
Daniel Ribas Tandeitnik

Evolving Quantum Error Correction Codes

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Física of PUC-Rio in partial fulfillment of the requirements for
the degree of Mestre em Ciências - Física.

Advisor: Prof. Thiago Barbosa dos Santos Guerreiro

Rio de Janeiro
May 2022

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Daniel Ribas Tandeitnik

Evolving Quantum Error Correction Codes

Dissertation presented to the Programa de Pós-graduação em
Física of PUC-Rio in partial fulfillment of the requirements for
the degree of Mestre em Ciências - Física. Approved by the
Examination Committee:

Prof. Thiago Barbosa dos Santos Guerreiro
Advisor

Departamento de Física – PUC-Rio

Prof. Guilherme Penello Temporão
CETUC – PUC-Rio

Prof. Stuart Kauffman
UPENN

Prof. Ernesto Fagundes Galvão
UFF

Rio de Janeiro, May 11th, 2022

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

All rights reserved.

Daniel Ribas Tandeitnik

The author graduated in Physics from Pontifícia Universidade
Católica do Rio de Janeiro in 2019.

Bibliographic data
Ribas Tandeitnik, Daniel

Evolving Quantum Error Correction Codes / Daniel Ribas
Tandeitnik; advisor: Thiago Barbosa dos Santos Guerreiro. –
2022.

92 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Física, 2022.

Inclui bibliografia

1. Física - Teses. 2. algoritmo genético. 3. correção de
erros quântico. 4. códigos stabilizer.
I. Barbosa dos Santos Guerreiro, Thiago. II. Pontifícia Univer-
sidade Católica do Rio de Janeiro. Departamento de Física.
III. Título.

CDD: 530

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

To all the people who supported me and made it possible, directly and
indirectly, for me to take the road less traveled.

Let there be quantum circuits!

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Acknowledgments

We thank Bruno Suassuna and Igor Brandão for useful discussions. This study
was financed in part by Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), and by the Fundação de Amparo à Pesquisa do Estado do
Rio de Janeiro (FAPERJ). This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001. I would like to thank the support received by CNPq Scholarship
No. 132606/2020-8 and FAPERJ Scholarship No. 2021.01394.9.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Abstract

Ribas Tandeitnik, Daniel; Barbosa dos Santos Guerreiro, Thi-
ago (Advisor). Evolving Quantum Error Correction Codes.
Rio de Janeiro, 2022. 92p. Dissertação de Mestrado – Departamento
de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Computational methods become essential in the face of complex problems
where human intuition and traditional methods fail. Recent works present
artificial neural networks capable of efficiently performing tasks intractable
by conventional algorithms using machine learning, rendering it one of the
most popular methods. Concomitantly, genetic algorithms, inspired by the
biological processes of natural selection and mutation, have been used as a
metaheuristic method to find solutions to optimization problems. We then raise
the question of whether genetic algorithms have the potential to solve problems
in the context of quantum computing, where human intuition decreases as
physical systems grow. Specifically, we focus on the evolution of quantum
error-correcting codes within the stabilizer code formalism. By specifying an
appropriate fitness function, we show that we can evolve celebrated codes, such
as the Perfect and Shor’s code with respectively 5 and 9 qubits, in addition to
new unanticipated examples. Additionally, we compared it with a brute force
random search and verified an increasing superiority of the genetic algorithm
as the total number of qubits increases. Given the results, we foresee that
genetic algorithms can become valuable tools to perform complex applications
in quantum systems and produce tailored circuits that satisfy restrictions
imposed by hardware.

Keywords
genetic algorithm; quantum error correction; stabilizer codes;.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Resumo

Ribas Tandeitnik, Daniel; Barbosa dos Santos Guerreiro, Thiago.
Evoluindo Códigos de Correção de Erros Quânticos. Rio de
Janeiro, 2022. 92p. Dissertação de Mestrado – Departamento de
Física, Pontifícia Universidade Católica do Rio de Janeiro.

Métodos computacionais se tornam essenciais diante de problemas com-
plexos onde a intuição humana e métodos tradicionais falham. Trabalhos re-
centes apresentam redes neurais artificiais capazes de realizar eficientemente
tarefas intratáveis por algoritmos convencionais com o emprego de aprendizado
de máquina, tornando-se assim um dos métodos mais populares. Concomitan-
temente, algoritmos genéticos, inspirados pelos processos biológicos de seleção
natural e mutação, têm sido utilizados como método metaheurístico para en-
contrar soluções de problemas de otimização. Levantamos então a questão se
algoritmos genéticos possuem potencial para resolver problemas no contexto da
computação quântica, onde a intuição humana decresce à medida que os siste-
mas físicos crescem. Especificamente, nos concentramos na evolução de códigos
de correção de erros quânticos dentro do formalismo de códigos stabilizer. Ao
especificar uma função de fitness apropriada, mostramos que somos capazes de
evoluir códigos celebrados, como o código do Shor e o perfeito de 9 e 5 qubits
respectivamente, além de novos exemplos não antecipados. Adicionalmente,
comparamos com o método força bruta de busca aleatória e verificamos uma
crescente superioridade do algoritmo genético conforme aumenta-se o número
total de qubits. Diante dos resultados, imaginamos que algoritmos genéticos
possam se tornar ferramentas valiosas para desempenhar aplicações complexas
em sistemas quânticos e produzir circuitos sob medida que satisfaçam restri-
ções impostas por hardware.

Palavras-chave
algoritmo genético; correção de erros quântico; códigos stabilizer;.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Table of contents

1 Introduction 15

2 Stabilizer formalism 18
2.1 Stabilizer basics 18
2.2 Tableau representation 21
2.3 Stabilizer algorithms 25

3 Quantum error correction codes 32
3.1 Introduction to error correction 32
3.2 Stabilizer Codes 39

4 Genetic algorithms applied to Quantum Circuits 47
4.1 The evolutionary process 48
4.2 Genetic algorithms applied to Clifford circuits 49
4.3 Evolving QECCs 60

5 Outlook 70

Bibliography 73

A List of publications 83

B Notation convection 84
B.1 Tensor products and indexing 84
B.2 Pauli operators 84

C Pauli operators, Pauli general group and some properties 86

D Quantum circuits and important gates 88

E Summary and important properties of stabilizers 91

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

List of figures

Figure 2.1 Quantum circuit example. 23
Figure 2.2 Row-reduced echelon (canonical) form of a general

tableau. The tableau is divided in two blocks. The top block
(the X-block) contains only X literals on the principal diago-
nal, only I and Z below it, and I, X, Y and Z above it. The
bottom block (the Z-block) contains only Z literals on the prin-
cipal diagonal, only I below it, and only I and Z above it. This
construction minimizes the number of non-I literals in each row. 24

Figure 3.1 Geometrical representation of an arbitrary qubit state on
a Bloch sphere. The state is defined by the two angles {θ, ϕ},
and rests on the surface of a 2-sphere. Unitary operators have
the action of translating points on the surface. 35

Figure 3.2 EC for the 3-qubit code. This circuit maps α |0⟩ + β |1⟩
into α |000⟩ + β |111⟩. 37

Figure 3.3 3-qubit code encompassing the encoding and the syn-
drome extraction stages. (a) Encoding stage; (b) Syndrome ex-
traction stage where two ancillae qubits are attached to the
main block to measure the syndrome of a possible error. 40

Figure 3.4 The generic circuit of a [[n, k, d]] stabilizer error correc-
tion code. (a) A data register |ψ⟩D is entangled with n − k
redundancy qubits via an EC to form the logical-state |ψ⟩L. (b)
After a potential error E occurs, ancilla qubits are attached to
|ψ⟩L and m syndrome measurements Pi are performed. The re-
sult of the measurements produces the syndrome. (c) With the
syndrome, one consults the syndrome table, and the appropri-
ate correction R is appointed and applied. This process is rep-
resented by the decoder gate. The double-line channels means
classical communication. 41

Figure 3.5 EC for Shor’s quantum error correction code. 43

Figure 4.1 Genetic operations examples. (a) a one-point crossover
between two DNA strands. The strands are cut at the crossover
point and combined together to form the offspring’s DNA. (b)
three random mutations, symbolized by the yellow stars, on a
DNA strand. Due a copy error, some nucleotides are replaced
by random ones. 49

Figure 4.2 Illustration of three distinct populations climbing a hy-
pothetical fitness landscape. At an initial time, each population
starts at some low point of the landscape (the colored circles)
and stochastically rises towards the peaks. The mutation rate
regulates the size of each step. The height of the surface repre-
sents the reproduction rate of a given genotype. 50

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Figure 4.3 A (a) random quantum circuit and (b) its genotype. Each
row of the genotype is a gate in ascending order (from top to
bottom) of application with the columns storing the operator
and the indices of the affected qubits. The CNOT is abbreviated
as C. 51

Figure 4.4 Example of a crossover between two genotypes. The
parents genotypes are divided at randomly chosen points and
their offspring are built by stacking the pieces. 52

Figure 4.5 Illustration of the three types of mutation that may occur
to a circuit. From top to bottom: the first gate was replaced by
a Hadamard on qubit 2, a new row was inserted between the
second and the third rows, and an identity replaced the fifth
gate (hence it was deleted). 52

Figure 4.6 Decision tree of the genetic algorithm. The halt decision
gate evaluates if a termination condition was met. 54

Figure 4.7 A 6-qubit circuit solving the toy problem. Permutations
of the CNOTs along the time direction, as well as of the target
qubits yield the same solution. 58

Figure 4.8 Decision tree of the RS. The algorithm generates random
circuits and saves the best circuit ever generated until a termi-
nation condition is reached (maximum number of generations
or maximum fitness value). 58

Figure 4.9 Evolutionary search through a genetic algorithm (green
line) versus random search (blue line) for the toy problem.
Each curve is the average over 100 runs. The dashed red line
represents the maximum fitness given by n/8 (see Eq. (4-6) and
the main text). (a) n = 4; (b) n = 8; (c); n = 16. 59

Figure 4.10 Evolution of the topology of the fittest circuit in an
evolutionary search simulation for n = 8. The edges represent
qubits (the number is the qubit’s index), and the vertices CNOT
gates. (a) Initial set of random circuits; (b) after 322 generations;
(c) after 2248 generations; (d) after 3909 generations. 60

Figure 4.11 An example of an equivalent EC to Shor’s error correc-
tion code. 62

Figure 4.12 Evolutionary search through a genetic algorithm (green
line) versus random search (blue line) in search of QECCs. Each
curve is the average over 100 runs of the population’s best
fitness. The fitness values are normalized. (a) n = 5; (b) n = 6;
(c) n = 7; (d) n = 8; (e) n = 9; (f) n = 10. 65

Figure 4.13 Creation of an equivalent EC for Shor’s code by permu-
tation of two qubit registers. Any permutation of the register
produces an equivalent EC. 66

Figure 4.14 Example of a [[9, 1, 5]] EC found by GA with depth D = 8. 67
Figure 4.15 Example of a [[10, 1, 5]] EC found by GA with depth D = 6. 68
Figure 4.16 A lattice arrangement of the 7-qubit color code. 69

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Figure 4.17 Evolutionary search through a genetic algorithm versus
random search in search for the 7-qubit color code. Each curve
is the average over 100 runs of the population’s best fitness. The
fitness values are normalized. 69

Figure 5.1 IBM quantum systems lattices taken from [105]. The
systems are named: (a) 20-qubits systems Johannesburg and
Poughkeepsie; (b) 20-qubits systems Almaden, Boeblingen, and
Singapor; (c) 5-qubits systems Ourense, Valencia, and Vigo; (d)
14-qubits system Melbourne; (e) 5-qubits system Yorktown; (f)
53-qubits system Rochester. 72

Figure D.1 A simple quantum circuit example. 88
Figure D.2 This quantum circuit example produces the Bell state

|Φ+⟩ and then qubit 2 is measured on the computational basis. 89
Figure D.3 Quick reference for quantum gates and quantum circuit’s

basic elements. The third column shows useful representation of
gates in terms of the computational base or Pauli operators. 90

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

List of tables

Table 2.1 Conjugation of Pauli operators under the action of Clif-
ford gates. 21

Table 2.2 Transformation rules for the stabilizer binary form. The
sums for the components of u⃗ and p are respectively modulo
2 and 4. For the CNOT, indices i and j are respectively the
control and the target qubits. 22

Table 3.1 3-qubit code syndrome table for single-qubit errors. 42
Table 3.2 Shor’s code syndrome table for single-qubit errors. 44
Table 3.3 Auxiliary table grouping degenerate syndromes with re-

spectively associated errors. For each syndrome, all pairing com-
binations of errors belongs to the common stabilizer group of the
codeword. 44

Table 3.4 Example of syndrome table of a perfect code. 46

Table 4.1 Number of times each method found a solution in 100
trials with a maximum limit of 5, 000 generations (except for
the color case, in which the limit was 10, 000 generations). We
divide the results into the cases where the solution found has
a code distance greater or equal to 3 and in which it is greater
than 3. 67

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

List of Abreviations

EC – encoding circuit

ES – evolution strategies

GA – genetic algorithm

NISQ – noisy intermediate-scale quantum

QECC – quantum error correction code

RS – random search

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Astronauta libertado
Minha vida me ultrapassa

Em qualquer rota que eu faça
Dei um grito no escuro
Sou parceiro do futuro

Na reluzente galáxia

Eu quase posso falar
A minha vida é que grita

Emprenha se reproduz
Na velocidade da luz

A cor do sol me compõe
O mar azul me dissolve

A equação me propõe
Computador me resolve

Astronauta libertado
Minha vida me ultrapassa

Em qualquer rota que eu faça
Dei um grito no escuro
Sou parceiro do futuro

Na reluzente galáxia

Antonio Jose Santana Martins / Rita Lee Jones De Carvalho,
Fragmento da letra de Dois mil e um © Warner Chappell Music, Inc.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

1
Introduction

Why evolve quantum circuits

Natural selection is a unifying idea in biology [1]. Through reproduction,
mutation and competition, systems can navigate the complexity landscape [2]
from small-sized molecules and molecule sets [3] to complex molecular machines
[4] to living organisms [5]. Just like natural selection enables the rise of complex
designs such as eyes and brains in the universe [6], artificial evolution can be
employed in the laboratory to produce molecules with desired optical response
properties [7]. In view of that, an interesting engineering question is whether
one can exploit evolution as a design tool for complex technology where human
intuition and the standard deductive method might encounter difficulties or
perhaps even fail.

A natural field in which human intuition often encounters difficulties is
quantum information science. Devising innovative means of producing complex
quantum states and algorithms [8] outside the scope of known quantum
information primitives [9] is a challenging task [10], especially under the
limitations imposed by present-day quantum hardware [11]. This motivates
the main question of this work: Can artificial selection be employed as an
effective tool to design useful quantum circuits?

Computer-assisted searches for new physical phenomena [12] and laws of
nature [13–15] comprise a very timely research topic, with notable examples
including the search for new quantum optics experiments [16–18], resource-
ful states in quantum metrology [19–21], ground states in condensed matter
systems [22], the study of nonlocality [23], entanglement and Bell inequali-
ties [24, 25]. Closely related to these developments, tools from artificial in-
telligence, genetic algorithms and competition have also been employed in
chemistry, on the search for new pathways to organic molecules and closed
autocatalytic reaction sets [26], the efficient training of neural networks for
image classification [27] and the evolution of deep learning algorithms through
competition [28]. Here, we propose harvesting some of these tools and ideas
within the context of quantum computing and quantum algorithms.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 1. Introduction 16

Hilbert space is large [29–31] and – similarly to the vast and complex
landscape of the biosphere – evolution may offer an efficient path to navigate
its complexity. To test this idea, we apply genetic algorithms (GA) to the
search for quantum circuits. As much as these ideas could benefit from a full
scale quantum computer, there are not many such devices readily available for
use at the present time [32–35]. We therefore focus on stabilizer circuits [36],
which are efficiently simulable on classical computers [37, 38]. The stabilizer
formalism is the natural language of quantum error correction [36], leading us
to evolve quantum error correction codes (QECCs) [39].

Within the framework of stabilizer QECCs, we will demonstrate that
evolution, given the appropriate fitness landscape, can successfully produce
known examples of error correcting codes, notably the Perfect 5-qubit code
[40], Shor’s 9-qubit code [41], the 7-qubit color code [42,43], and new QECCs.
These are arguably simple textbook examples but, as we will point out, the
sample space (modulo equivalences) of circuits in which such codes live is so
large that random search becomes prohibitive, thus proving the principle that
evolution efficiently drives the search.

Artificial selection might offer valuable opportunities in the current
era of NISQ devices [44] in which elementary quantum gates are costly
and noisy. Generically, random stabilizer circuits are capable of generating
good codewords for QECCs [45], but evolution can go beyond typicality in
guiding the search for simple, low-depth circuits more amenable to noisy
devices. Device specificity can also be taken into account by devising fitness
landscapes in terms of the complexity geometry metric [46], which penalizes
gates according to hardware nuances [47].

At present, our artificial selection algorithm can be compared to the evo-
lution of simple bacteria in controlled laboratory conditions where the fitness
landscape is simple and well understood [48]. With more complex fitness func-
tions and the addition of quantum hardware we anticipate improvements and
systematic means of devising complex quantum circuits in various applications
beyond stabilizer circuits and QECCs including but not limited to learning
unitaries [49], quantum compiling [50–52], and hardware specific tailor-made
circuits [32, 47]. We highlight that while evolution may be complementary to
known circuit optimization schemes [51], its main strength relies on the possi-
bility of creating novel and creative quantum circuits. All scripts made for this
dissertation are available in the GitHub repository [53].

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 1. Introduction 17

Dissertation organization

This dissertation is organized as follows. In Chapter 2, we make an
introduction to the stabilizer formalism. Stabilizers are the natural language of
QECCs. Accordingly, a basic understanding of its principles becomes essential
for the discussions present in this work. The chapter covers all the material
needed to understand the arguments used in the following chapters and
provides useful algorithms. Chapter 3 presents the central theory of stabilizer
QECCs providing the foundation for establishing a proper fitness function to
drive a GA in search of suitable error correction circuits. Chapter 4 ties up the
concepts presented in the previous chapters by conceiving a GA made to evolve
quantum circuits. The chapter begins by introducing the idea of evolutionary
algorithms in its general terms. Next, we show how to adapt it to the context
of Clifford circuits. Section 4.2.3 is dedicated to a simple application of the GA,
demonstrating its capabilities within a well-understood context. Following, we
apply the tools of evolution to the search for QECCs in Section 4.3. Chapter 5
concludes with a brief discussion and an outlook for future developments and
applications.

Before reading the main body of the dissertation, we invite the reader
to read Appendices B to D to familiarize themselves with the notation used
throughout this work and to review key results.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

2
Stabilizer formalism

The stabilizers formalism was initially conceived to describe QECCs
[36]. Stabilizers explore concepts of group theory by making the most of the
beautiful idea that we can represent objects by their symmetry group [10,36].
We will see that this leads us to define a class of quantum states which we
can simulate in polynomial time on classical computers — this constitutes
the famous Gottesman-Knill theorem [36]. Working with this class of states
is fundamental for this work, as we do not yet have full access to quantum
computers. Moreover, it defined our focus on the evolution of QECCs.

This chapter is divided as follows: in Section 2.1, we lay down the basics
of stabilizer formalism, covering enough ground to give the reader sufficient
knowledge to keep up with the discussions of the successive chapters; Section
2.2 introduces the concept of the tableau representation of stabilizer states, a
popular way to represent and encode them; Section 2.3 presents three useful
stabilizer algorithms. Additionally, Appendix E provides a summary and brings
additional properties used in the chapter.

2.1
Stabilizer basics

In the stabilizer formalism, one represents quantum states by a unique
set of operators, called stabilizer operators, instead of its decomposition into
states of a given base. As we shall see, such representation allows simulation
of a particular class of quantum states in a classical computer in polynomial
time. Given a state |ψ⟩, a operator U is a stabilizer of |ψ⟩ if

U |ψ⟩ = + |ψ⟩ , (2-1)

i.e., if |ψ⟩ is an eigenstate of U with eigenvalue +1. As an illustration, the
stabilizer operators of the Bell state∣∣∣Φ−

〉
= |00⟩ − |11⟩√

2
(2-2)

are {I,−X1X2, Z1Z2, Y1Y2}. Note that the global phase of the operator is of
relevance. The identity is a trivial stabilizer to any state and −I stabilizes only
the null state.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 19

Define S(|ψ⟩) as the set of stabilizers of |ψ⟩. Under the operation of
multiplication, S(|ψ⟩) is a group. Here is a proof: let U and G stabilize |ψ⟩,
then

UG |ψ⟩ = (+1)2 |ψ⟩ = + |ψ⟩ . (2-3)
S(|ψ⟩) is closed under multiplication. If U stabilizes |ψ⟩ , then so does U−1,

U−1U |ψ⟩ = |ψ⟩ = U−1 |ψ⟩ . (2-4)

Lastly, I ∈ S(|ψ⟩) and operator multiplication is an associative. Q.E.D.
Moreover, S(|ψ⟩) is an Abelian group since if U and G stabilize |ψ⟩, then

UG |ψ⟩ = GU |ψ⟩ ⇔ (UG−GU) |ψ⟩ = 0, (2-5)
hence [U,G] = 0.

A crucial fact is that if, and only if, |ψ⟩ = |ϕ⟩, then S(|ψ⟩) = S(|ϕ⟩) [37].
This leads to the cornerstone idea of the stabilizers: represent a quantum state
not by a vector in Hilbert space but by its stabilizer group. This is a common
idea in group theory: looking at the set of transformations that leave an object
invariant is the same as looking at the object itself. In the case of quantum
stabilizers the object is a ray (one dimensional subspace) in Hilbert space.

It is not obvious that representing quantum states by their stabilizer
group is better in any sense then considering the states directly. We need two
more pieces of information to define a class of quantum states for which the
stabilizer representation has an advantage in a computational sense. First, let
|ψ⟩ be a n-qubit state. An important property is that [36]

|S(|ψ⟩)| = 2n. (2-6)

The number of stabilizers grows exponentially with n. However, by group
theory, a finite group G is spawned by precisely log2|G| elements called
generators of the group [10]. Therefore, one may represent S(|ψ⟩) by a subset of
n generators, which grows linearly with n. Let ⟨S(|ψ⟩)⟩ be a set of generators
of S(|ψ⟩). For example, a possible generator set for the Bell state |Φ−⟩ is
⟨S(|Φ−⟩)⟩ = {−X1X2, Z1Z2}. Now suppose we have an initial quantum state
|ψ0⟩ that evolves according to a quantum computation U . If G stabilizes |ψ0⟩,
then UGU † stabilizes U |ψ0⟩ since

(UGU †)U |ψ0⟩ = U |ψ0⟩ . (2-7)

One can thus keep track of the transformations a state goes through by evalu-
ating how it stabilizers transform under the conjugation U · U †. Additionally,
only n stabilizers need to be evaluated since S(U |ψ0⟩) can be defined by n

generators. This concludes the first piece of information necessary for showing

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 20

the computational advantage offered by stabilizers.
Second, there is a particular class of quantum gates that have a simple

action upon conjugation with Pauli operators: in particular, single spin Pauli
operators are mapped to products of Pauli operators. Consider a circuit
composed only of CNOTs, H, and P gates. Such circuits are called Clifford
circuits or stabilizer circuits [54]. For example, consider how the Pauli operators
transforms under conjugation with the H gate. Using H = (X + Z)/2 and
employing the multiplication properties of Pauli letters, it is straightforward
to check that

HXH† = Z

HYH† = −Y

HZH† = X. (2-8)

Table 2.1 is a comprehensive list of the outcomes of conjugation of Pauli
operators by Clifford gates. Since the CNOT gate is a 2-qubit gate, we must
consider all two Pauli letters combinations. We can make use of this property
about Clifford gates by exploiting the fact that any Pauli letter can be written
as ipXuxZuz in the following way: given an arbitrary n-qubit Pauli operator
g ∈ Gn, it can be expressed as

g = ipX
ux1
1 Z

uz1
1 . . . Xuxn

n Zuzn
n , (2-9)

where u⃗ = (ux1 , uz1 , . . . , uxn , uzn) is vector with 2n binary entries since Pauli
operators square to identity, and p = 0, 1, 2, 3. Thus, we can represent g by
the set {u⃗, p}. Now, since Pauli operators conjugate to single product of Pauli
operators under the action of Clifford gates, a set {u⃗, p} is mapped to {u⃗′, p′}
under conjugation with a Clifford circuit. The action of a Clifford gate then
corresponds to a dynamics defined in terms of simple local operations acting
on {u⃗, p}. This is the second piece of information.

We now show that Clifford circuits produce states encodable by 2n2 + n

bits. Consider a n-qubit initial state |ψ0⟩ = ⊗n
i=1 |ai⟩i with ai equal to 0

or 1, i.e., |ψ0⟩ is a state of the computational basis. As discussed, we can
represent |ψ0⟩ as the set ⟨S(|ψ0⟩)⟩ with a particular easy set being ⟨S(|ψ0⟩)⟩ =
{±Z1,±Z2, . . . ,±Zn} (the sign depends on the i-th qubit being |0⟩ or |1⟩).
Applying a Clifford circuit C to |ψ0⟩ maps each generator ±Zi to a simple
product of Pauli letters encoded by {u⃗i, pi}. Moreover, by Table 2.1, each pi

can only assume the values of 0 or 2 (corresponding to the global phases of
±1) after the application of C. Hence, one can represent |ψ⟩ = C |ψ0⟩ by the
set {{u⃗i, pi}i}, where each vector u⃗i have 2n binary entries and each pi is also

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 21

Table 2.1: Conjugation of Pauli operators under the action of Clifford gates.
Gate Pauli operator Conjugation output

H X Z
Y −Y
Z X

P X Y
Y −X
Z Z

CNOT X1 X1X2
X2 X2
Z1 Z1
Z2 Z1Z2
Y1 Y1X2
Y2 Z1Y2

X1X2 X1
X1Y2 Y1Z2
X1Z2 −Y1Y2
Y1X2 Y1
Y1Y2 −X1Z2
Y1Z2 X1Y2
Z1X2 Z1X2
Z1Y2 Y2
Z1Z2 Z2

binary. Since |{{u⃗i, pi}i}| = |⟨S(|ψ0⟩)⟩| = n, we can describe |ψ⟩ by 2n2 + n

bits of information.
This is the essence of the Gottesman–Knill theorem [36], which states

that a n-qubit quantum state, initialized in some state of the computational
basis and prepared with a Clifford circuit, can be simulated efficiently on a
classical computer. We call such states stabilizer states.

2.2
Tableau representation

A widespread form to represent a stabilizer state is by building its tableau.
For example, consider the n-qubit state |0⟩⊗n which we shall always represent
by the generator set {Z1, Z2, . . . , Zn}, unless otherwise stated. We construct
its tableau by stacking the generators on the rows of a n× n+ 1 matrix:∣∣∣∣∣∣∣∣∣∣∣∣

Z I . . . I +1
I Z . . . I +1
...
I I . . . Z +1

∣∣∣∣∣∣∣∣∣∣∣∣
, (2-10)

The first n columns are the Pauli letters that constitute each generator, the

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 22

index of the column being the index of the qubit the operator acts upon, and
the last column stores the overall phase. An equivalent form is to use the binary
{u⃗, p} representation ∣∣∣∣∣∣∣∣∣∣∣∣

01 00 . . . 00 0
00 01 . . . 00 0
...

00 00 . . . 01 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (2-11)

This representation is suitable for calculations since it simplifies multiplications
between Pauli operators as follows: given {u⃗, p} and {u⃗′, p′},

{u⃗, p} · {u⃗′, p′} = {u⃗+ u⃗′, p+ p′}, (2-12)

where the sums u⃗+ u⃗′ and p+p′ are bitwise modulo 2 and 4 sums, respectively.
We call respectively (2-10) and (2-11) the literal and binary tableau represen-
tations. They may be used interchangeably, being the literal easier to read and
interpret, and the binary more suited for performing computations.

The tableau representation, especially the binary, is used to encode and
compute the evolution of stabilizer states. Given a Clifford circuit, Table 2.1 is
used to update the rows of the literal tableau. Conversely, we can express
the conjugation transformations by simple rules relating the components
of {u⃗i, pi} ∈ ⟨S(|ψ⟩)⟩ and update the binary tableau. Table 2.2 lists the
transformation rules for the binary form.

Table 2.2: Transformation rules for the stabilizer binary form. The sums for
the components of u⃗ and p are respectively modulo 2 and 4. For the CNOT,
indices i and j are respectively the control and the target qubits.

Gate Rules

H uxi ↔ uzi

if (uxi , uzi) = (1, 1), p = p + 2

P uzi ↔ uzi + uzi

if (uxi , uzi) = (1, 1), p = p + 2

CNOT uxj → uxj + uxi

uzi → uzi + uzj

if (uxi , uzi) = (1, 1) and (uxj , uzj) = (1, 1), p = p + 2
if (uxi , uzi) = (1, 0) and (uxj , uzj) = (0, 1), p = p + 2

As an illustrative simple example, consider the circuit depicted in Figure 2.1.
Starting from the tableau for the initial state |00⟩,∣∣∣∣∣∣Z I +1

I Z +1

∣∣∣∣∣∣ , (2-13)

we gate-by-gate evaluate the evolution. The circuit is composed by a H1

followed by a CNOT gate with qubit 1 and 2 as the control and target,

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 23

0 1

0 2

H

Figure 2.1: Quantum circuit example.

respectively. The general procedure is as follows: in the order of application
of the gates, we update the rows of the tableau according to the proper
transformation listed in Table 2.1 (or Table 2.2 if working with the binary
tableau). The H1 maps Z1 7→ X1 (note that identities are always trivially
mapped to identities). The CNOT maps X1 7→ X1X2 and Z2 7→ Z1Z2. Hence,∣∣∣∣∣∣Z I +1

I Z +1

∣∣∣∣∣∣ H1−→

∣∣∣∣∣∣X I +1
I Z +1

∣∣∣∣∣∣ CNOT−−−→

∣∣∣∣∣∣X X +1
Z Z +1

∣∣∣∣∣∣ . (2-14)

It is straightforward to check that the final state is the Bell state |00⟩+|11⟩ /
√

2,
where {+X1X2,+Z1Z2} is indeed a proper set of stabilizer generators.

2.2.1
Row-reduced echelon form

Stabilizer states are uniquely represented by their stabilizer group. How-
ever, there are multiple sets of generators that spawns the same group. For
example, consider the last tableau of Equation (2-14). All the following are
equivalents to it:

T1 =

∣∣∣∣∣∣X X +1
Z Z +1

∣∣∣∣∣∣ , T2 =

∣∣∣∣∣∣X X +1
Y Y −1

∣∣∣∣∣∣ , T3 =

∣∣∣∣∣∣Y Y −1
X X +1

∣∣∣∣∣∣ . (2-15)

Since the multiplication of two stabilizers is a stabilizer, one can construct
equivalent tableaux by multiplying different rows (multiplying a row by itself
gives the identity operator, which renders no information about the state).
Row transposition, swapping of two rows, is also a valid operation that leaves
the stabilizer structure unaltered. Hence, T2 is built by left multiplying the
first and second row of T1, and T3 by swapping the rows of T2.

One can thus use the elementary operations of row multiplication and
transposition to rearrange a tableau to achieve a desirable form without
changing the underlying represented state. This motivates the creation of
an algorithm along the lines of the Gauss-Jordan elimination to arrange the
tableau in a unique row-reduced echelon form, also known as canonical form.
Besides defining a unique form for the tableau, the canonical form will be
required for the inner-product algorithm that we present in the following
section. We closely follow [55] to describe an algorithm that takes an arbitrary

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 24

tableau and transforms it, via row operations, into the row-reduced echelon
form illustrated in Figure 2.2.

X-diagonal

Z-diagonal

I, X, Y, Z
 literals

I, Z literals

I, Z literals

I literals
X

 b
lo

ck
Z

bl
oc

k

Figure 2.2: Row-reduced echelon (canonical) form of a general tableau. The
tableau is divided in two blocks. The top block (the X-block) contains only
X literals on the principal diagonal, only I and Z below it, and I, X, Y and
Z above it. The bottom block (the Z-block) contains only Z literals on the
principal diagonal, only I below it, and only I and Z above it. This construction
minimizes the number of non-I literals in each row.

The algorithm works progressively to arrange the tableau in a form that
contains a set of generators with the minimum number of X and Y literals
at the top and a set with the minimum number of Z literals at the bottom.
The rationale is strikingly similar to Gauss elimination: by exploiting the facts
that Pauli letters square to unity and XY ∝ Z, the leading non-I literal of
each row is used to transform, via row multiplication, the literals on the same
column into I, Z or X in a clever manner. Let T be a n-qubit n×n+1 tableau,
and let i, j ∈ {1, . . . , n} indices that will run through the rows and columns
of T respectively. Initialize i = j = 1. The following steps arrange T in the
canonical form:

1. Search for the lowest index k such that Tkj = X or Y;

(a) If k exists: (i) swap rows i and k, (ii) left multiply row i with all
rows with index different from i, (iii) sum 1 to i and j, (iv) if i
equals to n, break the loop, else if j equals to n, go to step 2 and
assign j = 1, else go back to step 1;

(b) If k does not exist: (i) sum 1 to j, (ii) if j equals to n, go to step 2
and assign j = 1, else go back to step 1.

2. Search for the lowest index k such that Tkj = Z;

(a) If k exists: (i) swap rows i and k, (ii) left multiply row i with all
rows with index different from i and literal in the j-th column equal

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 25

to X or Z, (iii) sum 1 to i and j, (iv) if i or j equals to n, break
the loop, else go back to step 2;

(b) If k does not exist: (i) sum 1 to j, (ii) if j equals to n, break the
loop, else go back to step 2.

Algorithm 1 presents the pseudocode that executes the steps detailed above.

2.3
Stabilizer algorithms

Stabilizer states are interesting because one can simulate them efficiently
with a classical computer. However, it is unclear how we can calculate specific
quantities important to quantum mechanics from the tableau representation.
For example, given the tableaux of two different states, how does one evalu-
ate the inner product between them? Fortunately, we can ingeniously build
algorithms capable of performing such calculations. We thus end this chap-
ter by presenting three valuable algorithms concerning stabilizers states: the
inner-product, measurement, and the von Neumann entropy.

2.3.1
Inner-product

One can efficiently evaluate the inner-product between two stabilizer
states using their tableau representation [55]. First, define the basis form as
the tableau with the following structure:∣∣∣∣∣∣∣∣∣∣∣∣

Z I . . . I ±1
I Z . . . I ±1
...
I I . . . Z ±1

∣∣∣∣∣∣∣∣∣∣∣∣
. (2-16)

The basis form is just the tableau of an arbitrary n-qubit state of the
computational basis. Note that it is already in the canonical form.

Let |ψ⟩ and |ϕ⟩ be two n-qubit stabilizers states where, without loss, |ψ⟩
is represented by a basis form tableau T|ψ⟩ and |ϕ⟩ is an arbitrary stabilizer
state with T|ϕ⟩ in its canonical form. Since the X-block of T|ψ⟩ is empty, all
stabilizers in S(|ψ⟩) contains only I and Z Pauli letters. Additionally, all
stabilizers of S(|ϕ⟩) that contains only I and Z literals are necessarily spawned
by multiplications between the rows of the Z-block of T|ϕ⟩ (multiplying a row
of the X-block with any other row will necessarily have at least one X or Y
literal due to the X-block structure). By property 7 listed in Appendix E, it
suffices to inspect if there is a row in the Z-block of T|ϕ⟩ equal to a row in T|ψ⟩,
but with different overall sign, to assess if ⟨ψ|ϕ⟩ = 0. Suppose such condition

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 26

Algorithm 1 Tableau canonical transformation
Input: A n× n+ 1 tableau T
Output: T in row-reduced echelon form
⇒ rows(T) gets the number of rows of T
⇒ rowSwap(T , i, j) swaps the i-th and j-th rows of T
⇒ rowMult(T , i, j) multiplies the i-th and j-th rows of T

1: i = 1
2: j = 1
3: k = i
4: n = rows(T)
5: while i ̸= n or j ̸= n do ▷ X-block formation
6: if Tkj = X or Y then ▷ search row with leading X or Y on j-th col.
7: rowSwap(T , i, k)
8: for l ∈ {1, . . . , n} do
9: if l ̸= i then

10: rowMult(T , i, l)
11: end if
12: end for
13: i = i+ 1 ▷ reduces sub-matrix
14: j = j + 1
15: k = i
16: else
17: k = k + 1
18: if k = n then
19: j = j + 1 ▷ search failed for all rows, advance column
20: k = i
21: end if
22: end if
23: end while
24: j = 1
25: while i ̸= n or j ̸= n do ▷ Z-block formation
26: if Tkj = Z then ▷ search row with leading Z on j-th column
27: rowSwap(T , i, k)
28: for l ∈ {1, . . . , n} do
29: if l ̸= i and Tlj = Z or Y then
30: rowMult(T , i, l)
31: end if
32: end for
33: i = i+ 1 ▷ reduces sub-matrix
34: j = j + 1
35: k = i
36: else
37: k = k + 1
38: if k = n then
39: j = j + 1 ▷ search failed for all rows, advance column
40: k = i
41: end if
42: end if
43: end while

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 27

is not met. We claim that ⟨ψ|ϕ⟩ = 2−s/2, where s is the number of rows on
the X-block of T|ϕ⟩. The reason goes as follows. Each row of the X-block of
T|ϕ⟩, with a leading X literal at some column with index j, indicates that the
j-th qubit of |ϕ⟩ must be in an unbiased superposition of |0⟩ and |1⟩. Since
the j-th qubit of |ψ⟩ is either |0⟩ or |1⟩ by construction, it follows that these
qubits contribute with a factor of 1/

√
2 to the inner-product.

Now, given two arbitrary n-qubit stabilizers states |ψ⟩ and |ϕ⟩, we extend
the above reasoning to evaluate ⟨ψ|ϕ⟩. Let C be a Clifford circuit such that
C |0⟩⊗n = |ψ⟩. We may write the inner-product as

⟨ψ|ϕ⟩ = ⟨ψ|C−1C |ϕ⟩ = ⟨0|⊗nC |ϕ⟩ . (2-17)

Since |0⟩⊗n has a tableau in the basis form and one can evaluate the canonical
form of TC|ϕ⟩ with Algorithm 1, one has all the necessary ingredients to
calculate ⟨ψ|ϕ⟩. Note that we can reverse the roles of |ψ⟩ and |ϕ⟩ in the above
argument.

A crucial element of the inner-product computation is access to the
Clifford circuit that synthesizes one of the states. We assume that the circuits
are always available since we do not work directly with random states (we
generate random stabilizer states via known random circuits applied to |0⟩⊗n).
Nevertheless, given an arbitrary stabilizer state |ψ⟩ with no circuit (just its
tableau, for example), there are algorithms capable of constructing a Clifford
circuit C such that C |0⟩⊗n = |ψ⟩ [55].

Algorithm 2 computes the inner-product of two n-qubit stabilizer states
|ψ⟩ and |ϕ⟩, for which we assume that we have access to a Clifford circuit C|ψ⟩

such that C|ψ⟩ |0⟩⊗n = |ψ⟩ .

2.3.2
Measurement

The stabilizer formalism also admits simulation of one-qubit measure-
ments on the computational basis [54]. By property 10 of Appendix E, the
j-th qubit of a stabilizer state can only be either |0⟩(|1⟩) or in an unbiased
superposition of |0⟩ and |1⟩. One can verify which one is the case by searching
for X/Y literals on the j-th column of the canonical tableau of the state. If
there are such literals, the qubit must be in an unbiased superposition, and
the measurement will have a random outcome of 0 or 1 with equal probability.
One then uses a random source to decide the outcome. Else, the outcome is de-
terministic with the sign of generator with leading Z literal in the j-th column
determining the outcome. For the latter case, there is no need to update the
tableau to compute the post-measurement state since it did not collapse. For

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 28

Algorithm 2 Stabilizer inner-product
Input: (i) A n×n+ 1 tableau T|ψ⟩ for |ψ⟩, (ii) a n×n+ 1 tableau T|ϕ⟩ for |ϕ⟩,
(iii) Clifford circuit C|ψ⟩ for |ψ⟩, (iv) basis form tableau T|0⟩⊗n of |0⟩⊗n

Output: Inner product of |ψ⟩ and |ϕ⟩
⇒ rows(T) gets the number of rows of T
⇒ canon(T) brings tableau T to its canonical form
⇒ conj(T ,C) conjugates tableau T with the Clifford circuit C
⇒ mult(T , i, T ′, j) multiplies the i-th and j-th rows of tableaux T and T ′

1: n = rows(T|ψ⟩)
2: T|ϕ⟩ = conj(T|ϕ⟩,C)
3: T|ϕ⟩ = canon(T|ϕ⟩)
4: s = 0
5: i = 1
6: while i ̸= n do
7: j = 1
8: while j ̸= n do
9: if T|ϕ⟩,ij = X or Y then

10: s = s+ 1
11: i = i+ 1
12: j = n
13: else
14: j = j + 1
15: if j = n then ▷ it is a row of the Z-block
16: i = i+ 1
17: for k ∈ {1, . . . , n} do ▷ checking orthogonality
18: if mult(T|ϕ⟩, i, T|0⟩⊗n , k) = −I then
19: return 0
20: end if
21: end for
22: end if
23: end if
24: end while
25: end while
26: return 2−s/2

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 29

the former, the j-th qubit collapsed into |0⟩ or |1⟩ depending on the result of
the random source. Thus, one updates the tableau by replacing the row with
the X/Y literals on the j-th by ±Zj.

Given a canonical tableau T and a random source, Algorithm 3 displays
the pseudocode for measuring the j-th qubit in the computational basis giving,
as output, the measurement outcome and the post-measurement tableau.

2.3.3
Entropy of a subsystem

By property 11 of Appendix E, the density operator ρ of a n-qubit
stabilizer state |ψ⟩ can be expressed as

ρ = 1
2n

∑
s∈S(|ψ⟩)

s. (2-18)

If we imagine that the qubits are laid in an array, tracing out a region B yields
the state,

ρA = 1
2n

∑
s∈S(|ψ⟩)

TrB(s). (2-19)

It turns out the von Neumann entropy of a region A is given by

SA = IA − |A| (2-20)

where IA is the number of independent stabilizers (arithmetic modulo 2) when
restricted to region A, and |A| the number of qubits in A [56].

In practice, what needs to be done to obtain the von Neumann entropy
is the following:

1. For a set of generators ⟨S(|ψ)⟩⟩ written in the binary form u⃗i, build a
binary matrix [u⃗i] by stacking u⃗i into its rows (the overall signs pi are
not important);

2. Delete each column of the matrix that corresponds to qubits outside
region A. Denote the resulting matrix [u⃗i]A.

3. Evaluate the rank of [u⃗i]A modulo 2. This rank is IA.

Algorithm 4 shows the pseudocode for the evaluation of the von Neumann
entropy.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 30

Algorithm 3 Stabilizer measurement
Input: (i) A n× n+ 1 tableau T , (ii) index j of the qubit to be measured
Output: (i) output m of measurement, (ii) post-measurement tableau T
⇒ rows(T) gets the number of rows of T
⇒ canon(T) brings tableau T to its canonical form
⇒ random() outputs 0 or 1 with an equal probability of 0.5

1: T = canon(T)
2: i = 1
3: n = rows(T)
4: while i ̸= n do
5: if Tij = X or Y then ▷ random outcome
6: m = random() ▷ drawing outcome
7: for k ∈ {1, . . . , n} do ▷ updating T
8: if k ̸= j then
9: Tik = I

10: else
11: Tik = Z
12: end if
13: end for
14: if m = 0 then ▷ updating phase according to outcome m
15: Ti,n+1 = +1
16: else
17: Ti,n+1 = −1
18: end if
19: i = n
20: else if Tij = Z then ▷ deterministic outcome
21: if Ti,n+1 = +1 then ▷ getting output from phase of the operator
22: m = 0
23: else
24: m = 1
25: end if
26: i = n
27: else
28: i = i+ 1
29: end if
30: end while
31: return m, T

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 2. Stabilizer formalism 31

Algorithm 4 von Neumann entropy
Input: (i) A n × n + 1 tableau T in binary form, (ii) indices i ∈ A of qubits
in region A
Output: (i) The von Neumann entropy SA of region A
⇒ rows(T) gets the number of rows of T
⇒ delCol(T, i) deletes the i-th column of matrix T
⇒ rankMod2(T) outputs the rank modulo 2 of a binary matrix T

1: n = rows(T)
2: T = delCol(T , n + 1) ▷ deletes phase column
3: IA = n
4: for i ∈ {1, . . . , n} do
5: if i /∈ A then
6: T = delCol(T , i)
7: IA = IA − 1
8: end if
9: end for

10: SA = IA − rankMod2(T)
11: return SA

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

3
Quantum error correction codes

Quantum computation relies on the precise control of qubits to generate
entanglement of their degrees of freedom. Unfortunately, the physical systems
proposed to build a quantum computer rely on systems that are highly prone to
decoherence due to interactions with the external environment. Consequently,
preserving the quantum coherence between its parts becomes imperative to
render the computation reliable, which lead to the development of QECCs.

The field of quantum error correction is vast and spawned many subfields
in the last couple of decades. This chapter aims to provide the basic knowledge
to stabilizer QECCs, the class of quantum error correction we seek to evolve
with GAs. This chapter is organized as follows. Section 3.1 introduces error
correction, starting from the classical counterpart and rapidly moving to the
quantum paradigm with its problematics. Section 3.2 formalizes the theory by
constructing a general scheme for stabilizer QECCs. Sections 3.2.2 and 3.2.3
end the chapter by providing two examples: Shor’s 9-qubit and the perfect
5-qubit code.

3.1
Introduction to error correction

We start by presenting fundamental notions of classical error correction
using the 3-bit code as an example. Moving to the quantum counterpart, quan-
tum mechanics poses three significant problems at the onset when we try to
implement the classical scheme. By exploring the 3-qubit code, we demonstrate
how to overcome each challenge by exploiting quantum mechanical features.

3.1.1
Classical error correction fundamentals

For simplicity, consider data encoded in strings of bits of the alphabet
A = {0, 1}. Given an arbitrary string at an initial time, we desire to retrieve
the information stored in it at a future time, and perhaps a different location,
even if the data have been damaged. Thus, we need to protect it in some form.
The simplest method of protection is by adding redundancy by mere repetition
of the data content. Humans use this strategy in oral communication all the

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 33

time, asking for a speaker to repeat himself when a pronounced sentence is not
understood. Hearing a phrase multiple times allows one to reconstitute it by
piecing it together.

Consider then the simple task of transmitting the bit 1 through a noisy
channel. We model the classical noisy channel as a process where a bit has a
probability p (1−p) of flipping (not flipping)1. Instead of transmitting the raw
data, we transmit an encoded version using the 3-bit code as follows:

0 7→ 000

1 7→ 111. (3-1)

The above code maps the alphabet A into the encoded set C = {000, 111}.
The elements of C are called codewords of the error correction code. Suppose,
after transmission of the encoded string 111, the first bit flipped making the
receptor receive the damaged string 011. By applying a majority vote protocol,
the recipient concludes correctly that the original data must have been 1.

Notice that the correction process fails whenever two or three errors
occur. Consequently, we say that the 3-bit code can protect up to t = 1 errors.
Additionally, we define the so-called distance of the code as the minimum
number of errors required to flip a codeword into another one entirely. Clearly,
the 3-bit code has distance d = 3. An equivalent form of defining the distance
is the minimum error size that goes undetected, i.e., the receptor wrongly
thinks no errors occurred. The size of correctable errors t and the distance d
are related by [39]

d = 2t+ 1. (3-2)
Since d and t are positive integer numbers, a 2-bit code cannot correct any
errors.

It is usual to classify a correction code by the list [n, k, d] [10], where
n is the number of bits of the codeword space, k the number of bits of the
data alphabet, and d the distance — making the 3-bit code a [3, 1, 3] code. An
analogous classification scheme applies to quantum codes, however "number
of bits" is properly replaced by the dimension of the given Hilbert spaces.
Additionally, one uses double square-brackets to differentiate between classical
and quantum codes.

The 3-bit code is an example of a repetition code [10]. Despite the
existence of several other types of correction codes with increasing complexity,
a common element to all of them is the use of redundancy, a feature also
essential for quantum correction codes.

1By flipping, we mean 0 becoming 1 and vice-versa.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 34

3.1.2
Towards a functional QECC

Quantum states replace the classical bits in quantum computation. In this
work we mainly work with qubits (quantum correction schemes for continuous
variables exist [57, 58]), states of two-level systems, since we intend to evolve
stabilizer QECCs. Expressed in the computational basis B = {|0⟩ , |1⟩}, an
arbitrary qubit state |ψ⟩ may me written as

|ψ⟩ = α |0⟩ + β |1⟩ , (3-3)

where we require |α|2 + |β|2 = 1 for normalization.
Quantum speedups over classical algorithms depend on the exploitation

of superposition and entanglement [10]. Hence, in a quantum error correction
scheme, we want to protect the coherence of a given state, i.e., the relative
phases of its components. If we naively try to make a quantum version of
the 3-bit code, we are immediately confronted with three particularities of
quantum mechanics that we need to overcome. First (1), errors are continuous.
To make the matter more evident, note that the normalization criterion allows
the parameterization of a qubit state by two angles as

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ . (3-4)

This parameterization leads to representing an arbitrary pure state as a point
on the surface of a 2-sphere with unit radius — the so-called Bloch sphere [56]
depicted in Figure 3.1. Thus, one can understand the action of a unitary
operator U as translating a point on the Bloch sphere to another point with
different parameterization angles, i.e,

U |ψ⟩ = cos θ+∆θ
2 |0⟩ + ei(ϕ+∆ϕ) sin θ+∆θ

2 |1⟩ . (3-5)

Since there are infinite points on the surface, the state may assume a continuum
of values after an error occurs. Seemingly, one needs to detect and correct an
infinite number of potential errors. This situation directly contrasts with the
classical counterpart, where the flipping of a bit was the unique possible error.

Second (2), the no-cloning theorem excludes the possibility of making
copies an arbitrary state [59]. We now show a simple proof of the no-cloning
theorem: for the sake of contradiction, suppose there is a unitary U capable of
cloning an arbitrary state |ψ⟩ such that:

U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ . (3-6)

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 35

Uψ ψ

θ

Φ

0

1

Figure 3.1: Geometrical representation of an arbitrary qubit state on a Bloch
sphere. The state is defined by the two angles {θ, ϕ}, and rests on the surface
of a 2-sphere. Unitary operators have the action of translating points on the
surface.

Let |ψ⟩ and |ϕ⟩ be arbitrary states. It follows that

(⟨ψ| ⟨ψ|)(|ϕ⟩ |ϕ⟩) = ⟨ψ|ϕ⟩2

= (⟨ψ| ⟨0|U †)(U |ϕ⟩ |0⟩)

= ⟨ψ|ϕ⟩ . (3-7)

The equality ⟨ψ|ϕ⟩2 = ⟨ψ|ϕ⟩ is only satisfied if the states are orthogonal or
the same, which contradicts the assumption that U clones arbitrary states.
Q.E.D. The possibility to copy data was fundamental for the classical code —
we introduced redundancy by making several copies of the data bit. One needs
to devise an alternative way for adding redundancy to a quantum system.

Third (3), measurements lead to the collapse of quantum states, i.e.,
measurements destroy coherence. The majority vote scheme employed in the
3-bit code hinged on the possibility of comparing the received bit-string with
the set of established codewords. The collapse of the wavefunction renders
such a procedure meaningless since states in superposition would irreversibly
collapse with information being lost. In some sense, the wavefunction collapse
is a more fundamental issue than the no-cloning problem since even if it were
possible to clone an arbitrary state, it would be of no use if one cannot measure
it.

Fortunately, all three challenges have proper solutions. We now show
how to circumvent each issue and, in the following sections, we develop a more
general theory for quantum error correction concentrating on stabilizer codes.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 36

For problem (1), it turns out that we can decompose an arbitrary error into
a finite number of components, each of which corresponds to a unique error
type. Let U be a unitary operator that acts on single-qubits. It follows that
we can decompose U as

U = cII + cXX + cY Y + cZZ (3-8)

since {I,X, Y, Z} spanned the space of operators acting on qubits [10]. We can
then express U |ψ⟩ as

U |ψ⟩ = cII |ψ⟩ + cXX |ψ⟩ + cXZXZ |ψ⟩ + cZZ |ψ⟩ (3-9)

since Y ∝ XZ. Therefore, by performing an adequate projection of U |ψ⟩ into
one of the four components of Eq. (3-9), we are only required to correct two
error types: X and Z [10, 36]. This passage from a continuous spectrum of
errors to just two is called the digitization of quantum errors [10, 39]. The X
operator is the quantum analog to the classical bit-flip, since

X(α |0⟩ + β |1⟩) = α |1⟩ + β |0⟩ . (3-10)

The Z operator has no classical counterpart, for its action is to give a relative
phase to a state:

Z(α |0⟩ + β |1⟩) = α |0⟩ − β |1⟩ . (3-11)
For this reason, it is often referred to as a phase-flip error [39]. As we shall see,
the Z error will prevent the quantum analog for the 3-bit code from correcting
all possible single-qubit errors.

For problem (2), quantum entanglement is used to add redundancy to
a system. In its essence, redundancy serves to spread the information one
wishes to protect. By copying a bit, one distributes its information content
among other bits, effectively decentralizing it. In a similar fashion, when a
quantum system entangles with other subsystems, the information contained
in its relative phases disperses into the more extensive system effectively
introducing redundancy. Consider then the 3-qubit code defined by encoding
|ψ⟩ = α |0⟩ + β |1⟩ as

|ψ⟩ 7→ |ψ⟩L = α |000⟩ + β |111⟩ , (3-12)

where the subscript L stands for logical. We say that the state was encoded
into the logical state |ψ⟩L. It is straightforward to check that the circuit
depicted in Figure 3.2 performs the encoding. The encoding circuit (EC)
expands the original two-dimensional Hilbert space into an eight-dimensional
one. Moreover, the relative phase is now belongs to a 3-qubit state. Actually,
the logical state lives in a two-dimensional subspace C, called code space,

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 37

spanned by the codewords states {|000⟩ , |111⟩}. We may define the encoding
as mapping the computational basis states into codewords:

|0⟩ 7→ |000⟩ = |0⟩L (3-13)

|1⟩ 7→ |111⟩ = |1⟩L . (3-14)

0
0

ψ

Figure 3.2: EC for the 3-qubit code. This circuit maps α |0⟩ + β |1⟩ into
α |000⟩ + β |111⟩.

A critical remark is that codewords are not unique. The EC defines the
code space with infinite possible orthogonal bases. For example, consider the
single-qubit diagonal basis {|+⟩ , |−⟩} defined by

|+⟩ = |0⟩ + |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

. (3-15)

In this base, |ψ⟩ becomes

|ψ⟩ = α + β√
2

|+⟩ + α− β√
2

|−⟩ . (3-16)

Consider again the EC of Figure 3.2. It maps the diagonal basis into GHZ
states [60] as

|+⟩ 7→ |000⟩ + |111⟩√
2

= |+⟩L (3-17)

|−⟩ 7→ |000⟩ − |111⟩√
2

= |−⟩L , (3-18)

where {|+⟩L , |−⟩L} is an alternative basis for the code space. This feature has
a connection with the new quantum exclusive error Z in the following way. The
definition of code distance is essentially the same for the quantum case: it is
the minimal number of errors required to map a codeword into another. What
is the distance of the 3-qubit code? Considering naively only {|0⟩L , |1⟩L}, it
appears as if the distance is 3 since we require three bit-flips to transform a
codeword into another. Nevertheless, note that a single Z on any of the qubits
maps |+⟩L ↔ |−⟩L, making it a distance 1 code. As aforementioned, the Z
error prevents the 3-qubit code from detecting and correcting single errors as
its classical counterpart. The possibility of changing basis and the existence

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 38

of a phase-flip error arises from quantum superposition, a feature essential for
quantum computation not present in the classical case.

Pauli operators which map codewords into codewords or give a relative
phase between subsets of codewords are defined as logical operators or logical
errors depending on the context. Notation wise, one replaces the ordinary
single-qubit X and Z for the logical X̄ and Z̄ operators called logical bit-
flip and phase-flip, respectively. Logical operators serve as high-level gates to
perform quantum computations in the level of the logical states. For the 3-qubit
code on the computational basis, e.g., a set of logical operators is

X̄ = X1X2X3, Z̄ = Z1. (3-19)

An interesting fact is that the above classification is base-dependent. Consider
the logical codewords on the diagonal basis. For this base, Z1 is a bit-flip and
X1X2X3 is a phase-flip, as is verified by Eqs. (3-17) and (3-18). Hence, on the
diagonal basis:

X̄ = Z1, Z̄ = X1X2X3. (3-20)
This is an interesting duality between the two bases where a logical bit-flip
(phase-flip) becomes a logical phase-flip (bit-flip) when one expresses the state
on the other base.

Finally, for the problem of quantum collapse (3), stabilizer measurements
are cleverly used to not disturb the logical state. Consider again the 3-qubit
code on the computational basis. As aforementioned, a state |ψ⟩ is encoded
into |ψ⟩L ∈ C0 = span{|000⟩ , |111⟩} (the subscript will become clear shortly).
Note that this subspace is stabilized by P0 = {Z1Z2, Z2Z3}, i.e., any state
in C0 is eigenstate of both elements of P0 with eigenvalue +1. Consider the
logical state after it is afflicted by a bit-flip on one of its qubits. There are
three possibilities:

|ψ⟩L
X1|ψ⟩L−−−−→ α |100⟩ + β |011⟩ ∈ C1 = span{|100⟩ , |011⟩}
X2|ψ⟩L−−−−→ α |010⟩ + β |101⟩ ∈ C2 = span{|010⟩ , |101⟩}
X3|ψ⟩L−−−−→ α |001⟩ + β |110⟩ ∈ C3 = span{|001⟩ , |110⟩}. (3-21)

The resulting state pertains to a orthogonal subspace to C0. This leads us
to divide the Hilbert space in four mutually orthogonal subspaces Ci, with
i = 0, 1, 2, 3. Now, the crucial point is that states pertaining to each Ci are

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 39

stabilized by different sets Pi:

P0 = {+Z1Z2,+Z2Z3}

P1 = {−Z1Z2,+Z2Z3}

P2 = {−Z1Z2,−Z2Z3}

P3 = {+Z1Z2,−Z2Z3}, (3-22)

where the subscript relates to the index of the subspace. We exploit this fact to
determine which subspace the state lives in, and consequently which Xi error
occurred, by introducing the concept of syndrome extraction.

The circuit depicted in Figure 3.3 performs both the EC for the 3-qubit
code and the syndrome extraction. The E gate is a possible error that occurred
after the EC. For this particular example we take E ∈ {I,X1, X2, X3}. In
the syndrome extraction section of the algorithm, two measurement ancillae,
one for each element of P0, are attached to the system and pass through a
measurement procedure as shown in Figure 3.3(b). Ignoring for the moment
the second ancilla, the global state pre-measurement (at the red line) is

1
2 (I + Z1Z2)Xi |ψ⟩L |0⟩A1

+ 1
2 (I − Z1Z2)Xi |ψ⟩L |1⟩A1

. (3-23)

Since E |ψ⟩L ∈ Ci, it is stabilized by either ±Z1Z2. Therefore, the state of the
ancilla qubit is deterministically |0⟩A1

or |1⟩A1
before measurement. Hence, by

measuring the state of the first ancilla, one learns the phase of the stabilizer
without disturbing the encoded state, effectively performing a non-demolition
measurement. The same reasoning goes for the second ancilla, where one learns
the phase of the second stabilizer Z2Z3. These two pieces of information are
sufficient to determine which subspace E |ψ⟩L lives in leading to a proper
correction prescription.

3.2
Stabilizer Codes

The 3-qubit code is an interesting example despite not being a practical
QECC. It encapsulates all the adaptations needed to circumvent problems
brought up by the superposition principle, wavefunction collapse, and the no-
cloning theorem. It is almost a suitable QECC since it can detect and correct
single bit-flips, making it actually a proper classical code, but the new quantum
exclusive phase-flip error renders it incomplete.

In this section, we generalize the underlying procedure behind the 3-qubit
code, which is an example of a stabilizer code, an important class of QECCs
introduced by Gottesman [42, 61]. In section 3.2.2, we show Shor’s code [41],

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 40

ψ
L

0 A1

0 A2

H

H

H

H

(a) (b)

0
0

ψ
E Z Z1 2 Z Z2 3

if E is equal to...
0 1

0 1
X 2

X 1

X 3

I
0 1

0 1

Figure 3.3: 3-qubit code encompassing the encoding and the syndrome ex-
traction stages. (a) Encoding stage; (b) Syndrome extraction stage where two
ancillae qubits are attached to the main block to measure the syndrome of a
possible error.

the most famous example of a QECC. In section 3.2.3, we prove an inequality
relating the Hilbert space dimension of the code and the minimum qubit
overhead for non-degenerate codes correcting up to t errors. Subsequently,
the perfect code is briefly introduced.

3.2.1
General theory of stabilizer codes

The main objective of a QECC is to protect k data-qubit registers from
a set of errors E . By protection, it is meant that the code must be able to
detect and correct any error in E . Figure 3.4 summarizes the general structure
of a [[n, k, d]] stabilizer error correction code. It is divided into three stages:
encoding, syndrome extraction and correction. We now describe each stage in
detail.

On the encoding stage, Figure 3.4(a), a k-qubit data-state |ψ⟩D is
entangled with m = n−k auxiliary qubits via an EC forming a n-qubit logical
state |ψ⟩L. The EC defines the set of codewords C = {|ci⟩L}i which specify
how the other stages of the code function. In general, |C| = 2k. For example,
for k = 2, the encoding stage maps {|00⟩ , |01⟩ , |10⟩ , |11⟩} into four mutually
orthogonal codewords in an expanded Hilbert space.

During syndrome extraction, errors are detected by performing m syn-
drome measurements as shown in 3.4(b). The codewords defines a group of
common stabilizers spanned by m generators [36]. Let P = {Pi} be a given set
of generators for the common stabilizer group for C. We denote the elements of
P syndrome operators. It follows that syndrome operators satisfy the following
properties [39]:

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 41

ψ
0 1

0 n-k

ENCODER ψ
L E P1 Pn-k

0 A1

0 An-k

H

H

H

H

R

DECODER

ψ
L

(a) (b) (c)

ψ
L

E

Figure 3.4: The generic circuit of a [[n, k, d]] stabilizer error correction code. (a)
A data register |ψ⟩D is entangled with n− k redundancy qubits via an EC to
form the logical-state |ψ⟩L. (b) After a potential error E occurs, ancilla qubits
are attached to |ψ⟩L and m syndrome measurements Pi are performed. The
result of the measurements produces the syndrome. (c) With the syndrome,
one consults the syndrome table, and the appropriate correction R is appointed
and applied. This process is represented by the decoder gate. The double-line
channels means classical communication.

1. P ⊆ Gn;

2. Pi |ψ⟩L,j = +1 |ψ⟩L,j ∀ i, j;

3. [Pi, Pj] = 0 ∀ i, j,

where Gn is the general n-qubit Pauli group. Property 2 ensures that the
syndrome measurements do not further disturb the damaged logical state,
and property 3 allows one to perform measurements in any order.

Let E ∈ E be an error that occurred between the encoding and syndrome
extraction stages. The effect of each syndrome measurement is to map E |ψ⟩L
into the superposition

E |ψ⟩L |0⟩Ai
→

1
2
[
(I + Pi)E |ψ⟩L |0⟩Ai

+ (I − Pi)E |ψ⟩L |1⟩Ai

]
. (3-24)

Note that E necessarily either commutes or anti-commutes with Si since
E,Pi ∈ Gn (see property 4 on Appendix C). If E and Pi commutes (anti-
commutes), the final state is unequivocally E |ψ⟩L |0⟩Ai

(E |ψ⟩L |1⟩Ai
). There-

fore, each syndrome measurement can be understood as a deterministic mea-
surement of the state with the outcome reveling whether the error commutes
or anti-commutes with the syndrome operator. At the end of the syndrome
extraction stage, one is left with a binary syndrome string of length m whose
i-th entry encodes whether Pi and E commutes or not.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 42

Table 3.1: 3-qubit code syndrome table for single-qubit errors.
Error Syndrome Error Syndrome
X1 10 Z1 00
X2 11 Z2 00
X3 01 Z3 00

Given E and P , one builds the so-called syndrome table relating each error
to the corresponding syndrome string it generates. As an illustration, Table 3.1
shows the syndrome table for the 3-qubit code with P = {Z1Z2, Z2Z3}, and
considering errors with weight one on three qubits. Note that the syndromes
for Zi are composed only of zeros, which is the same syndrome for E = I

since the identity commutes with any operator. These errors are classified as
undetectable [36] as they are not distinguishable from I.

Finally, in the correction stage one prescribes an operator R for which

RE |ψ⟩L = |ψ⟩L . (3-25)

Since Pauli operators square to the identity, R is in principle identical to
the appointed error guided by the syndrome table. The decoder gate of Figure
3.4(c) is a crosscheck, performed in a classical computer, between the extracted
syndrome and its related error on the syndrome table. This scheme functions
perfectly for non-degenerate codes, where a one-to-one correspondence between
errors and syndromes exists. On the other hand, for degenerate codes multiple
errors can produce the same syndrome. For correction to be successful, all
two-on-two combinations of errors with the same syndrome must stabilize all
codewords. Consider an arbitrary correction code with codewords {|ci⟩L}, and
let {Ei} be a set of errors with the same syndrome. One requires that

EiEj |ck⟩L = + |ck⟩L ∀i, j, k (3-26)

for {Ei} to be correctable. If the above condition is met, applying any element
of {Ei} will restore the logical state even though it is impossible to single out
which error actually took place. If for some pairing EiEj Equation (3-26) is
not satisfied, the set {Ei} is classified as uncorrectable, since it is impossible
to decide the proper correction operation.

3.2.2
Shor’s code

We now demonstrate the concepts presented in the previous section with
a fully functional code, the celebrated Shor’s code devised by Peter Shor [41].
Classification wise, it is a [[9, 1, 3]] code encoding 1 data qubit into 9 logical

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 43

qubits on a distance 3 code space. Figure 3.5 shows an EC for the QECC,
which maps the computational basis into the codewords

|0⟩L = (|000⟩123 + |111⟩123)√
2

(|000⟩456 + |111⟩456)√
2

(|000⟩789 + |111⟩789)√
2

. (3-27)

|1⟩L = (|000⟩123 − |111⟩123)√
2

(|000⟩456 − |111⟩456)√
2

(|000⟩789 − |111⟩789)√
2

. (3-28)

Note that the codewords are products of GHZ states [60]. A possible set of
syndrome operators is

P = {Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6, X4X5X6X7X8X9}. (3-29)

Since P can be written as a set whose elements contain only X or Z, Shor’s
code belongs to the CSS class [62] of QECCs named after its inventors Robert
Calderbank, Peter Shor and Andrew Steane. CSS codes play an important
role in quantum error correction since the problem of decoding is simplified
for them [62,63], and many important topological surface codes pertain to the
CSS class [43,64].

H

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

H

H

ψ
1

Figure 3.5: EC for Shor’s quantum error correction code.

From P , and only considering single-qubits errors, we build the syndrome
table shown in Table 3.2. Note that all Xi errors are perfectly distinguishable
as each one generates a different syndrome. On the other hand, there are
only three distinct syndromes for the Zi errors, which makes Shor’s code a
degenerate QECC. We can make a supplementary table as shown in Table
3.3 to group degenerate syndromes with their common errors. Although the

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 44

Table 3.2: Shor’s code syndrome table for single-qubit errors.
Error Syndrome Error Syndrome
X1 10000000 Z1 00000010
X2 11000000 Z2 00000010
X3 01000000 Z3 00000010
X4 00100000 Z4 00000011
X5 00110000 Z5 00000011
X6 00010000 Z6 00000011
X7 00001000 Z7 00000001
X8 00001100 Z8 00000001
X9 00000100 Z9 00000001

Table 3.3: Auxiliary table grouping degenerate syndromes with respectively
associated errors. For each syndrome, all pairing combinations of errors belongs
to the common stabilizer group of the codeword.

Syndrome Errors
00000010 Z1, Z2, Z3
00000011 Z4, Z5, Z6
00000001 Z7, Z8, Z9

syndromes for Z errors do not allow us to point out which error occurred,
correction is possible because all ZiZj combinations belong to the group of
mutual stabilizers to the codewords.

3.2.3
Qubit overhead and the Perfect code

Before presenting the perfect code, it is interesting to prove the minimum
qubit overhead a QECC must have to correct up to t errors to understand why
the code is considered perfect. The proof is for non-degenerate codes.

Let n be the Hilbert space dimension of the code. Considering errors
as a product of Pauli operators, we express a general error by assigning a
Pauli letter for each entry of a vector of the form E = (a1, a2, . . . , an). Define
ne(n, t) the number of errors with weight t. For t = 1, each possible error can
be constructed by choosing one of the n entries of E and assigning one of three
Pauli letters {X, Y, Z}. Therefore,

ne(n, 1) =
(
n

1

)
× 3. (3-30)

For t = 2 the reasoning is similar: we choose two entries in n to allocate the
errors and, for each entry, we choose one of three Pauli letters. Thus,

ne(n, 2) =
(
n

2

)
× 32. (3-31)

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 45

This reasoning holds true for any t ≤ n. Therefore, the general formula for
ne(n, t) is given by

ne(n, t) =
(
n

t

)
× 3t. (3-32)

For error-correction we are interested in detecting and correction up to t
errors. Let s(n, t) denote all possible errors up to t errors, i.e., the number of
errors with weight less or equal to t. It follows that

s(n, t) =
t∑
i=1

ne(n, i) =
t∑
i=1

(
n

i

)
× 3i. (3-33)

With s(n, t) we can derive the minimum number of qubits necessary for con-
structing a non-degenerate quantum error-correction code capable of handling
errors up to a weight t.

The argument goes as follows: if the codewords are made by n qubits,
then at most n − 1 are auxiliary ancilla qubits employed in the syndrome
measurement stage. Therefore, the syndrome is a vector with at most n − 1
binary entries. Since there exist 2n−1 binary vectors with n − 1 entries and
at least one distinct vector must be assigned to each particular error, there
must exist at least as many binary vectors as the number of possible errors for
a non-degenerate error correction code to be able to correct all errors up to
weight t:

s(n, t) + 1 ≤ 2n−1 (3-34)
The 1 added on the LHS is to account for the case where no errors occurred.
In particular, for t = 1 it follows(

n

1

)
× 3 + 1 = 3n+ 1 ≤ 2n−1. (3-35)

Note that n = 5 saturates the inequality (3-35), therefore it is of no use
to try to build a QECC with less then 5 qubits. Non-degenerate 5-qubits codes
that correct single-qubit errors are called perfect codes [36,40] since they have
the property of using every available syndrome for 5 qubits. As an example,
Table 3.4 shows the syndrome table of a perfect code that was evolved by the
GA that will be presented in the next chapter. The Yi errors were added to
the table to make it clear the use of all syndromes available. It is common to
omit the Yi errors since they are the combination of Xi and Zi (note that the
syndromes for Yi is the bitwise modulo 2 sum of the syndromes for Xi and Zi).

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 3. Quantum error correction codes 46

Table 3.4: Example of syndrome table of a perfect code.
Error Syndrome Error Syndrome Error Syndrome
X1 1101 Y1 0110 Z1 1011
X2 1000 Y2 0001 Z2 1001
X3 0010 Y3 0111 Z3 0101
X4 0011 Y4 1111 Z4 1100
X5 1110 Y5 0100 Z5 1010

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

4
Genetic algorithms applied to Quantum Circuits

For about 4.28 billion years [65], millions of living species go through a
continuous optimization process, what Darwin termed the evolution of species
[66]. The evolutionary process occurs through the interaction of populations
of species with the habitat they live whose function is to select individuals
with a greater aptitude to grow, thrive, and reproduce. From a mathematician
perspective, one can allude that the environment determines a fitness function
whose domain and codomain are individuals of a population and a measure-
ment of how well an individual is adapted to the environment, respectively.
The fitness function then becomes the cost function of the natural selection
optimization problem.

A key attractive point of evolution is its robustness to noise, a feature
that is often missing in standard optimization methods [67]. The environment
is not static: through natural unpredictable events, it transforms in a chaotic
fashion leading to an ever-changing fitness landscape. Hence, inspired by the
evident success of life in thriving through evolution, researchers have been using
algorithms simulating natural selection to solve mathematical optimization
problems as early as 1957 [68–74] broadly termed evolutionary algorithms [67].
Mimicking natural evolution is nothing new to humanity. It is estimated that
artificial selection processes, such as selective breeding, have been conducted
by humans since prehistoric times [76–78], making it natural to extend its
usage to computer programs. Evolutionary algorithms is an umbrella term for
several types of algorithms that, in some way, mimic natural evolution [75].
We work mainly with GAs.

This chapter is organized as follows. In Section 4.1, we make a brief
introduction to the biological evolutionary process emphasizing its genetic
point of view. Following, GAs are introduced in Section 4.2 adapted to evolve
quantum circuits, in particular Clifford circuits. The chapter culminates with
the application of GAs to evolve QECCs in Section 4.3, which is this work’s
central topic of interest.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 48

4.1
The evolutionary process

Given a population of individuals belonging to the same species, one
may divide its evolution process into four stages [67]: reproduction, mutation,
competition, and selection. In broad terms, reproduction is the transmission
of genetic material from parents to their offspring. Mutations are minute
stochastic errors that occur during the transmission of genes. Competition
and selection drift the population towards individuals better adapted to the
environment, where the fittest individuals reproduce passing along their genes
to future generations, while the unfitted perish removing their genes from the
gene pool. An evolutionary algorithm aims at emulating, to some extent, this
cycle for a population of potential solutions to an optimization problem until
a threshold is reached.

The evolution process as defined above hinges on the representation of
individuals as their genetic material, commonly referred to as the genotype,
and a screening method that favors certain genotypes over others. An essential
point is that the genotype is a collection of elementary building blocks from
a finite set of possibilities. For living beings, the genotype is a set of DNA
strands, a polymer made of polynucleotide chains. Polynucleotide chains are
arbitrary sequences of four nucleotides types: adenine (A), thymine (T),
guanine (G), and cytosine (C) [79]. Hence, a DNA strand may be represented
by its nucleotide sequence as, for example, "ATTGCGA...". Considering sexual
reproduction (reproduction involving two mates where the offspring’s genetic
material is a mix of the parent’s genotypes [80]), the genotype design naturally
leads to the genetic operations of crossover and mutation. Crossover is a
recombination of the parent’s DNA, where whole segments of DNA are
interpolated to form the offspring’s DNA at conception. Crossover promotes
the dispersion of good DNA blocks among the population, as natural selection
gradually removes bad blocks, and mutation enables the search of new solutions
not reachable through recombination. Figure 4.1 shows simple examples of a
one-point crossover between two DNA strands and mutation of single genes.

Given the genetic operators, we have only an aimless, random walk
through the genotype sample space due to their stochastic nature. Natural
selection is responsible for drifting the walk in the direction of genotypes
that beget fitter individuals. Natural selection results from the clash between
the environment’s restrictions on the individuals and the phenotype each one
displays. The phenotype is the genetic expression of the genotype, i.e., the set
of physical attributes displayed by the individual [81]. For example, in a habitat
with high trees, giraffes with genes that generates long necks have a competitive

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 49

Parent #1: ...A T T A T A C A G C T A G C A T C ...

Parent #2: ...T A G C T A G C A T C G A T C G A ...

crossover point

O�spring: ...A T T A T A C C A T C G A T C G A ...

(a)

(b)
...A T T A T A C C A T C G A T C G AG T T A T A T C A T C G A T C A A ...

Figure 4.1: Genetic operations examples. (a) a one-point crossover between
two DNA strands. The strands are cut at the crossover point and combined
together to form the offspring’s DNA. (b) three random mutations, symbolized
by the yellow stars, on a DNA strand. Due a copy error, some nucleotides are
replaced by random ones.

advantage over giraffes with short necks, thus having a higher probability of
mating. After several generations, the genotype set of the population will drift
to have genes that generate giraffes with necks proper to the size of the trees,
optimizing the individuals to the environment.

A helpful way of visualizing the evolutionary optimization process is with
a fitness landscape [82,83]. The fitness landscape is a mathematical construct
that maps genotypes to reproduction rates. The environment defines a function
in which the domain is the space of all possible genotypes and whose codomain
is the reproduction rate. Distances on the landscape are defined as the closeness
of two genotypes, i.e., how similar are the phenotypes they spawn. Figure 4.2
exemplifies a representation of an arbitrary fitness landscape. The rationale is
that, at an initial time, the population genotype set is centered at some point
in the landscape. As the generations go by, the population stochastically drifts
towards the surface peaks due to natural selection and the genetic operators.
Naturally, the fitness landscape is a metaphor, as actually producing such a
graph is impossible due to the complexity of the problem.

4.2
Genetic algorithms applied to Clifford circuits

We now describe how we mimic nature’s evolutionary process in a
GA applied to quantum circuits. Since the access to fully-fledged quantum
computers is not a reality yet, we work mainly with Clifford circuits which we
can efficiently simulate with classical computers.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 50

Figure 4.2: Illustration of three distinct populations climbing a hypothetical
fitness landscape. At an initial time, each population starts at some low point
of the landscape (the colored circles) and stochastically rises towards the peaks.
The mutation rate regulates the size of each step. The height of the surface
represents the reproduction rate of a given genotype.

4.2.1
The algorithm

In light of what was discussed in the previous section, we acknowledge
four main aspects we need to cover to build a GA that simulates nature:

– a genetic representation of the tentative solutions, which we also call the
genotype of the individual;

– a method to implement the genetic operators of crossover and mutation;

– a selection mechanism that distinguishes between solutions regarding the
optimization problem;

– a competition mechanism to remove inferior genotypes from the gene
pool.

It turns out that it is straightforward to design a genetic representation
for quantum circuits. To illustrate this point and showcase how we genetically
represent quantum circuits in this work, consider the random circuit depicted
in Figure 4.3(a) and its genetic expression in Figure 4.3(b). We genetically
represent a circuit composed of t gates as a t × 3 array whose rows are gates
in ascending order of application. The first column stores the operator, and
the second and third the indices of the affected qubits. If the gate is a CNOT,
the second (third) column is the control (target) qubit index. For single-qubit
gates the third column is ignored.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 51

0 1

0 2

0 3

0 4

0 5

H

P X

Y

Z H
P
C
X
Y
C
Z

1
3
5 4
3
4
1 2
1

(a) (b)

Figure 4.3: A (a) random quantum circuit and (b) its genotype. Each row of
the genotype is a gate in ascending order (from top to bottom) of application
with the columns storing the operator and the indices of the affected qubits.
The CNOT is abbreviated as C.

Crossovers and mutations naturally become row operations by expressing
quantum circuits as a matrix. There is a freedom of choice to define how
each genetic operator works. The most appropriate option often arrives from
experimentation since the efficiency of a GA is strongly dependent on the
optimization problem itself [75]. For instance, the crossover can be performed
at one-point (as illustrated in Figure 4.1(a) for a DNA strand) or at multiple
points [67, 75, 84]. Additionally, we may use more than two parents at the
reproduction step, thus having more than two genotypes to crossover [85,86].

To simplify, we worked solely with one-point crossovers between the
genotypes of two parents. Given two arbitrary genotypes, we perform a
crossover by conducting the following steps:

1. a split point is randomly chosen for each parent with a uniform proba-
bility distribution;

2. ordering the parents as A and B, their genotypes are divided at the split
point. Offspring A(B) is formed by stacking the top portion of parent
A(B) on top of the bottom portion of parent B(A).

Figure 4.4 shows a crossover example. Note that two offspring are always
generated.

Mutations happen to the offspring’s genotype after the crossover proce-
dure. We define single mutations as follows:

1. with equal probability, it is chosen (a) if the mutation will modify an
existing gate or (b) if it will insert a new gate into the circuit;

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 52

3

1
2

H

H
H
H

H
C

C

C

C

P
P
P

3

2

2 1
4
4

23
1
3
5

53

H
P
P 3

1
3

3
H
C

P

2

4
4

H
C 2 1

2

1
2

H

H
C

C 3

5
53

Parent A Parent B Offspring A Offspring B

Figure 4.4: Example of a crossover between two genotypes. The parents
genotypes are divided at randomly chosen points and their offspring are built
by stacking the pieces.

Offspring Mutaded
offspring

H
P
P 3

1
3

3
H
C

P

2

4
4

H

P
H 2

1

3

3C
P

2
4

H 1

Figure 4.5: Illustration of the three types of mutation that may occur to a
circuit. From top to bottom: the first gate was replaced by a Hadamard on
qubit 2, a new row was inserted between the second and the third rows, and
an identity replaced the fifth gate (hence it was deleted).

(a) if (a), a random row of the genotype is uniformly selected to be
altered. The row contents are overwritten by a new gate uniformly
selected between {I,H, P,CNOT}. If the identity is picked, the
entire row is deleted;

(b) if (b), a random insertion point on the genotype is uniformly
selected. A new row with a new uniformly selected gate chosen
between {H,P,CNOT} is inserted at the insertion point.

Figure 4.5 displays an example with the three kinds of mutations that can
happen to an offspring genotype.

Just as in nature, we also consider that each genotype gives rise to a
phenotype in GAs. We regard the phenotype of a given circuit as a set of
real-valued numbers that quantify its properties. For instance, we extensively
consider the depth (the length of the longest path from the beginning of a

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 53

circuit to its end) as an essential parameter since it is a measure of how long
it takes to execute a circuit. Thus, from a population of circuits, one can sort
the individuals by their depth and use it as a selection bias, e.g., considering
circuits with lower depth as better suited. Hence, the selection mechanism for
quantum circuits works in the following way:

1. The phenotype of each individual is evaluated, where the optimization
problem determines the list of parameters assessed;

2. Each individual’s fitness is evaluated via a fitness function F whose
arguments are the elements of the phenotype. By convention, we define
F such that higher fitness individuals are considered better solutions;

3. For breeding selection, a probability of reproduction is associated to each
individual proportional to its relative fitness to the rest of the population.
A roulette wheel selection system [67] is employed to pick two individuals
to mate, i.e., to go through the process of crossover/mutation.

The most computationally expensive part of the GA is calculating the phe-
notype. Also, it can be a creative challenge to come up with a proper list
of parameters. One needs to clearly understand the optimization problem to
devise a list of desirable parameters the optimal solution should have and a
method to evaluate them quantitatively.

Finally, after the size of the population reaches an established maximum
limit (reproduction adds two new individuals at a time), we may purge the
worst circuits. We regard this process as the competition aspect of the GA
since it emulates the limited growth of biological populations and the death of
ill-adapted individuals.

With all the fundamental elements of the GA defined, we build the basic
scheme of the simulated evolutionary cycle. At the start, an initial population
of random circuits is initialized with each individual’s fitness evaluated and
stored. The GA then works via the iteration of a cycle of selective breeding,
crossover, mutation, and population purge until a termination criterion is met1.
Each cycle marks a generation. Putting it all together, Figure 4.6 displays the
decision tree of the GA we built.

1The criterion can be a maximum number of iterations or a target fitness value.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 54

BREEDING
SELECTION

CROSSOVER MUTATION

OFFSPRING
EVALUATION

PURGE
LESS FIT POP. > LIMIT?

HALT?

INITIALIZE
RANDOM

POPULATION

yes

yes

no

no

Figure 4.6: Decision tree of the genetic algorithm. The halt decision gate
evaluates if a termination condition was met.

4.2.2
Dynamic crossover and mutation rates

In addition to the essential elements of the GA, one usually adds a series
of heuristics to increase the algorithm’s performance, i.e., how quickly it finds
a solution [67,75]. Unlike the usual optimization methods where the algorithm
has a certain independence from the problem itself, GAs are very problem
sensitive, requiring a degree of trial and error since there is a considerable
degree of arbitrariness on how each step is carried out. As aforementioned,
e.g., there a multiple ways to perform the crossover operator; we may choose
between one-point or multiple-point crossover, or crossover genotypes of more
than two parents. One is not restricted to just these choices for new forms of
crossover can be invented.

Fogel [67] stresses that a diverse gene pool is essential. As generations go
by, the population diversity diminishes due to selective breeding in conjunction
with crossover. Crossovers between the best individuals have a homogeniza-
tion effect since it keeps recombining increasingly similar genotypes until the
population is composed of identical individuals (considering the worst geno-
types are periodically deleted). There are some proposed ways to support a
high diversity, such as working with large-sized populations, introducing new
random individuals periodically, or avoiding breeding similar genotypes [67].

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 55

On the other hand, the evolutionary algorithm termed evolution strate-
gies (ES) contests the need for high diversity [75, 87]. In its basic form, ES
algorithms operate with only two individuals at a given time: a parent geno-
type and a mutated copy of it. Since crossovers become pointless, ES works
by constantly copying and mutating a single genotype until it generates an
individual with higher fitness, which replaces its parent. We regard the ES
approach as similar to simple organisms performing asexual reproduction [80],
like bacteria on a Petri dish.

We investigated some of the proposed heuristics to increase diversity, but
we did not observe increased performance by working with a large population
or introducing new random circuits periodically. New random individuals are
seldom chosen to breed since they usually have low fitness, and the diversity
a large population brings is eventually washed out by selective breeding and
crossover. We did not venture into avoiding breeding similar genotypes since
it would demand the extra step of computing a measure of distance2, which
can be computationally expensive. We settled in using a low-sized population
(≈ 10) with dynamic crossover and mutation rates.

Ulteriorly, the genetic operators are scanning mechanisms to survey the
solution space. Bartz-Beielstein et al. [75] concisely explain the difference in
purpose of each operator:

Mutation means neighborhood based movement in the search space
that includes the exploration of the ‘outer space’ currently not
covered by a population, whereas recombination rearranges existing
information and thus focuses on the ‘inner space’.

Given the distinction, we argue that the need for crossovers and mutations
varies as the algorithm progresses. Since crossovers homogenize the population
by disseminating good blocks of genes found on the ‘inner space’, they are
most relevant when diversity is high. As diversity drops, mutations become
increasingly important (crossovers start to have no effect since they merely
copy the parents’ genotypes) as new gene combinations need to be sought
out on the ‘outer space’. Hence, for a given population of circuits, define the
fitness register f⃗reg(t) as an array that holds each individual’s fitness at a given
time t. Let fs.d.(t) be the standard deviation of f⃗reg(t). We use fs.d. as a rough
measure of the population diversity. Define the dynamic crossover (cr) and
mutation (mr) rates which give the probability that the respective genetic

2For Clifford circuits we could use the inner-product as described in Algorithm 2.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 56

operator happens at each reproduction instance:

cr = 1 − e−fs.d. (4-1)

mr = e−fs.d. (4-2)

Thus, the algorithm adapts at each iteration, providing the necessary genetic
operator more importance. Additionally, we added stochasticity to the number
of mutations an offspring undergoes. Each time mutations are to be applied,
the quantity is drawn from a probability distribution.

Given the discussed heuristics and the decision tree of the GA, Algorithm
5 presents the pseudocode of the GA we employ in this work.

4.2.3
A toy problem

As a first test of the capability of the GA as a searching tool for quantum
circuits we introduce a simple toy problem. A circuit U acts on a 1D lattice of
qubits, which we now label by the indices x ∈ {1, ..., n}, initially in the state
|ψ0⟩ = |0⟩⊗n. The resulting state after application of the circuit is |ψ⟩ = U |ψ0⟩.
Define the density matrix ρx as the state obtained by splitting the chain at
x and tracing out all qubits to the left of x in the final state |ψ⟩. The von
Neumann entropy of ρx is denoted S(x), and we define the mean entropy
generated by a circuit as

⟨S⟩ = 1
n

∑
x

S(x). (4-3)

For Clifford circuits, Algorithm 4 can be employed to evaluate ⟨S⟩.
Consider then the following problem: find quantum circuits that generate

the largest possible ⟨S⟩ with the least possible circuit depth D. We propose the
fitness function

F = ⟨S⟩/D . (4-4)
Circuits that maximize (4-4) solve the problem. Note that solutions can be
found by deductive reasoning as follows. Subadditivity of the von Neumann
entropy implies that S(x) can change by at most one from one qubit to the
next [56],

|S(x+ 1) − S(x)| ≤ 1. (4-5)
The maximum mean entropy of a circuit is therefore given by

⟨S⟩max = 1
n

 n/2∑
M=1

M +
n/2−1∑
M=1

M

 = n

4 . (4-6)

The minimum value of depth for a circuit generating non-vanishing entropy is
Dmin = 2. Hence, the highest possible value for F is Fmax = n/8. There are
multiple solutions that maximize F , one example of which is shown in Figure

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 57

Algorithm 5 Genetic Algorithm
Input: (i) initial population size M ; (ii) qubit overhead n; (iii) mutation
probability density mut_prob, (iv) population maximum size max_size
Output: circuit with highest fitness

1: population = initializePopulation(M, n)
2: while terminationTest() == False do
3: f⃗reg = evaluatePopulationFitness(population)
4: fs.d. = standardDeviation(̃freg)
5: cr = 1 − e−fs.d.

6: mr = e−fs.d.

7: parentA, parentB = selectParents(population, f̃reg)
8: if crossoverTest(cr) == True then
9: offspringA, offspringB = crossover(parentA, parentB)

10: else
11: offspringA = parentA
12: offspringB = parentB
13: end if
14: if mutationTest(mr) == True then
15: n = mutationNumber(mut_prob)
16: for i ∈ {1, . . . , n} do
17: offspringA = mutate(offspringA)
18: end for
19: end if
20: if mutationTest(mr) == True then
21: n = mutationNumber(mut_prob)
22: for i ∈ {1, . . . , n} do
23: offspringB = mutate(offspringB)
24: end for
25: end if
26: population = population + offspringA + offspringB
27: if populationSize(population) > max_size then
28: population = purgeWorstCircuits(population)
29: end if
30: end while

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 58

0 1
H

0 2
H

0 3 H

0 4

0 5

0 6

Figure 4.7: A 6-qubit circuit solving the toy problem. Permutations of the
CNOTs along the time direction, as well as of the target qubits yield the same
solution.

CREATE 1st
RANDOM
CIRCUIT

CREATE
RANDOM
CIRCUIT

FIT. A > FIT B?

DELETE B
AND

KEEP A

DELETE A
AND

KEEP B

HALT?

yes

no

no

yes

Figure 4.8: Decision tree of the RS. The algorithm generates random circuits
and saves the best circuit ever generated until a termination condition is
reached (maximum number of generations or maximum fitness value).

4.7 for n = 6 qubits. Note that the circuit produces a tensor product of Bell
pairs organized in a specific way within the 1D lattice.

To determine whether a GA provides advantage in the search for the
solution, we compare its performance to a purely random search (RS). The
decision tree used for RS is shown in Figure 4.8. Since the bottleneck of both
algorithms is the fitness evaluation, their time performance is nearly identical,
i.e., a generation for each method takes almost the same time to execute.
Hence, we chose to compare the methods by how fast each can converge to a
solution within a given number of generations.

The total number of solutions to the problem is very small in comparison
to all possible n-qubit circuits composed of t gates. We expect further that the
ratio of solutions to possible circuits decreases significantly with the number
of qubits n. If the GA is to have an advantage over RS, we should expect this
edge to grow as we increase n. Figure 4.9 shows the fitness values of the best

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 59

circuit in the population as a function of generation number for three cases
with increasing number of qubits given by n = 4, 8 and 16. We note that each
curve is the average over 100 runs, and that over all runs the optimal circuits
are generated many times by the GA. For n = 4 we can see that RS is able
to find the solution. Nevertheless, the GA has an increasing advantage over
RS as we increase the number of qubits, as expected. This can be seen by the
widening gap between the GA and RS traces in Figures 4.9(a), (b) and (c). The
red dashed lines show the maximum attainable fitness values, for reference.

(a)

(b)

(c)

Figure 4.9: Evolutionary search through a genetic algorithm (green line) versus
random search (blue line) for the toy problem. Each curve is the average over
100 runs. The dashed red line represents the maximum fitness given by n/8
(see Eq. (4-6) and the main text). (a) n = 4; (b) n = 8; (c); n = 16.

We can visualize the topology of a quantum circuit as a graph, where
each node corresponds to a qubit and vertices represent CNOT gates. This
graph representation highlights the necessary hardware architecture a quantum
computer needs to have to execute the circuit, i.e. which qubits need to interact.
Figure 4.10 shows the typical example of an initial randomly generated circuit
topology, and its subsequent evolution towards the topology of the optimal
solution, as depicted in Figure 4.7 corresponding to Bell pairings of the qubits.
We see that starting from complicated random circuits artificial selection can

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 60

4 3

21

6
8

7
5

(a)
7

1 5

4
8

6
3 2

(b)

(c)

5

3
4 7

6

2

1
8

(d)

1
8 6

2

4
7

5
3

Figure 4.10: Evolution of the topology of the fittest circuit in an evolutionary
search simulation for n = 8. The edges represent qubits (the number is the
qubit’s index), and the vertices CNOT gates. (a) Initial set of random circuits;
(b) after 322 generations; (c) after 2248 generations; (d) after 3909 generations.

perform a directed search towards high fitness individuals in a much shorter
time than RS.

4.3
Evolving QECCs

Given the appropriate fitness function, can a GA evolve quantum error
correction codes such as the 5-qubit perfect code [40], the 7-qubit color code
[42, 43], and Shor’s 9-qubit code [41]? These are examples of stabilizer codes,
meaning they are generated by Clifford gates. As in the toy example, efficient
simulation in classical computers is therefore granted.

Defining the appropriate fitness function that will efficiently direct the
search for the desired QECCs is crucial and not straightforward. The crux
of the matter involves defining a phenotype set that captures the features
expected of a good error correction code. For the toy problem, the definition
of the problem itself contains the phenotype and leads to the form of the
fitness function. Backed by the content developed in Chapter 3, we now
present metrics capable of measuring the effectiveness of a circuit in correcting
quantum errors and a method of evaluating them.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 61

4.3.1
QECC fitness function

One can represent a given QECC by a set of two or more mutually
orthogonal codewords {|ci⟩}. The codewords define a set of syndrome operators
{Si} employed to detect and correct up to t errors following the scheme shown
in Figure 3.4. With the syndrome operators and the subset of errors E we
require our code to be able to detect and correct, one builds the syndrome
table. One may then use it to decide if the set of codewords forms a functional
QECC by checking if there are undetectable and uncorrectable errors. We
reiterate how to classify and account for these errors:

– syndromes represented by bit strings of 0-s correspond to undetectable
errors. Thus, given the syndrome table, the number of undetectable errors
is obtained by counting how many errors return 0-stringed syndromes;

– if more than one error is associated with distinctive syndromes, all 2-
on-2 combinations are cross-checked with the shared stabilizers of all
codewords. If one combination fails, we classify the errors associated to
the syndrome as uncorrectable.

Let eund and eunc be the number of undetectable and uncorrectable errors
associated to a set of codewords, respectively. Then, the corrigibility degree cd
is given by

cd ≡ (|E| − eund − eunc)/|E| (4-7)
We use the corrigibility degree as our main phenotype to evolve good

QECCs, however its evaluation assumes the possession of a tentative set of
codewords. How do we relate the Clifford circuits we employ in the GA with
codewords? Taking Shor’s code as an illustrative example, we may represent it
by its codewords or by its EC as depicted in Figure 3.5. It then becomes natural
to evolve ECs for our purposes, but there are some caveats. The EC in itself is
insufficient to determine the codewords; one must know which initial states it
acts to form them. For the particular circuit we portrayed for Shor’s code, the
|ψ⟩ ket in the first register implicitly informs that the initial states are taken
to be {|00 . . . 0⟩ , |10 . . . 0⟩}. Furthermore, other circuits generate equivalent
codewords for Shor’s code. For example, consider the circuit shown in Figure
4.11. If it acts on the initial states {|0 . . . 000⟩ , |0 . . . 010⟩}, it effectively
generates equivalent codewords to (3-27) and (3-28)3.

The main takeaway is that if we are going to evolve ECs, we need
an algorithm capable of producing different sets of codewords from various

3The sets of codewords are in themselves different. The equivalence is in the sense that
both sets work in a similar fashion forming a [[9, 1, 3]] QECC.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 62

combinations of initial states. For instance, if the GA evolved the circuit from
Figure 4.11 and only tried to use {|00 . . . 0⟩ , |10 . . . 0⟩} as the initial states
to form the codewords, it would wrongly conclude that the circuit does not
constitute a good QECC.

0 1

0 2

0 3

0 4

0 5

0 6

0 7

8
ψ
0 9

H

H

H

Figure 4.11: An example of an equivalent EC to Shor’s error correction code.

We now describe the procedure we built to evaluate different sets of
codewords given a Clifford circuit regarded as a tentative EC for a QECC.
Also, the process captures the code distance, which we use as part of the
QECC phenotype, as will be discussed.

Given an EC, applying it to the |0⟩⊗n state generates a first potential
codeword |c0⟩. Recollecting that codewords form a set of mutually orthogonal
states, we create a method to build 2n − 1 mutually orthogonal states to |c0⟩
which will give us a set of 2n potential codewords4 {|ci⟩}. In possession of
{|ci⟩}, it remains to evaluate the cd of subsets. To generate states orthogonal
to |c0⟩, we find a set of logical X ≡ {X̄i} operators such that

X̄i |c0⟩ = |ci⟩ (4-8)

⟨ci|cj⟩ = δij (4-9)

∀i ∈ {1, . . . , 2n−1}.
There is a systematic method to build a particular5 set X that satisfies

the above equations starting from the computational basis. Consider then the
n-qubit computational basis. Starting from |ψ0,I⟩ = |0⟩⊗n 6, it is straightfor-

4Since we work with qubits, a n-dimensional Hilbert space is spawned by 2n states.
5X is not unique.
6The first subscript 0 refers to |0⟩⊗n and the I subscript stands for the identity in the

sense that no computation was done.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 63

ward to verify that the logical {X̄i,I} operators that takes |ψ0,I⟩ to the other
states of the basis |ψi,I⟩ (which are mutually orthogonal by definition) are all
the 2n − 1 tensor product combinations of Pauli letters X and I possessing at
least one X. Define [X̄I] as a 2n − 1 × n matrix whose rows are {X̄i,I}:

[X̄I] =



X I I . . . I I

I X I . . . I I
...
I I I . . . I X

X X I . . . I I
...
X X X . . . X X


. (4-10)

Notice that {X̄i,I} satisfies Equations (4-8) and (4-9). Let |ψ0,U⟩ = U |ψ0,I⟩,
where U is some unitary computation. U transforms each X̄i,I into X̄i,U ≡
UX̄i,IU

† such that

⟨ψ0,U | X̄i,U |ψ0,U⟩ = ⟨ψ0,I |U †UX̄i,IU
†U |ψ0,I⟩

= ⟨ψ0,I | X̄i,I |ψ0,I⟩

= 0 (4-11)

∀i. Each X̄i,U is distinct since if X̄i,U = X̄j,U for some i, j , then

U
(
X̄i,I − X̄j,I

)
U † = 0. (4-12)

Since U ̸= 0 and {X̄i,I} are different by construction, then forcibly i = j. We
conclude that {X̄i,U} forms a set of logical operators whose elements take |ψ0,U⟩
into 2n−1 unique mutually orthogonal states |ψi,U⟩. Taking the particular case
of U as an EC, X = {X̄i,EC} is the set we seek.

Notice the similarity of the above arguments and the stabilizer formalism,
where we also consider conjugations of the form U · U † for similar reasons. In
addition, [X̄I] is analogous to the tableau representation introduced in Section
2.2, which leads to the method we employ to evaluate {X̄i}: given an EC, we
evaluate U [X̄I]U † row by row using the conjugation rules on Table 2.2. One
could skip the evaluation of X and directly assess {|ci⟩} by applying the EC to
each state of the computational basis. While this is true, having X provides the
bit-flip distance between |c0⟩ ≡ |ψ0,EC⟩ and each |ci⟩ ≡ |ψi,EC⟩, an important
piece of information we use to speed up the evaluation of the EC as follows.

There is a significant computational cost issue with the intent of eval-
uating the cd for each subset of {|ci⟩} due to the sheer amount of subsets.
Therefore, we are forced to simplify our approach by considering a limited

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 64

number of subsets. First, we limited ourselves to evolving QECCs with two-
dimensional code spaces which leads to an O (22n−1) of subsets to consider
for each tentative EC (a significant but not sufficient reduction). Second, by
appealing to symmetry, we make the heuristic argument that we can fix one
of the codewords, as |c0⟩ without loss, and only consider subsets of the form
{|c0⟩ , |ci⟩} for i = 1, . . . , 2n − 1. Finally, we further reduce the list of subsets
by only evaluating the cd for codewords with large and balanced code dis-
tances. For each pair {|c0⟩ , |ci⟩}, the code distance is min(db,i, dp,i), where db,i
(dp,i) is the bit-flip (phase-flip) distance. We only evaluate the cd for pairs that
maximize (db,idp,i)2√

|db,i − dp,i| + 1
(4-13)

in relation to the set of 2n − 1 tentative pairs. This condition gives preference
to pairs with larger code distance without introducing a bias towards bit or
phase-flip errors. As noted, the calculation of X gives us db; so it remains to
evaluate dp. Logical phase-flip operators between a pair of orthogonal stabilizer
states are Pauli words that stabilize both states but with different overall signs.
Therefore, given {|c0⟩ , |ci⟩}, dp is given by the minimal-weight operator in the
set S(|c0⟩) ∩ S(|ci⟩).

We are now ready to put together our fitness function. Consider a
tentative EC with circuit depth D. Let V⊥ be the set of all codewords
{|c0⟩ , |ci⟩} (built as explained above) with associated cd,i, db,i and dp,i. The
fitness associated to the EC is then given by

F = max
V⊥

F (4-14)

where
F = (1 + cd,i)10 + 1

D
+ min(db,i, dp,i). (4-15)

The form of Equation (4-15) is the result of attempts among other
alternatives. For instance, we tested and excluded functional forms containing
a term proportional to cd/D, as we observed a tendency to evolve circuits with
low depth to the detriment of cd which we imperatively wish to be unity. A
simple solution is to give greater weight to the phenotypes that we consider
most important — in our case incorporating cd as (1 + cd)10, where the power
factor was chosen so that changes to cd would be more meaningful than changes
in D. The last term of (4-15) gives a bias towards QECCs with bigger distance.

4.3.2
Results

We have applied the GA to the problem of searching QECCs correcting
up to single-qubit errors using the fitness function as defined in Equations

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 65

(4-14) and (4-15). We tested the GA performance against RS for a range of
qubit overheads, from n = 5 to n = 10. Figure 4.12 displays the results for
each case.

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Evolutionary search through a genetic algorithm (green line)
versus random search (blue line) in search of QECCs. Each curve is the average
over 100 runs of the population’s best fitness. The fitness values are normalized.
(a) n = 5; (b) n = 6; (c) n = 7; (d) n = 8; (e) n = 9; (f) n = 10.

In all six cases, the GA showed a clear advantage over RS by being able
to evolve functional, low-depth QECCs in just a few hundred generations.
Indeed, the GA was capable of finding the perfect 5-qubit and Shor’s 9-qubit
code many times starting from random circuits and with no insight into these
specific codes.

An unexpected result occurred: both the GA and the RS performed
better for increasing n (it is harder to see for the GA, but there is a slight
increase for each higher value of n). Recalling that the number of pure stabilizer
states scales as O(2n2) [37], we anticipated it to be easier to find codes with a
fewer number of qubits, e.g., n = 5. Observing the plots in Figure 4.12, we see
the opposite behavior, which makes us hypothesize the reason.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 66

Inequality (3-35), demonstrated in Section 3.2.3, shows that the number
of single-qubit errors grows linearly while the number of available potential
syndrome codes grows exponentially with n. Moreover, this inequality restricts
itself to non-degenerate codes. Notice that the GA/RS also searches for
degenerate codes which use less than s(n, t) + 1 syndrome codes. Finally,
recollecting the topic of equivalent ECs, one of its causes is the freedom
to exchange registers. Figure 4.13 illustrates this point where any register
permutation creates a new equivalent circuit. Since the number of permutations
grows as n!, the number of available code syndromes as 2n−1, and we consider
degenerate codes as well, we conjecture that the number of possible QECCs
rapidly grows as n gets larger making it easier to find them.

0 1
H

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

H

H

0 1
H

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

H
H

Figure 4.13: Creation of an equivalent EC for Shor’s code by permutation of
two qubit registers. Any permutation of the register produces an equivalent
EC.

Nevertheless, RS seldom found a solution within the limit of 5, 000
generations, while the GA consistently evolved good QECC7. Table 4.1 shows
how many times each method successfully found a solution within 100 trials
for each value of n tested. While the GA had a success rate of 100% in all
cases (ignoring, for the moment, the color case), RS varied between 4% and
40% showing an abrupt downward trend from n = 8. Therefore, even though
it appears from the graphs in Figure 4.12 that the RS is getting more efficient
as n gets larger, the data in Table 4.1 suggests otherwise. Perhaps, for even
larger n, RS becomes increasingly more inefficient. Further, the difference in
the speed at which the methods converge to the solution is undeniable. The

7We consider that a QECC was found if an EC with cd = 1 was generated.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 67

Table 4.1: Number of times each method found a solution in 100 trials with a
maximum limit of 5, 000 generations (except for the color case, in which the
limit was 10, 000 generations). We divide the results into the cases where the
solution found has a code distance greater or equal to 3 and in which it is
greater than 3.

n GA RS GA RS
dist. ≥ 3 dist. > 3

5 100 10 0 0
6 100 4 0 0
7 100 40 0 0
8 100 32 31 0
9 100 13 47 0
10 100 10 73 1

7 (color) 54 0 NA NA

speed of convergence becomes increasingly important for larger n since the
computation costs scale.

In addition to striving to verify the practicality of GAs by showing
their advantage over RS, we uttermost want to show (1) its flexibility to find
surprising results and (2) its applicability in specific problems. For (1), the
GA evolved unexpected QECCs in many instances. For example, for n = 9
where we expect to generate Shor’s code as a benchmark, the GA many times
produced [[9, 1, 5]] codes with a striking code distance of 5. Figure 4.14 shows
an example of a [[9, 1, 5]] evolved by our GA. These circuits have a larger
distance than Shor’s code, guaranteeing a higher fitness at the expense of a
higher circuit depth. Additionally, for n = 10, many [[10, 1, 5]] codes were also
evolved. In contrast, the RS found a code with a distance greater than 3 only
once. Figure 4.15 show an example of a [[10, 1, 5]] code.

1

0 2

0 3

0 4

0 5

0 6

0 7

80
0 9

H
H H

ψ

H

S

H
H

Figure 4.14: Example of a [[9, 1, 5]] EC found by GA with depth D = 8.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 68

1

0 2

0 3

0 4

0 5

0 6

0 7

80
0 9

H

H

H

0 10

ψ

H

H
S H
H

Figure 4.15: Example of a [[10, 1, 5]] EC found by GA with depth D = 6.

For (2), we decided to tweak the fitness function to specialize the GA in
searching color codes [43]. Color codes are a particular class of error-correcting
codes belonging to the broader family of topological QECCs [43,88]. The main
feature of topological codes is their modularity, i.e., the main code is assembled
by patching elementary repeated pieces. Modularity makes scaling up circuits
straightforward, and each module requires only nearest-neighbor interactions
which relieves a major hardware constraint. These reasons place topological
codes among the leading prospects for actual hardware implementation [89–91].

In particular, we set out to evolve two-dimensional8 color codes since
a simple modification in the fitness function is required to guide evolution
towards them. Two-dimensional color codes are also members of the CSS
class of QECCs [42, 61]. Given a set of codewords forming a QECC, if their
common stabilizer set can be generated by stabilizers made only by Xs or Zs
independently (each generator is made only by Xs or Zs), then it is a CSS
code [43, 62, 63]. We then build a method to quantify how well a code meets
this requirement in a similar fashion to the corrigibility degree. Given a set of
codewords, we measure its CSS degree CSSd by constructing a generator set,
for their joint stabilizers, with the maximum number of operators made only
by Xs or Zs possible. We define CSSd as the ratio of operators that satisfies
the CSS criterion by the total number of elements in the generator set. Hence,
to drive the GA towards two-dimensional color codes, we modify Eq. (4-15) to

8Two-dimensional in the sense of the dimensionality of the lattice formed by the qubits’
interactions, not the Hilbert space code dimension.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 4. Genetic algorithms applied to Quantum Circuits 69

1

4
3

2

6 75

Figure 4.16: A lattice arrangement of the 7-qubit color code.

Figure 4.17: Evolutionary search through a genetic algorithm versus random
search in search for the 7-qubit color code. Each curve is the average over 100
runs of the population’s best fitness. The fitness values are normalized.

F = (1 + cd,i)10 + (1 + CSSd,i)10 + 1
D

+ min(db,i, dp,i). (4-16)

Again, we use form (1 + CSSd,i)10 so that the GA focuses on evolving codes
that satisfies the CSS criterion.

The simplest two-dimensional color code is the triangular 7-qubit code
[43]. Its name derives from the fact that one can represent its topology with a
triangular lattice [92] made by three plaquettes as illustrated in Figure 4.16.
Hence, we applied the GA in search for the 7-qubit code using the updated
fitness function (4-16). The plot of figure 4.17 shows the performance of the
GA against RS. The fitness values are normalized by a fitness-target value
taken from an EC found in [35]. Noting the greater difficulty in evolving the
color code, we increased the generation limit to 10, 000. It appears again that
RS performed reasonably well compared to the GA, but again the performance
plot can be deceiving — as shown in Table 4.1, while the GA had a success
rate of 54%, RS never found the color code.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

5
Outlook

In this work, we set out to reveal the potential of evolutionary algorithms
in developing quantum algorithms through proof-of-concept examples, notably
the evolution of stabilizer quantum error correction codes. In our evolution
simulations, stabilizer states became the individuals, their underlying circuits
stood for digital genotypes. We designed genetic operators inspired by the
circuit’s structure and set up mating selection and reproduction rules. Thus,
covering the main aspects that drive biological evolution and particularities
brought by quantum circuits, we conceived Algorithm 5 — the backbone of
our quantum GA.

By devising a suitable fitness function, the GA proved capable of evolving
Shor’s 9-qubit QECC, and the 5-qubit perfect code repeatedly from random
circuits. Furthermore, recollecting the results shown in the plots of Figure
4.12, the GA significantly outperformed RS in all instances by converging to a
solution on a much shorter time scale. While RS aimlessly samples through the
whole space of possible genotypes, the GA is bound to search over a subspace
that lies within the neighborhood of a given genotype. The subspace sampled
by the GA is then significantly smaller than that of RS, while the fitness
function introduces a directed search that clearly offers an edge over blind
sampling.

In addition to evolving already known codes, other competing solutions
have emerged as, e.g., the circuits depicted in Figures 4.14 and 4.15. This
indicates that the sample space is likely rich with contending solutions, each
with distinct features that we may further sort out by altering the fitness
function according to our needs. Indeed, we showcased an example of this
approach by specializing the QECC fitness function in evolving CSS codes.
With the tweaked fitness and searching for 7-qubits codes, we evolved several
times the triangular 7-qubit color code, a topological QECC.

Future developments

We anticipate at least three directions of future research in which
ideas closely related to the ones introduced here might lead to interesting

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 5. Outlook 71

developments within the broader field of quantum information and computing.
First, evolution might offer valuable means to search for other topological

codes. It might be possible to encode topological features of quantum states
into an appropriate fitness function, thus enabling the automated search
for new topologically ordered states characterized by distinct values of the
topological entanglement entropy [93,94].

Second, quantum algorithm compilation [95] is a challenging problem
that will become increasingly important as noisy intermediate-scale quantum
(NISQ) computers start to emerge [44,96]. Hence, the development of quantum
compiling methods is a very active, timely research field [96–104]. In principle,
the GA seems a promising platform to automate quantum compiling and depth
reduction. For example, given a target algorithm we wish to compile, we could
use a fidelity measurement between the algorithm and a tentative circuit times
the inverse of its depth as a fitness function.

Third, one may translate quantum hardware specifications into metrics
incorporated in the fitness function to produce tailor-made algorithms. As an
illustration, Figure 5.1 shows the available lattices of the quantum system
devices IBM offers on their IBM Quantum service [105]. Note that each device
geometry imposes interaction restrictions on two-qubit gates. Given a device
with a particular lattice, we could incorporate a penalty factor for circuits
that disobey the geometry restrictions. Another possible approach could be
to prohibit two-qubit gates between non-neighbor qubits1. Additionally, some
gates may be harder to implement due to the experimental setup. Brown and
Susskind in [106] introduce the concept of unitary complexity quantifying how
hard it is to implement a given unitary transformation given the properties of
the setup. The unitary complexity could also be used as a penalty factor in
the fitness function to penalize circuits possessing complex gates for a given
hardware.

Final remarks

When we started this project, we had the faintest idea if an evolutionary
algorithm would succeed in evolving quantum circuits. We find it remarkable
how the GA we built, with a few hundred lines of code, can evolve in minutes
celebrated results that needed the minds of Raymond Laflamme, Peter Shor,
and Robert Calderbank to come about. The success of the GA makes us
wonder about all the possibilities it brings. As quantum computers improve

1Maybe this imposes too big a constraint leading the GA to have difficulties finding a
solution.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Chapter 5. Outlook 72

with countless qubits in ever-larger and more complex topologies, genetic
algorithms may yet prove to be an invaluable optimization method in the
quantum computing engineer’s toolbox.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3

4

5

1 2 3 4 5 6 7

891011121314

1

2 3

4

5

1 2 3 4 5

6 7

8 9 10 11 12 13 14 15 16

17 18 19

20 21 22 23 24 25 26 27 28

29 30

31 32 33 34 35 36 37 38 39

40 41 42

43 44 45 46 47 48 49 50 51

52 53

(a) (b) (c)

(d) (e)

(f)

Figure 5.1: IBM quantum systems lattices taken from [105]. The systems are
named: (a) 20-qubits systems Johannesburg and Poughkeepsie; (b) 20-qubits
systems Almaden, Boeblingen, and Singapor; (c) 5-qubits systems Ourense,
Valencia, and Vigo; (d) 14-qubits system Melbourne; (e) 5-qubits system
Yorktown; (f) 53-qubits system Rochester.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography

[1] BIALEK, W.. Biophysics: Searching for Principles. Princeton
University Press, 2012.

[2] KAUFFMAN, S. A.. World Beyond Physics: The Emergence and
Evolution of Life. Oxford University Press, USA, 2019.

[3] JOANA C. XAVIER, E. A.. Autocatalytic chemical networks at
theorigin of metabolism. Proc. R. Soc. B, 287:20192377., 2020.

[4] BRYAN LAU, E. A.. An introduction to ratchets in chemistry and
biology. Materials Horizons, 2017.

[5] ALBERTS, B.; BRAY, D.; HOPKIN, K.; JOHNSON, A. D.; LEWIS, J.;
RAFF, M.; ROBERTS, K. ; WALTER, P.. Essential cell biology. Garland
Science, 2015.

[6] KAUFFMAN, S.; ROLI, A.. The world is not a theorem. Entropy,
23(11), 2021.

[7] KIRYL D. PIATKEVICH, E. A.. A robotic multidimensional directed
evolution approach applied to fluorescent voltage reporters. Nat
Chem Biol., 14(4):352, 2018.

[8] SHOR, P. W.. Why haven’t more quantum algorithms been
found? Journal of the ACM, 50:87, 2003.

[9] MARTYN, J. M.; ROSSI, Z. M.; TAN, A. K. ; CHUANG, I. L.. Grand
unification of quantum algorithms. PRX Quantum, 2:040203, Dec
2021.

[10] NIELSEN, M. A.; CHUANG, I.. Quantum computation and quantum
information. American Association of Physics Teachers, 2002.

[11] BRAVYI, S.; GOSSET, D. ; KÖNIG, R.. Quantum advantage with
shallow circuits. Science, 362(6412):308–311, 2018.

[12] ITEN, R.; METGER, T.; WILMING, H.; DEL RIO, L. ; RENNER, R..
Discovering physical concepts with neural networks. Phys. Rev.
Lett., 124:010508, Jan 2020.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 74

[13] MILES CRANMER, E. A.. Discovering symbolic models from deep
learning with inductive biases. arXiv:2006.11287, 2020.

[14] MILES CRANMER, E. A.. Lagrangian neural networks.
arXiv:2003.04630, 2020.

[15] JARED O’LEARY, JOEL A. PAULSON, A. M.. Stochastic physics-
informed neural networks (spinn): A moment-matching frame-
work for learning hidden physics within stochastic differential
equations. arXiv:2109.01621, 2021.

[16] KRENN, M.; MALIK, M.; FICKLER, R.; LAPKIEWICZ, R. ; ZEILINGER,
A.. Automated search for new quantum experiments. Phys. Rev.
Lett., 116:090405, Mar 2016.

[17] JUAN MIGUEL ARRAZOLA, E. A.. Machine learning method for
state preparation and gate synthesis on photonic quantum
computers. Quantum Science and Technology, 4:024004, 2019.

[18] MARIO KRENN, MANUEL ERHARD, A. Z.. Computer-inspired quan-
tum experiments. Nature Reviews Physics, 2:649, 2020.

[19] KNOTT, P. A.. A search algorithm for quantum state engineering
and metrology. New Journal of Physics, 18(7):073033, jul 2016.

[20] ROSANNA NICHOLS, E. A.. Designing quantum experiments with
a genetic algorithm. Quantum Sci. Technol., 4:045012, 2019.

[21] RAMBHATLA, K.; D’AURELIO, S. E.; VALERI, M.; POLINO, E.; SPAG-
NOLO, N. ; SCIARRINO, F.. Adaptive phase estimation through a
genetic algorithm. Phys. Rev. Research, 2:033078, Jul 2020.

[22] CARLEO, G.; TROYER, M.. Solving the quantum many-body
problem with artificial neural networks. Science, 355(6325), 2017.

[23] GAO, J.; QIAO, L.-F.; JIAO, Z.-Q.; MA, Y.-C.; HU, C.-Q.; REN, R.-J.;
YANG, A.-L.; TANG, H.; YUNG, M.-H. ; JIN, X.-M.. Experimental
machine learning of quantum states. Phys. Rev. Lett., 120:240501,
Jun 2018.

[24] CANABARRO, A.; BRITO, S. ; CHAVES, R.. Machine learning non-
local correlations. Phys. Rev. Lett., 122:200401, May 2019.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 75

[25] KRIVÁCHY, T.; CAI, Y.; CAVALCANTI, D.; TAVAKOLI, A.; GISIN, N. ;
BRUNNER, N.. A neural network oracle for quantum nonlocality
problems in networks. npj Quantum Information, 6(1):1–7, 2020.

[26] AGNIESZKA WOŁOS, E. A.. Synthetic connectivity, emergence,
and self-regeneration in the network of prebiotic chemistry.
Science, 369:1584, 2020.

[27] REAL, E.; AGGARWAL, A.; HUANG, Y. ; LE, Q. V.. Regularized evolu-
tion for image classifier architecture search. In: PROCEEDINGS OF
THE AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, volumen 33,
p. 4780–4789, 2019.

[28] OLSSON, C.; BHUPATIRAJU, S.; BROWN, T.; ODENA, A. ; GOOD-
FELLOW, I.. Skill rating for generative models. arXiv preprint
arXiv:1808.04888, 2018.

[29] POULIN, D.; QARRY, A.; SOMMA, R. ; VERSTRAETE, F.. Quantum
simulation of time-dependent hamiltonians and the convenient
illusion of hilbert space. Phys. Rev. Lett., 106:170501, Apr 2011.

[30] SUSSKIND, L.. Three lectures on complexity and black holes.
arXiv:1810.11563, 2018.

[31] BRANDÃO, F. G.; CHEMISSANY, W.; HUNTER-JONES, N.; KUENG, R.
; PRESKILL, J.. Models of quantum complexity growth. PRX
Quantum, 2:030316, Jul 2021.

[32] FRANK ARUTE, E. A.. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574:pages505, 2019.

[33] WU, Y.; BAO, W.-S.; CAO, S.; CHEN, F.; CHEN, M.-C.; CHEN, X.;
CHUNG, T.-H.; DENG, H.; DU, Y.; FAN, D.; GONG, M.; GUO, C.; GUO,
C.; GUO, S.; HAN, L.; HONG, L.; HUANG, H.-L.; HUO, Y.-H.; LI, L.; LI,
N.; LI, S.; LI, Y.; LIANG, F.; LIN, C.; LIN, J.; QIAN, H.; QIAO, D.; RONG,
H.; SU, H.; SUN, L.; WANG, L.; WANG, S.; WU, D.; XU, Y.; YAN, K.;
YANG, W.; YANG, Y.; YE, Y.; YIN, J.; YING, C.; YU, J.; ZHA, C.; ZHANG,
C.; ZHANG, H.; ZHANG, K.; ZHANG, Y.; ZHAO, H.; ZHAO, Y.; ZHOU,
L.; ZHU, Q.; LU, C.-Y.; PENG, C.-Z.; ZHU, X. ; PAN, J.-W.. Strong
quantum computational advantage using a superconducting
quantum processor. Phys. Rev. Lett., 127:180501, Oct 2021.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 76

[34] JERRY CHOW, OLIVER DIAL, J. G.. Ibm quantum
breaks the 100 qubit barrier. Technical report, IBM,
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle, 2021.

[35] LUKAS POSTLER, E. A.. Demonstration of fault-tolerant universal
quantum gate operations. arXiv:2111.12654, 2021.

[36] GOTTESMAN, D.. Stabilizer codes and quantum error correction.
PhD thesis, California Institute of Technology, 1997.

[37] AARONSON, S.; GOTTESMAN, D.. Improved simulation of stabi-
lizer circuits. Phys. Rev. A, 70:052328, Nov 2004.

[38] GIDNEY, C.. Stim: a fast stabilizer circuit simulator. Quantum,
5:497, 2021.

[39] ROFFE, J.. Quantum error correction: an introductory guide.
Contemporary Physics, 60(3):226–245, 2019.

[40] LAFLAMME, R.; MIQUEL, C.; PAZ, J. P. ; ZUREK, W. H.. Perfect
quantum error correcting code. Physical Review Letters, 77(1):198,
1996.

[41] SHOR, P. W.. Scheme for reducing decoherence in quantum
computer memory. Physical review A, 52, Oct 1995.

[42] CALDERBANK, A. R.; RAINS, E. M.; SHOR, P. W. ; SLOANE, N. J..
Quantum error correction and orthogonal geometry. Physical
Review Letters, 78(3):405, 1997.

[43] KUBICA, A. M.. The ABCs of the color code: A study of
topological quantum codes as toy models for fault-tolerant
quantum computation and quantum phases of matter. PhD
thesis, California Institute of Technology, 2018.

[44] PRESKILL, J.. Quantum computing in the nisq era and beyond.
Quantum, 2:79, 2018.

[45] LI, Y.; FISHER, M. P.. Statistical mechanics of quantum error
correcting codes. Physical Review B, 103(10):104306, 2021.

[46] NIELSEN, M. A.. A geometric approach to quantum circuit lower
bounds. arXiv preprint quant-ph/0502070, 2005.

[47] BROWN, A. R.; SUSSKIND, L.. Complexity geometry of a single
qubit. Physical Review D, 100(4):046020, 2019.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 77

[48] DEKEL, E.; ALON, U.. Optimality and evolutionary tuning of the
expression level of a protein. Nature, 436(7050):588–592, 2005.

[49] KIANI, B. T.; LLOYD, S. ; MAITY, R.. Learning unitaries by gradient
descent. arXiv preprint arXiv:2001.11897, 2020.

[50] HEYFRON, L. E.; CAMPBELL, E. T.. An efficient quantum compiler
that reduces t count. Quantum Science and Technology, 4(1):015004,
2018.

[51] NAM, Y.; ROSS, N. J.; SU, Y.; CHILDS, A. M. ; MASLOV, D.. Auto-
mated optimization of large quantum circuits with continuous
parameters. npj Quantum Information, 4(1):1–12, 2018.

[52] JONES, T.; BENJAMIN, S. C.. Robust quantum compilation and
circuit optimisation via energy minimisation. Quantum, 6:628,
2022.

[53] TANDEITNIK, D.. Evolving quantum circuits. https://github.
com/tandeitnik/Evolving_Quantum_Circuits, 2022.

[54] GOTTESMAN, D.. The heisenberg representation of quantum
computers. arXiv preprint quant-ph/9807006, 1998.

[55] GARCIA, H. J.; MARKOV, I. L. ; CROSS, A. W.. Efficient
inner-product algorithm for stabilizer states. arXiv preprint
arXiv:1210.6646, 2012.

[56] NAHUM, A.; RUHMAN, J.; VIJAY, S. ; HAAH, J.. Quantum entan-
glement growth under random unitary dynamics. Phys. Rev. X,
7:031016, Jul 2017.

[57] RALPH, T.. Quantum error correction of continuous-variable
states against gaussian noise. Physical Review A, 84(2):022339, 2011.

[58] DIAS, J.; RALPH, T. C.. Quantum error correction of continuous-
variable states with realistic resources. Physical Review A,
97(3):032335, 2018.

[59] WOOTTERS, W. K.; ZUREK, W. H.. A single quantum cannot be
cloned. Nature, 299(5886):802–803, 1982.

[60] GREENBERGER D.M., HORNE M.A., Z. A.. Going beyond bell’s
theorem. In: M., K., editor, BELL’S THEOREM, QUANTUM THEORY

https://github.com/tandeitnik/Evolving_Quantum_Circuits
https://github.com/tandeitnik/Evolving_Quantum_Circuits
DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 78

AND CONCEPTIONS OF THE UNIVERSE, chapter 10, p. 69–72. Springer,
Dordrecht, 1989.

[61] GOTTESMAN, D.. Class of quantum error-correcting codes satu-
rating the quantum hamming bound. Physical Review A, 54(3):1862,
1996.

[62] CALDERBANK, A. R.; SHOR, P. W.. Good quantum error-correcting
codes exist. Physical Review A, 54(2):1098, 1996.

[63] STEANE, A.. Multiple-particle interference and quantum error
correction. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577,
1996.

[64] DENNIS, E.; KITAEV, A.; LANDAHL, A. ; PRESKILL, J.. Topological
quantum memory. Journal of Mathematical Physics, 43(9):4452–4505,
2002.

[65] DODD, M. S.; PAPINEAU, D.; GRENNE, T.; SLACK, J. F.; RITTNER,
M.; PIRAJNO, F.; O’NEIL, J. ; LITTLE, C. T.. Evidence for early
life in earth’s oldest hydrothermal vent precipitates. Nature,
543(7643):60–64, 2017.

[66] DARWIN, C.. On the origin of species, 1859. Routledge, 2004.

[67] FOGEL, D. B.. An introduction to simulated evolutionary opti-
mization. IEEE transactions on neural networks, 5(1):3–14, 1994.

[68] FRASER, A. S.. Simulation of genetic systems by automatic
digital computers i. introduction. Australian journal of biological
sciences, 10(4):484–491, 1957.

[69] BARKER, J.. Simulation of genetic systems by automatic digital
computers. Australian Journal of Biological Sciences, 11(4):603–612,
1958.

[70] BREMERMANN, H. J.; OTHERS. Optimization through evolution
and recombination. Self-organizing systems, 93:106, 1962.

[71] BREMERMANN, H. J.. Numerical optimization procedures de-
rived from biological evolution processes. Cybernetic problems in
bionics, p. 597–616, 1968.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 79

[72] BREMERMANN, H. J.; ROGSON, M.. An evolution-type search
method for convex sets. Technical report, CALIFORNIA UNIV BERKE-
LEY, 1964.

[73] REED, J.; TOOMBS, R. ; BARRICELLI, N. A.. Simulation of biological
evolution and machine learning: I. selection of self-reproducing
numeric patterns by data processing machines, effects of hered-
itary control, mutation type and crossing. Journal of theoretical
biology, 17(3):319–342, 1967.

[74] SAMPSON, J. R.. Adaptation in natural and artificial systems
(john h. holland), 1976.

[75] BARTZ-BEIELSTEIN, T.; BRANKE, J.; MEHNEN, J. ; MERSMANN, O..
Evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 4(3):178–195, 2014.

[76] LUSH, J. L.. Animal breeding plans. Read Books Ltd, 2013.

[77] WILCZYNSKI, J. Z.. On the presumed darwinism of alberuni eight
hundred years before darwin. Isis, 50(4):459–466, 1959.

[78] PURUGGANAN, M. D.; FULLER, D. Q.. The nature of selection
during plant domestication. Nature, 457(7231):843–848, 2009.

[79] ROTH, S. C.. What is genomic medicine? Journal of the Medical
Library Association: JMLA, 107(3):442, 2019.

[80] SMITH, J. M.; SZATHMARY, E.. The major transitions in evolution.
OUP Oxford, 1997.

[81] PIERCE, B. A.. Genetics: a conceptual approach. Macmillan, 2012.

[82] GAVRILETS, S.. Fitness landscapes and the origin of species
(MPB-41). Princeton University Press, 2004.

[83] KAUFFMAN, S.; LEVIN, S.. Towards a general theory of adaptive
walks on rugged landscapes. Journal of theoretical Biology, 128(1):11–
45, 1987.

[84] HOLLAND, J. H.. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 80

[85] EIBEN, A. E.; RAUE, P.-E. ; RUTTKAY, Z.. Genetic algorithms with
multi-parent recombination. In: INTERNATIONAL CONFERENCE
ON PARALLEL PROBLEM SOLVING FROM NATURE, p. 78–87. Springer,
1994.

[86] TING, C.-K.. On the mean convergence time of multi-parent ge-
netic algorithms without selection. In: EUROPEAN CONFERENCE
ON ARTIFICIAL LIFE, p. 403–412. Springer, 2005.

[87] GENERSCHWEFEL, H.. Evolution and optimum seeking. Sixth
Generation Computer Technology Series, John Wiley and Sons, 1995.

[88] KITAEV, A. Y.. Fault-tolerant quantum computation by anyons.
Annals of Physics, 303(1):2–30, 2003.

[89] NICKERSON, N. H.; FITZSIMONS, J. F. ; BENJAMIN, S. C.. Freely
scalable quantum technologies using cells of 5-to-50 qubits with
very lossy and noisy photonic links. Physical Review X, 4(4):041041,
2014.

[90] SETE, E. A.; ZENG, W. J. ; RIGETTI, C. T.. A functional architecture
for scalable quantum computing. In: 2016 IEEE INTERNATIONAL
CONFERENCE ON REBOOTING COMPUTING (ICRC), p. 1–6. IEEE,
2016.

[91] O’GORMAN, J.; NICKERSON, N. H.; ROSS, P.; MORTON, J. J. ; BEN-
JAMIN, S. C.. A silicon-based surface code quantum computer.
npj Quantum Information, 2(1):1–14, 2016.

[92] BERMUDEZ, A.; XU, X.; NIGMATULLIN, R.; O’GORMAN, J.; NEGNEVIT-
SKY, V.; SCHINDLER, P.; MONZ, T.; POSCHINGER, U.; HEMPEL, C.;
HOME, J. ; OTHERS. Assessing the progress of trapped-ion pro-
cessors towards fault-tolerant quantum computation. Physical
Review X, 7(4):041061, 2017.

[93] KITAEV, A.; PRESKILL, J.. Topological entanglement entropy.
Physical review letters, 96(11):110404, 2006.

[94] LEVIN, M.; WEN, X.-G.. Detecting topological order in a ground
state wave function. Physical review letters, 96(11):110405, 2006.

[95] HARROW, A.. Quantum compiling. PhD thesis, Citeseer, 2001.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 81

[96] KHATRI, S.; LAROSE, R.; POREMBA, A.; CINCIO, L.; SORNBORGER,
A. T. ; COLES, P. J.. Quantum-assisted quantum compiling.
Quantum, 3:140, 2019.

[97] VENTURELLI, D.; DO, M.; RIEFFEL, E. ; FRANK, J.. Compiling quan-
tum circuits to realistic hardware architectures using temporal
planners. Quantum Science and Technology, 3(2):025004, 2018.

[98] BOOTH, K. E.; DO, M.; BECK, J. C.; RIEFFEL, E.; VENTURELLI, D. ;
FRANK, J.. Comparing and integrating constraint programming
and temporal planning for quantum circuit compilation. In:
TWENTY-EIGHTH INTERNATIONAL CONFERENCE ON AUTOMATED
PLANNING AND SCHEDULING, 2018.

[99] CINCIO, L.; SUBAŞI, Y.; SORNBORGER, A. T. ; COLES, P. J.. Learning
the quantum algorithm for state overlap. New Journal of Physics,
20(11):113022, 2018.

[100] MASLOV, D.; DUECK, G. W.; MILLER, D. M. ; NEGREVERGNE, C..
Quantum circuit simplification and level compaction. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(3):436–444, 2008.

[101] BOOTH JR, J.. Quantum compiler optimizations. arXiv preprint
arXiv:1206.3348, 2012.

[102] CHONG, F. T.; FRANKLIN, D. ; MARTONOSI, M.. Programming
languages and compiler design for realistic quantum hardware.
Nature, 549(7671):180–187, 2017.

[103] HEYFRON, L. E.; CAMPBELL, E. T.. An efficient quantum compiler
that reduces t count. Quantum Science and Technology, 4(1):015004,
2018.

[104] HÄNER, T.; STEIGER, D. S.; SVORE, K. ; TROYER, M.. A software
methodology for compiling quantum programs. Quantum Science
and Technology, 3(2):020501, 2018.

[105] MCCLURE, D.; GAMBETTA, J.. Quantum computation cen-
ter opens. https://www.ibm.com/blogs/research/2019/09/
quantum-computation-center/, 2019. [Online; accessed 9-April-2022].

[106] BROWN, A. R.; SUSSKIND, L.. Complexity geometry of a single
qubit. Physical Review D, 100(4):046020, 2019.

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Bibliography 82

[107] PINTER, C. C.. A book of abstract algebra. Courier Corporation,
2010.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

A
List of publications

1. BRANDÃO, Igor; TANDEITNIK, Daniel; GUERREIRO, Thiago.
Coherent scattering-mediated correlations between levitated
nanospheres. Quantum Science and Technology, v. 6, n. 4, p. 045013,
2021.

2. BRANDÃO, Igor; TANDEITNIK, Daniel; GUERREIRO, Thiago.
QuGIT: a numerical toolbox for Gaussian quantum states.
arXiv preprint arXiv:2201.06368, 2022.

3. TANDEITNIK, Daniel; GUERREIRO, Thiago. Evolving Quantum
Circuits. In preparation.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

B
Notation convection

B.1
Tensor products and indexing

Throughout this work quantum states are represented using Dirac’s bra-
ket notation. For single-qubits, a two-state quantum system, we primarily use
the computational basis {|0⟩ , |1⟩}. Hence, a general qubit states is written as

α |0⟩ + β |1⟩ , (B-1)

where |α|2 + |β|2 = 1 to guarantee normalization of the state.
For multi-qubit states, the tensor product symbol and the indexing of

states will be often omitted for reading clarity. As an example, consider the
tensor product state of two qubits |0⟩1 ⊗ |0⟩2. Such a state may be written as

|0⟩1 ⊗ |0⟩2 = |0⟩ |0⟩ = |00⟩ . (B-2)

The order of the indices are always crescent from left to right, even for bras:

⟨0|1 ⟨0|2 = ⟨00| . (B-3)

The tensor product symbol will also be omitted for operators, but indices
will always be shown when working with more than one qubit. Hence, an
operator as X1 ⊗ Z2 ⊗ X3 will be written as X1Z2X3. The identity operator
I will be omitted whenever possible. For instance, we express the two qubit
operator I1X2 as X2 with the presence of I1 implied. For n-qubits, we express
the identity I1I2 . . . In as just I.

B.2
Pauli operators

We use two representations for Pauli operators in this work. The Pauli
operators are symbolized by

σx,i = Xi, σy,i = Yi, σz,i = Zi, (B-4)

where the Latin dummy index i represents the index of the affected qubit.
When we use the notation σj,i, it is implied that j ∈ {x, y, z}. We interchange-

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Appendix B. Notation convection 85

ably refer to single Pauli operators as Pauli letters and the tensor product of
two or more Pauli letters as Pauli words. We may also use digits instead of
letters for the σ notation:

σx,i = σ1,i, σy,i = σ2,i, σz,i = σ3,i. (B-5)

For example, using digits is more suitable when working with the Levi-Civita
symbol.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

C
Pauli operators, Pauli general group and some properties

Define {I,X, Y, Z} as the two-dimensional Pauli matrices represented in
the computational base {|0⟩ , |1⟩} as

I =
1 0
0 1

 , X =
0 1
1 0

 , Y =
0 −i
i 0

 , Z =
1 0
0 −1

 . (C-1)

We define the Pauli group for a single qubit G1 as the set

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (C-2)

The general Pauli group Gn over n-qubits is defined as the set composed of all
tensor product combinations of the elements of G1. Given an element g ∈ Gn,
we define its weight |g| as the number of non-identity operators composing it.
For example, the 3-qubit operator I1Y2Z3 has weight two.

We list some useful properties of Pauli operators which we make use in
this work:

1. Pauli operators are unitary operators, i.e., they square to the identity:

X2 = Y 2 = Z2 = I (C-3)

2. Any Pauli operator may be written as a product of the other two by the
equation

σjσk = iϵjklσl + δjkI, (C-4)
where ϵjkl and δjk are respectively the Levi-Civita and the Kronecker
delta symbols.

3. By property 2, we can express any Pauli operator as ipXuxZuz , with
p = 0, 1, 2, 3. By property 1, the entries of the vector (ux, uz) only need
to take the values of 0 and 1.

4. Given a pair of elements of Gn, they either commute or anti-commute.
For G1, equal operators trivially commute. As for different operators:

σjσk + σkσj = iσl − iσl = 0, (C-5)

where property 2 was employed. Thus,

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Appendix C. Pauli operators, Pauli general group and some properties 87

σiσj = −σjσi (C-6)

if i ̸= j. Two elements of Gn commute (anti-commute) if they intersect
non-trivially on an even (odd) number of qubits. For example, X1X2 and
Y1Z2 commute since

X1X2Y1Z2 = (−1)2Y1X1Z2X2 = Y1Z2X1X2. (C-7)

5. By property 4, Pauli operators conjugate to the negative of itself,

σiσjσ
†
i = −σj, (C-8)

if i ̸= j and σi, σj ̸= ±I.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

D
Quantum circuits and important gates

Quantum circuits are a helpful way of visualizing quantum algorithms
and are widely employed throughout this work. We briefly review quantum
circuitry notation and the main gates utilized in the stabilizer formalism: the
Pauli operators {X, Y, Z} and the Clifford gates {H,CNOT,P}. We also cite
the measurement gate, which has a different quality from the others and plays
an important role on stabilizer error correction codes. Figure D.3 summarizes
all mentioned gates and quantum circuit’s elements for quick reference. For
more in-depth details about quantum circuits and gates, please refer to [10].

To start drawing a quantum circuit, one begins by placing the initial
qubit states on the left side of the circuit (crescent index from top to bottom)
and assign a horizontal wire, also known as a register or quantum channel, to
each qubit. Operators, also called gates in analogy with classical computation,
are then placed in order of application from left to right on the correspondent
qubits they act. As a first example, Figure D.1 depicts the quantum circuit
representation of applying operators U and G, in this order, to a quantum
state |ψ⟩.

ψ U G GUψ

Figure D.1: A simple quantum circuit example.

We now review the principal gates employed in this dissertation. The X
gate has the action of flipping the computational basis states:

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ . (D-1)

Hence, it is commonly called the NOT gate of quantum computation [10]. The
diagonal basis {|+⟩ , |−⟩}, defined as

|+⟩ ≡ |0⟩ + |1⟩√
2

, |−⟩ ≡ |0⟩ − |1⟩√
2

, (D-2)

are the eigenvectors of X with eigenvalues ±1. The Z gate has a similar action,
however it flips the diagonal basis states:

Z |+⟩ = |−⟩ , Z |−⟩ = |+⟩ . (D-3)

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Appendix D. Quantum circuits and important gates 89

This comes from the fact that {|0⟩ , |1⟩} are eigenvectors of Z with eigenvalues
±1. The Y gate is a mixture of the previous two gates since it is proportional
to XZ. With the previous results, it immediately follows that its action upon
a generic qubit state α |0⟩ + β |1⟩ is

Y (α |0⟩ + β |1⟩) = α |1⟩ − β |0⟩ , (D-4)

where the global phase was ignored. Its eigenvectors are
{

|0⟩+i|1⟩√
2 , |0⟩−i|1⟩√

2

}
with

eigenvalues of ±1.
The Hadamard gate H maps the states of the computational basis into

the states of the diagonal basis:

H |0⟩ = |+⟩ , H |1⟩ = |−⟩ , H |+⟩ = |0⟩ , H |−⟩ = |1⟩ . (D-5)

The phase gate P leaves the |0⟩ state unaltered and gives a relative phase of i
to the |1⟩ state:

P (α |0⟩ + β |1⟩) = α |0⟩ + iβ |1⟩ . (D-6)
Unlike all the other gates mentioned in this appendix, the phase gate does not
square to identity. Actually, P 4 = I. The CNOT gate, short for controlled-
NOT, is a 2-qubit gate with two input qubits: a control and a target qubit.
Its action depends on the state of the control qubit. If the control is set to
|0⟩, the target is left unaltered. If the control is set to |1⟩, it is applied an
X gate to the target. Figure D.2 shows the quantum circuit representation
of the CNOT in a useful application with the H gate. The target is properly
symbolized by a big cross inside a circle, and the control by a small black circle.
Applying the definitions, it is straightforward to check that this circuit, before
the measurement, generates the Bell state |Φ+⟩ = (|00⟩ + |11⟩)/

√
2.

0 1

0 2

H

Figure D.2: This quantum circuit example produces the Bell state |Φ+⟩ and
then qubit 2 is measured on the computational basis.

Lastly, we define a measurement as a projection of a qubit into the
computational base. For example, consider the circuit depicted in Figure D.2.
The measurement gate is schematically represented by a needle pointer similar
to a vintage voltmeter display. As aforementioned, the pre-measurement state
for this circuit is the Bell state (|00⟩ + |11⟩)/

√
2. By Born’s rule, measurement

leads the state to collapse into either |0⟩ or |1⟩ with equal probability of 0.5.
Often one is not interested in the post-measurement state, only in the outcome,

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Appendix D. Quantum circuits and important gates 90

which is a classical bit. Therefore is common to draw a double line coming out
of a measurement gate, symbolizing a classical bit being transmitted.

H

X

Y

Z

P

Pauli-X

Pauli-Y

Pauli-Z

Hadamard

Phase

CNOT

measurement

classical bit

qubit

((I+Z) + (I-Z)X)
2
1

i i j

((I+Z) + i(I-Z))
2
1

X+Z
2

Projection onto 0 , 1{ }
quantum register

carrying a single qubit
single classical bit

0 1 1 0+

0 0 1 1-

1 0 0 1-i()

Figure D.3: Quick reference for quantum gates and quantum circuit’s basic
elements. The third column shows useful representation of gates in terms of
the computational base or Pauli operators.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

E
Summary and important properties of stabilizers

We give a summary of stabilizer states and list some important properties
that are used throughout this work.

1. U stabilizes |ψ⟩ iff U |ψ⟩ = + |ψ⟩;

2. A n-qubit state |ψ⟩ has 2n stabilizers which form an Abelian group
S(|ψ⟩) [36];

3. S(|ψ⟩) = S(|ϕ⟩) iff |ψ⟩ = |ϕ⟩ [37];

4. The elements of S(|ψ⟩) are elements of the general Pauli group Gn [36];

5. S(|ψ⟩) can be represented by a not unique set of n generators ⟨S(|ψ⟩)⟩
[36];

6. The number of unique n-qubit stabilizer states is given by [37]

N(n) = 2n
n−1∏
k=0

(
2n−k + 1

)
. (E-1)

7. If +U |ψ⟩ = |ψ⟩ and −U |ϕ⟩ = |ϕ⟩, then ⟨ψ|ϕ⟩ = 0. Proof :

⟨ϕ|ψ⟩ = − ⟨ϕ|U †U |ψ⟩ = − ⟨ϕ|ψ⟩ , (E-2)

where U †U = I since U ∈ Gn. ⟨ϕ|ψ⟩ = − ⟨ϕ|ψ⟩ → ⟨ψ|ϕ⟩ = 0;

8. If G stabilizes |ψ⟩ and an operator U is applied to the state, UGU †

stabilizes the evolved state U |ψ⟩;

9. Pauli letters maps to single products of Pauli letters under conjugation
with Clifford gates (H,CNOT,P);

10. Stabilizer states are unbiased. An arbitrary state |ψ⟩ with decomposition∑n
i=1 λi |ci⟩i, with c ∈ {0, 1}, is said to be unbiased if for all λi ̸= 0 and

λj ̸= 0, |λi|2 = |λj|2. Using Table 2.1, it is easy to convince yourself that
an arbitrary Clifford circuit applied to an n-qubit initial stabilizer state
on the computational base can only produce an unbiased state;

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

Appendix E. Summary and important properties of stabilizers 92

11. Consider a stabilizer state |ψ⟩ with stabilizer group S(|ψ⟩) = {s}. The
projector P|ψ⟩ ≡ |ψ⟩ ⟨ψ| can be written as

P|ψ⟩ = 1
|S|

∑
s∈S

s. (E-3)

Proof: First we show that P 2
|ψ⟩ = P|ψ⟩, i.e., P|ψ⟩ is a projector since it

squares to itself:

P 2
|ψ⟩ = 1

|S|2
∑
s,h∈S

sh

= 1
|S|2

∑
s∈S

s∑
h∈S

h


= 1

|S|2
∑
s∈S

∑
h∈S

h


= 1

|S|2
|S|

∑
h∈S

h = P|ψ⟩. (E-4)

The third equality follows from {s} being a group — multiplying a group
by one of its elements maps each element to another distinct one [107]
(it is a transposition). Apply P|ψ⟩ to an arbitrary state |ϕ⟩. Due to the
same reasoning, it follows that P|ψ⟩ |ϕ⟩ is stabilized by {s}:

sP|ψ⟩ |ϕ⟩ = 1
|S|

s
∑
h∈S

h |ϕ⟩ = 1
|S|

∑
h∈S

h |ϕ⟩ = P|ψ⟩ |ϕ⟩ . (E-5)

12. Any element g ∈ Gn can be expressed as a set {u⃗, p}, where u⃗ is a n-bit
vector and p = 0, 1, 2, 3;

13. 2n2 + n bits are sufficient to describe a stabilizer state.

DBD
PUC-Rio - Certificação Digital Nº 2912239/CA

DBD
PUC-Rio - Certificação Digital Nº 2012239/CA

	Evolving Quantum Error Correction Codes
	Resumo
	Table of contents
	Introduction
	Stabilizer formalism
	Stabilizer basics
	Tableau representation
	Stabilizer algorithms

	Quantum error correction codes
	Introduction to error correction
	Stabilizer Codes

	Genetic algorithms applied to Quantum Circuits
	The evolutionary process
	Genetic algorithms applied to Clifford circuits
	Evolving QECCs

	Outlook
	Bibliography
	List of publications
	Notation convection
	Tensor products and indexing
	Pauli operators

	Pauli operators, Pauli general group and some properties
	Quantum circuits and important gates
	Summary and important properties of stabilizers

