case and rFR,p1p2

= 1.5 GeV−1 for the daughter form factor. The
expressions for J = 0, 1, 2, 3 are given by

Fr(z)J=0 = 1 , (6-10)

Fr(z)J=1 =
√

1
1 + z2 ,

Fr(z)J=2 =
√

1
z4 + 3z2 + 9 ,

Fr(z)J=3 =
√

1
z6 + 6z4 + 45z2 + 225 .
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6.3
Dynamical functions for resonance propagators

Recalling Eq. 6-9, PR corresponds to the resonance propagator, usually
described by a relativistic Breit–Wigner function, but other possible parametri-
sations are also used. For the D+ → π−π+π+ decay, the expected contributions
are: ρ(770)0, ω(782), f0(980), f2(1270), ρ(1450)0, f0(1500), σ(500), f0(1370).
The most relevant lineshapes used in this analysis are described below.

Breit–Wigner Lineshape

From Feynman rules for a massive intermediate resonance, the propaga-
tor can be written as

BW = i

s− Σ(s) , (6-11)

where Σ(s) = m2
0(s) + im0(s)Γ0(s) is the self-energy of the intermediate state,

m0 is the mass of the propagator and s = m2 is the invariant mass squared of
the two-body system to which the resonance decay. In the case of narrow and
isolated resonances m0(s) is well approximated by a constant. The relativistic
Breit-Wigner lineshape (RBW) [105] is the most commonly used to describe
resonances and it is well suited for narrow intermediate states. Its expression
is given by

PR(m) = 1
(m2

0 −m2)− im0Γ(m) , (6-12)

where m0 is the nominal mass of the resonance, m2 is the two-body invariant
mass corresponding to the two particles to which the resonance decays, for
instance, in the case of D+ → π−π+π+, it corresponds to the π+π−system. For
a resonance decaying into spin-0 particles, the dependence of the decay width
on m =

√
s is expressed by

Γ(m) = Γ0

(
p

p0

)2J+1 (
m0

m

)
F 2
r (z)

F 2
r (z0) , (6-13)

where Γ0 is the nominal width of the resonance, J is the quantum number of
angular momentum, that due to angular momentum conservation the two-body
final state must have angular momentum equal to the spin of the resonance, p
is the resonance’s daughter momentum, p0 is the momentum calculated when
m = m0 and F 2

r (z0) is the Blatt–Weisskopf barrier factor, also calculated at
p0.
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Within the Isobar approach, the sum of RBW functions is well suited
when the resonances are narrow and isolated. In the case of broad overlapping
resonances, this sum violates two-body unitarity [29].

Flatté Lineshape

The Flatté lineshape [106] is commonly used for resonances whose
invariant mass distribution lies close to a two-particle threshold, such as the
light scalar f0(980) whose mass is close to the K−K+ threshold. To account
for this effect the parametrisation of the Breit–Wigner function is modified
into the following expression:

PR(m) = 1
m2

0 −m2 − im0(g2
ππρππ + g2

KKρKK) . (6-14)

The coupling constants gππ and gKK are the f0(980) couplings to π+π− and
K+K− final states respectively (gππ = 0.165 GeV−1, gKK = 4.21gππ GeV−1

[107]). The phase-space factors ρ are given by Lorentz-invariant phase space

ρππ = 2
3

√√√√1− 4m2
π±

m2
π+π−

+ 1
3

√√√√1− 4m2
π0

m2
π+π−

, (6-15)

ρKK = 1
2

√√√√1− 4m2
K±

m2
π+π−

+ 1
2

√√√√1− 4m2
K0

m2
π+π−

. (6-16)

Complex Pole Lineshape

In addition to the Breit–Wigner parametrisation, the σ(500) resonance
can be also described by a complex pole lineshape given by [108]:

PR(m) = 1
m2
σ −m2 , (6-17)

where mσ = (0.47 − i0.22) GeV/c2 is a pole located in the complex s =
m(π−π+) plane [109].

Nonresonant term

A non-resonant term consists in the process where the mother particle, in
this case the D meson, decays directly into the three-body final state without
producing intermediate states. The simplest approximation is to parametrise
this contribution using a flat function that populates the whole phase space
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in a homogeneous way, therefore usually assumed to be a constant and set to
1. However, more sophisticated models for the non-resonant amplitude have
been studied [32].

Gounaris–Sakurai lineshape

Commonly used to describe broad resonances decaying into two pions,
such as ρ0(770) and ρ0(1450), this lineshape is a modification to the Breit–
Wigner with a width depending on the di–pion invariant mass calculated
according to Gounaris and Sakurai (GS) [110] given by

PR(m) = 1 + Γ0d/m0

(m2
0 −m2) + f(m)− im0Γ(m) , (6-18)

where

f(m) = Γ0
m2

0
p3

0

[
p2 (h(m)− h(m0)) +

(
m2

0 −m2
)
p2

0
dh

dm

∣∣∣∣∣
m0

]
, (6-19)

The function h(m) is given by

h(m) = 2
π

p

m
ln
(
m+ 2p

2mπ

)
, (6-20)

with dh

dm

∣∣∣∣∣
m0

= h(m0)
[
(8p2

0)−1 − (2m2
0)−1

]
+ (2πm2

0)−1 , (6-21)

From the normalization condition at PR(0), the parameter d = f(0)/(Γ0m0) is
given by

d = 3
π

m2
π

p2
0

ln
(
m0 + 2p0

2mπ

)
+ m0

2π p0
− m2

πm0

π p3
0

. (6-22)

ρ− ω mixing lineshape

Usually, the ρ(770) contribution is well parametrised with a GS or RBW
function, however from the π+π− invariant mass spectrum shown in the right
plot in Figure 6.2, it is clear that not only we observe a significant contribution
of ρ(770)0, but an interesting effect arises from isospin–violating interactions
allowing a decay via the ω(782) into π−π+ [111]. This effect causes a distortion
in the lineshape creating an interference pattern in the ρ − ω region and
the observation of this effect occurs either if both amplitudes are included
separately as individual contributions or if the ω(782) is introduced in the
ρ(770)0 amplitude via a mixing lineshape [112]. In the case where they are
included as individual contributions, we use a RBW lineshape for the ω(782)
and a GS or RBW for the ρ(770). On the other hand, by using a mixing
lineshape both contributions are accounted and the interference pattern is
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governed by a complex mixing parameter. The mixing amplitude is given by:

Pρ−ω = Pρ

[
1 + Pω∆|B|exp(iφB)

1−∆2PρPω

]
, (6-23)

where Pρ corresponds to ρ(770)0 using a GS lineshape, Pω to ω(782) using
a RBW lineshape, |B| and φB are the parameters, magnitude and phase
respectively, responsible to reproduce the interference pattern obtained by
a fit to data to avoid any theoretical biases, and ∆ = δ(mρ + mω), with δ

governing the electromagnetic mixing of ρ(770) and ω(782) [35]. Since ∆2 is
small, this term can be ignored in the denominator. From previous analyses
it has been found |δ| = 2.15 ± 0.35 MeV/c2 [113], |δ| = 1.57 ± 0.16 MeV/c2,
and arg δ = 0.22± 0.06 [35], illustrated in the left plot in Figure 6.2 from the
e+e− → π+π− analysis.

Figure 6.2: π−π+ invariant mass in the ρ− ω region from e+e− → π+π− from
CMD [35] analysis (left) and from D+ → π−π+π+ candidates from LHCb data
(right).

This interference pattern depends on the decay channel, therefore the
mixing parameters are not expected to be the same in all cases. From the π+π−

invariant mass spectrum of D+ → π−π+π+, the mixing pattern does not look
as that from the e+e− case in which, instead of a GS distorted with a sudden
decrease, it seems to have more of a two peak profile; therefore, the mixing
parameters are expected to be different. By ploting the lineshape from Eq. 6-23
and varying the mixing parameters, by inspection, we could in principle expect
them to have values close to the ones indicated in Figure 6.3. An alternative
approach is to include both ρ(770) and ω(782) contributions independently via
Isobar model and observe the interference effect. Given that the mixing profile
is related to the decay channel, in addition to the CMD result, other channels
have been studied by the LHCb in which different interference patterns for the
ρ− ω have been observed [114–116].
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Figure 6.3: ρ − ω lineshape from Equation 6-23 for the values of |B| and φB
given in the legend.

6.4
Fit strategy

The purpose of perfoming an amplitude analysis is to determine the
resonant structure in multi-body decays. The total amplitude is written as

A (s12, s13) = AS−Wave (s12, s13) +
∑

spin1,spin2
aie

iδiAi (s12, s13) + (s12 ↔ s13) ,

(6-24)
where the summed terms correspond to P− and D−waves included via Isobar
Model and AS−Wave is the amplitude of the S−wave to be parametrised using
Isobar Model, K−Matrix or QMIPWA. For each approach, the amplitude
model depends on a set of parameters and their optimum values are obtained
using a maximum likelihood fit method.

The maximum likelihood fit provides a parameter estimation given a set
of data points x : x1, x2, ..., xN . The model describing the distribution of the
data points is called a probability dentisity function (PDF) PDFtot(~x; ~θ) that
depends on a set of variables ~x and the parameters ~θ : θ1, θ2, ..., θnpars. Based
on ~x, this method provides an estimation of the optimum set of values for θ.
Defining the likelihood function:

L(~θ) =
N∏
i=1

PDFtot
(
~x; ~θ

)
, (6-25)

the optimum set of parameters is such that maximizes L(x; θ). Alternatively,
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we can define the quantity FCN to be minimized as:

FCN = −2 logL = −2
N∑
i=1

logPDFtot(~x, ~θ) (6-26)

For the Dalitz plot fit, the variables ~x are the s12 and s13, and the parameters
θ will depend on the model being tested. The total PDF is a sum of the signal
and the background PDFs. Each term comes with their relative fraction as a
multiplicative factor. For the signal PDF, one has to consider the variation of
the efficiency across the Dalitz plot. The total PDF is written as

PDFtot(s12, s13, ~θ) = fsPsig(s12, s13) + (1− fs)Pbkg(s12, s13), (6-27)

where Psig(s12, s13) represents the signal PDF and Pbkg(s12, s13) corresponds to
the normalised background PDF. The expression for the Psig(s12, s13) is given
by

Psig (s12, s13) = |A (s12, s13)|2 ε (s12, s13)∫∫
DP |A (s12, s13)|2 ε (s12, s13) ds12ds13

, (6-28)

where ε(s12, s13) is the efficiency map, as obtained in section 5.9. The denom-
inator represents the normalization factor performed needed for Psig to be a
proper PDF.

The free parameters in the fit will be the magnitude ai, phases δi and
shape parameters for spin 1 and 2 contribution, meanwhile, for the S−wave,
when parametrised with Isobar model, the free parameters will be ai’s and
δi’s for each resonant contribution, similarly to the higher spin waves. The
parameters for the K−matrix and QMIPWA approaches are discussed in
Chapters 7 and 8, respectively.

Fit quality and comparison between models

To measure the fit quality we can define the statistical quantity χ2 as:

χ2 =
nbins∑
i=1

χ2
i =

nbins∑
i=1

(N obs
i −N est

i )2

σ2
i

, (6-29)

where the Dalitz plot is divided in nbins bins and for each the number of
observed events, N obs

i , and the number of events estimated from the fit
model, N est

i , are obtained. The number of degrees of freedom (ndof) given
by nbins−npar− 1, in which npar is the number of free parameters of the fit, is
used to calculate the quantity χ2/ndof. We can also define the χ2/ndof range
in which the limits are calculated as [χ2/(nbins−npar−1), χ2/nbins−1]. A value
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of χ2/ndof near to 1 indicate a good fit. The binning of the Dalitz plot can be
made uniformly - the nbins bins with the same size - or adaptively, where the
Dalitz plot is divided such as all nbins bins have the same number of events.
This last one is what we use here. The distribution of χ2 across the Dalitz plot
serve for visual inspection of the regions where the fit model describes better
or worse the data. Although χ2 is positive defined, in the plots, for better
visualization, we attribute χ2 < 0 when the fit model exceeds the data in bin
i. In addition, a residual distribution across the Dalitz plot, illustrating the
Fitted-Data/σ quantity, is used for visual inspection of how the discrepancies
between the model and the data are distributed. Furthermore, the FCN value
obtained in each fit is used to provide a comparison between the models such
that given two fits, the one that has the lowest FCN value indicated a better
solution.

Fit Fractions

The general output of a fit is the returned values of the parameters
that minimizes FCN = −2 logL describing the relative contribution of each
resonant state. However, the values of these complex amplitude coefficients
depend on the amplitude formalism, choice of normalisation and phase con-
vention used in the analysis. Hence, it is not so trivial to compare the values of
these parameters from different analysis using different fit programs. Thus, a
quantity based on convention–independent method can be used to make such
comparisons, the fit fraction (FFi) defined for each component i:

FFi =
∫∫

DP |ciAi (s12, s13)|2 ds12ds13∫∫
DP

∣∣∣∑j cjAj (s12, s13)
∣∣∣2 ds12ds13

. (6-30)

Due to presence of interferences, these fit fractions do not necessarily sum
100%. The sum of fit fractions and interference fit fractions is, by construc-
tion, 100%. The interference fit fractions between two intermediate processes,
symmetrizing i, j and taking i < j, are defined as

FFij =
∫∫
DP 2 Re

[
cic
∗
jAi (s12, s13)A∗j (s12, s13)

]
ds12ds13∫∫

DP |
∑
i ciAi (s12, s13)|2 ds12ds13

. (6-31)

6.5
Results

We now present the results of the D+ → π−π+π+ fits using the Isobar
Model performed using the Dalitz plot fit package LAURA++ [98]. Several
challenges are found in the analysis given the variety of resonant states

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 6. Isobar Model 93

presented in this channel. In particular the scalar sector where difficulties
are encountered due to the presence of many possible contributions which
do not have clear signatures given the absence of angular distribution and
broad structures. Therefore, the inclusion of scalar states needs to be cautious
and one possible approach is to allow many contributions to obtain a better
fit however, this strategy can produce unrealistic interference scenarios. The
strategy to perform the fits is to identify characteristic resonances that are
expected to appear and add/remove them into the model based on the change
in FCN observing the physical content of the solution. Typically, decreases in
FCN of more than ≈ 30 units are considered significant.

As discussed in Chapter 5, the fits are performed using a fraction of the
final samples consisting in 200 thousand events with 95.28% purity. The fit
model is constructed including known resonances by previous analyses for this
channel, however more contributions are tested. Lineshapes are also studied by
allowing mass and width of some resonances to float. According to Equation
6-24, the fitted parameters in this model are the magnitudes and phases for
each contribution. Furthermore, in all fits the ρ(770)0π+ is chosen as reference,
fixing its magnitude to 1 and phase to zero. The lineshapes and parameters
used for each resonance are summarised in Table 6.2 and for resonances which
more than one lineshape is listed, the one used in each model is specified. The
fit fractions are calculated according to the previous discussion, however, the
error of the fit fractions have not been calculated yet.

The goodness of the fit is estimated using the χ2/ndof range and, since
there are two identical pions in the final state, a residual plot is computed
using the folded Dalitz plot represented as shighπ−π+ ≡ shi versus slowπ−π+ ≡ slo,
which are respectively the higher and the lower values among s12 and s13.
The results are shown together with the slo, shi, π+π−, π+π+ projections and
residual distribution. In addition, to ensure that the best minimum was found
and to verify the possibility of multiple solutions, we perform 100 fits starting
from random input parameters and observing the possible solutions, thus, only
the solution with the lowest FCN is shown.

Once the fit is performed, and the optimal set of parameters is found,
a large simulation sample (toy sample) is generated and weighted by the full
PDF, with the parameters from the fit. This toy sample includes simulation
of the background and is also weighted by the efficiency used in the signal fit.
The projections illustrate the data as the black dots, the fit result in blue and
the background in gray.
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Resonance Spin Lineshape m(MeV/c2) Γ(MeV/c2)
σ(500)† 0 Pole/RBW 475 550
f0(980) 0 Flatté 990 70
f0(1500) 0 RBW 1505 109
f0(1370) 0 RBW 1370 350
f0(1710) 0 RBW 1722 135
ρ(770)0† 1 ρ− ω mixing/GS/RBW 775.26 149.1
ω(782)† 1 ρ− ω mixing/RBW 782.65 8.49
ρ(1450)0 1 GS/RBW 1465 400
ρ(1700) 1 RBW 1720 250
f2(1270) 2 RBW 1275.1 185.1
f ′2(1525) 2 RBW 1525 73
ρ3(1690) 3 RBW 1688.8 161

Table 6.2: List of resonant contributions including their spin, lineshape used
and parameters of mass and width set in Laura++. The contribution indicated
with † can be parametrised with either of the lineshapes indicated. The
lineshape used is specified in each model. RBW indicates a relativistic Breit-
Wigner and GS a Gounaris-Sakurai lineshape.

Model I-1

We begin our Dalitz plot analysis by attempting to reproduce results
previously obtained. This first model is composed by resonances according to
the fit model used in E791 analysis: ρ(770)0 included with a GS lineshape,
f2(1270), σ(500) parametrised with a RBW lineshape, f0(980) as a Flatté,
f0(1370), a non resonant term (NR) and ρ(1450) included with a GS lineshape.
All lineshape parameters are fixed, with masses and width set according to
PDG values, while the complex coefficients are free in the fit. The resulting
magnitudes, phases and fit fractions are shown in Table 6.3. In Figures 6.4, we
show the π+π− and π+π+ projections with the fit result indicated by the blue
line and the residuals distribution.

Although the fit projections illustrates clearly some contributions such
as the ρ(770)0, σ(500) and f0(980), the fit quality is very poor, specially at
high masses. The low mass region shows a qualitative agreement, specially the
σ(500) and ρ(770)0 contributions with a reasonable description, while regions
after 1.2 GeV2/c4 present a very low fit quality. Regarding the ρ(770)0 region,
we observe a pattern in the data that a simple GS lineshape is not sufficient to
describe, better seen in the bottom left plot of Figure 6.4. To better describe
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this region the ω(782) must be included. A clear f0(980) signature is also
observed, however, it appears to be centered at a shifted s12(π−π+) value,
possibly due to interferences, thus it is also does not provide a good description
of this resonant state given the large discrepancies between the data and the
fit result. Altogether this model does not describe the data well and the fit
fractions shown in Table 6.3 agree qualitative with E791 result.

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ(770)0 1 [fix] 0 [fix] 26.4
f0(980) 0.547± 0.006 3.12± 0.02 7.9
σ(500) 0.836± 0.013 3.82± 0.02 18.4
f2(1270) 0.621± 0.005 1.45± 0.02 10.2
f0(1370) 0.604± 0.011 2.61± 0.02 9.6
ρ(1450) 0.222± 0.012 7.68± 0.03 1.3
NR 0.655± 0.014 −0.96± 0.02 11.3∑ FF (%) 85.2
χ2/ndof (range) [8.44 - 8.27]

FCN = -1908208

Table 6.3: Model I-1 (E791): component parameters and fit fractions. Uncer-
tainties are statistical only.
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Figure 6.4: Fit results from Model I-1 (E791): slo, shi, s23 and s12 projection.
In addition, a zoomed plot in the ρ0(770) region to better visualize the ρ− ω
interference and the residual plot.

Model I-2

Several fits were performed including different combinations of resonances
in order to achieve a better solution and the best fit, the one with the lowest
FCN, is the following. The progress in starting from Model I-1 until we reach
this best FCN value is shown in Appendix 13 where we present other fit
models tested with a worse FCN compared to Model I-2 but with some regions
better adjusted. In this model we attempt to improve the fit quality at high
masses. We include the ω(782) contribution, in order to produce the observed
interference effect, and in the f0(980) region that was slightly shifted in the
previous result, we allow its mass free in the fit. This model is composed by
ρ− ω included with a mixing lineshape, f2(1270), σ(500) parametrised with a
RBW lineshape, f0(980) with its mass set as free in the fit, f0(1370), f0(1500),
ρ(1450)0 included with a GS lineshape and f0(1710). All other lineshape
parameters not mentioned are set as PDG values and fixed in the fit. The
resulting magnitudes, phases and fit fractions are shown in Table 6.4. In Figures
6.5 we show the π+π− and π+π+ projections with the fit result indicated by
the blue line and the residuals distribution.

At first, we observe that the π−π+ high mass region is better adjusted
compared to Model I-1 but it still present significant issues comparing to the
data. The inclusion of the f0(1710) promoted a significant improvement in
this region but it compromised the description at low masses. Since the phase
space of this decay is tight, the inclusion of the f0(1710) promotes interferences
that improve the high mass part but worsens the low mass region that was
better described before. The result still illustrates qualitative ρ(770)0, σ(500)
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and f0(980) contributions but the fit quality is worse, specially in the σ(500)
region. The ρ−ω interference presents now the form of the interference pattern
with the mixing lineshape, however, it still shows large discrepancies between
the result and the data. The f0(980) is centered at a s12(π−π+) value with a
better agreement and converged to mf0(980) = 911.7 ± 2.0 MeV/c2 but it still
requires a more precise description. When the f0(980) mass was fixed in the
fit, the results showed the previous shifted behavior. In addition, the region
1.1 < s12(π−π+) < 1.7 GeV2/c4 presents a very poor agreement with the data.
The π+π+ projection shows a significant improvement compared to Model I-1
but it still illustrates the same misparametrised region at s23(π+π+) < 0.3
GeV2/c4.

Many other tests were performed including different contributions and
allowing lineshapes parameters free in the fit but this result is the one that
provides the lowest FCN value, thus, the best description of the data with the
Isobar Model.

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 22.7
f0(980) 0.541± 0.006 −3.50± 0.03 6.6
σ(500) 1.031± 0.026 3.57± 0.03 24.1
f2(1270) 0.685± 0.013 1.49± 0.02 10.7
f0(1500) 0.326± 0.023 −2.83± 0.06 2.4
f0(1370) 0.274± 0.027 3.68± 0.06 1.7
ρ(1450) 0.220± 0.012 1.78± 0.06 1.1
f0(1710) 0.359± 0.012 −1.54± 0.07 2.9
mf0(980) 911.7± 2.0 MeV/c2

|B| 0.627± 0.036
φB −3.26± 0.06∑ FF (%) 72.2
χ2/ndof (range) [5.12 - 4.98]

FCN = -1909144

Table 6.4: Model I-2: component parameters and fit fractions. Uncertainties
are statistical only.
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Figure 6.5: Fit results from Model I-2: slo, shi, s23 and s12 projection. In
addition, a zoomed plot in the ρ0(770) region to better visualize the ρ − ω

interference and the residual plot.

Additional tests

As an attempt to improve the fit quality, other contributions were tested
instead of including the f0(1710) such as a non resonant (NR), ρ3(1690),
rescattering and allowing the f0(1370) lineshape parameters free in the fit.
More details about some of the relevant additional tests can be found in
Appendix 13.

– Model I-3: In this model we include a non resonant (NR) contribution.
The model consists in ρ− ω (free mixing parameters), f2(1270), σ(500)
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using a RBW, f0(980) (free mass), f0(1500), f0(1370), ρ(1450)0 using
GS lineshape and NR. The solution converged to FCN=-1908882 and
the fraction of the NR was 5.8%. The inclusion of this contribution did
not provided any improvement in the description of the spectrum at high
masses.

– Model I-4: In this model we include a spin 3 contribution, ρ3(1690).
The model includes ρ − ω (free mixing parameters), f2(1270), σ(500)
using a RBW lineshape, f0(980), f0(1500), f0(1370), ρ(1450)0 using GS
lineshape and ρ3(1690). The solution converged into a FCN=-1908678
and the fraction of ρ3(1690) was 0.2%, therefore, it did not provide any
significant change in the fit.

– Model I-5: In this model we include a rescattering amplitude [117–119]
ππ → KK in a two-body interactions context in which a pair of mesons
produced in one channel will appear in the final state of a coupled
channel. The model included ρ − ω (free mixing parameters), f2(1270),
σ(500) using a RBW, f0(980), f0(1500), ρ(1450)0 using GS lineshape
and rescattering. The solution converged to FCN=-1908625 and the
fraction of rescattering was 0.05%. Compared to the previous results,
the inclusion of the rescattering amplitude did not promote any increase
in the fit quality.

– Model I-6: In this test we allowed the mass and width parameters of
the f0(1370) contribution free in the fit. The model includes ρ− ω (free
mixing parameters), f2(1270), σ(500) using a RBW, f0(980), f0(1500),
f0(1370) (free mass and width) and ρ(1450)0 using GS lineshape. The
fitted f0(1370) mass shifted to a higher value while the width decreased.
This solution provided a significant improvement at high mass regions,
compared to Model I-1, with the fitted parameters of the f0(1370) equal
to mf0(1370) = 1696.9 ± 3.6 MeV/c2 and Γf0(1370) = 150.8 ± 9.6 MeV/c2.
The solution converged to a FCN= -1909083, with a fit fraction of 4.3%
for the f0(1370) contribution. Comparing to Model I-2, the inclusion of
the f0(1710) still promotes a better solution than setting the f0(1370)
lineshape parameters free.

– σ considerations: The same tests have also been performed with a
RBW using with a mass dependent width for the σ(500) resonance given
by

Γ(m) =
√

1− (m1 +m2)2 /m
(
m− sA
M2 − sA

)
(b1 + b2m) e−(m−M2)/A,(6-32)
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in which M is the mass where the phase shift goes through 90o for real
s ≡ m2, the square-root term is the phase space factor, m1 and m2 the
invariant masses of the daughter particles, sA is the Adler-zero constant
and b1, b2 and A are additional constants parametrised according to BES
data [120]. This choice of parametrisation did not provide any significant
improvement in the fit compared to a RBW. In addition, tests with a
pole lineshape presented a worse fit quality than using RBW, therefore,
only the tests with RBW parametrisation have been shown.

– ρ−ω considerations: We also included both contributions individually.
The ρ(770)0 was parametrised with a GS and the ω(782) contribution
with RBW. The fit result illustrates that the inclusion of each contribu-
tion individually is equivalent to include with a mixing lineshape.

The Isobar model is extensively used in Dalitz plot analyses, however, one
has to consider its limitations specially regarding final state interactions, three-
body unitarity and any discrepancy between RBW and true S−Matrix poles.
Given the coexistence of several broad overlapping resonances in the scalar
sector, all the results shown in this section illustrate the problems arising from
this sum of RBW approach. Within the Isobar model, a somewhat qualitative
description of the D+ → π−π+π+ Dalitz plot is obtained, however none of
the fit results provided a good description of the data and other alternatives
must be considered to better describe the underlying dynamics this channel,
specially the scalar sector. The P− and D− waves fit fractions were consistent
in all fits but the S−wave components presented a large variation in the fit
fraction depending on which resonant states are included. As expected, the
σ(500) is all tests was the major contribution in the scalar sector. Several
models were tested including different scalar contributions but no reasonable
fit was obtained.
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K-Matrix Model

The Isobar Model may provide a good description of the dynamics
of three-body decays only under certain limits, when the quasi two-body
resonances are relatively narrow and isolated (from other amplitudes with the
same spin). However, in this analysis we have the opposite case since we are
dealing with a huge amount of charm decays from LHCb data and the π−π+

S-Wave contribution is composed of many broad overlapping resonant states
coexisting at energies below 2 GeV/c2 as indicated in Table 7.1.

Resonance Mass (MeV/c2) Width (MeV/c2)
f0(980) 990± 20 10− 100
f0(1370) 1200− 1500 200− 500
f0(1500) 1504± 6 109± 7
σ(500) 400− 550 400− 700

Table 7.1: π−π+ S-Wave components obtained from PDG [1].

Under this scenario, the Isobar model violates two-body unitarity, i.e.
violates the conservation of quantum mechanical probability current and
other models to describe the π−π+ scalar sector must be considered. One
alternative is to use the K−Matrix formalism [98,121], in principle developed
in the framework of two-body scattering [122] and resonances in nuclear
reactions [123] but it was extended to study resonance production more
generically [124]. This approach based on the idea of writing the physical
amplitude AS−wave as a pole part and a non-pole part, often called slowly
varying part

A = Apole +ASV P .

By using this approach, unitarity is naturally obeyed assuming that the
π−π+ S−Wave does not interact with the rest of the products in the final
state. This is far from obvious in the D+ → π−π+π+ decay. Although here we
have a D meson as the initial state and three pions in the final state, from this
stage on we assume that once the state π+π− is created what follows that is,
the transition ππ → ππ, the initial state π+π− can rescatter into π+π− and
into other final states in a unitary transition and the total π+π− amplitude
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is a sum over all possible rescattering channels. This chapter is dedicated to
describe the formalism and fit results using the K−matrix approach.

7.1
Basic Formalism

In the scattering formalism, a general transition between a given initial
to a final state can be written in terms of the scattering S-Matrix according
to

S = 〈f |S |i〉 = I + 2i 〈f |T |i〉 (7-1)
where the first term represents the case in which there is no interaction
between the initial and final states and the second when there is any interaction
represented by the transition matrix T . The factor 2i is conventionally used
such that the transition amplitude for a single resonance channel corresponds
to a circle in the complex plane centered at (0,i/2) and diameter 1 such that
the physically allowed possibilities of T for inelastic scattering lie inside the
circle while elastic scattering processes lie in the boundary. The S−Matrix is
unitary (SS† = S†S = I) therefore, it conserves scattering probability and
from Equation 7-1 we can define a Hermitian K−matrix (K = K†) operator
according to:

K ≡
(
T−1 + iI

)−1
−→ T = (I − iK)−1K, (7-2)

where K is real and symmetric given the time-reversal invariance of S and
T and in the right side we have the expression of T written in terms of K.
To produce a Lorentz invariant transition amplitude, we include phase-space
factors for initial and final states in the normalisation of two-body functions
producing the Lorentz invariant T−Matrix written as

Tij ≡
{
ρ†i
} 1

2 T̂ij {ρj}
1
2 , (7-3)

where i and j are channel indices, running from 1 to n, and ρ is the normalised
diagonal n× n phase-space matrix given by

ρ =
 ρ1 0

0 ρ2

 (7-4)

and
ρ1 = 2p1

m
and ρ2 = 2p2

m
(7-5)

with pk as the magnitude of the momentum of the daughter k in the rest-frame
of the two–body state with invariant mass m =

√
s. The phase-space element

of a channel i is in general parametrised as:
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ρi =

√√√√(1− (m1i +m2i)2

s

)(
1− (m1i −m2i)2

s

)
, (7-6)

where m1i and m2i are the rest masses of the two daughter particles. The
Lorentz–invariant form of the K−Matrix is then defined as

K̂−1 = T̂−1 + iρ, (7-7)

being also real and symmetric. From this expression we can then obtain the
Lorentz–invariant transition amplitude depending on the K−Matrix

T̂ = (I − iK̂ρ)−1 · K̂, (7-8)

which can be used to obtain the generalised amplitude of the production of
overlapping resonant states according to the expression

Ai =
n∑
j=1

[I − iK̂ρ]−1
ij · P̂j (7-9)

describing the amplitude of a given channel i in terms of a initial P̂ -vector
preparation of channel states j (from 1 to n, being n the number of channels)
scattering into a final state i through the propagator (I − iK̂ρ)−1 [125]. The
K̂-matrix is written as a sum of N poles with real bare massesmα with g(α)

i and
g

(α)
j real coupling constants to respective channels, and non–resonant slowly–
varying parts (SVPs) with a 1/s dependence with real coupling constants f scatt

ij

symmetric in i and j [121,126] illustrating all possible rescattering channels j
from a given initial state i

K̂ij(s) =
 N∑
α=1

g
(α)
i g

(α)
j

m2
α − s

+ f scatt
ij

m2
0 − sscatt

0
s− sscatt

0

 fA0(s). (7-10)

It is important to notice that the masses mα in the pole terms correspond to
the so-called bare states that are not directly the resonances from the complex
poles in the physical T matrix, instead, a physical resonance can even be a
mixture of bare states. The factor

fA0(s) =
(

1GeV2 − sA0

s− sA0

)(
s− 1

2sAm
2
π

)
(7-11)

is the Adler zero term [127] responsible to suppress the false kinematic
singularity when s goes below the ππ production threshold. The remaining
parameters m2

0, sscatt
0 , sA and sA0 are real constants. For ππ systems, five

channels are available: ππ, KK̄, 4π, ηη, ηη′ (above the open charm threshold)
mutimeson states and all parameters were taken from a global analysis of ππ
scattering data by Anisovich and Sarantsev [126] for five channels (n = 5) and
five poles (N = 5) summarized in Table 7.2.
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α mα (GeV/c2) g
(α)
1 [ππ] g

(α)
2 [KK̄] g

(α)
3 [4π] g

(α)
4 [ηη] g

(α)
5 [ηη′]

1 0.65100 0.22889 -0.55377 0.0 -0.39899 -0.34639
2 1.20360 0.94128 0.55095 0.0 0.39065 0.31503
3 1.55817 0.36856 0.23888 0.55639 0.18340 0.18681
4 1.21000 0.33650 0.40907 0.85679 0.19906 -0.00984
5 1.82206 0.18171 -0.17558 -0.79658 -0.00355 0.22358

sscatt0 f scatt11 f scatt12 f scatt13 f scatt14 f scatt15

-3.92637 0.23399 0.15044 -0.20545 0.32825 0.35412
sprod0 m2

0 sA sA0

-1.0 1.0 1.0 -0.15

Table 7.2: K−Matrix parameters for the π−π+ S−wave [126]. Masses mα and
couplings g(α)

u are given in GeV/c2 while s related quantities in GeV2/c4.

The parameter sprod
0 could in principle be a free parameter in the fit.

Instead, it is taken from FOCUS analysis from the D+ → π−π+π+ decay [7]
to be sprod

0 = −1.0+0.4
−5.5 GeV2/c4. This choice was made after varying this

parameter systematically from -1 to -5 and verifying that the fit is relatively
insensitive to the value of this parameter. The production vector, P̂ , has the
same parametrisation as the K̂ matrix with the exception of the Adler zero
factor since previous analysis have shown that the consideration of this factor
does not improve the description of S−Wave amplitudes [7,128]. The P̂ -vector
is given by

P̂j(s) =
N∑
α=1

βαg
(α)
j

m2
α − s

+ fprod
j

m2
0 − s

prod
0

s− sprod
0

, (7-12)

where βα and fprod
j are complex production constants for poles and SVPs to

be extracted by a fit to data. The mass poles mα in the P̂–vector must be
the same as the scattering process in order for the transition amplitude to
not diverge at the P̂–vector hence vanishing at the K̂–matrix poles. The total
amplitude for the ππ S–Wave is given by A1(s), in which i = 1 corresponds to
π−π+, meaning that only the first row of the propagator matrix needs to be
used. The SVP production amplitude, separated for each individual channel,
is given by

ASVP,j(s) = m2
0 − s

prod
0

s− sprod
0

[I − iK̂ρ]−1
1j f

prod
j , (7-13)

and for each production pole, summing the propagator contributions over all
channels j,

Aα(s) =
n∑
j=1

[I − iK̂ρ]−1
1j
βαg

(α)
j

m2
α − s

≡ βα
m2
α − s

n∑
j=1

[I − iK̂ρ]−1
1j g

(α)
j . (7-14)

Then the S–Wave amplitude is
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AS−wave =
N∑
α=1
Aα +

n∑
j=1
ASV P,j (7-15)

to be combined with the Isobar Model to include spin 1 and 2 resonances
according to Eq.6-24.

7.2
Results

We now present the results of the D+ → π−π+π+ Dalitz plot fits using
the K−Matrix formalism using the Dalitz plot fit package LAURA++ [98].
Higher spin contributions such as f2(1270), ρ(1450)0, ρ(770)0 and ω(782) are
included via isobar model while the S−Wave is described using the K−Matrix
formalism determined from a global fit to scattering data by Anisovich and
Sarantsev from Table 7.2 with sprod

0 = −1.0GeV2 from FOCUS analysis. In the
P− and D−waves, all resonant contributions have the radius parameter in the
Blatt-Weisskopf barrier factor fixed to rFD,Rp3

= 5.0 GeV−1 and rFR,p1p2
= 1.5

GeV−1 and the lineshapes used for each contribution are summarized in Table
6.2. In addition, lineshape parameters are set to fixed PDG values unless
specified. The S−wave is accounted with: K−matrix model including all five
poles in the P−vector, and three slowly varying parts.

The free parameters in the fit are the magnitudes and phases for higher
spin contributions in which the ρ(770)0 is chosen to be the reference with
magnitude 1 and phase zero, thus, the parameters of all other components
are measured relative to this one. In particular, the ρ − ω interference is
included as individual contributions using a GS lineshape for the ρ0(770) and
a RBW for the ω(782) contribution. Regarding the S−wave component, the
fitted parameters are the complex production parameters βα, in case of a pole
term, and fprodv for a SVP term. The goodness of the fit is estimated by the
χ2/ndof range and the residual distribution computed using a folded Dalitz
plot. The results are shown together with the slo, shi, π+π−, π+π+ projections,
residual distribution across the Dalitz plot and the χ2/ndof range. To ensure
that a good minimum has been found by the fit, for each model configuration
the fit runs 100 times with randomised initial coefficients making also possible
the study of multiple solutions, i.e. more than one solution with similar FCN.
The parameters that correspond to the fit with the most negative FCN within
the ensemble are taken to be the final result of the fit. In some cases, the
results required to be vetoed by hand in the case where they presented the
most negative FCN but the parameters corresponded to ‘unphysical’ values
(such as masses, widths, or other parameters, hitting the limit of their range,
or fit fractions incoherent to expected values).
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In the following results we present the set of parameters from the relevant
fits and also the π+π− S−wave magnitude and phase extracted from the fit
with the best FCN value with its main features interpreted. At the moment,
only the central values of fit fractions are given.

SVP inclusion strategy

In principle, the S−wave can be parametrised with 10 complex param-
eters, according to Tabel 7.2 but in this analysis we use it with three of the
five SVP terms due to the convergence and stability of the fit result. We also
tried to include more SVP terms but in all results, the convergence was lost
or the solutions corresponded to unphysical scenarios, for instance unrealistic
fit fractions such as components with more than 100%. The inclusion of these
terms is done until convergence is lost.

Two strategies of including these terms are tested: α ordered according to
Table 7.2, i.e including the first three SVP terms (α = 1, 2, 3) or including one
at a time based on the change of the FCN. According to the second strategy,
the optimum order to include the SVP term corresponds to α = 1, 3, 4. In this
way we have a result with all five poles and SVP’s 1,2 and 3, and the other
with the same poles with SVP’s 1,3 and 4.

Model KM-1

In Model KM-1 we use the strategy of including the SVP term according
to the order presented in Table 7.2, α ordered. This model is composed in
the non-S−wave part by ρ0(770) and ρ0(1450) included with a GS lineshape,
ω(782) and f2(1270) as a RBW. In this model both ρ(770)0 and ω(782)
are included as individual contributions instead of a mixing lineshape. The
S−wave is composed of five poles and the three SVP terms corresponding to
α = 1, 2, 3 included following the mass order. The resulting magnitudes, phases
(for spin 1 and 2 contributions), production parameters (for the S−wave) and
fit fractions are shown in Table 7.3. In Figures 7.1, we show the π+π− and
π+π+ projections as well as the projections onto the highest and lowest
invariant masses squared of the two π−π+ combinations, the sloπ−π+ = slo and
shiπ−π+ = shi, with the fit result superimposed indicated by the blue line and
the residuals distribution.

Model KM-1 is in a qualitative agreement with the data. The Swave is
the major contribution as expected. The ω(782) contribution has a very low
fit fraction but it is sufficient to produce the interference pattern although
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it requires a better adjustment. Furthermore, a more accurate description of
the interference between the σ(500) region and ρ0(770) is needed. The high
mass region presents a reasonable agreement with the data but also requires
improvement while the π+π+ projection describes the data with a good quality
with exception of s23(π+π+) < 0.2 GeV2/c4. Starting from this solution, when
more SVP terms are included no convergence is found.

This result is already much better than all of the Isobar results with a
FCN=-1909696 indicating that the K−Matrix approach deals with the scalar
sector better than the Isobar Model. From the π+π− projection, we also observe
that it describes the high π−π+ mass region more easily compared to the Isobar
results.

Component Magnitude Phase [rad] Fit Fraction (%)
ρ0(770) 1.0 [fixed] 0.0 [fixed] 26.6
ω(782) 0.063± 0.004 −1.61± 0.07 0.1
f2(1270) 0.673± 0.006 1.52± 0.02 12.1
ρ0(1450) 0.093± 0.009 2.78± 0.12 0.2

S−wave
Component β/fprod Magnitude β/fprod Phase [rad] Fit Fraction (%)
Pole1 0.543± 0.030 −3.19± 0.05 7.9
Pole2 0.423± 0.035 −1.69± 0.09 4.8
Pole3 1.194± 0.036 −0.48± 0.02 37.9
Pole4 1.088± 0.044 −0.46± 0.03 31.5
Pole5 1.027± 0.034 −9.07± 0.04 28.0
SVP1 0.876± 0.020 −2.47± 0.04 20.4
SVP2 0.265± 0.051 2.35± 0.17 1.9
SVP3 0.248± 0.039 −4.74± 0.14 1.6
S−wave 61.2
χ2/ndof (range) [4.06 - 3.92]∑ FF (%) 173.0
FCN -1909696

Table 7.3: Model KM-1: component parameters and fit fractions. Uncertainties
are statistical only and fit fractions without errors.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 7. K-Matrix Model 108

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]4/c2) [GeV-π+π(los

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

A
.U

.
Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV-π+π(his

0

0.002

0.004

0.006

0.008

0.01

0.012

A
.U

.

Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV-π+π(13s

0

0.002

0.004

0.006

0.008

0.01

0.012

A
.U

.

Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV+π+π(23s

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009A
.U

.

Data

Model

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
]4/c2) [GeV-π+π(13s

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

A
.U

.

Data

Model

8−
6−
4−
2−

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]4/c2 [GeV

lo
)-π+πs(

0

0.5

1

1.5

2

2.5

3

]4
/c2

 [G
eV

hi)- π+ π
s(

Figure 7.1: Fit results from Model KM-1: slo, shi, s23 and s12 projection. In
addition, a zoomed plot in the ρ0(770) region to better visualize the ρ − ω

interference and the residual plot.

Model KM-2

In Model KM-2, both P− and D−waves consider the same contributions
as the previous model but a different strategy in the definition of the S−wave
is tested. The inclusion of the SVP terms is now based on the change in the
FCN in order to investigate if there is any freedom in defining the S−wave
component, i.e. define it using different SVP terms. In this strategy, the order
considered for the inclusion of the SVP term is α = 1, 3, 4. The resulting
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magnitudes, phases (for spin 1 and 2 contributions), production parameters
(for the S−wave) and fit fractions are shown in Table 7.4, the π+π− and
π+π+ projections with the fit result indicated by the blue line as well as the
residuals distribution are shown in Fig. 7.2.

No significant improvement is observed, the fit fractions are similar to
those in Model KM-1 in the P− and D−waves as well as the total S−wave
fit fraction. The FCN presents a difference in 52 units, therefore, Model KM-
2 corresponds to a solution slighlty better than that of Model KM-1. The
fractions within the composition of the S−wave differs from the solution with
SVP 1,2,3 therefore, it indicates some freedom in defining the scalar sector in
the sense that we can have a different set of SVP terms that produce a result
with the similar features.

As in Model KM-1, after including the third SVP term, we can no longer
include the fourth and fifth without losing convergence. Therefore, the final
result for this strategy considers the five poles and SVP corresponding to
α = 1, 3, 4.
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Component Magnitude Phase [rad] Fit Fraction (%)
ρ0(770) 1.0 [fixed] 0.0 [fixed] 26.7
ω(782) 0.063± 0.004 −1.64± 0.07 0.1
f2(1270) 0.672± 0.006 1.49± 0.02 12.1
ρ0(1450) 0.076± 0.007 −3.73± 0.15 0.2

S−wave
Component β/fprod Magnitude β/fprod Phase [rad] Fit Fraction (%)
Pole1 0.953± 0.031 −3.33± 0.03 24.3
Pole2 0.394± 0.014 −2.16± 0.04 4.2
Pole3 0.873± 0.045 −0.70± 0.05 20.4
Pole4 0.934± 0.042 −0.57± 0.04 23.3
Pole5 0.665± 0.044 −2.76± 0.06 11.8
SVP1 0.601± 0.055 −1.58± 0.11 9.7
SVP3 0.257± 0.035 6.53± 0.15 1.8
SVP4 0.523± 0.045 −0.10± 0.07 7.3
S−wave 60.6
χ2/ndof (range) [3.91 - 3.77]∑ FF (%) 141.8
NLL -1909748

Table 7.4: Model KM-2: component parameters and fit fractions. Uncertainties
are statistical only and fit fractions without errors.
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Figure 7.2: Fit results from Model KM-2: slo, shi, s12 and s23 projection. In
addition, a zoomed plot in the ρ0(770) region to better visualize the ρ − ω

interference and the residual plots.

In addition to this solution with around 26% of ρ0(770), another min-
imum was found with a ∆FCN of 31 units worse than the previous result,
with the ρ0(770) contribution as approximately 13%, shown in Fig. 7.3 and
Table 7.5. We will refer to this solution as Model KM-2’. Although the FCN
difference indicates that both solutions are equally good to describe the data,
a solution with 13% of ρ0(770) does not provide a proper physical content as it
can be seen in Fig. 7.3, in which the π−π+ projection clearly illustrates that at
low masses the solution provides a poorly description of the data compared to
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the Fig. 7.2 with 26% of ρ0(770), thus we take KM-2 solution to be the better
one, with more physical content and exclude Model KM-2’. Moreover, as the
solution from Model KM-1, the π+π+ projection present similar features.

Component Magnitude Phase [rad] Fit Fraction (%)
ρ0(770) 1.0 [fixed] 0.0 [fixed] 13.2
ω(782) 0.072± 0.006 −1.63± 0.08 0.1
f2(1270) 0.996± 0.014 1.48± 0.02 13.1
ρ0(1450) 0.235± 0.013 −3.20± 0.06 0.7

S−wave
Component β/fprod Magnitude β/fprod Phase [rad] Fit Fraction (%)
Pole1 1.535± 0.047 −3.22± 0.03 31.2
Pole2 0.586± 0.025 −1.47± 0.04 4.5
Pole3 0.676± 0.066 −1.22± 0.11 6.0
Pole4 0.655± 0.057 −1.65± 0.11 5.7
Pole5 0.916± 0.080 −0.79± 0.07 11.1
SVP1 0.714± 0.093 −1.13± 0.12 6.7
SVP3 0.873± 0.064 5.30± 0.07 10.1
SVP4 0.782± 0.066 0.33± 0.08 8.1
S−wave 72.2
χ2/ndof (range) [4.01 - 3.87]∑ FF (%) 110.6
NLL -1909717

Table 7.5: Model KM-2’: component parameters and fit fractions. Uncertainties
are statistical only and fit fractions without errors.
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Figure 7.3: Fit results from Model KM-2’: slo, shi, s12 and s23 projection. In
addition, a zoomed plot in the ρ0(770) region to better visualize the ρ − ω

interference and the residual plots.

Model variations

Starting from the best result, the one with the lowest FCN, Model KM-2,
we made some model variations as an attempt to improve the fit quality. For
contributions which present an obvious structure such as the ρ(770)0, ω(782),
and f2(1270), no model without these components is considered so we tried
to include further contributions. In all tests, parameters such as masses and
widths are fixed to PDG values, otherwise stated, and the lineshapes used
are the ones in Table 6.2. In addition, since the construction of the S−wave
component is not trivial, we also test variations in the definition of the S−wave.
More details about some of the relevant additional tests can be found in
Appendix 13.
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Results for the variation of the initial model can be found in Table
7.6 with their respectives FCN values, ∆FCN compared to Model KM-2
and fit fractions for each included contribution. In general, the inclusion of
each additional state improved the FCN but it was not sufficient to solve the
problems presented in the baseline model. The result which presents the most
significant change in the FCN is the inclusion of the spin-2 state f ′2(1525),
although it is mainly expected in KK systems, with 0.4%. Furthermore,
the inclusion of an additional higher spin state increases the number of free
parameters to 24. Even with this large number, the K−Matrix formalism
presents difficulties in describing the whole spectrum. An inclusion of a spin-3
state is also tested. The inclusion of ρ0

3(1690) slightly improves the FCN but
its corresponding fit fraction is tiny, 0.03%, therefore, it is not a significant
contribution to include in the baseline model. Additionally, we also verified
if there is any difference in including the ρ − ω interference using a mixing
lineshape or including as individual contributions but, given the ∆FCN , both
strategies promote an equally good solution.

Regarding the construction of the S−wave component which is not so
obvious, additional tests are performed in order to explore any freedom in
defining the parameters that contribute to the scalar sector. Since the last pole
(α = 5) is above the charm threshold, one test performed is to remove this
pole. The results illustrate a worse description in comparison with solutions
including all five poles and the fit fractions of each component within the
S−wave represented a non physical scenario with values of fit fractions above
100%.

After removing Pole5, we also tried to include more SVP terms but the fit
converged to a different minimum with a fit fraction of the ρ0(770) contribution
corresponding to 10%. Therefore the result of variations with four SVP terms
are all rejected due to physical reasons.

Given that no significant improvements are found from the many vari-
ations tested, Model KM-2 is chosen as the main result using the K−Matrix
approach. Although it describe qualitatively the main structures presented in
the Dalitz plot (and projections) it fails to describe important details such as
the π−π+ S−wave at low mass and the region of the ρ− ω resonances.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 7. K-Matrix Model 115

Table 7.6: Model components and the changes in the log-likelihood when they
are included in the baseline model.

Component FCN ∆FCN Fit Fraction (%)
Baseline (SVP 1,3,4) -1909748 — —
Add f ′2(1525) -1909992 -244 0.40
Add ρ3(1690)0 -1909764 -16 0.03
No Pole5 -1896566 +13182 —
Add SVP2 and remove Pole5 -1909260 +488 10.0 (ρ0(770))
ρ− ω mixing lineshape -1909749 -1 —

In general, the K−Matrix fits provided a better description of the data
compared to those from the Isobar fits. The high mass region is dealt more
easily within this approach but it still requires improvement. On the other
hand, the low mass region, although the fit was able to identify the components
such as the σ(500), ρ − ω and f0(980), there still remain relevant misfitted
regions in all results. We observed that there seems to be some freedom in
defining the SVP terms contributing to the S−wave given that two possible
solutions were found (with very similar FCN values). Another interesting
feature of this model is that the rescattering KK → ππ is already included
while in the Isobar approach it needs to be "manually" included as one of the
contributions. Even though this approach provides a qualitative description
with the data, considering the poorly described regions, it is still not sufficient
to describe the whole spectrum and requires a large amount of free parameters.
From Table 7.2 we could in principle have 20 parameter just for the S−wave
and in our best result, it includes a total of 22 parameters in which 16 are
used to define the S−wave. Considering a purely Isobar analysis, this would
correspond to include eight scalar contributions in the model and even with
this large amount of parameters, the fit was not able to provide a good solution.
Another important topic to discuss is the physical interpretation behind this
formalism, which is not as trivial as the usual coherent sum of Breit-Wigner
functions, therefore, the physical interpretation behind our best S−wave with
16 parameters is complicated. In summary, both Isobar and K−Matrix are not
able to described the data and other approaches should considered.

From the best result, Model KM-2, we extracted the π−π+ S−wave
amplitude shown in Figure 7.4. The magnitude plot illustrates two clear
contributions, the f0(980) peak with a phase transition in the corresponding
mπ−π+ value and σ(500) appearing as a more spread contribution in the
magnitude and a slower phase movement, as expected from previous analysis
[129] due to its large width. In addition, we observe an interesting behavior of a
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sudden decrease in the transition between the σ(500) and f0(980) also observed
in CLEO’s analysis [8]. Although all KM fits present some misfitted regions,
the qualitative behavior of the π−π+ S−wave amplitude can be extracted and
compared with the results from Isobar and QMIPWA.
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Figure 7.4: S−wave magnitude and phase extracted from Model KM-2.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



8
Quasi Model Independent Partial Wave Analysis

Considering the relatively unknown and complicated structure of the
π−π+ S−wave, an alternative method to extract its amplitude consists in a
quasi-model-independent way in which the S−wave is modelled bin by bin
in a non parametric form and a cubic spline is performed to obtain the
S−wave at any point of the spectrum. Although this method provides a
way to extract the S−wave component, the interpolation between points in
a spline is a construct based on a smoothing algorithm, possibly resulting in
structures that may not necessarily represent to real physical effects but it still
present a mathematically viable solution. Within this approach, the S−wave
is fitted through a model independent lineshape and as such can be used as a
reliable input for new phenomenological models aiming to better understand
its behaviour.

8.1
Basic Concepts

From previous discussions, the π−π+ S−wave is poorly described via
Isobar Model, considering its deep limitations when dealing with disentangling
individual contributions from broad components in the scalar sector. Given
the results from both the Isobar and K−Matrix methods, although we have
observed that the S−wave dominates over other contributions and it is
constituted mainly of σ(500) and f0 states, both approaches have not provided
a satisfactory description of the data. One alternative method to deal with
this problem is to describe the scalar sector with a quasi Model Independent
Partial Wave Analysis technique (QMIPWA), first employed by the Fermilab
E791 Collaboration [130], which attempts to alleviate the model dependency
of the Isobar Model. As a quasi–model–independent approach, the higher spin
waves, in this case the P− and D−Waves, are assumed to be well modelled
in the Isobar approach, with relatively well separated resonances, in order
to guarantee that the the QMIPWA is responsible to fit only the S−Wave
contribution, assuming no leakage from these higher spin contributions. The
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total amplitude is written as

A (s12, s13) = AS−Wave +
∑

spin1,spin2
ciAi + (s12 ↔ s13) , (8-1)

where ci are complex coefficients. The summed terms account for higher spin
waves while AS−Wave accounts for the S−wave. In this approach, the π−π+

mass spectrum is divided in slices (bins) and in each bin edge k the amplitude,
AkS−wave, is modelled by two constants, a magnitude ak and a phase φk, to be
extracted from the fit

AkS−wave (mπ+π−) = akeiφ
k

. (8-2)

Then, a cubic spline interpolation is used to get the S−wave amplitude at
any point in the spectrum. Since this is a quasi-model-independent approach,
any limitation of the Isobar approach to describe the higher-spin components
will be tried, by the fit, to be compensated by the binned π−π+ S−wave,
resulting in leakage of these higher waves onto the S−wave. Altogether, the
fitted parameters are the coefficients ci for spin 1 and 2 contributions and the
coefficients assigned to each mπ+π− slice. Note that the S−wave amplitude is
bose symmetrized, so in a given k bin in m12 = √s12 and l bin in m13 = √s13,
the amplitude is given by Ak,lS−wave(s12, s13) = AkS−wave(m12) +AlS−wave(m13).

We typically divide the spectrum in order of 48 bins, the final set of
parameter has the order of 102 parameters. To perform a fit of 200 thousand
events with so many free parameters, with the PDF normalization evaluated at
each iteraction, a high computational cost is required. The GooFit framework
for maximum likelihood fit is based on GPU with a parallel process thus it
performs the fits in a reasonable amount of time. It would be not feasible, for
instance, to use Laura++.

At first, the mass spectrum is binned creating input points for the
S−wave. The strategy to create these input points, the binning method, is
a relevant feature to consider. For each bin, an magnitude and phase values
are assigned and a cubic interpolation is performed providing the value of the
S−wave at any point of the spectrum. It is important to note some differences
between Laura++ (used in the Isobar and K-Matrix approaches) and GooFit.
In Laura++, each amplitude is individually normalised, and magnitudes and
phases are fitted. In GooFit, there is no individual normalization, and real
and imaginary parts are fitted. Therefore, the FCNs obtained using Laura++
(Isobar and K−Matrix results) cannot be directly compared to the FCNs
obtained using GooFit (QMIPWA results) and the comparison between the
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fits can by done by looking to the χ2/ndof range.
Due to the large number of free parameters, during the minimization pro-

cess several minima can be found. Since this approach relies on mathematical
techniques, the physical content of the solution needs to be analyzed in the
sense that given all the possible solutions, not all of them will provide a phys-
ical meaning. The expected behaviour should be illustrated in the S−Wave
amplitude, for instance the f0(980) should appear as a peak in the amplitude
with its corresponding phase transition, also the σ(500) contribution it is ex-
pected to appear as a more spread contribution due to its large width with
a slow phase movement [129]. If the S−wave presents a unrealistic behavior
even though the fit is in a good agreement with the data, the solution is vetoed
by hand since it represents only a mathematical solution without the physical
content.

8.2
Binning scheme

The bin boundaries are determined in s12 (and s13) in an ad-hoc way.
Previous studies [8] illustrate the main features of the S−wave composed
of low mass states (σ(500) and f0(980)) and high mass components such as
f0(1370) and f0(1500). Initially the bins are uniformly distributed throughout
the spectrum and more bins are added/removed according to the necessity
of improving the description in a determined region. The fit stability also
depends on the binning scheme. Bins lying in characteristic regions of the
P−wave components, in particular ρ0(770), may inherit some of their features
- a leakage from the P−wave to the S−wave. The following results include 48
bins non-uniformly distributed, for which the amplitude and phase of each bin
is fitted. The σ(500) and f0(980) regions contains more bins, in order to obtain
more information of the S−wave in these regions, the region after 1 GeV2/c4

presents a more uniform distribution and the ρ(770)0 region contains one bin
centered in its mass. More bins in the ρ(770)0 region promoted an instability
to the fit and contamination from the P−wave in the S−wave component.
The binning scheme used in the results is shown in Fig. 8.1, illustrated for s12

only.
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Figure 8.1: Binning scheme used for the π−π+ S−wave.

8.3
Results

We now present the results of theD+ → π−π+π+ Dalitz plot fits using the
QMIPWA approach. At the moment, all results don’t present the fit fraction
errors but in the future these will be evaluated. The baseline fit is constructed
including known resonances for the P− and D−waves included via Isobar
Model while the scalar sector is parametrised with the model independent
technique as described previously. Both ρ0(770) and ω(782) resonances are
included as a individual contribution instead of using the mixing lineshape for
the ρ−ω interference. Furthermore, in all fits the ρ0(770)π is chosen as reference
fixing the real part equal to 1 and imaginary to zero. The other coefficients
are relative to the reference one. The baseline model is composed of ρ0(770),
ω(782), ρ(1450)0, f2(1270) and the S−wave. All higher spin contributions are
parametrised with a RBW lineshape with their masses and widths set fixed
to PDG values, otherwise stated. The results are shown together with the slo,
shi, π+π+, π+π− projections, residual distribution across the Dalitz plot and
the χ2/ndof range.

Model PWA-1

The model is composed by ρ0(770), ω(782), f2(1270), ρ0(1450), in the
non-S−wave part, and the S−wave using the QMIPWA approach with 48
points. The fit results for the QMIPWA approach with the non-S−wave
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components are given in Table 8.1. In Figures 8.2, we plot the slo, shi, π+π− and
π+π+ projections with the fit result indicated by the red line and the data in
blue, the residual distribution across the Dalitz plot and the fitted S−wave.
The interference fractions between each component in the model are shown in
Table 8.2. Overall, the projections illustrate a very good agreement with the
data with a χ2/ndof significantly better compared to that from the K−Matrix
and Isobar results.

Resonance Real Imaginary Fit Fraction (FF) (%)
ρ0(770) 1 [fix] 0 [fix] 25.1
ω(782) −0.003± 0.001 −0.014± 0.001 0.1
f2(1270) −0.528± 0.029 −1.684± 0.023 10.9
ρ0(1450) 0.283± 0.082 1.141± 0.056 1.0
S−Wave 48 points 60.7∑ FF 97.8
χ2/ndof (range) [1.86-1.55] FCN = 272947

Table 8.1: Model PWA-1: component parameters and fit fractions. Uncertain-
ties are statistical only and fit fractions without errors.

ω(782) ρ0(770) ρ0(1450) f2(1270) S−wave
ω(782) 0.09 -0.21 0.00 0.04 0.02
ρ0(770) 25.11 2.62 -0.52 -0.52
ρ0(1450) 1.03 0.23 -0.11
f2(1270) 10.90 -0.44
S−wave 60.70

Table 8.2: Model PWA-1: Interference fractions between amplitude compo-
nents for the QMIPWA approach.
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Figure 8.2: Fit results from Model PWA-1: s12, s23, shi and slo projections,
residual distribution and fitted S−wave.

From the π−π+ projection, we observe that the fit quality in both high
and low π−π+ mass regions shows a very good description of the data, which
was not possible using other approaches. The region where the σ(500) and
f0(980) states lie are well parametrised as well as the ρ−ω mixing, in contrast
with the previous results in which the low mass region presented only a
qualitative solution. The π+π+ projection illustrates a good description of the
data with the exception of s23 < 0.2 GeV2/c4, as observed in the previous
Isobar and K−Matrix results. This result shows that the S−wave accounts for
the largest fit fraction, 60% and the extracted π−π+ S−wave lineshape shows
a consistency with the S−wave extracted from the K−Matrix approach with
a clear f0(980) peak in the magnitude with its corresponding phase transition,
the σ(500) as a spread out contribution with a slower phase movement and the
sudden decrease in the phase between these states. In the S−wave magnitude
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plot, near the ρ0(770) mass region, we can observe a "bump" which may indicate
a leakage of the P−wave to the S−wave. In principle, this spin 1 resonance
should be well parametrised in the Isobar Model and the QMIPWA should
take care just of the scalar sector. To study in more details the presence of any
leakage in the S−wave, a variation in the number and position of the bins in
this region is required.

Model PWA-2

In this model we start from the previous result and include one more
spin-2 contribution, f ′2(1525), which is mainly expected in the KK channel, as
an attempt to improve the π+π+ low mass region. This model is composed by
ρ(770)0, ω(782), f2(1270), ρ(1450)0, f ′2(1525) and the S−wave with the same 48
points. The resulting real and imaginary parts (for spin 1 and 2 contributions)
and fit fractions are shown in Table 8.3. In Figures 8.3, we see the slo, shi,
π+π−and π+π+projections with the fit result indicated by the red line and
the data in blue, the residual distribution across the Dalitz plot and the fitted
S−wave. All masses and widths are fixed to PDG values and all lineshapes
used for the non-S−wave components are RBW. In addition the interference
fit fractions are shown in Table 8.4.

By including this spin-2 resonance, the FCN improved by 80 units as well
as the χ2/ndof with a fit fraction of 0.3% for the f ′2(1525) contribution. The
low mass π+π+ region presents a better fit quality however, it still requires
improvement. In the π+π− projection we still observe a very good agreement
with the data as the previous result. A comparison between the S−waves
obtained from Models PWA-1 and PWA-2 is shown in Figure 8.4 where we
can observe that the general behavior is similar for both solutions but the
inclusion of this spin-2 contribution promoted some changes in the details of
the S−wave, specially in its magnitude.
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Resonance Real Imaginary Fit Fraction (FF) (%)
ρ0(770) 1 [fix] 0 [fix] 24.6
ω(782) −0.002± 0.001 −0.014± 0.001 0.1
f2(1270) −0.519± 0.029 −1.652± 0.025 10.3
ρ0(1450) 0.434± 0.086 1.032± 0.088 0.9
f ′2(1525) 0.501± 0.041 0.396± 0.063 0.3
S−Wave 48 points 59.1∑ FF 95.2
χ2/ndof (range) [1.72 - 1.43] FCN = 272867

Table 8.3: Model PWA-2: component parameters and fit fractions. Uncertain-
ties are statistical only and fit fractions without errors.

ω(782) ρ0(770) ρ0(1450) f2(1270) f ′2(1525) S−wave
ω(782) 0.08 -0.18 0.01 0.04 0.00 0.02
ρ0(770) 24.60 2.38 -0.50 0.32 0.10
ρ0(1450) 0.91 0.26 0.01 0.04
f2(1270) 10.28 -0.08 -0.26
f ′2(1525) 0.29 0.23
S−wave 59.05

Table 8.4: Model PWA-2: Interference fractions between amplitude compo-
nents for the QMIPWA approach.
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Figure 8.3: Fit results from Model PWA-2: s12, s23, slo and shi projections,
residual distribution and fitted S−wave.
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Figure 8.4: S−wave comparison between Models PWA-1 and PWA-2.

Interpretation

From Fig. 8.4 we observe that the general behavior of both solutions
is quite similar. The differences lie on details of the S−wave specially in the
magnitude. In both cases we observe the clear f0(980) and σ(500) contributions
with their expected characteristics as already discussed. By including the
f ′2(1525) as in Model PWA-2, the bump in the ρ0(770) region is reduced, and
we observe some shifts in the magnitude in the σ(500) and f0(980) regions
without losing their general trends.

The suspected contamination from the spin-1 ρ(770)0 may be present
in the S−wave amplitude and phase plots for these models. Any defect in
the parametrisation of the non-S−wave components will manifest in this way,
as a leakage indicating that the QMIPWA is fitting not only the S−wave
but also other misparametrisation of non-S−wave components. The reason for
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this effect is the inherent freedom of fitting each mππ bin with a magnitude
and phase. The possible sources by which this could arise are: an incomplete
S−wave model, meaning that the S−wave is not well described, any interfer-
ence between the S− and P−waves that are also not well fitted, the spin-1 and
2 waves are not well modelled in the Isobar, and any misparametrisation of the
background model. Although there are several possibilities, the identification
of the exact source is not trivial.

Model PWA-3

In this model we use the P−wave amplitude from the phenomenological
approach discussed in Chapter 3 instead of a ρ − ω amplitude as an attempt
to better describe the mixing pattern. This model is composed by a P−wave
included with the phenomenological form factor approach, f2(1270), ρ0(1450),
both using a RBW function with masses and widths fixed, and the S−wave
with 48 points. The reference contribution is taken to be the f2(1270) and
the resulting real and imaginary parts (for spin 1 and 2 contributions) and
fit fractions are shown in Table 8.5. In Figures 8.5, we plot the slo, shi,
π+π−and π+π+projections with the fit result indicated by the red line, the
residual distribution, χ2/ndof range and the fitted S−wave. This result is
preliminary and illustrates a qualitative solution. A more detailed study of
this phenomenological approach, also a set of parameters corresponding to a
more physical solution is required.

Resonance Real Imaginary Fit Fraction (FF) (%)
f2(1270) 1 [fix] 0 [fix] 16.6
ρ0(1450) 0.063± 0.038 −0.695± 0.023 1.7
S−Wave 48 points 80.1
cP−wave −57.800± 13.416 97.309± 1.216 7.6
eP1 1 [fix]
eP2 (mag) 0.002± 9.800× 10−5

eP2 (phase) −0.003± 6.486× 10−5∑ FF 106.1
χ2/ndof (range) [1.93 - 1.61] FCN = 273036

Table 8.5: Fit results from Model PWA-3.
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Figure 8.5: Fit results from Model PWA-3.

By including the ρ−ω contribution using the form factor approach, both
the FCN and χ2/ndof increased showing that this solution is worse than the
ones obtained in the previous fits. We observe a reasonable description at high
π−π+ mass illustrated in the s12 projection while, in the low π−π+ region we
observe some regions such as the ρ − ω in which it appears to be slightly
worse compared to the previous results. Furthermore, the π+π+ projection
illustrates clearly that the fit result is significantly worse than Models PWA-1
and PWA-2, not only at low π+π+ mass, but also around 1.5 GeV2/c4. The set
of parameters describing the P−wave does not promoted a realistic scenario
in which the fitted eP2 parameter indicates that this contribution could be
neglected compare to the contribution multiplied by eP1 , thus it shows that the
form factor FDπ does not promote any significant improvement compared to
the other term.

The f2(1270) accounted for approximately 16%, a fit fraction higher than
in the previous results and the P−wave, accounting for the ρ − ω in the
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previous models, has a fit fraction that is inconsistent and nonphysical given
the expected fit fraction at the order of 20%, according to the previous results
obtained in this work and in previous analyses. The S−wave still presents the
highest fit fraction but it also shows a value that is not realistic given our
expectations and results obtained. For the π−π+ S−wave we observe that, in
the magnitude plot, we still observe the main features but the overall behavior
is not consistent with the previous results and in the phase plot, the solution
does not seem to have any physical content, being rather a mathematical
viable solution. The parameters obtained for the P−wave are significantly
high with small uncertainties compared to f2(1270) and ρ0(1450) contributions
and do not provide physical meaning, thus, more tests using this approach
will be performed in order to search for a better physical solution. The fit
converged but it struggled in stabilizing the parameters, therefore, this result
is preliminary.

Model variations

Instead of including the f ′2(1525) as in Model PWA-2, other variations
are tested and the results are shown in Table 8.3, where various components
are individually removed from the model and the change in log-likelihood with
respect to Model PWA-1 (∆FCN) computed. Among the possibilities, other
higher spin contributions are tested such as ρ(1700)0 and ρ3(1690), inclusion
of a Bose Einstein correlation effect (BEC) as an attempt to improve the
misparametrised π+π+ low mass region and variations on the ρ0(770) lineshape.
In the S−wave, the inclusion of more bins is also tested. More details about
some of the relevant additional tests can be found in Appendix 13.

Regarding studies of the ρ0(770), the use of a Breit-Wigner lineshape
instead of a Gounaris-Sakurai, and also the inclusion of the interference
pattern with a mixing lineshape did not promote any relevant difference in
the FCN. Considering the large fit fraction of this component, a fit with
both mass and width free configures an interesting laboratory to study its
lineshape parameters, and the results illustrate that both fitted mass and
width increase compared to PDG values, mρ0(770) = 778.7 ± 1.3 MeV/c2 and
Γρ0(770) = 151.9±2.3 MeV/c2, with a negligible difference in the FCN. However
the extracted S−wave amplitude lost the stability from Model PWA-1 result
in the sense that the phase behavior of this component did not correspond
to the solution obtained in the previous tests, thus we exclude this solution.
The FCN reached a similar value compared to Model PWA-1 even though we
included two more parameters in the model and two bins in the S−wave phase
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lost stability from the previous solution indicating that this solution is not
reliable.

Considering the inclusion of the ρ(1700) contribution, the FCN improved
resulting in a χ2/ndof range of [1.74 - 1.45] but it was not sufficient to solve the
low π+π+ mass region. A second attempt to tackle this problem is to include
a BEC contribution as an additional term in the total amplitude due to the
presence of two identical final state particles with equal charge. This effect has
been intensively studied [131,132] in which the amplitude can be written as

ABEC(Q) = (1 + λe(−rQ)α)(1 + δQ), (8-3)

where r is a parameter related with the source spacial dimension, λ is the
coherence parameter and α = 1 for an exponential or α = 2 for a gaussian
function but according to CMS analysis [133], an exponential function provides
a better fit. By including this component, total amplitude is now given by
A = AS−Wave + ∑

spin1,spin2 ciAi + cBECABEC where in Eq. 8-3, the constant
term, "1", accounts as a non resonant contribution and will not be included,
the λ parameter is absorbed by cBEC such that the BEC amplitudes can
be simplified into a decreasing exponential function ABEC = e−Qr where
Q =

√
s23 − 4m2

π and r corresponds to the slope of this function set as fixed in
the fit (r = 1). We included it in Model PWA-1 and the solution converged to a
better FCN with χ2/ndof range of [1.69 - 1.41]. The π+π+ projection improved
significantly in this region. However, since both BEC and S-wave don’t include
any angular information and barrier factors, they compete and the result for
this model compromised the fitted S-wave, which decreased to an unphysical
fit fraction of around 40% while the BEC accounted as around 38%. In fact,
the S−wave itself, given its freedom, should be enough to incorporate such an
effect, if enough bins are allocated. This solution does not qualify as a good
physical solution, even though the fit quality seems to be very good. Therefore,
this solution comprises as a mathematical solution and it was excluded.

Component FCN ∆FCN Fit Fraction (%)
Baseline 272947 —
Add ρ(1700)0 272898 -49 1.3
Add BEC 272833 -114 38.1
ρ0(770) GS mass and width free 272944 -3 25.1

Table 8.6: Model components and the changes in the log-likelihood when they
are included in the baseline model.
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9
Discussions and perspectives

9.1
Discussions

This work is dedicated to the analysis of the Cabibbo-suppressed decay
D+ → π−π+π+ using about 200 thousand events from the LHCb experiment.
In the analysis three phenomenological approaches for the decay amplitude
are used: Isobar model, K−matrix formalism and QMIPWA. At first, for the
most traditional Isobar model, we started with an attempt to reproduce the
results from E791 analysis [6]. The fit Model I-1 showed a very poor quality
indicating that the model used in this analysis is not sufficient to describe
the data collected by the LHCb experiment. Then, after extending the Isobar
Model to include different states, the best model (Model I-2) included ρ(770)0,
ω(782), f2(1270), f0(980), f0(1500), f0(1370), ρ(1450)0 and f0(1710). The
scalar contributions are found to dominate the decay.

Although the final Isobar Model is composed by many resonant states, the
fit still presents significant disagreements with the data. The high π−π+ mass
region is better parametrised with the inclusion of the f0(1710), however,
the low mass region illustrated a very low quality in describing the ρ − ω

mixing, σ(500) and f0(980) regions. Given the tight phase space and the spread
behavior of the f0(1710), the inclusion of this state as an attempt to improve
the high mass region in the π+π− projection also interfered the low mass region,
thus the cost of improving one region affected the others by worsening the fit
quality significantly. The interference pattern in the ρ(770)0 region is adjusted
with the inclusion of the ω(782) but still requires improvement. Given the poor
descriptions obtained from isobar results, we find this scenario as a strong
motivation for the use other phenomenological parametrisations to describe
the D+ → π−π+π+ decay.

As a first alternative to parametrise the π−π+ S−wave component, the
K−matrix approach is used [121]. The model is composed of ρ(770)0, ω(782),
f2(1270), ρ(1450)0 and the S−wave consisted of five poles and three SVP
terms. This formalism, using input from a global ππ scattering data [126] and
provided a significant improvement in the high π−π+ mass region compared
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to that from Isobar Model results. Nevertheless, the low π−π+ mass region
still presents significant issues in describing the known contributions and
interferences illustrating only an agreement on a qualitative level. From the
two strategies of including SVP terms - based on the change of the FCN and
in the mass order as provided in the parameter table - both solutions presented
a similar fit quality given that the small difference in their ∆FCN indicating
some freedom in defining the scalar sector. Compared to the Isobar fits, the
FCNs of all tests performed with the K−matrix formalism were significantly
better indicating that this model provides a better parametrisation of the data
although it also illustrates difficulties in dealing with the low mass region.
Moreover, while the rescattering contribution needs to be included manually
in the isobar model, it is already considered in the K−matrix formalism
given that both ππ and KK channels are included. As in Model I-2, the
π+π+ projection presents a very good agreement with the data with the
exception of the region s23(π+π+) < 0.2 GeV2/c4.

The S−wave again appears as the major contribution with around 60%.
The fraction of the ρ(770)0 contribution appears with around 27% and the
f2(1270) with approximately 12% and ρ0(1450) with 0.2%. Although the
ω(782) fit fraction was 0.1%, it is sufficient to create the distortion in the
lineshape necessary to reproduce qualitatively the mixing pattern. Therefore,
the K−Matrix formalism represents better the data given the lower FCN and
χ2/ndof values, but the number of free parameters describing the S−wave is
larger than that of the Isobar Model, so it relies on more degrees of freedom to
achieve a better parametrisation and it still presents difficulties in providing
a good description of the data, thus, other phenomenological approaches
should pursued. Other relevant topic within this model is the complicated
physical interpretation behind the definition of the S−wave in which we use
16 parameters to describe the scalar sector but the interpretation is not as
trivial as the usual coherent sum from the Isobar model.

The second alternative to parametrise the scalar sector consisted in a
quasi model independent approach where the S−wave can be modelled bin
by bin in a non parametric form providing a way to extract π−π+ S−wave
which could serve as a reliable input for new phenomenological models. The
use of the QMIPWA is particularly interesting since it is being performed in
this channel for the first time and, with the large amount of data collected
by the LHCb experiment, these results provide a more accurate description
of the π+π− S−wave amplitude. In this approach, both P− and D− waves
are included via isobar model while the scalar sector is parametrised with
a QMIPWA. The model is composed of ρ(770)0, ω(782), f2(1270), ρ(1450)0
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and the S−wave parametrised through 48 points non-uniformly distributed
in m(π−π+). From the results, we observed that the fit quality increased
significantly compared to both Isobar and K−matrix approaches. The high
mass region presents a very good agreement with the data as well as the low
mass region, not possible with the other approaches, with the exception of the
low π+π+ mass region that could not be well described in all three models.
The lowest FCN was achieved by including the f ′2(1525) in the model.

One important feature of this approach is the binning method which is
very sensitive. Not only the number of bins is a relevant feature but also their
positions in the sense that slightly shifts in some bins may lead to instabilities
in the fit. The strategy behind the binning method was to distribute the bins
uniformly throughout the mπ−π+ spectrum and add and/or remove bins when
required. In the ρ0(770) region we verified that if there are too many points,
a leakage is observed by the fact that the QMIPWA tries to fit this region
even though it was not supposed to. The contamination of the P−wave onto
the S−wave appears as a peak in the S−wave magnitude in the region of the
ρ0(770) contribution. To avoid the leakage, one could carefully study the best
position for each bin in this region promoting a compromise between reducing
the leakage as possible without losing to much information of the S−wave
in this region. As in the S−wave extracted from the Isobar and K−matrix
models, the f0(980) appears as a significant peak in the magnitude plot with
its corresponding phase transition in the same mass region. The σ(500) appears
as a more spread contribution, showing a phase movement slower than that
of the f0(980). The other scalar contributions are not as trivial to identify as
these ones, due to their overlap and large widths.

Additionally, a phenomenological model based on a effective weak hamil-
tonian within a naive factorization approach and form factors [42] was used
as an alternative for the P−wave parametrisation but a more detailed study
is still needed to obtain a result for which the set of parameters constitutes a
more realistic scenario.

In summary, the QMIPWA provided the best fit result among the
three approaches given its best χ2/ndof range. The extracted π−π+ S−wave
behavior presents features in both magnitude and phase that provide an
understanding of the S−wave and the result obtained can be used as input for
phenomenological models aiming to provide a better description of the scalar
sector.
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9.2
Model discussion and S−wave comparison

This section contains the discussion and comparisons between the Isobar,
K−matrix, and QMIPWA approaches modelling the π−π+ S−wave. The
qualitative agreement between the models is verified by observing important
features such as the fit fractions of the contributions and the general behavior
of the extracted π+π− S−waves. To perform this comparison, the best Isobar,
Model I-2, K−Matrix, Model KM-2, and QMIPWA, Model PWA-1, results.
In these tree models, the same contributions in spin 1 and 2 waves are used:
ρ(770)0, f2(1270), ρ(1450)0 and ω(782), plus the S−wave contribution, which
the parametrisation is different for each approach. Table 9.1 summarizes the
results from the models to be compared.

Model Contribution Fit Fraction (%)
Isobar ρ− ω 22.7

(Model I-2) f2(1270) 10.7
ρ(1450)0 1.1

Isobar S−wave σ(500),f0(980),f0(1500), 37.7
f0(1370),f0(1710)

K−Matrix ρ(770)0 26.7
(Model KM-2) ω(782) 0.1

f2(1270) 12.1
ρ(1450)0 0.2

K−Matrix S−wave — 60.6
QMIPWA ρ(770)0 25.1

(Model PWA-1) ω(782) 0.1
f2(1270) 10.9
ρ(1450)0 1.0

QMIPWA S−wave — 60.7

Table 9.1: Fit fractions for the various components included in each baseline
model, Model I-2, KM-2 and PWA-1. Fit fraction errors still need to be
implemented. For the Isobar result, the S−wave fit fraction is the sum of
the fit fractions of the scalar components included in the model.

For the Isobar result, the composition of the S−wave includes five scalar
states summed coherently while in the K−Matrix model, it consists of all five
production poles, and the three production slowly-varying parts, corresponding
to the index α = 1, 3, 4. In the QMIPWA approach, the S−wave is constructed
with 48 points non-uniformly distributed fitted by two real parameters for each
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bin. As discussed previously, no reliable fit with the Isobar model has been
found given the limitations within this approach in dealing with a large number
of broad overlapping states, the unitarity violation problem. For the non-
S−wave components the obtained fit fractions are in a reasonable agreement
between the Isobar, K−Matrix and QMIPWA approaches. In all results the
ρ0(770) has a fraction of the order of 22 to 26%, the ω(782) of 0.1% and
the f2(1270) around 10 to 12%. The main difference lies in the ρ0(1450) which
appears around 1.0% in the QMIPWA and Isobar results in contrast with 0.2%
in the K−Matrix approach. Regarding the S−wave component, a fit fraction
of around 60% is obtained in both K−Matrix and QMIPWA solutions, also
in qualitative agreement with the results from previous analyses [7,8] however
in the Isobar Model the total S−wave fit fraction presented a significant lower
value. Considering the poorly fitted π+π− and π+π+ projections within this
approach, we expect that even for our best Isobar result, the fit fraction of this
component as well as the extracted magnitude and phase of the π+π− S−wave
don’t present a reasonable description of the true S−wave behavior but we can
still look for main features and compare with results from the other approaches.

All results from the K−Matrix approach are worse than the results from
QMIPWA but significantly better compared to Isobar results, thus we expect
the K−Matrix S−wave to be more accurate than the S−wave from the Isobar
Model but the most precise description is obtained from the QMIPWA result.
Although the fit results of these two approaches present significant issues, the
main features of the S−wave are clear making this comparison possible with
the S−wave from the QMIPWA and also from other collaborations [8]. For
both Isobar andK−Matrix, we used Laura++ while the QMIPWA performed in
GooFit. As discussed, since we cannot look for the FCN values of these different
fitting packages, the comparison is through χ2/ndof and for the S−wave, the
agreement is observed in the general form of the magnitude and phase of the
S−wave regardless the scales of the plots.

π−π+ S−wave comparison

From Figs. 9.1 one can see that the general trends of the shapes for
the amplitude and phase for the three approaches are similar, however the
QMIPWA presents the most accurate description since it has the best χ2/ndof.
From previous results [6, 8], the σ(500) contribution accounts as the largest
fraction in the scalar sector, therefore, a significant σ(500) is expected to
appear in the S−wave plots. Given its large width, it’s presented as a broad
contribution in the magnitude plot with a corresponding slow phase movement
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[129] in contrast with the f0(980), the second highest fit fraction in the scalar
sector, that appears as a sharp peak, thus an abrupt phase movement in the
correspondent region. In both results these features are explicit while the other
scalar contributions expected to contribute such as f0(1500) and f0(1370) don’t
appear as clear. Another interesting characteristic in the S−wave phase plot
is the movement between the σ(500) and f0(980) for which the phase suddenly
decreases, also observed in CLEO’s analysis [8], which could be related to
the superposition of the f0(980) and the opening KK channel creating a
discontinuity. Usually discontinuities in the phase are signatures of resonances
but in the case of the f0(980) it is enhanced by the opening KK channel.
Another possible reason for such behavior is any interference between the low
mass π−π+ S−wave with the ρ0(770).

Regarding the number of free parameters, the QMIPWA approach deals
with a large number since each bin includes two real parameters but, the
more number of bins included, more information about the S−wave can be
extracted. Therefore, the main strategy is to include as much bins as possible
until the fit loses stability or we start having leakages from higher spin waves
in the S−wave. For regions where we expect clear contributions, such as the
σ(500) and f0(980), we want more information about the S−wave, thus the we
have a higher number of bins. On the other hand, in the K−Matrix formalism,
the S−wave could be in principle described with 20 parameters however we
used 16 due to convergence of the fit. By writing the S−wave with 5 poles and
3 SVP terms, it would correspond to include 8 scalar resonances in a purely
Isobar analysis but, instead of a usual coherent sum, the physical interpretation
behind the K−Matrix formalism is not so trivial.

In top Figures 9.1, we plot the extracted S−wave amplitude from the
Isobar fit, Model I-2, including five scalar components, the middle plots
illustrate K−Matrix S−wave amplitude including with all five poles and three
SVP terms (α = 1, 3, 4), Model KM-2. The main features are present in these
two approaches but the fit quality of both results is low, therefore the S−wave
contains less details and also interferences with non-S−wave components are
poorly parametrised. In the bottom plots we show the S−wave amplitude
extracted from the QMIPWA fit, Model PWA-1. The three solutions share the
main features but the QMIPWA descriptions is much more accurate.
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Figure 9.1: S−wave extracted from the best Isobar (top), K−Matrix (middle)
and QMIPWA (bottom) model respectively.

9.3
Discussion on possible systematic uncertainties

Although the systematic uncertainties have not been evaluated yet for
this analysis, we discuss here the sources to be considered from now on.
They are divided into two categories: the ones that come from the impact
on the fit results from experimental aspects such as efficiency correction,
background parameterisation, selection, finite detector resolution; and the
second, referred to as model systematics, corresponds to the uncertainties in
resonance lineshape parameters such as masses, widths and couplings.
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From the experimental side, the main sources of systematic uncertainties
are the efficiency correction and the background parameterisation which are
common for all Isobar, K−Matrix and QMIPWA fits. Let’s first discuss the
systematic uncertainties from the efficiency. The efficiency map is obtained
from a series of steps and the outcome of each stage is a 2D histogram. The
final efficiency accounts both selection, determined from simulated events with
no PID applied, εselection, and PID, εPID, determined from the PIDCalib tables
where weights – the per track efficiency – are applied to the simulated events
that passed the MVA selection. Therefore, final efficiency map is obtained using
the projections from the simulated sample including the same stages for the
selection, εselection, weighted by the PID, εPID, which is fitted using a 2D cubic
spline yielding a smoothed, high-resolution histogram used in the analysis. The
possible sources of systematic uncertainty associated to the efficiency map are:
the finite size of the simulated sample; the uncertainty on the PID efficiency;
and the binning scheme of the efficiency map before the smoothing procedure.

Uncertainties related to the PID efficiency are due to the size of the
calibration samples. The PID efficiency table is a histogram which contains
the average efficiency in the corresponding bin and its uncertainty. The PID
efficiency is given as function of the particle momentum, pseudo-rapidity and
track multiplicity of the event and to evaluate the systematics, one could
generate a set of histograms with PID efficiency tables with the values of
efficiencies and correction factors fluctuating according to a Gaussian centred
in the nominal value and width equal to the uncertainty. Then the efficiency
maps are produced, smoothed by the 2D cubic spline and used to fit the
data. For each fit parameter, the r.m.s. of the distribution of fitted values
is assigned as systematic uncertainty. The PID calibration samples are large
and the uncertainty on the PID efficiency is expected to be small, thus the
resulting systematic uncertainties due to the PID efficiency are also expected
to be very small compared to those due to other sources.

The finite size of the simulated sample is also a source of systematic un-
certainty. One could generate a set of histograms from the selection efficiency
histogram, εselection, in which the bin content is varied according to its uncer-
tainty .For each of histograms, an efficiency map can be produced and used to
fit the data. For each parameter, the r.m.s. of the distribution of fitted values
can be assigned as a systematic uncertainty.

To account for biases from the efficiency correction, one should vary
the binning schemes of the 2D smoothed histogram of simulated candidates,
weighted according to efficiency numbers extracted from tables provided by
the PIDCalib [92] and observe the difference in the fit result given the binning
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scheme variation.
The background corresponds to approximately 5% of the sample within

the mass interval. The uncertainties related to the background come from both
level and shape. For the first, the background level can be varied according to
the uncertainty from the mass plot fit. The data can be fitted changing the
background level by ±1σ observing the direct shift of the central values of the
parameters. For the second, the background model is built from both mass
sidebands of the D+ → π−π+π+ signal and, as we observed, the background
structure is different between the left and right πππ wings. In principle we
assume it to be 50% of each wing but the exact proportion is unknown and
variations can be also included as a source of systematics. In addition, the
background can be assumed to be one or the other and the impact on the fit
parameters evaluated.

Systematic uncertainties assigned to biases in the fit algorithm could
be included. To evaluate it, ensembles large toy samples are required. For
the three approaches: Isobar, K−Matrix and QMIPWA, the toys can be
generated using with the fitted values of the parameters from the best result
of each model. The simulations include background and efficiency and each
toy is fitted independently. The result are distributions of fitted values of the
parameters and their respective uncertainties. For each parameter, the mean
of the distribution of fitted values is compared to the input. The difference is
assigned as the systematic uncertainty due to the fit bias. As a sanity check,
the statistical uncertainties from MINUIT are compared to the mean value of
the distribution of fitted parameter uncertainties. If there is any bias, it should
be included in the systematics.

Regarding model systematics, uncertainties related to lineshape param-
eters also need to be included. In this analysis, for both K−Matrix and
QMIPWA models, masses and widths of spin 1 and 2 components can be
varied by ±1σ observing the effect while for Isobar results, the lineshape pa-
rameters from all resonances (spin 0,1 and 2 states) can be also varied by
±1σ observing the effects in the fitted parameters and including in the model
systematics. Furthermore, Blatt-Weisskopf radius, rFD,Rp3

and rFR,p1p2
, are also

varied for higher spin states in the K−Matrix and QMIPWA models and for
all resonant states in the Isobar model observing any shifts of the central values
of the parameters. In the QMIPWA, the choice of number of points in which
the mass spectrum is binned is also a source of uncertainties. A variation of
the number of bins in the S−wave needs to be considered.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 9. Discussions and perspectives 140

9.4
Conclusions

In this dissertation it was presented the amplitude analysis of a sample
of 200 thousand D+ → π−π+π+ Cabibbo-suppressed decays from the LHCb
experiment aiming to understand the resonant intermediate structures for
this decay and to extract and interpret the π+π− S−wave. Model dependent
parametrisations - Isobar and K−Matrix approaches - were not good enough
to describe the data. The best result was accomplished by using the QMIPWA
method, where the S−wave is obtained in bins of m(π+π−), while P− and
D−waves are described by Isobar approach.

The results presented in this dissertation are still preliminary and they
do not include systematic uncertainties. The analysis is well advanced and the
results presented here are being discussed within the collaboration and final
results will be presented in the full analysis note, towards publication.
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Appendix: Reweight Procedure

In this appendix, the reweight procedure using half (containing only odd
events) of the total sample is described.

The overall steps required in the reweight procedure are the following:

– At first, the data sample with PIDK< −2 for all pion cadidates is splitted
into two reproducible sub samples. The first sample is reserved for further
analysis while the second sample proceeds into the next steps.

– For each polarity a mass fit within the range [1810, 1930]MeV/c2via sPlot
technique [93] is performed in which the signal weight is saved. The signal
PDF is composed of a Gaussian and a Crystal Ball function with positive
parameter α and width related to the Gaussian width (σCB = σG×CBratio).
The background PDF is given by an exponential function.

– Since the MC sample is generated as phase space and weighted by the PID-
Calib, the dynamics is emulated by applying a resonant structure weight.
Furthermore, a tracking correction to equalize the track multiplicity between
data and MC is provided as a function of particle momentum, transverse
momentum and event track multiplicity is applied as a weight. Both correc-
tions are saved and we will refer to the tracking correction as MCnTracks

and the resonant structure weight to as MCDP .

– Once both data and MC samples have the tracking correction and resonant
structure weights, we construct the ratio between the MC and data to be
stored in the MC sample.

histDP = MCDP
DataDP

, (10-1)

histnTracks = MCnTracks
DatanTracks

. (10-2)

– Then, merging Up and Down polarities for both data and MC, the samples
together with their respective weights, will proceed as inputs for the reweight
code.

To perform the mass fit, the signal was modelled by one Gaussian function
and one Crystal Ball function (CB) with αCB positive. The Crystal Ball parameter
σCB was constructed as a product of the Gaussian width and the CB σ ratio
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σCB = σG × CBratio. (10-3)

For the background model, it was used an exponential function parametrised with
a negative τ dislocated by a fix value, an offset

PDF bkg = e−τ(x−1810). (10-4)

The signal PDF is written as

PDF sig = fracGfG(x) + (1− fracG)fCB(x), (10-5)

thus the fit model can be written as

PDF = NsigPsig +NBkgPBkg. (10-6)

The plot and fit result for MagUp polarity is shown in Figure 10.1 and Table 10.1.
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Figure 10.1: Mass Fit for MagUp sample.

Parameter Value
Nbkg 2142570± 14297.6
Nsig 1734200± 13721.0
α1 0.491± 0.040
σCBratio 1.838± 0.043
µG 1871.58± 0.011
σG 8.132± 0.023
nCB 19.99± 14.03
frac 0.7700± 0.0038
τbkg −0.00222± 0.00010

Table 10.1: Invariant mass fit parameters.

The blue full line represents the fit result, red dashed line the Gaussian
function, green dashed line the background and blue dashed line the Crystal Ball
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function. The fit parameters in the output were used to calculate the signal weight
via sPlot as a technique for background subtraction.

The reweight is created on a multivariate analysis based code with the follow-
ing inputs: MC sample (MagUp+MagDown), true ID and weights (PID, tracking
correction and phase space dynamics) and the data sample (MagUp+MagDown)
with background subtracted from sPlot. The input variables are:

– D IP

– D χ2
IP

– D FD

– D χ2
FD

– DIRA

– POINTING

– tCM

– D pT

– PTsum

– D Vertex χ2

– logIP

– for each daughter χ2
IP , IP, p and pT

The output is the "reweight" which matches the distributions ensuring that
the MC kinematics is well described. Figure 10.2 illustrates the variables after the
reweight process indicating that the simulated D+ → π−π+π+ distributions are
now equivalent to the data. The blue line corresponds to the data with background
subtracted and in red the simulated sample with all weights applied (kinematical,
dynamical and reweight).
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Figure 10.2: Variables after the reweight procedure.
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Appendix: GooFit validation

In this appendix we present a code validation for the GooFit software. The
purpose is to verify the performance of the fitter via a genfit procedure.

To perform the genfit, we first generate a large number of simulation
samples according to a determined model such that the contributions and the
input parameters are chosen. Then we perform a fit for each simulated sample
in order to compare the inout values with the ones obtained from the MINUIT.
The distributions for each fitted parameter are created and expected to have a
gaussian behavior centered at the input value and the width compatible with the
distribution of the mean errors.

The model consists on four resonances: ρ(770) in the reference, f0(980),
f2(1270) and ρ(1450). Each sample has 200 thousand events and the genfit
procedure was performed with 1000 samples. Background and efficiency histograms
were considered and all widths and masses are set free in the fit. The ρ(770) was
fixed at real equal to 1 and imgaginary equal to 0. The results and the parameters
distributions are shown in Table 11.1. The compatibility tests from the input values
are given by:

Compatibility1 = |gen− µ|error , (11-1)

Compatibility2 = |σ − errorµ|
error , (11-2)

where, in the compatibility 1, gen corresponds to the generated input value, µ
is the mean of the gaussian adjustment of the parameter distribution and in the
denominator, the error associated to the mean. In the compatibility test 2, σ
corresponds to the width of the gaussian adjustment, errorµ is the mean of the
error distribution and, in the denominator, the error associated with the width
adjustment.
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Resonance Generated Fit mean µ µ error Fit σ σ error Fit µ Error
f0(980) real -0,4891 -0,4901 0,0010 0,02982 0,00075 0,02996
f0(980) img -0,3265 -0,3262 0,0008 0,02427 0,00066 0,02517
f2(1270) real -0,2487 -0,2464 0,0005 0,01442 0,00036 0,01516
f2(1270) img 0,7447 0,7435 0,0003 0,00767 0,00019 0,00783
ρ(1450) real 0,00251 -0,00046 0,00072 0,02184 0,00054 0,02227
ρ(1450) img -0,0937 -0,09762 0,00065 0,01959 0,00053 0,02001

Resonance Compatibility 1 Compatibility 2
f0(980) real 1 0,19
f0(980) img 0,38 1,36
f2(1270) real 4,6 2,06
f2(1270) img 4 0,84
ρ(1450) real 4,13 0,80
ρ(1450) img 6,03 0,79

Table 11.1: Genfit results.
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Appendix: Individual Resonances

In this appendix, the Dalitz plot of each individual resonance is shown in
order to observe the region where each one contributes.
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Figure 12.1: Dalitz plot of each individual resonance.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



13
Appendix: Additional Results

In this Appendix we present some additional results mentioned in the previous
chapters. In all of the following, all masses and widths are fixed to PDG values
unless any parameter is explicitly said to be free and all lineshapes used for each
contribution are according to Table 6.2.

Isobar Model

Considering an initial model composed of ρ0(770), ω(782), f2(1270), σ(500),
f0(980), ρ0(1450), f0(1500) and f0(1370). From now on, we will refer this model
to as Model I-0. In Model I-2 we presented the result of this model including the
f0(1710) in Model I-0 and in the following results we show the inclusion of other
contributions instead the f0(1710). In all results the masses and widths are set
fixed to PDG values unless it is specified in the fit result. In addition, for fits which
the ρ − ω is included via a mixing lineshape, the parameters responsible for the
mixing are |B| and φB and in all cases they are set as free.
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Model I-0

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 24.8
f0(980) 0.550± 0.005 −3.34± 0.02 7.5
σ(500) 1.165± 0.015 3.63± 0.01 33.7
f2(1270) 0.680± 0.005 1.42± 0.02 11.5
f0(1500) 0.404± 0.008 −3.36± 0.03 4.1
f0(1370) 0.553± 0.018 3.67± 0.02 7.6
ρ0(1450) 0.171± 0.010 1.99± 0.08 0.7
mf0(980) 924.8± 2.0 MeV/c2

|B| 0.525± 0.034
φB −3.37± 0.07∑ FF (%) 89.8
χ2/ndof (range) [6.62 - 6.46] FCN = -1908561

Table 13.1: Fit results from Model I-0.

DBD
PUC-Rio - Certificação Digital Nº 1812661/CA



Chapter 13. Appendix: Additional Results 154

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]4/c2) [GeV-π+π(los

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

A
.U

.
Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV-π+π(his

0

0.002

0.004

0.006

0.008

0.01

0.012A
.U

.

Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV-π+π(13s

0

0.002

0.004

0.006

0.008

0.01

0.012

A
.U

.

Data

Model

0 0.5 1 1.5 2 2.5 3
]4/c2) [GeV+π+π(23s

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009A
.U

.

Data

Model

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
]4/c2) [GeV-π+π(13s

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

A
.U

.

Data

Model

10−
8−
6−
4−
2−

0

2
4

6

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]4/c2 [GeV

lo
)-π+πs(

0

0.5

1

1.5

2

2.5

3

]4
/c2

 [G
eV

hi)- π+ π
s(

Figure 13.1: Fit projections from Model I-0 and residuals distribution.
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Model I-0 plus a non resonant (NR) contribution

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 25.6
f0(980) 0.539± 0.006 −3.60± 0.02 7.4
σ(500) 0.955± 0.020 3.60± 0.02 23.3
f2(1270) 0.654± 0.005 1.48± 0.02 10.9
f0(1500) 0.272± 0.010 −3.48± 0.04 1.9
f0(1370) 0.417± 0.018 3.14± 0.04 4.4
ρ0(1450) 0.176± 0.012 1.61± 0.06 0.8
NR 0.478± 0.021 −0.68± 0.04 5.8
mf0(980) 906.8± 2.0 MeV/c2

|B| 0.567± 0.034
φB −3.34± 0.06∑ FF (%) 80.2
χ2/ndof (range) [5.87 - 5.71] FCN = -1908882

Table 13.2: Fit results from Model I-0 plus NR.
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Figure 13.2: Fit projections from Model I-0 plus NR and residuals distribution.
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Model I-0 with f0(1370) mass and width free

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 20.3
f0(980) 0.552± 0.006 −3.56± 0.02 6.2
σ(500) 1.168± 0.020 3.44± 0.01 27.7
f2(1270) 0.742± 0.008 1.51± 0.02 11.2
f0(1500) 0.408± 0.014 −2.43± 0.03 3.4
f0(1370) 0.459± 0.015 4.66± 0.05 4.3
ρ0(1450) 0.180± 0.009 2.06± 0.07 0.7
mf0(980) 903.0± 1.7 MeV/c2

|B| 0.610± 0.037
φB −3.30± 0.06
mf0(1370) 1696.9± 3.6 MeV/c2

Γf0(1370) 150.8± 9.6 MeV/c2∑ FF (%) 73.7
χ2/ndof (range) [5.45 - 5.30] FCN = -1909083

Table 13.3: Fit results from Model I-0 with f0(1370) free.
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Figure 13.3: Fit projections from Model I-0 with f0(1370) free and residuals
distribution.
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Model I-0 plus a ρ3(1690)

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 25.4
f0(980) 0.552± 0.005 −3.47± 0.02 7.8
σ(500) 1.214± 0.016 3.59± 0.01 37.5
f2(1270) 0.662± 0.005 1.39± 0.02 11.2
f0(1500) 0.351± 0.009 −3.41± 0.03 3.1
f0(1370) 0.567± 0.020 3.56± 0.02 8.2
ρ0(1450) 0.108± 0.011 2.11± 0.15 0.3
ρ3(1690) 0.084± 0.006 −2.12± 0.06 0.2
mf0(980) 917.8± 2.1 MeV/c2

|B| 0.540± 0.034
φB −3.40± 0.06∑ FF (%) 93.6
χ2/ndof (range) [6.26 - 6.09] FCN = -1908678

Table 13.4: Fit results from Model I-0 plus ρ3(1690).
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Figure 13.4: Fit projections from Model I-0 plus ρ3(1690) and residuals
distribution.
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Model I-0 plus rescattering

Resonance Magnitude Phase [rad] Fit Fraction (FF) (%)
ρ− ω 1 [fix] 0 [fix] 24.9
f0(980) 0.549± 0.005 −3.33± 0.02 7.5
σ(500) 1.132± 0.015 3.66± 0.01 32.0
f2(1270) 0.671± 0.005 1.41± 0.02 11.2
f0(1500) 0.406± 0.008 −3.40± 0.03 4.1
f0(1370) 0.596± 0.018 3.67± 0.02 8.9
ρ0(1450) 0.191± 0.011 1.85± 0.07 0.9
Rescattering 0.043± 0.004 0.51± 0.09 0.05
mf0(980) 927.6± 2.1 MeV/c2

|B| 0.533± 0.034
φB −3.37± 0.07∑ FF (%) 89.5
χ2/ndof (range) [6.61 - 6.43] FCN = -1908625

Table 13.5: Fit results from Model I-0 plus rescattering.
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Figure 13.5: Fit projections from Model I-0 plus rescattering and residuals
distribution.
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Model KM-2 plus f ′2(1525)

Component Magnitude Phase [rad] Fit Fraction (%)
ρ0(770) 1.0 [fixed] 0.0 [fixed] 26.5
ω(782) 0.060± 0.004 −1.61± 0.07 0.1
f2(1270) 0.672± 0.006 1.48± 0.02 12.0
ρ0(1450) 0.075± 0.009 −4.31± 0.14 0.1
f ′2(1525) 0.123± 0.006 −1.98± 0.05 0.4

S−wave
Component β/fprod Magnitude β/fprod Phase [rad] Fit Fraction (%)
Pole1 0.975± 0.031 −3.47± 0.03 25.2
Pole2 0.427± 0.014 −2.07± 0.04 4.8
Pole3 0.769± 0.045 −0.78± 0.05 15.7
Pole4 0.841± 0.041 −0.70± 0.05 18.7
Pole5 0.531± 0.044 −2.57± 0.09 7.5
SVP1 0.631± 0.060 −1.31± 0.10 10.5
SVP3 0.301± 0.035 6.00± 0.13 2.4
SVP4 0.556± 0.045 −0.18± 0.07 8.2
S−wave 58.4
χ2/ndof (range) [3.26 - 3.13]∑ FF (%) 132.1
FCN -1909992

Table 13.6: Model KM-2 plus f ′2(1525): component parameters and fit fractions.
Uncertainties are statistical only and fit fractions without errors.
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Figure 13.6: Fit results from Model KM-2 plus f ′2(1525).
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Model KM-2 plus ρ3(1690)

Component Magnitude Phase [rad] Fit Fraction (%)
ρ0(770) 1.0 [fixed] 0.0 [fixed] 26.4
ω(782) 0.063± 0.004 −1.66± 0.07 0.1
f2(1270) 0.667± 0.006 1.53± 0.02 11.8
ρ0(1450) 0.062± 0.008 −3.54± 0.21 0.1
ρ3(1690) 0.034± 0.006 3.01± 0.21 0.03

S−wave
Component β/fprod Magnitude β/fprod Phase [rad] Fit Fraction (%)
Pole1 0.989± 0.033 −3.29± 0.03 25.8
Pole2 0.376± 0.014 −2.12± 0.05 3.7
Pole3 0.928± 0.050 −0.76± 0.05 22.8
Pole4 0.983± 0.046 −0.64± 0.04 25.6
Pole5 0.631± 0.049 −2.84± 0.07 10.5
SVP1 0.519± 0.059 −1.55± 0.13 7.1
SVP3 0.335± 0.038 6.50± 0.12 3.0
SVP4 0.533± 0.046 −0.03± 0.07 7.5
S−wave 61.4
χ2/ndof (range) [3.84 - 3.69]∑ FF (%) 144.5
FCN -1909764

Table 13.7: Model KM-2 plus ρ3(1690): component parameters and fit frac-
tions. Uncertainties are statistical only and fit fractions without errors.
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Figure 13.7: Fit results from Model KM-2 plus ρ3(1690).
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Model PWA-1 plus ρ(1700)

Resonance Real Imaginary Fit Fraction (FF) (%)
ρ0(770) 1 [fix] 0 [fix] 25.8
ω(782) −0.003± 0.001 −0.014± 0.001 0.1
f2(1270) −0.406± 0.036 −1.714± 0.022 11.2
ρ0(1450) 1.066± 0.125 1.069± 0.045 1.7
ρ(1700) −1.242± 0.223 −3.133± 0.290 1.3
S−Wave 48 points 62.4∑ FF (%) 102.6
χ2/ndof (range) [1.74 - 1.45] FCN = 272898

Table 13.8: Fit results from the baseline model plus ρ(1700).

ω(782) ρ0(770) ρ0(1450) f2(1270) ρ(1700) S−wave
ω(782) 0.09 -0.22 0.03 0.04 -0.02 0.00
ρ0(770) 25.85 2.84 -0.38 -2.50 1.14
ρ0(1450) 1.75 0.54 -1.34 0.64
f2(1270) 11.17 -0.47 -0.73
ρ(1700) 1.30 -0.85
S−wave 62.44

Table 13.9: Interference fractions between amplitude components for the
QMIPWA approach.
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Figure 13.8: Fit projections from the baseline model plus ρ(1700), extracted
S−wave and residuals distribution.
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Model PWA-1 plus Bose Einstein Correlation effect (BEC)

Resonance Real Imaginary Fit Fraction (FF) (%)
ρ0(770) 1 [fix] 0 [fix] 20.2
ω(782) −0.003± 0.001 −0.015± 0.001 0.1
f2(1270) −0.472± 0.032 −1.901± 0.029 10.8
ρ0(1450) 1.483± 0.107 0.676± 0.098 1.6
BEC 9.664± 1.391 24.683± 1.476 38.1
S−Wave 48 points 40.4∑ FF (%) 111.3
χ2/ndof (range) [1.69 - 1.41] FCN = 272833

Table 13.10: Fit results from the baseline model plus the Bose Einstein
correlation effect

ω(782) ρ0(770) ρ0(1450) f2(1270) BEC S−wave
ω(782) 0.09 -0.19 0.04 0.04 -0.03 0.0
ρ0(770) 20.23 1.65 -0.35 -3.94 6.09
ρ0(1450) 1.59 0.56 -2.26 2.03
f2(1270) 10.81 -0.97 0.0
BEC 38.10 -8.29

S−wave 40.45

Table 13.11: Interference fractions between amplitude components for the
QMIPWA approach.
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Figure 13.9: Fit projections from the baseline model plus the Bose Einstein
correlation effect, extracted S−wave and residuals distribution.
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Model PWA-1 with ρ0(770) mass and width free

Resonance Real Imaginary Fit Fraction (FF) (%)
ρ0(770) 1 [fix] 0 [fix] 25.1
ω(782) −0.004± 0.001 −0.012± 0.001 0.1
f2(1270) −0.562± 0.037 −1.642± 0.039 10.8
ρ0(1450) 0.384± 0.113 1.240± 0.090 1.3
S−Wave 48 points 60.6
mρ0(770) 778.703± 1.329 MeV/c2

Γρ0(770) 151.900± 2.284 MeV/c2∑ FF (%) 97.8
χ2/ndof (range) [1.88 - 1.57] FCN = 272944

Table 13.12: Fit results from the baseline model with ρ0(770) mass and width
free.

ω(782) ρ0(770) ρ0(1450) f2(1270) S−wave
ω(782) 0.08 -0.22 0.0 0.04 0.02
ρ0(770) 25.06 2.93 -0.55 -0.76
ρ0(1450) 1.28 0.27 -0.22
f2(1270) 10.80 -0.42
S−wave 60.64

Table 13.13: Interference fractions between amplitude components for the
QMIPWA approach.
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Figure 13.10: Fit projections from the baseline model with ρ0(770) mass and
width free, extracted S−wave and residuals distribution.
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